
Dual Quaternion Based Finite-Time Tracking
Control for Mechatronic Systems with Actuation

Allocation
Lichao Sun

School of Education, Communication & Society
King’s College London

London, United Kingdom
lichao.sun@kcl.ac.uk

Yanpei Huang
Department of Bioengineering

Imperial College London
London, United Kingdom

yanpei.huang@imperial.ac.uk

Ziwei Wang
Department of Bioengineering

Imperial College London
London, United Kingdom

ziwei.wang@ieee.org

Bo Xiao
Department of Computing
Imperial College London

London, United Kingdom
b.xiao@imperial.ac.uk

Eric M. Yeatman
Department of Electrical and Electronic Engineering

Imperial College London
London, United Kingdom
e.yeatman@imperial.ac.uk

Abstract—This paper investigates the tracking control perfor-
mance regulation and actuation allocation of mechatronic systems
subject to coupling motions. In particular, the kinematic and
dynamic model is described by dual quaternion, which captures
the coupling effect between translation and rotation movements.
Considering external disturbances and system uncertainties, a
non-singular fast terminal sliding controller is then developed
to ensure finite-time tracking performance. In addition, the
unwinding problem caused by the redundancy of dual quaternion
is addressed with the help of a novel attitude error function.
Furthermore, an improved simplex method is designed for
distributing the developed control commands to proper actuators.
Numerical simulations demonstrate the effectiveness with respect
to disturbance suppression, fast tracking, high accuracy, and
finite-time stability of the proposed method.

Index Terms—Dual quaternion, sliding mode control, finite-
time stability, control allocation.

I. INTRODUCTION

High-Performance control of mechanical systems has at-
tracted concerns from the fields of space [1], [2], surgery [3],
[4], and human-robot interaction [5], [6]. However, proximate
interaction tasks can be featured by coupling effect between
translation and orientation motions. As a result, unified control
design that addresses such coupling issue is still challenging.
By developing a velocity-free nonlinear controller based on
dual quaternion, the relative position and attitude of a rigid
body were globally asymptotic stable [7]. The subsequent
works based on dual quaternion become promising, but lack
the consideration of control performance. For faster conver-
gence performance, the finite-time controller was realized via
terminal sliding mode [8], [9]. However, the above control im-
plementation might suffer from singularity. Recently, increas-
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ing plants are equipped with redundant sets of actuators. With
respect to over-actuated systems, control allocation aims to
distribute the desired control command among the redundant
actuators. To achieve the optimum with certain constraints, the
fixed, single-gimbal, and double-gimbal thruster configurations
were considered in [10]. In [11], a power-optimal reaction
wheel motor torque distribution strategy was developed to
minimize the instantaneous electrical power requirement.

In this paper, a non-singular fast terminal sliding mode
(NFTSM) control strategy is developed to ensure finite-
time convergence of state errors. In addition, the unwinding
problem caused by the redundancy of dual quaternion is
addressed through a novel attitude error function. Furthermore,
optimization algorithm is adopted in control allocation to
alleviate the physical restrictions on actuation characteristics
and limitation of the maximal force based on null space. The
main contributions of this paper are twofold: 1) The coupling
phenomenon between translation and orientation motions is
systematically addressed by dual quaternion while ensuring
finite-time and unwinding-free convergence. 2) Control alloca-
tion is modelled as an optimal quadratic programming, which
extends the application of traditional pseudo-inverse method.

II. PRELIMINARIES

A. Dual Quaternion

In order to tackle 6-degree-of-freedom (DoF) tracking issue,
we introduce dual quaternion q̂ to describe the translational
and rotational motion simultaneously [12]: q̂ := q+ϵq′, where
q and q′ denote the real and dual part, respectively. ϵ is the
dual operator such that ϵ2 = 0, ϵ ̸= 0. Regarding â = a+ ϵa′



and b̂ = b+ϵb′, the following properties are presented for later
derivation:

â± b̂ := a± b+ ϵ(a′ ± b′), â∗ := a+ ϵ(−a′), (1)

â× b̂ := a× b+ ϵ(a× b′ + a′ × b), â⊙ b̂ := ab+ ϵa′b′, (2)

< â, b̂ >:= ab+ a′b′, [â|b̂] := aTb′ + a′Tb, (3)

â ◦ b̂ := ab− a′b′ + ϵ(ab′ + a′b+ a′ × b′), (4)

â ≤ b̂ i.f.f. a ≤ bAND a′ ≤ b′. (5)

With the definition of desired pose q̂d, the dual quaternion
error can be written as:

q̂e = q̂∗d ◦ q̂ = qe + ϵ
1

2
qe ◦ pe (6)

where qe and pe are the quaternion and position error, re-
spectively. Calculating the derivative of q̂e yields the relative
kinematics based on dual quaternion error:

˙̂qe =
1

2
q̂e ◦ ω̂e, ω̂e := ω̂ − q̂∗e ◦ ω̂d ◦ q̂e, (7)

in which ω̂ and ω̂d are the actual and desired velocity motor.
Therefore, taking the time derivative of ˙̂qe follows

M̂ ˙̂ωe = û+M̂ [ω̂e×(q̂∗e ◦ω̂d◦ q̂e)− q̂∗e ◦ ˙̂ωd◦ q̂e]−ω̂×M̂ω̂ (8)

where M̂ = m d
dϵI+ϵJ is the dual inertial matrix, m the mass,

J the inertia matrix, I the identity matrix with appropriate
dimension. û is dual force vector such that

û = ûc + ûd = uc + ud + ϵ(τc + τd), (9)

where uc and τc are the control force and torque. ud and τd
are the external force and torque disturbance.

III. CONTROL LAW DESIGN

Considering the dexterous 6-DoF trajectory tracking task,
the control objective can be stated as: for a class of mecha-
tronic systems (8), design a dual controller ûc = uc + ϵτc
to make relative error state variables converge in finite time
under all time and physically realizable initial conditions. That
is, ξ̂e := (qe)v + ϵ(q′e)v → [0, 0, 0]T + ϵ[0, 0, 0]T and ω̂e → 0̂,
where (·)v denotes the vector part of quaternion. For ease
of the controller design and analysis, the following lemma is
required.

Lemma1 [13]. It is assumed that there exists a continuously
differentiable function V : U → R, which satisfies the
following conditions: (1) V is a positive-definite function; (2)
There exist positive constants γ, α ∈ (0, 1), and an open
neighborhood including U0 ⊂ U , in which V̇ (x) + γV α(x)is
negative semi-definite (x is the system state). Then the equi-
librium of system trajectory is finite-time stable. Moreover, if
U0 = U = R, the system is globally finite-time stable and the
settling time T satisfies T ≤ V 1−α

0

γ(1−α) , in which V0 is the initial
value of V .

Considering the external disturbances and system uncertain-
ties, kinematics and dynamics are equivalent to:

˙̂
ξe = Θ̂(q̂e)ω̂e,

M̂0
˙̂ωe = ûc + M̂0[ω̂e × (q̂∗e ◦ ω̂d ◦ q̂e)− q̂∗e ◦ ˙̂ωd ◦ q̂e]

− ω̂ × M̂0ω̂ + Φ̂,

(10)

where Θ̂(q̂e) =
1
2 (η̂eI+ ξ̂

×
e ) with ˙̂ηe = −0.5η̂T

e ω̂e. (·)× is the
cross product matrix operator. M̂0 and ∆M̂ the nominal and
uncertain part of M̂ such that M̂ = M̂0 +∆M̂ and therefore
Φ̂ can be written as:

Φ̂ = −∆M̂ ˙̂ωe +∆M̂ [ω̂e × (q̂∗e ◦ ω̂d ◦ q̂e)− q̂∗e ◦ ˙̂ωd ◦ q̂e]
− ω̂ ×∆M̂ω̂ + ûd.

(11)
To realize the control objective, the terminal sliding mode

(TSM) [14] is modified as dual form:

Ŝi = Si + ϵS′
i =

˙̂
ξei + b̂i ⊙ sig(ξ̂ei)α, i = 1, 2, 3, (12)

where Ŝ = [Ŝ1, Ŝ2, Ŝ3]
T, sig(ξ̂ei)α = sig(ξei)α + ϵsig(ξ′ei)

α,
sig(·) = sgn(·) |·|α. sgn(·) is the sign function. α ∈ (0, 1).
b̂i = bi+ϵb

′
i with bi and b′i being positive constants. Based on

terminal sliding surface (12), the conventional TSM controller
can be then designed as the similar structure in [15]. Unfor-
tunately, the above algorithm implementation might not be
well posed since the negative index term containing may cause
singularity. In consideration of physical input saturation of the
practical actuators, the aforementioned controller outputs tend
to result in instability of the closed-loop system.

Inspired by [16], a variant of the non-singular fast terminal
sliding mode (NFTSM) in dual form is proposed to eliminate
the singularity phenomenon and improve the convergence rate

Ŝi =
˙̂
ξei + α̂1i ⊙ ξ̂ei + α̂2i ⊙ Ŝai, i = 1, 2, 3, (13)

where α̂1i = α1i + ϵα′
1i, α̂2i = α2i + ϵα′

2i. α1i, α′
1i, α2i,

and α′
2i are positive constants. The auxiliary terminal sliding

surface is designed as:

Sai =

{
sig(ξei)p1 , if S̄i = 0 or S̄i ̸= 0, |ξei| ≥ δ

r1ξei + r2sig(ξei)2, if S̄i ̸= 0, |ξei| < δ
(14)

S′
ai =

{
sig(ξ′ei)

p1 , if S̄′
i = 0 or S̄′

i ̸= 0, |ξ′ei| ≥ δ′

r′1ξ
′
ei + r′2sig(ξ′ei)

2, if S̄′
i ̸= 0, |ξ′ei| < δ′

(15)

ˆ̄Si = S̄i + ϵS̄′
i =

˙̂
ξei + α̂1i ⊙ ξ̂ei + α̂2i ⊙ sig(ξ̂ei)p1 (16)

where r1 = (2 − p1)δ
p1−1, r′1 = (2 − p1)δ

′p1−1, r2 = (p1 −
1)δp1−2, and r′2 = (2− p1)δ

′p1−2. δ and δ′ are small positive
constants. p1 ∈ (0.5, 1) is a positive constant. To achieve the
control objective, an NFTSM based control law is proposed
as:

ûc =− M̂0[ω̂e × (q̂∗e ◦ ω̂d ◦ q̂e)− q̂∗e ◦ ˙̂ωd ◦ q̂e] + ω̂ × M̂0ω̂

− K̂sgn(Ŝ)− (M̂0Θ̂(q̂e)
−1)[α̂1 ⊙ ˙̂

ξe +
˙̂
Θ(q̂e)ω̂e

+ α̂2 ⊙W (ξ̂e)⊙ Θ̂(q̂e)ω̂e + α̂3 ⊙ sig(Ŝ)p2 ]
(17)



where α̂3 = α3 + ϵα′
3 and K̂ = K + ϵK ′. α3, α′

3, K, K ′,
and p2 are positive constants. Diagonal matrix W (ξ̂e) is the
auxiliary switching term, whose i-th entry is designed as:

W (ξei) =

{
p1 |ξei|p1−1

, if S̄i = 0 or S̄i ̸= 0, |ξei| ≥ δ

r1 + 2r2 |ξei| , if S̄i ̸= 0, |ξei| < δ
(18)

W (ξ′ei) =

{
p1 |ξ′ei|

p1−1
, if S̄′

i = 0 or S̄′
i ̸= 0, |ξ′ei| ≥ δ′

r′1 + 2r′2 |ξ′ei| , if S̄′
i ̸= 0, |ξ′ei| < δ′

(19)
Theorem 1: Consider dual quaternion based system (8) with

external disturbances and system uncertainties that satisfy the
bounded assumptions, within control law (17), then the relative
dual quaternion and relative velocity motor are guaranteed to
converge in finite time.

Proof. Consider the following Lyapunov function candidate:
V1 = 1

2 [Ŝ|M̂0Ŝ]. Taking the time-derivative of V1 and substi-
tuting (10) into it yield

V̇1 =[Ŝ|M̂0
¨̂
ξe + M̂0α̂1 ⊙ ˙̂

ξe + M̂0α̂2 ⊙ ˙̂
Sa]

=
[
Ŝ|M̂0

˙̂
Θ(q̂e)ω̂e + M̂0α̂1 ⊙ ˙̂

ξe + M̂0α̂2 ⊙ ˙̂
Sa

+ M̂0Θ̂(q̂e)M̂
−1
0 (ûc + M̂0[ω̂e × (q̂∗e ◦ ω̂d ◦ q̂e)

− q̂∗e ◦ ˙̂ωd ◦ q̂e]− ω̂ × M̂0ω̂ + Φ̂)
]
.

(20)

Combining the controller (17) with (20) is given by

V̇1 ≤
[
Ŝ|M̂0α̂2 ⊙ ˙̂

Sa − M̂0Θ̂(q̂e)M̂
−1
0 K̂sgn(Ŝ)

− M̂0

(
α̂2 ⊙W (ξ̂e)⊙ Θ̂(q̂e)ω̂e + α̂3 ⊙ sig(Ŝ)p2

)
+ M̂0Θ̂(q̂e)M̂

−1
0 Φ̂

]
≤
[
Ŝ| − M̂0α̂3 ⊙ sig(Ŝ)p2

]
≤− µ

1

(
∥Si∥p2 + ∥S′

i∥
p2
)
≤ −µ1V

p2+1
2

1

(21)

where µ1 = µ
1

√
2/max{σmax(J),m}, σmax(·) is the maxi-

mum eigenvalue. Thus, based on Lemma 1, the state trajectory
of the resulting closed-loop system is guaranteed to reach the
sliding mode in finite time. Then, one can obtain

˙̂
ξei = −α̂1i ⊙ ξ̂ei − α̂2i ⊙ Ŝai, i = 1, 2, 3. (22)

Consider the following Lyapunov function: V2 = 1
2 <

ξ̂e|ξ̂e >. Then the derivation of V2 with respect to time follows

V̇2 =−
3∑

i=1

(
α1i |ξei|2 + α′

1i |ξ′ei|
2
+ α2i |ξei|p1+1

+ α′
2i |ξ′ei|

p1+1
)

≤ −µ2V
1+p1

2
2 .

(23)

Accordingly, based on Lemma 1, state variables are guar-
anteed to converge in finite time, namely ξ̂e → [0, 0, 0]T +
ϵ[0, 0, 0]T and ω̂e → 0̂.

Remark 1: The fast terminal sliding mode will switch into
asymptotic one when state variables approach zero in (17).
It is guaranteed that the state variables will converge within
finite settling time during the sliding phase if µ2 and p1 are

chosen properly. It is further noted that K and K ′ are control
gains, which are suggested to be large enough for the robust
stability.

Remark 2: The traditional TSM controller tends to cause
singularity because of the negative index term with the state
variables converging to zero. Whereas, the proposed control
law is non-singular due to the following facts:

1) ˆ̄S ̸= 0̂. State variables are not small enough to cause
singularity. Thus, the control law (17) is obviously non-
singular.

2) ˆ̄S = 0̂. Then the control law can be re-written as

ûc =− M̂0[ω̂e × (q̂∗e ◦ ω̂d ◦ q̂e)− q̂∗e ◦ ˙̂ωd ◦ q̂e] + ω̂ × M̂0ω̂

− K̂sgn(Ŝ)− (M̂0Θ̂(q̂e)
−1)[α̂1 ⊙ ˙̂

ξe +
˙̂
Θ(q̂e)ω̂e

+ p1α̂2 ⊙ sig(ξ̂e)2p1−1 + α̂3 ⊙ sig(Ŝ)p2 ].
(24)

Therefore, the singularity will not occur in the case of p1 ∈
(0.5, 1).

Remark 3: Double value of quaternions makes the attitude
slewing unwinding, which descends the effectiveness and
global stability of proposed controller. To eliminate the un-
winding problem, two anti-unwinding attitude error functions
were presented in [17]. However, discontinuity points exist if
ψ1 = 2(1 − |q0|) is adopted, and the respond rate declines
depends on the attitude error if ψ1 = 2(1 − q20). For global
controller design, a novel attitude error function is proposed
in this paper as follows:

ϕ = 2

(
λ1 + λ2q

2
e0 − exp

(
q2e0√
q2e0 + µ

))
, (25)

er =

(
exp

(
q2e0√
q2e0 + µ

)
qe0(|qe0|+ 2µ)

(|qe0|+ µ)2

)
(qe)v. (26)

where λ1, λ2, and µ are positive constants. qe0 is the real part
of qe.

Remark 4: The proposed attitude error vector is obviously
continuous and bounded with θ ∈ [−π, π], which is shown
in Fig. 1. The proposed anti-unwinding method guarantees
response rate of the attitude error vector and continuity of
the attitude error function simultaneously. Thus, the anti-
unwinding NFTSM controller can be easily obtained by re-
placing the original attitude error function and vector with
(25)-(26). It can be further derived that anti-unwinding state
variable is updated as ξ̂∗e = er + ϵ(er ◦ pe). Therefore, the
sliding mode structure and controller based on new state
variable are unwinding-free.

IV. ACTUATION ALLOCATION

To improve reliability and safety, redundant actuators are
often equipped with modern mechanical systems to provide
corresponding forces and torques. Inspired by [18], consider
the following constraint condition in dual framework

ûc = D̂ ⊙ ûa (27)



where ûa denotes the control vector applied in redundant
actuators, and D̂ is control allocation matrix. Note that if there
is no uncertainty due to the actuator faults, the pseudo inverse
(PI) control allocation can be realized as follows

ûa = D̂T ⊙ (D̂ ⊙ D̂T)−1 ⊙ ûc. (28)

A. Null Space Based Pseudo Inverse (NSPI) Control Alloca-
tion

The linear mapping between ûa and ûc is presented through
the PI control allocation. However, the solution given by (28)
may not satisfy the practical thruster range with the limitation
of the thruster configuration [19]. Thus, the optimal solution
can be improved by employing the null space of the control
allocation matrix

ûa = D̂T ⊙ (D̂ ⊙ D̂T)−1 ⊙ ûc + ζ̂ (29)

where D̂ ⊙ ζ̂ = 0̂, namely Null(D̂) = {ζ̂|D̂ ⊙ ζ̂ = 0̂}. Thus,
the thruster output can be adjusted to the available range with
the proper choice of ζ̂. Furthermore, ζ̂ can be expressed as:
ζ̂ = χ̂⊙ Γ̂, where χ̂ = [χ̂1, χ̂2, ..., χ̂n−6] is the basic solution
of null space, and Γ̂ = [Γ̂1, Γ̂2, ..., Γ̂n−6]

T is the undetermined
coefficient. Thus, the control allocation can be described by
an optimization problem

min
ζ̂i

J =

n∑
i=1

< ζ̂i|ζ̂i >=< ĉ1|Γ̂ >

s.t. Ĝ1 ⊙ κ̂1 ≤ Q̂1

(30)

where ĉ1 = [χ̂1⊙χ̂1, χ̂2⊙χ̂2, ..., χ̂n−6⊙χ̂n−6], Ĝ1 = [χ̂,−χ̂],
κ̂1 = [Γ̂, Γ̂], Q̂1 = [ûam− D̂T ⊙ (D̂⊙ D̂T)−1⊙ ûc, D̂T ⊙ (D̂⊙
D̂T)−1 ⊙ ûc], ûam is the maximum output capability of the
actuators.

B. Simplex Method Based Improved Pseudo Inverse Control
Allocation

The control allocation problem (30) can be rewritten as:

min
ζ̂i

J =

n∑
i=1

< ζ̂i|ζ̂i >=< ĉ2|κ̂2 >

s.t. Ĝ2 ⊙ κ̂2 = Q̂2

(31)

where Ĝ2 = [Ĝ1, Î], ĉ2 = [ĉ1, 0̂], κ̂2 = [κ̂1, κ̂s]
T, Q̂2 =

[Q̂1, 0̂], and κ̂s is the slack variable.
Theorem 2: With regard to non-singular dual sub-square

matrix Ĝ2B , the programming problem (31) is equivalent to:

min J = ĉ2B ⊙ Ĝ−1
2B ⊙ Q̂2

− (ĉ2B ⊙ Ĝ−1
2B ⊙ Ĝ2N − ĉ2N )⊙ κ̂2N

s.t. κ̂2B + Ĝ−1
2B ⊙ Ĝ2N ⊙ κ̂2N = Ĝ−1

2B ⊙ Q̂2

(32)

where κ̂2B and κ̂2N are the basic variable and the non-base
variable of κ̂2, respectively. ĉ2B and ĉ2N are the corresponding
parts with the basic and non-base aspect of ĉ2, respectively.
Ĝ2N is the sub-matrix of Ĝ2 except Ĝ2B .

Proof. With the block matrices defined above, the constraint
condition of (31) can be written as:

[Ĝ2B , Ĝ2N ][κ̂2B , κ̂2N ]T = Q̂2 (33)

where κ̂2B = Ĝ−1
2B ⊙ (Q̂2 − Ĝ2N ⊙ κ̂2N ). Substituting κ̂2B

into (32), one can obtain

J =< ĉ2B |κ̂2B > + < ĉ2N |κ̂2N >

=< ĉ2B |Ĝ−1
2B ⊙ (Q̂2 − Ĝ2N ⊙ κ̂2N ) > + < ĉ2N |κ̂2N >

=< ĉ2B |Ĝ−1
2B ⊙ Q̂2 > − < λ̂N |κ̂2N >

(34)
where λ̂N = ĉ2B⊙Ĝ−1

2B⊙Ĝ2N − ĉ2N is the checking number.
Remark 5: If all checking numbers of the non-base variables

are less than or equal to zero, basic solution corresponding
to Ĝ2B will be the optimal solution of programming prob-
lem (31). If the checking number is beyond zero and the
corresponding Q̂2 ≤ 0, there exists no optimal solution of
(31). If some checking numbers and the corresponding Q̂2 are
both larger than zero, the non-base variable corresponding to
the positive checking number will become the basic variable.
Continuous circulation is implemented until the first condition
is satisfied, and one can obtain the final optimal solution of
programming problem (31).
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Fig. 1. Variation curve of ϕ and ∥er∥ against θ (25)-(26).

V. SIMULATION RESULTS

To verify the effectiveness of the proposed NFTSM con-
troller (17), simulations have been carried out using the rigid
spacecraft system governed by (8). A TSM controller [15] is
also simulated for comparison. It is noted that the presence of
the sign function in (17) will result in chattering phenomenon.
To solve this problem, the hyperbolic tangent function is used
as substitution of the sign function.

It is assumed that the leader spacecraft is in circular
orbit with 42240 km. The control objective of the follower
spacecraft is keeping the same attitude and distance with the
leader. The initial relative attitude and position of the follower
spacecraft are chosen as ρe(0) = [−20,−10,−10]Tm,
qe(0) = [0.6245, 0.5, 0.5196, 0.3]T, ρed = [0, 0, 0]Tm,
qed = [1, 0, 0, 0]T, ωe(0) = [0, 0, 0]Trad/s. The external
disturbance force and torque are ud = [0.06 +



0.03 sin(0.6t), 0.05 + 0.04 sin(0.9t), 0.04 + 0.01 sin(0.5t)]TN
and τd = [0.00002 + 0.0005 sin(0.8t), 0.00003 +
0.0003 sin(0.5t), 0.00001 + 0.0007 sin(0.3t)]TNm. The
nominal mass and inertia are m0 = 100kg and
J0 = diag{18, 18, 24}kgm2 while the actual ones are
m = 95kg and J = diag{17, 17, 22}kgm2. The control
parameters are set as: α = 0.67, p1 = 0.6, p2 = 0.67,
δ̂ = 0.05+ ϵ0.001, K̂ = diag{20, 20, 20}+ ϵdiag{20, 20, 20},
α̂1 = α̂2 = b̂ = diag{0.05, 0.05, 0.05} + ϵdiag{0.1, 0.1, 0.1},
α̂3 = diag{2, 2, 2}+ ϵdiag{2, 2, 2}.
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Fig. 2. Time response of ρe.
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Figs. 2 and 3 represent the time responses of relative
position and attitude errors, where the relative position error
driven by TSM controller converges to within 78s. In contract,
the proposed controller performs well because convergence
rate and accuracy are both considered in the sliding mode
and controller design. Thus, the relative position error driven
by the proposed controller converges within 22s. In Fig. 3,
the relative attitude in proposed controller converges faster
than that in TSM. Note that the TSM controller leads to
more transient oscillations in attitude and angular velocity
responses, as shown in Figs. 3 and 4. It is noted that singularity
phenomenon is eliminated in the proposed controller.

Based on the proposed controller, the following actuator
configuration (see Fig. 5) is employed to test the proposed
NSPI control allocation scheme using the improved sim-
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Fig. 4. Time response of ωe.

plex method. It is noted that #01-#16 denote corresponding
thrusters in Fig. 5.
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Fig. 5. Conventional thruster configuration (CTC).

Figs. 6-9 show the practical outputs of each actuator in
CTC. As observed, pair-mounted actuators can provide sym-
metrical thrusts. The feasible solution can be found in pseudo
inverse method beyond thrust limitation 5N in CTC, where the
negative values can also be offered by the thruster from the
other direction. Compared with the conventional PI method,
the improved simplex method can achieve control allocation
requirements successfully despite control force limitations.
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Fig. 6. Control force of thrusters #01-#04.
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VI. CONCLUSION

In this paper, the finite-time controller design and allocation
problem of mechanical systems are studied. Based on the
relative integrated dynamics, a fast terminal sliding mode is
proposed using switching strategy. In addition, considering
external disturbances and system uncertainties, a non-singular
finite-time control law is proposed without the unwinding
problem. Furthermore, disadvantages of traditional pseudo in-
verse method are eliminated by the improved simplex method,
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Fig. 9. Control force of thrusters #13-#16.

which ensures that all the practical actuator outputs are subject
to the limitation. Finally, numerical simulations to evaluate
the overall performances for non-singularity, fast tracking,
high accuracy, uncertainty resistance, finite-time stability have
verified the effectiveness of the proposed method.
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