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Recent decades have witnessed the growing importance of human motion detection systems 
based on artificial intelligence (AI). The growing interest in human motion detection systems is the 
advantages of automation in the monitoring of patients remotely and giving warnings to doctors 
promptly. Currently, wearable devices are frequently used for human motion detection systems. 
However, such devices have several limitations, such as the elderly not wearing devices due to lack of 
comfort or forgetfulness and/or battery limitations. To overcome the problems of wearable devices, 
we propose an AI-driven human motion detection system (deep learning-based system) using channel 
state information (CSI) extracted from Radio Frequency (RF) signals. The main contribution of this 
paper is to improve the performance of the deep learning models through techniques, including 
structure modification and dimension reduction of the original data. In this work, We firstly collected 
the CSI data with the center frequency 5.32 GHz and implemented the structure of the basic deep 
learning network in our previous work. After that, we changed the basic deep learning network by 
increasing the depth, increasing the width, adapting some advanced network structures, and reducing 
dimensions. After finishing those modifications, we observed the results and analyzed how to further 
improve the deep learning performance of this contactless AI-enabled human motion detection 
system. It can be found that reducing the dimension of the original data can work better than 
modifying the structure of the deep learning model.

Background.  The development of the Internet of Things (IoT) has enabled the application of human motion 
detection in many scenarios, especially in healthcare1. The World Health Organisation (WHO) has reported 
that 37 million injuries are caused by falling and elderly people are at high risk of falling2. Numerous tragedies 
could have been avoided by the caregiver providing timely assistance if healthcare monitoring systems knew 
the patient was in danger and gave warnings in time, allowing the elderly and vulnerable people to lead more 
independent lives while keeping them safe through monitoring.

Human motion detection by wearable devices with an accelerometer is commonly used to build human 
motion health systems. A smartwatch can detect the fall of a patient and relay the information to a caregiver 
for help3 for example. However, it doesn’t work if people forget to wear or charge their devices. Using Radio 
Frequency (RF) signals does not require users to wear or charge devices. From the work described in Ref.4, we 
know that Channel State Information (CSI) can be used to detect human movements. CSI describes how a wire-
less signal propagates between an RF source and an RF receiver, and when a person performs certain actions, it 
impacts the CSI in a way that unique pattern changes are produced against each action. These patterns are the 
foundation for usage in deep learning (deep neural networks).

We adapt CSI data into different deep neural networks to find useful techniques to improve the performances. 
Firstly, we reproduce the deep neural network in Ref.5. Since deep learning model can learn representations 
of data with multiple levels of abstraction6. Increasing the depth can help the deep learning model learn more 
levels of data abstraction while increasing the width can extract more dimensions of data at each level of data 
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abstraction. Convolutional Neural Network (CNN) has been proven to be easier to train and generalized better 
than the traditional fully connected layers7,8. Long Short-Term Memory Networks (LSTM) have proved to behave 
better than conventional Recurrent Neural Networks (RNNs) and LSTM can have great performance in learning 
time-series data. ResNet can transform the computation of gradients in backpropagation from multiplicative 
to additive, which can solve the problem of vanishing gradients. This feature can help the neural network grow 
much deeper. Principal Component Analysis (PCA) can effectively decrease the sparsity of the data, ensuring 
that the deep learning model can learn the most important features of data easier. The result of PCA modifica-
tion can achieve an accuracy of 99%, higher than other works about CSI-based human recognition9–12 to the 
best of my knowledge. This result indicates the fact that preprocessing data might be more crucial than adjusting 
the structure of the deep learning model if we want to further improve the performance of the deep learning.

Literature review.  Deep learning has dominated machine learning for several years and it can achieve 
wonderful performance in human motion detection systems. In Ref.13, based on the CSI dataset, the authors 
built a deep learning model, CSI-Net, which can be trained to handle falling detection. The CSI-Net extracts fea-
ture of CSI data by the combination of a deconvolutional layer and a convolutional layer. Although the CSI-Net 
can extract local features, it cannot extract the principal features that can help the deep learning model detect 
falls better.

The authors in Ref.14 designed a deep neural network named WiSPPN, using CSI data for human pose estima-
tion. The WiSPPN works greatly in estimating the human poses through CSI data, but it lacks discussion about 
how the depth, width, and the structures can affect the performance of the deep learning model in estimating 
the human poses.

Similarly, Refs.15,16, utilized mmWave data to reconstruct human poses. They have achieved great success in 
reconstructing the human pose through pose estimation. However, the pose estimation from mmWave suffers 
from the sparse representation, inter-person occlusion17, and the decay of mmWave signals. Besides, compared 
with the human pose estimation by video frames18,19, mmWave human pose estimation has a lack of data. The 
work in Ref.20 shows the potential of combining mmWave, red, green and blue (RGB)-D, and Inertial Sensors 
together for human pose estimation or human activity recognition. However, the applicability of such a multi-
modal system to real-life scenarios still needs to be tested.

In Ref.9, both the RNN-based deep neural network and the CNN-based deep neural network have achieved 
a great performance in the RGB-D (Red, Green, Blue, and Depth) based Human Motion Recognition. But the 
author does not mention the influence of data processing and modification of the network structure.

In Ref.10, the deep learning model is applied to help the robot to understand human motion. In this work, 
the authors adapted the structure from the AlexNet21 without exploring the effect of structure modifications 
and data preprocessing. In Ref.11, after training the CNN-based network with image-preprocessed radar data, 
the CNN-based network can outperform the SVM-based approach. Another successful application of deep 
learning-based human motion detection in the data collected by radar can be found in Ref.12, deep learning-
based human motion detection can detect walking, falling, sitting, and bending with higher accuracy than the 
PCA-based scheme. In Ref.22, the deep learning model can be applied to high-resolution range information 
to classify 7 different motions. The deep learning method can gain the highest average classification accuracy 
in contrast with the PCA-based method and SVM-based method. References11,12,22 have proved that the deep 
learning method can outperform traditional machine learning methods in radar-based human recognition, but 
they did not experiment with how to further make a progress in the deep learning model.

Overall, it is clear that deep learning can have wonderful performance in many datasets that contain human 
motion patterns, like CSI data, RGB-D data, and radar data. Besides, deep learning can gain better performance 
than the previous method, consisting of feature extraction and the traditional machine learning model train-
ing. However, these works only implemented the deep learning framework without analysing the effect of deep 
learning model structure modifications like increasing the width, increasing the depth, and adapting advanced 
structures in accuracy. They also did not analyze the effect of reducing dimensions on the RF data can have on 
the performance of the deep learning model. The main contributions of this work are as follows.

•	 This work focuses on discussing how the model modifications can impact the performance of the deep learn-
ing model and how these modifications can be utilized improve the performance in terms of classification 
accuracy.

•	 This work considers two aspects of model modification, one is the structure modification, and the other is 
reducing dimensions.

•	 After substantial amount of experiments, it has been found that applying LSTM structures and extracting 
Principle Component Analysis (PCA) features can boost the performance of CSI-based human recognition 
to a promising accuracy of 99.1%.

Methods
Experimental settings.  The experimental part composes of two parts. One part is data collection and 
signal processing and the other part is reconstructing the basic deep learning network.

Data collection and signal processing.  In this work, we collected samples from sitting and standing at the cen-
tre frequency 5.32 GHz. CSI describes how the wireless signals propagate between the RF transmitter and RF 
receiver and it will perform changes in certain patterns when people perform certain movements, implying the 
potential of human motion detection. We record the amplitude of CSI using universal software-defined radio 
peripheral (USRP) when volunteers performed certain human movements (sitting or standing) to construct a 
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dataset of CSI of human activities. USRPs were used because they provide a simple framework that can enable us 
to collect data easily. Besides, USRPs can transfer and receive frequencies in different bands.

The project uses two USRP devices. One USRP acts as the transmitter and the other acts as the receiver. The 
device is cabled to two computers and configured to send a signal from one antenna to the other for 10 s. In the 
experiments to collect CSI data, we kept two USRP devices at a distance of 4 m. Experiments were conducted 
in an office setting, in the presence of desks, chairs, paintings, etc., simulating real-world situations. Volunteers 
were asked to complete a sitting and standing action between the two USRPs. When a volunteer acts, the CSI 
pattern of this action is collected. Specific parameters of the hardware used in this experiment are listed in Table 1:

People do not generally perform sitting and standing activities identically as there will be some variations 
paired with interference from surrounding factors affecting the CSI. However, the resulting CSI patterns are 
somewhat similar and correlated to each other. Multiple patterns are recorded from the CSI, which are learned 
through the deep learning models. To collect data, we asked 10 volunteers to participate. All volunteers signed 
an ethical approval provided by the Institutional Review Board of the University of Glasgow before the experi-
ment. This process facilitates the collection of CSI for various human movements and creates tags on the CSI 
samples during collection. After collecting enough sitting and standing samples, the CSI database was success-
fully constructed. Figure 1 shows the data collection process. The ethical approval to conduct these experiments 
was obtained by the University of Glasgow’s Research Ethics Committee (approval no.: 300200232, 300190109). 
All methods were carried out in accordance with the relevant guidelines and regulations and informed consent 
was obtained from all subjects.

We initially worked on signal processing to explore the capabilities of CSI and the possibility of using filtering 
to limit the effects of noise. Specifically, we first analyze the CSI by comparing the sitting and standing CSI in 
the time and frequency domains using MATLAB programming. Since the acquired data is measured in the time 
domain, it is displayed directly in the MATLAB graph, while in the frequency domain, the frequency information 
is displayed using a discrete Fourier transform (DFT). The results of the comparison are shown below in Fig. 2.

It is clear from Fig. 2 that both the sitting and standing noise signals are high frequency. Therefore, a But-
terworth low-pass filter was chosen as the noise filter to clean the data. After collecting and processing the data, 
we move to the deep learning part.

Table 1.   Hardware configuration parameters.

Parameters Values

Platform USRP X300/X310

Gain (dB) TX 70, RX 50

TX IP address 192.168.11.1

RX IP address 192.168.10.1

Channel mapping 1 TX, 2 RX

Modulation scheme QPSK

OFDM subcarriers 64 Subcarriers

Center frequency 5.32 GHz

Interpolation factor 500

Decimation factor 500

Figure 1.   Flow chart of data collection and signal processing.
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Basic neural network.  In our previous work5, the author constructed a 4-layer multilayer perceptron and each 
hidden layer has 20 nodes. The structure of this multilayer perceptron can be found in Supplementary Table S1 
from the Supplementary Material.

We adopted PyTorch to build the basic neural network. We adopted the Adam23 optimizer. The ReLU activa-
tion function is used for the hidden layers while the Sigmoid function is applied for the output layer because 
this task is a binary classifying test.

700 data samples are included in the dataset, 350 data for sitting and 350 data for standing. The train-test 
validation setting of the dataset is done by randomly splitting 30% of the data as the testing set and 70% of the 
data as the training set. The train-test split is done by the python library sklearn24 with random seeds, and we 
take an average of 10 times training and testing in each deep learning model to reduce the bias of our results. 
The mean of 10 times training and testing are reported in Tables 2 and 3.

Figure 2.   Sitting and standing in time domain and frequency domain.

Table 2.   Comparison of the original model and structures modified models.

Accuracy Precision Recall F1-score Time (ms)

Basic neural network 93.8% 93.7% 95.7% 94.7% 1.36

Basic neural network with ResNet 95.2% 95.2% 95.6% 95.4% 1.23

Deep neural network 68.1% 68.5% 72.2% 70.3% 2.73

Deep neural network with ResNet 97.1% 97.1% 97.2% 97.1% 1.82

Wide neural network 69.0% 69.5% 74.4% 71.8% 4.37

Wide neural network with ResNet 67.6% 68.0% 71.9% 69.9% 7.36

CNN 98.6% 98.6% 98.6% 98.6% 2.30

RNN 95.2% 95.2% 95.4% 95.3% 4.37

Table 3.   Comparison of structure modified models and PCA models.

Accuracy Precision Recall F1-Score Time (ms)

Basic neural network with PCA 98.6% 98.6% 98.6% 98.6% 1.18

Basic neural network with ResNet 95.2% 95.2% 95.6% 95.4% 1.23

Deep neural network with PCA 97.6% 97.6% 97.8% 97.7% 1.03

Deep neural network with ResNet 97.1% 97.1% 97.2% 97.1% 1.82

Wide neural network with PCA 99.0% 99.0% 99.0% 99.0% 2.87

Wide neural network with ResNet 67.6% 68.0% 71.9% 69.9% 7.36

CNN 98.6% 98.6% 98.6% 98.6% 2.30

CNN with PCA 98.6% 98.6% 98.6% 98.6% 0.96

RNN 95.2% 95.2% 95.4% 95.3% 4.37

RNN with PCA 99.1% 99.1% 99.0% 99.0% 2.84

FWCW-ResNet35 87.1% 88.2% 89.0% 87.2% –

5G-enabled36 94.6% 95.1% 96.7% 94.6% –

CNN-LSTM37 92.0% 92.3% 92.3% 91.7% –
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In an attempt to assess the performances of those machine learning algorithms, we calculated four classifi-
cation values, including False Positive (FP), True Positive (TP), False Negative (FN), and True Negative (TN). 
Then we got the performance metrics based on the above four classification values. The details of calculating 
performance metrics can be found in equations.

After training and testing 10 times, we get the trained model, which could gain an accuracy of 93.8%, a preci-
sion of 93.7%, recall of 95.7%, and an f1-score of 94.7% on average. Compared with the previous work, which 
got 94.1% in accuracy, 94.3% in precision, 94.1% in recall, and 94.2%, we find that the result of the training is 
close to the original work. This comparison proved that our reproduction was successful. The loss of accuracy 
of the basic network is presented in Fig. 3.

The testing accuracy oscillates between 87% and 97% , according to the accuracy curve 3, while the loss rapidly 
decreases to about 0.32. Test accuracy and loss curves demonstrate that we can train a basic network to converge 
to an ideal outcome. This fact can demonstrate the effectiveness of training from a different view.

The trained basic network is more accurate at identifying sitting behavior than standing, with a 97% correct 
prediction rate for standing and a 91% correct prediction rate for sitting, according to the normalized confusion 
matrix of the basic neural network shown in Supplementary Fig. S1 from the Supplementary Material.

Structure modifications
Increase the depth.  Background.  The necessity of increasing the depth originates from the assertion that 
a neural network can mimic any function. Such assertion is mathematically proved to hold for any function. 
However, it does not guarantee a computation cost of such approximation. The number of neurons sometimes 
increases exponentially as the function frequency increases. Thus, the size (i.e. the number of hyper-parameters) 
explodes quickly. The number of parameters is an important metric in that a large number of parameters usually 
means a few things. First, it is a lot more costly to train such models computationally. Second, it is more likely to 
cause under-fitting problems.

The introduction of multi-layered neural networks solves such issues. Properly built multi-layered neural 
networks should be able to reduce the space complexity of neural networks from exponential to linear. Hence, 
the problem of parameter exploding is then solved. However, increasing the depth of neural networks intro-
duces other problems too. In the back-propagation phase of training. The gradient accumulates to usually a 
smaller and smaller number as it propagates backwards because a reasonable learning rate is usually too small 
for the model to be able to achieve a close approximation towards the global optimally. When approaching the 
first few layers, gradients tend to be too small to be handled by the floating-point representation. To make this 
problem even worse, most optimizers have strategies that reduce the magnitude of learning rates as the training 
progresses. This is because the closer the current state is to the optimal point, the smaller the step length is the 
better to approach the optimally.

(1)Recall =
TP

TP + FN
,

(2)Accuracy =
TP + TN

TP + TN + FP + FN
,

(3)Precision =
TP

TP + FP
,

(4)F1− score =2×
Precision · Recall

Precision+ Recall
.

Figure 3.   Loss and accuracy of the basic network.
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Results of increasing the depth.  We experimented with changes in the depth of our neural networks and how 
these changes will influence the result of training. A deep neural network with 12 hidden layers is tested. To test 
the influence of the depth, all hidden layers share the same number of hidden nodes with the basic neural net-
work, 20 nodes. More details of the deep neural network structure can be found in Supplementary Table S2 from 
the Supplementary Material. The details of the effects of increasing depth are shown in Supplementary Figs. S3 
and S4 of Supplementary Material, without and with PCA, respectively.

An accuracy of 68.1%, a precision of 68.5%, a recall of 72.2%, and an f1-score of 70.3% are obtained by the 
neural network with a depth of 12, taking average after 10 times training and testing. In comparison to the basic 
network, there is a significant decrease in all four evaluating metrics.

When we expand the neural network’s depth to 12, we can see from Fig. 4 that the model’s accuracy first rises 
to a high level, then oscillates sharply, and finally settles at 68.1% accuracy, which is more than 20% lower than 
the performance of our simple neural networks. The loss is shown in Fig. 4, which fluctuates between 1.1 and 
0.32 on the loss curve in the final stages of training.

This phenomenon of fluctuation in the accuracy and loss curves is expected due to the oscillation nature of 
deep neural networks.

It is obvious from the deep neural network’s normalized confusion matrix shown in Supplementary Fig. S1 
from the Supplementary Material, that it performs poorer at identifying both standing and sitting. The confusion 
matrix demonstrates that standing is more difficult for the deep neural network to recognize than sitting, with 
only 62% of standing predictions being true compared to 82% of sitting predictions.

Increase the width.  Background.  In neural networks, computation is frequently structured into layers of 
artificial neurons. The layer width refers to the number of neurons in one single layer of the network. There are 
several reasons why we need a wide neural network.

Firstly, the wide neural network allows each layer to extract a collection of features with more dimensions25. 
If a network is too narrow, each layer can capture a limited dimension of features, there is no possibility that 
we can extract enough information to propagate down the network, no matter how deep it is. Another reason 
is the usage of GPU. The GPU is considerably more efficient in parallel calculations on huge tensors, it is more 
computationally economical26 to expand the layers rather than have hundreds of little kernels. Wide residual 
networks, for example, can compute multiple multiplications in parallel, but deeper residual networks require 
more sequential calculations (since the computation depends on the previous layer).

As a consequence, we may start with the width to enhance network performance, then increase channel uti-
lization rates at each layer, supplement the thin layer with information from other channels, identify the lowest 
limit of width, and achieve better performance with as little computing as feasible.

Results of increasing the width.  To test the effect of width in the neural network, we keep the number of hidden 
layers as same as that of the basic neural network. At the same time, we increase the number of nodes in each 
hidden layer from 20 to 320. The parameters of the wide neural network are listed in Supplementary Table S3 
from the Supplementary Material.

While expanding the number of hidden layer nodes to 320 with the same number of hidden layers as the 
basic network, the accuracy, precision, recall, and f1-score are 69.0%, 69.5%, 74.4%, and 71.8% on average after 
10 times training and testing, respectively. Both the accuracy in the testing set and the loss curve in Fig. 5 exhibit 
significant oscillations. This phenomenon shows that it is difficult to train a wide neural network to distinguish 
between standing and sitting.

From the normalized confusion matrix of the wide neural network shown in Supplementary Fig. S1 from 
the Supplementary Material, we can see that making the neural network wide cannot make the neural network 
classify sitting and standing better. The wide neural network can predict sitting with 86% correct prediction and 
standing with 62% right prediction. We can find that both the deep neural network and the wide neural network 
can recognize sitting better than standing while the basic network classifies standing better than sitting from 
their confusion matrices.

Figure 4.   Accuracy and loss of the deep neural network.
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The reason for the bad performance of the wide neural network can be concluded as overfitting: the model 
attempts to learn too many details from the training data while simultaneously accounting for noise. Overfitting 
occurs when a model becomes very strong at categorizing or predicting data from the training set but not so 
good at categorizing data it wasn’t trained on. Adding extra nodes causes overfitting since the original network 
already fits well with the data.

When we produce a model on training data and use it on the test dataset, the error reduces to a very tiny value, 
but the error generated from fresh data climbs to a big value, this is an indication of overfitting during training. 
Because they learn millions or billions of parameters while developing the model, deep neural networks are prone 
to overfitting. Because it has the potential to do so, a model with this many parameters can overfit the training 
data. The primary notion behind addressing the problem of overfitting is to reduce the model’s complexity. We 
may accomplish this by simply eliminating layers or lowering the number of neurons, for example.

The following are some probable causes of overfitting in neural networks: Firstly, the training dataset is rather 
small. When a network tries to learn from a limited dataset, it tends to have more control over the dataset and 
ensures that all data points are satisfied exactly. As a result, the network is attempting to memorize every data 
point while failing to grasp the overall pattern from the training dataset. Secondly, on noisy data, the model tries 
to make predictions. Overfitting may also happen when a model tries to generate predictions on excessively noisy 
data, which is produced by an overly complicated model with too many parameters. As a result, the overfitted 
model is erroneous since the trend does not reflect the reality of the data.

Advanced neural network structure.  Background.  Recent decades have witnessed great progress in 
deep learning, new structures of Neural Networks are developed and have been implemented in the field of 
deep learning with a great outcome. Convolutional Neural Networks, usually named CNN, down-sample inputs 
to extract features through convolving27. Recurrent Neural Networks often referred to as RNN, are known for 
their ability to handle time-series data28. The success of ResNet is a milestone of deep learning that makes the 
extremely deep neural network possible29. Those three new architectures are implemented while keeping the size 
the same as the neural networks that we experimented with before for a better comparison.

CNN.  CNN is usually used for image or video recognition where 2D convolutional networks or 3D convo-
lutional networks are implemented. However, since our dataset is only 1D data, we cannot adapt 2D or 3D 
convolutional networks as people usually do. Instead, we implement a 1D convolutional network and reduce 
the number of features from 999 to 20 (to keep the size the same as the basic neural network) after the 1D con-
volutional network. The 1D convolutional network, or feature-extracting network, consists of 2 layers of convo-
lutional networks. Each convolutional neural network in the feature-extracting network is followed by a ReLU 
function. The rest of the network is the classification network that has four linear hidden layers and one output 
linear layer with a Sigmoid activation function. Each linear layer has 20 hidden nodes to ensure that the size is as 
same as the basic neural network. The details of the designed 1D CNN can be found in Supplementary Table S4.

The results after training are shown in Supplementary Fig. S2 from the Supplementary Material.
After training, the accuracy of the CNN achieves 98.6% in the testing set on average. From the above two 

curves, we can observe that both accuracy and loss become stable at the end of the training, proving that the 
training of the CNN fits the data well. Compared with the basic network, CNN has a higher testing accuracy (in 
comparison with 93.8% in the basic neural network) and the training loss is more stable. The precision, recall, 
and f1-score of CNN are 98.6%, 98.6%, and 98.6%. These results indicate that after extracting features by CNN, 
the performance of the network can be improved amazingly.

We can learn more about how effective CNN is at categorizing human motion from its normalized confu-
sion matrix, Supplementary Fig. S1 from the Supplementary Material. According to the confusion matrix, the 
CNN properly distinguishes 98% sitting and 99% standing. When compared to the basic neural network, it is 
far better (91% and 97%, respectively).

The mathematical principle behind this phenomenon is that the CNN can select the most contributing fea-
tures through down-sampling while the basic neural network does not have such a strong ability in extracting 

Figure 5.   Accuracy and loss of increasing the wide neural network.
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important features. To be more specific, the CNN selects features by convolving the input data while the basic 
neural network selects part of inputs through a linear combination that checks all inputs without a focus on a 
certain part of the input. Some parts of input can be more crucial in determining patterns of input instead of all 
parts being equally important. So, it is not difficult to infer that CNN, paying attention to the part of inputs, can 
gain better performance than the basic neural network, treating the whole input as the same.

RNN.  RNN is specially designed for time-series data as it introduces hidden variables that contain informa-
tion from the past. To have a better performance in this work, we implement a popular RNN structure, LSTM30. 
Compared with the naïve RNN, LSTM contains three gates (forget gate, input gate, and output gate) that can 
decide which information to throw away, to store in the cell state, and to output.

The group work of these three gates is the secret behind the wonderful performance of LSTM. In this pro-
ject, we firstly dropped input size from 999 to 20 through a linear layer, then implemented 4 layers of LSTM, 
each with 20 hidden nodes, and 1 linear output layer with the Sigmoid activation. The aim is to ensure that the 
structure of the RNN is as close to the basic network as possible. More details of the RNN can be witnessed in 
Supplementary Table S5.

Supplementary Figure S2 demonstrates the result of training using an RNN.
After training, we finally get an accuracy of 95.2%, a precision of 95.2%, a recall of 95.4%, and an f1-score of 

95.3% in the testing set after 10 times of training and testing. In contrast with the results of the basic network, 
the RNN can get higher accuracy in the testing set while the training loss is close. Compared with CNN, the 
curve of loss are more unstable, and the testing set accuracy is a bit lower. This result proves that although RNN 
can gain a great result in this time-series data, the fact that RNN pays attention to all input instead of part of the 
input leads to the RNN behaving a little worse than the CNN.

From the normalized confusion matrix of the RNN shown in Supplementary Fig. S1 from Supplementary 
Material, we can find that the trained basic network is more accurate in recognizing standing behavior than sit-
ting, with 93% correct prediction in sitting while 98% correct prediction in standing.

From the loss curve of the RNN, we can find it converges to 0.3143 at the final stage of training. Unlike the 
naïve RNN, the LSTM can have a better gradient behavior. The mathematical principles behind this phenomenon 
are 1. LSTM preserves the error that can be back-propagated through time and layers 2. LSTM contains self-loops 
where the gradients can flow for a long time.

ResNet.  The appearance of ResNet made the depth of the Neural Network grow from 19 in VGG31 to more than 
100. Nowadays, it is common to see a Neural Network with a depth of more than 1000. The problem with the 
training of the Deep Neural Network is the vanishing gradients. ResNet solves this issue in a clever way, which 
will be illustrated later. What we do is implement ResNet modification in the basic network, the network with 
increasing depth, and the network with increasing width, to say how much improvement that ResNet modifica-
tion can bring to train the basic network, the network with increasing depth, and the network with increasing 
width respectively.

Supplementary Figure S3 illustrates the results of training the basic network with the ResNet modification. 
After 10 times training and testing, the testing set accuracy is 95.2%, precision is 95.2%, recall is 95.6% and 
f1-score is 95.4% on average. From the two curves, we can find that both the training loss and testing set accuracy 
become smooth at the end of the training. This proves that the training of ResNet is nearly finished. An increase 
of 1.4% can be found in the testing set accuracy while the change in the training loss is not obvious. This fact 
proves that the network with the ResNet structure can learn a more intrinsic feature that can help the network 
distinguish between standing and sitting better.

We can learn more about how much ResNet can help the network at classifying human motion from its 
normalized confusion matrix shown in Supplementary Fig. S1 from the Supplementary Material. According to 
the normalized confusion matrix, the basic neural network with ResNet properly distinguishes 92% sitting and 
99% standing. When compared to the basic neural network (sitting 91% and standing 97% respectively), it is 
better in both sitting and standing classification.

Then, we conduct the experiments of ResNet modification in the network with increasing depth with 12 lay-
ers. Compared with the original increasing the depth network, an increase of 29.0% can be found in the testing 
set accuracy (from 68.1 to 97.1%) while the training loss curve is more stable. The amazing increase in testing 
set accuracy shows the magic that ResNet can bring to the training of the deep network. However, this magic 
seems to have a side effect when it comes to the network with a larger width (320 nodes in each hidden layer). 
The wide network with the ResNet modification only acquired an accuracy of 67.6%, a precision of 68.0%, a 
recall of 71.9%, and an f1-score of 69.9% after training and the training loss oscillates greatly. Compared these 
measurements with these of the original network, we can find that the wide network with ResNet even performed 
a little worse than the original wide network.

Compared the normalized confusion matrices of the deep network with ResNet shown in Supplementary 
Fig. S1 to that of the wide network with ResNet shown in Supplementary Fig. S1, we can find that the deep neural 
network can classify 96% sitting and 98% standing correctly while the wide neural network can only recognize 
82% sitting and 62% sitting.

When the normalized confusion matrices of the deep network with ResNet shown in Supplementary Fig. S1 
and the wide network with ResNet shown in Supplementary Fig. S1 are compared, it can be seen that the deep 
neural network can correctly classify 96% of sitting and 98% of standing while the wide neural network can only 
identify 82% of sitting and 62% of sitting.
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The mathematical principle behind the ResNet is that it successfully transforms the gradients’ backpropaga-
tion from multiplicative to additive. This transformation is achieved by the skip connection of the ResNet. The 
details of the skip connection can be found in Fig. 6.

From its skip connection, the input and the output of the residual block are added, which helps the gradients 
become additive. The gradient of ResNet can be expressed as:

From this equation, we can find: (1) Any ∂E
∂xL

 is directly back-propagated to ∂E
∂xl

 plus residual. (2) Since any ∂E
∂xl

 
is additive rather than multiplicative, it is unlikely to vanish.

Although this modification can solve the problem of vanishing gradient that exists in the deep neural network 
successfully, it cannot alleviate the issue of overfitting in the wide neural network. Therefore, the deepest network 
gained the best improvement while the widest network gained the worst.

Summary of structure modifications.  Setting the Basic Neural Network as the baseline, we modified its 
structure by increasing the depth, increasing the width, applying the CNN, applying the RNN, and applying the 
ResNet. Next, we trained those modified deep learning models and measured their accuracy, precision, recall, 
f1-score, and running time when doing the tests in the testing set. We take an average after 10 times training and 
testing. The results of these measurements are recorded in Table 2.

From the table, we find that CNN, RNN, Basic Neural Network with ResNet, and Deep Neural Network with 
ResNet can gain better performance than the baseline, while Deep Neural Network, Wide Neural Network, and 
Wide Neural Network with ResNet perform worse than the baseline if we compare their f1-score.

Reducing dimensions
Background.  Although the performances of the Deep Neural Network have already been successful after 
we implement some advanced structures, the original system still suffers from the curse of dimensionality. That 
means the dimension of wireless signals is too high to have a good performance. To be more specific, as the 
dimensionality of data rises, the volume of space expands so quickly that the accessible data becomes sparse. 
Due to this sparsity, the amount of data required to train a deep learning model sometimes climbs amazingly. 
However, it is difficult to collect more data due to the limitation of the hardware. Therefore, to have a better per-
formance, it is crucial to reduce the dimensionality of the data.

Reducing dimensions can effectively solve the problems of the curse of dimensionality. PCA32 is a commonly 
used technique for reducing dimensions. PCA converts a set of observations of possibly linearly correlated 
variables into a set of values of linearly uncorrelated variables an orthogonal transformation. Those linearly 
uncorrelated variables are called principal components. Since the number of principal components should be 
smaller or equal to the number of original variables, it can be a great unsupervised learning model for reducing 
dimensions. PCA was firstly proposed by Pearson in 190133, which could only be adapted for non-random vari-
ables. Later in 1933, Hotelling34 developed PCA for random variables.

In this work, we adapted PCA into our data and reduced the dimension of our data from 999 to 111. A won-
derful improvement can be witnessed in the result, illustrated by the following part.

Results of dimension reduction.  Firstly, we implement the data preprocessed by PCA to the Basic Net-
work. Keeping other conditions the same and doing 10 times training and testing, we can achieve an accuracy of 
98.6% in the testing set (Supplementary Fig. S4) on average, much higher than the original basic network trained 
by raw data 93.8%. 98.6% obtained by the Basic Network with PCA is also higher than 95.2% obtained by ResNet 
in the Basic Network. Besides, both the accuracy curve and the loss curve are more stable at the end of the train-
ing, proving the robustness of implementing the PCA into preprocessing.

Next, we do a similar experiment in the 12-layer Neural Network. We can witness a rise of 29.5% in the 
testing accuracy (see Supplementary Fig. S4). Like the Basic Network case, both the curve of testing accuracy 

(5)
∂E

∂xl
=

∂E

∂xL

(

1+
∂

∂xl

l−1
∑

i=1

F(xi)

)

.

Figure 6.   ResNet skip connection structure.
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and the curve of loss remain nearly the same at the end of the training process. This result indicates that PCA 
preprocessing can work well in the deep neural network.

Unlike the ResNet, the magic of PCA preprocessing can still perform well in a wide neural network. The 
accuracy can be improved from 69.0 to 99.0% after the raw data is preprocessed by PCA while the accuracy 
obtained by ResNet is 67.6%. Similar to the previous two experiments, the accuracy curve and the loss curve of 
the 320 Nodes Neural Network become smooth at the end of the training, indicating the Neural Network fitted 
the data well.

After taking 10 times training and testing, CNN with PCA behaves with little difference compared with CNN 
without PCA. In contrast, an increase of around 4% can be found in accuracy, precision, recall, and f1-score after 
RNN taking PCA. The RNN with PCA receives the best result among all models, indicating the best technique 
for improving the performance of the deep learning model.

According to the normalized confusion matrices of the basic network with PCA, the deep network with PCA, 
the wide network with PCA, CNN with PCA, and RNN with PCA, we can find that these networks can classify 
sitting and standing with a correcting rate higher than 95% in the testing set, indicating their amazing abilities 
in this human motion classification scenario. Apart from our experiments, we added other radio-based deep 
learning works to compare in the Table 3. The result of comparison shows that LSTM with PCA performs the 
best, indicating the best technique to improve the performance of deep learning.

From Table 3, we can see that in contrast with the structure modified models, the  modification by PCA 
Dimension Reduction can not only gain better performance in the Basic Network, and the Deep Neural Network 
but also improve the testing accuracy of the Wide Neural Network, in terms of the testing accuracy.

The secret of the magic of the PCA preprocessing lies in the two-dimensional feature map by t-distributed 
stochastic neighbor embedding (t-SNE)38. Displaying high-dimensional data by assigning a two- or three-
dimensional map to each datapoint is the main function of t-SNE. The cooperation between Geoffrey Hinton’s 
Stochastic Neighbor Embedding and Laurens van der Maaten’s t-distributed variant contributes to the great 
success of t-SNE in visualizing high-dimensional data. From Fig. 7, we can find: that it is hard to find a bound-
ary between the data points of Sitting and the data points of Standing in the feature map of raw data while it is 
much easier to draw a boundary between the datapoints of Sitting and the datapoints of Standing after the PCA 
preprocessing is applied.

The reason that low dimensional data has better performance is that we extract principle components of the 
raw data by PCA, the influences of noise and high dimensions are removed, and it becomes much easier for the 

Figure 7.   Compare between with PCA Feature Map and without PCA Feature Map.
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deep learning model to learn how to classify Sitting and Standing. Although ResNet can solve the problem of 
vanishing gradients, it cannot perform well if the data is hard to classify due to the influence of noise and high 
dimensions. Therefore, reducing dimensions should be an important part of the training the deep learning model.

Discussion and conclusion
In this work, we first collect a CSI dataset of sitting and standing activities and build a basic network to classify 
these activities using PyTorch.

Thereafter, we increase the depth and the width of the neural network, adopt advanced neural network struc-
tures, and reduce dimensions by PCA to observe how the testing accuracy and loss curve will change. Through 
these changes, we thoroughly explore how to modify the deep learning in this wireless CSI dataset.

Although increasing the depth can improve the expressiveness of the neural network and extract abstract 
features of the input, problems of vanishing gradients can become more serious as the depth increases. This 
problem leads to slow training and a bad result in both the testing accuracy and the loss. Increasing the width 
can increase the dimensions of the feature map in the hidden layers. However, too many parameters in the hid-
den layers can lead to the problem of overfitting.

Transforming the structure of the basic network to CNN can have an amazing improvement in the result as 
CNN can sample the most important features to improve the training efficiency of the classifying network. RNN 
can store the past information in its hidden variables, and LSTM improves the naive RNN by introducing the 
input gate, the forget gate and the output gate. Although LSTM is specially designed for time-series data, it focuses 
on all input instead of the most important features like CNN. Therefore, it performs a little worse than CNN.

ResNet is a milestone of deep learning that makes the extremely deep neural network possible. From our 
experiments, we can find that the ResNet can increase the testing accuracy of a 12-layer neural network with 
20 nodes in each hidden layer by 29% while it cannot work well for a 4-layer neural network with 320 nodes in 
each hidden layer. Therefore, ResNet is effective for a deep neural network, but it cannot be so effective for a wide 
neural network. In comparison with ResNet, reducing dimensions by PCA can increase the testing accuracy of 
the Basic Network, the testing accuracy of the 12-layer neural network with 20 nodes in each hidden layer, and 
the testing accuracy of the 4-layer neural network with 320 nodes in each hidden layer all to around 98%. CNN 
with PCA has not much difference while RNN with PCA improves accuracy, precision, recall, and f1-score to 
around 99%.

The highest accuracy is gained by the combination of RNN and PCA, with an accuracy of 99.1%. In Ref.39, 
semi-supervised training was applied radar-based Human Activity Recognition with an accuracy of 87.6%. 
The article35 applied ResNet29 to recognize human activities with an overall accuracy of 96%. While in Ref.40, 
the team designed the HARnet for mmWave based real-time human activity recognition. HARnet can achieve 
an off-line accuracy of 93.25% and real-time accuracy of 91.52%. According to Ref.41, a hybird framework 
composed by 1-D Convolutional Neural Network, Recurrent Neural Network, and 2-D Convolutional Neural 
Network is implemented for radar-based human activity recognition with an accuracy around 95%. In Ref.42, 
five distributed pulsed Ultra-Wideband (UWB) radars in a coordinated network is applied to human activity 
recognition, bringing an average improvement of 17.5%. 1D-CNN applied in Ref.36 gained an accuracy 94.60% 
while37 applied a multi-view CNN-LSTM, resulting in an accuracy of 92.00%. Although these recent works have 
a great performance in radar-based human activity recognition, they still do not surpass the accuracy of our 
method through combining LSTM and PCA (99.1%).

The training processing of PCA preprocessed data is more stable compared with the ResNet. The feature map 
of the raw data and the feature map of the PCA preprocessed data shown in Fig. 7 shows that reducing dimen-
sions by PCA can help the CSI data become easier to classify.

In conclusion, modifying the neural network Structure and reducing dimensions can be two perspectives in 
improving the deep learning model for the contactless AI-enabled human motion detection system. Reducing 
dimensions might play a more crucial role in the improvement.

Data availability
The datasets used and analysed during the current study are available from the corresponding author on reason-
able request.
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