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Abstract: The use of synthetic data sets are becoming ever more prevalent,
as regulations such as the General Data Protection Regulation (GDPR), which
place greater demands on the protection of individuals’ personal data, are coupled
with the conflicting demand to make more data available to researchers. This
paper discusses the approach of synthesizing categorical data at the aggregated
(contingency table) level using a saturated count model, which adds noise - and
hence protection - to cell counts. The paper also discusses how distributional
properties of synthesis models are intrinsic to generating synthetic data with
suitable risk and utility profiles.
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1 Introduction

As organisations have both a legal and ethical obligation to protect individ-
uals’ personal data, data sets pertaining to individuals cannot be released
directly to researchers. Thus prior to release, statistical disclosure control
methods, such as the use of synthetic data sets, need to be applied.
Synthetic data sets (Rubin 1993, Little 1993), which are generated by sim-
ulating from a model fit to the original data, can be released to researchers
in place of the original data. The notion is that, as the synthetic data sets
are inherently artificial, individuals’ privacy should be protected; while, as
synthetic values are based on original values, researchers’ ability to ob-
tain valid inferences should remain undiminished. The method relies on
the synthesizer – he or she responsible for generating the synthetic data –
accurately modelling the data’s underlying distribution.
The theory of synthetic data evolved from the multiple imputation of miss-
ing data theory (Rubin, 1987). The synthesizer either imputes values for in-
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dividuals not included in the original data (resulting in fully synthetic data;
Raghunathan 2003) or generates replacement values for those individuals
who were included in the original data (resulting in partially synthetic data;
Reiter 2003). As with imputation, it is typical to release multiple (m > 1)
data sets to allow analysts – through combining rules; see Drechsler (2011)
- to average point estimates and properly account for the extra uncertainty
arising from synthesis when calculating estimates’ variances.
When synthesizing a data set comprising p variables Y1, Y2, . . . , Yp, the
underlying distribution of the data can be captured through a product of
conditional models, that is,

f(Y1, Y2, . . . , Yp | X) = f1(Y1 | X)

p∏
j=2

fj(Yj | Yj−1 . . . , Y2, Y1, X),

where X denotes any other data available to the synthesizer, such as other
relevant data sets, census tables or administrative data.
The synthesis models for Y1, Y2, . . . , Yp can take a variety of forms - para-
metric or non-parametric - ranging from generalised linear models (GLMs),
to tree-based methods such as CART, to complex machine learning algo-
rithms. The aim of all these methods, though, is the same: to model the
underlying distribution governing the original data.
A categorical data set comprises categorical variables only. Its discrete na-
ture allows the data to be aggregated into a contingency table, such that
cell counts give the frequencies with which the various combination of cate-
gories (cells) are observed; a given set of categories may not be observed, in
which case the cell count would be zero. Synthesis can take place by fitting
a count model to this table, which is more convenient as the response is
univariate rather than multivariate.

2 The motivation for using saturated models

The purpose of synthesis models, then, is for neither inference nor predic-
tion, but to reproduce the structure of the original data. Therefore, unlike
when estimating a population parameter, modelling assumptions are not
intrinsic to obtaining meaningful estimates and standard errors. For this
reason, Jackson et al. (2022) proposed the use of saturated count models
for synthesis.
Let f1, f2, . . . , fK denote the observed counts in the original data’s contin-
gency table (the original counts). Then the corresponding counts in the syn-
thetic data’s contingency table (the synthetic counts) f syn

1 , f syn
2 , . . . , f syn

K

are generated by simulating from:

f syn
i ∼ Xi i = 1, 2, . . . ,K (1)

where Xi is a count distribution with mean fi. Section 3 considers the best
distribution to use for Xi.
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The advantage of using a saturated count model is three-fold. Firstly, satu-
rated models require no model selection - which in categorical data involves
deciding which interactions to include in the model - as all interactions are
included. This ensures all relationships are preserved in the resulting syn-
thetic data, thus avoiding the scenario where a researcher’s analysis subse-
quently performed on the synthetic data is more complex than - and hence
unsupported by - the synthesis model (Meng, 1994).
Secondly, the time taken to undertake the synthesis, computationally, is
substantially reduced because the model-fitting time is null: the model’s
fitted values are just the original counts.
Thirdly, synthetic counts are unbiased with expectations equal to the orig-
inal counts. In turn, this gives the synthesizer an insight a priori (prior to
synthesis) into the likely risk and utility profiles of the synthetic data. To
illustrate, original counts of one are usually those at greatest risk of dis-
closure in a categorical data set because they relate to statistically unique
individuals. Therefore, a suitable risk metric for synthetic data is τ3(1)
(Jackson et al. 2022): the probability that an original count of one is syn-
thesized to one, which relates to a unique in the original data remaining
unique in the synthetic data. Now, this unbiasedness property means that
if, say, the Poisson is used for synthesis - that is, if the Poisson is chosen
as X in (1) - then τ3(1) is fixed and equal to exp(-1)=0.37; those familiar
with R will recognize this as the quantity dpois(1,1).
This third advantage opens up a new approach in relation to generating
synthetic data sets. As synthetic data generation is typically an iterative
process, involving extensive post-synthesis evaluations to establish risk and
utility, gaining an insight into properties of the synthetic data a priori
improves the efficiency of the synthesis and invites a more formal approach.

3 The use of multi-parameter count distributions

The most obvious choice of distribution for modelling categorical data is
the Poisson. Besides, models often assume that individuals’ observations
are independent. While for data sets in microdata format this translates
into assuming the rows of the data set are independent, for a contingency
table it translates into assuming cell counts are Poisson distributed.
The problem with using the Poisson, though, is that each synthetic count’s
variance is always equal to the mean (the original count). Therefore, the
variance of each synthetic count is fixed, and this uncertainty may be in-
sufficient to mask - and hence protect - the underlying original count.
There are benefits, therefore, to using more flexible count distributions in-
stead of the Poisson. The flexibility of the GAMLSS (Generalized Additive
Models for Location, Scale and Shape) framework developed by Rigby and
Stasinopoulos (2005) is particularly useful here. For more about the distri-
butions mentioned henceforth and their parameterizations, see Rigby et al.
(2019), the book written by the creators of the GAMLSS approach.
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A two-parameter count distribution such as the negative binomial (NBI)
provides the synthesizer with control over the scale (the variance) in addi-
tion to the location (the mean), thereby allowing more uncertainty to be
applied to original counts. The metric τ3(1), for example, then depends on
σ the NBI’s shape parameter. The intention is that the synthesizer treats σ
as a tuning parameter in the synthesis; after all, as the model is saturated,
σ could not be estimated anyway through maximum likelihood.
However, increasing the variance of the NBI through increasing σ increases
the heaviness of the tails, resulting in a substantial probability point mass
at zero. This produces synthetic data with an inflated number of zeros,
which is exacerbated by the fact that, as saturated models are used, zero
counts in the original data are not synthesized to non-zero counts.
This calls for further flexibility and motivates the use of three-parameter
count distributions, which allow the synthesizer to control the shape in
addition to the location and scale. One such example is the Delaporte
distribution. For a given mean and variance, the shape of the Delaporte
can be adjusted to reduce the heaviness of the tails, resulting in fewer
zero synthetic counts as well as fewer unnecessarily large synthetic counts.
This can be seen in Figure 1, which gives three Delaporte distributions,
with the same means and variances but different shapes; for example, the
probability of obtaining a zero is much greater in the distribution given by
the red (solid) line than in the other two.
The problem in general, though, with distributions that arise through Pois-
son mixtures (such as the NBI and Delaporte), is that their variances are
increasing functions of the mean, hence relatively more noise is applied
to larger counts than smaller counts. However, as larger counts tend to be
lower risk than smaller counts, it is preferable if the variance is a decreasing
function of the mean, so that larger counts are perturbed less.
Rather than using a standard count distribution, an alternative it to use
discretization to produce a more bespoke count distribution, by discretizing
a continuous distribution defined on the interval (0,∞) - an “underused”
method according to Rigby et al. (2019). A candidate for discretization is
the gamma family (GAF) distribution, which has three-parameters µ, σ and
ν, and where ν controls the variance-mean relationship. The mean is µ and
the variance σ2µν ; thus, when ν < 0, the variance is a decreasing function
of the mean, and larger counts are perturbed less than smaller counts -
the desired behaviour. Figure 2 displays the variance-mean relationship
for three GAF distributions, which is one of exponential decay, where ν
controls the rate at which the variance falls away.

4 Conclusion

To briefly conclude, while saturated models are uninformative from an in-
ferential perspective and too rigid from a predictive perspective, they have
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FIGURE 1. The probability mass functions of three Delaporte distributions with
the same mean and variance, 10 and 510, respectively. The flexibility afforded
by a three-parameter count distribution allows the shape of the distribution to
be adjusted. Incidentally, the red (solid) line is an NBI distribution, which is a
special case of the Delaporte.
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FIGURE 2. The variance-mean relationship for three GAF distributions with
different ν values (with σ = 1). For comparison, the variance-mean relationship
for three NBI distributions are placed alongside (with different σ values).
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a practical use in data synthesis, where it suffices to obtain a noisy version
of the original data. Coupled with the use of a flexible multi-parameter
count distribution - for which it can be equally difficult to justify the use
of in practice - saturated models allow properties of the synthetic data
to be derived analytically a priori, thus facilitating a more efficient and
transparent synthesis.
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