
Assessing the performance of open-source, semi-1 

automated pattern recognition software for harbour 2 

seal (P. v. vitulina) photo ID  3 

 4 

Izzy Langley1*, Emily Hague1,2 and Mònica Arso Civil1 5 

1Sea Mammal Research Unit, Scottish Oceans Institute, University of St Andrews, St 6 

Andrews, Scotland, UK. 7 

2Institute of Life and Earth Sciences, Heriot-Watt University, Edinburgh, Scotland, UK. 8 

 9 

*il32@st-andrews.ac.uk (ORCID ID: 0000-0002-8957-1373) 10 

 11 

 12 

 13 

 14 

 15 

 16 

 17 

 18 

 19 

 20 

 21 

 22 

 23 

 24 

 25 

Acknowledgements 26 

Data collection was funded by the Scottish Government (grant number MMSS/002/15). The 27 

authors would like to thank the expert knowledge and assistance of collaborators at each of 28 

the study sites around Scotland, without whom data collection would not have been possible. 29 

The authors would also like to thank the publishers of all three pattern recognition software 30 

programmes for making them freely available; particularly Lex Hiby from Conservation 31 

Research Ltd. who has provided training and advice over the years. We would also like to 32 

thank the two anonymous reviewers whose comments helped to improve this manuscript. 33 

This work is dedicated to Andy Law – a brilliant naturalist, photographer, colleague, and 34 

friend.    35 



Abstract  36 

Photographic identification (photo ID) is a well-established, non-invasive, and relatively cost-37 

effective technique to collect longitudinal data from species that can be individually 38 

recognised based on natural markings. This method has been improved by computer-39 

assisted pattern recognition software which speed up the processing of large numbers of 40 

images. Freely available algorithms exist for a wide range of species, but the choice of 41 

software can have significant effects on the accuracy of individual capture histories and 42 

derived demographic parameter estimates. We tested the performance of three open 43 

source, semi-automated pattern recognition software algorithms for harbour seal (Phoca 44 

vitulina vitulina) photo ID: ExtractCompare, I3S Pattern and Wild-ID. Performance was 45 

measured as the ability of the software to successfully score matching images higher than 46 

non-matching images using the cumulative density function (CDF). The CDF for the top 47 

ranked potential match was highest for Wild-ID (CDF1 = 0.34-0.58), followed by 48 

ExtractCompare (CDF1 = 0.24-0.36) and I3S Pattern (CDF1 = 0.02-0.3). This trend emerged 49 

regardless of how many potential matches were inspected. The highest performing aspects 50 

in ExtractCompare were left heads, whereas in I3S Pattern and Wild-ID these were front 51 

heads. Within each aspect, images collected using a camera and lens performed higher than 52 

images taken by a camera and scope. Data processing within ExtractCompare took >4x 53 

longer than Wild-ID, and >3x longer than I3S Pattern. We found that overall, Wild-ID 54 

outperformed both ExtractCompare and I3S Pattern under tested scenarios, and we 55 

therefore recommend its assistance in harbour seal photo ID. 56 
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Introduction 76 

Recognising individual animals is an important tool in the monitoring of wild populations (e.g. 77 

Wells and Scott 1990; Rotella et al. 2012; Letcher et al. 2015). For many species, individuals 78 

are artificially marked using a wide range of techniques, including bird ringing (e.g. spotted 79 

owl Strix occidentalis; Zimmerman et al. 2007), freeze-branding (e.g. Chiroptera spp; 80 

Sherwin et al. 2002), colour-marking (e.g. Satyrinae spp; Morton 1982) and tagging (e.g. 81 

pink abalone Haliotis corrugate; Button and Rogers-Bennet 2011). However, for some 82 

species individuals can be distinguished from one another from natural markings such as 83 

patterning and/or scarring (e.g. Asian elephant Elephas maximus; Goswami et al. 2007; 84 

whale shark Rhincodon typus; Bradshaw et al. 2007; wild horse Equus ferus; Vernes et al. 85 

2009). These species can be photographed and, if the image is of sufficient quality, 86 

individuals can be identified. Photographic identification (photo ID) is a widely used, non-87 

invasive and relatively cost-effective method to study the distribution and life-history 88 

parameters of wild populations (e.g. Thompson et al. 2008; Mackey et al. 2008; Gore et al. 89 

2016; Langley et al. 2020). 90 

A number of phocid seal species have individually unique pelage patterns which remain 91 

stable through adulthood, enabling populations to be monitored long-term through photo ID 92 

(e.g. grey seal Halichoerus grypus; Hiby et al. 2007; Saimaa ringed seal Pusa hispida 93 

saimensis; Koivuniemi et al. 2016; harbour seal Phoca vitulina; Yochem et al. 1990). While 94 

there is slight variation in the pelage colour and spot density among harbour seal sub-95 

species, it is not consistent enough to confidently identify to sub-species level (Kelly 1981; 96 

Cunningham 2009; McCormack 2015). The repeated identification of individuals within 97 

species has been successful for three of these harbour seal sub-species: P. v. richardii in 98 

the northeast Pacific (Yochem et al. 1990), P. v. concolor in the northwest Atlantic 99 

(McCormack 2015), and P. v. vitulina in the northeast Atlantic (Cunningham 2009).  100 

The matching efficiency and error rates of photo ID studies have been improved by the 101 

introduction of computer-assisted pattern recognition software (Arzoumanian et al. 2005; 102 

Caiafa et al. 2005; Morrison et al. 2011). Computer algorithms assist in the photo ID of 103 

species that have particularly fine-detailed patterning, and/or when dealing with large 104 

databases (e.g. Andrzejaczek et al. 2016; Germanov et al. 2019; Langley et al. 2020). Freely 105 

available algorithms exist for a wide range of species, but the choice of algorithm can have 106 

significant effects on the derived demographic parameter estimates. Misidentification of 107 

matches can introduce false positives (i.e. two different individuals matched to the same ID) 108 

and/or false negatives (i.e. one individual given two IDs). For example, a high false-109 

acceptance rate results in an under-estimation of population size, whereas a high false 110 

rejection rate inflates estimates of population size (Hammond et al. 1990). The false-111 

acceptance rate can be reduced to effectively zero by visually confirming potential matches, 112 

whereas the false-rejection rate is subject to multiple variables and so should be calculated 113 

and reported per analysis (Hastings et al. 2001; Cunningham 2009).  114 

Here we focus on three freely available pattern recognition software programmes: 115 

ExtractCompare, I3S Pattern and Wild-ID. ExtractCompare was originally developed for grey 116 

seals (Hiby and Lovell 1990) but has since been extended to other species (e.g. Eurasian 117 

lynx Lynx lynx; Gimenez et al. 2019; Amur leopard Panthera pardus orientalis; Jiang et al. 118 

2015; Vitkalova and Shevtsova 2016) and is currently the only pattern recognition software 119 

which has a harbour seal specific model. The software builds a three-dimensional surface 120 

model from reference points in a manually annotated image. Pattern cells are then extracted 121 



from multiple aspects of the body (i.e. multibiometric identification; Jain 2007) to compare 122 

the patterning on non-planar surfaces (Hiby and Lovell 1990). Pairs of images are ranked by 123 

similarity scores and matches are manually confirmed. The software presents all potential 124 

matches, but a similarity score threshold can be assigned to streamline the processing of 125 

large datasets. 126 

The Interactive Individual Identification System (I3S) has multiple versions designed to 127 

extract and compare natural markings from a range of different species. I3S Pattern was 128 

designed for species with hard to annotate markings such as lionfish (Pterois volitans; 129 

Chaves et al. 2016) and turtles (Calmanovici et al. 2018). It employs a SURF (speeded-up 130 

robust features) detector and descriptor, which first detects point correspondences between 131 

images, then describes the area of interest and detects matches between these areas (Bay 132 

et al. 2008). This is robust to noise, and variation in image scale and orientation, whilst 133 

computing faster than pre-existing alternatives (such as the SIFT operator described below). 134 

Similar to ExtractCompare, images are manually annotated with morphological reference 135 

points and an extractable area, although these are specified by the user at data entry, along 136 

with the number of potential matches presented. 137 

Wild-ID was specifically designed to assist in the processing of large datasets generated by 138 

monitoring populations using camera traps. The software employs a SIFT (scale-invariant 139 

feature transform) operator which extracts distinctive image features whilst accounting for 140 

image scale and rotation (Lowe 2004). The images are cropped prior to data entry as the 141 

software does not distinguish the pattern of the subject from the pattern in the background 142 

(i.e. the noise; Bolger et al. 2012). The software pattern comparison function is not species-143 

specific which enables its usability across a wide range of taxa, from amphibians (Bendik et 144 

al. 2013; Mettouris et al. 2016; Pereira and Maneyro 2016) to mammals (Bolger et al. 2012; 145 

Halloran et al. 2015). The standard version of the software then presents the top 20 potential 146 

matches which require visual confirmation or rejection (Bolger et al. 2012). 147 

The aim of this study was to test the performance of these three freely available pattern 148 

recognition software programmes for the individual recognition of northeast Atlantic harbour 149 

seals (P. v. vitulina). Photo ID data were collected as part of an ongoing project investigating 150 

the regional decline in harbour seal numbers around Scotland (Arso Civil et al. 2016). Here, 151 

software performance was measured as its ability to successfully score matching images 152 

higher than non-matching images (Matthé et al. 2017). We investigated the effect of the data 153 

collection methods and the aspect of the body from which the pattern cell was compared. 154 

Data processing time was also compared between the three software programmes.  155 

 156 

Methods 157 

Data collection 158 

Photo ID data were collected from harbour seal haulout sites in Kintyre, the Isle of Skye and 159 

Orkney (Scotland), during the breeding seasons (June and July) of 2016, 2017 and 2018. In 160 

Kintyre and Orkney, data were collected during dedicated land-based surveys from cliff tops 161 

and beaches, 50-150m from harbour seal haulout sites, using a digiscope system 162 

comprising of a DSLR camera attached to a scope (Swarovski ATS 80 with x20-60 eyepiece 163 

and TLS-APO 30mm). On the Isle of Skye, data were collected from small tourist boats that 164 

circumnavigate skerries where harbour seals haul out, 5-10m away from the boats, using a 165 

DSLR camera with an 80-400mm zoom lens. 166 



Photographs were graded for quality on a scale of 1 (poor) to 4 (excellent), following a 167 

protocol adapted from Cunningham (2009), based on the focus of the image, the angle of 168 

the seal to the photographer and the clarity of the pelage markings (i.e. lighting, wet/dry, 169 

moult). Only images assigned a quality >3 were used in this analysis. Matches between 170 

pairs of images were initially found manually and confirmed by a trained expert. A catalogue 171 

of individual harbour seals with uniquely identifiable IDs was built and used to generate 172 

databases to test the performance of each software. 173 

Database construction 174 

Multiple databases consisting of pairs of images from individual harbour seals were 175 

constructed based on how the data were collected (scope, lens) and which aspect of the 176 

body the pattern cell was extracted from (front head, left head, left neck, left flank; Fig. 1). 177 

We excluded images from the right-hand side of the body as the algorithms should perform 178 

as well with these as the left. We ensured that each image from a single individual were 179 

collected on different sampling days, which avoided the likelihood of the backgrounds 180 

matching (seals return to the water on each tide). Front head aspects were images of seals 181 

facing the camera lens and included both eyes; left head aspects included the full side of the 182 

head including the nose, eye and ear; left neck aspects included the area between the ear 183 

and the fore-flipper; and left flank aspects included the area between the fore-flipper and the 184 

pelvis. Flank aspects were not available from the Isle of Skye data as the photographer was 185 

often too close to the seal to capture the entire body with a lens. Databases included pairs of 186 

images from all available individuals for each data collection method and aspect; this ranged 187 

from 65 to 178 individuals.  188 

Data processing 189 

We tested the performance of pattern recognition algorithms in detecting the one matching 190 

image in a set of non-matching images. In order to standardise the methodology across 191 

software (each has slightly different processing methods), data were entered in two batches 192 

and only the images with the top 20 similarity scores were manually inspected. Manual 193 

inspection in our study was of the image names which included the individual ID, but in a 194 

real-world scenario this would be manual inspection of the pelage. Batch 1 was entered first, 195 

containing a single image of each individual in that database. Batch 2 contained a second 196 

different image of each individual and was then entered systematically and compared to 197 

batch 1 (i.e. the library). Each database (n = 7) was run through each of the three software, 198 

except for databases containing front heads (front head aspects cannot be processed in the 199 

current ExtractCompare harbour seal model); this resulted in 19 trials. The process was 200 

timed for each trial, from the first stage of data preparation through to the final stage of 201 

match confirmation.  202 

i) ExtractCompare 203 

For ExtractCompare, images were reduced in size (i.e. cropped) prior to entry into the 204 

Microsoft Access database as in the authors experience, this speeds up the processing time. 205 

This software uses multibiometric identification and the pattern can be extracted from up to 206 

five aspects of the body. However, this is subject to data availability, and chest and 207 

abdomen aspects were underrepresented in our data. For this analysis, we focussed on left 208 

heads, necks, and flanks. The left head aspect covers an area behind the eye which 209 

includes the ear (Fig. 1a); the left neck aspect is the area between the ear and the fore 210 

flipper (Fig. 1b); and the left flank aspect is the area between the fore flipper and the pelvis 211 



(Fig. 1c). Images were annotated with the outline of the body and morphological reference 212 

points which are specific to each aspect in question, but include the base of the skull, chin, 213 

nose, eyes, ears, post-orbital vibrissae, flippers, and pelvis (Fig. 1).  214 

ii) I3S Pattern 215 

Cropping of images was not required for I3S pattern, and as far as possible, reference points 216 

and extractable areas were specified so as to be as comparable across software as 217 

possible. For front head aspects, the reference points identified were the right eye, the left 218 

eye, and the nose, with the general identification area being a polygon from the eyes to the 219 

top of the head (Fig. 1d). Left head aspects were identified by the nose, the left eye and the 220 

left ear, and the area extended from the corner of the mouth to the back of the skull (Fig. 1e). 221 

Left neck aspects were identified by the nose, the post-orbital vibrissae, and the fore flipper, 222 

with the area extending from the corner of the mouth to the fore flipper (Fig. 1f). Finally, left 223 

flank aspects were identified by the nose, the fore flipper, and the pelvis, with the identifiable 224 

area extending from the fore flipper to the pelvis (Fig. 1g). 225 

iii) Wild-ID 226 

Wild-ID differs from the other two software programmes in that the pattern is not extracted 227 

from an aspect of the subject but is compared across the entire image. Images were 228 

therefore cropped to include only the desired aspect of the subject with as little of the 229 

background noise as possible. To make the analysis comparable across the three software 230 

programmes, we cropped images to the same aspects as with ExtractCompare and I3S 231 

Pattern: front head (Fig. 1h), left head (Fig. 1i), left neck (Fig. 1j) and left flank (Fig. 1k).  232 

Performance analysis 233 

The pattern recognition software programmes used in this analysis are described as semi-234 

automated, as all require a final manual confirmation stage where the user has to accept or 235 

reject each potential match. This reduces the overall likelihood of false acceptance (Sacchi 236 

et al. 2016). For the purpose of this study, we focused on the recognition rate, defined as the 237 

ability of the algorithm to successfully score matching images higher than non-matching 238 

images (Matthé et al. 2017). The image filenames (which included the individual ID) of the 239 

top 20 ranked similarity scores were visually inspected for each trial to manually confirm or 240 

reject the potential match. The cumulative density function (CDF) was calculated for each 241 

rank by dividing the cumulative sum of matches found by the number of matches available, 242 

and the corresponding two-sided 95% confidence intervals (based on the binomial 243 

distribution) were estimated using the binom.test function in R (R Core Team 2019). For a 244 

software to perform well, the CDF should reach 1 within the fewest ranks possible; i.e. if the 245 

match is not ranked high enough, the user could miss this (depending on any assigned 246 

similarity score threshold) and the false-rejection rate would increase. More generally, the 247 

lower down the potential matches a true match is ranked, the more time is required for the 248 

user to find the match.  249 

ExtractCompare, I3S Pattern and Wild-ID differ in data processing methodology and so 250 

processing was timed for all trials. The different stages were made up of both manual and 251 

automated steps. To run an image through ExtractCompare, there are five distinct stages: 252 

cropping, data input, pattern extraction, batch comparison and visual confirmation. In I3S 253 

Pattern, the stages of data input (pattern extraction, comparison, and confirmation) are 254 

combined into a single step (combining manual and automated stages), and in Wild-ID, there 255 

are four distinct stages: cropping, input/extraction, comparison and confirmation. Each stage 256 



from data pre-processing to visual confirmation was timed separately and divided by the 257 

number of images to give the time in minutes and seconds required to process a single 258 

image (data processing rate).   259 

 260 

Results 261 

Across each tested scenario, Wild-ID outperformed both ExtractCompare and I3S Pattern for 262 

harbour seal pattern recognition (Table 1, Fig 2). This trend was most pronounced when 263 

comparing the pelage pattern from the left head (CDF = 0.49-0.66) and neck regions (CDF = 264 

0.45-0.64), regardless of data collection method, and for front head aspects taken using a 265 

camera and lens (CDF = 0.58-0.71). Data collected using a camera and lens had a higher 266 

proportion of the highest quality images (lens=0.62, scope=0.27) and in general, the highest 267 

performance for each software came from using data collected with a camera and lens (Fig. 268 

2). 269 

In Wild-ID, front head aspects performed highest; when only visually inspecting the top 270 

ranked potential match, the CDF was 0.58, translating to a false-rejection rate (FRR; 1-CDF) 271 

of 0.42. When the top 20 ranked potential matches were visually inspected, the CDF 272 

reached the highest recorded in this study: 0.71 (with an associated FRR of 0.29). 273 

Conversely, ExtractCompare performed best with left head aspects (CDF1=0.36 with a FRR 274 

of 0.64; CDF20=0.55 with a FRR of 0.45). Indeed, by rank 10, the uncertainty around the 275 

CDF for ExtractCompare overlapped with that of Wild-ID. I3S Pattern performed poorly in 276 

most scenarios except for in trials which used front head aspects. As with Wild-ID, the 277 

highest CDF1 for I3S Pattern was recorded from front head aspects taken using a camera 278 

and lens (CDF1=0.30 with a FRR of 0.70). The performance of front head aspects taken 279 

using a camera and scope however was much more comparable to that of Wild-ID. 280 

With all processing stages combined, Wild-ID had the highest data processing rate (i.e. the 281 

least amount of time per image processed; mean ± sd mm:ss, 00:22 ± 00:04), followed by 282 

I3S Pattern (00:31 ± 00:04) and ExtractCompare (01:36 ± 00:08; Table 2). For 283 

ExtractCompare, the vast proportion of time was spent in the pattern extraction stage (01:01 284 

± 00:06; 64% of total time) where images were annotated, and the three-dimensional model 285 

was applied. The remaining time was spread across cropping (00:09 ± 00:04; 9%), input 286 

(00:08 ± 00:02; 8%), comparison (00:05 ± 00:01; 5%) and confirmation stages (00:12 ± 287 

00:02; 13%). The data processing in I3S Pattern was shorter than ExtractCompare and 288 

cropping was not required prior to data entry. For Wild-ID, images were cropped prior to 289 

entry which took the greatest proportion of time (00:16 ± 00:04; 73%). Data input and pattern 290 

extraction stages were combined into one (<00:01 ± <00:01; 4%) and were followed by short 291 

comparison (00:01 ± <00:01; 5%) and confirmation stages (00:04 ± 00:01; 18%). 292 

 293 

Discussion 294 

The highest performing pattern recognition software tested for harbour seal photo ID was 295 

Wild-ID, followed by ExtractCompare and then I3S Pattern. The strength of this trend varied 296 

with the data collection method and the aspect of the body that the pattern was compared 297 

from. Importantly, Wild-ID also required the least amount of time to run a single image 298 

through the stages from pre-processing to match confirmation. The highest recorded CDF, 299 

and therefore the lowest FRR, was recorded in Wild-ID for front head aspects collected 300 



using a camera and lens (CDF20=0.71; FRR=0.29). This error is within a range deemed 301 

acceptable for the estimation of population parameters (Hiby et al. 2013). 302 

In the present study, photo ID data were either collected from a platform 50-150m away from 303 

the seal (using a digiscope) or from a boat within 10m of the seal (using a lens). The data 304 

collection method was therefore used as a proxy for distance to haulout, which has been 305 

shown to influence image quality (Bendik et al. 2013). In this study, within each aspect, data 306 

collected using a lens performed marginally better than data collected using a scope. 307 

Previous photo ID studies have found that image quality has influenced the performance of 308 

pattern recognition algorithms. In ExtractCompare for harbour seals, the false-rejection rate 309 

has been shown to decrease from 73% to 2% by increasing image quality alone (Hastings et 310 

al. 2008). Similar trends have been reported for I3S Pattern (Steinmetz et al. 2018) and Wild-311 

ID (Bendik et al. 2013). Halloran et al. (2015) investigated the effect of image quality further 312 

and found that the only variable which affected the ability of Wild-ID to detect matches 313 

between images of Thornicroft’s giraffe (Giraffa camelopardalis thornicrofti) was background 314 

complexity. This effect could therefore be reduced by cropping the images or by digitally 315 

removing the background entirely (Bolger et al. 2012; Chehrsimin et al. 2018). 316 

The patterned surface of a seal’s pelage is non-planar and can appear very different 317 

depending on the animal’s orientation and torsion (Hiby and Lovell 1990). This is most 318 

pronounced on regions such as the neck and flank, whereas the region around the head is 319 

less susceptible to this distortion. Additionally, repeatability in the manual placement of the 320 

pattern cell is easier in the head region due to the proximity of obvious morphological 321 

features (i.e. eyes, ears, nose). In this study, ExtractCompare performed best with left head 322 

aspects. In previous studies, ExtractCompare has been shown to perform well for harbour 323 

seals using the shoulder/neck regions (Cunningham 2009) and ventral aspects (Hastings et 324 

al. 2008). The neck aspect is a larger region than the head and so contains more of an 325 

individual’s unique “fingerprint”, but it is also possibly more difficult to standardise across 326 

images. Ventral aspects were underrepresented in our dataset given the haulout behaviour 327 

of seals at the sites in this study, although it would be interesting to explore whether the 328 

performance of ExtractCompare, along with I3S Pattern and Wild-ID, could be improved for 329 

northeast Atlantic harbour seal photo ID if images of the ventral side of the animals could be 330 

collected. 331 

Conversely, we found that both Wild-ID and I3S Pattern performed best for harbour seal 332 

photo ID using front head aspects. Previous studies have found I3S Pattern to perform highly 333 

in the photo ID of green turtles (Chelonia mydas; Den Hartog and Reijns 2014), Hawksbill 334 

turtles (Eretmochelys imbricate; Steinmetz et al. 2018) and Tarentola geckos (Rocha et al. 335 

2013); the natural patterning of all are found on rigid body parts (e.g. carapace scutes). The 336 

fore-head region of a harbour seal is also relatively rigid, and so best satisfies the 337 

assumption within I3S Pattern that animals have linearity (i.e. their body parts do not move in 338 

respect to one another; Den Hartog and Reijns 2014).  339 

When choosing a pattern recognition software to assist in the analysis of photo ID data, the 340 

ability of the software to detect a match is important, but often the amount of time required to 341 

process data is also crucial. Pattern matching algorithms have dramatically reduced the 342 

number of images which need to be visually inspected to find a match (Hastings et al. 2001; 343 

Morrison et al. 2011). This is important for long-term population studies that rely on detecting 344 

matches between thousands of images which would not be feasible though manual 345 

matching alone. In this study, the time required to process a single image using Wild-ID was 346 



on average 22s, compared with 31s in I3S Pattern and 1m36s in ExtractCompare; the 347 

processing time of images in ExtractCompare was >4x greater than in Wild-ID. However, it is 348 

important to note that data processing included both manual and automated stages, and 349 

time can be saved by running automated stages overnight or alongside other tasks. 350 

We tested the ability of the software algorithms to not only detect a positive match but also to 351 

rank it higher than non-matching images. The time required to manually inspect each 352 

potential match can be substantial and so often thresholds are assigned, below which 353 

potential matches are rejected without inspection. In ExtractCompare, previous studies have 354 

assigned thresholds on similarity scores of 0.95 (Hiby et al. 2013) and 0.75 (Langley et al. 355 

2020) for grey seal photo ID, and 0.45 for cheetah photo ID (Kelly 2001). In I3S Pattern, it 356 

has been more common to assign a threshold on the number of potential matches that are 357 

visually inspected (e.g. 50; Rocha et al. 2013; Steinmetz et al. 2018). Previous studies which 358 

use Wild-ID have also assigned thresholds on the similarity scores generated, and for 359 

species that can be easily manipulated, cleaned and posed against white backgrounds (e.g. 360 

Amphibians; Bardier et al. 2017), similarity scores are consistently predictive of positive 361 

matches (Bendik et al. 2013). However, with other taxa there is evidence that the similarity 362 

scores in Wild-ID can be affected by allometric variation; i.e. when individuals are still 363 

growing (Bardier et al. 2017), and in these cases the time between photographs can reduce 364 

similarity scores (Bendik et al. 2013). In this study our data were limited to adult harbour 365 

seals, but it would be useful to test the performance of pattern recognition software in 366 

detecting matches between pups, juveniles and adults; as has been successful using 367 

ExtractCompare for grey seals (Paterson et al. 2013). 368 

Setting thresholds for manual review can significantly increase the efficiency of data 369 

processing but comes with associated false-rejection rates (Hiby et al. 2013).  These errors 370 

are not consistent across studies and/or sub-species, with previous harbour seal photo ID 371 

analyses using ExtractCompare reporting error rates of 6.2% (Hastings et al. 2001) and 372 

21.4% (McCormack 2015). False-rejection rates for I3S Pattern and Wild-ID are not available 373 

for harbour seals but are low for the species that the algorithms were initially designed for. 374 

For example, the false rejection rate (using only the top ranked potential match) for the photo 375 

ID of green turtles (Chelonia mydas) in I3S Pattern was 14% (Den Hartog and Reijns 2014), 376 

and for Masai giraffe (Giraffa camelopardalis tippelskirchi) photo ID in Wild-ID was 0.7% 377 

(Bolger et al. 2012). False-rejection rates are therefore variable and can be influenced by the 378 

experience of software users (Bolger et al. 2012) and the number of images from the same 379 

individuals (Hiby et al. 2013); along with variables tested in this study. 380 

In this study we compared the performance of three freely available software, but there are 381 

additional software algorithms available; these include, but are not limited to, ICEIS/ 382 

Hotspotter (Crall et al. 2013), Discovery (Gailey and Karczmarski 2012) and StripeSpotter 383 

(Lahiri et al. 2011). Investigation into the performance of other software algorithms for 384 

harbour seal photo ID, and their comparison to Wild-ID, would be a valuable next step. 385 

Beyond that, as ecological research becomes increasingly data-heavy, methods such as 386 

photo ID lend themselves to automation. Existing photo ID databases are required to train 387 

algorithms to automatically locate a seal within an image (i.e. segmentation; Chehrsimin et 388 

al. 2018), extract pelage pattern, describe this pattern and then compare it to a library of 389 

known individuals. As it stands, artificial intelligence for pattern recognition requires manually 390 

annotated databases. There is also a strong argument for manual confirmation of detected 391 

matches, at least until the error rates are below an accepted threshold. However, at the very 392 



least, automating the data pre-processing and input stages will help to improve the efficiency 393 

of pattern recognition software further. 394 
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 588 

Fig. 1 Aspect specific reference points and extractable areas used to compare the pelage pattern of harbour seals using ExtractCompare, I3S 589 

Pattern and Wild-ID. Top row (ExtractCompare): reference points (yellow dots) and extractable area (red box). Middle row (I3S Pattern): 590 

reference points (blue dots) and extractable area (green box). Bottom row (Wild-ID): Wild-ID does not use reference points and so the 591 

extractable area is the cropped aspect of the subject.  592 

 593 

 594 



 595 

Fig. 2 The cumulative density function (CDF) of the matches detected by ranked similarity score. Trials were run for each pattern recognition 596 

software: ExtractCompare (yellow), I3S Pattern (blue) and Wild-ID (red), by data collection equipment (scope, lens) and seal aspect (front head, 597 

left head, left neck, left flank). Shaded areas represent 95% confidence intervals based on the binomial distribution. 598 



Table 1. The cumulative density function and 95% confidence intervals for potential matches ranked in first position (CDF1), and within the top 599 

5, 10 and 20 ranks (CDF5, CDF10, and CDF20 respectively); n is the number of individuals in each database, Db (number of images = 2n). Flank 600 

aspects were not available from the lens data (as often the photographer was too close to the seal to capture the entire body) and front head 601 

aspects cannot be processed in the current ExtractCompare harbour seal model. 602 

Trial Db Method Aspect n Software CDF1 CDF5 CDF10 CDF20 

1 A Scope Front head 103 I3S Pattern 0.18 (0.11, 0.27) 0.28 (0.20, 0.38) 0.35 (0.26, 0.45) 0.44 (0.34, 0.54) 

2 A Scope Front head 103 Wild-ID 0.34 (0.25, 0.44) 0.47 (0.37, 0.57) 0.49 (0.39, 0.59) 0.54 (0.44, 0.64) 

3 B Lens Front head 103 I3S Pattern 0.30 (0.21, 0.40) 0.38 (0.28, 0.48) 0.43 (0.33, 0.53) 0.53 (0.43, 0.63) 

4 B Lens Front head 103 Wild-ID 0.58 (0.48, 0.68) 0.68 (0.58, 0.77) 0.70 (0.60, 0.79) 0.71 (0.61, 0.79) 

5 C Scope Left head 175 ExtractCompare 0.29 (0.23, 0.36) 0.41 (0.34, 0.49) 0.45 (0.37, 0.52) 0.49 (0.42, 0.57) 

6 C Scope Left head 175 I3S Pattern 0.03 (0.01, 0.07) 0.05 (0.02, 0.10) 0.07 (0.04, 0.12) 0.12 (0.08, 0.18) 

7 C Scope Left head 175 Wild-ID 0.49 (0.41, 0.56) 0.61 (0.53, 0.68) 0.63 (0.56, 0.71) 0.65 (0.58, 0.72) 

8 D Lens Left head 178 ExtractCompare 0.36 (0.29, 0.43) 0.43 (0.36, 0.51) 0.48 (0.40, 0.55) 0.55 (0.47, 0.63) 

9 D Lens Left head 178 I3S Pattern 0.05 (0.02, 0.09) 0.09 (0.05, 0.14) 0.11 (0.07, 0.17) 0.18 (0.13, 0.24) 

10 D Lens Left head 178 Wild-ID 0.53 (0.46, 0.61) 0.60 (0.53, 0.67) 0.62 (0.55, 0.69) 0.66 (0.59, 0.73) 

11 E Scope Left neck 148 ExtractCompare 0.30 (0.23, 0.38) 0.39 (0.31, 0.47) 0.44 (0.36, 0.52) 0.47 (0.38, 0.55) 

12 E Scope Left neck 148 I3S Pattern 0.03 (0.01, 0.08) 0.10 (0.06, 0.16) 0.17 (0.11, 0.24) 0.23 (0.16, 0.31) 

13 E Scope Left neck 148 Wild-ID 0.53 (0.44, 0.61) 0.57 (0.49, 0.66) 0.62 (0.54, 0.70) 0.64 (0.56, 0.72) 

14 F Lens Left neck 148 ExtractCompare 0.24 (0.17, 0.31) 0.30 (0.23, 0.38) 0.32 (0.24, 0.40) 0.40 (0.32, 0.48) 

15 F Lens Left neck 148 I3S Pattern 0.02 (0.004, 0.06) 0.05 (0.02, 0.10) 0.09 (0.05, 0.15) 0.14 (0.08, 0.20) 

16 F Lens Left neck 148 Wild-ID 0.45 (0.36, 0.53) 0.53 (0.44, 0.61) 0.56 (0.48, 0.64) 0.60 (0.52, 0.69) 

17 G Scope Left flank 65 ExtractCompare 0.31 (0.20, 0.43) 0.34 (0.23, 0.47) 0.42 (0.29, 0.54) 0.45 (0.30, 0.55) 

18 G Scope Left flank 65 I3S Pattern 0.02 (0.0004, 0.08) 0.03 (0.004, 0.11) 0.09 (0.03, 0.19) 0.22 (0.12, 0.33) 

19 G Scope Left flank 65 Wild-ID 0.48 (0.35, 0.60) 0.55 (0.43, 0.68) 0.63 (0.50, 0.75) 0.66 (0.53, 0.77) 

 603 

 604 



Table 2. Data processing rate (time in minutes:seconds for a single image to be processed, from pre-processing to visual confirmation). Trials 605 

correspond to Table 1; n is the number of individuals within each database (number of images = 2n); timed stages were crop (image cropping), 606 

input (data input), extract (pattern extract), compare (pattern comparison), and confirm (visual confirmation). In I3S Pattern, the stages from 607 

data input to visual confirmation were combined into a single step, represented below by merged cells. 608 

Software Trial Method Aspect n Crop Input Extract Compare Confirm Overall 

ExtractCompare 

5 Scope Left head 175 00:10 00:07 00:53 00:05 00:10 01:25 

8 Lens Left head 178 00:10 00:11 00:59 00:06 00:13 01:39 

11 Scope Left neck 148 00:10 00:07 01:10 00:06 00:12 01:45 

14 Lens Left neck 148 00:09 00:09 01:03 00:05 00:15 01:40 

17 Scope Left flank 65 00:10 00:08 00:59 00:03 00:12 01:32 

I3S Pattern 

1 Scope Front head 103 NA 00:33 00:33 

3 Lens Front head 103 NA 00:31 00:31 

6 Scope Left head 175 NA 00:35 00:35 

9 Lens Left head 178 NA 00:31 00:31 

12 Scope Left neck 148 NA 00:22 00:22 

15 Lens Left neck 148 NA 00:31 00:31 

18 Scope Left flank 65 NA 00:33 00:33 

Wild-ID 

2 Scope Front head 103 00:16 <00:01 00:01 00:06 <00:01 00:22 

4 Lens Front head 103 00:15 <00:01 00:01 00:03 <00:01 00:19 

7 Scope Left head 175 00:14 <00:01 00:01 00:04 <00:01 00:20 

10 Lens Left head 178 00:14 00:01 00:01 00:06 00:01 00:21 

13 Scope Left neck 148 00:15 00:01 00:01 00:05 00:01 00:22 

16 Lens Left neck 148 00:14 00:01 00:02 00:05 00:01 00:21 

19 Scope Left flank 65 00:25 <00:01 00:01 00:05 <00:01 00:31 

 609 


