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Abstract—Random access (RA) is a common technique to
admit users to a network. Non-orthogonal multiple access-based
RA (NOMA-RA) is a promising solution to support a large
number of devices competing to access a limited number of radio
resources. This paper aims to propose an intelligent access control
and user scheduling technique for NOMA-RA by leveraging
machine learning (ML) algorithms. We first theoretically derive
the maximum throughput of NOMA-RA and the optimal access
probabilities for all NOMA power levels, which can serve as the
upper bound in the ideal environment. We then introduce our
ML design based on multi-armed bandit (MAB) that controls
users participation and their NOMA channel access to achieve
the optimal throughput. Our ML design consists of two ML
agents where the first agent manages the flow of traffic entering
the preamble selection process and the second agent controls the
user access to NOMA channels. To achieve the joint optimization
of both decisions, the outcome of the first agent is used as a
context for the second agent to synchronize its learning, while
the overall performance is used as a feedback to both agents.
Simulation experiments confirm the effectiveness of our joint
agent design and its ability to make joint decisions to achieve
the optimal performance.

Index Terms—Multi-armed bandit, NOMA, random access,
access class barring, preamble selection.

I. INTRODUCTION

Cisco has predicted that machine-to-machine (M2M) con-
nections will be 14.7 billion by 2023, equal to half of the
global connected connections [1]. Supporting such massive
connectivity is a critical challenge faced by cellular networks
that calls for significant improvements in massive access
techniques. In cellular networks, e.g., LTE-A, when any device
or called User Equipment (UE) wants to initiate an access
request, a contention-based Random Access (RA) four-step
handshake procedure is proceeded between UE and base
station (BS). The UE first randomly selects a preamble and
transmits it to the BS in the Physical Random Access Channel
(PRACH) [2]. Since the preamble selection is purely random
and there are only 64 orthogonal preambles available per
cell, the massive amount of Machine-Type Communication
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(MTC) devices will greatly increase the chances of preamble
collisions, that is, multiple devices transmitting the same
preamble at the same time/frequency resource.

To address the congestion issue, Access Class Barring
(ACB) has been included in LTE-A specification that spreads
the UE accesses over time, by periodically broadcasting bar-
ring parameters including the barring rate and the mean barring
time [3]. There have been many studies in the literature to
optimize ACB and preamble selection [4]–[7]. A probabilistic
resource separation method was introduced at preamble stage
in [4] to achieve an accurate load estimation in a wide range
of load conditions. In [5], a quality of service (QoS)-based
dynamic and adaptive mechanism was proposed to priori-
tize preamble allocations for delay-sensitive devices while
adaptively adjusting ACB parameters for delay-sensitive and
delay-tolerant devices. In [6] and [7], reinforcement learning
(RL) algorithms, e.g., Q-learning, were used to intelligently
determine ACB parameters to reduce congestion and access
latency. However, all these studies focus on orthogonal RA
schemes which lack another degree of freedom that can be
leveraged towards massive connectivity.

The use of non-orthogonal multiple access (NOMA) is
another approach to improve the performance of RA procedure
[8]–[10]. NOMA allows multiple non-orthogonal signals to be
transmitted at the same time and frequency resources, where
the receiver can still decode the superimposed signals either in
power or code domain [11]–[13]. This ability provides another
dimension for RA to accommodate the increasing number of
MTC devices in cellular networks. In our previous work [14],
by considering power-domain NOMA, we mathematically ana-
lyzed the throughput performance of NOMA-RA and proposed
a user barring algorithm tuning the system to operate at its
best performing state. It was shown that NOMA-RA with
four power levels can achieve a maximum throughput that
is three times higher than that of an equivalent multi-channel
slotted ALOHA (MS-ALOHA). Considering NOMA-RA as
one of the most promising RA schemes for supporting massive
connectivity, RL can be then utilized to add intelligence to the
system and allow autonomous reaction to any real-time traffic
changes. In [15], a two-sided learning based on multi-armed
bandit (MAB) was proposed to allow devices to dynamically978-1-6654-5975- 4/22 © 2022 IEEE
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Fig. 1. Four-step Random Access Procedure with ACB.

choose resource blocks (RBs) for packet transmissions to
maximize the throughput. The main difference between [15]
and this work is that [15] focuses on the RB selections while
this paper aims to jointly address user barring and NOMA
channel access. NOMA was also considered in [16] where the
cell coverage area is split into multiple logical zones, such
that preambles can be re-used in one cell without colliding.
Our research also differs from [16]. In this paper, we focus on
a grant-based non-orthogonal RA scheme by leveraging the
additional dimension introduced by NOMA and adopting the
ACB mechanism introduced in 3GPP specification [3]. An RL
approach, more specifically, MAB, is employed to intelligently
tune the ACB barring rate and the NOMA channel access
probabilities. Our contributions can be summarized below.

• The analytical expression of throughput is derived for
NOMA-RA, measured by the mean number of successful
transmissions. The optimal access probabilities over all
NOMA power levels are obtained that maximize the
system throughput, which later serve as the benchmark to
measure the performance of the proposed NOMA agent.

• Two MAB agents are designed, where the first agent,
called preamble agent, dynamically tunes the ACB bar-
ring rate, and the second agent, namely NOMA agent,
autonomously regulates the user access to NOMA chan-
nels. Simulation results confirm that the designed NOMA
agent performs optimally since its performance matches
with the theoretical maximum throughput of NOMA-RA.

• A joint agent is finally designed and employed at the BS
to synchronize the learning process, where the outcome of
preamble agent is used as a context for the NOMA agent.
The overall throughput performance is used as a feedback
for the joint agent to dynamically decide ACB barring
rate and NOMA access probabilities. Simulation results
validate the effectiveness of the proposed joint agent.

II. SYSTEM MODEL

A. Grant-based Random Access

We consider a network implementing a grant-based RA
scheme to access NOMA channels for packet transmissions. In
grant-based RA, users must first participate in a RA procedure
before any packet transmission. A typical RA procedure used
in a mobile network is executed through a four-step handshake
as shown in Fig. 1. The procedure begins with a preamble

transmission taking place on a PRACH slot on a shared
channel. A preamble is a specific unique signal pattern that
can be recognized by the BS. A network uses a set of unique
preambles orthogonal to each other such that the BS can simul-
taneously detect the presence of a number of preambles within
a single PRACH slot. With a set of orthogonal preambles, a
user simply randomly chooses one of the preambles to transmit
on a PRACH slot to send a connection indication, known
as Msg1. Since the preamble selection is pure random, it is
inevitable that the same preamble may be chosen by multiple
users. The outcome of a preamble on a PRACH can either
be idle, successful or collided if a preamble is selected by no
user, exactly one user, or multiple users respectively.

Upon detecting the preambles, the BS proceeds with re-
sponding to all non-idle preambles by transmitting Msg2 or
called random access response (RAR) that is used to invite
users to send their connection requests to the assigned RBs. If
there is only one user selecting the preamble, the user detects
the Msg2 that matches its transmitted preamble and replies
Msg3 accordingly. After detecting Msg3, the BS replies with
Msg4 containing connection setup message to complete the
procedure. At this point, the requested connection is said to
be established successfully. However, in the RA procedure,
Msg3 is subject to transmission collisions. This is because
since multiple users can choose the same preamble, they will
respond to the same Msg2 on the same assigned RB causing
collisions. In this case, the BS cannot detect the Msg3 and
no connection is established. The users failing to establish
a connection may reattempt again by backing off a random
amount of time and repeating the RA procedure in the next
available PRACH slot after the backoff.

B. Access Class Barring

ACB is introduced in 3GPP standards to regulate traffic
arrivals in a network [3]. A network defines a number of access
classes and each user belongs to a particular access class. The
BS periodically broadcasts the barring rate and the barring
time for each access class, where the barring rate corresponds
to the probability that a user will participate in the next RA
procedure. Precisely, a user draws a random number between
0 and 1, and can participate if the number is smaller than
or equal to the barring rate of its access class. If the drawn
random number is larger than the barring rate, the user is said
to be barred from participating in the next RA procedure and
must perform a backoff by remaining silence for a time period
derived from the barring time. Using ACB to regulate traffic
load is particularly important in massive connectivity scenario
to stabilize the RA procedure [4], [17].

C. NOMA-RA Process

In [14], we studied the performance of applying RA to
power-domain NOMA. In power-domain NOMA, two or more
users are allowed to transmit on a channel, each with a dif-
ferent power level. At the receiver, the decoding and retrieval
of all the transmissions on the same channel are done using
successive interference cancellation (SIC). To decode multiple
transmissions superimposed on the same channel using SIC,



Fig. 2. System model.

the receiver first decodes the strongest signal, uses it to cancel
out itself from the superimposed signal and reveals the next
strongest signal. The decoding process continues until either
all signals are decoded or signal cancellation fails. Signal
cancellation may fail if two or more users have chosen the
same power level to transmit causing a transmission collision.
Then, the decoding process of SIC terminates and no further
transmission can be decoded. It is thus critical to ensure
transmissions on high power levels do not collide. Otherwise,
the SIC terminates and all transmissions on the low power
levels will not be decoded even if they do not suffer from any
collision.

In this paper, we consider a network employing the grant-
based RA for NOMA transmissions, where the whole process
is shown in Fig. 2. When a user is ready for packet trans-
missions, it first checks the ACB barring rate and proceeds
to conduct the grant-based RA if it is not barred, following
the four-step handshake procedure as illustrated in Fig. 1. If
the outcome of RA procedure is successful, the connection is
established successfully and the user can proceed with packet
transmissions using the assigned NOMA RB. We call a user
who successfully receives Msg4 the successful user. For the
users who have experienced preamble collisions, they will
not receive Msg4 due to the collided Msg3. These are called
collided users. For the collided users, we propose allowing
them to access NOMA channels opportunistically instead of
directly repeating the four-step RA procedure which can lead
to an increased throughput and a reduced access latency.

To access NOMA channels opportunistically, the collided
users must first wait until the BS has completed the four-
step handshake for all non-idle preambles. On completion of
this procedure, the BS shall broadcast to all users the NOMA
RB availability map indicating which NOMA RBs can be
accessed opportunistically along with the access probabilities
of power levels. Then, each collided user randomly selects a
RB from the available NOMA RBs according to the corre-
sponding access probabilities. Our work specifically focuses
on designing a ML strategy that can maximize the successful
packet transmissions in the grant-based NOMA-RA.

Our system considers 64 preambles used in the four-step

handshake. All users follow the same barring rate broadcast
by the BS. Let UT be the users ready for transmissions and
b be the barring rate. Each user individually checks whether
it is barred from participating in the next RA procedure. Let
UB and UR denote the number of users who are barred from
and who will proceed with the RA procedure, respectively.
Out of UR users, only these choosing unique preambles will
not collide in Msg3 and eventually receive Msg4. Denote
by US the number of users having preambles successfully
transmitted. These users will be explicitly scheduled onto
unique NOMA RBs for packet transmissions in a collision-free
manner. Other collided users who did not receive Msg4 may
proceed to contend for the remaining unoccupied NOMA RBs.
Let UC be the number users whose preambles are collided, that
is US + UC = UR and UR + UB = UT .

Let M be the number of power-domain NOMA channels
available for packet transmissions, and L be the number of
power levels for each channel. The total number of NOMA
RBs are M · L. Each NOMA RB represents a NOMA
channel with a specific power level. In our design, the BS
first schedules the successful users sequentially onto NOMA
RBs based on the highest-power-level-first principle. In other
words, the user receiving the first Msg4 from BS will be
scheduled onto the first NOMA RB and it will transmit with
the highest power level. The user receiving the second Msg4
will be scheduled onto the second NOMA RB on the highest
power level, and so on until all NOMA RBs allowing highest
power level transmissions are exhausted. Then, the NOMA
RBs with the second highest power level transmissions will
be used for subsequent users. In an ideal case where all
NOMA RBs are utilized by the successful users, the BS
stops to schedule any more users. However, in most cases,
not all the NOMA RBs can be utilized. In this case, the BS
broadcasts the NOMA RB availability map to invite collided
users to opportunistically access the unoccupied NOMA RBs.
All collided users may unbiasedly select one of the unoccupied
NOMA RBs to transmit packets. However, as shown in [14],
this does not lead to the optimal use of available NOMA RBs.
In the next section, we shall study how users should choose the
RBs to maximize the success of NOMA packet transmissions.

III. JOINT AGENT OF PREAMBLE AND NOMA

In our grant-based NOMA-RA, users undergo preamble
contention followed by NOMA packet transmissions. It is
natural to first use two different ML agents to manage different
phases, one focusing on ACB parameter tuning in the preamble
contention process and another focusing on the NOMA RBs
access. Then, a joint agent can be proposed to jointly govern
user barring and NOMA channel access.

A. Standalone Preamble Agent

The aim of preamble agent is to regulate traffic flow. This
can be achieved by dynamically tuning the ACB barring rate
b, where 0 ≤ b ≤ 1, b ∈ P , and P ={b1, b2, ..., bm} is a
set containing m different barring rates. For each barring rate,
the throughput of NOMA-RA is the reward. The four-step
handshake also produces a 3-tuple C, i.e., C = (ns, nc, ni),



which indicates the outcome of the RA procedure. Here, ns,
nc and ni are the numbers of successful, collided and idle
preambles, respectively.

B. Standalone NOMA Agent

The objective of NOMA agent is to find a user scheduling
policy on NOMA RBs to achieve the maximum throughput.
As demonstrated in our previous work [14], the throughput of
NOMA-RA depends on loads, and the maximum throughput
can be derived theoretically. In [14], we constrained the model
to a single arrival rate for all NOMA power levels. To take
the full advantage of NOMA characteristics, in this work, we
remove the single arrival rate constraint and allow different
arrival rates to be set for different NOMA power levels. In
the following, we first derive the throughput expression for
the new arrival model, followed by introducing our NOMA
agent design. The theoretical study will establish the upper
bound performance and serve as a benchmark to measure the
performance of our proposed NOMA agent.

1) Throughput Analysis

Since Poisson distribution is commonly used to model the
occurrences of events that could happen a very large number
of times while each happens rarely [18], below we derive the
throughput expression assuming Poisson arrivals and discuss
how to obtain the optimal access probabilities of all power
levels for NOMA-RA. As all channels are independent, we
focus on a single channel with L power levels. Assume that
for the power level i, the packet arrival follows Poisson distri-
bution with an arrival rate λi. It means that the probability of k

packets arriving at power level i is given by qi,k =
(λi)

ke−λi

k!
,

where k ∈ {0, 1, 2, ...}. For the ith power level (counting from
the highest), the probability of having a successful packet is
the probability that only one packet arrives at the ith power
level and there is no collision on all higher power levels.
The probability of only one packet arriving at power level
i is qi,1. The event of no collision on a higher power level,
e.g., j, 1 < j < i, includes two possible cases: i) there is
no packet arriving at the jth power level (with probability
qj,0); ii) there is only one packet arriving at the jth power
level (with probability qj,1). Hence, the probability of having

a successful packet on power level i is qi,1
i−1∏
j=1

(qj,0 + qj,1).

By counting the successful transmissions on all power levels,
we get that the number of successful packets a single channel

can have is
L∑

i=1

qi,1
i−1∏
j=1

(qj,0 + qj,1). Finally, by considering M

independent channels, the throughput of NOMA-RA is given
by

T = M

L∑
i=1

λie
−λi

i−1∏
j=1

(e−λj + λje
−λj ). (1)

Based on (1), the optimal arrival rates over all power levels can
be found using exhaustive search, denoted by [λ∗

1, λ
∗
2, . . . , λ

∗
L].

Then, the optimal access probabilities for all power levels,

denoted by [p∗1, p
∗
2, . . . , p

∗
L], are given by p∗i = λ∗

i /
L∑

i=1

λ∗
i .

The results established here shall be used to benchmark the
effectiveness of our NOMA agent design. Note that some low-
complexity algorithms can be proposed to find the optimal
arrival rates and optimal access probabilities for NOMA-RA,
but they are beyond the scope of this study.

2) Design of NOMA Agent

We shall now explain our design of MAB-based NOMA
agent, where the aim is to tune the access probabilities for the
collided users to access NOMA channels with a low chance
of packet transmission collisions. The arm of the NOMA
agent, i.e., a, is a list of access probabilities, denoted by[
p
(a)
1 , p

(a)
2 , . . . , p

(a)
L

]
, where p

(a)
i is the access probability of

power level i on a NOMA channel. Let A be a set including
all possible arms. The reward Ra,t is defined as the overall
number of successful packet transmissions on all NOMA RBs
at the iteration t when the arm a is pulled. R̄a,t is thus the
average number of successful packet transmissions when the
arm a is chosen, i.e., (

∑
Ra,t)/Na,t, where Na,t indicates the

number of times the arm a has been chosen in the previous
iterations. In iteration t, the upper-confidence-bound (UCB)
algorithm can be used to select the best learned arm and update
the reward value according to

a = argmax
A

(
R̄a,t + α

√
2 ln t/Na,t

)
, (2a)

R̄a,t = (R̄a,tNa,t +Ra,t)/(Na,t + 1), (2b)

where α controls the level of exploration [19].

C. Joint Agent Design

From Fig. 2, one can notice that given UT users in the
system, the number of users admitting into NOMA-RA, i.e.,
UR, is a random value and unknown to the agents. However,
the access probabilities of NOMA-RA highly depend on the
number of users participating in NOMA-RA. To leverage this,
the joint agent uses the outcome of the RA procedure, i.e., C,
as the context to decide the NOMA access probabilities.

We present our ML design in Algorithm 1 which describes
the procedure of each iteration in the joint ML agent1. In each
iteration, the joint agent first decides on the barring rate b, then
executes the four-step handshake to schedule the users with
successful preambles (see lines 1-7). To decide the best barring
rate, the agent explores each barring rate in each iteration to
establish its reward until all barring rates are explored. After
which, the agent switches to exploitation mode to pick the best
learned barring rate based on the UCB strategy (see line 2).

After scheduling the successful users on the NOMA RAs, if
there are unused NOMA RBs, the agent proceeds to determine
the access probabilities, namely the arm a, for the collided
users to opportunistically access the NOMA RBs (see lines
9-21). The agent uses C as the context and determines a
based on the context. If the agent encounters a context for the

1Note that the iteration index t is omitted in Algorithm 1 in order to provide
a general procedure for each iteration.



Algorithm 1 Procedure of Each Iteration in Joint Agent
1: if all arms in P are explored then
2: Set b← argmax

P
(R̄b + α1

√
2 ln t/Nb)

3: else
4: Set b← an unexplored arm from P
5: end if
6: Apply b as the barring rate in ACB
7: Execute four-step handshake and obtain C
8:
9: if C is unseen then

10: Set WP ← Flat power-level distribution
11: Set a← Random probabilities based on WP

12: else
13: if Exploration then
14: Set WP ← Best power-level distribution of C
15: Set a← Random probabilities based on WP

16: else
17: Set a← argmax

A
(R̄a + α2

√
2 ln t/N

(C)
a )

18: end if
19: end if
20: Apply a as the access probabilities
21: Execute NOMA scheduling and measure reward R
22:
23: Set R̄(C)

a ← (R̄
(C)
a N

(C)
a +R)/(N

(C)
a + 1)

24: Set N (C)
a ← N

(C)
a + 1 ▷ N

(C)
a is set to 0 initially

25: Set R̄b ← (R̄bNb +R)/(Nb + 1)
26: Set Nb ← Nb + 1 ▷ Nb is set to 0 initially

first time or the agent chooses to perform exploration, it uses
random access probabilities for a (see lines 10-11 and 14-15).
Otherwise, it picks the best learned access probabilities based
on the UCB strategy (see line 17). After which, it broadcasts
a along with the NOMA RB availability map to all users. The
collided users can identify the available RBs and access with
the given access probabilities specified by a.

The random access probabilities follow a certain distribution
WP = [w1, w2, . . . , wL]. For the flat power-level distribution,
we have wi = 1/L, ∀i ∈ [1, L], where L is the number of
power levels in NOMA. For the best power-level distribution,
we get wi = P

(a∗)
i , where a∗ is the best arm setting

determined by the UCB strategy. An instance of arm a is then
randomly generated following the the distribution WP . Note
that the access probabilities may cover the NOMA RBs that
are already occupied by successful users. During the random
NOMA RB selection, if a collided user chooses an occupied
NOMA RB, it cancels the selection and repeats the process
to select another RB until a NOMA RB that has not been
occupied by a successful user is chosen.

After the NOMA scheduling for both successful and col-
lided users, the reward R, defined as the number of successful
NOMA transmissions, is obtained, which is then fed back into
both the preamble and NOMA agents (see lines 23-26).

Fig. 3. Maximum throughput vs. the number of users UT , obtained from
theoretical expression (1) and standalone NOMA agent, where M = 10.

IV. NUMERICAL RESULTS

In this section, we will evaluate the performance of the
designed ML agents, namely the standalone NOMA agent,
the standalone preamble agent and the joint agent. The con-
vergence will also be discussed.

To evaluate the performance of standalone NOMA agent,
Fig. 3 is plotted that shows the maximum throughput versus
the number of users UT , by using the derived throughput
expression of NOMA-RA, i.e., (1), and the designed NOMA
agent. To plot this figure, ACB and preamble selection are
omitted because the focus is on NOMA-RA scheduling. It is
assumed that b∗ = 1 (or UR = UT ), and all UT users randomly
access NOMA RBs according to some access probabilities.
Fig. 3 indicates that the designed NOMA agent performs
optimally because it achieves the same maximum throughput
as the theoretical results when UT is large2. For the theoretical
results using (1), as mentioned in Section III-B1, exhaustive
search is used to find the optimal loads over all power levels.
When there are four power levels, by using (1), we find
that the optimal arrival rates are [0.52, 0.6, 0.73, 1]. It reveals
that high power levels should have less traffic loads in order
to operate optimally. This confirms our intuition that it is
better to ensure transmissions on the high power levels do not
collide. Otherwise, the transmissions on the low power levels
may be badly affected by the collisions on higher levels.
To evaluate the performance of joint agent, Fig. 4 plots its
average throughput over 3 · 105 iterations, compared with
that of two benchmark schemes: standalone NOMA agent
and NOMA-RA without agent. It is assumed that b∗ = 1
(or UR = UT ) for the two benchmark schemes. For the
NOMA-RA without agent, all UT users participate in preamble
selection. Those having preambles successfully transmitted are
scheduled on the NOMA RBs while those whose preambles
are collided will randomly access the remaining NOMA RBs

2Note that the gap between the theoretical results and the NOMA agent
results when UT is small is due to the approximation error between Poisson
distribution and a limited number of trials in simulations.



Fig. 4. Average throughput vs. the number of users UT , where M = 10,
L = 4, α1 = 2, and α2 = 3.

Fig. 5. Average throughput vs. the number of iterations for joint agent, where
UT = 100, M = 10, L = 4, α1 = 2, and α2 = 3.

with equal probabilities across all power levels. Fig. 4 shows
that the joint agent achieves the highest throughput among
the three schemes, especially when UT is large. Compared to
the NOMA-RA without agent, the joint agent approach can
dynamically adjust the barring rate and access probabilities
according to the current traffic situation. The advantage of joint
agent over standalone NOMA agent comes from the integrated
preamble agent that can dynamically tune the barring rate to
let the optimal number of users participate in RA procedure.

To show the convergence speed of the designed joint agent,
Fig. 5 is plotted that shows the average throughput versus the
number of iterations. We can conclude that the joint agent
successfully converges to a close-to-optimal arm in a small
number of iterations. Note that the convergence speed depends
on the number of arms. In our simulations, we assume that
the step size of access probabilities is 0.05, while the step
size of barring rate is 0.01. If we reduce the step sizes, higher
precision can be achieved but the convergence speed will be
slower.

V. CONCLUSION

This paper focused on a grant-based NOMA-RA scheme
and aimed to address access control and user scheduling
with the help of ACB mechanism and MAB. Two standalone
agents, namely preamble agent and NOMA agent, were first
designed. To measure the performance of the designed NOMA
agent, the closed-form expression of throughput was derived
for NOMA-RA. A joint ML agent was then designed which
jointly decides the ACB barring rate and NOMA access
probabilities across all power levels. Simulation results val-
idated that the joint agent performs better than the benchmark
algorithms.
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