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Abstract 

 

 

The Niger River Delta provides numerous ecosystem services (ES) to local 

populations and holds a wealth of biodiversity. Nevertheless, they are under threat 

of degradation and loss mainly due to the population increase and oil and gas 

extraction activities. Monitoring mangrove vegetation change and understanding the 

dynamics related with these changes is crucial for the short and longer-term 

sustainability of the Niger Delta Region (NDR) and its mangrove forests. 

Over the last two decades, open access remote sensing data, together with 

technological and algorithmic advancements, have provided the ability to monitor 

land cover over large areas through space and time. However, the analysis of land 

cover dynamics over the NDR using freely available optical remote sensing data, 

such as Landsat, remains challenging due to the gaps in the archive associated with 

the West African region and the issue of cloud contamination over the wet tropics. 

This thesis applies state-art-of-the-art remote sensing techniques and integrated 

modelling approaches to provide reliable information relating to monitoring and 

modelling of land cover change in the NDR, focusing on its mangrove forests.  

Spectral-temporal metrics from all available Landsat images were used to 

accurately map land cover in three time points, using a Random Forests machine 

learning classification model. The performance of the classification was tested when 

L-band radar data are added to the Landsat-based metrics. Results showed that 

Landsat based metrics are sufficient in mapping land cover over the study region 

with high overall classification accuracies over the three time points (1988, 2000, 

and 2013) and degraded mangroves were accurately mapped for the first time. Two 

additional assessments: a change intensity analysis for the entire NDR and, 

fragmentation analysis focusing on mangrove land cover classes were carried out 

for the first time ever.  

The drivers of mangrove degradation were assessed using a Multi-layer Perceptron, 

Artificial Neutral Networks (MLP-ANN) algorithm. The results reveal that built-up 

infrastructure variables were the most important drivers of mangrove degradation 

between 1988 and 2000, whilst oil and gas infrastructure variables were the most 

important drivers between 2000 and 2013. Results also show that population density 

was the least important driver of mangrove degradation over the two study periods.  
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Future land cover changes and mangrove degradation were predicted under two 

business-as-usual scenarios in the short (2026) and longer-term (2038) using a 

Multi-Layer Perceptron neutral network and Markov chain (MLP-ANN+MC) model. 

The model’s accuracy was assessed using the highly-accurate land cover 

classification of 2013. Results show that that mangrove forest and woodlands 

(lowland and freshwater forests) are demonstrating a net loss, whilst the built-up 

areas and agriculture are indicating a net increase in both the short and longer-term 

scenarios. However, degraded mangroves are demonstrating a net increase in the 

short-term scenario. Interestingly, in the longer-term scenario, more than double the 

net increase of mangroves degraded in the short-term scenario, are predicted to 

recover to their healthier state.  

The thesis results could provide useful information for planning conservation 

measures for sustainable mangrove forest management of the entire NDR. 
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Chapter 1 

 

Introduction  

 

1.1 The Niger Delta region (NDR): important but in danger 

  

The Niger River Delta is the largest river delta in Africa (Goudie, 2005) and 

home to a rapidly increasing human population. It sits directly on the Gulf of Guinea 

on the Atlantic Ocean (Figure 1.1). It is endowed with Africa’s most extensive 

mangrove forest and the fifth largest in the world after Indonesia, Brazil, Australia 

and Mexico, located on the East Atlantic West African coast (Spalding, 2010; 

Bunting et al., 2018).  

 

 

 

Figure 1.1: (a) The Niger Delta Region (comprising of the states of Abia, Akwa 

Ibom, Anambra, Bayelsa, Delta, Imo, and Rivers), and its location within (b) West 

Africa and (c) Nigeria 
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Mangroves of the Niger Delta Region (NDR) are highly recognised for their 

great economic and ecological value despite their low species and diversity (Feka 

and Ajonina, 2011), providing ecosystem service (ES) such as fisheries, carbon 

storage and sequestration, fuelwood, construction material, flood protection, 

medicinal products, recreation, and tourism (Zabbey et al., 2010; Okonkwo et al., 

2015; Numbere, 2014). They also hold an important spiritual value to local 

communities (James et al., 2013). These ES are categorised into provisioning, 

regulating, supporting to cultural services (MEA, 2005). About 62% of inhabitants in 

the NDR depend on mangroves for fuelwood (Numbere, 2019) and more than 70% 

of fish catch in the region are mangrove related which are important source of 

income and protein nutrition (Udoh, 2016).  

Mangroves are, therefore, indisputably important resource crucial for 

livelihood sustenance of local inhabitants. However, they are under threat of 

degradation from anthropogenic sources mainly due to oil and gas exploration 

activities (Figure 1.3a) and human population pressures (Kadafa, 2012; Onyena 

and Sam, 2020; Nwobi et al., 2020). The mangrove forest of the NDR also suffers 

from degradation from climatic change impacts as temperature and rainfall 

regimes are altered (Uyigue and Agho, 2007). Climate change related 

disturbances such as sea level rise, extreme floods, storm surges, erosion, 

subsidence, and salinity intrusion are also projected to increase (Szabo et al., 

2016). Furthermore, tropical coastal populations are estimated to increase 

significantly in the coming decades (Sale et al., 2014). Both of these changes are 

expected to further aggravate the degradation process of mangrove forest of the 

NDR. Mangroves are in fact projected to disappear by the end of the century given 

present disturbance rates (FAO, 2007; Duke et al., 2007a).  

Degradation of mangrove ecosystem is most noticeable when healthy or an 

ecological condition that represents this ecosystem’s baseline state (Figure 1.2) 

has changed in their composition (species assemblage and abundance), structure 

(biomass and canopy cover), and functioning, such that it is unable to provide a 

number of ES and support biodiversity as the healthy mangroves (Thomas et al., 

2017; Begam et al., 2020).  

 Given the benefits provided by mangrove forest of the Niger Delta River, and 

the perceived degradation from anthropogenic and environmental pressures, it is 

essential to fully understand the dynamics of this vital ecosystem. Currently, there 

is lack of reliable information on the extent and condition of mangrove forest in the 

NDR which is essential for short and long-term management. 
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Figure 1.2. Healthy mangroves in the coastal area of the NDR (EnvironNews 

Nigeria, 2018). 
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Figure 1.3. Mangroves degradation in the NDR: (a) degradation due to activities of 

oil and gas (oil spills; CEHRD, 2019); (b) Highway road construction induced 

degradation (Amadi, 2020); (c) degradation through fuel wood (Chima and Larinde,  

2016); (d) degradation to reclaim land for residential settlements (Chima and 

Larinde,  2016).  
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1.2 Earth Observation for addressing the NDR crisis 

 

Two main reasons have been identified limiting mangrove monitoring studies 

in the NDR. One is the difficulty in accessing mangrove environments due to their 

complex root systems and regular inundation of tide along the coast, the average 

tidal range being 1.5m in the NDR (James et al., 2007). The other, is security 

volatility in the region resulting from disputes amongst local communities, private oil 

companies, and the government, as well as activities of militants and oil bunkering.   

Earth observation (EO) technologies are therefore the only viable means of 

assessing land condition and change over such large and inaccessible area. 

EO-based monitoring studies have commonly looked at land cover and land cover 

change and have employed multi-temporal Landsat data, owing to its history of long 

and consistent data archive for ~ 50 years. Nevertheless, assessing land cover 

change over certain parts of the world (e.g., western and eastern Africa) are 

challenging due to significant data gaps in Landsat archive and problems of cloud 

contamination, especially over wet tropics (Martinuzzi et al., 2007; Colby and 

Keating, 2001; Okoro et al., 2016; Kuenzer et al., 2014a; Kirui et al., 2013). Previous, 

“traditional” approaches have used image mosaics or single images from single-

sensor data to map two (before and after) dates and assess change from these 

(James et al., 2007; Ayanlade and Drake, 2015; Mena, 2008; Gao and Liu, 2010; 

Obiefuna et al., 2013; Kuenzer et al., 2014a). However, this approach is unable to 

provide accurate maps of land cover change (Martinuzzi et al., 2007; Colby and 

Keating, 2001; Okoro et al., 2016). 

Mangrove restoration projects in the NDR have mostly failed due to lack of 

appropriate and reliable information to inform rehabilitation programs (Isebor, 2001; 

Abere and  Ekeke, 2011; Zabbey and Tanee, 2016).  Unfortunately, there is only a 

limited number of studies mapping change in mangroves in the NDR (Ayanlade and 

Drake, 2016; James et al., 2007; Nwobi et al., 2020). Even fewer studies have 

attempted to monitor the extent of degradation (Salami et al., 2010;  Kuenzer et al., 

2014a). The successful study by Salami et al. (2010) covered a small section of the 

western NDR, while the study by Kuenzer et al., (2014a) reported very low 

accuracies in their attempt to map the extent of degraded mangroves for the entire 

NDR.  

Over the last decade, open-access data availability, together with 

technological and algorithmic advancements have given birth to new approaches to 

multi-temporal assessment of land cover e.g., image compositing (Frantz, 2019), 
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and spectral-temporal metrics (Griffiths et al., 2013; Mueller et al., 2015). The 

combination of optical and radar data has also been hailed as an important 

advancement in regional-scale land cover mapping as certain land cover types, 

such as mangroves and savannah woody vegetation, are mapped successfully 

using radar backscatter data, taking advantage of their ability to ‘see’ through 

cloud (Nwobi et al., 2020; Hansen et al., 2011; Verhulp and Denner, 2010; 

Basuki et al., 2013; Nascimento et al., 2013; Kamal et al., 2015; Wicaksono, 

2017; Bunting et al., 2018).  

 

1.3 Mangrove degradation and its effects on fisheries  

 

Mangroves reduces its biomass and tree cover when degraded, and results 

to decline in ecosystem services provision and biodiversity loss (Thomas et al., 

2017). One of the effects of degradation on mangroves is the decline in fish 

production (Primavera, 2005; Manson et al., 2005a) (Figure 3a-d & 1.4). Many 

studies have reported that the reduction in mangrove area and quality has led to 

declining fish catch and depletion of species composition of some commercial fishes 

and crustaceans in the NDR (Zabbey et al., 2010; Numbere, 2014; Okonkwo et al., 

2015; Adeyemo et al., 2009; Onyena and Sam, 2020; Osuji et al., 2010; Moffat and 

Linden, 1995; Ukoli, 2005). However, this has not been assessed due to inadequate 

fisheries data for the region.  There is therefore a need to assess and understand 

the shifts in the functioning of mangrove ecosystems to enable appropriate 

sustainable management of the fisheries sector. 
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Figure 1.4. Fishing landing site in mangroves impacted by oil spills in the NDR 

(Onyena and Sam, 2020). 

 

1.4 Aims and Objectives 

 

The study aims to assess mangrove degradation and current land cover dynamics 

in the NDR and model mangrove evolution for the same region. It will do so by 

achieving the following objectives: 

 

 Map land cover and quantify the extent of degradation of mangroves in NDR 

between 1988 and 2013; 

 Identify the drivers of mangrove degradation using a quantitative modelling 

approach over the same period; 

 Predict land cover change and analyse mangrove degradation under 

business-as-usual-scenarios in the short (2026) and long term (2038).  
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1.5 Research Questions  

 

The following research questions contribute towards achieving the aims and 

objectives: 

 Can land cover and extent of mangrove degradation in the NDR be reliably 

mapped?  

 How has land cover and the extent of degradation of mangroves changed in 

in the NDR between 1988 and 2013?  

 What are the drivers of mangrove degradation and how do they interact over  

the same period?  

 Can land cover change and mangrove degradation be reliably modelled in 

the NDR?, and how would areal extent of degraded mangroves change in 

the short (2026) and long term (2038) in the future? 

 

1.6 Thesis Structure  

 

The thesis is structured following an alternative format, comprising of seven 

(6) chapters, with three (3) of the chapters (3-5), focusing on addressing specific 

objectives.  

Chapter One introduces the research, describing why the research is being 

undertaken. It also states important issues related with the rationale, around 

different themes, and in various spatial scales including, global, regional, national, 

and local. Furthermore, the aims and objectives of the research is outlined here. 

Chapter 2 reviews themes surrounding the thesis, including the importance 

of tropical deltas, importance of mangroves with particular focus to fisheries ES, 

mangrove monitoring challenges and gaps and so on.  

Chapter 3 is a methodology study of land cover dynamics and mangrove 

degradation in the Niger Delta region (Nababa et al., 2020). The main land cover 

types were accurately mapped over the NDR using spectral-temporal metrics from 

all available Landsat data in three time points and the performance of classification 

is tested when L-band radar data is included to Landsat-based metrics.  Additionally, 

two additional analyses focusing on mangroves namely: change intensity analysis 

and fragmentation analysis were carried out.  
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Chapter 4 builds on the accurate land cover mapping of the “mangrove class” 

in Chapter 3 into a study aimed at examining the causes of mangrove degradation 

in the NDR using spatial driver datasets. Assessing the drivers of mangrove 

degradation is important for development of appropriate policies and measures for 

the sustainable management of mangrove ecosystems. Using the mangrove 

information derived from Chapter 3 and spatial drivers of mangrove degradation, a 

model was developed using a Multi-layer Perceptron Artificial Neutral Network 

(MLP-ANN) algorithms in-order to assess the interaction between land cover 

change and the drivers over two time periods in the NDR.  

Chapter 5 extends from results produced in Chapter 3 into a modelling study. 

It presents a land cover modelling approach, representing spatial regional drivers 

applied in the NDR. The land cover model incorporates six sub-models developed 

based on information derived from land cover maps in Chapter 3 and their peculiar 

spatial driving forces. Multi-layer Perceptron Artificial Neutral Network and Markov 

Chain (MLP-ANN +MC) methods were applied to predict future land cover change 

and mangrove degradation under two business-as-usual scenarios for the short 

(2026) and long term (2038). The model’s accuracy was assessed using predicted 

land cover map of 2013.  

Chapter 6 presents the conclusions for the thesis. Here the thesis is 

concluded by summarising the main findings and discussing policy implication in 

relation to mangrove and fisheries management. The thesis contribution to 

knowledge in regards the approaches used to address data gaps and accuracy 

issues in Sub-Saharan African regions with similar data problems are highlighted. 

Also, limitations and recommendation and future research directions are presented. 
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Chapter 2 

 

Literature review 

 

2.1 Importance of tropical deltas 

 

Deltas are natural dynamic landforms uniquely formed at the interface  land-

ocean as a result of fluvial and marine processes. Deltas forms diverse and rich 

ecosystems such as mangroves, salt marshes and seagrass (Loucks, 2019), and 

some contain hydrocarbon deposits. They are economic and environmental hot 

spots (Foufoula-Georgiou, 2013). They take up less than 1% of the Earth’s surface 

but are home to more than ca. 7% of the global population—a density more than 10 

times the average (Ericson et al., 2006). Deltas are able to support such high human 

populations thanks to the high productivity, biodiversity, and the ability to use the 

waterways for transport. They are key contributors to the production of agricultural 

goods, fisheries and are, therefore, highly important in the fight against global food 

insecurity (Szabo et al., 2015; Lauria et al., 2018). They can serve as raw materials 

such sand and gravel for construction purposes. They can be utilised in construction 

of water systems such as dams to meet domestic and industrial demands (Loucks, 

2019). Deltas can also enhance human development related to tourism and 

recreation and plant-based medicine. Studies have reported that the annual worth 

of ecosystem services (ES) provided by major deltas globally to be in trillions of US 

dollars, thanks to its physical structure and high biodiversity (Loucks, 2019) (Figure 

2.1). 

Tropical coastal deltas are some of the most populated areas of the world, 

yet their populations are estimated to increase by 45% in the coming decades, and 

particularly,  in developing countries (McGranahan et al., 2007; Neumann et al., 

2015; Sale et al., 2014).They are characterised by some of the largest socio-

economic activities around the world, including urbanization, agriculture and 

industrial development (Chu, 2010; Loucks, 2019).They contain the major river 

deltas in the world and have substantial coverage of critically important but 

vulnerable ecosystems such as mangrove forests. Tropical deltas particularly, are 
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significant hot spots for biodiversity (e.g. contribute to sustaining substantial 

mangrove forests, support wetland animals and plant communities, serve as shelter 

for juvenile fishery) and hold a rich historical and cultural resources (e.g. in terms of 

aesthetic and spiritual value) (Chu, 2010).  

 

 

Figure 2.1.  World's major deltas (Tessler et al., 2015). Areas depicting blue 

colours are watersheds whose runoff flows into their deltas. 

 

Tropical coastal regions as stated often inhabited by some of the poorest 

population in the world, depend on agriculture and fishing as their major source of 

livelihood. Fisheries resources are substantially supported by the productive 

mangroves provided in the tropical deltas. They are important as source animal 

protein and serve as means of income for local populations and help in the growth 

of the economy on the larger scale. Nevertheless, they are under risk of numerous 

threats from anthropogenic and natural (sea level rise) sources, which are both 

expected to increase in the coming decades (Szabo et al., 2016; Sale et al., 2014). 

Tropical river deltas are therefore, definitely expected to change over time. The 
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importance of this ecosystem cannot be overstated; therefore, reliable information 

on its dynamics is needed for sustainable management. The changes that occur on 

the deltaic environments whether through man or natural causes are complex and 

multi-faceted (socio-economic, environmental, political factors). This makes 

monitoring and modelling studies related to its sustainability a challenging task; 

hence, deltas are poorly understood. Increased studies to better understand 

dynamics of deltaic ecosystems is essential for their sustainability and continuous 

ES provision.  

 

2.1.1 The Niger River Delta and its Importance to fisheries 

 

The Niger River Delta (NRD) is the largest river delta in Africa (Goudie, 2005) 

and home to a rapidly increasing human population. It features the largest mangrove 

forest in Africa, estimated to be ~5% of the global mangrove coverage and the fifth 

largest mangrove forest in the world (Spalding, 2010). Substantial oil and gas  

deposits are found under the mangrove ecosystem of the NRD. It is recognised as 

having great economic and ecological value despite their low species and diversity 

(Feka and Ajonina, 2011), providing numerous ES ranging from provisioning, 

regulating, supporting to cultural services (MEA, 2005). According to the Zabbey 

(2010), mangroves are a critically important resource to the local inhabitants of the 

NDR, just like taxes to national governments. Table 2.1 and Figure 2.2 identifies ES 

provided by mangroves of the NRD. 

Arguably, the most crucially important resource provided by the NRD, is 

fisheries ES. This is due to its productive mangrove ecosystems, aided by many 

river channels that deposit sediment, and contributing to nutrient cycling. Over 90% 

of local populations in the coastal areas globally rely on fisheries related activities 

for their livelihoods (Davies, 2005; Gbigbi and Enete, 2014). This is interestingly 

representative of the statistics in the Niger Delta region (NDR), where ~90% of the 

population rely on agriculture and fishing for means of livelihood, of which fishing is 

the main the focus (Gbigbi and Enete, 2014).  More than 80% of fish production in 

Nigeria comes from artisanal fishery sector which largely supported by mangrove 

forest (FAO, 2017; Udoh, 2016). Fish is an important source of protein in many 

Nigerian homes, accounting for 28% of animal protein intake of the population (Edet 

and Williams, 2007). It contains a high nutritional value consisting of amino acids, 

vitamins, and minerals; notably, fish or fish oil containing omega-3 have been 
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medically proven to reduce mortality related with cardiovascular diseases 

(Akinrotimi et al., 2007; Shahidi and Miraliakbari, 2004). This is particularly, 

beneficial to inhabitants in the NDR given the cheap price of fish products there due 

to its location at the coast and the prevalence of many diseases resulting from oil 

pollution. Aside, being a source of income to the local population of the NDR, 

employing thousands of people at both the artisanal and industrial sector, fisheries 

have positive impact on the economy of the country. For example, it contributed to 

the nation’s GDP:1.37%, 1.37%, 1.36%, 1.37%, 1.37%, and 0.5% in 2003, 2004, 

2005, 2006, 2007, and 2015 respectively (FAO, 2017; CBN, 2009). Fisheries also 

hold a strong cultural value such as fishing festivals and are important for 

recreational purposes in the NDR. 
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Table 2.1: Ecosystem goods and services provided by mangroves in NDR.  

Services / Benefits Products or Goods and Services / Comments  

  

Provisioning   

Food   Fishing activities and aquatic foods such as crabs, shrimps, oysters; 

 invertebrate species (Davies, 2005;  Zabbey et al., 2010) and hunting  

 

hippopotamus, squirrel, tortoises, bush meat e.g., monkeys  
(Onyena and Sam, 2020;  Numbere, 2014). 

  

Fibre and Fuel  Timber products: canoe building, poles for fishing and traps,  

 transmission and building, saw logs, fuel wood, chew sticks 

 (World Bank, 1995b; NDDC, 2006). 

Biochemical  Aquatic insects (Ugochukwu and Ertel, 2008; Ebeku, 2006) 

Genetic resources  
Medicine: Roots, leaves and seeds (Ndukwu and Ben-Nwadibia, 2005; 
Corcoran et al., 2007). 

   

Regulating   

Climatic regulation  Reduction of greenhouse gas effects of CO2 and 

  CH4, temperature, precipitation, and other climatic conditions  

 

and chemical composition in the atmosphere (Numbere and Camilo, 
2018; Onyena and Sam, 2020). 

Natural Hazard 
regulation  

 Flood control and Storm protection (James et al., 2007; Odemerho, 
2015). 

Pollution control and Retention, recovery and removal of excess nutrients  

detoxication and pollutants (Numbere, 2020). 

Biological regulation Resistance to non-native species, control of relationship amongst  

 tropic levels of food chain, maintaining a functional balance and  

 interaction of species (Osuji et al., 2010). 

Erosion protection  Soil retention (Corcoran et al., 2007). 

Supporting   

Soil formation  Habitat for organic matter (Numbere, 2020).  

Nutrient cycling  Nutrient sinkage, formation and recycling (Osuji et al., 2010).  

Biodiversity  Habitat for locals and transient species (Mmom and Arokoyu, 2010)  

Cultural   

Spiritual and 
Sense of belonging and security (James et al., 2007; Onyena and Sam, 
2020) 

inspirational   

Recreational  Tourism and recreational e.g., fishing sites (Corcoran et al., 2007) 

Aesthetic  Protected sites e.g., sacred sites (James et al., 2007) 

Educational  Prospects for formal and informal education e.g., due to vast  

 Biodiversity (World Bank, 1995b; Nnamdi et al., 2013).  
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Figure 2.2.  Mangrove Ecosystem services (Modified from MEA, 2005) 

 

2.2. General overview on mangroves  

 

Mangroves are commonly referred to assemblage of diverse, woody, salt 

tolerant and evergreen plants and shrubs that thrive successfully along the inter-

tidal zone between the land and sea in the tropical and subtropical region of the 

world (Alongi, 2002; Tomlinson, 1986). They grow specifically in river deltas, 

lagoons and estuarine networks (Thom, 1984). They are able to thrive in harsh 

environmental settings with high salinity, high temperature, extreme tides, high 

sedimentation and muddy anaerobic soils (Giri et al., 2011), due to their unique 

structural features. Mangroves are often considered to be single species as they 

often referred to as “mangrove community”, “mangrove ecosystem”, “mangrove 

forest” or even “mangal” (Duke, 1992). However, it is a diverse ecosystem of ~70 

distinct species with 9 orders, 20 families, and 27 genera (Spalding et al., 1997).  

Tomlinson (1986) classified mangroves into true and minor or associates’ 

mangroves. The true mangroves are those with the capacity to thrive harsh 

environments due to their unique adaptive features such as prop roots, viviparous 

propagule, pneumatophores and lenticels.  Minor or associate mangroves are 

relatively ones with low stand that can be found in a mangrove and non-mangrove 

community.   

Over the past decades, mangroves were considered unproductive and often 

treated as marshy wastelands with little or no value (Carter et al., 2015), leaving 

them susceptible to conversion to alternate land uses (Ronnback, 1999). Recently, 
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awareness through restoration campaigns have been an eye opener to the way 

mangroves are viewed and utilised in some parts of the world. They are recognised 

with great economic and ecologically important value providing multiple services 

vital to the well-being of inhabitants at local level (Hussain and Badola, 2010; 

Gnanappazham and Selvam, 2011), national level (Aburto-Oropeza et al., 2008) 

and even at global scale (Costanza et al., 1997; Mukherjee et al., 2014; Costanza 

et al., 2014). Nevertheless, humans consider mangroves as an obstruction to their 

economic activities and subjected them to threats of degradation and loss.  

 

 

2.2.1.  Global distribution of mangrove forest 

 

There are contradictory reports on global estimates of mangrove extent in the 

literature mainly due differences of epoch mapped and methodological approach 

that was used. However, most recent global coverage of mangrove forest was 

estimated at 137,600km2 (Bunting et al., 2018). Interestingly, ten countries cover 

65% of the world’s total mangrove. Amongst these ten only five countries, namely: 

Indonesia, Australia, Brazil, Nigeria and Mexico account for 48% of it. A hundred 

and fourteen countries are home to the remaining 35% of the world’s total mangrove 

area, and of which a maximum of 100km2 coverage is spread over 60 countries 

(FAO, 2007).  The largest coverage of the world’s mangrove is situated in the Asian 

countries and territories, with estimated coverage of ~60000km2 (FAO, 2006a). 

Particularly, Southeast Asian is the area with the most extensive mangroves in the 

world, a third of the world’s coverage (Spalding, 2010).  This region’s mangroves 

are also one that remains strongly protected (Hishamunda et al.,2009). Figure 2.3 

shows global mangrove coverage.  
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. 

 

Figure 2.3. Distribution of the World’s mangrove forest using Landsat imagery (Giri 

et al., 2011). The green areas represent mangrove distribution. 

 

2.2.2  Distribution of the status of mangrove in Mangrove in 

Africa 

 

Africa’s mangroves are home to ~19% of global mangrove coverage and are 

situated at the Western and Eastern Eco regions of the continent, covering three 

coastal zones namely: the West Atlantic, Central Atlantic, and the Eastern Indian 

Ocean.  At the West Atlantic coast, mangroves extend from the North Western area 

in Mauritania to Senegal at Saloum Delta, Lower Casamance spanning over Guinea 

Bissau, South Guinea, to the Gulf of Guinea (Ajonina et al., 2008). It further stretches 

from Liberia to Angola, flanking on the coastline West and Central region, with the 

largest coverage in Nigeria, stretching across the Niger Delta region. Mangroves at 

Western and Central region cover 12% of Africa’s 19% global coverage (Feka and 

Ajonina, 2011). At the Eastern Indian Ocean, include the East Africa mangroves 

within Rufji delta at Mozambique, Tanzania, Kenya in Tana and Sabari rivers, and 

a greater part of Madasgcar (Ajonina, 2008). Also, at the Mediterranean coast on 

the Eastern region, are of few random mangroves thriving at Alexendra Egypt, and 

similarly at the Red Sea in Somalia and Djibouti (Ajonina, 2008). Other countries 

with mangroves in the Eastern African eco-regions are South Africa and Seychelles. 

Generally, there are mangroves in almost all the countries in the Western and 
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Eastern Africa; with the exception of Nambia, largely due unfavourable climatic 

conditions and topography that the mangrove ecosystem require to thrive 

(FAO, 2007). There are variations of reported mangrove coverage of the world, and 

similarly for Africa’s mangrove. Recent reliable estimate of mangrove cover for 

Africa place it over 27 000km2 for the year 2000, over 20% of the global coverage 

(Giri et al., 2011).   

 

2.2.3.  Distribution and floristic composition of Mangroves in 

Nigeria 

 

Nigeria’s mangrove is the largest in Africa and fifth in the world (Spalding et 

al., 2010).  Recent estimate of Nigeria’s mangrove for the year 2000 place it at 6537 

km2; of which is 46.8% of Africa’s mangrove, and 4.7% of total world’s mangrove 

coverage (Giri et al., 2011). The ecosystem extends across the entire coastline of 

the country supported by fresh swamp and rain forests. Mangrove found on the 

coastal zone of Nigeria spreads across three coastal regions namely: the Western, 

the Eastern and the NDR. The Western coastal areas are largely bordered by the 

extensive Lagos tidal coastal lagoon which is fringed by mangroves stretching to the 

Lekki lagoon down to the East coastal zone where fewer mangroves are found 

(Spalding et al., 2010).  The NDR is largely the host of Nigeria’s mangrove. The 

extent of Niger Delta’s mangrove and floristic composition have been documented 

in the literature (FAO, 2005; Spalding et al., 2010). Although, reports on the extent 

of mangroves have been contradictory. Mangrove in the NDR stretches over 400 

km and can reach inland for 30 to 40km (Spalding et al., 2010;  Abere and Ekeke, 

2011). They are found at west of zone in Benin River and to the East in Calabar, Rio 

del Rey estuary (FAO, 2005), adjacent to the developing mangroves of Rio del Rey 

in Cameroun (Spalding et al., 2010).  

Niger Delta’s mangrove forest consist of typically six species belonging to 

three families (Abere and Ekeke, 2011; Spalding et al., 2010). Rhizophora 

racemosa is the dominating species, covering about 90% of the mangrove system 

(Abere and Ekeke, 2011). Its canopy level can reach 40m, although are usually 

between 10-12m (Spalding et al., 2010).   R. mangles are commonly prevalent in 

inner mangrove communities, with R. harrisonii at the middle immediate zones. 

Similarly, the canopy height of R mangle is less than 5m, with R. harrisonii capable 

of attaining heights of 5-10m (Abere and Ekeke, 2011).  The other three species 
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namely:  Avicennia geminnas, Languncularia racemosa, Conocarpus erectus are 

sparsely found; hence the former are the commonest species found in the region. 

James et al., (2007) reported that in the lower saline areas of estuaries and 

channels of the coastline, Nypa fruticans that was introduced at Calabar in 1960 is 

already widespread and thriving continuously. However, their presence is a threat 

is mangrove growth.  

 

2. 3.   Decline of Nigeria’s mangrove forest  

 

The benefits offered by mangroves to support the terrestrial, marine 

environments, and the human society at large have been well documented (Aburto-

Oropeza et al., 2008; Millennium Ecosystem Assessment (MEA), 2005; Barbier, 

2016; Brown et al., 2018; Polidoro et al., 2010).  However, mangroves are reported 

to be disappearing at a rate that surpasses or equals to the rainforest and coral 

ecosystems which are a popular endangered ecosystem (Duke et al., 2007b). 

Reliable estimates of Nigeria’s mangrove for 2000 place it at 653, 669 ha (Giri et al., 

2011), meaning 36.4% of Nigeria’s mangroves have been lost over the previous two 

decades (Table.2.2).  Furthermore, mangroves that are degraded have lower 

productive functions (Dahdouh-Guebas et al., 2005; Van et al., 2014; Romanach et 

al., 2018). Mangrove degradation and loss have been traced to the undervaluation 

of the ecosystem (Ronnback, 1999; Brander et al., 2012; Malik et al., 2015); usually 

in pursuit of developments, and often neglecting or disregarding the multiple benefits 

they provide (Del Claro et al., 2009; Badola and Hussain, 2005; Ronnback et al., 

2007).  Unless the true value of mangroves is accounted for, the ecosystem will be 

left vulnerable to alternative land-uses such as agriculture, aquaculture, coastal 

developments that promise tangible economic benefits (Malik et al., 2015; 

Ronnback et al., 2007). 

 In Nigeria, one of the major drivers of mangrove loss and degradation have 

been attributed to the development of the oil and gas industry; as the industries are 

located around the mangrove forests (Abere and Ekeke, 2011). These activities 

include dredging, infrastructure developments uch as pipe and seismic lines, oil 

spills by oil companies such as Shell, Agip, Mobil etc., and urbanisation (Moffat and 

Linden, 1995; NDES, 1997; World Bank, 1995a; Chindah et al., 2011; Abere and  

Ekeke, 2011).  Another common driver of mangrove decline in Nigeria is wood 

extraction used for fuel wood and building construction (Adegbehin and Nwaigbo, 
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1990; Ayanlade and Drake, 2016).  More than 200 000 poles and wooden items are 

reportedly extracted yearly (Adeyemo et al., 2009). In addition to reports on 

concerns about climate change effects (coastal erosion) in NDR (World Bank, 

1995a; Uyigue and Agho, 2007), and sea level rise (Okali and Eleri, 2004) as 

potential threats to mangroves in the region. Awosika (1995) reported loss of 

vegetation constituting mainly of mangroves in the NDR resulting from coastal 

erosion.  

 

Table 2 .2 Most recent reliable estimate of Nigeria’s mangrove status over time. 

(FAO, 2005; Giri et al., 2011), Modified. These estimates are based on two 

progressive studies considered to be reliable. 

1980 1990 2000 2005 

km2 

9990 

km2 

9980 

km2 

6537 

km2 

9970 

 

2. 4  Sustainable Management of Mangroves in NDR. 

 

  The importance and values of mangroves to the sustenance of livelihood of 

local communities and even at regional scale in the NDR has been extensively 

established in the literature (Mmom and Arokoyu, 2010; James et al., 2013; Kinako, 

1977; Udoh, 2016; Okpiliya et al., 2013).  The way mangrove forest in the NDR has 

dramatically declined (36.4%), based on calculation from reliable estimate of 1980 

to 2011 is alarming.  Given the dependence of local communities on the mangrove 

ecosystem in the NDR, as well as its recognizable values at regional level, there is 

a need to carry out optimal use of these valuable, yet fragile ecosystem resources, 

in order to better manage the ecosystem to meeting its needs for the present and 

future generation. Numerous methods and tools exist for developing and 

implementing the sustainable management of the good and services that our forest 

ecosystem provide (World Bank, 1995a; Primavera and Esteban, 2008). However, 

the effectiveness of any sustainable management approach is dependent on 

integrated approach that usually entails participation of stakeholders at all levels 

including local and national, corporate institutions, as well as institutions directly or 
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indirectly associated to managing coastal forest resources (Primavera and Esteban, 

2008).  

2.4.1 Policy, Legislation and Management of Mangroves in 

Nigeria.  

 

Attention is gradually tilting to the sustainable management of wetland 

resources, which also includes mangroves. This is due to increased awareness and 

recognizable economic and ecological benefit they offer. The federation system of 

Nigeria consists of the federal, State, and the local governments, and they all have 

powers to make their own laws. However, whilst, the federal laws can apply at the 

State and Local Government level, it is not the case for the State and Local laws, as 

they are restricted to their territorial jurisdiction. Furthermore, in the event of 

unresolvable conflict of interest amongst these levels, the law at the higher level 

takes precedence. Therefore, mangrove management in Nigeria comes under the 

complex structure and interaction of the Federation system, as well as functions 

alongside other institutions of the country. 

 To now, Nigeria, like many other African countries, is yet to enact 

management policies that is exclusively targeted at protecting its mangrove forest. 

Furthermore, it is reported that there is no form of protection for the mangrove forest 

of the country (Mmom and Arokoyu, 2010) at least, formally.   In Nigeria, laws and 

regulations that tend to govern the management of mangroves are enshrined within 

general environmental and forest laws and policies of the country, with no specific 

mention to the mangrove forest. An updated policy documents and acts that are 

directly or indirectly involved in management of mangroves in Nigeria are presented 

in Table 2. 3. 
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Table 2.3 Strategic documents/policies and Legislations for mangrove 

management in Nigeria 

Country Strategic documents and policies 

for mangrove forests management 

A select number of legislative 

documents under which 

mangrove forests are assimilated 

Nigeria Federal Ministry of Environment 

(2015) National Biodiversity and action 

plan 2016-2020; Niger Delta 

Biodiversity project (2010); National 

Adaptation strategy and plan of action 

on climate change for Nigeria 

(NASPA-CCN) 2011; USAID- Industry 

Action Plan for Nigerian Shrimp and 

Prawns 2002; National Oil Spill 

Contingency plan (NOSCP); 

Acquisition of 9 hectare piece of land 

for establishment of an Integrated 

Mangrove Conservation and Research 

Centre to educate and rural 

communities in mangrove 

conservation; GEF – World Bank Local 

Empowerment and Environmental 

Management Project Nigeria; GEF-

UNEP – Reversal of Land and Water 

Degradation in the Niger River 

Basin;The Regional development plan 

for the Niger Delta; Road map for the 

growth and development of mining in 

Nigeria, 2016.  

 

National policy for environment of 

1989; National forestry policy, 

2006; Agricultural Policy for Nigeria 

2011; Sea Fisheries Decrees of 

Nigeria. 1992;  Inland fisheries 

Decree 1992;  AI04 2000 

No.6 Niger-Delta 

Development Commission  Act 

2000; Environmental Protection 

Agency (Amendment) Decree N0 

59 of 1992; National Environmental 

Standard and Regulation 

Enforcement Agency Act 2004; 

National Oil Spill Detection and 

Response Agency Act 2006; The 

Nigerian Minerals and Mining Act. 

2007; Environmental Impact 

Assessment Act (Cap E12 LFN 

2004). 

 

2.5  Mangrove monitoring through remote sensing 

 

Conventional observation and field surveys methods in monitoring 

ecosystems such as the mangrove system is time consuming and very expensive. 

Hence, cost-effective methods of remote sensing (RS) technology were developed. 

RS techniques have continued to evolve over time with advancement in Information 
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Technology (IT) and Computing, and improvement in expert knowledge spurring 

utilization of Earth observation data and techniques. Satellite remote sensing offers 

the opportunity for a large area mapping providing comprehensive information  

covered with its different spectral bands. The capabilities of remote sensing in 

mapping and monitoring mangroves have been reviewed by Kuenzer et al., (2011) 

and recently by Giri (2016) and Purnamasayangsukasih et al., (2016). Different 

remote sensing sensors, techniques, and applications were covered. 

Mangrove characterization with remotely sensed image is influenced by 

seasonal and everyday intertidal interactions as its pixel composition comprises of 

vegetation, soil and water due to its location between land and sea. This feature of 

mangrove is greatly considered as it interferes with radiometric characterization 

(Blasco et al., 1998). Additionally, the diversity of mangrove species can 

significantly affect spectral characterization of image components, aggravating 

discrimination problems due to increased presence of unique species.  Structural 

manifestation of mangroves is influenced by their component attributes including 

species composition, distribution pattern, density and stand height, presenting 

them relatively similar or varied.  

Mangroves are often discriminated through the textural and spectral 

characteristics of their canopy and leaves (Ramsey and Jensen, 1996). Spectral 

variations of canopy reflectance are attributed to optical properties including leaf 

area Index (LAI), background reflectance and leaf inclination (Diaz and Blackburn, 

2003). Factors such as age, vitality phenological and physiological features 

determine the spectral signature of single species of mangroves (Blasco et al., 

1998). Seasonal climatic variations that impact on leaf foliation change and leaf 

senescence, can affect spectral response (Wang et al., 2008) of mangrove 

species. Studies by Wang et al., (2008) in Panama suggested high spectral 

discrimination among mangrove species in the early wet season. Furthermore, 

spectral responses of plant communities are affected by intertidal effects and soil 

types (Blasco et al., 1998). Mangroves with attributes such as lower density stands 

and sparse vegetation cover are greatly affected by intertidal effects, that can 

cause greater effects on the ground surface. This results in a mixture of ground 

surface with other Earth’s surface materials, leading to confusion in spectral 

characterization. Gao (1998) indicated that mudflats in the background can result 

in confusion of spectral signal with built up areas whilst using medium resolution 

imagery. 
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Mangrove observation, mapping, and monitoring has long been undertaken 

using various remote sensing data and techniques. Many studies over the last two 

decades have utilized various types of remotely sensed data (e.g. Everitt et al., 

1996; Lucas et al., 2000; Manson et al., 2005a; Benfield et al., 2005) aerial 

photography (e.g. Pastor-Guzman et al., 2015;  Shapiro et al., 2015; Kanniah et al., 

2015),  medium resolution data (e.g. Vaiphasa et al., 2005; Wang and Sousa, 2009)  

hyperspectral data (e.g. Lucas et al., 2007; Cougo et al., 2015; Brown et al., 2016)  

radar data, and furthermore,  recent studies Kamal (2015) and Wicaksono (2017) 

used multi resolution data sets to monitor and map mangroves.  These studies used 

different remote sensing techniques to obtain valuable spatio-temporal information 

from varying applications including mangrove extent, mangrove distribution, species 

composition and differentiation, forest health, and forest density of mangrove forest 

application can the derived using techniques of monitoring in remote sensing 

methods. 

 

2.6.  Landsat data for time series analysis of forested 

landscapes 

 

Landsat data have long been used to study the dynamics of the Earth’s 

surface over decades owing to its history of long data archive and unique spatial 

coverage (30m) (Kennedy et al., 2014) with temporal recurring cycle of 16 days 

(Wulder et al., 2008).   

The advancement in IT and computing has enabled substantial data storage 

and robust computing capabilities (Hansen and Loveland, 2012), hence aiding LTS 

analysis.  In 2008, change in data policy of the United States Geological Survey 

(USGS) lead to the opening of Landsat data archive, allowing free accessibility on 

the internet to users at free cost (Woodcock et al., 2008). This dramatically changed 

the way Landsat data was utilized; allowing for increased and extensive research 

and application using time series data (TS) (Wulder et al., 2012), and over a large 

area. Dense TS data are now available annually for mapping and monitoring forest 

change (e.g. Hansen et al., 2013; Hermosilla et al., 2016; Potapov et al., 2015) over 

varying spatial scales. TS approach has long been identified capable to provide 

detailed understanding of complexity of the forest ecosystem dynamics (Cohen and 

Goward, 2004; Senf et al., 2017). Banskota et al., (2014) and   Zhu et al., (2017) 
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reviewed studies for mapping and monitoring of forested landscapes such as 

mangroves.  These studies both focused on important aspects of LTS analysis 

including pre-processing techniques algorithms, applications, approaches as well 

as validation issues. Recent studies (e.g. Hansen et al., 2013; Potapov et al., 2015; 

Hermosilla et al., 2015; Hermosilla et al., 2016; Hughes et al., 2017; Zhu et al., 2012) 

have emerged using dense LTS to map forest disturbance dynamics.  Similarly, few 

studies recently of varying application e.g. (Ghosh et al., 2016; Bullock et al., 2017; 

Ghosh et al., 2017) species composition and distribution, (Alatorre et al., 2016) 

vegetation phenology have appeared in the literature using the LTS approach in 

mangrove studies.  
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Chapter 3 

 

 Land Cover Dynamics and Mangrove 

Degradation in the Niger Delta Region 
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Abstract 

 

The Niger Delta Region is the largest river delta in Africa and features the 

fifth largest mangrove forest on Earth. It provides numerous ecosystem services 

to the local populations and holds a wealth of biodiversity. However, due to the 

oil and gas reserves and the increase of human population it is under threat 

from overexploitation and degradation. There is a pressing need for an 

accurate assessment of the land cover dynamics in the region. The limited 

previous efforts have produced controversial results, as the area of western 

Africa is notorious for the gaps in the Landsat archive and the lack of cloud-

free data.  Even fewer studies have attempted to map the extent of the 

degraded mangrove forest system, reporting low accuracies. Here, we map the 

https://doi.org/10.3390/rs12213619
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eight main land cover classes over the NDR using spectral-temporal metrics 

from all available Landsat data centred around three epochs. We also test the 

performance of the classification when L-band radar data are added to the 

Landsat-based metrics. To further our understanding of the land cover change 

dynamics, we carry out two additional assessments: a change intensity 

analysis for the entire NDR and, focusing specifically on the mangrove forest, 

we analyse the fragmentation of both the healthy and the degraded mangrove 

land cover classes. We achieve high overall classification accuracies in all 

epochs (~79% for 1988, and 82% for 2000 and 2013) and are able to map the 

degraded mangroves accurately, for the first time, with user’s accuracies 

between 77% and 87% and producer’s accuracies consistently above 82%. Our 

results show that mangrove forests, lowland rainforests, and freshwater forests 

reported net and highly intense losses (mangrove net loss: ~500 km2; woodland 

net loss: ~1400 km2), while built-up areas have almost doubled in size (from 

1990 km2 in 1988 to 3730 km2 in 2013). The mangrove forests are also 

consistently more fragmented, with the opposite effect being observed for 

the degraded mangroves in more recent years. Our study provides a 

valuable assessment of land cover dynamics in the NDR and the first ever 

accurate estimates of the extent of the degraded mangrove forest and its 

fragmentation. 

 

Keywords: Niger Delta Region; mangroves; land cover dynamics; intensity 

analysis; fragmentation; spectral-temporal metrics; land degradation; Landsat; 

ALOS PALSAR-2; JERS-1; GLCM 

 

3.1. Introduction 

 

Deltas are economic and environmental hot spots (Foufoula-Georgiou, 

2013). They take up less than 1% of the Earth’s surface but are home to more 

than ca. 7% of the global population—a density more than 10 times the average 

(Ericson et al., 2006). Deltas are able to support such high human populations 

thanks to the high productivity, biodiversity, and the ability to use the 

waterways for transport.  They are key contributors to the production of 

agricultural goods and are, therefore, highly important in the fight against 
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global food insecurity (Szabo et al., 2015). However, these important systems 

are highly delicate and vulnerable. In specific, tropical delta regions are under 

risk of numerous threats, including sea level rise, extreme floods, storm 

surges, erosion, subsidence, and salinity intrusion, amongst others, which are 

expected to increase both in frequency and magnitude with the climate crisis 

(Szabo et al., 2016). These problems have been proven to increase out-

migration rates and human security risks in developing regions, often 

inhabited by some of the poorest populations in the world. Given the importance 

and the vulnerability of tropical deltas, monitoring and understanding the land 

cover dynamics in these regions is vital for achieving efficient policy planning 

and progress toward achieving the Sustainable Development Goals (Chow, 

2018). 

The Niger River Delta (NRD) is the largest river delta in Africa (Goudie, 2005) 

and home to a rapidly increasing human population. It features the largest 

mangrove forest in Africa, estimated to be ~5% of the global mangrove coverage 

and the fifth largest mangrove forest in the world ( Spalding, 2010). It is recognised 

as a highly important resource for the local communities, as it is utilised for 

fisheries, fuelwood, construction material, flood protection, medicinal purposes, 

recreation, and tourism, and holds an important spiritual value (Zabbey et al., 

2010; James et al., 2007; Okonkwo et al., 2015; Numbere, 2014; NDDC, 2006; 

World Bank, 1995b). Substantial oil and gas deposits are found under the 

mangrove ecosystem of the NRD. Over the last decades, this highly significant 

ecosystem is under threat of loss or degradation, mainly due to oil and gas 

exploration activities, the overexploitation of the mangroves for fuelwood, 

urbanisation, and the invasion of the Nipa palm species (Nypa fruticans) 

(Numbere, 2014; Kadafa, 2012; Balogun, 2015; Onyena and Sam, 2020; Duke, 

2016; Twumasi and Merem, 2006; Nwobi et al., 2020). Climate change (World 

Bank, 1995b; Uyigue and Agho, 2007), sea level rise (Okali and Eleri, 2004), and 

coastal erosion (Awosika, 1995) are also threats to the mangrove system. Despite 

the importance of the NDR resources, and the perceived degradation from 

anthropogenic and environmental pressures, reliable information on land cover 

dynamics and, particularly, on the extent and condition of the mangrove forest, is 

still lacking. 

Assessing land cover dynamics over large areas is only possible via Earth 

Observation technologies, which is commonly done with multi-temporal Landsat 

data. The Landsat archive is truly invaluable as it constitutes the only global 
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medium-scale data available for ~50 years. More ‘traditional’ approaches have 

used image mosaics or single images from single-sensor data to map two (before 

and after) dates and assess change from these (James et al., 2007; Ayanlade 

and Drake, 2015; Mena, 2008; Gao and Liu, 2010; Obiefuna et al., 2013;  Kuenzer 

et al., 2014a). However, over certain parts of the world, e.g., western and eastern 

Africa, the data archive has significant gaps (Kuenzer et al., 2014a; Kirui et al., 

2013). Moreover, the use of optical data for accurately mapping and monitoring 

land cover dynamics over the tropics can be problematic due to the extensive 

cloud contamination, which renders the creation of image mosaics over large 

areas an unachievable task (Martinuzzi et al., 2007; Colby and Keating, 2001; 

Okoro et al., 2016). 

Recent advances in data availability, computing power, cloud computing, 

and algorithm development (e.g., machine and deep learning) have given rise 

to new approaches to multi-temporal assessments of land cover, e.g., image 

compositing (Frantz, 2019), and spectral-temporal metrics (Griffiths et al., 

2013; Mueller et al., 2015). The combination of optical and radar data has 

also been hailed as an important advancement in regional-scale land cover 

mapping as certain land cover types, such as mangroves and savannah 

woody vegetation, are mapped successfully using radar backscatter data, 

taking advantage of their ability to ‘see’ through cloud (Nwobi et al., 2020; 

Hansen et al., 2011; Verhulp and Denner, 2010; Basuki et al., 2013; 

Nascimento et al., 2013; Kamal et al., 2015; Wicaksono, 2017; Bunting et al., 

2018) . Over the last decade, object-based image analysis (OBIA) approaches 

have also been tested to successfully separate mangrove species from other 

coastal vegetation (Heumann, 2011), to map the Amazonian mangrove belt 

(Nascimento et al., 2013), and to assess long-term variations of forest loss, 

fragmentation, and degradation using a combination of OBIA and spatial 

autocorrelation indicators (Shirvani et al., 2020). 

There has been a limited number of studies that mapped land cover dynamics 

in the NDR (James et al., 2007; Ayanlade and Drake, 2015; Kuenzer et al., 2014a; 

Onojeghuo and Blackburn, 2011) as the area is one of the most affected 

worldwide from the gaps in the Landsat archive and a consistent cloud 

contamination. With the exception of Nwobi et al., ( 2 0 2 0 ) , these have 

employed ‘traditional’ remote sensing approaches and results have been 

contradictory. Even fewer studies have attempted to estimate the spatial extent 

of the degraded mangrove cover. Kuenzer et al., (2014a) used mosaics of 
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Landsat images to map land cover change in the NDR over three dates but 

reported low per class classification accuracies for both the “tall mangrove” and 

the “degraded mangrove” classes, making area calculations unreliable. Salami et 

al., (2010) compared the accuracies achieved by using Landsat ETM+, ASTER 

and NigeriaSat-1 data to map the six main land cover classes. For the 

mapping of degraded mangrove, they reported high accuracies for all three 

platforms. However, their study covered a small fraction of the NRD. 

Based on the initial assessment of land cover transitions and dynamics, land 

cover change studies often move on to explain the changes in terms of 

explanatory variables (i.e., land use change drivers) or to forecast spatial patterns 

of future land cover under different scenarios (i.e., land use change models) 

(Kamwi et al., 2018; Geist and Lambin, 2002; Quezada et al., 2014; Campos et 

al., 2012; Fernandez et al., 2015). The success of these next stages greatly 

depends on the ability to carry out an accurate initial assessment of the dynamics. 

Moreover, apart from the need to map land cover accurately, there is also a 

requirement to understand the dynamics more fully. For example, a simple 

comparison among the land cover maps does not determine whether the 

observed changes derive from processes that are systematically more intensive 

than random processes. Over the last years, new approaches have been 

suggested for characterising land cover change patterns quantitatively so that any 

potential subsequent analyses can focus more efficiently on the important 

patterns and processes of change, such as the intensity analysis proposed by 

Aldwaik and Pontius (2012). Other studies, with a specific interest on the 

fragmentation of habitats for example, have focused on the calculation of 

landscape metrics from the initial assessment of land cover. These studies have 

shown that the fragmentation of forests has detrimental effects for the health of 

the ecosystem and the services that it is able to provide (Fernandez et al., 2015; 

Gounaridis et al., 2014; López et al., 2020). A number of indices have been 

created to quantify landscape structure and spatial heterogeneity based on the 

composition and configuration of the landscape (Coppin et al., 2004; Liu and 

Zhou, 2005; Seto and Fragkias, 2007; Chen, 2002). 

To date, no study related with the assessment of land cover change in the 

NDR has incorporated recent analytical approaches (e.g., intensity and 

fragmentation analyses) and the technological and algorithmic achievements 

(e.g., multi-sensor data, machine learning algorithms) to improve classification 

accuracies and our understanding of the land cover dynamics. Therefore, there 
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is a need for a comprehensive study of land cover change in the region. In this 

paper, we aim to accurately assess the land cover dynamics in the NDR over 

the last decades and improve our understanding of the extent of the 

degradation of the delta’s mangrove forest. We will do so by: 

• Mapping the main land cover types of the NDR in three epochs using 

Landsat data, spectral-temporal metrics, and a machine learning algorithm; 

• Testing the performance of the classifier when radar L-band data are added 

to the Landsat; 

• Assessing land cover change intensity over the two periods; and 

• Quantifying the mangrove forest degradation and its fragmentation using 

landscape metrics. 

 

3.2.  Study Area 

 

The Niger Delta is a flat alluvial plain located in Nigeria on the Gulf of 

Guinea (Figure 3.1). It is the largest river delta in Africa formed primarily by 

sediment deposition. It has a coastline of 470 km and consists of a number 

of ecological zones, including mangrove swamps, freshwater swamps, 

forests, and lowland rain forests. The Delta has two distinct seasons (wet and 

dry) with an average temperature of 27 ◦C throughout the year and annual 

rainfall of 3000 to 4500 mm (World Bank, 1995b).  The Niger Delta Region 

covers an area of 56,000 km2 that consists of 7 administrative states (Abia, 

Akwa Ibom, Anambra, Bayelsa, Delta, Imo, and Rivers) and is home to more than 

33 million inhabitants (265 people per km2;NBS, 2018). More than 70% of these 

people depend on the natural environment for their livelihoods. The NDR is 

considered a hot spot for biodiversity in the world with 3 sites designated as 

Ramsar Wetlands of International Importance (IUCN, 1992). It is a hub for oil 

and gas exploration, home to 80% of the refineries in Nigeria and extensive 

infrastructure (e.g., c. 900 oil wells, c. 100 flow stations and gas plants, c. 

1500 km trunk lines, and c. 45,000 km flow lines) (Ugochukwu and Ertel, 

2008). Nigeria’s GDP, which rose from ~292 billion USD in 2009 to over 448 

billion USD in 2019 (World Bank, 2020), is mainly generated by the oil and gas 

sector. Yet, the NDR remains under-developed, and its inhabitants 

impoverished. The Nigerian Land Use Act excludes the ownership of oil 

minerals by the state. This is perceived by many as socially inequitable and 
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has resulted in continuous instability in the region (Ako, 2009). Additionally, 

more than 220 oil spills and 17 billion cubic metres of gas flares per year, 

together with the impacts of the human population explosion, have led to the 

degradation of the Niger Delta ecosystem (James et al., 2007; Okonkwo et 

al., 2015; Nwobi et al., 2020; Kuenzer et al., 2014a; Imevbore et al., 

1997). 

 

Figure 3.1: (a) Our delineation of the Niger Delta Region (comprising of the 

states of Abia, Akwa Ibom, Anambra, Bayelsa, Delta, Imo, and Rivers), and its 

location within (b) West Africa and (c) Nigeria. 

 

3.3.  Materials and methods 

 

We mapped the main land cover types in three epochs centred around 

1988, 2000, and 2013, and assessed land cover change and change intensity in 

the two respective periods. The chosen classes were: Water, urban (i.e., built-

up), woodland (i.e., lowland rainforest and freshwater forest), bareland, 

agricultural land, grassland, mangroves, and degraded mangroves. The choice of 

the classes was based on our knowledge of the area, the nomenclature used by 

ESA’s 20 m land cover data for Africa and the 30 m-pixel Landsat-based 
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GlobeCover30, and our desire to separate healthy mangroves from degraded 

ones. By definition, degraded is the land that has temporarily or permanently 

undergone a lowering of its capacity to deliver ecosystem services (Safriel and 

Adeel, 2008). In the case of mangroves, the degraded forest has less biomass 

and tree cover, and is unable to provide a number of services at the same level 

as the healthy system, e.g., support for local livelihoods, carbon sequestration, 

erosion protection, provision of habitat for numerous fauna species, amongst 

others (Thomas et al., 2017). We also assessed the fragmentation of the 

mangrove forest during these two periods. Additionally, we tested the 

performance of the classifier when radar data are added to the optical. Figure 2 

is a flowchart of our methodological framework. 
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Figure 3. 2: Methodological flowchart 
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3.3.1. Data 

 

3.3.1.1. Reference Data 

 

Very high-resolution reference data were used for the recent epoch. This 

dataset is available as a MAXAR Vivid basemap within the ArcGIS software 

(ESRI, 2020; Maxar and Technologies, 2020). These cover the study area with 

data from November 2009 to January 2017. About 90% of the study area is 

covered with 46-cm-pixel data from GeoEye-1 (10 December 2010, 16 

December 2011, 3 January 2013, 17 December 2013, 10 April 2014, 8 January 

2015), 60-cm-pixel data from QuickBird-2 (11 February 2010, 3 October 2010, 

12 June 2013), and 50-cm-pixel data from WorldView-2 (1  December  2011, 16 

February 2013,  13 January 2014, 12 March 2015, 17 December 2015). Thanks 

to the familiarity with the study area, the broad land cover classes that were 

targeted in this paper were relatively easily identifiable on the very high-

resolution imagery. This was also the case for the degraded mangroves, which 

presented the additional advantage of being spatially confined within the coastal 

zone, in general, and the mangrove system, in particular. 

 

3.3.1.2. Landsat Data 

 

The choice of Landsat data was driven by the need to coincide with as many 

other NDR studies as possible, so that comparisons could be drawn between 

them. Two such studies were identified: the one by Ayanlade and Drake (2016) 

and the study by Kuenzer et al., (2014a). The latter was particularly targeted, as 

it is the only one that has attempted to map the “degraded mangrove” class. The 

choice of the three epochs was also driven by the availability of the reference 

data and the SAR imagery. 

We used all the dry season (December to February) Level 2 surface 

reflectance Landsat 4, 5, 7, and 8 images centred around 1988 (±2 years), 2000 

(±2 years), and 2013 (±2 years) with less than 80% cloud cover from the USGS 

EROS Data Center for the eight WRS-2 tiles covering the study area (path 187, 

row57; p188, r55; p188, r56; p188, r57; p189, r55; p189, r56; p189, r57; p190, 
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r56). Only the non-thermal bands were used, and clouds and cloud shadows 

were removed using F-mask (Masek et al., 2006; Zhu and Woodcock, 2012). 

Finally, the Normalised Difference Vegetation Index (NDVI) (Tucker, 1979) was 

calculated. From the resulting 7-band image stacks (i.e., six non-thermal bands, 

plus the NDVI), spectral-temporal variability metrics were calculated (Griffiths et 

al., 2013; Mueller et al., 2015; Symeonakis et al., 2018; Higginbottom et al., 

2018). For the recent epoch, five statistics for each of the seven bands were 

calculated: the standard deviation, the mean, and percentiles (25th, 50th, and 

75th). This brought the total layers for this epoch to 35. However, as data 

availability for the first two epochs was problematic (Figure 3.3) we limited the 

number of statistics per band to 2 (mean and st. dev.) and the total number of 

layers to 14. 

 

 

 

Figure 3. 3: Number of available observations from the Landsat USGS Level 1 

archive for (a) the first epoch; (b) the middle epoch, and (c) the more recent epoch. 

 

3.3.1.3. Radar Data 

 

Radar data were chosen for testing whether their addition to the optical metrics 

could improve the land cover classification. For the recent epoch, we employed 

the 2015 global 25 m resolution L-band Synthetic Aperture Radar data from the 

Advanced Land Observing Satellite-2 (ALOS-2) PALSAR-2 sensor via Google 

Earth Engine’s API. The data are free and open access with two polarisations  

(HH and HV) and are currently available for 2015 to 2018. To increase the utility 

of the SAR data, we used Google Earth Engine to calculate a series of Gray-Level 
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Co-Occurrence Matrix (GLCM) texture variables (Symeonakis et al., 2018). GLCMs 

are a series of localised texture metrics that quantify the statistical properties of a 

layer over a moving window (Haralick, 1979). We calculated seven GLCM layers 

(mean, variance, homogeneity, contrast, dissimilarity, entropy, and second 

moment) (Thapa et al., 2015). These statistics were calculated over both 3 × 3 

and 9 × 9 windows, resulting in 15 layers per SAR backscatter (one backscatter 

+ seven 3 × 3 GLCM layers + seven 9 × 9 GLCM layers), totalling 30 layers for 

the year 2015. 

For the middle epoch, we acquired JAXA’s 25 m resolution JERS-1 tropical 

region mosaics for the year 1996, the only year that such data are available over 

the Niger Delta Region. One polarisation is available (HH), from which we 

calculated 15 GLCM layers to use in the classification. 

 

3.3.2.  Land Cover Mapping 

 

3.3.2.1 Sampling and Validation 

 

In total, 185,504 samples were taken for the epoch centred around 2013 

from very high-resolution dataset which is available as a MAXAR Vivid basemap 

within the ArcGIS software (ESRI, 2020; Maxar and Technologies, 2020). For 

the first and second epochs (i.e., 1988 and 2000), TimeSync-Plus v4.6 was used 

(Cohen et al., 2010) to check for unchanged pixels at the 2013 sample locations 

from classified map with very high overall accuracy of the same period. This 

resulted in 142,045 and 99,220 samples, respectively, for which we could 

confidently say that no change in the Landsat time series occurred. During 

classification, half of these samples were used for training and half for validation. 

3.3.2.2 Image Classification & Post-Classification Processing 

 

We developed the land cover classification using Random Forests 

classification models.  Random Forests have been used successfully to classify 

Landsat imagery, thanks to their effective handling of correlated predictors and 

reduced tendency toward overfitting (Pal, 2005). We used the ‘RStoolbox’ and 

‘randomForest’ packages within the R statistical environment (Team, 2017). One 



38 
 

optical only model was tested for the first epoch, while for the middle and most 

recent ones, we tested the performance of optical only and optical + SAR metrics 

(Figure 3. 2). Based on the accuracies achieved, the outputs from the best 

performing models were chosen for the middle and more recent epochs. A 3 × 3 

majority filter was applied to the outputs from all 3 epochs to get rid of the ‘salt 

and pepper’ effect of the classification. Finally, based on our knowledge of the 

study area, expert rules were applied to correct for some classification errors 

(Symeonakis et al., 2018). 

 

3.3.2.3. Intensity Analysis 

 

Aldwaik and Pontius (2012) devised a methodology that characterises 

patterns of land change quantitatively. It provides a mathematical framework 

that compares a uniform intensity to observed intensities of temporal changes 

among land cover classes (or ‘categories’) (Pontius et al., 2013). There are three 

levels of analysis, with each level exposing different types of information given 

the previous level of analysis. The first level, i.e., the interval level, examines 

how the size and speed of change vary across time intervals. The intensity 

of the rate of annual change is estimated using the following equations 

(Aldwaik and Pontius, 2012) (for notation, see Table S3.1 in the 

Supplementary Material, appendix 1): 

 

 

The second level is called “category level” and it examines how the size and 

intensity of gross losses and gross gains in each land cover class vary across 

classes for each time interval. This level identifies which land cover classes are 

relatively dormant or active in each time interval (Aldwaik and Pontius, 2012). 

Equations (3) and (4) provide the intensity of a class’ annual gain and loss, 

respectively: 
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The third level, the “transition level”, examines how the size and intensity 

of land cover class’ transitions vary across the other classes that are 

available for that transition (Aldwaik and Pontius, 2012).   At each level, the 

method tests for stationarity of patterns across time intervals and identifies 

which land cover transitions are particularly intensive in a given period. 

Aldwaik and Pontius (2012) provide a detailed explanation of the limitations 

concerning where the transition from a particular land cover class m to a 

class n can occur. For example, if a given land cover class n exists at a 

particular location at the initial time, then class n cannot gain at that place. If 

class n gains, then it must gain from locations that, initially, are not class n. If 

class n gains uniformly across the study area, then this class will gain from 

other classes, in proportion to the initial sizes of these land cover classes. 

Alternatively, class n might intensively avoid gaining from some particular 

class(es) and might intensively target gaining from some other class(es). 

Given the observed gross gain of class n, Equations (5) and (6) identify which 

other classes are intensively avoided versus targeted for gaining by class n 

in a given time interval: 

 

 

We used the intensity.analysis package in R to carry out the processing 

(https://cran.r-project.org/ 

web/packages/intensity.analysis/vignettes/README.html). 

 

3.3.2.5. Landscape Pattern Analysis 

 

Post-classification comparison is most informative about changes in the 

composition of a landscape but gives us little—only visual—information about the 

spatial characteristics of these changes and the distribution of landscape 

https://cran.r-project.org/web/packages/intensity.analysis/vignettes/README.html
https://cran.r-project.org/web/packages/intensity.analysis/vignettes/README.html
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elements. Landscape pattern analysis using landscape metrics provide us  with 

additional information about the structure of changes, such as landscape 

fragmentation and patch aggregation or dispersion, as well as their changes in 

time. With the latter, we can observe changes in landscape spatial configuration 

through time. 

We followed the approach used by Gounaridis et al., (2014) and selected 

a number of class-level metrics (McGarigal, 1995) in order to study the changes in 

the spatial configuration and patterns of the ‘mangrove’ and ‘degraded mangrove’ 

land cover classes. We used ‘Percentage of Landscape’ (PLAND) as a measure 

of class abundance, and the ‘number of patches’ (NP), ‘landscape patch index’ 

(LPI), and ‘patch area median’ (AREA_MD) to study fragmentation of the 

classes of interest. With regard to patch shape analysis, we used the ‘area 

weighted mean patch shape index’ (SHAPE_AM), and for the aggregation of these 

classes, we used the ‘area weighted mean Euclidean nearest neighbour distance 

index’ (ENN_AM) along with its standard deviation (ENN_SD). Finally, we also used 

the aggregation index of ‘percentage of like adjacencies’ (PLADJ). Table 1 

provides a listing of the selection of landscape metrics used in this study, 

together with a short description of their correlation with mangrove forest 

fragmentation. For more information, refer to McGarigal and Marks (1995) who 

provide a full description of the metrics, including their mathematical formulas 
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Table 3.1. Selection of landscape metrics used in this study with a short 

description of their relationship with mangrove forest fragmentation 

   

Name Abbreviation Description 

Percentage of PLAND Class percentage in landscape 

Landscape (%)    proportion abundance) 

Patch area median  
 

The median of patch areas in a class  

(ha) AREA_MD (a summary metric for the size of 

  
patches in the class, which is not  

    influenced by very large patches) 

Number of patches NP The number of patches in each class 

     (Simple measure of fragmentation) 

Area weighted Mean SHAPE_AM Patch shape complexity at class level  

Patch Shape Index   (Indicative of changes at the edges) 

Largest Patch Index 

(%) 
 

Percentage of total landscape area 

 
LPI occupied by the largest-sized patch  

    (Measure of dominance) 

Percentage of like 
 

The proportions of like adjacencies to  

adjacencies (%) PLADJ the total adjacencies for the class’ cell 

Area weighted mean    (aggregation) 

Euclidean nearest 
 

Euclidean distance measured form  

neighbour distance 

(m) 
 

patch edge to the closest patch 

 
ENN_AM edge from the same class dispersions). 

  
 Here we use the area weighted mean 

  
 for the class to balance the influence 

     of large patches 

Euclidean nearest 
 

Measure of variation of ENN in the  

neighbour distance ENN_SD class (in comparison the mean shows 

standard deviation 
 

the form of distribution of patches 

     in the class) 
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3.4.  Results 

3.4.1.  Land Cover Mapping and Validation 

 

Figure 3. 4a–c are the outcomes of the classification of the metrics for 

the three epochs and are accompanied by pie charts that summaries the 

proposition covered by each class. For the middle and latest epochs (Figure 

3.4b, c), the combination of the optical with the SAR data produced slightly 

better results (Table 2) and were, therefore, the ones chosen for the 

subsequent analyses. The largest land cover class is by far woodland, which 

covers ~40% of the area (~23,000 km2). Agricultural land is the second largest 

in all three time points (~12,000 km2), while mangroves (degraded and non-

degraded) and grassland occupy significant portions of the delta, too (~8000 

km2). 

The classification results produced high overall accuracies of 79% (95% 

CI: ±3%), 83% (95% CI: ±3%), and 82% (95% CI: ±2.6%) for the three epochs, 

respectively (Table 3. 2. Per-class accuracies (% correct, producer’s and user’s 

Accuracies; Table 3. 2) were also high, with the exception of the bareland and 

grassland classes. The lower accuracies for these two types are attributed to the 

spectral confusion with the agricultural class: when fields are fallow, it gets 

confused with bareland, while when they are covered with vegetation, it is 

mostly confused with grassland (Tables S3.1–S5, Appendix 1). The latter is 

also confused with woodland, as open woodland pixels contain a significant 

amount of spectral response from grasses. 

Most importantly for the objective of this study, the mangrove class was 

mapped with high accuracy, with percentage correct and user’s and 

producer’s accuracies above 90% in all three-time steps and models (Table 3. 

2). The degraded mangrove class was also mapped accurately, with producer’s 

accuracies being consistently very high for all epochs and data 

combinations. However, there was some confusion between this class and the 

non-degraded mangroves (confusion matrices Tables S3.2–S6 in the 

Supplementary Material, Appendix 1), resulting in lower user’s accuracies, 

ranging from 77% to 79% for the first two time points (Table 3. 2). 

The inclusion of the SAR data in the classification of the more recent epochs 

generally improved the results but only slightly (Table 3. 2). The most 
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noteworthy improvements were achieved by the inclusion of the PALSAR-2-

based metrics in the latest time point, with the user’s accuracies of the water 

and urban classes improving by 4% (Table 3.2). 

 

 

 

Figure 3. 4. Land cover over the Niger Delta Region in (a) 1988, (b) 2000, and (c) 

2013. Pie charts show the respective estimates of the area covered by each land 
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cover type (%); scale bar corresponds to (a–c). Figures (d,e) are the losses and 

gains of each land cover type between 1988 and 2000; (f,g) the same for 2000–

2013. The white background in (d–g) signifies persistence. 

Table 3 .2. Overall and per-class accuracy statistics for the three epochs 

(Wa: Water; U: Urban; Wo: Woodland; B: Bareland; A: Agricultural; G: 

Grassland; DM: Degraded Mangrove; M: Mangrove; CI: Confidence 

Interval; C = Correct; PA: Producer’s Accuracy; UA = User’s Accuracy). 

 

                                              2000                                       2013                                     

1998 Landsat   200 Landsat    Landsat + JERS-1 Landsat 2013 Landsat+PALSAR-2 

 

 

3.4.2.  Land Cover Change Dynamics 

 

The three land cover maps were used to calculate the contingency 

matrix in Table 3.3. The matrix summarises, for the two periods, the area that 

has remained unchanged and the area and the type of change observed for 

each individual class. It also provides a summary of the area covered by each 

class in the beginning and in the end of each period as well as of the gains and 

losses they experienced. The spatial distribution of the latter is also illustrated 

in Figure 3. 4d–g. 

Overall 

Accuracy 

95% CI 

79.48                   82.36 82.61 81.27 82.9 

+0.003 

 

±0.0029 ±0.003 ±0.0027 ±0.0026 

 C PA UA C PA UA C PA UA C PA UA C PA UA 

Wa 73 79 73 75 85 75 75 83 75 74 85 74 78 87 78 

U 70 92 70 81 92 81 81 96 81 84 92 84 88 92 88 

Wo 84 79 84 87 83 87 87 83 87 84 85 84 84 85 84 

B 61 77 61 49 84 49 48 80 48 50 85 50 50 86 50 

A 81 80 81 88 81 88 88 81 90 88 79 88 87 79 87 

G 71 65 71 53 65 53 54 64 54 56 65 56 57 64 57 

DM 77 82 77 78 86 78 79 85 79 86 82 86 87 82 87 

M 91 90 91 90 90 90 91 90 91 90 92 90 90 93 90 
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Table 3.3. Contingency matrix for the two periods of study representing stable (in 

bold) and changed areas in km2.  (a) 1988–2000; (b) 2000–2013.  Wa:  Water; 

U: Urban; Wo:  Woodland; B: Bareland; A: Agricultural: G: Grassland; DM: 

Degraded Mangrove; M: Mangrove. A: Agricultural: G: Grassland; DM: 

Degraded Mangrove; M: Mangrove. 
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 a.         2000km2              

  Wa U Wo B A G DM M 1988 Gross 

          total loss 

 Wa 395.7 9.34 3.59 12.93 7.72 0.63 51.66 20.58 502.16 106.46 

 U 4.3 1444.71 95.36 4.59 341.98 85.32 6.09 7.56 1989.91 545.2 

 Wo 11.61 310.44 193,54.71 3.6 1655.9 2020.54 49.81 363.9 23,770.52 4415.81 

 B 10.1 10.09 0.3 72.67 19.14 0.19 0.12 0.28 112.9 40.23 

1988 A 20.52 543.09 647.15 39.38 8868.25 1439.74 7.48 5.89 11,571.48 2703.24 

 G 0.55 572.51 2419.61 0.87 2883.36 3534.56 1.62 8.34 9421.41 5886.86 

 DM 149.47 8.17 13.41 0.35 3.45 1.64 1169.07 454.69 1800.27 631.2 

  M 40.9 26.06 536.28 0.64 8.09 6 535.47 5743.7 6897.15 1153.45 

 
2000

 633.15 2924.41 230,70.43   135.03 13,787.88 7088.63 1821.33 6604.94   

 Total           

 
Gross

 237.46 1479.7 3715.71 62.36 4919.64 3554.07 652.25 861.24   

  Gain                     

b.     2013km2      2000 Gross 

          total loss 

 Wa 522.59 2.09 4.91 10.26 4.16 0.48 76.77 13.16 634.42 111.83 

 U 19.64 2150.29 173.38 18.35 357.87 184.36 10.72 10.19 2924.8 774.51 

 Wo 10.12 371.43 18,959.22 21.03 1251.56 2038.85 67.2 351.52 230,70.92 4111.7 

 B 58 5.09 1.99 57.13 12.33 0.38 0.09 0.09 135.1 77.97 

 A 25.86 933.43 939.59 46.28 9083.42 2754.41 3.55 1.58 13,788.12 4704.71 

2000 G 1.34 253.81 1784.19 5.44 1922.06 3113.85 5.57 2.38 7088.64 3974.79 

 DM 157.76 3.64 26.83 5.21 4.52 2.07 1158.61 462.79 1821.42 662.81 

 M 65.3 7.86 377.77 14.21 7.68 7.84 595.84 5529.72 6606.22 1076.5 

 2013           

 Total 860.61 3727.63 22267.88 177.91 12,643.60 8102.24 1918.34 6371.43   

 Gross           

  Gain 338.02 1577.34 3308.66 120.78 3560.18 4988.39 759.74 841.71     
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3.4.3.  Intensity Analysis 

 

The interval level of the intensity analysis identifies the time interval in 

which the overall annual rate of change is faster. The total change in both intervals 

was found to be relatively similar: ~17% of the total area in the first period and 

~15% in the second. However, the intensity of the annual area of change in 

the first interval is faster than in the second (1.42% and 1.16%, respectively; 

Figure 3. 5). The output of Equation (2) is 1.28%, depicted as a dashed line in 

Figure 3. 5. Compared to this value, the rate in the first period is considered 

‘fast’, while in the second ‘slow’. 

 

 

Figure 3. 5. Intensity of the annual area of change within the two-time intervals of 

the study. The dashed line is the uniform line (i.e., the output of Equation (2) 

Figure 3. 6 is the graphical representation of the ‘category level’ of the 

intensity analysis. Figure 6a,c depict the size of the annual gain of loss of each 

land cover class in the first and the second period, respectively. Figure 5b,d 

show the intensity for a class’ annual gain or loss, as calculated by Equations 

(3) and (4). The two dashed lines show the output of Equation (1) for each 

period, i.e., the uniform line for each period at this category intensity level (Aldwaik 

and Pontius, 2012). When an intensity bar remains to the left of the uniform 

(dashed) line, then the change is relatively dormant for that land cover class and 

period. On the contrary, if the bar extends to the right of the dashed line, then the 
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change is relatively active for that class and period. If, for a given land cover class, 

the intensity of the gains or losses remain active or dormant during all study 

periods, then the specific type is considered stationary. 

 

 

Figure 3.6. Category intensity analysis for the two periods. (a,c): gross 

annual area of gains and losses. (b,d): intensity of annual gains and losses 

within each land cover category. “# of elements” is the number of pixels. 

The dashed lines in (b,d) signify the uniform intensity value. Wa: Water; U: 

Urban; Wo: Woodland; B: Bareland; A: Agricultural: G: Grassland; DM: 

Degraded Mangrove; M: Mangrove. 

 

At the transition level, the intensity analysis identifies which transitions 

are more intensive in a given time interval.  Given the scope of the present 

paper and the need to keep the presentation of the results as succinct as 

possible, Table 3.4 summarises the results only for the transition from 

mangrove to any other class for the two periods. The outcome for all the other 

transitions is provided in Tables S3.7 and S8 of the Supplementary Material, 

Appendix 1.
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Table 3 4. Transition level intensity analysis FROM-Mangrove TO-all 

other classes (1988–2000 and 2000–2013). In bold and underlined: 

targeted classes (compared to uniform). Deg.: Degraded. 

 

 

 

3.4.5.  Landscape Pattern Analysis 

 Figure 3.7 depicts the evolution of the selected landscape metrics through time 

for the healthy and the degraded mangroves classes 
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Figure 3.7. Landscape metrics for the mangrove and degraded 

mangrove classes. (a) Percentage of Landscape (%; PLAND); (b) 

Number of patches (NP); (c) Largest Patch Index (%; LPI); (d) Area 

weighted mean Euclidean nearest neighbour distance (m; 

ENN_AM); (e) Patch area median (ha; AREA_MD); (f) Area 

weighted Mean Patch Shape Index (SHAPE_AM); (g) Percentage of 

like adjacencies (%; PLADJ); (h) Euclidean nearest neighbour 

distance Standard Deviation (ENN_SD). 

 

3.5.  Discussion 

 

Accurate and reliable information of land cover dynamics is essential for 

the sustainable management of tropical deltas and mangrove ecosystems 

and their capacity for ecosystem service provision.  The ‘traditional’ remote 

sensing mapping approach involving the use of image mosaics of optical 

data from two dates, together with likelihood function maximisation image 

classification algorithms, is not reliable in the humid tropics due to cloud 

cover (Martinuzzi et al., 2007; Okoro et al., 2016), data availability (Kuenzer 

et al., 2014a; Kirui et al., 2013) , and algorithm performance. This has led to 

conflicting land cover change estimates for the largest river delta in Africa 

and the failure to assess the extent of degradation of one of the most 

endangered ecosystems in the world (IUCN, 1992). Our results show that, by 

incorporating novel image compositing techniques, spectral-temporal 

metrics, and machine learning classification algorithms, a reliable 

assessment of the change dynamics over the Niger Delta Region can be made. 

Our accurate land cover estimates also allowed for a more comprehensive land 

change analysis that incorporates an assessment of change intensity and the 

fragmentation of a key component of the NDR: its mangrove forests. 
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3.5.1.  Land Cover and Change Dynamics 

 

There is an inherent difficulty in mapping land cover in tropical deltas, in 

general, and mangrove forests, in particular, as they are affected by seasonal 

and intertidal effects, with pixels often comprising of a mixture of vegetation, soil, 

and water due to their location between land and sea and the average tidal range 

in the Niger Delta being 1.5m (James et al., 2007). Nevertheless, we mapped 

the eight main land cover types for the entire NDR, achieving high overall 

accuracies in all epochs (~79% for 1988, and 82% for 2000 and 2013; Table 3. 

2) and high producer’s accuracies for all classes and years. With the exception 

of the grassland and bareland classes, user’s accuracies were also high (from 

70% to 91%). Our results compare favourably with other studies in the NDR 

(Nwobi et al., 2020; Ayanlade and Drake, 2016; Onojeghuo and Blackburn, 

2011; Salami et al., 2010). Regarding the mapping of degraded mangroves, one 

of the main objectives of this paper, our study is the first to map this accurately 

with user’s accuracies between 77% and 87% and producer’s consistently above 

82%. The only other study that attempted to map degraded mangroves reported 

very low accuracies   

The results reveal some interesting dynamics: 

• There is consistent net loss in mangrove and woodland types and a 

consistent net gain of the urban class in both periods of study 

• The area covered by non-degraded mangroves was reduced by ~250 

km2 in each period (=Gross Loss – Gross Gain) 

• About 10% of mangroves are degraded in each interval, and an 

additional 34 km2 of mangrove were converted to urban land use in both 

periods 

• A portion of degraded mangrove is able to bounce back into its healthier 

state 

• The net loss for the woodland class was more than 700 km2 in each 

period. A part of this class is converted to grasses (~8% and ~9%) and to 

agricultural land (~7% and ~5%) 

• A quarter of the area mapped as grassland in the initial dates is 

converted to woodland by the end date 

• The built-up areas increased by 47% (~900 km2) in the first period, an area 
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larger than the size of New York City. In the second period, the increase was 

smaller (~800 km2) but still it amounted to 27% of the area covered in 2000 

More specifically, according to our findings, healthy mangroves reported 

a net loss in both study periods: 292 km2 in the first and 235 km2 in the 

second, while degraded mangroves consistently reported a net gain (21 km2 

in the first and 97 km2 in the second). Interestingly, our study and the studies 

by Kuenzer et al., (2014a) and James et al., (2007) found a similar decrease 

in the overall combined (degraded and non-degraded) mangrove area. 

According to our results, this area was 270 km2, while, in an almost identical 

period of study, Kuenzer et al., (2014a) found that the loss was 239 km2. In 

the James et al. (2007) study between 1987 to 2002, the loss was 213 

km2. However, our more accurate findings identify the total areas covered 

by the mangrove classes to be very different to the areas in the Kuenzer et 

al., (2014a) study: we found that mangroves and degraded mangroves 

occupied an area between 8697 and 8428 km2 in the two periods, while Kuenzer 

et al. (2014a) claim that these numbers were 10,311 and 10,072 km2, 

respectively. These figures differ by almost a fifth and can play a significant 

role in the setting of conservation targets, management policies, and 

sustainability goals. Moreover, our mangrove results compare favourably 

with three studies that mapped mangroves as one class accurately: the study 

of Nwobi et al.,  (2020), who found that mangroves occupied an area of 9115 

km2 in 2007 and 8017 km2 in 2017; the study of Ayanlade and Drake (2015) 

(9965 km2 in 1987, 9255 km2 in 2001,and 8430 km2 in 2011); and the study by 

James et al.,  (2007) (7037 km2 in 1987 and 6824 km2 in 2002). 

While it is relatively simple to compare the results on the extent of mangroves 

between the different studies that mapped land cover change in the NDR, as 

this class is confined in the coastal belt and is always included within the study 

area, it is not as straightforward to compare the findings on other land cover 

types, as the study areas do not match. In the case of woodland, for example, 

the biggest land cover type in the NDR, our study found that it occupied 23,770 

km2 in 1987 and suffered net losses in both periods: ~700 km2 in the first and 

~800 km2 in the second. The study by Ayanlade and Drake (2016) also found 

net losses in both periods for the combined “lowland rainforest” and “freshwater 
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forest” classes but found that these occupied 31,200 km2 in 1987, 25,400 km2 

in 2001, and 21,470 km2 in 2011. However, their study area far exceeds the 

boundaries of our delineation of the NDR. The study by Kuenzer et al., (2014a) 

also agrees that “forest” and “swamp forest” experienced net losses in both 

periods. They report far smaller areas than both our study and the study by 

Ayanlade and Drake (2016): 18,325 km2 in 1987 and 15,408 km2 in 2013. 

Finally, the Nwobi et al., (2020) study also agrees that “tropical forests” were 

reduced but reported that these occupied 29,000 km2 in 2007 and 25,500 km2 

in 2017. As all of these studies, including ours, reported high per-class 

accuracies in the mapping of forests, it is difficult to ascertain which on is closer 

to the true figure. 

The difficulty in comparing the findings of different studies remains for the 

agricultural class, which we found to significantly increase in the first period (from 

11,571 to 13,787 km2) and decrease in the second (12,645 km2 in 2013). An 

additional issue to the problem of relating to different study areas around the NDR 

is the choice of land cover nomenclature. Based on our knowledge of the region 

and on the classification systems of the ESA 20m African land cover data for 2016 

and the GlobeLand 30 m data for 2010, we included a grassland class in our 

mapping efforts, which were found to decrease in the first period (from 9421 to 

7089 km2) and increase in the second (8102 km2 in 2013). Our figures for the 

agricultural class are significantly lower to those in Ayanlade and Drake (2016), 

Kuenzer et al., (2014b), and Nwobi et al. (2020). However, none of these studies 

included a separate class for grassland but, according to their spatial outputs, 

appear to have mapped this together with the agricultural class. We recognise 

that separating these classes poses difficulties, as the spectral separability 

between them is low: our user’s accuracies for grassland are testament to that 

(Table 2) However, we strongly believe that it is a shortcoming to map these two 

classes as one, as this precludes the identification of very important land cover 

dynamics between either of these classes and, for example, the woodland or 

urban classes. If summed together, our estimates of agricultural and grassland 

compare favourably with those of Nwobi et al., (2020), who estimated the area 

covered by “agricultural land” as 21,733 km2 in 2007 and 24,179 km2 in 2017. 

An important change that occurred in both periods is the expansion of 

the built-up areas: from 1990 km2 in 1988, to 2924 km2 in 2000, to 3728 km2 in 

2013, i.e., an 87% increase. As in the previous land cover types, the difference in 
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the extent of the study area makes comparison to the other studies difficult. For 

example, the Ayanlade and Drake (2016) study reports much higher figures, but 

their study includes the city of Benin, the fourth largest Nigerian city, which lies 

outside of our delineation of the NDR. Similarities exist between our findings 

and the Nwobi et al., (2020) study: their ‘built-up-area’ class occupied 3950 km2 

in 2007 and 5938 km2 in 2017. Their higher estimates can be attributed to the fact 

that they include the city of Calabar and a number of built-up areas in the northeast 

of their study area that lie outside our delineation of the NDR. 

According to the results of our intensity analysis (Figure 3.6b), in the first 

period of study, only mangroves and woodland demonstrated dominant gains, 

while all the other categories had active gains. Interestingly, only the grassland 

and bareland types had active annual change intensities, with the former having 

the largest size of losses in this period (Figure 3.6a). However, these two are 

the classes that scored lower user’s accuracies and the respective intensity 

results need to be treated with caution. Notable results from this period are the 

~five times greater annual intensity of mangrove loss than gain and the ~ten 

times greater annual intensity of urban gain than loss. The intensity of agricultural 

expansion is also noteworthy, reporting ~two times greater gain than loss. 

In the first period, the land cover class that mangroves ‘target’ most 

intensively when they change is degraded mangroves, with a transition intensity 

of 1.57% of the total area of degraded mangroves in the end of the first period. 

This is much higher than the estimated uniform change intensity of 0.06%. An 

area of 535 km2 of mangroves was degraded by the year 2000. In the second 

period, this change is even more intense (1.80%, higher than the uniform 

intensity of 0.08%) and leads to a conversion of a total of 596 km2 of mangrove 

to degraded mangrove by 2013. Bareland is also found to be a targeted class for 

mangroves with an estimated transition intensity of 0.20% (221 km2). Water also 

targets bareland, as well as mangroves and degraded mangroves, with transition 

intensities higher than the estimated uniform change intensity. As this is the first 

paper to undertake an intensity analysis in the NDR, we are unable to compare 

our findings to existing studies. 
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3.5.2.  Fragmentation and Degradation of the Niger Delta 

Mangrove Forest 

The Niger Delta’s mangrove forest is a hub for substantial oil and gas 

deposits. As a consequence, it is highly vulnerable to activities of oil and gas 

extraction, e.g., land clearing, dredging, construction of flow stations, pipe and 

seismic lines, well blowouts,  leakages or corrosion,  equipment failure, error 

during operation or maintenance, accidents during transportation, sabotage, 

etc., as well as urbanisation, selective logging, and the proliferation of the 

invasive Nipa palm species (Nypa fruticans) that lead to the forest’s 

destruction, fragmentation, and degradation (James et al., 2007; Okonkwo et 

al., 2015; Nwobi et al., 2020; Kuenzer et al., 2014a; Imevbore et al., 1997). 

Our land cover change and intensity analyses showed that degraded 

mangroves increased in both periods of study and mangroves losses were five 

times more intense than gains. To further assess the condition of the Niger Delta 

mangrove forest, we carried out the first ever fragmentation analysis of the area. 

Our fragmentation results show that the ‘number of patches’ (NP) for the healthy 

mangroves increased persistently while the ‘total percentage of landscape’ 

(PLAND) decreased (Figure 3. 7a-b). The ‘largest patch index’ (LPI), a measure 

of dominance (Figure 3. 7c), shows that in the second period, larger patches are 

on a decrease. The ‘area weighted mean shape index’ (SHAPE_AM; Figure 3. 

7f) is also decreasing for the healthy mangroves, in both periods: this indicates 

that changes are happening in the perimeter of patches, uniformly. The ‘area 

weighted mean Euclidean nearest neighbour distance’ index (ENN_AM; Figure 3. 

7b) is slightly decreasing, indicating less dispersion of the healthy mangrove 

patches. The standard deviation of this index (ENN_SD; Figure 3. 7h) is 

decreasing but with high values compared to the mean, which indicates a more 

uneven distribution of patches. The high and steady values of PLADJ (Figure 3. 

7g) confirm the ENN results: the healthy mangrove patches remain relatively 

aggregated throughout the study period. This was expected, as mangroves are 

very localised within the delta and naturally only occur by the coast. 

Figure 3. 7 also shows the change in landscape metrics through time for 

the degraded mangroves. The size of this class (PLAND; Figure 3. 7 a) is 

constantly increasing but shows some fluctuation in the number of patches 

(NP; Figure 7b). A divergent pattern is observed in the evolution of the number 

of patches and the median of patch area metrics (AREA_MD; Figure 3. 7e): 
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NP increases in the first period and AREA_MD decreases, while in the second 

period, this is reversed. The latter means that this class becomes less 

fragmented, with more patches and lower patch size in the first period. Between 

2000 and 2013, there are fewer patches and larger patch sizes, indicating that 

some of the first period’s patches have merged to form larger ones. 

A visual examination of the land cover maps and derived change maps 

from these revealed three areas that demonstrate higher concentrations of 

degraded mangrove. One such area is in the eastern part of the NDR, around 

the city of Port-Harcourt and the towns of Bonny, Okrika, and Degema 

(Figure 3. 8a). Mangrove degradation here can be attributed to the effects of 

rapid urbanisation and oil extractive activities (Kadafa, 2012; Duke, 2016), as 

demonstrated by the overlap with the locations of the oil wells, the pipelines, 

and the oil spills in Figure 3. 8a. At the central part of the study area, mangrove 

degradation is mainly due to oil spills resulting from crude oil extractive 

activities, notably near River Bayelsa and the towns of Nembe, Southern Ijaw, 

Ekeremor, Brass, and Oloibiri, where oil extraction first began as early as the 

1950s (Figure 3.8b). The highest concentration of degraded mangroves is, 

however, in the western part of the NDR, in the Delta state (Figure 3. 8c). 

This area shows widespread degradation, with a notable increase in the 

second and third date around the towns of Wari South and Wari Southwest.   

Several oil spill and gas incidents have been reported in the literature around 

this area and period (Kadafa, 2012; Balogun, 2015; Duke, 2016; Twumasi 

and Merem, 2006). 
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Figure 3.8. Oil wells, pipelines, oil spills, and mangrove degradation hotspots in  

three parts of the study area: (a) the eastern area, around the city of Port-

Harcourt; (b) the central area, near the river Bayelsa, and (c) the western area 

around the cities of Wari South and Wari South West. U: Urban; M: Mangrove; 

DM: Degraded Mangrove. (Oil spill data: https://www.nosdra.gov.ng and 

https://oilspillmonitor.ng. Oil wells and pipeline data: https://www.shell.com.n
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3.6  Conclusions 

 

The Niger Delta Region (NDR) is an important ecosystem, providing 

numerous services to the millions of its human inhabitants. Despite its 

undisputable importance, it is under threat of degradation, mainly due to human 

pressure, and especially as a direct consequence of the activities related with 

the significant oil and gas reserves in the region. Understanding the extent of 

the problem requires an accurate assessment of the land cover dynamics in the 

region, which can only be achieved through the use of state-of-the-art remote 

sensing technologies and analytical techniques. Cloud contamination and gaps 

in the commonly employed Landsat archive makes this a fathomable task. 

Here, we were able to accurately assess the land cover dynamics over a 

period of 25 years using the Google Earth Engine cloud computing platform to 

estimate spatial-temporal Landsat-based metrics in three epochs. Our results 

showed that mangroves, the lowland rainforests, and the freshwater forests 

have demonstrated a net loss, while the built-up areas have almost doubled 

in the period of study. By performing a land cover change intensity analysis, 

we were also able to demonstrate how highly intense these changes were. 

We also tested the ability of L-band SAR data in improving the Random 

Forests classifications of the main land cover types in the delta and found 

that these only improve the mapping of the urban and water classes, provided 

that more than one polarisation is available.  Our results provide a valuable 

quantification of the land cover dynamics in the NDR and the first ever 

accurate assessment of the spatial extent of the degraded mangroves in the 

region. Such assessments are imperative for successfully addressing a number 

of the Sustainable Development Goals and achieving Land Degradation 

Neutrality by 2030, as envisaged by the United Nations LDN Target Setting 

programme. 
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Chapter 4 

 

Assessing the Spatial Drivers of 

Mangrove Degradation in the Niger 

Delta Region 

 

4.1 Introduction  

 

Mangroves are one of the most ecologically important ecosystems in the 

coastal tropics and have great socio-economic value to local inhabitants. They 

provide powerful shoreline protection against climate related hazards, such as storm 

surges, extreme flood and erosion, tsunamis or cyclones, and sea level rise 

(Guannel.  2016; Narayan et al., 2016; Ellison, 2015), in addition to stabilising 

coastal sediments, nutrient cycling, filtering and absorption pollutants, enhancing 

water quality, and acting as powerful carbon sinks (Chaudhuri et al., 2019; Twilley 

and Day, 1999; Blasco et al., 1996; Nor and Obbard, 2014;  Wong et al., 1997; 

Donato et al., 2011). They act as nursery grounds for juveniles of many 

commercially important fish species and crustaceans (Saenger et al., 2013a; 

Sheridan and Hays, 2003; Manson et al., 2005b; Ronnback, 1999; Kenyon et al., 

2004).  

In Nigerian coastal areas (i.e., predominantly the NDR), mangroves are 

important habitats responsible for more than 70% of fisheries catches (Udoh, 2016), 

with more than 90% of local inhabitants depending on them for their livelihood 

(Davies, 2005). In 2000, shrimp species which are entirely wild caught in the NDR, 

worth US$ 46,495, 000 (N5.58 billion), contributed to over 43% of Nigeria’s total fish 

export (Zabbey et al., 2010). They play a key role in human sustainability and 
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livelihood. Hence, they utilized by coastal communities to meet subsistence need 

for food, including fisheries, bush meat, extraction of timber for fuel wood and 

construction (Zabbey et al., 2010; Numbere, 2014).  

Despite the value of mangroves and their considerable conversation 

successes (Friess et al., 2020), mangroves continue to regress at a global rate of 

0.13% annually (Goldberg et al., 2020). An estimated global mangrove area of 

1389km2 were reported to be in various forms of degradation condition between 

1996 and 2016 (Worthington and Spalding, 2018). In tropical regions, forest 

degradation often precedes their loss (Vancutsem et al., 2021).  As such, 

mangroves risk total disappearance by the end of the century due to present 

disturbance rates (FAO, 2007; Duke et al., 2007a). Global mangrove degradation 

occurs mainly due to human activities and climate changes, including exploitation 

of timber and fuelwood, seawall construction, reclamation for agri-and aquaculture 

overfishing, coastal pollution, sea level rise, flooding, and cyclone loss of mangroves 

(Meng et al., 2016; Mmom and Arokoyu, 2010; Wenqing Wang et al., 2020; Olaniyi 

et al., 2012; UNEP, 2011).  

In the NDR, mangrove area has relatively remained stable over the last few 

decades (James et al., 2007; Kuenzer et al., 2014a; Nwobi et al., 2020; Nababa et 

al., 2020). However, mangrove degradation is widespread and is increasing 

consistently over time (Salami et al., 2010;  Kuenzer et al., 2014a; Nababa et al., 

2020). The causes of degradation in mangroves in the NDR have been attributed  

to selective logging for fuel wood and housing construction, pollution from oil spills, 

coastal pollution, dredging activities, population increase, settlement expansion, 

and nypa palm invasion, lack of political frameworks for appropriate policies and 

management, and lack enforcement of existing forest laws (Macintosh and Ashton, 

2003; Duke, 2016; Kadafa, 2012; CEDA, 1997; Ohimain, 2004; Balogun, 2015; 

Ayanlade and Howard, 2017). Additionally, the low-lying nature and the average 

tidal range in the Niger Delta being 1.5m makes mangroves of the region vulnerable 

to climate change (World Bank, 1995b; Uyigue and 2007, 1990), particularly, the 

impact of sea level rise (Okali and Eleri, 2004), coastal erosion and flooding 

(Awosika, 1995; Chima and Larinde, 2016) impacts.  

Mangrove degradation leads to mangrove loss. For example, in the 

Democratic Republic of the Congo, ~30% of total primary forest that was lost was 

initially degraded (Shapiro et al., 2021). Mangrove degradation has great 

consequent on carbon emission than deforestation (Pearson et al., 2017; Duke, 
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2016), loss of biodiversity (Begam et al., 2020), and ultimately leads to the reduction 

of numerous ecosystem services. This can have far reaching negative socio-

ecological and environmental effects on the local communities who primarily depend 

on mangroves for their means livelihood.  

Twenty percent of global population inhabits the tropical coastal regions 

(100km from shoreline), representing 7% of all land worldwide, and a density twice 

the global average (Sale et al., 2014). The NDR, is somewhat representative of 

these statistics, with ~17% of population living in the coastal urban centres, 

representing 12% of Nigeria’s total surface area (Ojile et al., 2017). An estimated 

60% of the population in the region heavily relies on mangroves for their livelihoods 

(Mmom, 2007; James et al., 2011). This number is expected to increase, given that 

global tropical coastal population is estimated to grow by 45% by 2050 (Sale et al., 

2014). Coastal population growth has been suggested to be the main factor driving 

mangrove degradation and loss worldwide (Romañach et al., 2018; Atkinson et al., 

2016). Spatial features including, road networks (Rideout et al., 2013; Hayashi et 

al., 2019) proximity to coastal population centers (Wang et al., 2021; Hirales-Cota 

et al., 2010), infrastructure (Cardenas et al., 2017), distance from rivers (Wang et 

al., 2021), and distance from coastlines (Wong et al., 2020) are also factors driving 

mangrove degradation. Given the undisputable importance of mangroves and the 

multiple threats they are facing, an understanding of the spatial drivers of mangrove 

degradation, their magnitude, and how they interact is necessary for improved policy 

development related to their protection (Griscom et al., 2020).  

Modelling techniques in attempts to identify spatial change drivers within the 

tropical forests context have either emphasized deforestation (Newman et al., 2014; 

Ludeke et al., 1990; Cropper et al., 1999) or forest loss (Reddy et al., 2017; Fagua 

et al., 2019), and general land use change (Olaniyi et al., 2012; Kamwi et al., 2018; 

Nakakaawa et al., 2011). However, recently, very few studies have emerged in the 

literature addressing forest degradation drivers (Shapiro et al., 2021) and forest 

degradation and deforestation in combination (Schleicher et al., 2017; Van Khuc et 

al., 2018), mostly likely due to the importance of reducing emissions as stipulated 

by the various the Intergovernmental Panel on Climate Change (IPCC) reports such 

as the 5th assessment reports (Mastrandrea et al., 2010). 

Land-use simulation models allow for the assessment of the relationship 

between drivers of change and land use changes (e.g., mangrove degradation). The 

remote sensing-based approach, where land cover classification maps and change, 
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maps are examined to identify land uses that replace mangrove has been the long-

standing approach to understanding mangrove change drivers (James et al., 2007; 

Kuenzer et al., 2014a; Numbere, 2014; Ferreira and Lacerda, 2016; Thomas et al., 

2017; Villate Daza et al., 2020; Ma et al., 2019; Zhang and Su, 2020). However, 

mangroves are dynamic and so are the driving forces and needs to be quantitatively 

and progressively assessed. For example, as the drivers of mangrove deforestation 

change and in rate, degradation drivers can rapidly dominate (Friess et al., 2019).  

There are inherent difficulties in accessing the mangrove ecosystem 

(Carugati et al., 2018). Moreover, in some regions of the world, e.g., the sub-

Saharan Africa tropical regions data availability and accuracies is a big issue 

(Lambin, 1997). In the NDR, security instability combines to make assessment of 

land cover drivers difficult (Ayanlade and Howard, 2017).  

The advancement in spatial data availability, high computing power together 

with algorithm improvements (e.g., neural networks) allow the creation of complex 

statistical and simulation models achievable (Rideout et al., 2013). One of such 

models is the logistic regression models (Verburg et al., 2004) and the other is 

artificial neural networks (ANN) (Pijanowski et al., 2002; Lin et al., 2011).  The ANN 

has been praised as a robust alternative for logistic regression-based models, 

providing better fit between driving variables and land use patterns (Lin et al., 2011; 

Mas et al., 2004; Liu and Seto, 2008). 

The multi-layer perceptron (MLP) being the most common ANN used to 

successfully quantify interaction between driver variables and land use changes 

(Voight et al., 2019; Armenteras et al., 2019; Shooshtari and Gholamalifard, 2015; 

Reddy et al., 2017), takes advantage of its capability of modelling multiple transitions 

simultaneously (Eastman, 2016) and ability to resolve spatial autocorrelation issues 

and account for non-linearities which undermines the predictive accuracy of models 

(Pijanowski et al., 2002; Vahidnia et al., 2010). 

Despite the demonstrated potentials of quantitative predictive modelling 

approaches, there are very limited studies in the literature quantitively assessing 

drivers of mangrove change (Hayashi et al., 2019; Rideout et al., 2013; Hirales-Cota 

et al., 2010; Ilman et al., 2016). Even fewer studies have attempted to quantitatively 

assess the drivers of mangrove degradation. Meng et al., (2016), used k-means 

cluster analysis to identify human driven drivers of mangrove degradation over three 

historic periods based on mangrove-derived organic matter and mangrove pollen as 

proxies to reconstruct mangrove development in Maowei Sea, China. Omo-Irabor 
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et al., (2011) used Multi-Criteria Analysis, incorporating a number of environmental 

and socio-economic criteria (i.e. driver variables) determined by expert opinion to 

develop a mangrove vulnerability model which identified the influence of driver 

variables used in modelling potential degradation in the Western, Niger Delta region. 

However, this was not validated.  

To date, there is no study in the literature quantitatively assessing, in particular, 

the drivers of mangrove degradation in the NDR. There is a need to advance the 

speculative assessment of mangrove degradation drivers by previous studies in 

NDR, in order to support appropriate development of polices and measures for 

sustainable mangrove management in the region. This aims to do so by 

incorporating remote sensing and geographical information techniques, and land-

use simulation models to: 

 Identify the spatial drivers of mangrove degradation in the NDR. 

 To understand how the drivers influence mangrove degradation over two 

period of the study. 

 

4.2.   Study Area 

 

The Niger Delta is a flat alluvial plain located on the Gulf of Guinea along the 

Atlantic Ocean in the inner southern part of Nigeria (Figure 1). It is the largest river 

delta (over 29, 900km2) in Africa formed primarily by sediment deposition (Goudie, 

2005). The Delta has a coastline of 470km bordered by a dense mangrove forest 

and covered by ~50% of water bodies comprising of the diverse networks of river 

systems and brackish lagoons (Atakpo and Ayolabi, 2009; Umoh, 2008; Ikelegbe, 

2005). It has tropical monsoon climate with an average temperature of 27oC 

throughout the year, and annual rainfall of 3000 to 4500 mm (World Bank, 1995b). 

It is considered a hot spot for biodiversity in the world with 3 sites designated as 

Ramsar Wetlands of International Importance (IUCN, 1992). With a coverage of 

slightly above 56, 000km2, the Delta comprises of 7 administrative states (Abia, 

Akwa Ibom, Anambra, Bayelsa, Delta Imo, and Rivers) and has a population of over 

33 million (265 people per km2) (NBS, 2018). Most of the populace live in the rural 

areas near the coast and depend on their natural environment such the mangrove 
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forests for their livelihoods (Onyena and Sam, 2020). Mangroves in the region are 

mainly confined at the edges of the coastal Delta.  

The Niger Delta has the largest mangrove forest in Africa (5000 – 8600km2) 

and the fifth largest mangrove forest in the world (Spalding, 2010). It is recognised 

as one of the most developed and productive mangroves in the world and yet one 

degraded by activities of oil and gas, amongst other land uses (Duke, 2016; Mark 

Spalding, 2010). Mangroves in the region are recognised important resource with 

great socio-economic, cultural, and spiritual value to local inhabitants, providing food 

(e.g., Fisheries), income, and guaranteeing survival of the local communities (James 

et al., 2007; Numbere, 2014). 

 

 

Figure 4. 1: (a) Our delineation of the Niger Delta Region (comprising of the states 

of Abia, Akwa Ibom, Anambra, Bayelsa, Delta, Imo, and Rivers), and its location 

within West Africa (b) and (c) Nigeria. 
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4.3. Materials and Methods 

 

4.3.1.  Data description 

 

Understanding changes in relation to explanatory variables (i.e., drivers of 

change) in land cover changes studies usually require a broad range of data due to 

its complexity, dynamic and nonlinearity. The driving forces of mangrove 

degradation were assessed for two periods: first period (1988 – 2000) and second 

period (2000-2013).  Eight spatial datasets spatial driver variables: dynamic 

(population density, distance from settlement, distance from roads) and static: 

(distance from pipelines, distance from oilfields, distance from oilwells, distance 

from oil spills, distance from rivers) were used (Figure 4.2). The choice of variables 

was selected based on knowledge of driving forces of mangrove degradation in the 

area, the availability of spatial driver data, and their explanatory power of Cramer’s 

V coefficient (~0.15 and ~0.4). As the study emphasizes on anthropogenic 

disturbances, only human induced driving variables of mangrove degradation were 

considered whilst climatic variables were ignored. By definition, degraded 

mangroves are a development in the condition of mangroves where they have less 

biomass and tree cover, and loss their capacity in provision of various ecosystem 

services such as fisheries, flood and erosion protection, carbon sequestration, 

amongst others (Nababa et al., 2020).  
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Figure 4.2: Spatial driver variables used in the study. (a) slope; (b) aspect; (c) 

population density; (d) distance from rivers; (e) distance from roads; (f) distance 

from settlements; (g) distance from pipelines; (h) distance from oil wells; (i) 

distance from oil fields; distance from oil spills; (k) distance from coast. 
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4.3.1.1 Land cover data 

 

Land cover maps and land cover change are key to understanding the driving 

factors of such change. Land cover maps centred around three epochs (1988, 2000 

and 2013) over the study period were used in this study. The land cover data are 

outputs of land cover classification carried out in the chapter 3 using a machine 

learning classifier called the Random Forests classification models within the R 

statistical environment. The land cover categories classified included the main land 

cover types in the study area: Urban, Woodlands, Agriculture, Grasslands, 

Bareland, Mangroves, and Degraded Mangroves. The decision for this was in-order 

to provide a general understanding of the main land cover dynamic types in the 

study region. To keep the study as succinct as possible, the mangrove class data 

(i.e, healthy mangroves and degraded mangroves), being the land cover category 

of particular interest to the study was used. For more information about data sources 

and methodologies used in deriving the mangrove cover classification, refer to 

chapter 3 of the study. 

 

4.3.1.2. Population density data 

 

Population dynamics plays a key role in understanding interactions between 

humans and the environment; hence it is an important driving force to land cover 

change.  It provides valuable information to changing pattern of human distribution 

on the landscape which can be useful to understanding certain land cover change. 

Kok (2004), opined those changes in Land use cover change (LUCC) patterns is 

greatly influenced by population density.  

Population data used in this study included data sourced from WorldPop 

(https://www.worldpop.org/geodata/listing?id=77;Tatem, 2017) and Global Human 

Settlement layer (GHSL) database 

(https://ghsl.jrc.ec.europa.eu/download.php?ds=pop;Florczyk et al., 2019). Data for 

1990 and 2000 -2013 respectively were sourced from the two different sources due 

to constraint in the availability of population data for the study period in a consistent 

data source. Additionally, for the first period (1988-2000), the GHS population grid 

(GHS-POP) for 1990 being the closest date available was used to substitute for the 

earliest date of the study (1988) due to unavailability of data for the period. The 
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GHS-POP data used contains distribution and estimates population density 

expressed as the number of people per cell with a 1km resolution. Estimates were 

derived through dasymetric mapping approaches, where mainly best vector 

population estimates are combined with the finest spatial extents of human 

settlements estimated from Landsat data (Freire et al., 2016). The datasets contain 

estimates for 1975,1990, 2000, and 2014. 

The WorldPop contains population density estimates with a 100 by 100m 

resolution. Its population estimates were produced by using census data and 

several geospatial covariates through the Random Forests machine learning 

methods  (Stevens et al., 2015). The datasets contain yearly population density 

estimates for period 2000- 2020. The WoldPop develop a number of estimates of 

gridded population count dataset that allows decision makers and data users with 

the option to assemble population estimates into varying spatial units within existing 

or customized areas (Tatem, 2017). 

 

 

4.3.1.3. Spatial Infrastructure datasets 

 

Infrastructure developments such as construction activities e.g., roads 

(primary and secondary), airports, schools, settlements amongst others have been 

identified as an important drivers of land cover change and mangrove change in 

many studies of the tropical forest regions (Newman et al., 2014; Kamwi et al., 2018; 

Olaniyi et al., 2012; Monteiro et al., 2011; Hayashi et al., 2019; Rideout et al., 2013). 

In this study, infrastructure data are divided into two categories: the built-up and oil 

and gas infrastructure dataset. The built-up data comprises of roads and 

settlements, whilst the oil and gas infrastructure comprise of oil spills data, data for 

pipelines, oil wells, and oil fields. 

 

4.3.1.4. Built up infrastructure 

 

Data for roads used were sourced from Global Roads Open Access Data Set 

version 1 (gROADSv1) (https://sedac.ciesin.columbia.edu/data/set/groads-global-
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roads-open-access-v1;CIESIN and ITOS, 2013) and OpenStreetMap (OSM) 

(https://download.geofabrik.de/africa/nigeria.html;GmbH and Contributors, 2018). 

The gROADSv1 data are characterised by data granularity (notably only 

primary roads) which pose a problem for usage (Ilie et al., 2019). Therefore, these 

data were harmonised with relevant OSM data (with more quality and reliability) 

which included all roads categories and information, including primary and 

secondary roads, footways, amongst others. These were then used for first period 

(1988-2000) of the study.  For the second period (2000- 2013), relevant 

OpenStreetMap roads extracts were used.  

The gROADS data contain aggregation of global road coverage of roads 

networks between1980s to 2010 with a resolution of 30m, although spatial and 

temporal variation exists amongst countries (most countries have no confirmed 

date) (Ilie et al., 2019). It is prepared using the UN Spatial Data Infrastructure 

Transport (UNSDI-T) version 2 as a common data model, where quality public road 

dataset by country is aggregated (Ilie et al., 2019). 

The OSM contain freely accessible, open-source, frequently updated road 

networks data. OSM is a volunteered geographic information (VGI) project initiated 

in 2004. Community volunteers collect and submit geo-spatial information to the 

global OSMgeospatial database (Ciepluch et al., 2009). It enables public data users 

have access to freely geo-spatial data of the world, volunteers contribute and 

collaborate via its VGI platform (Minghini and Frassinelli, 2019; Witt et al., 2021). 

Many land use mapping studies have identified the OSM as a valuable and 

structured data source with high positional accuracy compared to other similar 

datasets (e.g. Ggroadsv1) (Arsanjani et al., 2013; Estima and Painho, 2013; 

Johnson and Iizuka, 2016). This drove the choice for OSM roads data in this study. 

 

4.3.1.5. Settlement (GHS-BUILT) data  

 

The choice of GHS-BUILT data was driven by the need to coincide the 

Landsat pixel with that of the study area so that built up class are comparable. 

Settlement (GHS-BUILT) data for 1990 and 2000 were obtained from the Global 

Human Settlement (GHS) database 

(https://ghsl.jrc.ec.europa.eu/download.php?ds=bu;Florczyk et al., 2019). The 

GHS-BUILT data for 1990 being the closest date for the first epoch (1988) was used 
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for the first period (1988-2000) of the study due data unavailability for 1988 that 

should ideally be representative of baseline data. Moreover, given the local 

knowledge of the study area, settlements may not likely expand significantly within 

a 2-year interval. For the second period (2000-2013), data for 2000 were used.  

The GHS-BUILT dataset used is an estimate of classification of built-up 

presence derived from the Global Land Survey (GLS) Landsat image collections 

with a 1km resolution. The built-up classification estimates were carried out through 

Symbolic Machine learning (SML) methods (Florczyk et al., 2019). The products are 

a set of multi-temporal and multi-resolution grids centred in 1975, 1990, 2000 and 

2014 epoch (Florczyk et al., 2019).  

 

4.3.1.6. Oil and gas infrastructure datasets 

 

The Nigeria oil and gas sector consist of two main sectors: upstream and 

downstream. The upstream is the exploration and production centre; with more 

extensive oil and gas infrastructures (oil wells and fields, flow stations, gas plants, 

trunk and flow lines). However, the downstream is the centre for logistics of refined 

crude oil products, hence more vulnerable to oil pollution. Pipeline network cut 

across the upstream and downstream areas due to its purpose for crude oil 

transportation. 

Pipelines, oil wells and oil fields data were digitised in ArcMap 10.7 (ESRI, 

2020; Maxar and Technologies, 2020), from map of oil and gas infrastructure of the 

Niger Delta obtained from Shell Petroleum Development Company (SPDC), Nigeria, 

and produced by IHS matrit (SPDC Nigeria, 2007). A very high resolution basemap 

imagery in the ArcMap 10.7 (Maxar and Technologies, 2020), was also utilised to 

digitise the pipeline networks in order to correct positional accuracy errors detected 

from the oil and gas infrastructure map of the Niger Delta. Consequently, pipeline 

data used were a harmonisation of two sources. The oil and gas infrastructure map 

contains information of pipelines, oil wells, oil fields, oil blocks, and list of right 

owners to facilities with a scale of 1:750 000. These data are available for a single 

temporal year (2007). 

Oil spill data were obtained from the National Oil Spill detection and 

Response Agency, (NOSDRA) Nigeria, extracted from the oil spill monitor platform 

(https://oilspillmonitor.ng/;Nigerian OIl Spill Monitor, 2007). The study utilised oil spill 
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data between 2007-2013 for the second period of the study. Available oil spill data 

only date back to 2007, consequently, not used for the first period of the study. 

Oil spill data is collected upon Joint Investigation Visits (JIV) using the Handheld 

GPS collection units. The JIV consists of a team of stakeholders, including NOSDRA 

staff, host community, and representative of the pipeline operators. Oil spill data 

recorded are prepared and submitted to the oil spill database, with updates made 

when spill situation changes. Data collected contains valuable information of spill, 

including the date, time and location (GPS coordinates) of spills, spill duration, oil 

type, spill volume, and the cause of spill. The Nigerian Oil spill data are currently 

available for 2007 to date. 

 

4.3.1.7. Water bodies data 

 

Waterways such as rivers, canals and creeks and the coastline are important 

drivers of land cover change in a tropical river delta. Coastline data and rivers (minor 

and major) were obtained from the Nigerian Hydrological Services Agency (NISHA 

through the data request form (https://nihsa.gov.ng/data-request/;NISHA, 2021). 

However, for the purpose of this study only the rivers (minor and major) data were 

considered useful and utilized both for the first and second period of the study. The 

NISHA is a government agency under the Federal Ministry of Water resources in 

Nigeria. It houses the hydrological and hydrogeological of the country. The NISHA 

is tasked with the country’s sustainable management of its water resources. 
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Table 4. 1. Spatial variables used in the Land Change Model (LCM). 

 

Layer Spatial resolu. T.resolu. Description  Source 

Slope 30m single STRM (Farr et al., 2007) 

Aspect 30m single STRM (Farr et al., 2007) 

Population density 1km yearly GHSL (Florczyk et al., 2019) 

Population density 1km yearly Worldpop (Tatem, 2017) 

Distance from settlements 250m yearly GHSL (Florczyk et al., 2019) 

Distance from roads 30m yearly gROADS (CIESIN and ITOS, 2013) 

Distance from roads 30m yearly OSM (GmbH and contributors 2018) 

Distance from rivers 30m single 
 

(NISHA, 2021) 

Distance from pipelines 1 :750 000 single IHS (SPDC Nigeria, 2007) 

Distance from oilfields 1 :750 000 single IHS (SPDC Nigeria, 2007) 

Distance from oilwells 1 :750 000 single IHS (SPDC Nigeria, 2007) 

Distance from oil spills 30m single 
 

(OSM, 2007) 

Distance from coast 30m single   (NISHA, 2021) 
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4.3.2.     Methods 

 

Pre-processing and preparation of spatial datasets is central to land cover 

modelling in-order to meet requisite data standard required of the model and to 

avoid potential contribution to uncertainties associated with probabilistic modelling 

approaches.  

In this chapter, only pre-processing and data preparation for spatial drivers 

are described. Information about pre-processing steps carried out for the remote 

sensing data is available in Chapter 3.   

 

4.3.2.1. Transformation, georeferencing and projection 

 

To ensure all data are in the same co-ordinate systems, GHSL datasets: 

population density for 1990 and settlement data for 1990 and 2000 in Mollweide 

coordinate systems were converted to a geographic coordinate system 

(GCS_WGS_1984) using the projection tool in QGIS 3.4 (QGIS Development Team, 

2017). These data were then geo-registered using classified raster image (1988) as 

reference data, with 12 control points with a root mean square error of 0.27 (Hansen 

et al., 2013); using the geo-referencing tool in QGIS 3.4 (QGIS Development Team, 

2017). All spatial drivers eleven were projected into Universal Transverse Mercator 

(UTM) Zone 31 North and World Geodetic System (WGS) 1984 datum in the course 

of the modelling process using the Project Tool in the LCM within the TerrSet 2020 

software.  

 

4.3.2.2. Spatial data rasterization and variable derivations  

 

With the exception of the population density, settlements, and the SRTM 

datasets (in grid format), all other spatial datasets including roads, rivers, coastal 

and the entire oil and gas Infrastructure datasets (pipelines, oilwells, oil fields, and 

oil spill) were in vector format. For the pipeline, oil well, and oil spill data, the pipeline 

spill maximum impact radius buffer of 2.5km (Shittu, 2014; Obida et al., 2018), was 
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created around them. The impact radius is dependent upon the pressure, type of 

pipeline and volume of spills; whilst the buffer here represents the potential area of 

impact (Obida et al., 2018). The spatial datasets, including for oil fields were 

converted into a grid format to be consistent with other datasets within the 

Conversion Data Management Toolbox in the ArcGIS 10.7. Distance variables: 

distance from roads, distance from settlements, distance from rivers, distance from 

coastline, distance from pipelines, distance from oil wells, distance from oil fields, 

and distance from oil spill were then derived using the Euclidean distance module 

in the ArcGIS 10.7 (ESRI, 2020) (Table 4.1).  

For the population density data, a population density distribution layer was 

created in ArcGIS 10.7 (ESRI, 2020) (Table 4. 1& 2). All variables were then 

converted to integer type raster for analysis in the TerrSet software using the Spatial 

Analyst Int Toolbox in ArcMap 10.7 (ESRI, 2020). 
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Table 4.2.  Definitions of explanatory used of variables 

 

 

  
Explanatory variables Descriptions 

Slope Average level of slope 

Aspect Average level of aspect 

Population density Population distribution per square km2 over study period 

Distance from settlements Nearest distance (km2) of settlements to the mangrove pixels 

Distance from roads Nearest distance (km2) of roads into the mangrove pixels 

Distance from rivers Nearest distance (km2) of rivers into the mangrove pixels 

Distance from pipelines Distance of pipelines within 2.5 (km2) radius to the mangrove pixels 

Distance from oilfields Nearest distance of oil fields in (km2) to the mangrove pixels 

Distance from oilwells Distance of pipelines within 2.5 (km2) radius to the mangrove pixels 

Distance from oilspills Distance of oil spills within 2.5 (km2) radius to the mangrove pixels 

Distance from coast Nearest distance (km2) of oil fields into the mangrove pixels 
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4.3.2.3. The Multi-layer perceptron artificial neural network 
(MLP-ANN) model 

 

Aside predicting future land use cover change (LUCC) patterns, land cover 

change models are built with the capacity to analyse spatio-temporal relationship 

between land cover change and its drivers.  Previously, logic regression models 

were used to evaluate LUCC relationship and its driving factors, until the recent 

modification of empirical land cover models (Lin et al., 2008). The logistic regression 

models usually encounter spatial auto-correlation issues when dealing with spatial 

reference data (Hu and Lo, 2007). Evaluating relationship between land cover and 

multiple driving factors using logistic regression models are altered due to: lack of 

capacity to recognise many drivers, limited information associated with the drivers, 

and the inherent limitation of the functional capacity of the model (Ojima et al., 1994;  

Lambin and Geist, 2008).  

Artificial neutral networks (ANN) were built with much sophistication, wider 

and robust functional power in-order to resolve the in-capabilities of logistic 

regression models. It is built to replicate neurons functional powers in way that 

computers are able to mimic the brain’s functional capabilities in order to detect 

relationship in data through resolving issues of spatial patterns and learning by trial 

and error (Pijanowski et al., 2002). Additionally, ANN can consider non-linear 

complex relationships between driving factors and land cover (Pijanowski et al., 

2002).  

The Multi-layer perceptron (MLP) is the commonly used ANN and have been 

successfully applied to land cover modelling studies (Mas et al., 2014; Reddy et al., 

2017; Voight et al., 2019; Armenteras et al., 2019; Pijanowski et al., 2002; Mishra 

and Rai, 2016; Shooshtari and Gholamalifard, 2015; Hakim et al., 2019), to 

particularly, observe relationship between land cover change and its driving factors 

prior to land cover modelling. Additionally, recent studies have revealed that MLP is 

the most robust algorithm amongst others for transitional modelling, notably for 

capacity to process non-linear relationships and capacity to eliminate multi-

collinearity (Fuller et al., 2011; Lin et al., 2011; Sangermano et al., 2012). The MLP-

ANN approach was therefore employed for the study.  

Firstly, the relationship between spatial drivers and degraded mangrove 

cover class were initially examined using the Cramer’s V coefficient to evaluate their 



78 
 

potential explanatory power for inclusion to the model (MLP-ANN) methods using 

the Test explanatory Power tool in LCM ( Eastman, 2009). Spatial drivers with a 

Cramer’s V coefficient near 0.15 and above 0.4 were considered with strong 

predictive power and selected for inclusion to the model (Eastman, 2009; Shooshtari 

and Gholamalifard, 2015). Consequently, eight spatial drivers: population density; 

distance from settlements; distance from roads; distance from river; distance from 

pipelines; distance from oilfields; distance from oilfields; distance from oilwells; and 

distance from oil spills were considered for inclusion to the model. Distance from 

coast and topographical derivatives, namely slope and aspect were also tested as 

potential mangrove degradation drivers but were discarded as they were assessed 

to be weak predictors of change. 

Cramer’s V is a statistical matrix that change chi-square to values ranging 

between 0-1, resulting to a given value demonstrating total agreement between two 

nominal variables (Reddy et al., 2017). A high Cramer’s V suggests the potential of 

the explanatory variable in predicting change (Reddy et al., 2017; Tajbakhsh et al., 

2018). Cramer’s V coefficient of ~0.15 or higher are useful, values ~0.4 or higher as 

good, and values that are lower are discarded (Reddy et al., 2017; Chim et al., 2019; 

Armenteras et al., 2019; Shooshtari and Gholamalifard, 2015; Voight et al., 2019; 

Eastman, 2009).  

Secondly, a stepwise approach using the MLP-ANN was used to measure 

the strength of association between spatial variables and mangrove change (SM1) 

over two periods of the study: 1988 – 2000 and 2000 -2013. Six spatial drivers were 

used for the first period and eight spatial drivers for the second. Variables used were 

ether static or dynamic (Table 4.3). In the second period, distance from oil wells and 

distance to oil spills were included to the model as it increased the prediction 

accuracy (model performance). However, in the first period, inclusion of the distance 

from oil wells variables reduced the model performance and was therefore 

discarded. Oil spill data were not available between the first period of the study, 

hence was used only for the second period to which it was suitable. Table 4.3 shows 

the spatial variables used over the two periods of the study, their overall Cramer V’s 

coefficient and per-class Cramer V’s coefficient.  
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Table 4.3.  Explanatory variables used in the multi-perceptron layer model for the two study periods and their Cramer V’s 

coefficient. SM1: Mangrove degradation sub-model class; X denotes variables not used. 

 
      

  
1988 -2000 

 
2000-2013 

 

  
SM 1 Overall SM 1 Overall 

Explanatory variables Variable type 
 

Cramer V 
 

Cramer V 

Population density dynamic 0.0619 0.1709 0.0715 0.2203 

Distance from settlements dynamic 0.1317 0.1678 0.0674 0.1496 

Distance from roads dynamic 0.1238 0.1094 0.0255 0.0322 

Distance from rivers static 1306 0.1867 0.1384 0.1709 

Distance from pipelines static 0.1935 0.1357 0.1022 0.1248 

Distance from oilfields static 0.1006 0.1346 0.079 0.1186 

Distance from oilwells static x x 0.1123 0.1031 

Distance from oil spills static X X 0.1001 0.1444 
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4.4. Results 

 

The MLP-ANN is a non-parametric algorithm designed to compute fit 

connection weights between the input and hidden layers and between the hidden 

and output layers for classifying unknown pixels (Eastman, 2009). The output of the 

MLP-ANN methods is a HTML file that provide several information of the training 

process, including the strength of association of explanatory variables used and 

other computations for assessing transitional potential modelling.  

Table 4.4 are outcomes of the MLP-ANN model over the two study 

periods:1988 - 2000 and 2000 – 2013. For the second period (Table 4.4b), inclusion 

of the distance from oilwells and distance from oil spills variables produced a slightly 

better result (~4%) in relation to the performance of the model to hindcasting 

mangrove degradation.  Moreover, available oil spill data was only suitable for the 

later period. Notably, the model performance in both periods was found to be similar 

60.26% accuracy and class skill measure (M to DM; 0.4173) and 62. 04% accuracy 

and class skill measure (M to DM; 0.4296) (Table 4.4).  

In relation to the explanatory variables, results show that driving forces of 

mangrove degradation are dynamic over the two-study period. In the first period, 

distance from roads (major, minor and footways) was identified as the most 

important driver of mangrove degradation; followed by distance from settlements 

and distance from pipelines, and so on (table 4a). However, in the second period, 

distance from oil wells was the principal driver of mangrove degradation, followed 

by distance from oil fields and distance from oil spills, distance from roads, and so 

on (Table 4b).  In both periods, results reveal that oil and gas infrastructure driver 

variables and distance from roads takes the lead as driving forces of mangrove 

degradation in the study region.  
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Table 4. 4. The relative strength of association of explanatory variables used in the 

mangrove degradation sub-model (SM 1). (a) 1988–2000: class skill measure 

(0.4173); (b) 2000–2013: class skill measure (0.4296). 

    
a 1988-2000 

  
Explanatory variables Accuracy% Skill measure Influence order 

All variables 60.26 0.2053 N/A 

Distance from roads 53.69 0.0738 1(most influential) 

Distance from rivers 60.22 0.2045 5 

Distance from oilfields 60.20 0.2041 4 

Distance from pipelines 60.01 0.2003 3 

Distance from settlements 57.32 0.1462 2 

Population density 60.28 0.2057 6 (least influential) 

 

    
b 2000-2013 

  
Explanatory variables Accuracy% Skill measure Influence order 

All variables 62.04 0.2408 N/A 

Distance from roads 61.08 0.2215 4 

Distance from rivers 62.02 0.2414 8 (least influential) 

Distance from oil fields 60.60 0.2121 2 

Distance from pipelines 61.79 0.2358 6 

Distance from settlements 61.16 0.2231 5 

Population density 61.91 0.2382 7 

Distance from oil spills 61.02 0.2203 3 

Distance from oil wells 60.35 0.2070 1 (most influential) 

 

 

4.5. Discussion 

 

Understanding how the drivers of mangrove degradation interact through time 

and space is essential for the sustainable management of the ecosystem and the 
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numerous ecosystem services it provides. The ‘remote sensing only’ approach 

where land cover classification outputs and land cover change maps are examined 

or the ‘speculative approach’ used to determine drivers of mangrove change in the 

NDR (James et al., 2007; Nwobi et al., 2020;  Kuenzer et al., 2014a; Onyena and 

Sam, 2020; Numbere, 2014), are not reliable. Moreover, drivers of change can 

change rapid in type and speed, therefore need to be studied progressively.  

The inherent difficulties in accessing the mangrove ecosystem (Carugati et al., 

2018), data availability and accuracies issues associated with the sub-Saharan 

Africa tropical regions (Lambin, 1997), and particularly, the security instability in the 

NDR (Ayanlade and Howard, 2017), has been attributed to the scarce information 

on the driving forces of degradation in the largest mangrove forest of Africa and one 

of the most endangered ecosystems in the world (IUCN, 1992). This study, 

therefore, incorporates remote sensing and geographical information techniques, 

and artificial neutral networks (ANN) modelling algorithm to quantitively assess the 

driving forces of mangrove degradation in the NDR.  

Despite the problems of data availability and accuracy, and security in NDR 

(Ayanlade and Howard, 2017; Lambin, 1997), an integrated approach was 

employed for the quantitative assessment of mangrove degradation drivers in the 

region. The study used six identical explanatory variables in doing so over two time 

periods. The model achieved an accuracy consistently above 60% in both periods, 

demonstrating its capacity as a good predictor of change.  Results of the study 

compare favourably with few studies of the NDR (Omo-Irabor et al., 2011; Ayanlade 

and Howard, 2017; Fabiyi, 2011) and several others in tropical regions around the 

world (Olaniyi et al., 2012; Kamwi et al., 2018; Rideout et al., 2013;  Shapiro et al., 

2021; Newman et al., 2014; Hayashi et al., 2019). However, this is the first study 

attempting to empirically analyse mangrove degradation drivers in specific for the 

entire NDR. The only other mangrove-based study, analysed mangrove vulnerability 

(healthy and degraded) and its drivers (Omo-Irabor et al., 2011). However, it was 

only for a section of the Western NDR. 

Similar to other land cover change studies in tropical coastal regions (Kamwi et 

al., 2018; Olaniyi et al., 2012; Newman et al., 2014), results in this study presented 

an interesting dynamic:  

 Built up infrastructure related variables namely: distance to roads and 

distance to settlements had the highest strength of association in the first 
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period; whilst oil and gas infrastructure variables were less important (table 

4a-b).  

 Built up infrastructure related variables were a lesser threat to mangrove 

degradation in the second period, whilst oil and gas infrastructure related 

variables were the most important drivers.  

 Population density is the least important driver of mangrove degradation in 

both periods of the study.  

Particularly, in the first period, findings reveal that distance from roads and 

distance from settlements were the most influential to mangrove degradation, whilst 

in the second period, the most important drivers were found to be distance from oil 

wells, distance from oil fields, and oil spills. In the first period, findings of this study 

is consistent with the studies of Ayanlade (2015) between 1987 to 2011 and Fabiyi 

(2011) between 2000 to 2006, who found distance from road network and distance 

from settlements respectively as primary causes of forest degradation and loss in 

the Delta. Interestingly, both studies used a near identical variables as this study 

and found similar results.  

The difference between temporal period and the inclusion all forest types 

(mangrove swamps, freshwater swamps forests, and lowland rain forests) in their 

analysis makes adequate comparison difficult as this study is confined to mangrove 

forests. The study, therefore, recognises two things in-order to validate comparisons 

among results: firstly, the historical road developments and settlements effects and 

how they influence other drivers (e.g., socio-economic, cultural etc) in study area. 

Secondly, the fact that mangroves constitute one of the largest proportions of forest 

types in the study area and is most susceptible to degradation due to its confinement 

to the coast and the many natural resources it holds. Following these 

considerations, mangrove degradation in the region, if evaluated over a single long 

or short period as the studies Ayanlade and Howard (2017) and Fabiyi (2011) would 

put road networks and settlements variables as the leading drivers. Moreover, in the 

second period, results identify these variables sequentially just after the oil and gas 

infrastructure variables (major drivers) as drivers of mangrove degradation (Table 

4.3b). However, two time periods used in the assessment of mangrove degradation 

drivers in this study allows for more appropriate and effective development and 

implementation of sustainable management measures of the ecosystem. 

Additionally, the findings are less biased as the data used are entirely spatially 

explicit and the model is validated.  
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In the Delta region, earlier studies have reported that mangroves are being 

greatly degraded through selective logging for fuel wood and housing construction, 

agriculture, dredging canals for navigable routes, sand mining for land reclamation 

for the tourism and human habitation purposes, dumping solid waste and defection, 

and nypa palm invasion (Ohimain, 2004; CEDA, 1997; Macintosh and Ashton, 2003; 

Mmom and Arokoyu, 2010; Okoye, 1991). These disturbances are human driven 

and are influenced by accessibility and proximity-based drivers such as road 

networks and settlements. Interestingly, in the almost identical study in the 80s, 

dredging and sand mining activities for land reclamation were reported to have 

resulted to degradation and loss of ~ 4.2 million m2 of mangrove forests in Buguma 

town, near Port-harcourt in the eastern NDR (Numbere, 2014). Furthermore, in the 

same identical study period (1988), 10 to 750 million m3 of mangrove wood were 

reported to have been exploited for commercial activities (poles, pulp paper) 

(Macintosh and Ashton, 2003). These activities further confirm the study results in 

the first period. It is important to note that oil and gas activities were significant in 

driving mangrove degradation in this period, however not as significant as roads 

and settlements. Recent studies on forest degradation (Shapiro et al., 2021), and 

notably mangroves (Hayashi et al., 2019; Rideout et al., 2013) in the other tropical 

regions, found similar variables: built up area (within the 50 km) and road networks 

respectively as primary drivers leading forest disturbances.  

In the second period, this study and the study by Omo-Irabor et al., (2011), found 

a similar greater influence of pollution from oil wells and pipelines. In their study, 

they assessed mangrove vulnerability into three categories in a section of the 

Western Delta: eastern, central, and western segment between 1987 and 2002 and 

found similar results across the central and west segment. Comparison remains 

difficult in the second period as the temporal period and spatial extent of study do 

not match. However, the western section of the delta has been identified as the 

highest with concentration of degraded mangroves resulting from oil pollution, and 

with notable increase through time (Nababa et al., 2020; James et al., 2007).  

The temporal period (2000 -2013) been evaluated has been reported to be 

associated with major oil and gas pollution incidents that has directly affected 

mangroves in the Delta (Duke, 2016; UNEP, 2011), which may have influenced the 

results. Some of such incidents include: 117 incidents in the 2000 (Duke, 2016); 115 

incidents estimated at 5,187.14 barrels spilled by the western operations of the Shell 

Petroleum Development Company (SPDC) in 2001, with only 14.2% total spilled oil 
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recovered (Kadafa, 2012); and the three days straight burning of mangroves along 

Kala-Akama, Okrika resulting from pipeline leakage by the Nigerian Liquefied 

Natural Gas (NLNG) in 2004 (Kadafa, 2012). Furthermore, between 2012 and 2013, 

3,778 illegal refineries were reported to have been destroyed by securities agencies 

in-order to curb illegal production and sell of crude oil by locals (Balogun, 2015).  

These illegal activities of local miners and destruction of their facilities by security 

agencies have cumulatively resulted to increased spills in within the mangrove 

systems where the illegal refineries are mostly situated. Duke et al., (2016), 

suggests that pollution had increased by five- fold around this period than previous 

decade. 

Contrary to many forests change studies (Morakinyo and Tooze, 2007; Mmom 

and Mbee, 2013; Chima and Larinde, 2016), including mangroves in NDR (James 

et al., 2007; Omo-Irabor et al., 2011), population density is a less important driver 

influencing mangrove degradation in the NDR. Rather, other drivers identified in 

table 4.4 are more important.  However, this study found similar results with the 

study by Ayanlade (2015). In his thesis, he used near identical variables to this study 

and used correlation analysis to identify causes of forest destruction including the 

mangrove forest for the entire NDR between 1987 to 2011. Forest areas have low 

population compared to near farmland and urban centres in NDR, which may 

explain the reason for the results found.  

The model proved to be a good predictor of change in the hindcasting of 

mangrove degradation over the two-study period. However, in the first and second 

period, ~40% and ~38% respectively of change remains unexplained. The variation 

may be due to important variables such as soil type (Rideout et al., 2013),  gross 

domestic (GDP) (Wang et al., 2021; Olaniyi et al., 2012), and climatic variables: sea 

level rise (SLR), temperature (Omo-Irabor et al., 2011; Olaniyi et al., 2012) and 

salinity (Osland et al., 2018; Villate Daza et al., 2020), identified in other mangrove 

studies but was left out here, as of particular interest to this study, are the human 

induced driver variables. Moreover, the study region has serious data availability 

and coarseness issues. Climate change, particularly SLR may have significant 

effects on Niger Delta’s low-lying coastal region and can result to mangrove 

degradation through lowering of mangrove biomass density.  Additionally, some of 

the variables used in the analysis were characterized by some uncertainties. 

Particularly, data for road networks sourced either contained incomplete or excess 

information (i.e the most recent data). This was pre- processed to form a composite 
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data layer for the temporal periods of the analysis, which would inherently be 

associated with some errors.  There was also a slight variation of settlement and 

population density data relative to the degraded mangrove data in the first period. 

Additionally, the differences in the spatial resolution (250m and 1km2) of some of 

driver variable data, despite been standardized mean that the capturing of local 

effects are unaccounted for. However, the MLP-ANN model has shown to perform 

adequately in prediction of strength of association of drivers of mangrove 

degradation in the NDR. 

 

4.6. Conclusions 

 

Mangrove forests are important resource on which millions of inhabitants 

depend on for means livelihood. In the NDR, mangroves continue to be degraded, 

however, the patterns and driving factors are rarely assessed, and poorly 

understood. The inherent difficulty in accessing mangrove forests, data availability 

and accuracy issues, and security situation in NDR makes it a challenging task. 

Using a Multi-layer Perceptron, Artificial Neutral Networks (MLP- ANN) 

modelling algorithm a quantitative assessment of the spatial driving forces of 

mangrove degradation is presented over 25 years. Results reveal that the drivers of 

mangrove degradation vary over time between human infrastructure and oil and gas 

infrastructure induced variables. In the first period, distance from road networks and 

distance from settlements were identified as the major drivers of mangrove 

degradation; whilst in the second period, distance from oil wells, distance from oil 

fields, and distance from oil spills had greater influence. Results in this study also 

showed that population density is not a key driver of mangrove degradation in the 

NDR region as claimed by other mangrove studies for the region. This study 

provides the first ever spatial-temporal quantitative assessment of the driving forces 

of mangrove degradation drivers for the entire NDR. 

 Such assessments are vital for the appropriate development and 

implementation of sustainable management measures, where policy interventions 

are targeted to address the variation in mangrove degradation drivers both at the 

regional and sub-regional level. Overall, the assessment of mangrove degradation 

drivers is key to addressing global environmental policy frameworks such as a 

number of Sustainable Development Goals (SDGs) (Chow, 2018), the post-2020 
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Global Biodiversity Framework (CBD, 2019), and the UN System for Environmental 

Economic Accounting (SEEA, 2014). 
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Chapter 5 

 

Future Land Cover Change and 

Mangrove Degradation in the Niger 

Delta Region 

 

 

5.1. Introduction 

 

River deltas are important socio-ecological systems (Moorhouse et al., 2021). 

They are one of the most populated areas in the world. Although, they account for 

less than 1% of the Earth’s surface, ~ 7% of the global population of inhabitants tap 

from its numerous locational benefits, including its low-lying nature, rivers and 

marine resources, eased waterways for transport, ice free harbours, and high 

biodiversity (Ericson et al., 2006; Claudia Kuenzer and Renaud, 2012). Some deltas 

are sources of sorted sand and gravel for construction and oil and gas and are key 

contributors to the nation economy (Loucks, 2019). However, they are highly 

dynamic and vulnerable due to a number of threats they face (Giosan et al., 2014). 

The Niger River Delta (NRD) is the largest river delta in Africa (Goudie, 2005) 

and home to a rapidly increasing human population. It features the largest mangrove 

forest in Africa, estimated to be ~5% of the global mangrove coverage and the fifth 

largest mangrove forest in the world (Spalding, 2010). Substantial oil and gas 

deposits are found under the mangrove ecosystem of the NRD. It is considered as 

one of the most endangered ecosystems in the world and has been threatened over 

the past decades mainly due to oil and gas exploration activities, the 

overexploitation of the mangroves for fuelwood, urbanisation, and the invasion of 

the Nipa palm species (Nypa fruticans) ( Numbere, 2014; Kadafa, 2012; Balogun, 
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2015; Onyena and Sam, 2020; Duke, 2016). Other threats to the Niger delta’s 

mangrove forest include, climate change (World Bank, 1995b;  Uyigue and  Agho, 

2007) sea level rise (Okali and Eleri, 2004), and coastal erosion (Awosika, 1995). 

Considerable land surface conversions have occurred on the Earth’s surface 

resulting from these alterations (Meles, 2008), and are seen as important factors of 

environmental degradation in any landscape (Hamad et al., 2018). 

  In the tropical regions, forest degradation is the precursor to their loss 

(Vancutsem et al., 2021). Between 1996 and 2016, 1389km2   area of mangrove 

were estimated to be in various stages of degradation globally (Worthington and 

Spalding, 2018). However, the present global rate of mangrove loss is estimated to 

be 0.13% (Goldberg et al., 2020). Accordingly, the current disturbance rates 

triggered the alarm that mangroves risk total disappearance by the end of the 

century given (FAO, 2007; Duke et al., 2007a). Furthermore, tropical coastal 

populations are estimated to grow by 45% by 2050 globally (Sale et al., 2014). 

Climate change related disturbances such as sea level rise, extreme floods, storm 

surges, erosion, subsidence, and salinity intrusion etc are also expected to increase 

with the climatic crisis (Szabo et al., 2016), which may cumulate to cause further 

alterations in the tropical coastal regions, including the river deltas. Therefore, the 

analysis of future land cover changes is essential for conservation, planning and 

sustainable management of these fragile ecosystems (Dezhkam et al., 2017; Regmi 

et al., 2014).  

Land cover change (LCC) analysis assess change dynamics, can provide 

understanding of changes in relation to land use change drivers, and forecast future 

land cover change (Kamwi et al., 2018; Hakim et al., 2020). LCC change is 

influenced by variety of factors, including socio-economic, topographic, 

demographic, physical infrastructure, and planning constraints and policies which 

makes modelling LUC process challenging (Samardžić-Petrović et al., 2017; 

DeFries et al., 2010). 

Remote sensing and geographical information systems are powerful and 

effective tools used for updating and managing spatial data in developing countries 

(Dong et al., 1997). They offer the opportunity for rapid and continuous coverage 

over large areas and provide data for numerous spatial bio-physical and socio-

economic variables, especially data over scarce regions such as the NDR. Such 

data are important for land cover change analysis and robust simulation studies. 
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The sub-Saharan Africa tropical regions are data scarce environments 

mainly due to rapid economic development and political issues (Näschen et al., 

2019; Xiao et al., 2022). Hence, modelling land cover in such environments has 

been done with the use of single modelling methods such as Markov model 

(Onojeghuo and Blackburn, 2011; Wali et al., 2018; Eyoh and Okeke, 2017; Dan-

Jumbo et al., 2018; Abbas, 2012), cellular automata (Clarke and Gaydos, 1998), the 

SLEUTH cellular automata-based model (Clarke et al., 1997),  Artificial neural 

networks (ANN) Model (Pijanowski et al., 2002), logistic regression (Linkie et al., 

2004) and the Conversion of Land Use and its Effects (CLUE-s) model (Verburg et 

al., 2002). These models have demonstrated their capability as essential 

quantitative tools to aid decision making process related with the protection and 

conservation of forest ecosystems. However, many limitations have been identified 

with use of single models (Balzter, 2000; Araya and Cabral, 2010; Triantakonstantis 

and Mountrakis, 2012).  

Data-driven models of spatial patterns of land cover enable the development 

of land change models which can be most useful to effectively support conservation 

and environmental planning at regional (Armenteras et al., 2019; Voight et al., 2019) 

and national level (Reddy et al., 2017; Verburg et al., 2011). They help find patterns 

and trends or to induce representative models of underlying processes using past 

data (Quigley et al., 2009; Tafazzoli Moghaddam, 2011). Land-use simulation 

models allow for the prediction of land use/ land cover (LULC) change through time 

and space ( Lambin, 1997; Heidarlou et al., 2019).  

Integrated modelling approaches (hybrid method) for simulation and 

projection of land cover such as Multi-layer perceptron, Artificial neural network and 

the Markov chain (MLP-ANN + MC) (Mishra and Rai, 2016; Voight et al., 2019; 

Shahi et al., 2020) and Cellular Automata - Markov chain model (CA-MC) (Hamad 

et al., 2018; Hasan et al., 2020; Musa et al., 2019), Dyna-CLUE (Verburg et al., 

2009; Tizora et al., 2018), and logistic-CLUEs (Erdoğan et al., 2011; Lin et al., 2011) 

have been proven to produce better modelling outcomes than single-based model 

approach as they consider driver data. The MLP-ANN +MC model is one of the most 

widely used hybrid modelling methods and has been found to produce a 

considerably higher prediction accuracy compared to other hybrid modelling 

approaches combing two models (Roy et al., 2014; Ibrahim Mahmoud et al., 2016; 

Pérez-Vega et al., 2012; Ozturk, 2015). The model leverage on the combined MLP’s 

capability to model transitions simultaneously and process complex non-linear 
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relationships (Fuller et al., 2011;+ Eastman et al., 2005), and Markov’s long-term 

prediction (Koko et al., 2020). Recently, a hybrid approach was developed 

incorporating three models, namely: cellular automata (CA), Markov chain (MC), 

and artificial neural networks (ANN) models to successfully predict different 

scenarios of LULC change on the Amazonian forest in Columbia (Armenteras et al., 

2019) and to simulate LCC in Qeshm Island in southern Iran (Tajbakhsh et al., 

2018)¸ and Upper Blue Nile Basin in Ethiopia (Leta et al., 2021). 

There are very few simulation studies of land cover dynamics in the NDR 

(Eyoh and Okeke, 2017; Onojeghuo and Blackburn, 2011) most of which are 

covering a section of the region (Achionye et al., 2018; Wali et al., 2018; Abbas, 

2012; Dan-Jumbo et al., 2018). The reason for the limited studies on the region is 

due to social unrest, security restrictions, and the inherent difficulty to access the 

mangrove ecosystem. With the exception of Musa et al., (2019), these studies have 

used the ‘single model’ approach which is considered to be weak and not reliable 

enough. Eyoh and Okeke (2017), used past trend of LULC change information (i.e., 

Markov chains) to predict LULC, including mangroves in the LCM for the NDR for 

the year 2046. Onojeghuo and Blackburn (2011), used Markov algorithm module to 

predict future forest conditions in the NDR for the 2027. Neither of these studies 

assessed the accuracy of their model.   

However, simulation studies of land cover in a complex and dynamic 

ecosystem such as the NDR, require robust modelling approaches and tools. The 

combined MLP-ANN + MC modelling approach has been identified to be capable of 

providing a wide understanding of the complex mechanisms involved in the spatial 

patterns of land cover change and degradation in the NDR which is important for 

sustainable land management (Omar et al., 2014). The main objectives of the study 

are therefore to:  

 Predict land cover change in the NDR for two business-as-usual scenarios 

in the short (2026) and longer-term (2038) using integrated spatial modelling 

and 

  Assess mangrove degradation in the NDR short (2026) and longer-term 

(2038).  
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5.2. Study Area 

 

The Niger Delta is located on the Gulf of Guinea along the Atlantic Ocean in 

the inner southern part of Nigeria (Figure 5.1). The Study area has a coastline of 

470km bordered by a dense mangrove forest. It has a coverage area of slightly 

above 56, 000km2, comprising of 7 administrative states (Abia, Akwa Ibom, 

Anambra, Bayelsa, Delta Imo, and Rivers) and a population of over 33 million (265 

people per km2) (NBS, 2018). Most of the populace live in the rural areas near the 

coast where they are deprived of basic amenities and infrastructure and depend on 

the natural environment for their livelihoods (Onyena and Sam, 2020). 

 The Niger Delta is a flat alluvial plain, where the climate is tropical monsoon 

with an average temperature of 27oC throughout the year, and annual rainfall of 

3000 to 4500 mm (World Bank, 1995b). It comprises of four ecological zones: 

mangrove swamps, freshwater swamps, forests, and lowland rain forests and 

considered a as hotspot for biodiversity in the world (IUCN, 1992). It is endowed 

with substantial oil and gas deposits (Ugochukwu and Ertel, 2008), rich alluvial soil 

for sustainable agriculture (Ukpaka, 2012), and abundant brackish/salt water that 

supports fisheries (Jemimah and Ike, 2015). About 11% of Nigeria’s GDP is 

generated by the oil and gas sector and it accounts for the highest foreign revenue 

earnings (~ 95%) for the country (NNPC, 2019). However, the unsustainable 

practices resulting from the oil and gas extraction activities, amongst other land uses 

activities has led to a widespread degradation on the region’s ecosystem. Land 

cover/use in the region includes built up areas, cultivated land, plantations, 

wetlands, mixed land use, grasslands, vegetation, and bare surfaces (Odunuga et 

al., 2015).  Hence, the study models the main land cover/use in the region.  
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Figure 5.1: (a) West Africa and (b) Nigeria (a) Our delineation of the Niger Delta 

Region (comprising of the states of Abia, Akwa Ibom, Anambra, Bayelsa, Delta, 

Imo, and Rivers), and its location within (b). 

 

5.3. Materials and methods 

5.3.2.  Overview of data and methods 

In chapter 3, land cover was mapped for the periods: 1988, 2000 and 2013. 

Here, land cover maps of 1988 and 2000 were used to model 2013 map and then 

validated using the ‘real’ 2013 map from Chapter 3. Land cover was then projected 

under two business-as-usual scenarios: in the short term (2026) and long term 

(2038), representing regional drivers. Six sub models classes of land cover created 

for the undertaking of the task were: conversion to degraded mangroves (SM), 

conversions to agriculture (SM2), conversions to urban (SM3), conversions to 

grassland (SM4), conversions to water (SM5), and the regeneration sub-model. The 

familiarity with the study area greatly influenced the sub-model creation. The sub-
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models were created through selection and grouping of transitions (major or minor) 

perceived to have the same driving forces of change, whilst their explanatory power 

was evaluated. Transitional potential modelling was then implemented, and finally 

change prediction. Figure 5.2. is the flow chart of the methodological framework. 

 

 

Figure 5. 2: Methodological flow chart 
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5.3.3.  Data 

5.3.3.1 Land cover  

 

Land cover maps are essential to understanding the extent of change that 

occur among land cover categories, the spatial configuration of changes, as well as 

key to understanding the drivers of such changes and/or predicting future changes. 

Land cover maps centred around three epochs: 1988, 2000, and 2013 derived via 

remote sensing methods in Chapter 3 were used to model future land cover change 

under two business-as-usual scenarios in the short (2026) and long-term (2038).  

 

5.3.3.2 Spatial variables 

The study used eleven spatial data layers in total as explanatory variables to 

model land cover in the Niger Delta region. The spatial data layers include: distance 

from road, distance from rivers (major and minor), distance from coastline, distance 

from settlements, population density distribution, distance from pipeline network, 

distance from oilfields, distance from oilwells, distance from oil spills, slope, and 

aspect (Table 4. 2). The data layers were utilised as static and dynamic variables in 

the model. In this chapter, topography related parameters are described. Nine 

spatial datasets including roads, rivers (major and minor), coastline, settlements, 

population density, pipelines, oilfields, oilwells, oil spills were described in Chapter 

4.   

 

5.3.3.3 Digital elevation model (DEM) 

 

Topographical data are an essential resource for land cover modelling and 

mapping, influencing hydrological processes such as the dynamics of water 

movement in rivers and wetland (Leta et al., 2021; Al-Khafaji and Al-Sweiti, 2017). 

The Shuttle Radar Topography Mission (SRTM) elevation data is arguably the most 

widely used freely accessible elevation data, with 85% global coverage (Musa et al., 

2015). Acquired through SAR interferometry of C-band, it is available in ~30 and 

~90m resolutions and has a vertical accuracy of ~3.7m (Syvitski et al., 2012). Other 
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freely available DEMs exist such as Advanced Spaceborne Thermal Emission and 

Reflection Radiometer (ASTER) Global Digital Elevation Model (GDEM), Altimeter 

Corrected Elevations 2 (ACE2) GDEM, Global 30 Arc-Second Elevation 

(GTOPO30) and Global Multi-resolution Terrain Elevation Data 2010 

(GMTED2010), however, they have a coarser resolution than the SRTM, and are 

argued to be less accurate due to their inherent pixel voids (Schumann et al., 2013; 

Weicai Wang et al., 2012; Bates et al., 2013). In low-lying floodplains such as the 

Niger Delta, the accuracy of SRTM data is less than 2m (Musa, 2018). Nevertheless, 

it is an indispensable source of elevation data for the area. 

SRTM data was obtained from https://earthexplorer.usgs.gov/) with ~30m 

resolution. The data was used to generate slope and aspect using the Spatial 

Analyst Surface Toolbox in in ArcMap 10.7(ESRI, 2020). Slope and aspect control 

movement of hydrological flow path and flow accumulation (Kazakis et al., 2015; 

Sertel et al., 2019). These parameters were used to aid land cover modelling in the 

NDR, significantly, improving the accuracy of water sub-model class in the process.  

 

5.3.4.  Methods 

5.3.4.1. Land cover change model 

 

Land cover maps are essential to providing valuable land cover information 

such as land cover transitions and dynamics, their spatial patterns of change over 

time and space, and are key to explaining the changes in terms of explanatory 

variables (e.g.land use change drivers) and /or model spatial patterns of future 

(Kamwi et al., 2018; Armenteras et al., 2019). 

Land cover maps of two periods were used to model two business-as-usual 

future (BAU) scenarios of land cover change in the short-term (2026) and long-term 

(2038) in the Land Change Modeller (LCM). The choice of the projection periods 

was driven by the need to achieve an accurate and reliable prediction of land cover 

in the study. Time scales have a significant impact on land cover simulation, with a 

general trend of short-term predictions producing better results (Roy et al., 2014; 

Pérez-Vega et al., 2012; Ahmed and Ahmed 2012). Therefore, in the long-term, a 

projection over 25 years (i.e., 2038) representing the study period was chosen in-

order to limit simulation unreliability. The BAU scenario is a reference case scenario 

https://earthexplorer.usgs.gov/
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based on past and recent socio-economic or environmental trends (Samie et al., 

2017). 

The LCM is one of the most common LULC change tool used to detect and 

predict spatial patterns of land cover change (Hamad et al., 2018; Hakim et al., 

2020), forest degradation (Hasan et al., 2020), and deforestation and fragmentation 

(Singh et al., 2017; Reddy et al., 2017), and so on. It is standalone tool embedded 

in the TerrSet IDRISI software used for change visualization and model 

constructions (Eastman, 2016). The LCM has four notable features and advantages: 

(a) flexible input data in pre-processing and the data collection process; (b) 

probability surface, exclusion layer, and regional stratification in the calibration 

process; (c) stochastic modelling to generate the model projections process; and (d) 

dynamic variables allowed and scenario analysis in extrapolating future scenarios 

(Pickard et al., 2017), which makes it a top choice amongst other LULC models 

(Mas et al., 2014; Shooshtari and Gholamalifard, 2015).  

The LCM computes the following steps: Change analysis, evaluation and 

selection of spatial land cover change drivers (Table 5.1a-b), transition potential 

modelling, change demand modelling and validation. A review of the literature 

centred around land use simulation models revealed that LCM in the TerrSet 

software, incorporating Markov Chain-based neural networks to predict future LULC 

is effective (Kumar et al., 2014; Mas et al., 2014).  

 

5.3.4.2. Change analysis in the LCM 

 

Change analysis is most informative about the type and extent of changes 

occurring in LULC through time and can provide better understanding on the 

transitions therein.  

In addition to the ‘Intensity analysis’ (Aldwaik and Pontius, 2012) carried out 

in Chapter 3, additional change analysis for the two periods between 1988 and 2000 

and 2000 and 2013 was carried out here in order to identify focal areas of change 

(Voight et al., 2019) in the NDR using the ‘Change Analysis tool’ in the LCM. Given 

the complexity of land cover change in the study area, transitions less than 700 ha 

were ignored in-order to reduce the high combination of transitions, focus on major 

transitions, and at same time include minor transitions that are relevant to the study 

during implementation of the change analysis (Figure 5.3). 
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Figure 5. 3:  Land cover conversions in the study region. (a) 1988 -2000; (b) 2000 -2013. 
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5.3.4.3. Transition potential modelling 

 

Land cover categories with dominant transitions are influential to the dynamics 

and spatial configuration patterns in LULC modelling, in addition to boosting 

performance of Multi-Layer Perceptron, artificial neutral network (MLP-ANN) model 

(Armenteras et al., 2019; Mishra and Rai, 2016;  Eastman, 2006).  Due to the 

complexity of the study region and its high combination of transitions in terms of the 

change in land cover (Armenteras et al., 2019), both single and dominant transitions 

perceived with the same primary drivers of change were considered and selected 

for sub-model development (Geneletti, 2012; Armenteras et al., 2019; Mishra and 

Rai, 2016). Only very important minor transitions considered with the capacity of 

driving the objective of the study were considered in the sub-model creation. Thus, 

a single sub-model and five groups of sub-models were created. However, all sub-

models were merged at the final change prediction stage (Armenteras et al., 2019). 

Selection of transitions in sub-model development help determine important 

transitions, and ultimately improves the overall performance of the models. A total 

of six sub-models were created:  

 Conversions to degraded mangroves (SM1): Mangroves to Degraded 

mangroves.  Changes in this sub-model are associated with changes with 

heathy mangroves to degraded. This transition is attributed to fragmentation 

of mangroves due to oil and gas extractive activities, selective logging 

activities, urbanisation as well as dredging and proliferation of the invasive 

Nipa Palm.  

 Conversions to Agriculture (SM2): Grassland to Agriculture; Woodlands to 

Agriculture. Changes in this sub-model are associated with transitions that 

have occurred due to land clearing for the purpose of farming, settlement 

expansion, construction of roads, dredging and other developments.   

 Conversion to Urban (SM3): Mangroves to Urban; Grassland to Urban; 

Woodland to Urban; and Agriculture to Urban. Changes in this sub-model are 

associated with transitions due to land clearing for development such as 

settlements, roads, and oil and gas infrastructural facilities. 

 Conversion to Grassland (SM4): Woodland to Grassland and Agriculture to 

Grassland. These transitions are attributed to forest clearing for a number of 
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purposes: oil and gas facilities, settlements, logging activities, and 

agricultural land abandonment.  

 Conversion to Water (SM5): Degraded mangrove to Water and Bare land to 

Water. These transitions are associated with forest and land clearing, climate 

change and sea level rise in the region.  

 Regeneration sub-model (SM6): Degraded mangroves to Mangroves; 

Grassland to Woodland. Transitions in this sub-model are related to 

capability of the vegetative cover categories to bounce back to its healthier 

or natural state as a result of or restoration programs or land abandonment. 

 

5.3.4.4. Evaluation and selection of spatial land cover change 

drivers 

Driving forces for land cover may vary amongst or within sites and regions 

because of their distinct association with different land uses through time; hence 

their selection and evaluation is influential to modelling outcomes. Many studies 

assessing land use and degradation drivers in tropical forests have identified 

population pressure and agricultural expansion as the main drivers; and attributed 

proximity to roads, settlements, forest edges, and population density as strong 

spatial factors influencing changes in poorly protected or non- protected areas 

(Newman et al., 2014; Kamwi et al., 2018; Quezada et al., 2014; Poortinga et al., 

2020; Hayashi et al., 2019; Reddy et al., 2017). 

In the NDR,  the main divers of land use change are rapid urbanisation, 

agricultural expansion, deforestation, and degradation of mangroves through oil and 

gas pollution (Onojeghuo and Blackburn, 2011; Ayanlade and Drake, 2015; 

Enaruvbe and Atafo, 2016; Dan-Jumbo et al., 2018), and these have been strongly 

linked to accessibility to roads, settlements, and coasts, and population density in 

the region; similar to other tropical regions of the world (Ayanlade and Howard, 

2017; Omo-Irabor et al., 2011; Obida et al., 2018). Furthermore, DEMs have great 

influence on hydrological regimes, providing better understanding of physical 

processes underlying rivers and wetlands (Dwarakish and Ganasri, 2015). 

Hence, a total of eleven spatial drivers of land cover selected as explanatory 

variables in the NDR. Eight static variables (distance from rivers, distance from oil 

wells, distance from pipelines, distance from oil spill, distance from oil fields, 

population density, slope and aspect) and three dynamic variables (distance to 
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settlements, distance from roads, and population density) were used as input to the 

model (Table 5.1a-b). A static variable suppresses transition, and is unchanging 

over time (e.g., slope), whilst a dynamic variable is temporal-based, and is 

recalculated over time during the course of a model run (e.g., roads, settlements) 

(Reddy et al., 2017; Chim et al., 2019). 

Other criteria that influenced the selection of spatial drivers are familiarity with 

the study area, spatial availability of datasets, as well as visual examination of land 

cover change maps over the study period. More importantly, a quick test of the 

potential explanatory power of the spatial variables conducted using a quantitative 

computation of association known as the Cramer’s V coefficient for potential 

inclusion to the model. Each spatial variable was tested against predicted land cover 

change through the six sub-models (SM1 to SM6) over the two periods. Spatial 

drivers with a Cramer’s V coefficient near 0.15 and above 0.4 are considered with 

strong predictive power (Eastman, 2009; Shooshtari and Gholamalifard, 2015). 

These drivers were selected for inclusion to the model for the creation of transition 

potential maps (Table 5.1a-b). 

 

Table 5. 1. Explanatory variables used in the multi-perceptron layer model for the 

two study periods. Representing overall Cramer V’s coefficient (in bold) and per 

class coefficient. (a) 1988–2000; (b) 2000–2013. SM1: Mangrove degradation sub-

model; SM2: Agricultural sub-model; SM3: Urban sub-model; SM4: Grassland 

sub-model; SM5: Water sub-model; and SM6: Regeneration sub-model. X denotes 

variables not used for a given sub-model.
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    2000 - 2013    Overall 

b. 
 

SM 1 SM2 SM3 SM4 SM5 SM6 Cramer V 

Explanatory variables Type of variable 
       

Slope static x x x x 0.2725 x 0.1011 

Aspect static x x x x 0.2696 x 0.0984 

Population density dynamic 0.0715 x 0.3753 x 0 0.453 0.2203 

Distance from settlements dynamic 0.0674 0.0234 x 0.1939 0 0.1421 0.1496 

Distance from roads dynamic 0.0255 0.0099 0.0016 0.0321 x 0.0108 0.0322 

Distance from rivers static 0.1384 0.0267 0.0893 0.3278 x 1591 0.1709 

Distance from pipelines static 0.1022 0.0142 x 0.1577 0 0.2134 0.1248 

Distance from oilfields static 0.079 0.019 0.0532 0.1932 0 0.1848 0.1186 

Distance from oilwells static 0.1123 0.0192 x 0.1631 0 0.1878 0.1031 

Distance from oil spills static 0.1001 x x 0.1886 x 0.239 0.1444 

Distance from coast static x x x 0.1966 0 x 0.0717 

 

 
        

a. 
   

1988-2000 
   

Overall V 

  
SM 1 SM2 SM3 SM4 SM5 SM6 Cramer V 

Explanatory variables Type of variable 
       

Slope static x x x x 0.2592 x 0.1041 

Aspect static x x x x 0.2564 x 0.1013 

Population density dynamic 0.0619 x 0.4128 x 0.0138 0.1428 0.1709 

Distance from settlements dynamic 0.1317 0.2295 0.1408 x x 0.3487 0.1678 

Distance from roads dynamic 0.1238 0.1353 0.0454 0.0998 x 0.2217 0.1094 

Distance from rivers static 1306 0.3387 3387 0.1676 x 0.2737 0.1867 

Distance from pipelines static 0.1935 0.1639 0.1844 0.1639 0.1639 0.0852 0.1357 

Distance from oilfields static 0.1006 0.203 0.162 0.1676 x 0.1719 0.1346 

Distance from oilwells static x 0.1727 0.1887 x x 0.1442 0.1031 

Distance from coast static x 0.2159 
 

0.1966 
 

0.1089 0.0821 
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5.3.4.5. Transitional potential maps 

 

In this modelling stage,13 transitional potential maps were created from 

empirically evaluated sub-models (i.e.SM1 to SM6) for the two periods of study. 

These were created from the land cover change analysis outputs (transitions 

grouped into sub-models) and spatial drivers that had been selected from the 

previous stage as driving factors of land cover in the NDR. Several methods can be 

used in developing transition potentials including logistic regressions (Pontius and 

Schneider, 2001), MLP- ANN (Pijanowski et al., 2002), and weights of evidence 

(Soares et al., 2006). Here, transition potentials were developed with an MLP- ANN 

model, as recent studies revealed that it is more robust than other methods (Fuller 

et al., 2011; Lin et al., 2011; Sangermano et al., 2012). In the model’s 

implementation process, pixel samples were divided into two: half for training and 

half for validation.  

The implementation of the sub-model was not straightforward due to 

complexity of the study area and determination to achieve the highest possible 

accuracy for each sub-model class. Hence, each sub-model was implemented 

multiples times with a combination of spatial variables and parameters being 

modified to make optimal use of the MLP-ANN method. The sub-models with the 

highest and lowest combination of spatial variables were Regeneration sub-model 

(8 variables) and Water sub-model (4 variables) respectively in the first period of the 

study (Table 5.1a). In the second period, Degraded mangrove sub-model (8 

variables) and Grassland sub-models (8 variables) were the highest; and Urban 

sub-models (4 variables) as the lowest (Table 5.1b). Regarding the model 

parameters, the sub-models with less than 50% accuracy were trained through 

scaling up the hidden neurons and modifying the initial and final learning rate by half 

until a sustainable accuracy was achieved. The best performing sub-models were: 

Degraded mangroves (60.26%), Regeneration (59.8%), and Agriculture (72.79%) in 

the first period and Degraded mangroves (62.04%) and Regeneration (56.40%) in 

the second period of the study.  
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5.3.4.6. Change demand modelling  

 

Change prediction serves as a guidance to dynamic land cover change 

modelling process (Reddy et al., 2017). In step 4, based on transitional potential 

maps created in the previous step for the first period, the quantity of change from 

each transition was predicted and probability matrix computed by using previous 

land cover maps and specifying the end prediction date (i.e.,2013), using the Markov 

chains analysis (MCA). This was then used to project land cover map for 2013 

through the hard modelling process, which was the used to validate the model’s 

accuracy.  

Markov chains is a tool for simulating land change processes in a dynamic 

and complex landscape. It was developed by Andrei A. Rakov in 1970 and first 

utilised by Burnham for land use simulation by (Eastman, 2016; IPCC, 2018). It is 

arguably the most common model used in simulation studies over a large spatial 

scale owing to its predictive accuracy (Kumar et al., 2014; Jianping et al., 2005; 

Zhang et al., 2011). Based on prior information of the state of a system and 

probabilities of transitions amongst the states, the amount of change that will occur 

in the future is determined (Eastman, 2012). Markov model provided a simple 

methodology to which land cover alterations in any dynamic landscape can be 

deconstructed, analysed from one period to another, and future change can be 

predicted (Guan et al., 2008;  Zhang et al., 2011; Dadhich and Hanaoka, 2010). The 

methodology is given as follows: 

𝑆 (𝑡, 𝑡 + 1 )  = 𝑃𝑖𝑗  x S (t)                      (1)  

where S (t) is the system status at time of 𝑆 ( 𝑡 + 1 ) is the system status at time of 

t + 1; 𝑃𝑖𝑗  is the transition probability matrix in a state which is calculated as follows 

(Kumar et al., 2014; Hasan et al., 2020). 

 

            P = 𝑃𝑖𝑗 = |

𝑃11 𝑃12 … 𝑃1𝑛

𝑃21 𝑃22 … 𝑃2𝑛

… … … …
𝑃𝑛1 𝑃𝑛2 … 𝑃𝑛𝑛

|               (2)                                                   

       

(0 ≤ 𝑃𝑖𝑗 ≤  1)                                 (3) 

P is the transition probability; 𝑃𝑖𝑗 stands for the probability of converting from current 

state i to another state j in next time;𝑃𝑛 is the state probability of any time. Low 
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transition will have a probability near (0) and high transition have probabilities near 

(1) (Kumar et al., 2014; Hamad et al., 2018).  

 

5.3.4.7. Validation  

 

Validating the accuracy of the LULC change model is essential to assessing 

its predictive performance and reliability. The VALIDATE module in embedded in 

the LCM was implemented to evaluate the goodness of fit and the area under the 

curve (AUC) of the Receiver Operating Characteristic (ROC) was calculated 

(Pontius and Schneider, 2001; Pontius et al., 2004; Mishra and Rai, 2016; Voight et 

al., 2019; Gupta and Sharma, 2020). The AUC provides information about the 

accuracy of the model in relation to distinguishing land cover classes (Pontius and 

Schneider, 2001) The approach compares the “real” land cover map of 2013 

produced in Chapter 3, with the predicted one, evaluating two propositions of areas: 

hits and null success and false alarm and misses (Voight et al., 2019; Hakim et al., 

2020;  Eastman, 2016) (Supplementary Figure 1). Then it generates the AUC figure 

denoting a perfect model with a value of 0.5 indicating accuracy comparable to a 

random fit (Voight et al., 2019). Hits and nulls denote the accuracy of the model, 

whilst false alarms and misses denote prediction errors of the model as 

disagreement between the “predicted” map and the “real“ map (Megahed et al., 

2015). The projected map 2013 in the previous step was also used to assess the 

model’s accuracy as it was comparable with the “real” map of 2013 statistically 

(Figure 5.5).  

 

5.3.4.7. Land cover change prediction under two BAU 

scenarios 

 

Based on the validation conducted in the previous step, land cover under two 

BAU scenarios were projected through the “hard” and “soft” modelling processes. 

In hard projections, a simulated map is developed for the predicted year, in which 

each pixel is allocated to a specific land cover category (Ayele et al., 2019; Voight 

et al., 2019). Whilst the soft projection is a predicted map produced showing 
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vulnerability in which each pixel is allocated a value from 0 to 1. It identifies locations 

that are susceptible to change with lower values indicating less vulnerability to 

change and high values indicating high vulnerability (Voight et al., 2019; Ayele et 

al., 2019). Given the absence of recent environmental policies, future land cover 

change follows past trends based on the identified driving variables in the NDR 

(Table 5.1a- b). Transition potentials created in step 3 using 2000 and 2013 land 

cover maps were used to compute the associated transition probability matrix using 

the Markov chain analysis (MCA). Based on the probability matrix, future land cover 

under two BAU scenarios for short-term (2026) and long-term (2038) were predicted 

using Markov chain model. 

 

5.4. Results 

 

5.4.1.  Markov Chain Model Analysis 

The method produces two important outputs of probability matrices: 

transitional probability matrix and the conditional probability images by analysing 

two land cover maps using the MCA. Transition probability matrix were computed 

between 1988 and 2000 for the prediction of 2013 map which was used for validation 

(Table 5. 2a). To predict future land cover for two BAU scenarios: short-term (2026) 

and long-term (2038), land cover maps for 2000 and 2013 and 1988 and 2013 were 

considered respectively, and MCA were used to compute transition probability 

matrixes required for the prediction (Table 5.2b-c).  

Table 5.2 shows the outcome of the probability matrices of land cover 

transitions computed for the study. It summarises the area that remained 

unchanged, and the area and the type of change observed for each individual class.  

It also provides a summary of the area covered by each class in the beginning and 

the end of each period, as well as gains and losses they experienced. Gains were 

obtained by subtracting the probability that remained stable (in bold) from the total 

column, whilst losses were obtained by subtracting probability that remained stable 

(in bold) from the total row. The conditional probability images depict the spatial 

distribution of the MCA for the predicted years (Figure 5. 4). 

 



108 
 

Table 5. 2: Matrices for the predicted periods stable (in bold) and changed areas. (a) 1988–2000; (b) 2000–2013; (c) 1988–2013. 

Wa: Water; U: Urban; Wo: Woodland; B: Bareland; A: Agricultural: G: Grassland; DM: Degraded Mangrove; M: Mangrove. 

           

 a   2000       
1988 Wa U Wo B A G DM M Total Loss 

Wa 0.9211 0.0198 0.0132 0.0064 0.0177 0.0011 0.011 0.0098 1 0.0789 

U 0.0028 0.9585 0.0017 0.0021 0.0036 0.0232 0.0037 0.0044 1 0.0415 

Wo 0.0005 0.0103 0.7912 0.0002 0.0721 0.1247 0.0003 0.0007 1 0.2088 

B 0.0976 0.0853 0.001 0.6418 0.1727 0 0.0001 0.0013 1 0.3582 

A 0.0022 0.0303 0.0277 0.0027 0.8637 0.0724 0.0006 0.0003 1 0.1363 

G 0 0.0443 0.2087 0 0.2438 0.5023 0.0001 0.0009 1 0.4977 

DM 0.0761 0.0054 0.0057 0.0001 0.0023 0.0005 0.8944 0.0155 1 0.1056 

M 0.0001 0.0015 0.001 0.0001 0.001 0.0005 0.0494 0.9463 1 0.0562 

Total 1.1004 1.1997 1.0502 0.6534 1.3769 0.7247 0.9438 1.0139 8  
Gain 0.1793 0.2412 0.259 0.0116 0.5132 0.2224 0.0494 0.0676   

           

 b   2013       
2000 Wa U Wo B A G DM M Total Loss 

Wa 0.9179 0.003 0.013 0.0129 0.0321 0.0007 0.006 0.0145 1 0.0821 

U 0.0046 0.9791 0.0008 0.0035 0.0072 0.0001 0.0038 0.0009 1 0.0209 

Wo 0.0003 0.0122 0.8777 0.001 0.041 0.0672 0.0002 0.0004 1 0.1223 

B 0.2784 0.032 0.0157 0.5736 0.0976 0.0019 0.0004 0.0003 1 0.4264 

A 0.0012 0.0508 0.0333 0.0009 0.825 0.0885 0.0003 0.0001 1 0.175 

G 0.0001 0.038 0.1812 0.0005 0.1012 0.6785 0.0004 0.0001 1 0.3215 

DM 0.0712 0.0021 0.0016 0.002 0.0019 0.0011 0.9057 0.0144 1 0.0943 

M 0.0004 0.0011 0.0029 0.0004 0.0006 0.0009 0.0656 0.9281 1 0.0719 

Total 1.2741 1.1282 1.1262 0.5948 1.1066 0.6805 0.9824 0.9588 8  
Gain 0.3562 0.1491 0.2485 0.0212 0.2816 0.002 0.0767 0.0307   
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 c   2013       
1988 Wa U Wo B A G DM M Total Loss 

Wa 0.8411 0.0084 0.0257 0.0196 0.0597 0.0053 0.0123 0.0279 1 0.1589 

U 0.0105 0.9575 0.0019 0.0056 0.0139 0.001 0.0076 0.0019 1 0.0425 

Wo 0.0011 0.0288 0.7773 0.0017 0.0795 0.1105 0.0005 0.0007 1 0.2227 

B 0.4218 0.0575 0.0312 0.3196 0.1489 0.0133 0.0026 0.0051 1 0.6804 

A 0.0028 0.099 0.0762 0.0015 0.682 0.1375 0.0007 0.0002 1 0.0318 

G 0.0008 0.0728 0.2911 0.001 0.1632 0.4699 0.001 0.0003 1 0.5301 

DM 0.1348 0.0047 0.0044 0.0041 0.0064 0.0021 0.8151 0.0285 1 0.1849 

M 0.0062 0.0024 0.0057 0.0008 0.0015 0.0019 0.1244 0.8571 1 0.1429 

Total 1.4191 1.2311 1.2135 0.3539 1.1551 0.7415 0.9642 0.9217 8  
Gain 0.578 0.2736 0.4362 0.0343 0.4731 0.2716 0.1491 0.0646   
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Figure 5.4: Projected land cover transition potentials over the NDR for (a) 2026 

and (b) 2038. 
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5.4.2.  Projected Land Cover Changes under Business-as-

Usual Scenarios (BAU).  

Figure 5. 5ab depicts projected land cover for the two BAU scenarios: short-

term (2026) and long-term (2038) and are accompanied by a figure that 

summaries the proportion covered by each land cover category (Figure 5.5a-b). 

 

 

Figure 5. 5: Projected land cover over the Niger Delta Region in (a) 2026 and (b) 

2038. 

 

Table 5. 2b-c show the transition probability matrices that were used in the 

prediction of future land cover for the two BAU scenarios in the short (2026) and 

long term (2038). The projected land cover for the first BAU scenario (2026) indicate 

areas (km2) and net percentage estimate for water, urban, woodland, bare-land, 

agriculture, grassland, degraded mangroves, and mangroves in Figure 5. 6a and 

Table 5. 3. For the second BAU (2038), results show net percentage estimate for 
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water, urban, woodland, bare-land, agriculture, grassland, degraded mangroves, 

and mangroves in Figure 5. 6b and Table 5.3.  

 

 

 

 

 

Figure 5.6: The predicted areas in km2 of two BAU scenarios: (a) short-term (2026) 

and (b) long-term (2038). 
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5.4.3.  Validation results 

 

Figure 5. 7 show areas covered by each land cover class for real map and 

projected map of 2013 in the NDR. The “real” and “projected” maps were favourably 

comparable for three land cover classes in the study region: Mangroves; Degraded 

mangroves; and Water, whilst differences were observed for the rest of the land 

cover classes. A stronger agreement is indicated when the indices reach 100% 

(Hamad et al., 2018). A poor result for any class suggests that the class matrix is 

unable to forecast change for the corresponding class for 2013. The land cover map 

for 1988 was used as a reference map for predicting the land cover map for 2013 

(simulated map) using a Multi-Layer Perceptron, artificial neutral network and 

Markov chain (MLP-ANN +MC) methods (Figure 5.8).  

 

 

 

Figure 5. 7: Comparison between reference land cover map and projected map 

land cover map of 2013 

 

 

0

5000

10000

15000

20000

25000

Real 2013 Proj. 2013

L
a

n
d

 c
o

v
e

r 
a

re
a

 in
 k

m
2

Water Urban Woodland Bareland

Agricultural Grassland Deg. Mangrove Mangrove



114 
 

 

Figure 5.8: Projected land cover map of 2013 of the Niger Delta Region 
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5.4.3.1. Model validation 

 

As shown in Chapter 3, the land cover maps (reference and real map) used 

for the validation purpose achieved an overall accuracy ~79%, for 1988 and ~82% 

both for 2000 and 2013,  which is adequately within the threshold of 80% as 

suggested by Eastman (2006) and Aronoff (2004).Transition potential maps for the 

first period (1988 and 2000) generated based on transitions grouped into sub-

models and to which the 2013 map was predicted achieved an accuracy of 72.79% 

for agricultural sub-model, 60.26% for degraded mangrove sub-model, 59.08% for 

regeneration sub-model, and water 53.02%.Transitions in these sub-model classes 

consist of major and important transitions of land cover categories which are of 

particular interest to the study. Other sub-models including, urban and grassland, 

have lower accuracies less than 50%. However, they constitute less important 

transitions and cover the least proportion of land cover classes in the study area. 

Regardless, a satisfactorily comparison was observed between the simulated and 

real map of 2013 (Figures 5.7 and 5.8).  The model validation, importantly, provided 

an adequate output of goodness of fit from the AUC of the ROC. The model proved 

to be viable in adequately specifying location and quantity in the NDR.  

 

5.5. Discussion 

 

Reliable information of future land cover dynamics is vital for decision making related 

to the planning, conservation, and management (Parsa et al., 2016; Dezhkam et al., 

2017), of tropical deltas and mangrove ecosystems. Data availability and 

accuracies, and insecurity problems has resulted to the limited simulation studies 

being conducted in the NDR. Moreover, the ‘single’ modelling approach which land 

cover is projected based on trend of change and transitions is not adequate and 

reliable in providing understanding and predicting a complex and dynamic 

ecosystem such as the NDR (Onojeghuo and Blackburn, 2011; Eyoh and Okeke, 

2017; Achionye et al., 2018; Wali et al., 2018). This has resulted to fragmentary and 

lack of reliable information related to the future land cover change for the largest 

river delta in Africa and the failure to forecast the degradation of one of the most 

endangered ecosystems in the world (IUCN, 1992). The results in this study 

demonstrate that, integrated modelling techniques (MLPNN + MC) is truly a robust 
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technique that can provide a reliable prediction of future change dynamics in the 

complex and dynamic ecosystem of the NDR. 

 

5.5.1.  Short and longer-term predictions of land cover  

 

The study presents an MLP-ANN + MC approach to predict where changes 

of eight main land cover types are expected to occur based on human alterations of 

land cover in the NDR, using spatial variables that constitute regional drivers of 

change under two BAU scenarios. The short-term scenario (2026) represents 

historical land cover change observed between 2000 and 2013, whilst the second 

BAU (2038) scenario was based on long-term changes predicted using 1988 and 

2013 as training (Table 5. 2a-b). Regarding mangrove degradation, results showed 

a variation between the two scenarios. In the first, an increased mangrove 

degradation trend was observed. However, in the longer-term scenario, results 

showed a notable decline in degradation. 

The simulation results revealed some interesting dynamics based on past 

trends which were driven by the regional spatial drivers used in the study (Table 

5.1a-b). More specifically, in the short-term scenario, the spatial patterns of the 

predicted land cover indicated there would be a sizeable decrease of healthy 

mangroves(~408km2), a slight increase in the degraded (~220km2) and decrease in 

the overall extent of mangroves (degraded and non-degraded mangroves; 157km2) 

from 2013 to 2026 (Table 5. 3 & Figure 5. 9). A sizeable decrease in woodland (613 

km2), grasslands(~295km2), and bareland (~36km2) would occur between 2013 and 

2026, accompanied by considerable increase in built areas (~694 km2) and increase 

in agricultural land (272 km2) in the NDR. Water is expected to increase (~90 km2) 

in the region in the short-term scenario. The short-term change in mangrove class, 

including in its total area (degraded and non-degraded) would lead to the further 

reduction in the capability of the mangroves in providing ecosystem services and 

biodiversity loss due to a number of disturbance factors. 

In the longer scenario, predicted land cover showed a different dynamic in 

the mangrove class compared to the short-term scenario. It indicated that there 

would be a slight increase in heathy mangroves (~270km2) and a significant 

decrease in degraded mangroves(~521km2) between 2026 and 2038. Although, 

there would be a similar slight decrease in the total area of mangroves (degraded 

and non-degraded) in the two scenarios, the rate of change is almost doubled in the 
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second scenario (~250 km2). Woodland (~717 km2) and grassland (~321 km2) would 

continue to experience a net a loss, although with a rate of change slightly higher; 

but lower in the bareland class in the second scenario compared to the first scenario 

(Table 5. 3 & Figure 5. 9). Similar to the first scenario, the expected trend in the 

change of woodland, grassland, and bare land, would be accompanied with an 

increase in bult up areas (~917 km2) and agricultural land (~420 km2), although, with 

a rate of change significantly higher in the second scenario (Table 5.3 & Figure 5.9). 

However, water would decrease (~121 km2) considerably in the region in the second 

scenario (Table 5. 3 & Figure 5. 9). 

The decrease in bare land in both scenarios suggest that it would be 

transitioning into the grassland, woodland and water class. The rate of change of 

net losses in all forests (woodland and total area of mangroves) expected to occur 

in the two scenarios in the NDR if summed together compares favourably with the 

report by IPCC; (2018). In their report, they predicted that predicted 30 to ~40% of 

coastal wetlands could be lost in the next 100 years given a scenario alike to this 

study. 

 

Table 5.3: Land cover classes for 2013 and predicted area for the two BAU 

scenarios: 2025 and 2038 in km2 

 

 

 

  2013(km2)   2025(km2)   2038(km2)   

Water 805.84 1.44% 896.25 1.60% 775.55 1.38% 

Urban 3868.88 6.90% 4562.71 8.15% 5480.04 9.77% 

Woodland 22478.87 40.09% 21865.93 39.08% 21169.29 37.81% 

Bare land 123.92 0.22% 87.46 0.16% 69.3 0.12% 

Agricultural 12682.9 22.62% 12954.5 23.15% 13374.96 23.89% 

Grassland 7853.29 14% 7558.76 13.51% 7267.5 12.98% 

Deg. Mangrove 2016.33 3.60% 2236.55 3.99% 1715.53 3.06% 

Mangrove 6233.31 11.19% 5855.77 10.46% 6126.1 10.94% 
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Figure 5. 9:  Area changes in km2 of land cover classes for 2013, predicted 2026 
and 2038 of the NDR. 

 

5.5.2.  Degraded mangrove prediction and dynamics  

 

Simulating and understanding mangrove degradation patterns is essential for 

several planning and sustainable management activities of the NDR to ensure 

continued ecosystem services provision and preservation of its high biodiversity. 

The results in this study show an interesting dynamic based on past trends and 

regional spatial drivers influencing mangrove degradation in the NDR: 

 In the short-term scenario, degraded mangroves would experience a net 

increase of ~220km2 by 2026. 

 In the longer-term, between the proportion covered by degraded mangroves 

will decrease by ~521km2, more than double the expected net gain from 2013 

to 2026.  

This future spatial pattern of change in degraded mangroves in the long-term 

scenario is further evidence that degraded mangroves in the NDR are capable of 

regenerating back to their healthier state as reported by Nababa et al.  (2020). 

Moreover, results show that, as degraded mangroves would decrease, a portion of 

it is expected to revert back to its healthy state (~270 km2), whilst the remaining 

proportion would be lost (~250 km2; Table 5. 3). Several restoration activities and 

reforestation campaigns carried out by different entities have been reported in the 

0

5000

10000

15000

20000

25000

2013 2025 2038

L
a

n
d

 c
o

v
e

r 
a

re
a

 i
n

 K
m

2

Water Urban Woodland Bareland

Agricultural Grassland Deg. Mangrove Mangrove



119 
 

literature, as well as existing legislations that could lead to reduced mangrove 

degradation in the NDR (Abere and Ekeke, 2011; UNDP and GEF., 2010; NFP, 

2020; TRCC; 2020;  Isebor, 2001; Zabbey and Tanee, 2016). 

 

5.6. Limitations  

 

Land cover change processes, particularly in tropical regions are notoriously 

known for their dynamics and complexity, hence they are difficult to capture in 

variables and model in algorithms (Gibson et al., 2018). This is because they are 

often controlled by dynamic, non-linear human-nature relationship (Olmedo et al., 

2015). A Land-use simulation model must be capable of simulating quantity of 

change and the locational area of associated change (Pontius et al., 2004). The 

accuracy of output (e.g., transition potentials and land cover maps) produced by an 

inductive model is wholly dependent on the model’s predictive capability and 

accuracy of input data. 

The NDR, is one of the most affected globally with data paucity and accuracy 

issues, including remote sensing data and other geo-spatial data required for land 

cover simulation studies. This chapter is a follow up to Chapter 3 where land cover 

change analysis was carried out primarily using Landsat imagery. The study 

encountered confusion in the classification of certain land cover which resulted to 

mapping errors. The three land cover maps had an overall accuracy: 79% for 1988, 

and 82% for 2000 and 2013, which were utilised as dependent input data for the 

future prediction of land cover in this study. Although, the overall accuracies are high 

for the land cover changes analysis, the accuracy level become degraded when 

land cover modelling is carried out.  Munch et al., (2017), provides an explanation 

of land cover map accuracies and their implication in land change analysis.  

The LCM is an inductive approach where change is modelled empirically 

using past land cover maps. Therefore, errors in the individual input land cover maps 

are propagated by the model into the transitional potential maps, as well as the 

future scenario land cover maps which affected the acceptable established accuracy 

threshold to be achieved in this study. Although, mapping land cover with medium 

resolution imagery is inherently problematic, which often result to accuracy reliability 

issues. Furthermore, the study area is characterised with a number of peculiar 

remote sensing data issues, including data gaps and cloud contamination 

associated with Landsat data. 
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Regrading other geo-spatial data used in the simulation, a combination of 

physical, environmental and socio-economic factors as explanatory spatial variables 

was used in modelling two BAU scenarios in the short (2026) and long-term (2038). 

However, some of the spatial variables are characterized by some uncertainties. 

Particularly, data for road networks either contained incomplete or excess 

information (i.e the most recent data) which were pre- processed to form a 

composite data layer in-order to correspond to the temporal periods of the land cover 

maps. However, it would be inherently associated with some errors. There is slight 

overlap of settlement and population density data relative to land cover map of the 

earliest period (1988). Additionally, the differences in the spatial resolution (250m 

and 1km2) of some of the driver variable data, despite been standardized mean that 

the captured local effects are unaccounted for. Furthermore, it is important to 

recognise that climate variables such SLR, rainfall, and salinity and other spatial 

variables such as soil type and gross domestic (GDP) which can play a significant 

role in improving the accuracy in predicting future land cover dynamics in NDR was 

not included in the model due to data availability, coarseness and accuracy issues 

of the study area, and the time limit for submitting the thesis. Moreover, the study 

emphasises on human-induced changes to land cover in the NDR. 

  The limitations encountered have pushed the MLP-ANN + MC model 

accuracy lower than the threshold of 80% (Eastman, 2006; Aranoff, 2005), However, 

a comparison of the “predicted” and classified (i.e., the “real” map) of 2013, indicated 

an acceptable accuracy.  Therefore, the MLP-ANN + MC approach has proven to 

be a robust approach for future scenario land cover change and mangrove 

prediction in the NDR. 

It would be interesting to predict future land cover change further in the future 

e.g., for 2050 or even 2100, however, due to the limitations described above, it 

wouldn’t be reliable enough. 

 

5.7. Conclusions 

 

The Niger Delta region (NDR) is considered to be one of the most degraded 

ecosystems in the world (IUCN, 1992). Its mangrove forest particularly, has been 

consistently degraded over the past decades despite the huge role it plays in 

sustenance of livelihood of local communities (Nababa et al., 2020; Kuenzer et al., 

2014a). Present global disturbance rate of the important resource put it at a risk of 
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disappearance by the end of the century (Duke et al., 2007a; FAO, 2007). To 

prevent future degradation and depletion of mangroves, it is necessary to 

understand and predict future land cover change in the region. Data availability and 

accuracy issues together with the commonly used ‘single’ model approach have 

limited the understanding and reliability of future land cover change in the NDR. 

In this chapter, an MLP-ANN +MC model was used to predict future land 

cover change and mangrove degradation under two BAU-scenarios for the short-

term (2026) and longer-term (2038). A satisfactory accuracy model accuracy when 

comparing a “predicted” and “real” map for 2013. The prediction was carried out 

using land cover maps (1988, 2000, and 2013) produced in Chapter 3 and spatial 

explanatory variables which represent regional drivers of land cover change using 

the LCM in the TerrSet. Results showed that the mangrove forest and woodlands 

(lowland and freshwater forests) would demonstrate a net loss if past trends persist 

without any intervention, whilst the built-up areas and agriculture would a net 

increase in both scenarios. Results also showed that degraded mangroves would 

be reporting a net increase in the short-term, whilst in the longer-term, a portion of 

it, more than double the expected net gain in the short-term scenario would return 

to their healthier state.  The MLP-ANN + MC has provided a valuable prediction of 

future land cover change in the NDR and the first ever degraded mangrove 

prediction in the region. This type of land cover predictions is useful for the planning, 

of several conservation actions and the sustainable management of the NDR  

resources.  
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Chapter 6 

 

Conclusions 

 

Mangroves are a highly important resource which millions of the inhabitants 

in the tropical coastal areas depend for their livelihoods. Over the past 50 years  the 

rate of mangrove loss and the extent of their degradation(1389km2
; estimate 

between 1996 – 2016) has been an issue of global concern (Worthington and 

Spalding, 2018; Duke, 2016) as the ecosystem services they provide are reduced, 

including fisheries production, flood protection, carbon sequestration, fuelwood, and 

medicinal value (Numbere, 2014; Carugati et al., 2018; Onyena and Sam, 2020) 

Furthermore, the prediction that mangroves may vanish by the end of the century 

due to current disturbance rate from natural and anthropogenic sources has raised 

the alarm and further exemplified  the need for the sustainable management of this 

important resource (Duke et al., 2007a; FAO, 2007; Worthington and Spalding, 

2018).  Reliable information on the past and present land cover, and particularly of 

the condition of mangroves is important for the decision-making process related with 

their sustainable management. To this end, satellite remote sensing has an 

important role to play.  However, tropical regions, in general, and the sub-Saharan 

Africa region in particular, are associated with data availability issues and the 

extensive cloud contamination of optical remote sensing data, such as from Landsat 

satellites (Okoro et al., 2016; Kirui et al., 2013).  

 This study used state-of-the-art remote sensing approaches to reliably map 

land cover change over 25 years and model its short and long-term state under a 

business-as-usual scenario using integrated modelling techniques.  

 The main findings of the thesis are summarised into three analysis chapter 

as follows:  
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Chapter 3: Land cover dynamics and mangrove degradation in the Niger Delta 

region  

 

 There are significant gaps in the Earth Observation data archive for western 

and eastern African regions and available data is often contaminated by 

clouds in the case of optical data (e.g., Landsat) which makes land cover 

mapping and modelling challenging.  However, open access remote sensing 

together with the use state-of-the-art remote sensing techniques can be 

leveraged on to solve or significantly reduce data gaps and cloud 

contamination problems, as demonstrated in this study.  

 The utilization of image mosaics or single images from single-sensor data to 

map and assess change should be avoided given the recent advancements 

in the technological developments which have given birth to new approaches 

that enable accurate mapping of land cover (Frantz, 2019; Griffiths et al., 

2013). By using the cloud computing infrastructure of Google Earth Engine 

(GEE) and spectral temporal metrics from hundreds of Landsat images, the 

study overcame data gaps and cloud contamination problems and achieved 

high overall classification accuracies, User’ and Producer’s accuracies were 

achieved in the mapping of land cover, and degraded mangroves for the first 

time in the study region.   

 Spatial-temporal Landsat-based metrics were sufficient in mapping land 

cover in the three epochs of the NDR, as combining Landsat and Radar data 

was only marginally beneficial, providing a slight improvement of user’s 

accuracy of the Water and Urban land cover class by 4% in the latest time 

point.  

 Land cover change results revealed that mangroves, the lowland rainforests, 

and the freshwater forests have demonstrated a net loss, while the built-up 

areas have almost doubled over the study period.  

 Notable results of the intensity analysis showed mangroves losses were ~5 

times more intense than gains, urban gains were ~10 times more intense 

than losses, and agricultural gains were ~2 times more intense than losses. 

 The results of the fragmentation analysis showed that the ‘number of patches’ 

(NP) for the healthy mangrove consistently increased, which led to the 

increase of degraded mangroves observed in the more recent time points of 

the study.  
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Chapter 4: Assessing the spatial drivers of mangrove degradation in the Niger 

Delta  

 

 Open geo-spatial data (e.g., roads, population, settlement) over certain areas 

of the sub-Saharan Africa (e.g., western Africa) are scarce and, when 

available, are characterised by limitations, such as spatial resolution and 

accuracy issues that result to uncertainties when they are utilised in the 

quantitative assessment of drivers of change. However, a number of GIS 

manipulations can be performed on the data to reduce uncertainties and 

enable their adequate use as demonstrated in the study.  

 Assessing the drivers of change in mangroves needs to be carried out 

progressively, given that mangroves are highly dynamic. This is necessary 

so that the planning of conservation measures and development of policy 

interventions are targeted to tackle the variation of the drivers of degradation 

in mangroves. The results of the quantitative assessment of drivers showed 

a variation in the drivers of mangrove degradation, with built up and oil and 

gas infrastructure variables as major drivers of mangrove degradation in the 

first and second periods respectively. The model proved to be an adequate 

predictor of change, with a predictive accuracy above 60%.  However, 

improved accuracy is suggested by mainly additional inclusion of a number 

of perceived mangrove degradation drivers. 

 Interestingly, population density is the least important driver of mangrove 

degradation in the Niger Delta region 

 

Chapter 5: Future land cover change and mangrove in the Niger Delta region  

 

 Results of the business-as-usual scenario of future land cover for the short 

(2026) and longer-term (2038) reveal that if past trends persist without any 

intervention, mangrove forests, and woodlands (lowland and freshwater 

forests) would demonstrate a net loss, whilst the built-up areas and 

agriculture increase. 

 Degraded mangroves would experience a net increase of ~220km2 in the 

short-term (2026) but a net decrease(~521km2), a net decrease in the longer-

term (2038).   

 A number of data issues limited the performance of the MLP-ANN + MC 

approach to be achieved in the land cover modelling outcomes. This included 
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the level of accuracy of the land cover maps and of the spatial drivers were 

used. Regardless, the integrated approach, being the first to be tested in the 

study region, was proven to be a robust approach. The model’s accuracy 

(using 2013 map) was satisfactorily validated using the classified and 

predicted map of 2013. 

 

6.1. Contribution to knowledge and significance of the 

study 

 This study leveraged on the benefits of open remote sensing to accurately 

assess land cover dynamics through the use of state-of-the-art remote sensing 

technologies and analytical techniques for the NDR in Chapter 3. This is an 

important contribution, providing advancement to the methodological approach to 

land cover change analyses in the NDR and adding to the existing body of literature. 

Apart from study by Nwobi et al., (2020), previous studies have used ‘traditional’ 

approaches to assess land cover change in the study region, and the results have 

been disputable (James et al., 2007; Kuenzer et al., 2014a; Ayanlade and Drake, 

2016; Salami et al., 2010). The study is the first to utilize spectral-temporal metrics 

and machine learning algorithm on Landsat based images and explored the 

approach on the combination of optical/radar data to improve land cover 

classification accuracies in the study region at regional a scale. Notably, this 

enabled the first ever accurate estimates of degraded mangroves in the NDR and 

its fragmentation. These are significant contributions as the information could be 

used for improving the management of the mangrove forest in the NDR.  

To support sustainable management activities of mangroves owing to past 

threats, spatial drivers of mangrove degradation were quantitively assessed using 

an Artificial Neural Networks (ANN) algorithm in Chapter 4. Prior to this study, driving 

forces of mangrove degradation and loss in the NDR were based on speculation, 

and therefore was un-reliable. Moreover, because information on the drivers was 

speculative, an understanding of how the drivers interact through time was un-

known. Furthermore, globally, there is a very limited number of studies (e.g. Meng 

et al., 2016; Omo-Irabor et al., 2011) quantitively assessing mangrove degradation 

drivers in the literature. Therefore, this study provides a significant contribution to 

the assessment of mangrove degradation drivers in NDR as the first reliable 
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assessment. Additionally, it provides an important contribution to the global literature 

on quantitative assessment of mangrove degradation drivers.   

In Chapter 5, future land cover and mangrove degradation under two 

business-as-usual (BAU) scenarios were predicted using integrated modelling 

techniques. Most studies modelling future land change in the NDR utilized single 

modelling approaches which are considered to be limited in their robustness (Eyoh 

and Okeke, 2017; Dan-Jumbo et al., 2018; Onojeghuo and Blackburn, 2011; Wali 

et al., 2018; Achionye et al., 2018; Abbas, 2012). However, this study for the first 

time tested the capability of Multi-layered Perceptron neutral network and the 

Markov chains (MLPNN + MC) integrated modelling approach, representing spatial 

regional drivers, to provide a reliable information of future land cover dynamics and 

the first ever reliable prediction of mangrove degradation in the NDR. The MLPNN 

+ MC method is arguably one of the best integrated modelling approaches for future 

land cover change mapping and assessment (Ozturk, 2015; Roy et al., 2014; Pérez-

Vega et al., 2012). The approach used is an important contribution in the 

methodology utilized for modelling of land cover in the NDR. Also, another 

noteworthy contribution is the first ever future prediction of the extent of degraded 

mangrove which is important for planning, conservation and management of the 

Niger River Delta (NRD) and the mangrove ecosystem.  

 It is expected that the techniques applied in this thesis would stimulate similar 

studies to be conducted in other regions of Nigeria and Sub-Sharan-African regions 

where remote sensing and other geo-spatial data gaps dominate. 

 

6.2. Policy implications 

 

Although, there are no management policies that are exclusively targeted at 

protecting mangrove forests in Nigeria. However, laws and regulations that offer 

protection for mangroves are enshrined within general environmental and forest 

laws and policies of the country. Some of these policies have clearly defined 

objectives and action plans (Table 2. 3).  Nevertheless, the continuous degradation 

in Niger Delta’s ecosystem and its mangrove forest suggest that existing policies 

are ineffective and perhaps policy development targeted on mangroves should be 

formulated. Conflicting responsibilities that exist among MDAs related with the 

protection of forests are some of the problems that has been identified mitigating 

enforcement of forest and degradation laws in Nigeria (Adekola et al., 2012; Albert 
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et al., 2018). Furthermore, data limitation issues including extensive cloud effects of 

optical remote sensing data, resolution and accuracies problems of other geo-

spatial data, data paucity of fisheries NDR, and insecurity in the region have 

hampered the availability of reliable information that could drive policy making 

related with protection of mangrove and fisheries management.  

 The Global Mangrove Watch (GMW) project was initiated through a 

collaborative effort of the JAXA Kyoto and Carbon in 2011 aimed at providing 

information on mangrove extent and its change for sustainable management of 

mangroves through an effective monitoring system (Bunting et al., 2018).  However, 

the GMW is limited to information about mangrove extent that emphasize loss 

between 1996 and 2016. Mangrove degradation is a predecessor to their loss, as 

such reliable information on the extent of degradation is a critical for risk assessment 

and effective management of the mangrove forest. 

This thesis provides a holistic assessment of mangrove condition and, 

particularly of its extent of degradation. The methodologies used in addressing data 

limitation issues related with the optical remote sensing data and that of fisheries 

landings proved to be robust, providing reliable information which is important for 

sustainable mangrove and fisheries management in the NDR.  

In chapter 4, the second period of the study (2000-2013) was a period 

characterised with serious oil and gas pollution resulting to considerable 

degradation of mangroves in the NDR (Duke, 2016; UNEP, 2011). This triggered 

the need for improved mangrove management and understanding of the driving 

factors of degradation in mangroves. In this chapter, the degradation scenario was 

recreated to an accuracy over 62%, suggesting that degradation could have been 

adequately managed if mitigation plans were put in place. Results revealed that oil 

and gas pollution were the major causes of mangrove degradation in this period as 

suggested in the literature (Kadafa, 2012; Balogun, 2015; Duke, 2016). This result 

presents the opportunity for prompt, appropriate, and effective intervention related 

with mangrove management.  

 

6.3. Limitation and recommendations 

 

Monitoring and modelling of land cover change and mangrove estimates 

using Earth Observation data and other geo-spatial information inherently comes 

with some limitations. Studies using optical data are particularly problematic as 
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mapping and monitoring land cover over the tropics is compounded by gaps in 

satellite imagery and cloud cover contamination which limit the achievement of 

optimal land cover classification accuracies. These issues were identified and 

discussed in this study especially with regards to the modelling outputs in Chapters 

4 and 5.  

The complex processes of land cover dynamics are tricky to capture in 

variables, and model in algorithms, since they are shaped by dynamic and non-

linear human-nature interactions (Olmedo et al., 2015). Human-induced variables 

were mainly used as regional drivers in the modelling of land cover and mangrove 

degradation, and assessment of mangrove degradation drivers, whilst climatic 

variables (e.g., salinity, pH etc) were ignored due to data challenges of the study 

area. Additionally, some of the driver variables were associated with resolution, 

accuracy and incompleteness issues that also affected the accuracy of the 

modelling outputs. Satellite images and other geo-spatial (i.e., data on spatial 

drivers) with higher spatial and spectral resolution and accuracies are required for 

an improved assessment of the drivers of mangrove degradation and modelling land 

cover change in a dynamic and complex region such as the NDR. 

  

6.4. Future works 

 

Recent studies have reported that the combination of metrics from different 

sensors and seasons enables optimal land cover mapping of savannah and woody 

vegetation (Symeonakis et al., 2018; Borges et al., 2020). Therefore, future works 

in the NDR could test the combination of Sentinel-1 and Sentinel-2 from different 

seasons for the potential improvement of land cover classification accuracies. 

Furthermore, future works could focus on forecasting land cover change effects on 

climate change (Pielke Sr et al., 2002; Bonan, 1997), carbon cycling and storage 

(Sudirman et al., 2018; Quijas et al., 2019; Boysen et al., 2014), nutrient loading 

(Boto, 2018; Hershey et al., 2021), biodiversity (Carugati et al., 2018; Polidoro et al., 

2010), and other critical ecosystem services in the study area.  
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Table S1. Mathematical notation for intensity analysis (from Pontius et al. 2013). 

Symbol Meaning 
 

J number of categories, which equals 3 in our case study 

i index for a category at the interval’s initial time point 

j index for a category at the interval’s final time point 

m index for the losing category for the selected transition 

n index for the gaining category for the selected transition 

Cij number of pixels that transition from category i to category j 

S 
total change as percent of domain, which equals the uniform intensity for the category 

level 

Gj intensity of gain of category j relative to size of category j at final time 

Li intensity of loss of category i relative to size of category i at initial time 

Rin 
intensity of transition from category i to category n relative to size of category i at 

initial time where i≠n 

Wn 
uniform intensity of transition from all non-n categories to category n relative to size of 

all non-n categories at initial time 

Qmj 
intensity of transition from category m to category j relative to size of category j at final 

time where j≠m 

Vm 
uniform intensity of transition from all non-m categories to category j relative to size of 

all non-m categories at final time 

EGj hypothesized commission of category j error at final time 

OGj hypothesized omission of category j error at final time 

ELi hypothesized commission of category i error at initial time 

  OLi hypothesized omission of category i error at initial time  
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Table S2. Confusion matrix of the classification of the Landsat-based metrics centred 

around the year 1988. 

 
198
8 

  Reference  

   Wa U Wo B A G DM M 

Wa 319 5 17 15 33 0 15 8 

U 12 5684 106 9 372 119 3 5 

Wo 10 355 15,936 6 1583 1644 24 416 

B 11 8 0 210 61 0 0 0 

A 20 1448 934 102 16,765 1690 1 9 

G 0 629 1638 0 1878 8345 0 4 

DM 34 16 10 1 6 0 1262 219 

M 33 26 319 0 19 1 326 6476 

Table S3. Confusion matrix of the classification of the Landsat-based metrics centred 

around the year 2000. 

200
0 

  Reference  

   Wa U Wo B A G DM M 

Wa 270 1 3 6 8 0 23 12 

U 23 8800 88 36 550 120 2 6 

Wo 7 200 12,919 11 917 1047 6 381 

B 6 11 1 156 33 0 0 0 

A 6 1609 751 103 22,055 2295 1 2 

G 5 186 840 5 1548 3875 1 3 

DM 22 4 7 1 4 5 1090 150 

M 22 7 279 2 16 12 269 5236 
 

 

Table S4. Confusion matrix of the classification of the Landsat- and JERS-1-based metrics 

centred around the year 2000. 

 
200
0 

  Reference  

   Wa U Wo B A G DM M 

Wa 277 1 2 12 13 0 22 12 

U 10 8778 94 40 153 138 3 5 

Wo 8 218 12,920 10 827 1076 9 346 

B 5 21 0 157 40 0 0 0 

A 12 1560 743 98 22,153 2176 1 4 

G 3 200 869 5 1539 3957 0 9 

DM 34 4 10 1 3 2 1097 158 

M 20 7 272 2 11 12 264 5268 
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Table S5. Confusion matrix of the classification of the Landsat-based metrics centred around the year 

2013. 

 
2013 

  Reference  

   Wa U Wo B A G DM M 

Wa 825 11 7 49 19 0 52 24 

U 10 9102 33 288 493 91 1 2 

Wo 28 54 14,634 36 795 1277 18 435 

B 58 102 6 934 101 2 5 2 

A 15 1461 1051 499 27,249 3484 0 0 

G 1 142 1358 41 2339 6260 0 26 

DM 114 1 8 8 0 0 1367 157 

M 61 0 280 14 1 0 151 5649 

Table S6. Confusion matrix of the classification of the Landsat-and ALOS PALSAR-2-based metrics 

centred around the year 2013. 

2013 
  Reference  

   Wa U Wo B A G DM M 

Wa 866 10 10 46 15 0 48 18 

U 11 14,877 74 326 755 182 0 1 

Wo 27 119 14,629 32 749 1232 8 440 

B 51 120 9 938 73 2 2 1 

A 16 1544 1088 467 26,943 3395 1 0 

G 1 195 1312 32 2424 6285 0 23 

DM 89 3 13 13 3 0 1382 167 

M 45 0 253 12 2 0 154 5647 
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Table S7. Transition-level intensity analysis FROM-class TO-class for 1988–2000 and 2000–2013 (all 

classes except mangrove, which appears in Table 4). 

Transitions 

FROM 

 
Degraded Mangrove 

Time Interval 1988–2000 2000–2013 

 

 

 

 

 

 

 

 

 

 

 

 

 
Transitions 

FROM 

 

 

 

 

 

 

 

 

 

 

 

 

 

Grassland 

Time Interval 1988–2000 2000–2013 

TO Category 

 

 

 

 

 

 

 
 

Degraded 

Mangrove 

 

 

 

 

 

 

 

 
103 0.01 274 0.02 

Mangrove 546 0.01 61 0.00 
 

Transitions 

FROM 
Agricultural 

Time Interval 1988–2000 2000–2013 

TO Category 

Observed 

Annual 

Transition 

Intensity 

Observed 

Annual 

Transition 

Intensity 

 

 

 

 

 

 

 

 

 

 

 
Transitions 

FROM 

 

 

 

 

 

 

 

 

 

 

 

 

Bareland 

Time Interval 1988–2000 2000–2013 

Observed Transition Observed Transition 

Annual Intensity Annual Intensity 

  Transition 

(km2) 

% of 2000 

Category 

Transition 

(km2) 

% of 2013 

Category 

Water 42 0.03 82 0.01 

Urban 27,872 0.01 22,895 0.66 

Woodland 125,085 1.19 107,460 0.53 

Bareland 48 0.05 2980 0.25 

Agricultural 148,407 1.22 60,047 0.53 

 

 Transition 

(km2) 

% of 2000 

Category 

Transition 

(km2) 

% of 2013 

Category 

Water 1745 0.30 1259 0.17 

Urban 24,552 1.05 51,246 1.47 

Woodland 23,369 0.11 34,306 0.17 

Bareland 20,984 2.04 865 0.78 

Grassland 54,602 0.75 87,124 1.23 

 

Observed 

TO Category 
Annual

 

Transition 

Intensity 

Observed 

Annual 

Transition 

Intensity 

 Transition % of 2000 Transition % of 2013 

 (km2) Category (km2) Category 

Water 7787 1.32 8937 1.23 

Urban 566 0.02 272 0.01 

Woodland 579 0.00 209 0.00 

Bareland 19 0.02 255 0.23 

Agricultural 243 0.00 255 0.00 

Grassland 630 0.00 133 0.00 

Mangrove 1595 0.03 1818 0.03 

 

Degraded 483 0.03 263 0.01 
Mangrove     

Mangrove 263 0.00 67 0.00 
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TO Category 

Observed 

Annual 

Transition 

Transition 

Intensity 

Observed 

Annual 

Transition 

Transition 

Intensity 

 

 
 (km2) % of 2000 

Category 

(km2) % of 2013 

Category 

Water 712 0.12 2309 0.32 

Urban 633 0.03 270 0.01 

Woodland 16 0.00 134 0.00 

Agricultural 1248 0.01 180 0.01 

Grassland 8 0.00 22 0.00 

Degraded 

Mangrove 
3 0.00 4 0.00 

Mangrove 11 0.00 5 0.00 

Transitions 
Woodland

 

FROM   

Time Interval 1988–2000 2000–2013 

 
 

TO Category 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

TO Category 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

TO Category 

Observed Transition Observed Transition 

Annual Intensity Annual Intensity 

  Transition 

(km2) 

% of 2000 

Category 

Transition 

(km2) 

% of 2013 

Category 

Water 623 0.11 468 0.06 

Urban 14,159 0.60 16,151 0.46 

Bareland 236 0.23 1325 1.19 

Agricultural 95,219 0.78 53,121 0.47 

Grassland 14,784 2.03 85,522 1.21 

Degraded 

Mangrove 
394 0.03 284 0.02 

Mangrove 887 0.01 456 0.01 

Transitions 

FROM 

 
Urban 

Time Interval 1988–2000 2000–2013 

 Observed Transition Observed Transition 

Annual Intensity Annual Intensity 

  Transition 

(km2) 

% of 2000 

Category 

Transition 

(km2) 

% of 2013 

Category 

Water 346 0.06 918 0.13 

Woodland 281 0.00 155 0.00 

Bareland 248 0.24 668 0.60 

Agricultural 522 0.00 1389 0.01 

Grassland 2647 0.04 31 0.00 

Degraded 

Mangrove 
444 0.03 746 0.04 

Mangrove 535 0.01 171 0.00 

Transitions 

FROM 

 
Water 

Time Interval 1988–2000 2000–2013 

 Observed Transition Observed Transition 

Annual Intensity Annual Intensity 

  Transition 

(km2) 

% of 2000 

Category 

Transition 

(km2) 

% of 2013 

Category 

Urban 747 0.03 150 0.00 

Woodland 487 0.00 636 0.00 

Bareland 228 0.22 616 1.55 

Agricultural 667 0.01 1566 0.01 

Grassland 54 0.00 45 0.00 
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Table S8. Transition-level intensity analysis TO-class FROM-class for 1988–2000 and 2000–2013. 

Transitions TO Mangrove 

Time Interval 1988–2000 2000–2013 
 

 
FROM 

Category 

Observed Annual 

Transition 

(km2) 

Transition 

Intensity 

% of 1988 

Observed Annual 

Transition 

(km2) 

Transition 

Intensity 

% of 2000 

 

 

 

 

 

 

 

 

 

Mangrove 

Transitions TO Degraded Mangrove 

Time Interval 1988–2000 2000–2013 

FROM 

Category 

Observed Annual 

Transition 

(km2) 

Transition 

Intensity 

% of 1988 

Observed Annual 

Transition 

(km2) 

Transition 

Intensity 

% of 2000 

 

 

 

 

 

 

 

 

 

 

 

 

FROM 

Category 

 

 

 

 

 

 

 

 

 

 

 

 

Observed Annual 

Transition 

(km2) 

 

 

 

 

 

 

 

 

 

 

 
Transition 

Intensity 

% of 1988 

 

 

 

 

 

 

 

 

 

 

 

 

Observed Annual 

Transition 

(km2) 

 

 

 

 

 

 

 

 

 

 

 
Transition 

Intensity 

% of 2000 

 

 

 

 

 

 

 

 

 

 

 

 

 Category  Category 

Water 369 0.08 711 0.12 

Urban 535 0.03 170 0.02 

Woodland 887 0.00 456 0.00 

Bareland 11 0.01 5 0.00 

Agricultural 263 0.00 66 0.00 

Grassland 546 0.01 61 0.00 

Degraded 
1595

 
0.12 1818 0.12 

 

 Category   Category 

Water 411  0.08 294  0.05 

Urban 444  0.03 746  0.03 

Woodland 394  0.00 284  0.00 

Bareland 263  0.00 4  0.00 

Agriculture 483  0.00 263  0.00 

Grassland 103  0.00 274  0.00 

Mangrove 23,799  0.38 32,742  0.54 

Transitions TO   Grassland    

Time Interval  1988–2000   2000–2013  

 

 Category  Category 

Water 54 0.01 45 0.01 

Urban 2646 0.17 31 0.00 

Woodland 147,840 0.68 85,522 0.42 

Bareland 8 0.01 22 0.02 

Agricultural 54,602 0.52 871,237 0.72 

Degraded 63 0.00 133 0.01 
Mangrove       

Mangrove 246  0.00  460 0.01 

Transitions TO    Agricultural   

Time Interval  1988–2000    2000–2013 

 

 
FROM 

Category 

 

Observed Annual 

Transition 

(km2) 

Transition 

Intensity 

% of 1988 

 

Observed Annual 

Transition 

(km2) 

Transition 

Intensity 

% of 2000 

 Category  Category 

Water 667 0.14 1566 0.26 

Urban 522 1.03 1389 0.06 

Woodland 95,219 0.44 53,121 0.26 

Bareland 1248 1.26 810 0.79 
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Grassland 148,470 1.75 60,047 0.82 

Degraded 243 0.02 255 0.02 
Mangrove        

Mangrove 485  0.01  280  0.00 

Transitions TO    Bareland    

Time Interval  1988–2000    2000–2013  

 
FROM 

Category 

Observed Annual 

Transition 

(km2) 

Transition 

Intensity 

% of 1988 

Observed Annual 

Transition 

(km2) 

Transition 

Intensity 

% of 2000 

 

 

 

 

 

 

 

 

 

 

 

 

 
FROM 

Category 

 

Observed Annual 

Transition 

(km2) 

Transition 

Intensity 

% of 1988 

 

Observed Annual 

Transition 

(km2) 

Transition 

Intensity 

% of 2000 

 

 

 

 

 

 

 

 

 

 

 

 

 
FROM 

Category 

 

Observed Annual 

Transition 

(km2) 

Transition 

Intensity 

% of 1988 

 

Observed Annual 

Transition 

(km2) 

Transition 

Intensity 

% of 2000 

 

 

 

 

 

 

 

 

 

 

 

 

 category  Category 

Water 228 0.05 616 0.10 

Urban 248 0.02 668 0.03 

Woodland 237 0.00 1325 0.00 

Agricultural 2098 0.02 865 0.01 

Grassland 48 0.00 280 0.00 

Degraded 19 0.00 255 0.02 
Mangrove        

Mangrove 39  0.00  221  0.00 

Transitions TO    Woodland    

Time Interval  1988–2000    2000–2013  

 

 Category  Category 

Water 487 0.10 636 0.11 

Urban 281 0.02 15 0.01 

Bareland 16 0.02 134 1.13 

Agricultural 23,369 0.22 34,305 0.28 

Grassland 125,085 1.48 107,460 1.47 

Degraded 579 0.04 208 0.0 
Mangrove        

Mangrove 505  0.01  1431  0.02 

Transitions TO    Urban    

Time Interval  1988–2000    2000–2013  

 

 Category  Category 

Water 747 0.15 150 0.03 

Woodland 14,159 0.07 16,151 0.08 

Bareland 633 0.64 60 0.21 

Agricultural 24,552 0.23 51,247 0.42 

Grassland 27,872 0.33 22,895 0.31 

Degraded 566 0.04 272 0.02 
Mangrove        

Mangrove 717  0.01  540  0.01 

Transitions TO    Water    

Time Interval  1988–2000    2000–2013  
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Appendix 2. The area the curve (AUC) figure from The VALIDATE 

module.  

 

 

 

 

 

 

 

 
FROM 

Category 

 

Observed Annual 

Transition 

(km2) 

Transition 

Intensity 

% of 1988 

Category 

 

Observed Annual 

Transition 

(km2) 

Transition 

Intensity 

% of 2000 

Category 

 

Urban 346 0.02 918 0.04 

Woodland 623 0.00 468 0.00 

Bareland 712 0.72 2309 2.25 

Agricultural 1475 0.02 1259 0.01 

Grassland 42 0.00 82 0.00 

Degraded 

Mangrove 
7789 0.58 894 0.59 

Mangrove 206 0.00 355 0.01 
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Appendix 3: Projected mangrove transition potentials over the 

NDR for (a) 2026 and (b) 2038 
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