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Abstract
Image sensing technologies are rapidly increasing the cost-effectiveness of biodiversity 
monitoring efforts. Species differences in the reflectance of electromagnetic 
radiation can be used as a surrogate estimate plant biodiversity using multispectral 
image data. However, these efforts are often hampered by logistical difficulties in 
broad-scale implementation. Here, we investigate the utility of multispectral imaging 
technology from commercially available unmanned aerial vehicles (UAVs, or drones) 
in estimating biodiversity metrics at a fine spatial resolution (0.1–0.5  cm pixel 
resolution) in a temperate calcareous grassland in Oxfordshire, UK. We calculate a 
suite of moments (coefficient of variation, standard deviation, skewness, and kurtosis) 
for the distribution of radiance from multispectral images at five wavelength bands 
(Blue 450 ± 16 nm; Green 560 ± 16 nm; Red 650 ± 16 nm; Red Edge 730 ± 16 nm; Near 
Infrared 840 ± 16 nm) and test their effectiveness at estimating ground-truthed 
biodiversity metrics from in situ botanical surveys for 37–1 × 1 m quadrats. We find 
positive associations between the average coefficient of variation in spectral radiance 
and both the Shannon–Weiner and Simpson's biodiversity indices. Furthermore, the 
average coefficient of variation in spectral radiance is consistent and highly repeatable 
across sampling days and recording heights. Positive associations with biodiversity 
indices hold irrespective of the image recording height (2–8  m), but we report 
reductions in estimates of spectral diversity with increases to UAV recording height. 
UAV imaging reduced sampling time by a factor of 16 relative to in situ botanical 
surveys. We demonstrate the utility of multispectral radiance moments as an indicator 
of biodiversity in this temperate calcareous grassland at a fine spatial resolution using 
a widely available UAV monitoring system with a coarse spectral resolution. The use 
of UAV technology with multispectral sensors has far-reaching potential to provide 
cost-effective and high-resolution monitoring of biodiversity.
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1  |  INTRODUC TION

With over one  million species expected to go extinct by 2100, 
cost-effectively monitoring biodiversity is a critical task in the 
Anthropocene (Díaz et al., 2019; Palmer et al., 2002). Image sens-
ing technologies, which can be used to monitor biological systems 
through the measurement of reflected and emitted radiation, have 
emerged as a critical tool that can increase this cost-effectiveness 
(Cavender-Bares et al.,  2022; Turner,  2014). The characterization 
of floral biodiversity with remote sensing, particularly with satel-
lite imagery, is well-established in biodiversity research (Pettorelli 
et al.,  2005). Multiple efforts have been made toward using re-
mote sensing data, particularly at large spatial scales and in forest 
ecosystems, to estimate plant diversity (Jetz et al., 2016; Tuanmu 
& Jetz, 2015; Turner et al.,  2003). However, there are limitations 
in the use of long-range remote sensing, including coarse spatial 
resolution that does not necessarily highlight biodiversity at small 
spatial scales (Gamon et al., 2020; Mairota et al., 2015), high sen-
sor costs (e.g., hyperspectral sensor cost of $98,700, Headwall 
Photonics, 2022) and monitoring costs (e.g., flight cost of $60,000, 
Jet Propulsion Laboratory, 2022), and reliance on publicly available 
satellite data (e.g., The European Space Agency, 2022). Flexible ap-
plication of remote sensing concepts and technology at a wide range 
of spatial scales, in variable environments, and with increased cost-
effectiveness, will provide vital resources for monitoring biodiver-
sity (Cavender-Bares et al., 2022; Turner, 2014).

Reflectance of electromagnetic (EM) radiation both includ-
ing and outside the visible range (380–700 nm) has recently been 
demonstrated as an accurate proxy for biodiversity (Cavender-
Bares et al.,  2020; Fassnacht et al., 2022; Wang & Gamon, 2019). 
Remotely sensed proxies for biological activity and biodiversity have 
been available for decades, including the normalized difference veg-
etation index (NDVI; Rouse et al., 1974), and there are now many 
spectral indices used in monitoring, including variance, entropy, and 
distance measures (Wang & Gamon, 2019). The general concept of 
“spectral diversity” is founded on the principle that, due to differ-
ences in functional form (both growth form and pigmentation), plant 
species have differential reflectance signals across the electromag-
netic (EM) spectrum (Gamon et al., 1997). Thus, for a multispectral 
image, the diversity of spectral reflectance can be a proxy for the 
number of different plant species, or species diversity, when applied 
for an appropriate context and spatial scale (Fassnacht et al., 2022; 
Gholizadeh et al., 2019; Laliberté et al., 2020). Spatial scale, vary-
ing through the pixel resolution of multispectral image data, is cen-
tral to spectral diversity's role as a proxy for biodiversity (Gamon 

et al.,  2020; Wang et al.,  2018). In prairie grassland ecosystems, 
associations between spectral coefficient of variation and biodi-
versity were only consistent for pixel resolutions below 5 cm, but 
this association varies depending on study site and the size of study 
organisms (Gamon et al., 2020). The spectral diversity concept was 
recently applied in the hyper-diverse Cape Floristic Region, where 
destructively sampled leaf reflectance spectra were used to obtain 
a robust proxy (R2 > .9) of species diversity across 1267–10 × 5  m 
quadrats (Frye et al., 2021). Therefore, integrating sensing data at a 
range of spatial scales (Laliberté et al., 2020; Turner, 2014) and the 
use of spectral surrogates for biodiversity for an appropriate biolog-
ical context (Fassnacht et al., 2022) can rapidly improve biodiversity 
monitoring.

Recently, there have been several applications of spectral 
diversity from high-resolution imaging data in grasslands (Conti 
et al., 2021; Gholizadeh et al., 2019; Lopatin et al., 2017). In prai-
rie grassland ecosystems, close associations have been found 
between species diversity and spectral diversity, captured using 
aircraft-mounted hyperspectral sensors and images at a spatial 
resolution of 1 × 1  m (pixel resolution; Gholizadeh et al.,  2018, 
2019, 2020). Gholizadeh et al. (2019) primarily use the average co-
efficient of variation across pixels and spectral bands as the metric 
of spectral diversity, which we also adopt here as a spectral dis-
tribution metric that is not dependent on mean reflectance. The 
association between spectral diversity and biodiversity has also 
since been demonstrated at a spatial resolution of 10 × 10 cm in 
coastal meadow habitats, but in a temperate meadow at a resolu-
tion of 3 cm a negative association with biodiversity was mediated 
by vertical complexity (Conti et al., 2021; Villoslada et al., 2020). 
Furthermore, at a fine resolution of <0.5 × 0.5 cm, static monitor-
ing (i.e. sensor mounted to a fixed structure) of grassland plots 
has been used to estimate not only biodiversity metrics (Imran 
et al.,  2021; Wang et al.,  2018), but to reconstruct species per-
centage cover and extract detailed features of community dy-
namics (Lopatin et al.,  2017). However, a key limitation of these 
close-range imaging approaches is their reliance on expensive hy-
perspectral sensors (>$50,000 sensors; Gholizadeh et al., 2019; 
Imran et al., 2021; Lopatin et al., 2017) and monitoring ($1200 per 
hour using the CALMIT aerial sensor from Gholizadeh et al., 2019). 
Furthermore, previous studies have been focused in highly acces-
sible, well-studied areas for which precise image calibration (e.g., 
against solar interference) is more feasible, but image calibration 
may not be feasible in many field systems. Overcoming these cost 
and practical limitations will facilitate further use of spectral imag-
ing in grassland biodiversity research.

K E Y W O R D S
autonomous monitoring, biodiversity drone, remote sensing, unmanned aerial vehicle (UAV)

T A X O N O M Y  C L A S S I F I C A T I O N
Biodiversity ecology, Community ecology
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Despite advances in image sensing, there is a need for cost-
effective and user-friendly monitoring systems that are deploy-
able at a fine spatial resolution. One potential solution is the use of 
commercial unmanned aerial vehicles (UAVs or drones), which have 
rapidly increased in popularity and off-the-counter availability 
over the last decade (Colomina & Molina, 2014). Here, we investi-
gate the efficacy of coarse multispectral imaging from UAV tech-
nology in the estimation of biodiversity at a fine spatial resolution 
(0.1–0.5 cm pixel resolution) in a temperate calcareous grassland. 
We use a commercially available UAV system with a five-band 
multispectral sensor (Blue 450 ± 16 nm; Green 560 ± 16 nm; Red 
650 ± 16 nm; Red Edge 730 ± 16 nm; Near Infrared 840 ± 16 nm) 
to image 37–1 × 1 m quadrats that were also characterized using 
in situ biodiversity assessments from botanical surveys. Then, we 
use an analytical approach for which we do not calibrate raw at-
sensor radiance values to reflectance, which is not always prac-
tical or possible in field settings. Instead, we extract distribution 
metrics, which capture relative differences in at-sensor radiance 
values within an image and estimate the repeatability of distribu-
tion metrics across the sampling period. Finally, we explore the 
association between these proxies of spectral diversity and biodi-
versity in this grassland community.

2  |  METHODS

2.1  |  Study site and in situ biodiversity data

Data collection took place at the two-hectare section of the Upper 
Seeds field site (51°46′16.8″N 1°19′59.1″W; 165 m a.s.l) in Wytham 
woods, Oxfordshire, UK between 16th June and 14th July 2021, 
which is the peak of the growing season. The Upper Seeds site is a 
recovering and managed calcareous grassland, which was used for 
agriculture in the 1950s, before encroaching scrub vegetation was 
removed and the site was managed as a grassland beginning in 1978 
(Gibson, 1986). Management on Upper Seeds is implemented with 
mowing of the site in mid-July at the peak of the growing season, and 
again in early October, coinciding with the end of the growing sea-
son. The site has a low average soil depth (300–500 mm), generally 
alkaline soils (Gibson & Brown, 1991), a daily average temperature 
range of −5 to 26°C (2016–2020), a daily total precipitation range of 
0–40 mm (2016–2020), and high general biodiversity, in which grami-
noids are the dominant functional group (59.1% by biomass). A total 
of 37 1 × 1 m experimental quadrats were used in the current study, 
which displays a large degree of variation in species composition 
and biomass. There were between 16 and 33 vascular plant species 
per m2, with a mean richness of 25.77 species and a median richness 
of 26 species. Total above-ground dry biomass across quadrats var-
ied between 166.8 and 931.5 g/m2, with a mean of 397.9 g/m2 and 
median of 327.2 g/m2. For the same sampling period, the commu-
nity average (community weighted mean for most abundant species) 
plant height in control plots was 43.3 cm, and the community aver-
age specific leaf area (per mg of dry mass) was 0.23 cm2/mg.

We explored biodiversity and spectral diversity associations 
in the context of two long-term experiments that aim to explore 
the response of grasslands to environmental change (full site 
map in Figure S1). These experiments are the Disturbance and 
Resources Across Global Grasslands (DRAGNet, n  =  20 plots) 
coordinated research network (https://nutnet.org/dragnet) and 
the global drought network (DroughtNet, n  =  17 plots) coordi-
nated research network (https://droug​ht-net.colos​tate.edu/). All 
DRAGNet plots (5 × 5  m plots) were ambient controls, with no 
experimental treatments applied prior to the collection of the 
data reported here. Each 5 × 5 m plot from DroughtNet was one 
of four experimental treatments: ambient control plots (n  =  5), 
−50% rainfall shelters to simulate drought (n = 5), +50% irrigated 
plots to simulate increased rainfall (n = 5), and procedural con-
trols (rainfall shelter with no change to rainfall; n = 2; three plots 
were inaccessible for the UAV as the rainfall shelters were fixed). 
For analyses, ambient control treatments (n = 25) across the two 
research networks were pooled as we did not observe substantial 
differences between biodiversity metrics (Figure S2). To account 
for replicated observations of the same quadrats and estimate 
the consistency of spectral diversity measures, we explored 
quadrat-level variance using mixed-effects models with random 
effects for the quadrat ID.

To estimate the efficacy of multispectral sensors in predict-
ing biodiversity, we collected data from two sources, in situ bio-
diversity assessments and UAV-derived multi-spectral image data 
(Figure 1). For the in situ assessments, we quantified biodiversity 
metrics using species-level percentage cover and dry above-ground 
biomass data. We estimated percentage cover data for all vascular 
plant species in a plot using a 1 × 1 m gridded quadrat (10 cm grid), 
focusing on four broad functional groups: graminoids, legumes, 
forbs, and woody species (Figure  1). Because species overlapped 
spatially, percentage cover estimates could exceed 100%. Using 
relative proportions, p, calculated from percentage cover estimates, 
we calculated three biodiversity metrics: (i) vascular plant species 
richness, (ii) the Shannon–Weiner diversity index, H (Equation  1; 
Shannon & Weaver, 1963), and (iii) the Simpson's diversity index, D 
(Equation 2; Simpson, 1949):

We estimated above-ground biomass after UAV image/per-
centage cover data collection, using a clip strip of all vascular 
plant material in 1 × 0.2 m (DRAGNet; collected from standard-
ized locations in the plot) or 1 × 0.25 m (DroughtNet; collected 
from the centre of each quadrat). Clip strips were gathered using 
hand trimmers at a height of 1-2 cm above the soil surface. Within 
1  day of collection, we sorted clip strips in to five functional 
groups: graminoids, legumes, forbs, woody species, and bryo-
phytes (not included in species-level percentage cover estimates) 

(1)H = −

∑

p ln p,

(2)D =

∑

p2
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and dried them at 70°C for 48 h, before weighing the dry biomass 
at an accuracy of ±0.1 g. The estimates of biomass were scaled to 
g/m2 for analyses.

2.2  |  UAV image data collection

To obtain spectral diversity data, we collected image data using 
manual flights of the DJI Phantom 4 multispectral UAV (https://
www.dji.com/p4-multi​spectral). The sensor payload of the DJI 
Phantom 4 multispectral consists of six 4.96 × 3.72 mm comple-
mentary metal–oxide–semiconductor (CMOS) sensors: one RGB 
sensor for visible range color images, and five monochrome sen-
sors for multispectral imaging. The five multispectral sensors are 
sensitive at the following electromagnetic wavelengths: Blue – 
450 ± 16 nm, Green – 560 ± 16 nm, Red – 650 ± 16 nm, Red edge 
– 730 ± 16 nm, and Near-infrared – 840 ± 26 nm (Figure  1). Each 
sensor has an effective resolution of 2.08 MP. All six image sen-
sors are triggered simultaneously when capturing data, with negli-
gible (but non-0) positional differences between sensors. A dorsal 
spectral sunlight sensor on the P4 multispectral sensor provides 
image exposure compensation of multispectral image data, par-
tially accounting for differences in solar radiation between images 
and ensuring radiance values were more comparable between 
images.

To obtain spectral diversity metrics, we collected multispec-
tral images for each quadrat over several flights across the sam-
pling period, capturing quadrat-level variability with weather/light 
conditions. However, to minimize visual interference (from rain or 
low sun), all images were taken during dry weather and between 

10:30 and 15:30 (BST). The corners of each DRAGNet quadrat were 
marked with flags (Figure S1b). For DroughtNet, the quadrat was ap-
proximated using the outer edges of the 5 × 5 m plot. All images were 
collected facing the western edge of each plot. We collected images 
at increasing approximate image recording heights of 2, 4, 6, and 
8 m above the ground to capture changes in image resolution and 
consequences for estimating biodiversity (Figure 1). Flying height is 
recorded relative to the UAV's take-off location, and although the 
topographical variation at the site is <5  m, image record heights 
were approximated using structures of known height (i.e., rainfall 
shelters, see Figure S5). Therefore, using these approximate image 
recording heights and sampling quadrats, the approximate pixel res-
olution of multispectral images was between 0.1 and 0.5 cm. Given 
community averaged heights of <50 cm and specific leaf area of 
0.23 cm2/mg, pixel sizes of 0.1–0.5 cm were appropriate to distin-
guish between plant structures both within and between species. A 
total of 1878 individual images were collected for the 37 quadrats 
over seven sampling days.

2.3  |  Image processing

To extract spectral reflectance metrics from the raw image data, 
we standardized raw images across quadrats for each sample. 
The raw images encompassed the full field of view of the sen-
sors, and we first batch-cropped images with Adobe Lightroom v. 
5 (Adobe, 2021) to include only data for the desired 1 m2 quadrats 
using flags as identification tools (where possible). Images were ex-
ported as .tif files maintaining at-sensor radiance values with mini-
mal post-processing.

F I G U R E  1 Schematic for assessing the efficacy of spectral distribution moments for capturing biodiversity in a temperate calcareous 
grassland. For each 1 × 1 m observation quadrat, we collected both UAV image data (top) and in situ biodiversity data (bottom). In situ 
biodiversity data were collected by botanical surveys for vascular plant percentage cover across the quadrat (from which richness, Shannon–
Weiner, and Simpson's indices were calculated) and using dry above-ground biomass for clip strips (area determined by the coordinated 
research networks DRAGNet and DroughtNet; see 2.1), after UAV images were taken. UAV images were collected for each plot at four 
recording heights (2, 4, 6, and 8 m) across five multispectral bands for which at-sensor radiance digital number (DN) value distributions 
were summarized using four moments. Finally, in situ biodiversity data were compared with spectral distribution moments to examine their 
potential relationships using a Bayesian linear regression framework.
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In contrast to other studies, we did not perform post-processing 
to account for additional interference from solar radiation by nor-
malizing at-sensor radiance Digital Number (DN) values to reflec-
tance values (Conti et al., 2021; Gholizadeh et al., 2019; Schläpfer 
et al., 2020). Solar radiation, which varies across the day and with 
weather conditions, influences radiance detected by image sensors. 
Therefore, typically objects with known reflectance are used as 
a reference to calibrate multispectral images from at-sensor radi-
ance to reflectance values using linear transformations (e.g., Conti 
et al.,  2021). Therefore, the noise introduced from solar radiation 
means that DN values are not directly comparable between images. 
However, many instances may arise where calibration with known 
reflectance is not practical or possible in synchrony with image re-
cording. These instances include the inaccessibility of sampling sites 
from the landing/calibration area (with differing light conditions) 
and changes in weather and radiation within a flight. Therefore, 
we opted to use an alternate approach that does not use calibrated 
reflectance values. First, we used only distribution metrics of the 
at-sensor radiance values (Gholizadeh et al., 2019), particularly the 
spectral coefficient of variation, a variance metric that is corrected 
by the mean in each sample. Although mean radiance values are not 
directly comparable between images, relative differences between 
radiance values, that is, their distributions, are consistent. Second, 
we collected several repeated images of each quadrat across sam-
pling days, which varied in weather conditions and levels of solar ra-
diation. Then, we explicitly modeled the additional noise introduced 
by solar radiation using mixed-effects models, with quadrat as a ran-
dom effect and the quadrat-level variance captured with repeatabil-
ity analyses. Therefore, distribution metrics from radiance values 
repeated over sampling events should capture overall patterns in 
spectral diversity. Multispectral .tif images were treated as rasters 
for further image processing, and all subsequent analysis was car-
ried out using R version 4.0.5 (R Core Team, 2021).

We calculated moments of spectral radiance for each image 
using the raster package (Hijmans,  2020). Following Gholizadeh 
et al.  (2019), we calculated the coefficient of variation, standard 
deviation, skewness, and kurtosis across raster pixels to capture 
the shape of the at-sensor radiance DN distribution (Figure 1). We 
averaged moment values of radiance DNs across all multispectral 
bands for a single observation (a given quadrat at a given recording 
height in each sampling event) to calculate overall distributional 
moments. Thus, here we define the spectral coefficient of varia-
tion as the mean coefficient of variation in the spectral radiance 
across raster pixels and multispectral bands for a single image. 
Observations were discarded if the image recording height was 
>8 m and replicate images were not obtained for all quadrats at all 
image recording heights. Therefore, the final sample size for the 
averaged spectral moment data was 193. In addition, to identify 
the spectral bands that were most sensitive to biodiversity met-
rics, we also tested band-level associations, where radiance distri-
butions were not averaged across spectral bands for the same raw 
data, and in this case, spectral radiance distributions of each band 
were related to biodiversity indices.

2.4  |  Statistical analyses

We explored the efficacy of spectral radiance distribution 
moments in describing in situ biodiversity indices using a Bayesian 
hierarchical linear regression model selection framework in the 
brms package (Bürkner,  2017; Figure  1). All variables were z-
scored (mean and variance centered on 0) for analysis to meet 
the distributional assumptions of linear regressions. The key 
response variable was the spectral coefficient of variation 
(Gholizadeh et al.,  2019), and the key predictor variables were 
the in situ biodiversity indices. However, we also tested other 
spectral moment-biodiversity associations, namely, the skewness 
of spectral radiance and biomass.

We then estimated the out-of-sample predictive performance 
of models including biodiversity indices relative to base models. 
For each explored pair-wise combination of spectral distribution 
moment and biodiversity indices, we performed leave-one-out 
cross-validation with the loo criterion and the expected log-wise 
predictive density (elpd, where Δelpd gives the change in elpd rel-
ative to another explanatory model; Vehtari et al.,  2017). Base 
models did not include any predictor variables, including only an 
intercept-only random effect for quadrat. We also investigated the 
performance of models including image recording height, and two-
way interaction terms between biodiversity indices and height to 
explore how image resolution change influenced the efficacy of 
spectral diversity indices.

In addition to models on averaged spectral moments, we also 
used band-level moments to investigate the relationship between 
biodiversity indices and the spectral coefficient of variation for each 
individual EM band. We included univariate and two-way interac-
tion terms between the EM band and biodiversity indices variables. 
Finally, because a small number of quadrats used in the current 
study were also exposed to long-term drought/irrigation/control 
treatments, we explored whether there were differences in average 
spectral moments between ambient (n = 25 plots), control (n = 2), 
irrigated (n = 5) and drought (n = 5) using a categorical predictor for 
treatment.

To account for repeated observations from the same quadrat 
at different heights or across sampling events, all models included 
an intercept-only random effect for the quadrat �quadrat. From this 
random effect, we also estimated the intraclass correlation (ICC) 
or repeatability (R). This term indicates the proportion of quadrat-
level variance �quadrat with respect to the population-level variance � 
(Nakagawa & Schielzeth, 2010). We used this estimate of repeatabil-
ity to assess the consistency of spectral radiance distributions across 
observations of the same quadrat.

In analyses with average spectral distribution moments, we used 
weakly informed normal priors for the population-level intercept 
and coefficient terms of N(0, 1). The �quadrat term was fit using an 
exponential prior with a rate of two. For band-level analyses (with a 
greater number of parameters), models were fit using N(0, 0.7) inter-
cept/coefficient priors and exponential �quadrat priors with a rate of 
four. Models were run across four serial chains for 2000 iterations 
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6 of 11  |     JACKSON et al.

with 1000 warmup iterations, and the model's convergence across 
chains was assessed by inspecting R̂ values (Bürkner, 2017).

3  |  RESULTS

We found consistent positive associations between the aver-
age coefficient of variation in spectral radiance and biodiversity, 
namely, the Shannon–Weiner and Simpson's indices (Figure  2). 
The model including the Shannon–Weiner index and image record-
ing height as univariate terms outperformed the base model, with 
Δelpd = 123.6 (Table  S1). Increases in the Shannon–Weiner index 

were associated with increases in the average spectral coefficient 
of variation (�Shannon  =  0.19 [−0.04, 0.43], 95% credible intervals; 
Figure 2a). Furthermore, as expected, there was a strong negative 
association between image recording height and the average spec-
tral coefficient of variation (�height = −0.28 [−0.31, −0.26]; Figure 2a). 
This negative association suggests that the resolution of spec-
tral diversity decreases rapidly with recording height at this spa-
tial resolution (~30% decrease in scaled spectral variation per 1 m 
height increase). The positive association with the spectral coeffi-
cient of variation was stronger for the Simpson's biodiversity index 
(Figure  2b). Although the full model including a two-way interac-
tion between recording height and Simpson's index was the best 

F I G U R E  2 Consistent positive associations between biodiversity indices and the average spectral coefficient of variation. The positive 
association between (a) Shannon–Weiner biodiversity index and (b) Simpsons index, and the average spectral coefficient of variation 
(averaged across five spectral bands) for different image recording heights: 2, 4, 6, and 8 m (panels). Points are observations from a single 
quadrat at a given height. Both biodiversity indices and spectral coefficient of variation are z-scored. Lines are the posterior prediction mean 
over 4000 simulations averaged over all quadrats, with the 90% credible intervals. Insets showcase density distributions of the posterior 
estimates for the image recording height (�height) and biodiversity indices (�Shannon and �height).
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    |  7 of 11JACKSON et al.

predictive model, we selected the model including only univariate 
effects (Δelpd = 125.0 ), because of a lack of a clear interaction effect 
(Table S2). Here, a similar patten with image recording height was 
accompanied by a stronger positive association between Simpson's 
index and spectral coefficient of variation (�Simpsons  =  0.33 [0.12, 
0.54]; Figure 2b).

Generally, we did not observe associations between the skew-
ness and kurtosis in spectral radiance distributions and biodiver-
sity indices (Figure S3). Furthermore, there was no clear evidence 
for a relationship between total above-ground biomass and any of 
the spectral distribution moments (Figure S3). Specifically, although 
there was increased model predictive performance from models in-
cluding biomass, there was no clear relationship between the skew-
ness of spectral radiance distribution and biomass (�biomass  =  0.08 
[−0.19, 0.35]; Figure S3; Table S5).

In addition to overall effects, in band-level analyses where raw 
data were not averaged across bands, there was evidence for an in-
teraction effect between the spectral band and both the Shannon–
Weiner (Δelpd = 772.0) and Simpson's indices (Δelpd = 771.5; 
Tables S3 and S4, respectively). Generally, the green (560 ± 16 nm) 
and red (650 ± 16 nm) spectral bands displayed higher variability in 
the coefficient of variation across quadrats, and stronger associa-
tions with the Shannon–Weiner and Simpson's indices (Figure  3). 
The Red Edge (730 ± 16 nm) and Near Infrared (840 ± 16 nm) bands 
exhibited weaker associations with biodiversity indices (Figure 3).

When assessing the influence of treatment on spectral radiance, 
we also observed reductions in the average spectral coefficient of 
variation in both drought and procedural control quadrats in com-
parison to ambient or irrigated treatments (Figure  S4). However, 
given the congruence of procedural control and drought treatments 
in DroughtNet, both of which are characterized by metal rainfall 
shelters, we conclude that the reduction in spectral coefficient of 
variation in drought and procedural treatments is likely a result of 
structural interference from the rain shelter structures (Figure S5).

Finally, we tested the consistency of the spectral coefficient of 
variation across observation days and heights for each quadrat in 
the best predictive Shannon–Weiner and Simpson's index models 
(Tables  S1 and S2, respectively). The average coefficient of varia-
tion was highly consistent for each quadrat when images at different 
heights or across sampling events were compared (Figure S6). Both 
the Shannon–Weiner and Simpson's models with the average coef-
ficient of variation exhibited quadrat-level variance that exceeded 
the population-level variance and a high degree of repeatability 
(Figure S6; 0.76 [0.65, 0.85] and 0.72 [0.60, 0.82], respectively).

4  |  DISCUSSION

Despite rapid technological advancements in image sensing over 
the last four decades, biodiversity monitoring is not currently able 
to track the full extent of human impacts on the biosphere (Wang 
& Gamon,  2019; Wilson,  2017). We urgently need more cost-
effective and widely available systems to monitor detailed changes 

in biodiversity (Cavender-Bares et al.,  2022; Turner,  2014; Turner 
et al.,  2003). Here, using a commercially available short-range 
Unmanned Aerial Vehicle (UAV, drone) at a fine spatial resolution 
but a coarse spectral resolution, we find a consistent association 
between variation in spectral radiance and species diversity in a 
temperate calcareous grassland. The coefficient of variation in 
spectral radiance was positively associated with the Shannon–
Weiner and Simpsons indices, and in particular, the green and red 
bands of the electromagnetic (EM) spectrum were most indicative 
of grassland biodiversity. Our results build on extensive work in 
grassland ecosystems exploring the use of spectral diversity as 
a surrogate for biodiversity (Conti et al.,  2021; Frye et al.,  2021; 
Gholizadeh et al.,  2019; Villoslada et al.,  2020) and species 
composition (Lopatin et al., 2017). However, our research in a diverse 
temperate grassland community contrast with previous findings that 
highlighted limitations to the characterization of biodiversity using 
spectral imaging in species-rich environments (Fassnacht et al., 2022; 
Imran et al.,  2021). We highlight the importance of close-range 
remote sensing for biodiversity monitoring (Turner,  2014; Turner 
et al., 2003; Wang & Gamon, 2019). Crucially, we demonstrate the 
feasibility of the spectral diversity concept in grasslands using a 
commercially available UAV with a coarse spectral resolution sensor, 
which has far-reaching potential as a tool to explore biodiversity 
change at high spatio-temporal resolution.

The key advantage of using commercially available UAV tech-
nology is its cost-effectiveness relative to reliance on in situ moni-
toring or the use of long-range or high spectral resolution sensors. 
In the current study, where we collected data from 37 quadrats 
at four different image recording heights, the total flight time was 
134 min. If we reasonably allocate one researcher 60 min to do a 
full botanical survey (species percentage cover and biomass clip—
ignoring biomass processing of 30 min per sample), the full in situ 
sampling time is 37 h. Thus, remote monitoring would have saved on 
sampling time by a factor of 16. In the current study, the reduction 
in sampling time is of course limited to proxies of broad biodiversity 
metrics. However, with increases to sensor resolution and decreas-
ing costs, reconstructing species-level biodiversity data with flex-
ible remote monitoring may also be possible (Lopatin et al., 2017). 
Increases in cost-effectiveness may also be increased by automated 
flight paths over survey locations, for which unsupervised spectral 
reflectance data could be collected. Furthermore, while rapid ad-
vancements have been made on spectral diversity, previous stud-
ies have utilized high-resolution multi/hyperspectral sensors that 
are either immobile, destructive, or high-cost (Frye et al.,  2021; 
Gholizadeh et al., 2019; Imran et al.,  2021; Lopatin et al.,  2017). 
The current complete monitoring system is available for purchase 
for <10,000 USD, relative to >50,000 USD for many hyperspec-
tral sensors. Interestingly, variance in the radiance of the green 
(560 nm) and red (650 nm) bands in the visible portion of the EM 
spectrum was most associated with biodiversity in this study. The 
red and green bands typically characterize photosynthetic pigment 
responses (Gamon et al.,  1992). Therefore, differences between 
photosynthetic pigments between species may be appropriate for 
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8 of 11  |     JACKSON et al.

characterizing biodiversity in calcareous grasslands, which is possi-
ble with low-cost visible range sensors. Nevertheless, the present 
study provides a low-cost solution that successfully characterizes 
biodiversity in a calcareous grassland using coarse multispectral 
data.

The rapid increase in the availability and public use of drone 
technology provides an opportunity for the expansion of de-
tailed biodiversity monitoring at flexible spatio-temporal scales 
(Colomina & Molina,  2014). Integrating spatial scales has long 
been a central issue in remote sensing applications (Gamon 
et al., 2020; Turner, 2014). In the current study, images were taken 
with pixel resolutions between 0.1 and 0.5 cm, which lies within 

the range of pixel resolutions that give strong spectral diversity-
biodiversity relationships in North American prairie grasslands 
(Gamon et al., 2020; Wang et al., 2018). However, we still found 
evidence of smoothing effects (reduction in spectral diversity with 
coarse pixel resolutions), where the mean spectral coefficient of 
variation reduced between 2 and 10  m image recording height. 
Nevertheless, this smoothing did not influence associations with 
biodiversity in the current study, although this is likely due to the 
narrow range of pixel resolutions. While this pixel resolution is 
generally appropriate for grassland flora, other habitats with or-
ganisms of different sizes, functions, or differing community com-
plexity will influence the appropriateness of the spatial resolution 

F I G U R E  3 Green and red spectral bands are the most sensitive to biodiversity indices. Posterior predictions for the band-level spectral 
coefficient of variation with the Shannon–Weiner (a) and Simpson's (b) biodiversity indices at an image recording height of 2 m. here, 
raw spectral moments were not averaged across spectral bands (as in Figure 2). Points are raw observations from a single plot, and the 
color denotes the spectral band (B = blue, G = green, R = red, RE = red edge, NIR = near infrared). Both biodiversity indices and spectral 
coefficient of variation are z-scored. Lines are the posterior prediction mean over 4000 simulations averaged over plots, with the 90% 
credible intervals.
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    |  9 of 11JACKSON et al.

(Wang et al., 2018). Novel dissimilarity approaches have been ap-
plied to satellite imaging data at a range of spatial scales (Rossi 
et al.,  2021), but ultimately there is a need for specific image 
sensor tools that are able to monitor spectral diversity for varied 
habitats. We propose that commercially available UAV technology, 
which can span a range of flying heights and thus spatial resolu-
tions, can be a valuable biodiversity monitoring tool when paired 
with appropriate image sensors. Future application of UAV imag-
ing to a diverse range of habitats and spatial scales is needed to 
fully test the utility of UAVs in biodiversity monitoring.

Temporal resolution is also a key factor when assessing 
spectral-species diversity associations (Fassnacht et al.,  2022). 
Despite the use of repeated images from the same quadrat, the 
data used in the current study represent a “static” measure of bio-
diversity at the peak of the growing season. However, grassland 
communities exhibit a high degree of temporal variability, partic-
ularly in response to environmental drivers (Harrison et al., 2015; 
Thorhallsdottir, 1990). Fassnacht et al. (2022) found that spectral 
diversity-biodiversity links in plant communities were highly de-
pendent on temporal context including phenology and seasonal-
ity. Thus, when implementing unmanned biodiversity monitoring, 
understanding temporal variability in spectral diversity will be crit-
ical for future research. As well as spatial integration, the solution 
developed by Rossi et al. (2021) successfully applied dissimilarity 
indices between pairs of spectral images over the same region to 
disentangle temporal components of community change linked to 
management and phenology. However, as with spatial resolution, 
a finer temporal resolution of data is needed to disentangle these 
features in plant communities (Rossi et al., 2021). Cost-effective 
UAV technology has the potential to gather fine-scale temporal 
data effectively.

Drone technology also has the potential to be deployed in a 
wide range of habitats, and to answer an array of ecological ques-
tions when combined with novel analytical tools. Indeed, there 
have been several recent applications of image-sensing concepts 
to other habitats and in conjunction with machine learning tools 
to further understand community dynamics (Heim et al.,  2019; 
Lopatin et al.,  2017; Tait et al.,  2019). For example, UAVs with 
multispectral imaging sensors have recently been applied to char-
acterize fungal disease in lemon myrtle trees (Heim et al., 2019) 
and macroalgal community structure in intertidal habitats (Tait 
et al., 2019). The ultimate goal for biodiversity is to recreate spe-
cies lists using classification algorithms. Currently, machine learn-
ing has been applied to agricultural imaging challenges (Heim 
et al.,  2019) and in static species-cover assessments (Lopatin 
et al.,  2017). We argue that the applicability of cost-effective 
UAV technology to biodiversity will be greatest when increased 
volumes of image data are combined with machine learning algo-
rithms to identify single species or high-resolution community dy-
namics. However, biodiversity metrics are not the only ecological 
indicators, and functional traits are also widely used as ecological 
indicators of environmental change (e.g., Bjorkman et al.,  2018). 
Because spectral reflectance is related to functional form (Gamon 

et al., 1997), the applicability of sensing technology is not limited 
to biodiversity, and can also act as a proxy for functional diver-
sity (Cavender-Bares et al., 2022; Frye et al., 2021). In the current 
study site, incorporating UAV monitoring to long-term experi-
mental manipulations at high spatio-temporal resolution will en-
able the investigation of how environmental disturbances such as 
drought and nutrient addition influence biodiversity, functional 
diversity and community structure.

5  |  CONCLUSIONS

Taking advantage of technological advancements in unmanned 
sensing will greatly improve the cost-effectiveness of biodiversity 
monitoring. UAVs have the potential to span spatial scales, 
repeatedly and cheaply access a range of environments, and 
provide high-resolution data on the impact of environmental change 
on ecosystems. Our study adds to a growing body of literature 
highlighting links between spectral and species diversity. Integrating 
these patterns at varying spatio-temporal scales and in novel 
habitats will provide vital insights to aid in documenting changes in 
the biosphere.
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