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Abstract

Empowering machines to understand compositionality is considered by many (Lake

et al., 2017; Lake and Baroni, 2018; Schölkopf et al., 2021) a promising path to-

wards improved representational interpretability and out-of-distribution general-

ization. Yet, discovering the compositional structures of raw sensory data requires

solving a factorization problem, i.e. decomposing the unstructured observations

into modular components. Handling the factorization problem presents numer-

ous technical challenges, especially in unsupervised settings which we explore to

avoid the heavy burden of human annotation. In this thesis, we approach the

factorization problem from a generative perspective. Specifically, we develop un-

supervised machine learning models to recover the compositional data-generation

mechanisms around objects from visual scene observations.

First, we present MulMON as the first feasible unsupervised solution to the multi-

view object-centric representation learning problem. MulMON resolves the spa-

tial ambiguities arising from single-image observations of static scenes, e.g. optical

illusions and occlusion, with a multi-view inference design. We demonstrate that

not only can MulMON perform better scene object factorization with less uncer-

tainty than single-view methods, but it can also predict a scene’s appearances

and object segmentations for novel viewpoints. Next, we present a technique,

namely for latent duplicate suppression (abbr. LDS), and demonstrate its effec-

tiveness in fixing a common scene object factorization issue that exists in various

unsupervised object-centric learning models—i.e. inferring duplicate representa-

tions for the same objects. Finally, we present DyMON as the first unsupervised

learner that can recover object-centric compositional generative mechanism from

moving-view-dynamic-scene observational data. We demonstrate that not only

can DyMON factorize dynamic scenes in terms of objects, but it can also factor-

ize the entangled effects of observer motions and object dynamics that function
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independently. Furthermore, we demonstrate that DyMON can predict a scene’s

appearances and segmentations at arbitrary times (querying across time) and

from arbitrary viewpoints (querying across space)—i.e. answer counterfactual

questions.

The scene modeling explored in this thesis is a proof of concept, which we hope

will inspire: 1) a broader range of downstream applications (e.g. “world mod-

elling” and environment interactions) and 2) generative factorization research

that targets more complex compositional structures (e.g. complex textures, multi-

granularity compositions).
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Lay Summary
This thesis explores the idea of empowering machines to understand composi-

tionality, i.e. how to form complex expressions with a set of simpler expressions.

The understanding of compositionality plays a significant role in human cognition

systems—it allows humans to discover, from direct experiences, a set of reusable

modules and the rules used to efficiently combine or even re-combine them to

explain or generate new experiences. However, for artificial intelligence systems,

finding the compositional structures from raw sensory input is challenging as

it requires overcoming a technical obstacle—factorization, i.e. decomposing un-

structured observations, often complex data like images or videos, into smaller

meaningful entities.

We focus on the scenarios of object-centric visual compositionality understanding,

i.e. treating scenes as compositions of objects, and tackle the problem of factoriz-

ing scenes into a set of explanatory objects. Instead of treating the factorization

problem like the traditional object detection and image segmentation methods, we

approach it from a generative perspective: we build machine learning models that

recover the observation-generating process from data without human supervision.

In this thesis, we investigate three common issues regarding object-centric factor-

ization. First, as the factorization of 3D scenes based on single-view 2D images

often gives high spatial uncertainty (due to, e.g. occlusions or optical illusions), we

present a method (MulMON) that uses multiple viewpoints of a scene to reduce

factorization uncertainty and improve accuracies. Next, we present a technique

(LDS) that reduces the chance of factorizing the same objects repeatedly by rea-

soning about the relations between the inferred object representations. Finally,

we present a method (DyMON) that alleviates the influence of moving observers

in scenarios where both the observer and the objects are moving simultaneously—

by disentangling the effects of independent object motions and observer motions.
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Nomenclature

X,Y,Z,V random variables (abbr. RVs); Z denotes latent variables

x,y,z,v values of the corresponding random variables

Z = {Z1, ...,ZK} a composition of K joint random variables

z = {z1, ..., zK} a sample (i.e. K joint values) of Z

x = {x(1), ...,x(N)} a set of N I.I.D. samples of X; indices bracketed to empha-
size I.I.D.

D data (set), observational

PX ,P (X) probability distribution of X

p(x) probability density/mass function of P (X)

P (X|Z) conditional probability distribution of X given Z

p(x|z) conditional probability density/mass function of P (X|Z)

P (X|do(Zk = zk)) interventional probability distribution of X under Z = z

pθ(·) a family of density/mass functions parameterized by θ

qϕ(·) a family of approximating probability density/mass func-
tions parameterized by ϕ

gθ(·) a family of deterministic functions parameterized by θ

PAX a set of all parent random variables of X

pax values of X’s parents

X ⊥⊥ Y independence between random variables X and Y

X ⊥⊥ Y |Z conditional independence between X and Y given Z

x∼ PX or p(x) draw samples from the distribution of X

Ep(x)[f(x)] expectation of a function w.r.t. a distribution

D⋆[q(z)||p(z)] a divergence measure between two distributions, e.g. DKL[·]
is a Kullback-Leibler divergence

W,Ψ,Σ,I matrices; specified in the text to distinguish from RVs
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M,D dimensions; specified in the text to distinguish from RVs

supp(X) the support domain of variable X

RD D-dimensional real number set

N[1,K] natural numbers within range [1,K]
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Chapter 1

Introduction

The beauty of nature lies in its diversity. Millions years of evolution have allowed

humans to develop the cognitive capabilities necessary to appreciate, understand,

and even create the world’s diversity. It was suggested by Rosch and Mervis

(1975); Smith and Osherson (1984); Biederman (1987); Kamp and Partee (1995)

that these cognitive abilities of humans are centered around the understanding

of compositionality1—i.e. being able to discover, from the direct experience,

a set of reusable components and the rules used to efficiently combine or even

re-combine them to explain or generate new experience. Many in the artificial in-

telligence community (Lake et al., 2017; Lake and Baroni, 2018; Schölkopf et al.,

2021) believe that these findings could have profound implications for the devel-

opment of artificial systems.

Artificial intelligence has achieved remarkable success in recent years while much

of the success can be attributed to the progress of machine learning. Yet, most

of the existing machine learning models, particularly artificial neural networks,

are built upon the independent and identically distributed (abbr. I.I.D.) data

assumptions. I.e. instead of uncovering the underlying compositional structures

1See Principle of compositionality: the meaning of a complex expression is determined by
the meanings of its constituent expressions and the rules used to combine them (Grandy, 1990).
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2 Chapter 1. Introduction

that generate the data, these models focus on constructing superficial statistical

associations between the input and output variables. For example, if “grass”

and “cows” always appear together in the training images, a “cow” detection

model trained on those images could mistakenly detect “cow(s)” in a “grass” im-

age even though there is no cow. Therefore, despite the remarkable expressive-

ness demonstrated by the existing deep models, they fall short of i) human-level

generalization (e.g. handling out-of-distribution data) and ii) representational

interpretability.

According to Greff et al. (2020), the key to systematically solving or improving

these issues is enabling artificial systems to solve the binding problem, where the

segregation (i.e. factorization) problem is the major challenge especially in an

unsupervised setting. In the context of visual perception, established upon a

principle of interpreting scenes as compositions of objects (i.e. the explanatory

factors), object-centric scene representation learning (abbr. OCRL)

has recently emerged as a promising approach towards improved visual scene

interpretation, sample efficiency, and generalization for many down-stream ap-

plications like relational reasoning and control (Janner et al., 2019; Carlos et al.,

2008; Bapst et al., 2019). In this line of research, the factorization goal of a model

is to spatially decompose a scene into a set of interchangeable objects based on

the scene observations.

The focus of this thesis is to develop machine learning models that handle the

factorization problem from a generative perspective, i.e. learning, without super-

vision, the generative compositional structures from unstructured raw observa-

tional data. Specifically, we study the case of object-centric scene compositions.

The following two sections ( §1.1 & §1.2) provide an introduction of the object-

centric scene representation setup and specifications of the factorization problem

within such context, respectively.
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1.1 Object-Centric Scene Representation

Scene 
Representation

Latent Object 
Representations

=

Observation     w.r.t a Viewpoint Latent Object Factors Observer 

...

Scene

Other 
(e.g. lighting)

Observation 

𝒛

Figure 1.1: Left: An example object-centric vision-as-inverse-generation diagram—

explaining a scene observation using an object-centric scene representation. Right:

The disentangled (causal) generative model2 constructed around independent gener-

ative factors—“objects” or “scene” (greyed: hidden from our view), “observer”, and

“other”.

The idea of representing scenes as collections of underlying generative components

(e.g. objects, see Figure 1.1) originates from the “vision-as-Bayesian-inference”

paradigm that has been vastly studied in psychology, cognitive science, and arti-

ficial intelligence (Von Helmholtz, 1867; Minsky, 1988; Yuille and Kersten, 2006;

Kulkarni et al., 2015b). Inspired by these studies, we consider object-centric scene

representation inference as the inverse problem of a scene observation generation

problem.

The Forward Problem Let Z = {Z1,Z2, ...,ZK} (unobservable) denote scenes

and each of its components, i.e. a multidimensional random variable Zk, denote

a scene object. Let X and V denote the sensory input observations and observer

configurations respectively. Studying the forward (observation generation) prob-

lem is about discovering the causal relationships between these Z, V , and X. We

2See Suter et al. (2019) for its general definition, here we consider a special case with con-
founders C = Ø.



4 Chapter 1. Introduction

use the causal graph shown in Figure 1.1 (right) to describe these causal relation-

ships, where, for simplicity, we consider the “other” factor (i.e. the U factor in the

figure) uncorrelated noise and often ignore it in our discussions. In a forward pass,

as shown by the example in Figure 1.1 (left), with a scene sample z well-defined

by a set of objects, i.e. {zk}1:K = {z1, z2, ..., zK} (where each zk ∈ RD represents

one and only one object in the scene including the background as a generalized

object), and an independent observer specified as v ∼ PV , an observation (e.g.

an image) x ∈ RM (often M ≫ D) can be taken using a specific compositional

generative mapping g as x = g(z,v) = g(z1, z2, ..., zK ,v) or x ∼ p(x|z,v) (which

also captures the uncertainty introduced by the uncorrelated noise).

The Inverse Problem With the forward problem defined, we can describe the

goal of learning an object-centric scene representation as inferring the intrinsic

parameters of the objects of a scene, i.e. inferring z = {zk} based on a given scene

observation sample x∼ PX . In the simplest case, where X represents single-view

image observations and therefore we ignore the V variable (Burgess et al., 2019;

Greff et al., 2019), the inverse problem can be defined as factorizing a posterior

p(z|x) = p(z1, z2, ..., zK |x) for an image x—we expect each zk represents a differ-

ent object. Although computing posteriors is generally intractable, approximate

inference (Hoffman et al., 2013; Marino et al., 2018) is often feasible in practice.

As the number of objects is unknown in the inverse problem, it is worth noting

that i) K is often set globally to be a sufficiently large number (greater than the

actual number of objects) to capture all scene objects, and ii) we allow empty or

collapsed “slots”.

1.2 Generative Factorization

Though we have previously introduced the general factorization goal of object-

centric representation models as “spatially decompose a scene into a set of inter-
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changeable objects based on the scene observations”, it remains unclear how to

train such models, especially in unsupervised settings.

In this thesis, we approach the factorization problem from a generative perspec-

tive (see §1.1) and have made two assumptions: i) the generative structure shown

in Figure 1.1 (right) describes the underlying data generation process and ii) the

generative factors (Z1,Z2, ...,ZK ,V ) within this model are jointly independent

such that their joint distribution factorizes:

p(z1, z2, ..., zK ,v) = p(v)
K∏

k=1
p(zk). (1.1)

Note that, besides the statistical assumption, equation 1.1 also reflects the general

independent causal mechanism (abbr. ICM) (Schölkopf et al., 2012; Peters et al.,

2017) principle. ICM describes a more general property that permits independent

interventions—changing one factor without affecting the others while allowing

statistical dependence between the generative factors3. The property depicted

by Eqn. 1.1 thus underpins the feasibility of learning and evaluating independent

and modularized object-centric representations.

We can now specify the technical goals of generative factorization as:

i. scene object factorization—separating modularized object information

in an unstructured scene observation, i.e. factorizing the posterior distri-

bution p(z1, z2, ..., zK |x)4;

ii. learning the invariant compositional generative mechanism (i.e.

the mapping X = g(Z,V ) or the conditional P (X|Z,V )) that captures in-

dependent cause-effect relations between the factors (Z1,Z2, ...,ZK ,V ) and

the observations X in an interventional sense.

3The ICM principle implies: p(z1,z2, ...,zK ,v) = p(v|pav)
∏K

k=1 p(zk|pazk
), where PA[·] col-

lects all of node’s parents and equation 1.1 depicts a special case where ∀C ∈ {Z1,Z2, ...,ZK ,V } :
PAC = Ø. See more details in §2.2.2.

4We assume that the viewpoint/observer configurations V are given/observable in our studies
so we do not infer V here.
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These specifications coincide with that of disentangled representation learning, as

described in Suter et al. (2019), only we focus on object-centric cases.

However, as disentangled representation learning in an unsupervised setting is

provably unidentifiable (leads to non-unique solutions, see Locatello et al. 2019a),

in this thesis, we do not aim to identify the “ground-truth” disentangled

causal generative model but an equivalence that can answer counter-

factual questions successfully. I.e. we consider a model that can answer

counterfactual questions successfully a valid recovery of the underlying genera-

tive process. In this case, we evaluate our factorization methods by assessing how

well the discovered models answer counterfactual questions about the generative

factors, e.g. “what would the observation be if it was taken from a different

viewpoint”?

1.3 Thesis Structure

This thesis is structured around three main chapters (Chapter 3, 4, 5), where

each extends a published conference paper. In these three main chapters, we will

discuss three generative factorization (see §1.2) methods, each with a different

focus:

• Chapter 3 presents a model (viz. MulMON) that can lever-

age multi-view observations to reduce its uncertainty in repre-

senting a static scene’s spatial structure and improve its accu-

racy in scene object factorization. Learning 3D spatial structure

from a single 2D image observation naturally leads to several inaccura-

cies or even incorrectness, with single-view OCRL methods falling victim

to single-view spatial ambiguities arising from, for instance, optical illu-

sions and occlusions (see Figure 1.2). To address this, we present MulMON

as the first feasible unsupervised solution to the multi-view OCRL prob-
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lem. Through the experiments, we demonstrate that not only can Mul-

MON better resolve single-view spatial ambiguities and thus learn more

accurate disentangled object representations than single-view methods, but

it can also predict a static scene’s appearances and object segmentations for

novel viewpoints—i.e. it can recover the compositional generative mapping

X = g(Z,V ) from observational data. We show one example result of Mul-

MON in Figure 1.2 and refer the readers to chapter 3 for more. This work

was adapted from the following published paper with improved discussions:

V
ie

w
 1

V
ie

w
 2

Single-view Ambiguities MulMON Outputs

Pred. Seg. Unc.

Pred. Seg. Unc.

Figure 1.2: Left: Two example single-view visual cognitive ambiguities that

can be resolved by introducing additional-view information: (first column) opti-

cal illusions—a perceived “chair” is an illusive effect of observing two separate

parts from an accidental viewpoint (i.e. the famous “Beuchet chair”, images

adapted from Peters et al. (2017)) and (second column) occlusions. Right: An

example of our multi-view model, i.e. MulMON, resolving single-view ambigu-

ities (first row, second column) and producing improved novel-view rendering

& segmentation results with lower spatial uncertainty (second row, column 3-

5, highlighted in yellow) than the single-view baseline (first row, column 3-5,

highlighted in orange).

Li Nanbo, Cian Eastwood, and Robert Fisher. “Learning object-

centric representations of multi-object scenes from multiple views.”

Advances in Neural Information Processing Systems, 2020.
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• Chapter 4 presents a technique (viz. LDS) that improves the

scene object factorization by suppressing the duplicate object

representations produced by under-constrained OCRL inference

models. For an observation x, the inference model of an OCRL method

is responsible for inferring a set of latent object vectors z = {z1, z2, ..., zK},

where each zk should capture a different object—i.e. no two latent vectors,

e.g. zi and zj , (i, j ∈ N[1,K] and i ̸= j) should capture the same object un-

less the slots are collapsed. This implies a uniqueness assumption among

the inferred representations z1, z2, ..., zK . However, most existing OCRL

methods neglect this relational assumption such that they sometimes infer

duplicate object representations which directly harm their performance in

scene object factorization. In this work, we address this issue by introduc-

ing a uniqueness constraint (namely LDS) to regularize the original OCRL

training processes. Our experiments show that OCRL models trained with

the proposed method outperform the original models in scene object factor-

ization and have fewer duplicate representations. This work was adapted

from the following published paper with improved discussions:

Li Nanbo and Robert Fisher.“Duplicate latent representation sup-

pression for multi-object variational autoencoders” The British Ma-

chine Vision Conference, 2021.

• Chapter 5 presents a model (viz. DyMON) that can recover the

compositional generative mechanism from moving-view-dynamic-

scene data so that it can factorize the entangled effects of observer

motions and scene object dynamics that function independently.

Multi-view OCRL methods (e.g. MulMON, see Chapter 3) show advantages

in handling generative factorization as compared to single-view methods.

The key to their success is to recover a generative mechanism P (X|Z,V )
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that captures independent generative effects of the observers V and scene

objects Z (see Figure 1.3, left) from data. However, to “destroy” accident

correlations between Z and V in the data and ease training, the exist-

ing multi-view methods all assumed static scenes. As a result, they can

not learn from moving-view-dynamic-scene data where both the observer

and the scene objects are moving at the same—i.e. Z and V do correlate

with each other along the time axis. To address this, we propose DyMON

as the first feasible unsupervised framework that can recover a generative

mechanism from moving-view-dynamic-scene data and infer time-indexed

object representations (e.g. Zt
k). As a result, DyMON can answer coun-

terfactual questions about both “space” and “time”—i.e. it can predict a

scene’s appearances and segmentations at arbitrary times (querying across

time) and from arbitrary viewpoints (querying across space). This work

was adapted from the following published paper with improved discussions:

Figure 1.3: Left: A re-sketch of the causal generative model in Figure 1.1

with a special focus on the independent generative effects of the time-varying

observers V t and scene objects Zt. Middle & Right: DyMON can train on

moving-camera-dynamic-scene data (middle) and learn a generative mechanism

that allows it to perform space-time-queried rendering (right).

Li Nanbo, Muhammad Ahmed Raza, Hu Wenbin, Zhaole Sun, and

Robert Fisher. “Object-Centric Representation Learning with Genera-

tive Spatial-Temporal Factorization.” Advances in Neural Information
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Processing Systems, 2021.

To help the readers better understand this thesis and its contributions, we will

first provide the background knowledge of OCRL in Chapter 2. We will set up

the context of OCRL from various perspectives, e.g. generative representation

learning, scene understanding, and causality, and also review the existing OCRL

methods. Lastly, in Chapter 6 we will summarize the results presented in this

work, outline the potential future directions, and discuss the broader impact of

OCRL to society.



Chapter 2

Background

Although the trend of unsupervised object-centric representation learning (OCRL)

emerged only recently and is still in an early stage, it encompasses the princi-

ple ideas of many well-established subjects. In this chapter, we will provide an

overview of OCRL research from the perspectives of generative representa-

tion learning (§2.1), factored latent space and compositionality (§2.2),

and structural scene understanding and representation (§2.3).

2.1 Generative Representation Learning

Unsupervised OCRL describes a subset of representation learning problems. Raw

sensory data usually contain noise that can not only introduce excessive compu-

tation, but it can also interfere with the decision-making process of a model.

Therefore, when doing representation learning, we expect to learn transforma-

tions of the raw data that summarize only the information needed for solving

the downstream tasks so as to provide better efficiency and effectiveness. For

notation convenience and showing the connections between OCRL and represen-

tation learning, in this section, we let X and Z (defined in §1.1) denote not only

scenes but more general sensory input observations (X) and latent representa-

11
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tions (Z). A common assumption in representation learning is that a model’s

information processing process forms a Markov chain: X → Z→ Y , such that

X ⊥⊥ Y |Z stands, i.e. X and Y are independent given Z (Tishby et al., 2000).

Here Y denotes the target variables which are observables defined task-wise in

supervised learning.

In unsupervised settings, representation learning needs to be handled in a generic

way because the subsequent tasks are often unknown (i.e. Y is undefined). With

the absence of Y , we consider that it is more meaningful to associate the ob-

servations (X) and the representations (Z) along the direction of Z→X rather

than X → Z as the former can be easily linked to natural generative narratives

such as “Z causes X” and “Z controls X”. In this thesis, as discussed in §1.1,

we use Z→X to formulate an unsupervised OCRL problem into the generative

representation learning framework.

2.1.1 Latent-Variable Generative Models in General

Generative representation learning requires solving an inference problem within

a generative framework. A convenient tool for this is latent-variable generative

models because not only can they express the underlying generative structures

(i.e. Z→X) but they also admit probabilistic interpretations and thus capture

uncertainty. Figure 2.1 shows a general latent-variable generative model, where

the inference process (highlighted in blue) demonstrates a natural connection to

representation learning.

Most generative models assume that the observations (i.e. the values of X) are

I.I.D. samples generated from the same distribution as p(x). To generate new

data samples that look “like” the observed ones, these models need to learn

p(x) from data, whether explicitly (Kingma and Welling, 2013; Rezende et al.,

2014; Dinh et al., 2016) or implicitly (Goodfellow et al., 2014; Mohamed and
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Latent 

Observable 

Generation Inference

Figure 2.1: Left: A latent-variable generative model in the simplest and most general

form. Right: Probabilistic views of the generative and inference processes of the left

model.

Lakshminarayanan, 2017). Let us take the model in Figure 2.1 (left) for an

example. For a latent variable model with a continuous latent variable Z, the

target density p(x) of an observation x is computed explicitly as a marginal

likelihood:

p(x;θ) =
∫

z
p(x,z;θ)dz =

∫
z
p(x|z;θ)p(z;θ)dz, (2.1)

where we assume that the model is parameterized by some θ such that learning

the model can be treated as estimating the model parameter θ. In theory, given a

set of N I.I.D. training data x = {x(1),x(2), ...,x(N)}, one could obtain an estimate

of θ with maximum (log-)likelihood estimation (MLE):

θ̂MLE = argmax
θ

N∑
n=1

log
∫

z
p(x(n),z;θ)dz, (2.2)

However, this estimation is infeasible in general as it requires evaluating the

marginal likelihood p(x;θ) using Eqn. 2.1, where computing the the integral over

z as shown in Eqn. 2.1 is intractable. From a representation learning perspective,

computing the Bayesian posterior over the unobservable variable Z for every

sample of X:

p(z|x;θ) = p(x,z;θ)
p(x;θ) (2.3)

requires knowing the “Bayesian evidence” (p(x;θ)), so making exact inferences

about the latent representations is also intractable in general. This, in fact, poses

one of the central problems in Bayesian inference.
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The problems depicted by the above three equations (i.e. Eqn. 2.1, 2.2, & 2.3) are

referred to as marginal inference, learning, and posterior inference respectively

in Kingma and Welling (2013). Although exact computation of these three equa-

tions are generally intractable, which make applying latent-variable generative

models for unsupervised representation learning seemingly problematic, feasible

solutions do exist—either with model simplifying assumptions or efficient

approximations.

2.1.2 Linear Gaussian Models

To overcome the aforementioned computational issues and enable generative rep-

resentation learning using latent-variable models, we can consider the linear Gaus-

sian cases. I.e. we assume the model in Figure 2.1 (left) is a linear Gaussian

model, i.e. X∈ RM and Z∈ RD are both normally distributed and the relation-

ship between them is linear:

p(z;θ) =N (z|0,I) (2.4)

p(x|z;θ) =N (x|Wz+µ,Ψ), (2.5)

where W ∈ RM× D denotes a matrix, µ∈ RM denotes a offset, Ψ∈ RM× M de-

notes a diagonal covariance matrix, and θ = (W,µ,Ψ) denotes the model param-

eters. We then show that, by taking Eqn. 2.4 &. 2.5 into Eqn. 2.1:

p(x;θ) =N (x|µ,WW T +Ψ), (2.6)

the marginal inference problem becomes solvable. In this case, if we invert

the generative model using Bayes’ rule, exact posterior inference is also com-

putable (Murphy, 2012):

p(z|x;θ) =N (z|µz|x,Σz|x) (2.7)

where the parameters Σz|x = (I+W T Ψ−1W )−1 and µz|x = Σz|xW T Ψ−1(x−µ) are

computed per X value. Given a set of I.I.D. training data x = {x(1),x(2), ...,x(N)},
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one can learn θ = (W,µ,Ψ) by maximizing the data log-likelihood ∑N
n=1 logp(x(n);θ)

or its surrogates (cf. Barber 2012).

A latent-variable model with the above construction is essentially a factor analysis

(FA) model (Fruchter, 1954; Cattell, 1965) which aims to explain the observations

as linear combinations of a set of independent generative “factors”. Note that as

it is common to assume that the variation of the observed data can be explained

by a relatively smaller set of common causes/factors in FA models, the number

of “factors” (i.e. the dimension of the latent variable Z) is often smaller than

the dimensions of the observable variables (D < M). For this reason, factor

analysis is often considered a technique for dimensionality reduction and closely

related to principle component analysis (PCA). Such a relationship becomes more

apparent if we further restrict the model by making its diagonal covariance matrix

Ψ isotropic, i.e. Ψ = σ2I. The linear Gaussian latent-variable models described

by Eqn. 2.4 and Eqn. 2.5 will become probabilistic principal component analysis

(PPCA) models (Tipping and Bishop, 1999).

2.1.3 Variational Auto-Encoders (VAEs)

Instead of imposing restrictive linear Gaussian assumptions and computing exact

solutions, a more general approach to deal with the intractable marginalization

in Eqn. 2.1 is performing approximations. The two most common approximation

methods in Bayesian inference are Monte Carlo sampling (MC) and Variational

Inference (VI) (Minka, 2001). Compared with MC methods, though VI methods

can sometimes show inferior approximation accuracy (due to the approximation

gap, see Bishop 2006; Cremer et al. 2018), they allow more efficient inference in

high-dimensional cases (Andrieu et al., 2003) and thus have more general usage

in a wide range of applications like image analysis. In this thesis, we work with

VI methods to handle latent-variable generative models with constructions that
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Figure 2.2: The construction of an example VAE model with 2D Bell-shape posteriors.

The contours outlined by light-red curves represent the latent space recovered from

the I.I.D. data as qϕ(z) = 1
N

∑N
n=1 qϕ(z |x(n)) (inspired by Kim and Mnih (2018)). All

notations are defined in the text.

are far more general and expressive than the linear Gaussian cases. To be spe-

cific, we focus on latent-variable generative models with non-linear auto-encoder

constructions, aka the variational auto-encoders (VAEs) (Kingma and Welling,

2013; Rezende et al., 2014).

In VAEs we parameterize the model using neural networks with parameters θ

and denote the resulting parametric families defined over the variables Z and X

with pθ(z) and pθ(x|z), respectively. The neural network with parameter θ is

often referred to as the decoder or the generative model, which describes the non-

linear generative mapping from Z to X. Importantly, instead of handling the per-

observation posterior inference with iterative EM coordinate ascent (which can be

rather inefficient), Kingma and Welling (2013) introduce a probabilistic encoder

qϕ(z |x) (aka. the inference model), e.g. a neural network ϕ, to perform amortized

inference (Kingma and Welling, 2013; Rezende et al., 2014; Marino et al., 2018).

I.e. the encoder is used as a function that takes in x and outputs the parameters

of the approximating posterior qϕ(z |x) (see Figure 2.2). Recall that qϕ(z |x) is an

approximation of pθ(z|x(n)), we need to train both ϕ and θ (i.e. the encoder and
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decoder’s parameters) to ensure the inference accuracy. This is formulated as a

minimization of a Kullback–Leibler divergence DKL[qϕ(z |x(n))||pθ(z|x(n))] w.r.t.

the global neural network parameters ϕ and θ. Despite the fact that computing

such a KL divergence is impossible as pθ(z|x(n)) is unknown, we show that the

target KL divergence can be decomposed (see Kingma and Welling 2013 for the

derivation):

DKL[qϕ(z |x(n))||pθ(z |x(n))] = logpθ(x(n))−Eqϕ(z |x(n))[log pθ(x(n),z)
qϕ(z |x(n))

]︸ ︷︷ ︸
ELBO(n)

(2.8)

≥ 0 (2.9)

such that minimizing the KL divergence is equivalent to maximizing the evidence

lower bound (i.e. ELBO(n)). Note that ELBO(n) (in Eqn. 2.8) is defined for

each data sample x(n). To train a VAE, we need to maximize an ELBO that is

defined over the all training data (x = {x(1),x(2), ...,x(N)}), i.e.:

L(ϕ,θ;x) =
N∑

n=1
Eqϕ(z |x(n))[log pθ(x(n),z)

qϕ(z |x(n))
]

=
N∑

n=1
Eqϕ(z |x(n))[logpθ(x(n)|z)]−

N∑
n=1
DKL[qϕ(z |x(n))||pθ(z)], (2.10)

w.r.t. both the encoder and decoder parameters (i.e. ϕ and θ, respectively).

Although the gradient computations in this training process are less straightfor-

ward compared with most other neural networks, with certain treatments (e.g.

a reparameterization trick, see Kingma and Welling 2013) applied, we can still

train the model with gradient descent as is done for most differentiable neural

networks.

One might have noticed that, because a KL divergence is always non-negative,

Eqn. 2.8 also leads to an inequality expression (see Eqn. 2.9). This inequality

implies that, unless the optimal parameters ϕ⋆ and θ⋆ are found, there will be a

gap between the approximating posterior and the “true” posterior, i.e. qϕ(z |x(n))

and pθ(z |x(n)). Cremer et al. (2018) referred to such gap as the inference gap and
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further factorized it into the approximation gap and the amortization gap. The

latter is expressly ascribed to the introduction of amortized inference, while the

former is often ascribed to the choice of variational priors. In chapter 4, we will

show that an improved prior can effectively reduce the approximation gap and

achieve better suboptimality. However, some recent discoveries (Gresele et al.,

2021; Reizinger et al., 2022) also show that the approximation gap can provide

some “unexpected” benefits in identifying the data generating mechanism.

2.2 Factored Latent Structure and Compositional-

ity

So far, we have introduced latent-variable generative models for generative repre-

sentation learning. As complex data are commonly considered generated from the

rich interaction of higher-order explanatory factors (Fruchter, 1954; Schmidhu-

ber, 1992; Desjardins et al., 2012; Bengio et al., 2013; Schölkopf et al., 2021), e.g.

objects (see §2.2.3), it is appealing to show that latent-variable generative models

are inherently powerful for modeling the compositional structure of data. Con-

cretely, we can represent the explanatory factors and their interactions with a set

of latent components (e.g. Z = {Z1,Z2, ...,ZK}) and some generative mechanism

(e.g. P (X|Z1,Z2, ...,ZK)), respectively. In unsupervised representation learning,

as we do not have access to the “true” explanatory factors, a model needs to

separate distinct factors of variation Z = {Z1,Z2, ...,ZK} from the unstructured

sensory input X—i.e. extracting disentangled representations.

2.2.1 Disentangling Independent Factors of Variation

Though it seems ill-posed to disentangle “distinct factors of variation” with-

out knowing what the generative factors are (it is indeed ill-posed, discussed

in §2.2.2), we often aid disentangling by injecting prior knowledge about the
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factors in practice. Intuitively, we expect a change in a single latent compo-

nent 1) to be invariant to the other components (modularity, discussed in §2.2.2)

and 2) corresponds to a semantically meaningful variation in the input distri-

bution (related to interpretability) (Bengio et al., 2013). For example, one can

consider an inverse graphics model (Kulkarni et al., 2015b; Moreno et al., 2016;

Yildirim et al., 2017; Yao et al., 2018) where we can independently change an

object’ properties (e.g. shape and color) by manipulating a single latent com-

ponent. However, inverse graphics models often impose strong assumptions on

the causal generative mechanism (assume a known and fixed renderer) so that

they cannot learn and adapt when the domain-specific expert assumptions are

violated (Schölkopf et al., 2021). In this thesis, we focus on learning the un-

derlying (causal) generative mechanisms from data with weak and generic as-

sumptions. In the framework of latent-variable generative models, disentangling

factors of data variation is handled in the inference process (Desjardins et al.,

2012), which can be viewed mathematically as factorization of a joint posterior:

p(z1, z2, ..., zK |x). However, as our goal is to find common explanatory factors

across all data points, we are more interested in factorizing globally a aggregated

posterior p(z1, z2, ..., zK) = Epdata(x)[p(z1, z2, ..., zK |x)].

Independent Latent Structure To ease the factorization of such a posterior,

most of the existing works have resorted to imposing linear independence or statis-

tical independence assumptions on the latent variables. Built upon (P)PCA and

FA models, early studies of statistical shape/appearance representations (Turk

and Pentland, 1991; Cootes et al., 1995; 2001; Prince et al., 2008) have shown that,

by projecting the observation onto (linear) independent latent subspaces, these

models can separate lower-level features of variation up to some interpretable

level. For example, Cootes et al. (1995) showed that their resistor point distri-

bution model can capture a resistor’s position and deformation factors with two

linearly-independent subspaces. Another family of models that explicitly express
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the same principle are the independent component analysis (ICA) (Comon, 1992;

1994). The original ICA models that an observation is a linear combination of

multiple statistically independent non-Gaussian signals. Unlike (P)PCA and FA,

which admit multiple equivalent solutions (unidentifiable), ICA models explic-

itly aim to separate the true signals that compose a multivariate observation.

However, to guarantee its identifiability, such a model generally cannot handle

non-linear mixings of signals (Hyvärinen and Pajunen, 1999) nor a dimensionality

reduction setting (like (P)PCA and FA) (Hyvärinen and Oja, 2000).

Going beyond linear models, the idea of encouraging disentanglement with inde-

pendence priors can also be generalized to deep latent-variable generative mod-

els (Chen et al., 2016; Voynov and Babenko, 2020), especially VAEs (Higgins

et al., 2017; Kim and Mnih, 2018; Chen et al., 2018a; Kumar et al., 2018;

Esmaeili et al., 2019; Mathieu et al., 2019). As the recovery of VAEs’ aggre-

gated posteriors is handled by their probabilistic encoders as qϕ(z1, z2, ..., zK) =

Epdata(x)[qϕ(z1, z2, ..., zK |x)], these VAE-based approaches commonly encourage

disentanglement by matching the recovered aggregated posterior to a factor-

ized prior (e.g. an isotropic Gaussian) such that qϕ(z1, z2, ..., zK) also factorizes:

qϕ(z1, z2, ..., zK) = ∏K
k=1 qϕ(zk). Therefore, the training of these disentanglement

VAEs involves, either explicitly or implicitly, minimizing DKL[qϕ(z)||pθ(z)] or

other choices of divergence measures D⋆(qϕ(z),pθ(z)) (Mathieu et al., 2019). For

examples, Higgins et al. (2017) proposed a model (beta-VAE) that does disen-

tangled representation learning by explicitly emphasizing the minimization of the

KL divergence item of Eqn. 2.10 during training. Kim and Mnih (2018) handled

disentanglement by minimizing a cross-dimension correlation measure (a.k.a. the

total correlation) extracted from the DKL(qϕ(z),pθ(z)).

Interpretable Latent Structure So far, the focus of most existing unsupervised

disentanglement research has been on enforcing latent factorization. Though
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these works generally produce impressive results in learning disentangled and

interpretable representations, little understanding has been gained on why the

factored latent structures of these models are interpretable. A heuristic explana-

tion provided by Burgess et al. (2018) and Mathieu et al. (2019) suggests that the

success of learning interpretable latent structures attributes to achieving a “suf-

ficient” degree of overlap between the posterior distributions across the dataset.

The intuition is easy to understand if we consider the data are composed of

reusable modules that do not change simultaneously (i.e. the sparse mechanism

shift principle, discussed in §2.2.2)—that is, encouraging overlap encourages the

discovery of the shared and re-usable generative modules. These reusable mod-

ules are associated with specific concepts in human understanding of the world,

e.g. colors, shapes, and positions. By looking at the extreme cases of the overlap

degree, i.e. too high or too low, Mathieu et al. (2019) stated that 1) insuf-

ficient overlap will lead to a look-up-table latent structure, which implies zero

compositional structure (zero re-usable information) in the data, whereas 2) too

much overlap will diminish the value of the latent encodings as representations—

the encodings contain little information about the “corresponding” observations.

Yet, as a sound study of how significant overlap is in improving disentangled

representation learning is still missing, it remains unclear how one should define

“sufficiency” quantitatively.

2.2.2 Modularity and Causal Disentanglement

We discussed in §2.2.1 that most existing works in disentangled representation

learning are established on several intuitive principles, e.g. modularity and one-

to-one correspondence (see §2.2.1). As a result, various metric proposals for

quantifying the quality of “disentangled representations” (Higgins et al., 2017;

Ridgeway and Mozer, 2018; Eastwood and Williams, 2018; Kumar et al., 2018;

Kim and Mnih, 2018) tend to somewhat disagree with each other (Locatello et al.,
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...
Scene

...

Other

Figure 2.3: Left: A causal generative model with a single element ingredi-

ent/generative factor. Middle: A general form of disentangled causal generative

model with a set of generative factors {Z1,Z2, ...,ZK} that are confounded by some

confounder(s) C. Right: An object-centric causal generative model, where V is

the observer variable, each Zk ∈ {Z1,Z2, ...,ZK} represents one and only one scene

object and, together, they form a physical scene Z. The variables C and U (in

grey) are useful for sophisticated modeling, e.g. use C to summarize global scene

layout (Reddy et al., 2022) and U to represent lightings, although they are often

ignored for simplicity.

2019a). To address these issues and formalize the research of disentanglement, a

generally-accepted definition of “disentanglement” is needed. A rising trend is to

cast the problem of disentanglement in the causality theoretical framework (Lo-

catello et al., 2019a; Suter et al., 2019; Schölkopf et al., 2021).

Interventional vs. Statistical Independence In the causality framework,

disentanglement should be focusing on recovering the “true” disentangled causal

mechanism (see Figure 2.3, middle), where inferring disentangled representations

is viewed as reconstructing the “true” causal factors of an observation (Peters

et al., 2017; Suter et al., 2019; Schölkopf et al., 2021). Importantly, Suter et al.

(2019) formalized the previously intuitive modularity description from the per-

spective of intervention using the principle of independent causal mechanisms
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(abbr. ICM) (Schölkopf et al., 2012; Peters et al., 2017). They argue that, instead

of statistical independence, “independent factors of variation” describes the invari-

ance of the generative mechanisms. In this thesis, we emphasize the invariance of

these modules under direct interventions—namely, interventional independence.

Take ∀i ̸=jZi,Zj ∈ {Z1,Z2, ...,ZK}, we show the difference between statistical in-

dependence and interventional independence as follows:

Statistical : P (Zi|Zj) = P (Zi) (2.11)

Interventional : P (Zi|do(Zj = zj),PAZi
) = P (Zi|PAZi

), (2.12)

where do(·) denotes a mathematical operator (Pearl, 2012) that performs inter-

ventions (i.e. assigning manually a value to a variable, ignoring all its causes). It is

easy to see that Eqn. 2.11 implies P (Z1,Z2, ...,ZK) = ∏K
k=1 P (Zk) while Eqn. 2.12

does not. In other words, these generative factors can be statistically dependent.

This can also be seen from Figure 2.3 (middle) that {Z1,Z2, ...,ZK} are indepen-

dent only if their confounder(s) C is observed. In a special case where C = Ø,

interventional independence and statistical independence coincide with each other.

Importantly, such conceptual generalization not only opens the avenue of disen-

tangling correlated causal factors (Träuble et al., 2021; Moran et al., 2021; Reddy

et al., 2022) but it also allows us to infer interventional distibutions—which is

essential for counterfactual reasoning (Buesing et al., 2019; Besserve et al., 2020;

Nanbo et al., 2021) and compositional O.O.D. generalization1 (Higgins et al.,

2018; Shen et al., 2021).

Identifiability From the causality point of view, recent advances in disentangled

representation learning show particular interests in identifiability. Although the

early results have exposed the unidenfiability issues of FA (Shapiro, 1985) and

non-linear ICA models (Hyvärinen and Oja, 2000), the study of disentanglement

1We refer the readers to Fig. 1 in Schölkopf et al. (2021) for more details about how causal
factorization aids O.O.D. generalization.
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models’ identifiability has just become popular recently. Notably, Locatello et al.

(2019a) proved the existence of entangled latent structure that can yield the same

observation distribution (i.e. rotational equivalence, under an standard choice of

isotropic Gaussian prior)—which left assumption-free unsupervised disentangled

representation learning an ill-posed problem. Considering the seemingly contra-

diction between the unidentifiability conclusion and the practical successes of

many unsupervised disentangled representation learning works (Higgins et al.,

2017; Kim and Mnih, 2018; Chen et al., 2018a; Kumar et al., 2018; Esmaeili

et al., 2019; Mathieu et al., 2019), Locatello et al. (2019a) ascribed the practical

successes of these works to the inductive biases implicitly introduced by either

the models or the data. This motivates an extensive study of elucidating and un-

derstanding the effects of inductive biases on model identification (Rolinek et al.,

2019; Locatello et al., 2019b; Duan et al., 2019; Locatello et al., 2020a; Besserve

et al., 2020; Moran et al., 2021; Gresele et al., 2021; Reizinger et al., 2022).

2.2.3 Object-Centric Disentanglement and Composition

We introduce the problem of object-centric representation learning (OCRL) as a

special case of disentanglement representation learning. In OCRL, we explore the

compositional structures of scenes and aim to learn to capture scene objects with

a set of latent components (e.g. Z = {Z1,Z2, ...,ZK}). As shown in Figure 2.3,

the assumption about the underlying causal mechanisms of an OCRL model is

rather similar to that of a generic disentangled representation learning model,

only with more available domain-specific knowledge to ease the disentanglement

around objects.

Compositional Mixing and Spatial Disentanglement The problem of OCRL

is inherently tied with spatial reasoning. To associate the latent components

Z = {Z1,Z2, ...,ZK} with scene objects, a model needs to reason about compo-
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sitional structures of scenes for object discovery. As it is generally accepted by

the representation learning community that “object discovery should be treated

as a crucial part of OCRL rather than a separate problem” (Greff et al., 2019),

instead of using pre-segmented images (Yao et al., 2018) or introducing sepa-

rate segmenters (Ren et al., 2015; He et al., 2017; Zheng et al., 2021; Strudel

et al., 2021), recent advances (Eslami et al., 2016; Greff et al., 2016; Burgess

et al., 2019; Greff et al., 2019; Engelcke et al., 2019; Nanbo et al., 2020) often

exploit assumptions about the image composition function (i.e. the generative

mechanisms p(x|z1, z2, ..., zK)) to handle object discovery. Most of the existing

image composition designs encompass the idea of alpha blending (Porter and Duff,

1984)—i.e. generating separate objects in separate layers and composing them by

reasoning about occlusions (the orderings of the layers). It is important to note

that the alpha blending design play an essential role in spatial disentanglement

because they impose competition among the K latent components in explain-

ing M RGB pixels. One can consider the competitions as clustering M pixels

into the K latent components with a spatial attention module (Locatello et al.,

2020b). Also, the “objects” here are defined in a statistical sense, i.e. we make

no assumptions about the “objects” and only treat them as statistical modules

that change independently. However, we admit that, like general disentanglement

representation learning, object disentanglement without any assumption leads to

unidenfiability issues (see the identifiability discussion in §2.2.2).

On Multi-Granularity Disentanglement Like many generic disentangled rep-

resentation learning models (Higgins et al., 2017; Kim and Mnih, 2018; Math-

ieu et al., 2019), it is common to make statistical independence assumptions in

OCRL (i.e. ignoring the confounders C) for simplicity. However, compared to a

generic model, it was shown by Burgess et al. (2019); Greff et al. (2019); Nanbo

et al. (2020) that an OCRL allows to disentangle across multiple granularities:

object-level and feature-level (like most generic disentanglement models). In ad-
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Figure 2.4: Left: The latent structure produced by a generic disentangled represen-

tation learning model. Right: The latent structure produced by an OCRL model,

where factorization is achieved across multiple granularities: object-level (disentan-

gled across rows) and feature-level (disentangled across columns).

dition, more sophisticated metrics (Dang-Nhu, 2021) are proposed for quantita-

tively evaluating the multi-level disentangled representations. Figure 2.4 shows

the topological comparison between the latent structures learned by a generic

disentangled representation learning model and an OCRL model. In the context

of visual understanding, we can also consider a generic model a “single-object”

model and an OCRL model a multi-object model—in analogy to VAEs and multi-

object VAEs.

2.3 Structural Scene Understanding and Represen-

tation

The ultimate goal of object-centric representation learning (OCRL) is to enable AI

systems to understand the physical world. Therefore, OCRL is widely considered

a subsidiary subject of visual scene understanding (Kutulakos and Seitz, 2000;

Wu et al., 2015; Jimenez Rezende et al., 2016; He et al., 2017; Eslami et al., 2018;

Mildenhall et al., 2020) and world model learning (Schmidhuber, 2015; Ha and



2.3. Structural Scene Understanding and Representation 27

Schmidhuber, 2018; Kipf et al., 2019; Lin et al., 2020; Subramanian et al., 2022).

In this section, around spatial and temporal visual understanding of scenes, we

review some of the important literature and discuss how they motivated the three

papers published within this thesis (discussed in Chapter 3-5).

2.3.1 Spatial Structures of Scenes

Traditional spatial scene understanding has been around constructing explicit

scene representations from observations (Curless and Levoy, 1996; Kutulakos and

Seitz, 2000; Kolmogorov and Zabih, 2002; Pollefeys et al., 2004; Newcombe et al.,

2011). Although the scene representations captured by these models are fully

explainable, the spatial resolution of these representations is often limited by

the discretization performance of the sensing and computing devices. As a result,

they do not scale well when we increase the spatial scales or resolution of a scene—

even with the support of deep neural networks (Liao et al., 2018; Gkioxari et al.,

2019; Potamias et al., 2022). Unlike explicit scene representations, implicit scene

representations often encode scenes into implicit parameters defined in continuous

space, which theoretically allows to represent scenes with “infinite” resolution and

scales. With the booming deep representation learning, an increasing amount of

attention has been paid to learning implicit scene representations from data.

Global 3D Structure and Flat Representation As the family of latent-

variable generative models equip dimensionality reduction and unsupervised rep-

resentation learning, they stand out as one of the most important tools for implicit

scene representation learning. Many recent breakthroughs (Wu et al., 2016; Es-

lami et al., 2018; Tobin et al., 2019; Yang et al., 2019) have shown impressive

performance in inference efficiency and scalability by representing a scene glob-

ally as a latent (random) vector. Importantly, Eslami et al. (2018); Tobin et al.

(2019) target the problem of learning 3D structure from multi-view RGB im-
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ages. To reduce the spatial uncertainty and enable explicit 3D knowledge evalua-

tion, they built models that can reason about viewpoint effects and perform with

multi-view explorations (Hartley and Zisserman, 2003; Aulinas et al., 2008) and

novel-view synthesis (Kulkarni et al., 2015a; Penner and Zhang, 2017; Mildenhall

et al., 2019). It is also worth mentioning the recent rise of neural radiance field

(NeRF) (Mildenhall et al., 2020; Martin-Brualla et al., 2021; Pumarola et al.,

2020). Despite the fact that these NeRF models have shown remarkable success

in representing scenes (as the parameters of the deep networks) at high resolu-

tions, we do not consider them scene understanding models as they only aim to

memorize (hard encoding) the scene structure of a single scene during “training”.

Regardless of the high rendering cost (w.r.t. both memory and runtime) and the

assumption of known camera parameters, combing NeRFs’ rendering power with

latent-variable generative models can be a promising direction in scene under-

standing (Yu et al., 2021a; DeVries et al., 2021; Kosiorek et al., 2021; Sharma

et al., 2022).

Structured Scene Representation around Objects Many recent advances in

implicit unsupervised scene representation learning fixate on “global understand-

ing” (i.e. representing a scene as a single “flat” random vector). I.e. they fail to

interpret the rich compositional structures of natural scenes around objects (see

the granularity discussion in §2.2.3). To form more structured and interpretable

latent representations of scenes, as discussed in §2.2.3, a series of unsupervised

OCRL methods (Eslami et al., 2016; Greff et al., 2016; 2017; Kosiorek et al.,

2018; Burgess et al., 2019; Greff et al., 2019; Lin et al., 2019; Engelcke et al.,

2019; Locatello et al., 2020b; Goyal et al., 2020; Didolkar et al., 2021; Engelcke

et al., 2021; Emami et al., 2021; Yu et al., 2021b) have been proposed. Yet, as

most existing models have been targeting a primary scenario, i.e. a single-view

image observation setting, they fall victim to single-view spatial ambiguities (e.g.

optical illusions and occlusions, see Figure 1.2 in §1.3). As a result, they fail to
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accurately capture the scenes’ 3D spatial structures, and decompose scenes into

objects (i.e. perform factorization). To overcome the single-view spatial ambigu-

ity issue, Nanbo et al. (2020) proposed MulMON as the first unsuper-

vised framework for learning accurate OCRL by leveraging multiple

views (discussed in Chapter 3). MulMON essentially learns a generative mecha-

nism that responds to the generative factors (Z1,Z2, ...,ZK ,V ) hence can answer

counterfactual questions about spatial scene structures around objects (e.g. pre-

dicting scene appearances and object segmentations for novel views). A series of

later works (Niemeyer and Geiger, 2021; Chen et al., 2021; Stelzner et al., 2021)

exploited a similar idea, but in more specialized settings or applications. As an

unconstrained factorization of (Z1,Z2, ...,ZK ,V ) generally leads to some uniden-

tifiable latent structures, many existing unsupervised OCRL methods (Burgess

et al., 2019; Greff et al., 2019; Nanbo et al., 2020) commonly produce duplicate

scene object representations which directly harms the scene factorization perfor-

mance. Inspired by the lines of non-maximum suppression works (Lowe, 2004;

Bodla et al., 2017) and contrastive learning works (Chen et al., 2020; He et al.,

2020), Nanbo and Fisher (2021) proposed a decorrelation prior to sup-

press the duplicate object latent representations (discussed in Chapter 4).

2.3.2 Temporal Structures of Scenes

Representing scene dynamics, i.e. the temporal evolution of spatial scene struc-

tures, is another fundamental aspect of scene understanding. In §2.3.1, we intro-

duced multi-view information aggregation a natural and effective way of resolving

spatial ambiguities and learning scene (object) representations. However, as most

existing OCRL works, e.g. GQN (Eslami et al., 2018) and MulMON (Nanbo et al.,

2020) are built upon either a static scene assumption, they often do not handle

well dynamic scenes in both training and testing. This motivates the research of

unsupervised OCRL in dynamic-scene setting.
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From a Static Observer’s View Most existing unsupervised OCRL methods

that target dynamic scenes (Hsieh et al., 2018; Kosiorek et al., 2018; Jaques et al.,

2020; Lin et al., 2020) fall in the category of single-view-dynamic-scene scenar-

ios, where the scene objects are moving and the observer (camera) is fixed. For

simplicity, these models often omit the viewpoint variable V shown in Figure 1.1

and 2.3 (right). In fact, as Hsieh et al. (2018); Kosiorek et al. (2018); Jaques et al.

(2020) all employed the “paste stickers on canvas” rendering schemes of Jader-

berg et al. (2015); Eslami et al. (2016) and their experiments were on 2D MNIST

digits, it is unclear whether or not these models can generalize to 3D scenes.

Although Lin et al. (2020) construct explicit transition models of 3D object dy-

namics based on video observations, the inferred scene object representations are

still implicit. In this case, the models cannot perform novel-view synthesis and

thus do not support explicit evaluation of how well the inferred representations

capture the 3D scene spatial information.

From a Moving Observer’s View Endowing machines with the ability to

reason about viewpoints and scene dynamics is particularly important. Achiev-

ing so will allow us to 1) evaluate explicitly the represented 3D spatial struc-

tures at any time of a dynamic event, and 2) handle representation learning

in the general moving-view-dynamic-scene setting which appear commonly in

real-world applications (Grauman et al., 2022). Singh et al. (2019) proposed a

non-object-centric framework, i.e. T-GQN, that models the spatial representa-

tion learning at each time step as a stochastic process and transitions between

these time-stamped stochastic processes with a state machine. Although handles

representation learning in the scenario of moving-view-dynamic-scene and learns

time-dependent scene representations, it 1) cannot attain object-level scene fac-

torization, and 2) typically requires multi-view data at each time step (as so-called

“context”) to disentangle the “coincidentally” entangled scene motions and cam-

era motions (i.e. temporal entanglement, discussed in Chapter 5) during training.
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To learn dynamics-aware object-centric scene representations, Nanbo

et al. (2021) proposed DyMON as the first unsupervised OCRL frame-

work that targets the moving-view-dynamic-scene setting (discussed in

Chapter 5). By factorizing the generative effects of the scene object motions and

the observer motions, DyMON can describe the motions of each object and rep-

resents their representations as functions of time. Similarly, a concurrent work,

SIMONe (Kabra et al., 2021), also investigated time-dependent OCRL represen-

tations like DyMON. However, as the “time-varying elements” defined in SIMONe

refer to the cross-frame pixel changes caused by the viewpoint changes, i.e. the

scenes are still assumed static, SIMONe is more similar to MulMON (Nanbo

et al., 2020) rather than DyMON.





Chapter 3

MulMON: Multi-view Multi-Object

Network

Learning object-centric representations of multi-object scenes is a promising ap-

proach towards machine intelligence, facilitating high-level reasoning and control

from visual sensory data. However, current approaches for unsupervised object-

centric scene representation are incapable of aggregating information from mul-

tiple observations of a scene. As a result, these “single-view” methods form their

representations of a 3D scene based only on a single 2D observation (view). Nat-

urally, this leads to several inaccuracies, with these methods falling victim to

single-view spatial ambiguities. To address this, we propose The Multi-View and

Multi-Object Network (MulMON)—a method for learning accurate, object-centric

representations of multi-object scenes by leveraging multiple views. In order to

sidestep the main technical difficulty of the multi-object-multi-view scenario—

maintaining object correspondences across views—MulMON iteratively updates

the latent object representations for a scene over multiple views. To ensure that

these iterative updates do indeed aggregate spatial information to form a com-

plete 3D scene understanding, MulMON is asked to predict the appearance of the

33
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scene from novel viewpoints during training. Through experiments we show that

MulMON better-resolves spatial ambiguities than single-view methods—learning

more accurate and disentangled object representations—and also achieves new

functionality in predicting object segmentations for novel viewpoints.

This chapter is an extended version of the paper “Learning Object-Centric Rep-

resentations of Multi-Object Scenes from Multiple Views” (Nanbo et al., 2020),

published at Neural Information Processing Systems (2020).

3.1 Introduction

Traditional VAEs (Kingma and Welling, 2013; Rezende et al., 2014) use a “single-

object” or “flat” random vector representations that fail to obtain compositional

interpretations of natural scenes, i.e. the existence of interchangeable objects with

common properties. As a result, “multi-object” or object-centric representations

have emerged as a promising approach to scene understanding, improving sam-

ple efficiency and generalization for many downstream applications like relational

reasoning and control (Carlos et al., 2008; Mnih et al., 2015; Bapst et al., 2019;

Mambelli et al., 2022). However, recent progress in unsupervised object-centric

scene representation learning (OCRL) has been limited to “single-view” methods

which form their representations of 3D scenes based only on a single 2D observa-

tion (view). As a result, these methods form inaccurate representations that fall

victim to single-view spatial ambiguities (e.g. occlusions and optical illusions)

and fail to capture 3D spatial structures.

To address this, we present MulMON (Multi-View and Multi-Object Network)—

an unsupervised method for learning object-centric scene representations from

multiple views. Using a spatial mixture model (Greff et al., 2017) and iterative

amortized inference (Marino et al., 2018), MulMON sidesteps the main technical
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Figure 3.1: Left: Multi-object-multi-view setup. vq denotes the query viewpoint,

while zk denotes“slot” k, i.e. the latent object representation of a scene object.

Right: MulMON overview. Starting with a standard normal prior, MulMON itera-

tively refines the posterior over z over multiple views, each time reducing its uncer-

tainty about the scene—–as illustrated by the darkening, white-to-blue arrow. Within-

view “inner loop” iterations are depicted by the green arrows and boxes. Cross-view

“outer-loop” iterations are depicted by the white-to-blue arrows and boxes. At the

bottom, we have visualised MulMON’s reduction in uncertainty about z in image

space, where each image shows the per-pixel variance of MulMON’s predicted obser-

vation from query viewpoint vq. MulMON’s final predictions for vq (observation and

segmentation) are shown to the right of the vertical dotted line.

difficulty of the multi-object-multi-view scenario—maintaining object correspon-

dence across views—by iteratively updating the latent object representations for

a scene over multiple views, each time using the previous iteration’s posterior

as the new prior. To ensure that these iterative updates do indeed aggregate

spatial information, rather than simply overwrite, MulMON is asked to predict

the appearance of the scene from novel viewpoints during training. Given images

of a static scene from several viewpoints, MulMON forms an object-centric rep-

resentation, then uses this representation to predict the appearance and object
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segmentations of that scene from unobserved viewpoints. Through experiments

we demonstrate that:

• MulMON better-resolves spatial ambiguities than single-view methods like

IODINE (Greff et al., 2019), while providing all the benefits of object-

centric representations that non-object-centric methods like GQN (Eslami

et al., 2018) lack, e.g. object segmentations and manipulations (see §3.5).

• MulMON accurately captures 3D scene information (rotation along the ver-

tical axis) by integrating spatial information from multiple views (see §3.5.3).

• MulMON achieves both inter- and intra-object disentanglement—enabling

both single-object and single-object-property scene manipulations (see §3.5.3).

• MulMON represents the first feasible solution to the multi-object-multi-

view problem, permitting new functionality like viewpoint-queried object-

segmentation (see see §3.5.2).

3.2 Problem: Multi-View OCRL

We discussed in §1.1 that the problem of OCRL can be formulated as a fac-

torization of p(z1, z2, ..., zK |x), where x is a single RGB image in a single-view

setting (Burgess et al., 2019; Greff et al., 2019), zk∈ RD is the value of a single

object factor Zk, and K is the number of object slots (greater than the actual

number of objects). With this in mind, we can define a more general object-

centric scene representation learning problem as that of learning a representation

of an up-to-K object scene based on T uncalibrated observations from random

viewpoints, where the scenes are static and assumed to be a spatial configuration

that is independent of the observer. Formally, this involves factorizing the pos-

terior p(z1, z2, ..., zK |x1,x2, ...,xT ). Since each 2D observation xt of the 3D scene

must be associated with a viewpoint vt, we specify the problem as that of com-

puting p(z1, z2, ..., zK |x1,x2, ...,xT ,v1,v2, ...,vT ) or compactly, p(z |{xt,vt}), where
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vt ∈ RJ is the viewpoint sample associated with the image sample xt. Note that

both the {Z1,Z2, ...,ZK} and the {(Xt,V t)} are exchangeable.

3.3 Method

Our goal is to learn structured, object-centric scene representations that accu-

rately capture the spatial structure of 3D multi-object scenes, and to do this by

leveraging multiple 2D views. Key to achieving this is 1) an outer loop that

iterates over views, aggregating information while avoiding the object matching

problem, and 2) a training procedure that ensures that these outer loops are

indeed used to form a complete 3D understanding of the scene, rather than just

overwriting each other. We detail 1) in §3.3.1, and 2) in §3.3.4. Additionally,

we describe the viewpoint-conditioned generative model and iterative inference

procedure in §3.3.2 and §3.3.3 respectively.

3.3.1 Iterating Over Views

Cross-View Iterations (The Outer Loop) For a static scene, we consider

that the latent scene representation Z = {Zk} is updated sequentially in T steps

as the T observations are obtained one-by-one from t = 1 to t = T , where t denotes

the updating step. This suggests that Zt is obtained by updating Zt−1 using a

new observation Xt, taken at the viewpoint V t (see the green box in Figure 3.2,

left). Therefore, by making an assumption that Z = Zt for any integer t ∈ [1,T ]

(i.e. considering Zt the best Z by far at time t), we can compute the target

multi-view posterior in a recursive form as:

p(z |x1:T ,v1:T ) = p(z0)
T∏

t=1
p(zt |xt,vt,zt−1), (3.1)

where zt−1 = {zt−1
k } is the value(s) of the scene (object) representation(s) Zt−1 =

{Zt−1
k } before observing the image xt at viewpoint vt, zt the latent value(s)
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afterwards, and p(z0) the initial guess, which is assumed to be a standard isotropic

Gaussian: N (0,I). The formulation in Eqn. 3.1 turns the multi-view problem into

a recursive single-view problem and, in theory, enables online learning of scenes

from an infinitely large number of observations without causing memory overflow.

Within-View Iterations (The Inner Loop) As shown in Figure 3.2, MulMON

consists of a scene-representation inference model and a viewpoint-conditioned

generative model. In each iteration, the inference model starts with a prior as-

sumption about the latent object representations, i.e. Z = Zt−1 = {Zt−1
k }, and

approximates the target posterior distribution p(zt = {zt
k}|xt,vt,zt−1) after ob-

serving xt at viewpoint vt. The approximation, as mentioned in §3.1, is handled

by iterative amortized inference (Marino et al., 2018) and the approximate pos-

terior is carried to the next iteration as the new prior. In other words, a single

iteration is a single-view process that updates the latent object-centric scene rep-

resentations Z = Zt−1 = {Zt−1
k } using an image sample xt and the associated

viewpoint vt. We call the single-view iterative process the inner loop, and the

cross-view Bayesian updating process (see Eqn. 3.1) the outer loop.

3.3.2 Generative Model

We model image observations Xt with a spatial Gaussian mixture model (Williams

and Titsias, 2004; Greff et al., 2017), similar to MONet (Burgess et al., 2019) and

IODINE (Greff et al., 2019), only we condition such generation on the viewpoint

variable V t. We write the viewpoint-conditioned generative likelihood as:

pθ(xt|zt,vt) =
M∏

i=1

K∑
k=1

pθ(Ct
i = k|zt

k,vt) ·pθ(xt
ik|zt

k,vt), (3.2)

where xt
ik are the RGB values in image t at a pixel location i that pertain to object

k, pθ(xt
ik|zt

k,vt) is the Gaussian density function parametrized by a neural network

θ, and mik is the mixing coefficient for object k and pixel i, i.e. the probability

that pixel i is assigned to the k-th object. More formally, mik = pθ(Ct
i = k|zt

k,vt),
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Figure 3.2: Left: Graphical view of MulMON’s cross-view iterations. The two core

components, a viewpoint-conditioned generative model (§3.3.2) and an inference

model (§3.3.3), are shown in blue and green boxes respectively. Right: Viewpoint-

conditioned generative model. To generate a viewpoint-conditioned observation, sam-

ples of the K latent latent object representation, i.e. {zk}, will be first transformed

w.r.t. a viewpoint v∗ using the function fθ1 and then passed through a decoder gθ2

to render a viewpoint-queried observation x∗. As shown, the unknown parameters of

the spatial Gaussian mixture (see Eqn. 3.2), i.e. the pixel-wise Gaussian means µxk

and mixing probabilities (softmax(m̂xk)), are output by gθ2 , and image observations

x∗ are essentially sampled from the spatial Gaussian mixture.

where Ct
i is a categorical random variable and Ct

i = k represents the event that

pixel i is assigned to the k-th object. This is an important property for object

segmentation, as it implies that every pixel in xt must be explained by one and

only one object. Together, the M mixing coefficients for object k (one per pixel)

form a soft object segmentation mask mk = pθ(Ct = k|zt
k,vt). We assume all pixel

values xt
ik are independent given the corresponding latent object representation zt

k

and viewpoint vt, and simplify computations by using a fixed variance σ2 = 0.01

for all pixels. We refer the reader to Appendix 3C for the implementation details

of Eqn. 3.2. In practice, we split the parameters θ into two pieces, θ1 and θ2,

in order to handle the viewpoint-queried neural transformation and observation-

generation separately in two consecutive stages. That is, we first transform the K

latent object representations zzzt w.r.t. a viewpoint vq using the function fθ1 , then
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we pass the output through a decoder gθ2 in order to render a viewpoint-queried

observation xq. We illustrate this process in Figure 3.2 (right) and Algorithm 1.

3.3.3 Inference

Though Eqn. 3.1 simplifies the inference problem by breaking the computation

of the multi-view OCRL posterior p(z |{(xt,vt)}) into a recursive computation

of a series of single-view OCRL posteriors p(zt |xt,vt,zt−1), exact inference of

p(zt |xt,vt,zt−1) is still intractable. Similar to IODINE (Greff et al., 2019), we

apply iterative amortized inference (Marino et al., 2018) to approximate the in-

tractable target posterior. However, unlike IODINE, which always initializes the

prior from a standard Gaussian, the inference model of MulMON takes an approx-

imate posterior obtained from previous observations (except for Z0) as the prior.

In this case, we approximate the intractable posterior with qλλλ(zt |xt,vt,zt−1),

where λλλ = {λk} = {(µk,σk)} parametrizes a set of object-centric Gaussian dis-

tributions in the latent space. We denote the number of iterations for the inner

loop with L, and each iteration is indexed by l. The parameter update in the

iterative inference is thus:

z
t(l)
k

k∼ q
λ

(l)
k

(zt
k|xt,vt, zt−1

k ) (3.3)

λ
(l+1)
k

k←− λ
(l)
k +fΦ(zt(l)

k ,xt,vt,a(·)), (3.4)

where the refinement function fΦ, with trainable parameter Φ, is modeled by

a recurrent neural network, e.g. LSTM (Hochreiter and Schmidhuber, 1997) or

GRU (Cho et al., 2014). The k∼ and k←− operators denote parallel operations over

K independent object slots. The same auxiliary inputs as that of IODINE are

computed to refine the posteriors. These computations are handled by a function

a(·), namely the “auxiliary function”, which takes in the refinement function’s

inputs along with the posterior parameter λ
(l)
k .



3.3. Method 41

Algorithm 1: MulMON at Test Time: Online Scene Learning
Input: Trained parameters Φ, θ

Hyperparams: K, σ2 = 0.01, L Init: λλλ0 = {λ0
k}← {(µk = 0,σk = I)};

/* The outer loop for scene learning */

for t = 1 to T do

Access a scene observation (xt,vt);

λλλprior = λλλt(0)← λλλt−1;

/* The inner loop for observation aggregation */

for l = 0 to L−1 do

zt(l) ∼N (zt(l); λλλt(l));

{µ(l)
xk, m̂

(l)
xk}← gθ2(fθ1(zt(l),vt));

{m(l)
k }← softmax({m̂(l)

xk});

/* The spatial Gaussian mixture */

pθ(xt|zt(l),vt)←
∑

k m
(l)
k N (xt

k; µ
(l)
xk,σ2I);

if l == 0 then

L(l)
T ←− logpθ(xt|zt(l),vt);

else

L(l)
T ←DKL[N (zt(l); λλλt(l))||N (zt(l); λλλprior)]− logpθ(xt|zzzt(l),vt);

λλλt(l+1)← λλλt(l) +fΦ(zt(l)
k ,xt,vt,a(·));

λλλt← λλλt(l+1);

3.3.4 Training

MulMON learns the decoder parameters θ and the refinement network parame-

ters Φ by minimizing DKL[qλλλ(z |x1:T ,v1:T )||pθ(z |x1:T ,v1:T )] for every I.I.D. data

sample (x1:T ,v1:T ) ∼ Pdata. Such minimization is equivalent to maximizing the

evidence lower bound (i.e. the ELBO, denoted as L) in variational inference

(see §2.1.3). However, besides maximizing the iterative ELBO like IODINE, we

also simulate novel viewpoint-queried generation in the training process (similar

to GQN, see Eslami et al. 2018). By asking MulMON to predict the appearance

of a scene from unobserved viewpoints during training, we ensure that the itera-

tive updates are indeed used to aggregate spatial information across views, as a
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complete 3D scene understanding is required to perform well. More formally, we

randomly partition the set of T scene observations {(xt,vt)} into two subsets T

and Q, with n∼ U(1,5) observations in T and the remaining T −n observations

in Q. We perform scene learning on T and novel viewpoint-queried generation

on Q. We thus derive the MulMON ELBO (for one scene sample) as:

L= 1
|T |

∑
t∈T

Eqλλλ(zt |·)[logpθ(xt|zt,vt)]+ 1
|Q|

∑
q∈Q, t∼T

Eqλλλ(zt |·)[logpθ(xq|zt,vq)]

− 1
|T |

∑
t∈T

IG(zt,xt; vt,zt−1) (3.5)

where IG is the information gain (aka. Bayesian surprise), the operation | · |

computes the cardinality of a discrete set, and qλλλ(zzzttt|·) is an abbreviation of the

variational posterior qλλλ(zt |xt,vt,zt−1), from which we sample zt by applying an-

cestral sampling. In practice, we use an efficient approximation of the information

gain, i.e. an approximate IG: DKL[qλλλ(z |xt,vt,x1:t−1,v1:t−1)||qλλλ(z |x1:t−1,v1:t−1)].

Note that: 1) making T and Q mutually complementary w.r.t. each scene data

sample is to reduce the chance of MulMON memorizing the observed images (even

though which is very low in a long run); 2) using a fixed number of observations

could harm the model’s robustness at test time, hence why we randomly partition

the observations into size-varying sets T and Q during training, i.e. we train the

model with varying number of observations. See Appendix 3A for full details of

the training algorithm of MulMON.

3.4 Related Work

Single-Object-Single-View (SOSV) A growing number of recent unsuper-

vised learning advances have come in the form of “disentanglement” models (Hig-

gins et al., 2017; Chen et al., 2016; Kim and Mnih, 2018; Mathieu et al., 2019) that

explore feature-level decompositions by encouraging e.g. independence among la-

tent variables. However, most of these models focus on a single view of a single
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object that has been placed in front of some background (e.g. dSprites, CelebA,

3D Chairs). As a result, they fail to i) capture object-level compositional struc-

tures that richly exist in natural scenes, and ii) accurately capture 3D scene

information (i.e. resolve single-view spatial ambiguities and estimate, for exam-

ple, rotation along the vertical axis).

Multi-Object-Single-View (MOSV) To avoid the additional computational

complexity of factorizing or segmenting the scene objects into explicit multi-object

representations, many works have used pre-segmented images (Yao et al., 2018).

However, this comes at the cost of decreased representational power (good ob-

ject representation requires good object segmentation (Greff et al., 2019)) and

a reliance on annotated data. In addition, these works struggle in a multi-view

scenario where pre-segmented images require consistent multi-frame object reg-

istration and tracking, since the segmentation and representation models work

independently. More recently, several works (Eslami et al., 2016; Burgess et al.,

2019; Greff et al., 2019; Locatello et al., 2020b; Lin et al., 2019) have succeeded in

approximating the target posterior p(z1, z2, ..., zK |x) within the VAE framework,

achieving impressive unsupervised object-level scene factorization. However, be-

ing single-view models, they fall victim to single-view spatial ambiguities. As a

result, they fail to accurately capture the scene’s 3D spatial structure, causing

problems for object-level segmentation. To overcome this and learn object-based

representations that accurately capture 3D spatial structures, MulMON essen-

tially extends these models to the multi-view scenario.

Single-Object-Multi-View (SOMV) Recent unsupervised scene representa-

tion learning models, e.g. GQN (Eslami et al., 2018) and EGQN (Tobin et al.,

2019), have shown success in aggregating multi-view scene observations into a

single-slot representation that accurately captures the global spatial structure of

the 3D scene. As a result, they can predict the appearance of a scene from unob-
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served viewpoints. However, being single-slot or “global-structure” models, they

fail to achieve explicit object-level scene understanding in multi-object scenes,

and as a result, miss out on the aforementioned benefits of object-centric scene

representations. To overcome this, MulMON essentially extends these models to

the case of multi-object representations. In addition, several works have sought

explicit 3D representations either in the latent space (Rezende et al., 2016) or

output space (Wu et al., 2016; Arsalan Soltani et al., 2017). However, due to the

complexity of 1) working with explicit 3D object representations and 2) main-

taining object correspondences across views, these works have been limited to

single-object scenes (often quite simple, with “floating” objects placed in front of

a plain background).

Multi-Object Scenes in Videos While some works in multi-object discovery

and tracking in videos appear to be MOMV models (Kosiorek et al., 2018; Hsieh

et al., 2018), they in fact work with one view per scene (abiding strictly by our

definition of a scene in §3.2) and are only capable of dealing with binarizable

MNIST-like images.

3.5 Experiments

Our experiments are designed to demonstrate that MulMON is a feasible solu-

tion to the MOMV problem, and to demonstrate that MulMON learns better

representations than the MOSV and SOMV models by resolving spatial ambi-

guity. To do so, we compare the performance of MulMON against two baseline

models, IODINE (Greff et al., 2019) (MOSV) and GQN (Eslami et al., 2018)

(SOMV), in terms of segmentation, viewpoint-queried prediction (appearance

and segmentation) and disentanglement (inter- and intra-object). To best facili-

tate these comparisons, we created two new datasets called CLEVR6-MultiView

(abbr. CLE-MV) and CLEVR6-Augmented (abbr. CLE-Aug) which contain
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Figure 3.3: Qualitative comparison of MulMON vs. IODINE in terms of scene seg-

mentation performance. Top Left: Reconstruction and segmentation comparison on

a CLE-MV data sample. Top Right: Individual masked-object generation using each

object’s representation independently (see Appendix 3C for the computation details).

Bottom: Segmentation performance on CLE-Aug and GQN-Jaco data samples (spe-

cific colors arbitrary).

ground-truth segmentation masks and shape descriptions (e.g. colors, materi-

als, etc.). The CLE-MV dataset is a multi-view, observation-enabled variant (10

views per scene) of the CLEVR6 dataset (Johnson et al., 2017; Greff et al., 2019).

The CLE-Aug adds more complex shapes (e.g. horses, ducks, and teapots etc.) to

the CLE-MV environment. In addition, we compare the models on the GQN-Jaco

dataset (Eslami et al., 2018) and use the GQN-Shepard-Metzler7 dataset (Eslami

et al., 2018) (abbr. Shep7) for a specific ablation study. We train all models using

an Adam optimizer with an initial learning rate 0.0003 for 300k gradient steps. In

addition, all experiments were run across five different random seeds to simulate

scenarios of different observation orders and view selections. For more details

about the four datasets and model implementations see Appendix 3B and 3C

respectively.
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3.5.1 Scene Factorization

The ability of MulMON to perform scene object decomposition in the scene learn-

ing phase is crucial for learning object-centric scene representations. We evalu-

ate its segmentation ability by computing mean-intersection-over-union (mIoU)

scores between the output and the GT masks. However, since the segments

produced by IODINE and MulMON are unordered, GT masks and object seg-

mentation masks need to first be one-to-one registered for each scene. We solve

this matching problem by first computing every possible object pairs of GT object

masks and outputs, then, for each GT object mask, we find the output object

mask that gives the highest IoU score. Table 3.1a shows that MulMON outper-

forms IODINE in object segmentation. The qualitative comparison in Figure 3.3

shows that IODINE captures each object well independently but fails to under-

stand the spatial structure along depth directions (3D) – as described by the

Categorical distribution (see §3.3.2). Note that IODINE’s poor segmentation

performance is mostly due to its poor handling of the background, i.e. its ten-

dency to split up the background. Although the background is often considered

a less-important “object”, correct handling of the background demonstrates bet-

ter spatial-reasoning ability. Together, all of these results suggest that MulMON

learns better single-object representations and spatial structures by overcoming

spatial ambiguities. It is also worth noting that both Table 3.1a and Figure 3.3

show a significant difference in IODINE’s scene factorization performances on

the CLE-MV data and the CLE-Aug data. I.e. IODINE factorizes CLE-Aug

scenes better than CLE-MV scenes. We suspect the reason why IODINE fac-

torizes CLE-Aug better is that CLE-Aug objects show less geometric symmetry

than CLE-MV objects, which eases the identification of the compositional struc-

ture. Studying how geometric symmetry affects object factorization and model

identification would be an interesting future work.
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Figure 3.4: Qualitative results on novel-viewpoint prediction. Left: Working example

of MulMON (columns show model after addition of new views), including uncertainty

reduction (bottom row) across views, for a GQN-Jaco sample. Right: Qualitative

comparison between MulMON and GQN.

3.5.2 Novel-viewpoint Prediction

MulMON can predict both observations and segmentation for novel viewpoints.

This is the major advantage of our model (a MOMV model) over the MOSV

and SOMV models in scene understanding. For our evaluation of online scene

learning, each model is provided with 5 observations of each scene and then

asked to predict both the observation and segmentation for randomly-selected

novel viewpoints. We compute the root-mean-square error (RMSE) and mIoU

as quality measures of the predicted observation and segmentation respectively.

Table 3.1c shows that MulMON outperforms GQN on novel-view observation

prediction. Table 3.1b shows that MulMON is the only model that can predict the

object segmentation for novel viewpoints—and it does so with a similar quality to

the original object segmentation (compare with Table 3.1a). However, as shown

in Figure 3.4, GQN tends to capture more pixel details than MulMON, albeit at

the risk of predicting wrong spatial configurations.
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Models CLE-MV CLE-Aug

GQN N/A N/A

IODINE 0.1891±0.0000 0.5137±0.0007

MulMON 0.7852±0.0008 0.7076±0.0004

(a) Object Segmentation (mIoU)

Models CLE-MV CLE-Aug

GQN N/A N/A

IODINE N/A N/A

MulMON 0.7845±0.0011 0.6860±0.0006

(b) Predicted Object Segmentation (mIoU)

Models CLE-MV CLE-Aug GQN-Jaco

GQN 0.1426±0.0002 0.1482±0.0001 0.1675±0.0013

IODINE N/A N/A N/A

MulMON 0.0464±0.0004 0.0733±0.0003 0.1607±0.0018

(c) Predicted Observation RMSE (pixel avg.)

Models Disent. Compl. Inform.

GQN N/A N/A N/A

IODINE 0.47±0.00 0.60±0.01 0.67±0.01

MulMON 0.65±0.01 0.73±0.01 0.78±0.00

(d) Disent. on CLE-MV (DCI)

Table 3.1: Quantitative comparisons of MulMON, IODINE and GQN. “N/A” denotes

cases where a model is unable to perform a task. In tables (a), (b) and (d), higher is

better and 1 is best. For table (c), lower is better and 0 is best.

3.5.3 Disentanglement Analysis

To evaluate how well MulMON performs disentanglement at both the inter-object

level and the intra-object level, we run disentanglement analyses on the repre-

sentations learned by MulMON. For our qualitative analysis, we pick one of K

objects in a scene, and traverse one dimension (by varying the value of the vari-

able) of the learned object-representation at a time. Figure 3.5 (left) shows

1) MulMON’s intra-object disentanglement, encoding interpretable features in

different latent dimensions; and 2) MulMON’s inter-object disentanglement, al-

lowing single-object manipulation without affecting other objects in the scene.

Figure 3.5 (right) shows that MulMON captures 3D information (vertical-axis

rotation) and broadcasts consistent manipulations of this 3D information to dif-

ferent views. For our quantitative analysis, we employ the method of Eastwood

and Williams (2018), i.e. DCI (see Appendix 3D.1), to compare the representa-

tions learned by each model on the CLE-MV and CLE-Aug datasets. As shown

in Table 3.1d, MulMON learns object representations that are more disentangled,



3.5. Experiments 49

C
o

lo
u

r
Z

_
ro

t

V
ie

w
 1

V
ie

w
 2

latent-dimension traversal-2.6 +2.6 latent-dimension traversal-2.6 +2.6

Figure 3.5: Single-object manipulations via latent traversals. Left: Traversing two

dimensions of the duck’s latent representation (one per row). Top row cropped for

visual clarity. Right: For two different views (one per row), we manipulate the

dimension of the learned representation that appears to capture vertical-axis rotation.

complete (compact) and informative (about ground-truth object properties). See

Appendix 3D for further details.

3.5.4 Ablation Study

The Effects of The Number of Observations T We consider the number of

observations T the most important hyperparameter of MulMON as the key insight

of MulMON is to reduce multi-object spatial uncertainty by aggregating infor-

mation across multiple observations. To visualize the effect of T on MulMON’s

performance, we plot MulMON’s uncertainty about the scene as a function of T

during testing. Specifically, for a given scene and ordering of the observations, we

1) draw 10 samples from the approximate variational posterior qλλλ(z |x1:t,v1:t) at

each t ∈ N[1,T ], 2) obtain the corresponding viewpoint-queried observation pre-

dictions using the 10 latent samples (see Section 3.3.2 and the right figure of

Figure 3.2), 3) compute the pixel-wise empirical variance over these observation

predictions and average them over all scenes in the dataset and sampling 5 ran-

dom view orderings (5 different random seeds). We show in Figure 3.6 (left) that

MulMON effectively reduces the spatial uncertainty/ambiguity (measured by the

average pixel-wise variance σ2) by leveraging multiple views. In particular, Mul-
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Figure 3.6: Left: Spatial uncertainty vs. T , where σ2 (lower is better) denotes the

average pixel-wise variance defined in the text. We show consistent results (trends)

on three different datasets. Right: Scene factorization performance (segmentation

mIoU, higher is better) vs. T on the CLE-Aug data. “MulMON (obs.)” and “IODINE

(obs.)” tags MulMON and IODINE’s performance in segmenting the observed images,

respectively. “MulMON (unobs.)” tags MulMON’s performance in predicting the

segmentations for the unobserved (queried) views.

MON’s uncertainty is rapidly reduced after only a small number of observations

T . Moreover, we also show in Figure 3.6 (right) that the scene factorization per-

formance improves as more observations are aggregated. In addition to the effect

of T , we also study the effects of two other important hyperparameters, namely

the globally-fixed number of object slots K and the coefficient of information gain

IG (in the MulMON ELBO). For details on these further ablation studies, we

refer the reader to Appendix 3D.

3.6 Conclusion

We have presented MulMON—a method for learning accurate, object-centric rep-

resentations of multi-object scenes by leveraging multiple views. We have shown

that MulMON’s ability to aggregate information across multiple views does in-

deed allow it to better-resolve spatial ambiguity (or uncertainty) and better-
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capture 3D spatial structures, and as a result, outperform state-of-the-art mod-

els for unsupervised object segmentation. We have also shown that, by virtue

of addressing the more complicated multi-object-multi-view scenario, MulMON

achieves new functionality—the prediction of both appearance and object seg-

mentations for novel viewpoints. The proposed design for multi-view uncertainty

reduction and learning accurate scene representation can be useful in downstream

tasks that involve active scene exploration and environment interaction. As all

scenes in this paper are static, future work may look to extend MulMON to

dynamic multi-object scenes.
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Note: we use the same notations in the Appendix as that in the main

chapter.

Appendix 3A. Training Algorithms of MulMON

We show the training algorithms of MulMON in Algorithm 2 & 3, where the

evaluate likelihood function is essentially Eqn. 3.2) and the image render

function is discussed in Appendix 3C. Implementation Details. All variables

appeared in the algorithms are defined in the main chapter.

Algorithm 2: MulMON Training Algorithm
Data Training data D = {(x1:T ,v1:T )}1:N (I.I.D. scenes)

Init trainable parameters Φ(0), θ(0), step count s = 0;

repeat

Sample a mini batch {(x1:T ,v1:T )(m)}1:M ∼D, where M ≤N ;

/* The below loop can go parallel as tensor operations */

for (x1:T ,v1:T ) in {(x1:T ,v1:T )}M do

Lm← SingleSampleELBO((x1:T ,v1:T ),Φ(s),θ(s));

L= 1
M

∑M
m=1Lm;

/* update */

Φ(s+1)← optimizer(L,Φ(s)) ;

θ(s+1)← optimizer(L,θ(s));

s← s+1;

until Φ,θ converge;

Appendix 3B. Data Configurations

In this section, we discuss our data configurations. We show samples of the

used datasets in Figure 3.7.

CLEVR-MultiView & CLEVR-Augmented We adapt the Blender envi-

ronment of the original CLEVR datasets (Johnson et al., 2017) to render both
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Algorithm 3: SingleSampleELBO
Input: A scene sample (x1:T , v1:T ), trainables Φ, θ

Hyperparams K, σ2, L

Data T = {(xt,vt)},Q= {(xq,vq)} random partition T←−−−−−−−−−−−−− (x1:T ,v1:T )

Init λλλ0 = {λ0
k}← {(µk = 0,σk = I)};

/* The outer loop for scene learning */

for t = 1 to |T | do

Access a scene observation (xt,vt);

λλλprior = λλλt(0)← λλλt−1;

/* The inner loop for observation aggregation */

for l = 0 to L−1 do

zt(l) ∼N (zt(l); λλλt(l));

xt← render image(zt(l),vt;θ) ;

pθ(xt|zt(l),vt)← evaluate likelihood(xt;zt(l),vt,θ) ;

if l == 0 then

L(l)
T ←− logpθ(xt|zt(l),vt);

else

L(l)
T ←DKL[N (zt(l); λλλt(l))||N (zt(l); λλλprior)]− logpθ(xt|zt(l),vt);

λλλt(l+1)← λλλt(l) +fΦ(zt(l)
k ,xt,vt,a(·));

λλλt← λλλt(l+1);

Lt
T ←

2l+2
L2+L

∑
lL

(l)
T ;

/* Viewpoint-queried prediction */

for (xq,vq) in Q do

zt ∼N (zt; λλλt);

xq← render image(zt,vq) ;

pθ(xq|zt,vq)← evaluate likelihood(xq;zt,vq,θ) ;

Lq
Q←− logpθ(xq|zt,vq);

/* Compute the MulMON ELBO */

L= 1
|T |

∑
tLT + 1

|Q|
∑

qLQ;

Output: L

datasets. We make a scene by randomly sampling 3 ∼ 6 rigid shapes as well as

their properties like poses, materials, colors etc.. For the CLEVR-MultiView
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Figure 3.7: Examples of the four dataset used in this work.

(CLE-MV) dataset, we sample shapes from three categories: cubes, spheres,

and cylinders, which are the same as the original CLEVR dataset. For the

CLEVR-Augmented (CLE-Aug), we add more shape categories into the pool:

mugs, teapots, ducks, owls, and horses. We render 10 image observations for

each scene and save the 10 camera poses as 10 viewpoint vectors. We use resolu-

tion 64×64 for the CLE-MV images and 128×128 for the CLE-Aug images. All

viewpoints are at the same elevation level but different azimuth with their focuses

locked at the scene center. We thus parametrize a viewpoint 3-D viewpoint vector

as (cosα,sinα,r), where α is the azimuth angle and r is the distance to the scene

center. In addition, we save the object properties (e.g. shape categories, mate-

rials, and colors etc.) and generate objects’ segmentation masks for quantitative

evaluations. CLEVR-MultiView (CLE-MV) contains 1500 training scenes, 200

testing images. CLEVR-Augmented (CLE-Aug) contains 2434 training scenes

and 500 testing scenes.

GQN-Jaco We use a mini subset of the original GQN-Jaco dataset (Eslami

et al., 2018) in our paper. The original GQN-Jaco contains 4 million scenes, each

of them contains 20 image observations (resolution: 64×64) and 20 corresponding

viewpoint vectors (7D). To reduce the storage memory and accelerate the training,

we randomly sample 2,000 scenes for training and 500 scenes for testing. Also, for
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each scene, we use only 11 observations (viewpoints) that are randomly sampled

from the 20 observations of the original dataset.

GQN-Shepard-Metzler7 Same as the GQN-Jaco dataset, we make a mini

GQN-Shepard-Metzler7 dataset (Eslami et al., 2018) (Shep7) by randomly select-

ing 3000 scenes for training and 200 for testing. Each scene contains 15 images

observations (resolution: 64×64) with 15 corresponding viewpoint vectors (7D).

We use Shep7 to study the effect of K on our model.

Appendix 3C. Implementation Details

In this section, we introduce the implementation details of our experiments. We

show our training configurations in Table 3.2 and the architectural design of Mul-

MON in Tables 3.3, 3.4, & 3.5

Table 3.2: Training Configurations

Type MulMON, IODINE, GQN

Optimizer Adam

Initial learning rate η0 3e−4

Learning rate at step s max{0.1η0 +0.9η0 · (1.0− s/6e5),0.1η0}

Total gradient steps 300000

Batch Size
. 8 for CLE-MV, CLE-Aug, 16 for

GQN-Jaco, 12 for Shep7

* GQN scheduler with a faster attenuation rate

Decoder-Output Processing For a single view of a scene, our decoder gθ

outputs K 3×H×W RGB values (i.e. {xk} as in Eqn. 3.2 of the main chapter)

along with K 1×H ×W mask logits (denoted as {m̂k}). H and W are the

image sizes, i.e. height and width. In this section, we detail the computation

of rendering K individual scene components’ images, segmentation masks, and
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Table 3.3: Model State Space Specifications

Type CLE-MV CLE-Aug GQN-Jaco Shep7

z dims 16 16 32 16

v dims 3 3 7 7

z dims: the dimension of a latent representation

v dims: the dimension of a viewpoint vector

Table 3.4: MulMON Refinement Network with Trainable Parameters Φ

Parameters Type Channels (out) Activations. Descriptions

Φ

Input 17 * Auxiliary inputs a(xt)

Conv 3×3 32 Relu

Conv 3×3 32 Relu

Conv 3×3 64 Relu

Conv 3×3 64 Relu

Flatten

Linear 256 Relu

Linear 128 Linear

Concat 128+4*z dims

LSTMCell 128

Linear 128 Linear output ∆λ

z dims: the dimension of a latent representation

v dims: the dimension of a viewpoint vector

* see Greff et al. (2019) for more details about the auxiliary inputs

LSTMCell channels: the dimensions of the hidden states

reconstructed scene images. We compute the individual scene objects’ images as:

xk
k←− sigmoid(m̂k) ·xk.

As shown in Figure 3.8, this overcomes mutual occlusions of the objects since the

sigmoid functions do not impose any dependence on K objects. We compute the

segmentation masks as:

mk
k←− softmaxk(m̂k).
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Table 3.5: MulMON Decoder Network with Trainable Parameters θ

Parameters Type Channels (out) Activations. Descriptions

θ1 (view transformer)

Input z dims+ v dims zk ∼N (zk; λk), v

Linear 512 Relu

Linear z dims Linear z̃k = fθ1(zk,v)

θ2 (Generator)

Input z dims z̃k = fθ1(zk,v)

Broadcast z dims+2 * Broadcast to grid

Conv 3×3 32 Relu

Conv 3×3 32 Relu

Conv 3×3 32 Relu

Conv 3×3 32 Relu

Conv 3×3 4 Linear rgb mean (µxk) + mask logits (m̂k)

z dims: the dimension of a latent representation

v dims: the dimension of a viewpoint vector

*: see spatial broadcast decoder in Watters et al. (2019)

Obs Rec/Pred Generated K Scene Components Seg

Figure 3.8: Example output of the decoding process. Left to right: GT scene ob-

servation, (predicted/reconstructed) scene observation, generated K individual scene

components (white background for visual clarity), segmentation map. The generated

scene components overcome/impute occlusions (e.g. the purple glossy sphere).

To generate binary segmentation masks, we take argmax operation over the K m̂

at every pixel location and encode the maximum indicator (indices) using one-hot

codes. We render a scene image using a composition of all scene objects as:

x =
∑
k

softmaxk(m̂k) ·xk =
∑
k

mk ·xk
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Appendix 3D. Additional Results

3D.1 Disentanglement Analysis

Table 3.6: Disent. on CLE-Aug (DCI, higher is better)

Models Disent. Compl. Inform.

GQN N/A N/A N/A

IODINE 0.54 0.48 0.21

MulMON 0.63 0.54 0.58

To compare quantitatively the intra-object disentanglement achieved by Mul-

MON and IODINE, we employ the framework and metrics (DCI) of Eastwood

and Williams (2018). Specifically, let zGT be the values of ground-truth genera-

tive factors ZGT of a multi-object scene, where each ZGT
k ∈ZGT defines an object

and each segment, e.g. a single dimension ZGT
ki ⊂ ZGT

k , defines an object feature,

e.g. color. Following Eastwood and Williams (2018), we learn a mapping from Z

to ZGT with random forests in order to quantify the disentanglement, complete-

ness and informativeness of the learned object representations. The results on the

CLE-MV dataset is presented in §3.5.3, and here we present the results on the

CLE-Aug dataset. As shown in Table 3.6, MulMON again outperforms IODINE,

learning representations that are more disentangled, complete and informative

(about ground-truth factor values). It is worth noting the significant gap in in-

formativeness in Table 3.6. This strongly indicates that the object representations

learned by MulMON are more accurate, i.e. capturing object properties better.

3D.2 Ablation Study

Novel-View Prediction vs. The Number of Observations T We discussed

in §3.5.4 that the spatial uncertainty decrease (Figure 3.6, left) suggests a boost
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Figure 3.9: Ablation study of the effects of T . Left: the performance of novel-view

synthesis improves as T increases. Right: the segmentation prediction performance

boosts as T increases.

of task performance (see Figure 3.9 & 3.6 (right)). This suggests that MulMON

does leverage multi-view exploration to learn more accurate scene representations

(than a single-view configuration), which also explains the performance gap (be-

tween IODINE and MulMON) shown in Figure 3.6 (right). Here we show more

detailed results on models’ performance vs T in novel-view synthesis. We em-

ploy mIoU (mean intersection-over-union) and RMSE (root-mean-square error)

to measure MulMON’s performance on observation prediction and segmentation

prediction respectively. To further demonstrate the advantage that MulMON has

over both IODINE and GQN, we compare their performance in terms of both seg-

mentation and novel-view appearance prediction, as a function of the number of

observations given to the models. Figure 3.10 shows that: 1) MulMON signif-

icantly outperforms IODINE even with a single view, likely due to a superior

3D scene understanding gained during training (figures on the left), 2) Despite

the more difficult task of achieving object-level segmentation, MulMON closely

mirrors the performance of GQN in predicting the appearance of the scene from

unobserved viewpoints (figures on the right), 3) MulMON achieves similar per-

formance in scene segmentation from observed and unobserved viewpoints, and

the difference diminishes as the number of views increase (see dashed lines vs.
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solid lines in the left-hand figures).

Figure 3.10: Performance comparison w.r.t. number of observations T . (Top left)

Segmentation performance vs. number of observations T on CLE-MV dataset. Note

that “obs” means that MulMON reconstructs the observed images (scene appear-

ances) and “unobs” means that MulMON predicts the appearance of the scene from

unoberserved viewpoints. (Top right) Novel-viewpoint appearance prediction perfor-

mance vs. number of observations given to the models on CLE-MV dataset. (Bottom

left) Segmentation performance vs. number of observations T on CLE-MV dataset.

(Bottom right) RMSE of appearance predictions for unobserved viewpoints vs. num-

ber of observations on CLE-Aug dataset.

Task Performance vs. The Number of The Object Slots K Although an

explicit assumption about the number of objects in a scene is not required for

MulMON, selecting an appropriate K (i.e. the number of object slots) is crucial
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Figure 3.11: The effect of K. An insufficient number of the object “slots” leads

to higher RMSE (left) and lower mIoU (right). Using a large K, larger than the

“sufficient” number (i.e. 7 in this case, 6 objects + 1 background), does not improve

the task performance significantly.

to have MulMON work correctly. In the main chapter, we discussed that “K

needs to be sufficiently larger than the number of scene objects” and we show

the experimental support here. We trained our model on CLE-MV, where each

scene contains 4 to 7 objects including the background, with K set to 9, and

tested the model on novel-viewpoint prediction task using various K. Figure 3.11

shows that, for both observation prediction and segmentation prediction tasks,

the model’s performance improves as K increases until reaching a critical point at

K = 7, which is the maximum quantity of scene objects in the dataset. Therefore,

one should select a K that is always greater or equal to the maximum number of

objects in a scene. When this condition is satisfied, further increases in K will

mostly not affect MulMON’s performance. However, subtle cases in terms of K’s

selection do exist. As shown in Figure 3.12, instead of treating the Shep7 scene

as a combination of a single object and the background, MulMON performs as

a part segmenter that discovers the small cubes and their spatial composition.

This is because, in the training phase of MulMON, the amortized parameters Φ

and θ are trained to capture the object features (possibly disentangled) shared

across all the objects in the whole dataset instead of each scene with specific



62 Chapter 3. MulMON: Multi-view Multi-Object Network

Figure 3.12: MulMON on Shep7. MulMON treats an Shep7 object as composition

of parts (cubes) instead of a complete object.

objects. These shared object features are what drives the segmentation process

of MulMON. In Shep7, what is being shared are the cubes, the object itself is

a spatial composition of the cubes. The results on Shep7 shown in Figure 3.12

illustrate the granularities and subjectiveness of perceptual grouping and leaves

much space for us to study in the future.

Scene Learning vs. The IG Coefficient In the MulMON ELBO, we fix the

coefficient of the information gain at 1. In testing, we consider this coefficient

controls the scene learning rate (uncertainty reduction rate). We denote the

coefficient as αIG hereafter. According to the MulMON ELBO (to maximize),

the negative sign of the IG term suggests that a larger value of the coefficient

leads to less information gain (spatial exploration). To verify this, we try four

different αIG (0.1, 1.0, 10.0 and 100.0) and track the prediction uncertainty as

observations are acquired (same as our ablation study of T ). The results in Figure

3.13 verifies our assumption the scene learning rate: larger αIG leads to slower
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Figure 3.13: Scene learning rate vs. IG coefficient (denoted as αIG). Left: Uncer-

tainty reduction gets slightly slower when we increase αIG. Right: The computed

uncertainty change rate or scene learning rate (lower means slower) shows larger αIG

slightly slows the scene learning.

scene learning and vice versa.

3D.3 Compositional Generalization

Obs.

Rec.

Seg.

Black-
Aug

Unseen-
Shape

Figure 3.14: Left: Example images of the modified CLE-Aug, i.e. BlackAug &

UnseenShape. Right: Qualitative results of MulMON on the UnseenShape data.

To evaluate MulMON’s compositional generalization ability, we trained Mul-

MON, IODINE and GQN on CLE-Aug. Then, we compared their performance

on O.O.D. data from CLE-MV and two modified CLE-Aug datasets—namely,

Black-Aug and UnseenShape (see Figure 3.14, left). Black-Aug keeps all the con-
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figurations of CLE-Aug objects, except the shapes are painted black. We created

UnseenShape by replacing all the shapes of CLE-Aug with novel shapes (cups,

cars, spheres, and diamonds) while keeping all the other settings.

Table 3.7: MulMON’s generalization performance.

Tasks Models CLE-Aug (train) CLE-MV Black-Aug UnseenShape

Seg. IODINE 0.51±0.001 0.61±0.002 0.50±0.006 0.51±0.004

(mIoU) MulMON 0.71±0.000 0.71±0.004 0.67±0.002 0.64±0.004

Pred.Obs GQN 0.15±0.000 0.15±0.001 0.24±0.003 0.17±0.002

(RMSE) MulMON 0.07±0.000 0.16±0.002 0.26±0.002 0.21±0.006

Disent. IODINE 0.54,0.48,0.21 0.14,0.12,0.26 0.2,0.26,0.27 0.13,0.12,0.26

(D,C,I) MulMON 0.63,0.54,0.68 0.52,0.48,0.63 0.55,0.55,0.66 0.5,0.47,0.67

Pred.Seg (mIoU) MulMON 0.69±0.001 0.71±0.004 0.68±0.005 0.60±0.005

Table 3.7 shows the comparison results of “non-object-centric model (GQN) vs.

MulMON” and “single-view model (IODINE) vs. MulMON” in terms of general-

ization. We can see from Table 3.7 that MulMON, as a multi-view-object-centric

model, generalizes best in most of the subtasks. The disentanglement and seg-

mentation comparisons between IODINE and MulMON suggests that the multi-

view scheme does allow an OCRL model to discover the compositional structures

around objects. Though Figure 3.14 (right) does show that MulMON indeed

leverages the knowledge of composition to handle the UnseenShape data, it it

is surprising to see that GQN generalizes slightly better than MulMON in the

novel-view observation prediction task—which seems to contradict our assump-

tion that the understanding of compositionality leads to better generalization.

In fact, though GQN is not an OCRL model, it does somewhat discover the

feature-level compotitional structures (Eslami et al., 2018) like most disentangle-

ment models (Higgins et al., 2017; Kim and Mnih, 2018). As the O.O.D. data

like Black-Aug and UnseenShape are “out-of-distribution” in the sense of fea-
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tures, we conjecture that GQN (feature→scene composition) is more sensitive

to feature-level compositionality than MulMON (feature→object→scene compo-

sition) hence generalizes better in feature changes. Our speculation is backed

by the generalization experiments of IODINE in object-level scene compositional

changes—Greff et al. (2019) trained IODINE on scenes with 3−5 objects and dis-

covered that, as an OCRL model, IODINE generalized well in scenes with more

than 5 objects (see (Greff et al., 2019), Figure 9). These generalization results

along with the Shep7 results (see Figure 3.12) leads us to an interesting direction

of future research—granularity of compositionality.

3D.4 Random Scene Generation

Figure 3.15: Random scene generation samples.

As a generative model, MulMON can generate random scenes by composing

independently-sampled objects. However, to focus on forming accurate, disentan-

gled representations of multi-object scenes, we must assume objects are I.I.D. and

thus ignore inter-object dependence—e.g. two objects can appear at the same lo-

cation. We nevertheless show random scene examples generated by MulMON

(trained on the CLE-MV dataset) in Figure 3.15. We can see that MulMON
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generates mostly good object samples by randomly composing different features

but does not take into account the global layout of the objects. As a result,

the generated scene images contain odd backgrounds and are somewhat fuzzy in

terms of occlusions. This can be aided by modeling the scene global prior using

the confounder variable(s) C (see Figure 2.3 in §2.2.3) as suggested by Reddy

et al. (2022), or modeling the inter-object dependence like Engelcke et al. (2019),

or combining both top-down and bottom-up inference schemes (Emami et al.,

2021).



Chapter 4

LDS: Latent Duplicate

Representation Suppression

Generative object-centric scene representation learning is crucial for structural vi-

sual scene understanding. Built upon variational autoencoders (VAEs) (Kingma

and Welling, 2013; Rezende et al., 2014), current approaches infer a set of latent

object representations to interpret a scene observation (e.g. an image) under the

assumption that each part (e.g. a pixel) of a scene observation must be explained

by one and only one object of the underlying scene. Despite the impressive

performance these models achieved in unsupervised scene factorization and rep-

resentation learning, we show empirically that they often produce duplicate scene

object representations which directly harms the scene factorization performance.

In this chapter, we address the issue by introducing a differentiable prior that

explicitly forces the inference to suppress duplicate latent object representations.

The extension is evaluated by adding it to three different unsupervised scene

factorization approaches. The results show that the models trained with the pro-

posed method not only outperform the original models in scene factorization and

have fewer duplicate representations, but also achieve better variational posterior

67
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approximations than the original models.

This chapter is an extended version of the paper “Duplicate Latent Representation

Suppression for Multi-object Variational Autoencoders” (Nanbo and Fisher, 2021),

published at The British Machine Vision Conference (2021).

4.1 Introduction

Variational autoencoders (VAEs) (Kingma and Welling, 2013; Rezende et al.,

2014) have become a powerful tool for unsupervised visual scene understanding

and representation learning. As a particular type of latent-variable generative

model, a VAE model not only inherits the ability to explain scene observations

(e.g. images) by learning a marginal distribution p(x;θ) over the observations

X ∈ RM but it also allows to describe and represent the observed scenes in a

more compact latent space Z ∈ RD (D ≪M) for simplicity and efficiency. A

rising trend in VAE research is to treat a multi-object scene as a composition

of objects (a.k.a. scene components), i.e. a scene representation Z is a set of

scene object representations Z = {Zk}, where each Zk corresponds to one and

only one object in the scene. These object-based scene representation learning

models are often referred to as the multi-object VAEs, they are called component

VAEs (abbr. CompVAEs) in this chapter for simplicity.

By making an assumption that each pixel of a scene image observation must

be explained by one and only one object in the scene, recent CompVAE ad-

vances (Burgess et al., 2019; Greff et al., 2019; Nanbo et al., 2020) show great suc-

cess in unsupervised image segmentation and object-centric representation learn-

ing (OCRL). In these models, this assumption acts as a constraint to force dif-

ferent scene object components, i.e. different Zk ∈ {Zk}, to capture different

image pixels—we expect these models to infer a set of distinctive Zk. However,
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all three CompVAEs investigated here (i.e. MONET (Burgess et al., 2019), IO-

DINE (Greff et al., 2019), MulMON (Nanbo et al., 2020)) can infer duplicate

latent object representations (see Figure 4.1 for an example), which violates the

implicit assumption and thus harms their performance in scene factorization (or

image segmentation).

Latent Duplicate 

Suppression (LDS)
train suppress

Our Output

Rec

Seg

…
𝑧1𝑧2 𝑧𝑘

𝜙 𝜃

Multi-Object VAEInput

Duplicates

Original Output

harm

Rec

Seg

Improve task 

performance

Figure 4.1: Top left (the grey box): The state-of-the-art unsupervised scene fac-

torization and image segmentation approaches, i.e. multi-object VAE models, often

infer duplicate latent object representations that harm the scene object segmenta-

tion performance. Bottom left (the green diagram): We propose a differentiable

latent-duplicate-suppression prior (abbr. LDS) to train better multi-object-VAE in-

ference networks that suppress the duplicates. Middle & right: Multi-object VAEs

that trained with the proposed LDS achieves better scene object segmentation (e.g.

higher mIoU on 2 datasets) and observation reconstruction performance (lower MSE).

In this chapter, we refer to the issues raised by inferring duplicate latent repre-

sentations as the uniqueness issues and the implicit assumption of ∀Zk ∈ {Zk}

being unique as the uniqueness assumption. To address the uniqueness issues,

we propose a differentiable prior, namely for latent duplicate suppression (abbr.

LDS), to train the CompVAEs’ inference network to suppress duplicates while

making inference at test time. The LDS prior essentially implements the unique-

ness assumption — two identical components cannot appear in the same scene

representation set Z, i.e. penalizing highly-similar latent object representation

pairs during training.
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In our experiments, we train two representative single-view CompVAEs, i.e.

MONET (Burgess et al., 2019) and IODINE (Greff et al., 2019), and one multi-

view CompVAE, i.e. MulMON (Nanbo et al., 2020), with LDS as the experimen-

tal group and train the same models without LDS as the control group. We show

the effectiveness of training CompVAEs’ with LDS in suppressing scene factor-

ization duplicates and achieving better variational approximation by comparing

the performance of the two groups of models. We claim and demonstrate that

training a CompVAE with the proposed LDS prior enables the CompVAE to: 1)

Produce better scene factorizations with fewer duplicate objects (see §4.4.2). 2)

Learn better scene representations that supports better scene observation recon-

structions (see §4.4.2). 3) Achieve better variational posterior approximation,

i.e. decrease the inference gap (Cremer et al., 2018) (see §4.4.3).

4.2 Method

Our goal is to enable CompVAEs’ inference networks to suppress duplicates when

making inferences at test time. Our approach is to introduce a differentiable prior,

i.e. the LDS prior, as an additional constraint to train the CompVAEs’ inference

models. In §4.2.1, we briefly review the general construction of CompVAEs.

In §4.2.2, we present the LDS prior and how to train a CompVAE model with

it. In §4.2.3, we discuss CompVAEs’ suboptimality and define a measure for the

comparison of two posterior approximations.

4.2.1 Background

Similar to VAEs, a CompVAE model often consists of a generative model and

an inference model. The generative likelihood of a scene image observation in a

CompVAE is often modeled as a spatial Gaussian mixture (Williams and Titsias,
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2004; Greff et al., 2017) parametrized by θ:

pθ(x|{zk}) =
M∏

i=1

K∑
k=1

pθ(Ci = k|zk) ·N (xik; gθ(zk),σ2), (4.1)

where i indexes a pixel location (M in total) and xik is the RGB value of the

k-th object at the location i. RGB values are samples of N (xik; gθ(zk),σ2) where

gθ(·) is a decoder network and the standard deviation σ is set to a fixed value,

e.g. σ = 0.1, for all pixels. The generated K RGB values xik compete to explain

a location i as an instance of object k. The objects and their likelihoods, i.e.

the mixing coefficients, are captured by a categorical distribution pθ(Ci = k|zk),

where Ci = k denotes the event of object k winning the “competition”. Note that

this formulation is similar to that used in MulMON (Nanbo et al., 2020), but

that approach investigated multi-view problems, where viewpoints V were taken

as conditions. We refer the reader to Appendix 4B for more details about the

image-generating process.

To tackle the problems of scene factorization and OCRL, the inference model of

a CompVAE infers a joint posterior of the scene objects Z = {Z1,Z2, . . . ,ZK}.

Although CompVAEs encode a fixed number (K) of object slots for the inferred

object representations, they do not make any assumption about the number of

objects in a scene. Ideally, one can use as many object slots as possible—leaving

some redundant slots unused. In practice, a K that is slightly larger than the

number of scene objects is often chosen for efficient computation. Though such

practice sidesteps the assumption of knowing the number of scene objects, we dis-

covered that CompVAEs often use the redundant slots to create duplicates. Based

on the independence assumption commonly used for scene object factorization,

the inference problem is solved by computing a tractable variational approxima-

tion:

qΦ(z |x) = qΦ(z1, z2, . . . , zk|x) =
K∏

k=1
qΦ(zk|x,∗), (4.2)
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where Φ denotes the trainable amortized parameters Kingma and Welling (2013)

and ∗ denotes other conditions (e.g. z1:k−1, see Engelcke et al. 2019). Note that

Eqn. 4.2 describes a CompVAE inference process in a general form that holds for

many existing CompVAE variants.

4.2.2 Latent Duplicate Suppression

The goal of the proposed LDS prior is to penalize duplicates during the training

process so the trained models infer fewer duplicate object representations during

testing. In other words, we want to train a Φ that better suppresses duplicates.

Because CompVAEs use fixed numbers (K) of object slots for the inferred latent

representations, we can easily construct a fixed-size pair-wise similarity matrix,

Σ∈ RK×K using a kernel function. In this chapter, we use the cosine kernel func-

tion to compute the similarities between any two latent object representations.

If we write the a set of object latent values in a matrix form (with exchange-

able horizontal entries) as S = [z1, z2, ..., zK ]T ∈ RK×D, the computation of the

similarity matrix can be written as: Σ = SST /(||Sr|| · ||ST
c ||), where ||Sr|| and

||ST
c || compute the Euclidean norms for matrix S and ST ’s row and column vec-

tors respectively. The self-similarities of the inferred objects are captured by

the constructed Σ’s diagonal elements, and the mutual similarities are captured

by Σ’s off-diagonal elements. To suppress duplicates, we need to penalize high

off-diagonal similarities, i.e. by maximizing the LDS prior:

LLDS({zk};Φ) =
K∑

h=1

K∑
,j=1,h ̸=j

logN (Σh,j ; 0,σ2). (4.3)

The log normal density regulates its measure to a smaller range and σ (which mod-

els small variation in the similarity values) is fixed globally at 0.1. As both VAEs

and CompVAEs are variational Bayesian models, their training relies on max-

imizing their evidence lower bounds (abbr. ELBO, denoted as LELBO(x;Φ, θ))

w.r.t. the two trainable parameters Φ and θ. Taking a CompVAE model, we thus
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train it by maximizing:

L(x;Φ, θ) = LELBO(x;Φ, θ)+λ ·LLDS({zk};Φ), (4.4)

where λ is a Lagrange multiplier (set to default: 1). In general, combining Eqn. 4.1

& 4.2 leads to a general formulation of CompVAE ELBO: LELBO(x;Φ, θ) =

EqΦ({zk}|x)[logpθ(x|{zk})]−DKL(qΦ({zk}|x)|pθ({zk})). However, the exact for-

mulations for a specific CompVAE is model-dependent. For example, MulMON

(Nanbo et al., 2020) uses a multi-view ELBO. It is important to note that, though

it is possible to apply the LDS prior in the inference stage as a post-processing

technique, we use it only in training. This is because post-inference suppres-

sion implies hard decisions on filtering the inferred representations, which risks

mistakenly deleting important explanatory components.

4.2.3 CompVAE Suboptimality Measure

In this chapter, we use superscripts + and 0 on a variable to indicate if it is related

to the experimental group (CompVAEs trained with LDS prior) or the control

group (original CompVAEs). To validate that after suppressing duplicate object

representations, the CompVAE models less often violate the uniqueness assump-

tion and approximates better the variational posterior p({zk}|x), i.e. qΦ+({zk}|x)

becomes a better approximation than qΦ0({zk}|x) with respect to p({zk}|x), we

need a measure to quantify approximation qualities and thus support model com-

parisons. Through the derivation of VAEs’ ELBO (Kingma and Welling, 2013),

a gap between the observed evidence logpθ(x) and the ELBO LELBO(x;Φ, θ) is

illustrated:

DKL(qΦ(z |x)∥pθ(z |x)) = logpθ(x)−LELBO(x;Φ, θ)≥ 0. (4.5)

This is referred to as the inference gap of VAEs (Cremer et al., 2018), which

provides a quantitative measure of how good is an approximation. Similarly, we
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formulate G =DKL(qΦ({zk}|x)∥pθ({zk}|x)) as the approximation quality measure

for a CompVAE. Therefore, by comparing G+ and G0 we can determine if the

experimental group reaches better suboptimality than the control group.

In practice, because logpθ(x) is inaccessible, G is not computable (see Eqn. 4.5).

We thus approximate logpθ(x) with a Monte Carlo estimate — the importance

weighting estimate (Burda et al., 2016), where the sample size (denoted as B) is

set to 500. Therefore, we can compute the inference gap G as:

G =DKL(qΦ({zk}|x)∥pθ({zk}|x))

= Ez1,...,zb∼qΦ(z|x)[log 1
B

B∑
b=1

pθ(x,zb)
qΦ(z|x) ] − LELBO(x;Φ, θ)≥ 0. (6)

to simplify the discussion hereafter, we define a measure inference gap drop (de-

noted as ∆G+) using G0 and G+: ∆G+ = G0−G+. In general, a positive ∆G+

suggest a smaller gap is achieved and thus provides better approximation, a nega-

tive ∆G+ suggests the opposite. In our experiments, we use ∆G+ as an important

metric for our model suboptimality analysis (see §4.4.3).

4.3 Related Work

Our work lies in the research area of unsupervised scene factorization and repre-

sentation learning. Earlier works in this area like the Attend-Infer-Repeat (AIR)

model (Eslami et al., 2016) and its variants (Hsieh et al., 2018; Kosiorek et al.,

2018) perform object-centric scene factorization by sequentially searching for one

object at a time in the image plane until all objects in the image are captured.

As these models do not target a 3D understanding of a scene (without assum-

ing a known 3D render), they cannot resolve occlusions and handle images with

complex backgrounds. The problem is overcome by recent advances (Burgess

et al., 2019; Engelcke et al., 2019; Greff et al., 2019; Nanbo et al., 2020) that the

pixel-level compositions of scene objects, i.e. each pixel needs to be explained
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by one and only one scene component. This line of work is referred to as the

scene-mixture models by Lin et al. (2019) as they all use the spatial mixture

models (Williams and Titsias, 2004; Greff et al., 2017) to explain the image ob-

servations of scenes. This allows the models to reason about depth and occlusions

which are essential for 3D understanding.

Our work is also related to relational reasoning works that are built upon Comp-

VAEs. We discuss them in two categories: implicit and explicit relational reason-

ing. Although aforementioned works such as Engelcke et al. (2019); Greff et al.

(2019); Nanbo et al. (2020) do not explicitly reason about relationships, the dis-

covery of scene objects suggests mutual dependence of each other. These models

violate the implicitly-introduced uniqueness assumption and thus can-

not suppress duplicate object representations, while we aim at fixing

these issues in this work. There are unsupervised scene factorization mod-

els that handle explicit relations among the inferred objects, e.g. R-NEM (van

Steenkiste et al., 2018), STOVE (Kossen et al., 2020) and G-SWM (Lin et al.,

2020). They focus on dynamics modeling and define “relations” as the interac-

tions of the scene objects and thus differ from the problem solved in this chapter,

which concerns relations between the inferred representations in a global layout

sense. A recent work, i.e. GENESIS (Engelcke et al., 2019), which models the

global layout of scene objects explicitly, is perhaps the closest to us in terms of

scene-object relational reasoning.

The proposed work is related to the duplicate removal or non maximum sup-

pression (abbr. NMS) idea that is widely used across many computer-vision

tasks such as edge detection (Rosenfeld and Thurston, 1971) and feature extrac-

tion (Lowe, 2004). Among all the applications, NMS’s usage in object detection

is the closest to ours, where duplicate detection candidates will be removed or

suppressed (Rothe et al., 2014; Bodla et al., 2017) based on a quantifiable cri-
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terion, e.g. detection confidence. However, as NMS in these models works as

a post-processing technique so it cannot handle the mistakes a model made in

the inference stage. Also, the violation of the uniqueness assumption by the

aforementioned CompVAEs can lead to a worse variational approximation of the

VAE posterior (Cremer et al., 2018), which is worse than what the traditional

duplicate-removal techniques achieve.

4.4 Experiments

Our experiments are based on two datasets: CLE-MV (Nanbo et al., 2020) and

Dolphin. The Dolphin dataset is synthesized using CLE-MV’s graphics engine

by adding more complex and general shapes (e.g. dolphins, horses, ducks, etc.).

There are in total 1700 and 3631 different scenes in the CLE-MV and the Dolphin

datasets respectively and each scene consists of 3-6 objects including the back-

ground (a trivial object). As there are 10 image observations (with size 64×64)

taken from 10 different viewpoints, both the two datasets support multi-view

tasks. We thus randomly select 1500 scenes (15000 images) from CLE-MV and

3000 scenes (30000 images) from Dolphin to make the training sets. At test time,

we sample 160 unseen scenes (i.e. 1600 images) from CLE-MV and 200 unseen

scenes (2000 images) from Dolphin, where “unseen scenes” denote scenes that are

not in the training sets. Note that we use multi-view CLEVR datasets instead

of the original CLEVR (Johnson et al., 2017) because we want to show that the

proposed method works for both single-view and multi-view scenarios. For the

experiments, we use three baseline CompVAE models including two single-view

models, i.e. MONet and IODINE, and a multi-view model MulMON, and create

our experimental group with the three CompVAEs trained with the proposed

LDS prior. We train all models using the same training specifications as that

of the experimental group except for removing the LDS prior. We thus study



4.4. Experiments 77

Obs Rec Generated scene components Seg

M
u

lM
O

N 0

+

Dolphin
data

M
O

N
et 0

+

CLE-MV
data

IO
D

IN
E 0

+

CLE-MV
data

Figure 4.2: Qualitative comparisons between the experimental group (tagged with

“+”) and the control group (tagged with “0”). The Obs column is a source image, Rec

is the corresponding reconstructed image based on the inferred representation. The

next 7 columns show the independent generation of the inferred scene components

(order not important). The Seg column shows the pixel label for the component with

highest probability (pixel color is not important). Top: Training with LDS aids

the original MONet model which suffers from local minima: obtains fair factorization

and reconstruction while fails to learn clean object geometries and thus generates

noisy scene components whereas MONet+ produces cleaner inferred components.

Middle: Training with LDS aids IODINE: resolves duplicates (circled in yellow) and

fixes the weak background segmentation, as shown by the large colored regions in

the Seg column, which is a known issue of IODINE (Greff et al., 2019). Bottom:

Training with LDS allows MulMON to suppress duplicates and thus produce a better

segmentation map. (Colored boxes and circles highlight the duplicates and failures

caused by them.)

and demonstrate the effectiveness by comparing the two groups in various as-

pects. We refer the reader to the Appendix for the ablation study and the model

specifications.
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4.4.1 Duplicate Suppression

The first set of experiments justify the proposed LDS methods by demonstrat-

ing its effects on suppressing duplicates. We ran both the control-group and

experimental group models on the 200 CLE-MV test scenes (2000 images) to get

two quantitative measures: 1) the average pair-wise similarities (see Eqn. 4.3,

denoted as Sim) among all the inferred latent object representations, 2) the

percentage of images for which object duplicates were inferred. To better vi-

sualize the effect of the proposed LDS on reducing latent-object-representation

similarities, we used the difference between average pair-wise similarities of the

control- and experimental-group models, i.e. ∆Sim+ = Sim0− Sim+, where

a positive ∆Sim+ suggests positive effect of LDS in suppressing latent object

replicates. For the second measure, we randomly picked 100 images and counted

the total number of image cases where duplicates were produced. The results in

Figure 4.3 suggest that the proposed LDS prior works effectively reduces latent-

object-representation similarities and suppresses duplicate representations.

Figure 4.3: Effectiveness of the proposed LDS in duplicate suppression. Left All

of the three tested CompVAEs give positive ∆Sim+ values, where positive ∆Sim+

suggests smaller similarities (i.e. improvements) of the experimental-group (trained

with LDS) latent object representations than that of the control group. Right Direct

comparison between the experimental- (tagged with +) and control-groups (tagged

with 0) in duplicate suppression. The lower percentages when using LDS mean fewer

duplicates and thus effective duplicate suppression.



4.4. Experiments 79

4.4.2 Task Performance
Obs Rec Generated scene components Seg

M
O

N
et 0*

+ Dolphin
data

M
u

lM
O

N

+

Figure 4.4: A partial-failure example from the “outlier” model (MONet0) on Dolphin

(tagged with “⋆” in Table 4.1). Top: The model produces good factorization but fails

badly to learn good-quality object representations and thus shows noisy generations.

The proposed LDS fails to fix it. Bottom: A good example shown by a model that

achieves similar quantitative performance (MulMON+).

CLE-MV Dolphin

Models LDS MSE↓ mIoU↑ MSE↓ mIoU↑

MONet 0 0.0037±0.0002 0.6806±0.0072 ⋆0.0059±0.0002 ⋆0.6620±0.0070

+ 0.0024±0.0002 0.7899±0.0092 0.0063±0.0005 0.6567±0.0077

IODINE 0 0.0016±0.0002 0.1911±0.0042 0.0054±0.0001 0.3501±0.0043

+ 0.0020±0.0001 0.7252±0.0054 0.0050±0.0002 0.6224±0.0052

MulMON 0 0.0019±0.0001 0.7834±0.0046 0.0055±0.003 0.6246±0.0056

+ 0.0019±0.0001 0.7911±0.0043 0.0051±0.0002 0.6556+±0.0027

Table 4.1: Quantitative comparisons between the experimental group (tagged with

“+”) and the control group (tagged with “0”). All results are averaged over five

different random seeds. ⋆ denotes the most significant case where LDS does not

generate obvious improvements which we will discuss in the text.

Scene Factorization The biggest advantage of CompVAEs over traditional

VAEs in visual scene understanding is that they can perform unsupervised scene

factorization, which directly links to observation segmentation. Therefore, we
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Pearson Correlations Coefficients

Reconstruction MSE vs. ∆G+ -0.2874

Segmentation mIoU vs. ∆G+ 0.2019

Table 4.2: Left figure: The effect of LDS on the variational approximation quality:

yellow dots represents the ∆G+ for each test data sample (2000 test images), and

the green line is the mean ∆G+, which is the change in the ELBO (evidence lower

bound) value from Eqn. 4.5. Positive values are improvements. Observe that most

dots lie above the “no improvement” line at 0, demonstrating that LDS generally

produces improvements. Right table: The correlation between the task performance

and the inference gap. 0 suggests no correlation and +1/-1 denotes the strongest

positive/negative correlation. The right table exhibits a negative correlation between

the inference gap drop ∆G+ (ie. bigger ∆G+ correlates with lower errors) and the

reconstruction errors and a positive correlation between the segmentation accuracy

(mIoU) and ∆G+ (ie. bigger ∆G+ correlates with better segmentation).

compared the scene object decomposition performance between the experimental

group (CompVAEs trained with LDS) and control group (original CompVAEs)

on scene object decomposition task. Because both the CLE-MV and Dolphin

datasets are synthesized with the ground-truth segmentation maps, we can thus

compute the mean intersection over union (mIoU) score as the performance mea-

sure. To solve the bipartite matching problem as the output object masks (in a

list) are not in the same order as the GT masks, we used the Hungarian match-

ing algorithm to find the best match that maximizes the mIoU score for a scene.

Table 4.1 shows that the experimental group, i.e. CompVAEs trained with the

proposed LDS prior, results in similar or improved performance compared to the

control group over most models and datasets. Figure 4.2 demonstrates the effec-
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tiveness of the proposed LDS prior in reducing duplicates and aiding CompVAEs’

local minimas. We also examined the “outlier model”, i.e. MONet+ trained on

Dolphin, and some output samples are shown in Figure 4.4. For the outlier model,

even though the quantitative measures are improved, the model still suffers from

the local minima. We also consider this a failure instance of the proposed LDS as

it does not aid the model like it does to MONet trained on the Dolphin dataset

(see Figure 4.2).

Scene Reconstruction Reconstruction quality reflects the representation-learning

quality of a VAE model. Hence, we compared the experimental group and the

control group also on reconstruction quality using the mean squared error (MSE)

between the observation image and the reconstruction image as our quantitative

measure. The MSE was computed from the RGB vector distances, where color

values are on a [0,1] scale. Table 4.1 shows that the proposed LDS improves not

only the scene factorization but also the scene reconstruction. This suggests the

proposed LDS helps CompVAEs to learn better scene representations.

4.4.3 Suboptimality Analysis

As shown in Figure 4.2, the proposed LDS prior not only suppressed the object

replicates, but it also fixed several issues (uniqueness and degenerated inference)

that exist in the original CompVAEs, improving scene reconstruction quality.

The suboptimality analysis presented in this section gives a better understand-

ing of how the proposed LDS helps to improve the task performance. To verify

our hypothesis that the proposed LDS reduced the violation of the uniqueness

assumption and thus achieved a better variational approximation of the target

posterior pθ(z = {z}|x) and improved the task performance, we studied: 1) the

effect of the proposed LDS on the variational approximation quality, and 2) the

correlation between the task performance (mIoU) and the variational approxima-
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tion quality. We evaluated the variational approximation quality by computing

the inference gap drop ∆G+ (see §4.2.3) for the 2000 test images from the CLE-

MV dataset and averaged the ∆G+ over 2000 samples to obtain the mean ∆G+.

Table 4.2 (left figure) shows the drop ∆G+ of these 2000 test samples and their

mean. As illustrated, MONet trained with the proposed LDS produces a positive

drop ∆G+ — the proposed LDS reduces the inference gap and is thus a better

approximation than the original model. We computed the Pearson correlation co-

efficients between the task performance measures, i.e. MSE (for reconstruction)

and mIoU (for segmentation), and ∆G+ on the 2000 test samples. As shown in

Table 4.2 (right table) an increased inference gap drop ∆G+ does indeed decrease

the reconstruction error (negative correlation) and increase the segmentation ac-

curacy (positive correlation). However, we also admitted that a better subopti-

mality does not completely explain the performance boost given the degrees of

correlation shown in Table 4.2. It thus requires future investigations on other

potential causes of the performance boost.

4.5 Conclusion

In this chapter, we present a differentiable prior that leverages similarity mea-

sures to regulate the object-centric latent representations inferred by multi-object

VAEs, i.e. CompVAEs. Despite its simplicity, we demonstrate its effectiveness

in fixing known issues, namely the uniqueness issues, of the multi-object VAE

models — inferring duplicate object representations. We ascribe the uniqueness

issues to the violation of the uniqueness assumption that is implicitly introduced

by the scene-mixture-model assumption, i.e. each part of an scene observation

(e.g. a pixel) must be explained by one and only scene object. Therefore, we

demonstrate through experiments that, by suppressing duplicates, better vari-

ational approximation and task performance can be achieved. Regarding the
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future research, we are particularly interested in modelling more flexible and pos-

sibly learnable similarity functions, e.g. a similarity measure that can distinguish

explicitly the inter-object correlations’ effect on each dimension of an object’s

latent representation and thus weight them accordingly.
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Note: we use the same notations in the Appendix as that in the main

chapter.

Appendix 4A. Implementation Details

Training specifications Table 4.3, 4.4 & 4.5 gives the training configurations

of MONet, IODINE and MulMON respectively. Note that 1) for IODINE and

MulMON, which use iterative inference modules, we apply LDS per iterative step

to compute their ELBOs during training, and 2) for all CompVAEs, we apply

LDS only in their training times.

Model Architecture Specifications As discussed in the main chapter, we use

three existing CompVAE models as our baselines and build our contributions on

top of these architectures. It is important to use the same architectures as the

original papers. However, we found it difficult to use a latent dimension of 64

as in Greff et al. (2019) for the CLEVR-based datasets as it trains too slowly,

over one week for one run on two RTX2080TI, we thus reduced the dimension of

IODINE to 16 for our IODINE. As constructing the proposed LDS prior requires

no model architecture design and architecture parameter tweaking, we refer to

the original papers of MONet (Burgess et al., 2019), IODINE (Greff et al., 2019),

and MulMON (Nanbo et al., 2020) for the architecture details.

Appendix 4B. CompVAE Rendering Process

Figure 4.5 shows the CompVAE rendering process we used to produce all quali-

tative results presented in this chapter. Importantly, we used softmax func-

tions to compute the compositional probabilities of each components,

i.e. the mixing probabilities in Eqn. 4.1, to render the whole scene, and

sigmoid functions to render independent objects. However, one might also
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Table 4.3: Training Configurations For MONet0 and MONet+

Type the trainings of MONet0 and MONet+

Optimizer RMSprop

Initial learning rate η0 3e−4

Batch size 40 (unit: images)

Learning rate at step s N/A

Total gradient steps 600k

Gradient-norm clipping 5.0

log-normal likelihood strength 1.0

KL (Gaussian prior) strength β 0.5

KL (attention prior) strength 0.5

LDS (MONet+ only) strength 0.5

Table 4.4: Training Configurations of IODINE0 and IODINE+

Type the trainings of IODINE0 and IODINE+

Optimizer Adam

Initial learning rate η0 1e−4

Batch size 8

Learning rate at step s ⋆max{0.1η0 +0.9η0 · (1.0− s/1e6),0.1η0}

Total gradient steps 600k

Gradient-norm clipping 5.0

inference iterations (Greff et al., 2019) 5

log-normal likelihood strength 1.0

KL (Gaussian prior) strength β 1.0

LDS (IODINE+ only) strength 1.0

⋆ : same scheduler as GQNs’.

see independent component rendering with other functions in the related liter-

ature, e.g. IODINE (Greff et al., 2019) uses a linear mapping of xk to render

independent components.
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Table 4.5: Training Configurations of MulMON0 and MulMON+

Type the trainings of MulMON0 and MulMON+

Optimizer Adam

Initial learning rate η0 2e−4

Batch size 8

Learning rate at step s ⋆max{0.1η0 +0.9η0 · (1.0− s/1e6),0.1η0}

Total gradient steps 600k

Gradient-norm clipping 5.0

inference iterations (Greff et al., 2019) 5

log-normal likelihood strength 1.0

KL (Gaussian prior) strength β 1.0

LDS (IODINE+ only) strength 1.0

⋆ : same scheduler as GQNs’.

Appendix 4C. Additional Results

4C.1 Ablation Study

The ablation study focuses on two hyperparameters: 1) the standard deviation

σ used in the LDS prior (see §4.2.2 of the main chapter) and 2) the number of

object slots K. The former relates to the precision of the similarity measure and

the latter determines the size of the similarity matrix constructed in the LDS

computation, i.e. it relates to the scalability of LDS. We do the ablation study

with only MONet and on only the CLE-MV dataset for computation efficiency.

We select 4 different σ to train MONet and compare their performance on the

scene reconstruction and the scene factorization tasks. Figure 4.6 shows no sig-

nificant performance loss in tasks by changing σ from the default value, 0.1, to

other values. A future investigation will be further increasing σ until it is suffi-

ciently close to a uniform distribution and thus breaks the LDS prior. Moreover,

the performance might get boosted in some cases. For the object-slot quantity

K, we first train MONet with K = 7 and K = 9 respectively and test them with

7,9, 11, 15 object slots. Figure 4.6 shows: 1) the models trained with K = 7 and
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Figure 4.5: Overview of a CompVAE rendering process. Bottom left: The rendering

process starts by inputting a set of inferred latent object representations into the

generator network gθ. Bottom middle: The generator gθ outputs a raw mask

(mlg
k ∈ RH×W ×1) and a color pool (xk ∈ RH×W ×3). Top & middle row: The

decoder output is then passed into three different functions to get different render

results. All computations are defined pixel-wise but executed in parallel.

K = 9 have very similar performance in both tasks and 2) testing with a different

K does not cause a significant performance drop.

4C.2 GENESIS on the CLE-MV Data

We tested GENESIS (Engelcke et al., 2019) on the CLE-MV data to assess how

well the inference redundancy problems are handled by the autoregressive model

of GENESIS. The experiment was conducted on top of the official implementation
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Figure 4.6: Ablation study results. Top left: Scene decomposition performance

vs. LDS prior precision (σ). Top right: Scene decomposition performance vs.

the number of object slots used in training and testing (K). Bottom left: Scene

observation reconstruction performance vs. LDS prior precision (σ). Bottom right:

Scene observation reconstruction performance vs. the number of object slots used in

training and testing (K).

of GENESIS1 with strict abidance of its original hyperparameter configurations.

However, as shown in Figure 4.7, GENESIS failed to factorise CLE-MV scenes

correctly—it treats a CLE-MV scene observation (i.e. an image) as a big and flat

object that contains all the content. As a result, it produces wrong image segmen-

tation. A possible reason could be that GENESIS represents the autoregressive

conditioning of object discovery in the latent space (i.e. zk |z1:k−1) instead of the

image space as that of MONet—a successive object mask conditions directly on

all the previous obtained masks (i.e. mk |m1:k−1). According to Emami et al.

(2021), this could introduce a more severe global information leaking issue. In

1https://github.com/applied-ai-lab/genesis.git
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Obs. Rec. Independent Component Generation Seg.

Figure 4.7: Qualitative results of GENESIS on the CLE-MV dataset.

general, future study is needed to better understand the practical limitations and

their causes in GENESIS.

4C.3 Real-image Experiments

To demonstrate that the proposed LDS can efficiently perform duplicate sup-

pression on real images, we conducted comparison experiments between Comp-

VAEs that are trained with and without LDS priors on the a collected real-image

dataset. For simplicity, we chose only MONet for this comparison because MONet

suffers the latent-duplicate issue the most among the three investigated Comp-

VAE variants (see Figure 4.3, right).

Real-image Dataset We created such dataset by randomly placing 2−4 cubes

(of different colours) on white table top and taking photos with a webcam that

is mounted on a moving robot arm. We created 109 scenes in total and for each

scene we captured 20−30 images from different viewing angles. We show the

hardware platform setup in Figure 4.8.

Results Figure 4.9 shows that the original MONet0⋆ infers redundant white ta-

ble components. Although MONet+ demonstrates a slight performance drop in
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Figure 4.8: Hardware platform for real-image dataset recording.
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Figure 4.9: Qualitative results of MONet on real images. Symbols “0⋆” and “+”

tag models that trained with and without LDS respectively. Yellow circles highlight

duplicated or partially duplicated components.

handling occlusions (e.g. renders the independent table component worse than

MONet0⋆), it does suppress the duplicate table finding issues of MONet0⋆ . Also,
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we see that MONet+ produces cleaner segmentation results than MONet0⋆ . Com-

pared with synthetic data, real images often come from complex distributions and

thus exhibit significant larger pixel variances (due to uncontrolled lighting, ma-

terials, etc.), complicating the training of a generative model. This also explains

why neither MONet0⋆ nor MONet+ model the independent table (always par-

tially occluded) distribution properly. In conclusion, LDS is an effective addition

to CompVAEs on real data and can potentially serve as a useful tool in some real

applications.





Chapter 5

DyMON: Dynamics-aware

Multi-Object Network

Learning object-centric scene representations is essential for attaining structural

understanding and abstraction in complex scenes. Yet, as current approaches

for unsupervised object-centric representation learning are built upon either a

stationary observer assumption or a static scene assumption, they often: i) suf-

fer single-view spatial ambiguities, or ii) infer incorrectly or inaccurately object

representations from dynamic scenes. To address this, we propose Dynamics-

aware Multi-Object Network (DyMON), a method that broadens the scope of

multi-view object-centric representation learning to dynamic scenes. We train Dy-

MON on multi-view-dynamic-scene data and show that DyMON learns—without

supervision—to factorize the entangled effects of observer motions and scene ob-

ject dynamics from a sequence of observations, and constructs scene object spatial

representations suitable for rendering at arbitrary times (querying across time)

and from arbitrary viewpoints (querying across space). We also show that the

factorized scene representations (w.r.t. objects) support querying about a single

object by space and time independently.

93
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This chapter is an extended version of the paper “Object-Centric Representation

Learning with Generative Spatial-Temporal Factorization” (Nanbo et al., 2021),

published at Neural Information Processing Systems (2021).

5.1 Introduction

Object-centric representation learning (OCRL) promises improved interpretabil-

ity, generalization, and data-efficient learning on various downstream tasks like

reasoning (Janner et al., 2019; Van Steenkiste et al., 2019) and planning (Mnih

et al., 2015; Carlos et al., 2008; Zadaianchuk et al., 2021). It aims at discov-

ering compositional structures around objects from the raw sensory input data,

i.e. a binding problem (Greff et al., 2020), where the segregation (Revonsuo and

Newman, 1999; Greff et al., 2020) (i.e. factorization)1 is the major challenge,

especially in cases of no supervision. In the context of visual data, most exist-

ing focus has been on single-view settings, i.e. decomposing and representing

3D scenes based on a single 2D image (Burgess et al., 2019; Greff et al., 2019;

Locatello et al., 2020b) or a fixed-view video (Lin et al., 2020). These methods

often suffer from single-view spatial ambiguities and thus show several failures or

inaccuracies in representing 3D scene properties. It was demonstrated by Nanbo

et al. (2020) that such ambiguities could be effectively resolved by multi-view

information aggregation. However, current multi-view models are built upon a

foundational static-scene assumption. As a result, they: 1) require static-scene

data for training and 2) cannot handle well dynamic scenes where the spatial

structures evolve over time. This greatly limits a model’s potential in real-world

applications.

In this chapter, we target an unexplored problem—unsupervised object-centric la-

1We make no distinction between the terms “segregation” and “factorization” in this thesis.
Also, we consider “image segmentation” an application of “object factorization”.
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tent representation learning in multi-view-dynamic-scene scenarios. In this chap-

ter, we consider “multi-view” observations as the product of a moving ego-centric

observer. I.e. there is one and only one observer in the scene, even though

multiple moving observers can also generate multi-view observations (see Singh

et al. 2019). Despite the importance of the problem to spatial-temporal under-

standing of 3D scenes, solving it presents several technical challenges. Consider

one particularly interesting scenario where both an observer (e.g. a camera) and

the objects in a scene are moving at the same time. To aggregate 3D object

information from consecutive observations, an agent needs not only to handle

the cross-view object correspondence problem (Nanbo et al., 2020) but also to

factorize the independent effects of the scene dynamics and observer motions in

the observations. One can consider the aggregation as a process of answering two

questions: “how much has an object really changed in the 3D space” and “what

previous spatial unclarity can be clarified by the current view”. In this chapter,

we refer to the relationship between the scene spatial structures and the view-

points as the temporal entanglement because the temporal association of them

complicates the recovery of the independent causal mechanism (Schölkopf et al.,

2021), or an equivalence, around the scenes and the observers.

We introduce DyMON (Dynamics-aware Multi-Object Network), a unified un-

supervised framework for multi-view object-centric representation learning. In-

stead of making a strong assumption of static scenes as that in previous multi-

view methods, we only make two weak assumptions about the training scenes:

i) observation sequences are taken at a high frame rate, and ii) there exists a

significant difference between the speed of the observer and the objects (see §5.3).

Under these two assumptions, in a short period, we can transition a multi-view-

dynamic-scene problem to a multi-view-static-scene problem if an observer moves

faster than a scene evolves, or to a single-view-dynamic-scene problem if a scene

evolves faster than an observer moves (this still leaves the intermediate case for fu-
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ture work). These local approximations allow DyMON to learn independently the

generative relationships between scenes and observations, and viewpoints and ob-

servations during training, which further enable DyMON to address the problem

of scene spatial-temporal factorization, i.e. solving the observer-scene temporal

entanglement and scene object decomposition, at test time.

Through the experiments we demonstrate that: (i) DyMON represents the first

unsupervised multi-view object-centric representation learning work in the con-

text of dynamic-scene settings that can train and perform object-oriented in-

ference on multi-view-dynamic-scene data (see §5.5). (ii) DyMON recovers the

independent generative mechanism of an observer and scene objects from observa-

tions and permits querying predictions of scene appearances and segmentations

across both space and time (see §5.5.1). (iii) As DyMON learns scene repre-

sentations that are factorized in terms of objects, DyMON allows single-object

manipulation along both the space (i.e. viewpoint) and time axis—e.g. replays

dynamics of a single object without interferring the others (see §5.5.1).

5.2 Problem: Temporal Entanglement

The dynamic nature of the world suggests that the spatial configuration of a

scene Zt, i.e. a set of objects {Zt
k}1:K (where Zt

k∈ RD), and an observer V t∈ RJ

are bound to the specific time t that an observation Xt∈ RM (M ≫D) is taken.

Let xt and vt denote the samples (specific values) of Xt and V t, respectively,

we define x = {(xt,vt)}1:T
2 as a specific data sample, e.g. a sequence or set of

T multi-view images with their associating viewpoints, from the observational

data D. Assuming Zt is also observable (provided in the data) for now, we

augment a scene data sample as xa = {(xt,vt,zt)}1:T and focus on describing

2We define (·) as a joint sample indicator that forbids independent sampling of the random
variables wherein.
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the relationships among Z, V , and X. In general, we assume that Z and V

are independent such that P (Z,V ) = P (Z)P (V ) (as discussed in §1.1), but they

nevertheless become dependent when an observation X is given. In this case,

inferring the actual scene object motions Zt or the observer’s motions V t requires

an agent to correctly disentangle the generative effects of Z and V upon X, i.e.

describing P (X|do(Z)) and P (X|do(V ))3.

In this chapter, we aim to train a generative model, P (X|Z,V ), that correctly

captures P (X|do(Z)) and P (X|do(V )). Under our assumption about the causal

graph: Z→X← V (with independent Z and V , see 1.1), estimating P (X|do(Z))

and P (X|do(V )) is equivalent to estimating: P (X|Z) and P (X|V ), respectively.

Therefore, if we can sample Z and V with its associated X, e.g. sampling

(X,Z) independently of V or sampling (X,V ) independently of Z, we can es-

timate P (X|Z) by marginalizing V , i.e. P (X|Z) = ∑
V P (X|Z,V )P (V ) and,

similarly, estimate P (X|V ) = ∑
Z P (X|Z,V )P (Z). In GQN (Eslami et al., 2018)

and MulMON (Nanbo et al., 2020), where scenes are assumed static, we can

treat an augmented observational scene sample as xa = {(xt,vt),zt}1:T —i.e. zt

and (xt′
,vt′) ∼ {(xt,vt)}1:T can be accessed independently hence marginalizing

Zt is possible. With recurring values vt across different scenes samples4 xa ∼D,

marginalizing V t is also possible. However, in more general settings where scenes

can be dynamic, the joint-sample indicator (·) in xa = {(xt,vt,zt)}1:T forbids

drawing (xt′
,vt′) ∼ {(xt,vt)}1:T independently of zt—i.e. Zt and V t appear to

be entangled along the temporal axis. In this case, without further assumptions,

learning the disentangled causal effects of Z and V from the observational data

is seemingly impossible. In this chapter, we refer to this issue as temporal entan-

glement in view of the temporal implication of the (·) indicator.

3The do(·) operators perform interventions, see (Pearl, 2012)
4Some V values recur because GQN and MulMON used finite sample spaces for V , whose

size is much smaller than that of the scenes Z (i.e. the size of D).
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Figure 5.1: Top Left: Multi-view-dynamic-scene setup. A sample vt denotes the

spatial configuration (e.g. position, orientation, etc.) of an observer at a specific

time t. A latent sample zt describes the objects and their spatial configuration at a

specific time t. We highlight one particular interesting, yet unexplored, scenario where

both an observer and scene objects are moving at the same time—which entangles

the independent effects of the observer’s and scene objects’ motions in the scene

observation, an image sequence (see bottom left). Right: DyMON decouples the

generative effects of observer motions and scene object motions and enables: 1)

reconstruction and factorization of the observed views (see bottom right), and 2)

novel-view appearance and decomposition prediction for arbitrary times—querying

across both space and time (see top right).

5.3 Method: DyMON

Our goal is to train a multi-view object-centric representation learning model

that recovers the independent generative mechanism of scene objects and their

motions and observer motions from dynamic-scene observations. In this section,

we detail how DyMON addresses these two presented challenges: 1) temporal
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disentanglement (see §5.3.1), and 2) scene spatial factorization (see §5.3.2). We

discuss the training of DyMON in §5.3.3.

5.3.1 Temporal Disentanglement

The key to resolving temporal entanglement, i.e. temporal disentanglement, is

to enable sampling (Xt,V t) independently of Zt, and (Xt,Zt) independently of

V t. This is seemingly impossible in the multi-view-dynamic-scene setting as it

requires to fix either Zt (static scene) or V t (single-view), respectively, along the

temporal axis. In this chapter, we make two assumptions about the training

scenes to ensure the satisfaction of the aforementioned two requirements without

violating the global multi-view-dynamic-scene setting. Let us first describe the

dynamics of the scenes and observers with two independent dynamical systems:

Zt+∆t−Zt = fZ(Zt, t)∆t , V t+∆t−V t = fV (V t, t)∆t, (5.1)

where t and t + ∆t are the times that two consecutive observations were taken,

fZ(Zt, t) and fV (V t, t), or simply fZt and fV t , are the average velocities of scene

objects and the observer within [t, t + ∆t]. Note that, though each component

Zt ∈Zt should, in theory, capture both the shape and pose dynamics of an object,

we do not consider deformable objects, whose shapes can change temporally, in

this chapter. With the dynamical systems defined, we introduce our assumptions

(which defines a tractable subset of all possible situations) as:

• (A1) The high-frame-rate assumption ∆t→ 0 s.t. Xt+∆t ≈Xt,

• (A2) The large-speed-difference assumption The data comes from

one of two cases (SCFO: Slow Camera, Fast Objects or FCSO: Fast Cam-

era Slow Objects), that satisfy: | |fZ|
|fV | | ≥ CSCF O or | |fZ|

|fV | | ≤ CF CSO, where

|velocity| computes a speed, and CSCF O and CF CSO are positive constants.

A1 allows us to assume a nearly static scene Zt or a fixed viewpoint V t for a
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short period. Consider an example where we assume a static scene, i.e. Zτ−∆t ≈

Zτ ≈ Zτ+∆t, in [τ −∆t, τ + ∆t], A1 essentially allows us to extract zt out of a

joint sample as: xa = {(xt,vt),zt}τ−∆t:τ+∆t. An intuitive way to define A2 is:

|fZ| ≫ |fV | or |fZ| ≪ |fV |, which specify a large speed difference between scene

speeds and observer speeds.

These two assumptions enable us to accumulate instant changes (velocities) on

one variable (e.g. either Zt or V t) over a finite number of ∆t while ignoring the

small changes of the other (assumed fixed). We then treat a slow-camera-fast-

objects (i.e. SCFO) scenario, where |fZ| ≫ |fV |, as an approximate single-view-

dynamic-scene scenario, and a fast-camera-slow-objects (i.e. FCSO) scenario,

where |fZ| ≪ |fV |, an approximate multi-view-static-scene scenario. Either case

allows us to resolve the temporal entanglement problem. Importantly, to answer

the question: “is a given data sample an SCFO or FCSO sample”, we need to

quantitatively specify the two assignment criteria CSCF O and CF CSO. However,

a direct calculation of these two constants is often difficult and does not generalize

as: i) |fZ| is not available in unsupervised scene representation learning data, and

ii) the two constants vary across different datasets. In practice, we cluster the

data samples into SCFO and FCSO clusters using only the viewpoint speed |fV |,

i.e. assuming |fZ| = 1 for training (see §5.3.3). In testing, DyMON treats them

equally.

5.3.2 Spatial Object Factorization

DyMON tackles scene spatial decomposition in a similar way to MulMON (Nanbo

et al., 2020) using a generative model and an inference model. The generative

likelihood function of a single image observation is modelled with a spatial Gaus-

sian mixture (Williams and Titsias, 2004; Greff et al., 2017):

pθ(xt|zt = {zt
k},vt) =

M∏
i=1

K∑
k=1

pθ(Ct
i = k|zt

k) ·N (xt
k,i; gθ(zt

k,vt),σ2I), (5.2)
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where i indexes a pixel location (M in total) and RGB values (e.g. xt
k,i) that per-

tain to an object k are sampled from a Gaussian distributionN (xt
k,i; gθ(zt

k,vt),σ2I)

whose mean is determined by the decoder network gθ(·) (defined in §1.1) with

trainable parameter θ and standard deviation σ is globally set to a fixed value

0.1 for all pixels. The mixing coefficients pθ(Ci = k|zk) capture the categorical

probability of assigning a pixel i to an object k (i.e. Ci = k). This imposes a

competition over the K objects as every pixel has to be explained by one and

only one object in the scene.

DyMON adapts the cross-view inference module MulMON (see §3.3.1) to handle:

i) the cross-view object correspondence problem, ii) recursive approximation of

a factorized posterior, and iii) temporal evolution of spatial structures (which

indicates the major difference between the inference modules of DyMON and

MulMON). The decomposition and recursive approximation of the posterior is:

p(zt = {zt
k}|x⩽t,v⩽t)≈ qΦ(zt |x⩽t,v⩽t) = q(z0)

∏
t

qΦ(zt |xt,vt,z<t), (5.3)

where qΦ(zt |xt,vt,z<t) denotes the approximate posterior to a subproblem w.r.t.

an observation xt taken from viewpoint vt at time t, and assumes a standard

Gaussian N (0,I) for the scene prior q(z0). The intuition is to treat a posterior

inferred from previous observations as the new prior to perform Bayesian infer-

ence for a new posterior based on a new observation. We use Zt to denote the

inferred scene representations after observing Xt, i.e. a new posterior, and Z<t

to denote the new prior before observing Xt. Note that we can advance t either

regularly or irregularly. The single-view (or within-view) inference is handled by

DyMON using iterative amortized inference (Marino et al., 2018) with amortiza-

tion function Φ (modelled with neural networks). Refer to Appendix 5B. for full

details about the generative and inference models of DyMON.
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5.3.3 Training

To enable DyMON to learn independently the generative relationships between

scenes and observations, and viewpoints and observations during training, built

upon MulMON’s architecture, we break a long moving-cam-dynamic-scene se-

quence into short sub-sequences (see Algorithm 4) where accessing (xt′
,vt′) ∼

{(xt,vt)}1:T samples independently of zt samples is possible. Similar to Mul-

MON (Nanbo et al., 2020), we then train DyMON by maximizing the following

objective function that linearly combines an evidence lower bound (abbr. ELBO)

and the log likelihood (abbr. LL) of the querying views:

L=ELBO + β ·LLquery (5.4)

= 1
|T |

∑
t∈T

(EqΦ(zt |·)[logpθ(xt|zt,vt)]−DKL[qΦ(zt |x⩽t,v⩽t)||qΦ(z<t |x<t,v<t)])

+β · 1
|T | · |Q|

∑
t∈T

∑
tq∈Q

EqΦ(zt |·)[logpθ(xq|zt,vq)], (5.5)

where T andQ record the times when DyMON performs inference and vt viewpoint-

queried generation, | · | returns the cardinality of a set, β is the weighting coef-

ficient. We construct T by sampling t (either regularly or irregularly) with a

random walk through [1,T ]⊆ N, where a uniform distribution U{∆t−2,∆t+2}

of an expected value ∆t (> 2) is used as the step distribution. As shown in Algo-

rithm 4, by varying the updating periods of zt and vt (denoted as ∆tz and ∆tv

respectively), DyMON imitates the behaviours of a multi-view-static-scene model

and a single-view-dynamic-scene model to handle the SCFO and FCSO samples

respectively. In addition, using different β for the SCFO and FCSO samples al-

lows alternating the training focus between spatial reasoning (w.r.t. objects and

viewpoints) and temporal updating.

Assignment Function and Batching As the samplers of T and Q behave dif-

ferently for SCFO and FCSO data (see Algorithm 4), we need to determine if

a data sample x ∼ D is an SCFO sample or an FCSO sample. Under A2, we
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Algorithm 4: DyMON Training Algorithm
Input: Training data D (I.I.D. scenes)

Hyperparams |Q|, (βF CSO,βSCF O), (∆t,∆τ) ; // ∆t > ∆τ > 2

Init trainable params: Φ, θ ; prior: λλλ0 = {(µk = 0,σk = I)};

repeat

Sample x = {(xt,vt)}1:T ∼D ; // a seq of (RGB imgs, viewpts)

if assign(x;D) == FCSO then

β,∆tv,∆tz = βF CSO,∆τ,∆t ; // ∆tv < ∆tz,update vt more often

else

β,∆tv,∆tz = βSCF O,∆t,∆τ ; // ∆tz < ∆tv,update zt more often

T = rand walk t(s = 1,e = T,step dist = U{∆tz−2,∆tz +2}) ;

(x,v), t, λλλt, EEELLLBBBOOO, LLquery, = x[1], 1, λλλ0, 0, 0;

while t ⩽ T do

(xt,vt) = x[t] ;

if mod(t,∆tv) == 0 then

v = vt ; // update v

if t ∈ T then

x = xt ; // update x

EEELLLBBBOOO(t), λλλt = iterative inferenceΦ,θ(x,v,λλλt) ;

zt ∼N (zt; λλλt) ; // sample updated zt

Q= {tq}= randint(dist = U{t−∆tz/2, t+∆tz/2},size = |Q|);

for tq ∈Q do

(xq,vq) = x[tq];

LLLLLLquery+ = (1/(|Q| · |T |)) · logpθ(xq|zt,vq) ; // query v = vq

EEELLLBBBOOO+ = (1/|T |) ·EEELLLBBBOOO(t);

t+ = 1;

L= EEELLLBBBOOO +β ·LLLLLLquery ;

θ, Φ update←−−−−− optimizermax(L,θ,Φ);

until θ,Φ converge;

consider any dataset consisting of only a mix (i.e. no fast moving camera and ob-

jects, nor no stationary camera and objects) of SCFO and FCSO samples (where
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a sample is a sequence of images). For a given dataset, we cluster all training

samples of a dataset into two clusters w.r.t. the SCFO and FCSO scenarios. This

then gives us an assignment function, assign(x;D) (as shown in Algorithm 4).

In practice, to avoid breaking parallel training processes with loading SCFO and

FCSO samples into the same batch, we assign the training data beforehand in-

stead of assigning every data sample on the fly during training. This allows to

batch FCSO or SCFO samples independently at every training step.

5.4 Related Work

Single-View-Static-Scene The breakthrough of unsupervised object discovery

based on a primary scenario, i.e. a single-view-image setting, lays a solid foun-

dation for the recent rise of unsupervised object-centric representation learning

research. Built upon a VAE (Kingma and Welling, 2013), early success was

shown by AIR (Eslami et al., 2016) that searches for one object at a time in

image regions. AIR and most of its successors (Kosiorek et al., 2018) generally

treat objects as flat pixel patches and the image generation process as “paste flat

objects on canvas” using a spatial transformer (Jaderberg et al., 2015). With-

out further assumptions about the generator (e.g. using a pre-defined graphics

renderer like (Yao et al., 2018)), they often cannot summarize well scene spatial

properties that are suitable for 3D spatial reasoning and manipulation. To over-

come this, most recent advances (Burgess et al., 2019; Greff et al., 2019; Lin et al.,

2019; Engelcke et al., 2019; Locatello et al., 2020b; Engelcke et al., 2021) model

a single 2D image with a spatial Gaussian mixture model (Williams and Titsias,

2004; Greff et al., 2017) that allows explicit modeling of background and occlu-

sions. Our work has close relationship to IODINE (Greff et al., 2019): we handle

the object-wise inference from an image observation at each time point using the

iterative amortized inference (Marino et al., 2018) design and capture the com-
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positional generative process with a spatial Gaussian mixture model. However,

IODINE and the aforementioned methods still suffer from single-view ambigui-

ties like occlusions or optical illusions—i.e. they cannot form accurate 3D scene

representations.

Multi-View-Static-Scene A natural way of resolving single-view ambiguities

is to aggregate information from multi-view observations. Although multi-view

scene explorations do not directly facilitate object-level 3D scene factorization,

Eslami et al. (2018) demonstrated that they do reduce the spatial uncertainty and

enable explicit 3D knowledge evaluation—novel-view prediction. By combining

GQN (Eslami et al., 2018) and IODINE (Greff et al., 2019), Nanbo et al. (2020)

showed that MulMON effectively leverages multi-view exploration to extract ac-

curate object representations of 3D scenes. However, like GQN, MulMON can

only train on static-scene samples and thus does not generalize well to dynamic

scenes. ROOTS (Chen et al., 2021) combines GQN and AIR’s merits to perform

multi-view-static-scene object-centric representation learning whereas it requires

camera intrinsic parameters to overcome AIR’s deficiency of 3D scene learning

— it is thus camera-dependent hence less general. In our work, we propose Dy-

MON as an extension of MulMON to dynamic scenes and a unified model for

unsupervised multi-view object-centric representation learning.

Single-View-Dynamic-Scene A line of unsupervised scene object-centric rep-

resentation learning research was established on the single-view-dynamic-scene

setting (Hsieh et al., 2018; Kosiorek et al., 2018; Jaques et al., 2020), where

they explicitly model and represent object dynamics based on video observations.

However, as most of these works employ a similar image composition design to

AIR, they deal with only flat 2D objects that are similar to MNIST digits and

thus cannot model 3D spatial properties. A closely-related work is that of Lin

et al. (2020), i.e. GSWM, where they modeled relative depth information and
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pair-wise interactions of 3D object patches. However, as GSWM does not sup-

port viewpoint reasoning like GQN (Eslami et al., 2018) and MulMON (Nanbo

et al., 2020), it is unknown if these models really learn about 3D. In our work,

the spatial-temporal factorization allows us to show the dynamics and depths of

the objects from different viewpoints at different times.

Other Related Work As a multi-view-dynamic-scene representation learning

framework, T-GQN (Singh et al., 2019) represents the most closely-related work

to ours. It models the spatial representation learning at each time step as a

stochastic process (SP) and transitions between these time-stamped SPs with a

state machine. However, notable distinctions between the problems that T-GQN

and DyMON are targeting: 1) T-GQN does not infer object-level scene factoriza-

tion and 2) a typical T-GQN situation requires multi-view observations at each

time step (as so-called “context”) to perform spatial learning so as to get rid of

the temporal entanglement problem (which has been the core focus of our work).

Our work is essentially dealing with disentangled representation learning prob-

lems, which are often formulated under the frameworks of causal inference (Pearl

et al., 2009; Peters et al., 2017; Suter et al., 2019; Schölkopf et al., 2021) and inde-

pendent component analysis (abbr. ICA) (Comon, 1992; Hyvärinen and Pajunen,

1999; Hyvarinen and Morioka, 2016). Unlike traditional disentanglement repre-

sentation learning works (Higgins et al., 2017; Kim and Mnih, 2018; Locatello

et al., 2019a) that aim at feature-level disentanglement, in this chapter, we han-

dle not only the object-level disentanglement that resides in the object-centric

representation learning research, but also the time-dependent scene-observer dis-

entanglement problem. Recent trends of neural radiance fields (Mildenhall et al.,

2020; Martin-Brualla et al., 2021; Pumarola et al., 2020) are relevant to our

work in the sense of 3D scene representations using multi-view images. However,

from a vision-as-Bayesian-inference (Yuille and Kersten, 2006) perspective, we

do not consider them scene understanding models as they only aim to memorize
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the volumetric structure of a single scene during “training” thus cannot perform

representation inference for unseen scenes.

5.5 Experiments

We used two simulated multi-view-dynamic-scene synthetic datasets, namely DRoom

and MJC-Arm, and a real-world dataset, namely CubeLand (see Appendix 5C.3

for details), in this chapter. We conducted quantitative analysis on DRoom and

show qualitative results on the other two datasets. The DRoom dataset consists

of five subsets (including both training and testing sets): one subset (denoted as

DR0-|fz|, see Appendix 5C.1) with zero object motion (multi-view-static-scene

data), one subset (denoted as DR0-|fv|) with zero camera motion (single-view-

dynamic-scene data), and three multi-view-dynamic-scene subsets of increasing

speed difference levels from 1 to 3 (denoted as DR-Lvl.1 ∼ 3). Each of the five

subsets consists of around 200 training sequences (40 frames of RGB images per

sequence) and 20 testing sequences (40 frames from 12 different views, i.e. 57600

images). Although DyMON’s focus is on a more general problem, we nevertheless

compare it against two recent and specialized unsupervised object-centric repre-

sentation learning methods, i.e. GSWM (Lin et al., 2020), and MulMON (Nanbo

et al., 2020), in two respective settings: single-view-dynamic-scenes, and multi-

view-static-scenes. All models were trained with 3 different random seeds for

quantitative comparisons. Refer to the Appendix for full details on experimental

setups, and ablation studies and more qualitative results.

5.5.1 Space-Time Querying

DyMON takes in a sequence of RGB image observations of a scene along with

their associating viewpoints, i.e. x = {(xt,vt)}1:T , and infers a set of latent scene

representations {zt}1:T that associate with the observation time stamps t. Re-
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Figure 5.2: Qualitative results of spatial-temporal factorization. The GT rows show

the true scene. The “MM” and “DM” entries are the scene re-rendered from the

corresponding models, i.e. MulMON and DyMON respectively. The vertical row

pairs show the results from viewpoint changes and the horizontal direction shows the

results at different times. Note that we train MulMON and DyMON on different

datasets as MulMON cannot train on multi-view-dynamic-scene datasets. We also

visualize MulMON’s tendency of generating degenerated results along the temporal

direction (marked with red arrows).

call that DyMON can disentangle the mixed effects of the scene motions and

observer motions only if the learned mechanism P (X|Z,V ) correctly captures
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P (X|do(Z)) and P (X|do(V )) (see §5.2). To evaluate if DyMON successfully

recovered the underlying independent generative mechanism (or an equivalence)

from the training data, we have DyMON perform both viewpoint-queried and

time-queried predictions of scene appearances and segmentations using the in-

ferred scene representations. In other words, we evaluate how well DyMON can

answer counterfactual questions about the spatial and temporal scene structures.

We show the results with the below two demonstrations:

Novel-view Prediction at Arbitrary Times In this experiment, we took the

inferred latent scene representations {zt}1:T and the learned generative mecha-

nism P (X|Z,V ), and checked the scene spatial structures at arbitrary times from

arbitrary viewpoints. Specifically, we fixed Z to a value of interest z ∈ {zt}1:T

and manually set the viewpoint V to arbitrary values v ∈ supp(V ) in the genera-

tive model—i.e. formally, P (X|do(Z = z),do(V = v)) from a causal perspective.

Similarly, we also queried about the spatial state of a dynamic scene at time t

from a specific viewpoint by fixing the viewpoint and manually inputting zt at

arbitrary times t to the generative function. We conducted this experiment was

trained on the DR-Lvl.3 data and show the prediction results that are queried by

space-time tuples, (V , Z), in Figure 5.2.

Dynamics Replay of Scenes & Objects From Arbitrary Viewpoints In

this experiment, we gave DyMON a sequence of image observations of a dynamic

scene as input, and had it replay the dynamics from a novel viewpoint using the

scene representations it infers from the observations. This is done by fixing the

v to the desired values and querying about consecutive times. As the inferred

scene representations are factorized in terms of objects, we show in Figure 5.3

(left) that, besides the complete scene dynamics, DyMON also allows to replay

the dynamics of a single object independently of the others. We present the

qualitative results on the MJC-Arm datasets in Figure 5.3 (right) where one can
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Figure 5.3: Left: DyMON performing dynamics replays on the DRoom dataset, where

the first row is the observation sequence input to DyMON, second and third rows show

replays of the scene dynamics (all objects’ original motions) and object dynamics

(just the foreground green ball moves) respectively from an arbitrary viewpoint vq.

Right: DyMON replays local motions of robot arm from an arbitrary viewpoint (top:

observation, middle: reconstruction, bottom: replay from a higher viewpoint).

see that DyMON not only replays object dynamics as global position changes, it

also captures object local motions.

Dynamics On Real-World Data To demonstrate that our model has the po-

tential for real-world applications, we conduct experiments and show qualitative

results on real images (i.e. CubeLand data). We refer the readers to Appendix

5D.4 for the results.

5.5.2 Versatile Evaluation

DyMON is designed to handle object-centric representation learning in a general

setting—multi-view-dynamic-scenes. In this section, we experiment to evaluate

how well DyMON handles the specialized settings.

DyMON vs. Dynamic Scenes In this experiment, we evaluate DyMON’s per-

formance in the multi-view-dynamic-scene setting in comparison to MulMON. We

discussed in chapter 3 that MulMON can also recover the independent generative
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MSE↓ mIoU↑

Models Obs.Rec. Nv.Obs. Obs.Seg. Nv.Seg.

MulMON 0.011±0.001 0.019±0.002 0.511±0.001 0.461±0.062

DyMON 0.004±0.001 0.021±0.002 0.717±0.000 0.508±0.065

(a) DyMON vs. Multi-View-Dynamic-Scenes

MSE↓ mIoU↑

Models Obs.Rec. Nv.Obs. Obs.Seg. Nv.Seg.

MulMON 0.006±0.001 0.012±0.005 0.583±0.080 0.538±0.105

DyMON 0.014±0.001 0.019±0.007 0.529±0.005 0.506±0.105

(b) DyMON vs. Multi-View-Static-Scenes

MSE↓ mIoU↑

Models Obs.Rec. Obs.Seg.

GSWM 0.039±0.007 0.402±0.082

DyMON 0.014±0.011 0.682±0.107

(c) DyMON vs. Single-View-Dynamic-Scenes

Table 5.1: Quantitative comparisons of DyMON and two baseline models, i.e. GSWM

and MulMON, in handling scenarios that the baseline models are specialized at. The

models in table (a) are trained and tested on the DR0-|fv| data, and those in (b) and

(c) are trained and tested on the DR0-|fz| data. “Obs.” tags reconstructions and

segmentations that are computed for the observations and “Nv.” tags those from novel

viewpoints. Mean ± stddev for 3 training seeds. ↑ indicates higher is better and ↓

indicates the opposite.

mechanism around scenes Z and an observer V , but it strictly requires static-

scene training data. Note that both DyMON and MulMON permit novel-view

predictions of scene appearances and segmentations, this allows explicit quan-

tification of the correctness and accuracy of the inferred scene representations.

We use a mean-squared-error (MSE) measure and a mean-intersection-over-union

score (mIoU) measure. We trained DyMON on the DR-Lvl.3 subset and Mul-

MON on the DR0-|fz| subset (because MulMON cannot train on dynamic-scene

data) and conducted comparison across the three DRoom dynamic-scene subsets

(i.e. DR-Lvl.1 ∼ 3). Table 5.1a shows that, although we train MulMON on a

more strict dataset, i.e. the DR0-|fz| dataset, DyMON still outperforms Mul-

MON on almost all the various indicators. We show the qualitative comparison

results in Figure 5.2 and observe that MulMON’s performance declines along the
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GT.

DM

GSWM

Figure 5.4: Left: Qualitative comparisons of DyMON and GSWM on reconstructing

the DR0-|fv| scenes. The GT rows show the actual observations of a dynamic scene,

and the “DM” and “GSWM” rows show observation reconstruction results of DyMON

and GSWM, respectively.

temporal axis when large object motions appear. As neither DyMON nor Mul-

MON impose any orders for object discovery, we used the Hungarian matching

algorithm to find the best match that maximizes the mIoU score to handle the

bipartite matching between the output and the Ground-truth masks.

DyMON vs. Static Scenes In this experiment, we evaluate how well Dy-

MON handles multi-view-static-scene scenarios in comparison with a specialized

model, i.e. MulMON. We train and test both DyMON nad MulMON on the

DR0-|fz| subset w.r.t. reconstructions and segmentations of both the observed

and unobserved views. Table 5.1b summarizes the results. They show that Dy-

MON can handle this strict constraint setting, even though it exhibits a slight

performance gap compared with the specialized model. This experiment along

with the DyMON-versus-dynamics-scenes experiment provides useful guid-

ance for model selection in multi-view applications—use a specialized model in a

well-controlled environment and DyMON to handle complex scenarios.

DyMON vs. Fixed-View Observations of Dynamic Scenes We assessed

DyMON’s performance on handling single-view-dynamic-scene observations by

comparing it with GSWM (Lin et al., 2020), which is a specialized object-centric
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representation model for this specific setting, although it is unable to achieve

pixel-level segmentation. We train both DyMON and GSWM on the DR0-|fv|

subset and measure the reconstruction quality of the observations. Table 5.1c

shows that DyMON not only outperforms GSWM in observation reconstruction,

but it also permits pixel-wise segmentation which the specialized model cannot.

The qualitative results in Figure 5.4 show that GSWM learns better object ap-

pearances (especially for textures) than DyMON, whereas DyMON learns more

accurate scene dynamics than GSWM. This is understandable as GSWM mod-

els object dynamics explicitly, which introduces risks of overfitting the observed

motions. DyMON supports well temporal interpolations, i.e. dynamics replays

(as shown in Figure 5.3 & 5.4), but it does not model the object dynamics nor

interactions explicitly like GSWM. As a result, it does not provide readily ex-

trapolatable features along the time (or dynamics) axis for predicting into the

future.

DyMON vs. T-GQN T-GQN (Singh et al., 2019) is a closely related work as

it targets unsupervised scene representation learning in the multi-view-dynamic-

scene settings, even though it does not attain object-centric factorization in the

latent space. Although T-GQN requires multi-view observations at each time

step (as “context” information) to sidestep the temporal entanglement issue, we

nevertheless train it on our DRoom data and show that it fails to represent the

DRoom scenes (see Appendix 5D.3 for the results and discussions).

5.5.3 Robustness vs. Assumption Violations

As discussed in §5.3.1, we enable the training of DyMON on multi-view-dynamic-

scene by proposing two assumptions that favor: i) high frame-rate image se-

quences and ii) significant difference between the speeds of an observer and scene

objects, respectively. In this experiment, we assess the robustness of DyMON
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against violations of our assumptions. As the DR-Lvl.1 ∼ 3 datasets were cre-

ated with three different settings of average scene-observer speed differences (the

differences increase from DR-Lvl.1 to DR-Lvl.3, see Appendix 5C.1 for more de-

tails), we used these three datasets to simulate three different levels of violations

(violation levels decrease from DR-Lvl.1 to DR-Lvl.3). We trained DyMON on

the DR-Lvl.1∼ 3 training sets respectively and then evaluated their performance

on space-time-queried prediction of scene appearances on the DR-Lvl.1 ∼ 3 test

sets. We visualize the MSE as a function of decreased levels of assumption viola-

tions in Figure 5.5. As shown, 1) the space-time querying performance boost (by

DR-Lvl.1 DR-Lvl.2 DR-Lvl.3
training sets

0.000
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0.010
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0.030

0.035

0.040

M
SE

DR-Lvl.1 DR-Lvl.2 DR-Lvl.3
training sets

DR-Lvl.1 test sets
DR-Lvl.2 test sets
DR-Lvl.3 test sets

Figure 5.5: Space-time-queried scene appearance prediction MSE (lower is better):

DyMON vs. levels of assumption violations (three violation levels correspond to

three DRoom subsets: DR-Lvl.1 ∼ 3). The violation levels decrease from DR-Lvl.1

to DR-Lvl.3. Left: Average prediction MSEs (across all the DR-Lvl.1 ∼ 3 testing

data) achieved by three DyMONs that are trained on the DR-Lvl.1∼ 3 training data,

respectively. MSE reduces when training on datasets with larger scene-observer speed

differences. Right: The performance (MSEs) of the three DyMONs on each of the

three DR-Lvl.1∼ 3 testing data. MSE reduces when testing on datasets with larger

scene-observer speed differences.

∼ 0.008, see Figure 5.5, left) as the level of violation decreases within training

(from DR-Lvl.1 to DR-Lvl.3); 2) the space-time querying performance boost

for all three DyMONs as we increase the magnitude of scene-observer speed
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differences. These results suggest that 1) DyMON can handle complex multi-

view-dynamic-scene environments to certain degrees and 2) more distinguishable

scene-observer dynamics should lead to better performance.

5.6 Conclusion

We have presented Dynamics-aware Multi-Object Network (DyMON), a method

for learning object-centric representations in a multi-view-dynamic-scene setting.

We have made two weak assumptions that allows DyMON to recover the indepen-

dent generative mechanism of observers and scene objects from both training and

testing multi-view-dynamic-scene data—achieving spatial-temporal factorization.

This permits querying the predictions of scene appearances and segmentations

across both space and time. As this chapter focuses on representing the spatial

scene configurations at every specific time point, i.e. DyMON does not model

dynamics explicitly, it cannot predict the future evolution of scenes, which leaves

space for future exploration.
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Note: we use the same notations in the Appendix as that in the main

chapter.

Appendix 5A. Algorithms

5A.1 Iterative inference algorithm

Algorithm 5: Iterative Inference Algorithm
Input: observation x, viewpoint v, latent Gaussian parameters λλλt = {(µt

k,σt
k)}

ModelParameters Φ,θ, and the number of single-view iterations L (default: 5)

Initialize λλλt(l) = λλλt, EEELLLBBBOOOt = 0

for l = 1 to L do

zt(l) ∼N (zt(l); λλλt(l)) ; // sample from a prior---make a guess

pθ(xt(l)|zt(l),v) = gθ(zt(l),v) ; // render and verify

EEELLLBBBOOOt(l) =− logpθ(xt(l)|zt(l),v)+DKL(N (zt ;λλλt(l))||N (zt ;λλλt)) ;

λλλt(l) = Φ(x,EEELLLBBBOOOt(l),λλλt(l)) ; // refine and then repeat (until l = L)

EEELLLBBBOOOt+ = (1/L) ·EEELLLBBBOOOt(l)

Output EEELLLBBBOOOt,λλλt(l) = {(µt(l)
k ,σ

t(l)
k )}

5A.2 Testing algorithm

Algorithm 6: DyMON Testing Algorithm
Input: Trained parameters Φ, θ, and latent Gaussian parameters λλλ0 = {(µk = 0,σk = I)}

Initialize λλλt = λλλ0 ;

while Access (xt,vt) do

EEELLLBBBOOOt, λλλt = iterative inferenceΦ,θ(xt,vt,λλλt) ;

Output λλλt = {(µt
k,σt

k)} ;
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Appendix 5B. Implementation Details

5B.1 Training configurations

We show the training configurations used in this chapter in Table 5.2.

Table 5.2: Training Configurations

Type the trainings of DyMON, MulMON, GSWM

Optimizer Adam

Initial learning rate η0 3e−3

Learning rate at step s * max{0.1η0 +0.9η0 · (1.0− s/1e6),0.1η0}

Total gradient steps
DyMON vs. GSWM: 300000 (for both)

DyMON vs. MulMON: 200000 (for both)

Batch size 2 (2seqs×40 images = 80 images)

number of GPU/per training 1 (Mem >= 11GB)

* the same scheduler as the original GQN except for faster attenuation

5B.2 Model implementation

We show the designs of the generative mapping function gθ and the refinement

function in Table 5.3 &. 5.4 respectively. After obtaining a set of K RGBM

outputs from this function, i.e. {(µxk, m̂xk)} (see Table 5.3), we render (i.e.

compose) an image as: x = ∑
k softmax(m̂xk) ·xk, where xk ∼N (xk; µxk,0.12I),

Appendix 5C. Datasets

5C.1 DRoom (DynamicRoom)

Simulation Environment We created the DRoom simulation on the top of

the CLEVR Blender environment (Johnson et al., 2017)5. Like other multi-

5https://github.com/facebookresearch/clevr-dataset-gen (Accessed: 2021-06-02)

https://github.com/facebookresearch/clevr-dataset-gen
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Table 5.3: Generator function gθ

Parameters Type Channels (out) Activations. Descriptions

θ1 (projection)

Input D +d zt ∼N (zt; λλλt), vt

Linear 256 Relu

Linear D Linear z̃t = gθ1(zt,vt)

θ2 (rendering)

Input D z̃t
k = gθ2(zt

k,vt)

Broadcast D+2 * Broadcast to grid

Conv 3×3 32 Relu

Conv 3×3 32 Relu

Conv 3×3 32 Relu

Conv 3×3 32 Relu

Conv 3×3 4 Linear RGBM: rgb µxk + mask logits m̂xk

D: the dimension of a latent representation, set to 16 for all experiments

d: the dimension of a viewpoint vector, set to 3 for all experiments

*: see spatial broadcast decoder Watters et al. (2019)

Stride= 1 set for all Convs.

Table 5.4: Refinement Network Φ

Parameters Type Channels (out) Activations. Descriptions

Φ

Input 17 * Auxiliary inputs a(xt)

Conv 3×3 32 Relu

Conv 3×3 32 Relu

Conv 3×3 64 Relu

Conv 3×3 64 Relu

Flatten

Linear 256 Relu

Linear 128 Linear

Concat 128+4*D

LSTMCell/GRUCell 128

Linear 128 Linear output ∆λ

D: the dimension of a latent representation, set to 16 for all experiments

Stride= 1 set for all Convs.

* see IODINE (Greff et al., 2019) for details

LSTMCell/GRUCell channels: the dimensions of the hidden states

object datasets6, we initialized every sequence by randomly selecting and plac-

ing 2-5 scene objects in a simulated room (with background and walls speci-

fied). These objects are randomized in terms of shapes (incl. deformations,

sizes), colors, and textures. Under the Blender physics engine settings, we en-

abled foreground objects’ movements by setting their dynamics status to “ac-

tive” and disabled the background objects’ (i.e. walls and ground’s) move-

ments by setting their dynamics status to “passive”. We then created a cen-

6https://github.com/deepmind/multi_object_datasets (Accessed: 2021-06-02)

https://github.com/deepmind/multi_object_datasets
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trifugal force field within a fixed center and range on the ground across all

DRoom datasets. In this chapter, we sample the magnitude of the force using:

random.choice(vals = 8500×{0,0.1,0.2, ...,1},probs = Cat(...)), which allows us

to simulate scene object motions of different speeds by inputing different selection

categorical probability Cat(...). Moreover, we enabled object collisions to simu-

late scenes with rather complex object dynamics. The control of the observer

(an RGB camera) motion is independent of the scene objects. We consider an

observer or camera performing random walks on the surface of a dome (top half

of a sphere) whose center aligns with the center of the ground—we randomly

initialize the starting position of a camera and randomly sample its next move.

Note that, as the camera can only move on the dome (with a fixed radius r),

we can use azi and ele, i.e. the azimuth and elevation of the camera, to repre-

sent a camera location. We sample the increment ∆azi and ∆ele independently

from: random.choiceazi(vals = 5.0degs× {0,0.1,0.2, ...,1},probs = Catazi(...))

and random.choiceele(vals = 1.0degs×{0,0.1,0.2, ...,1},probs = Catele(...)), which

suggests that we can control the speed of the camera by inputting different

Catazi(...)) and Catele(...)).

FC
SO

SC
FOForce field

Force field

Figure 5.6: Left: DRoom simulation environment setup where yellow rings denote

the force fields. Right: One fast-camera-slow-object (FCSO) sample (top row) and

slow-camera-fast-object (SCFO) sample (bottom row). Both are randomly selected

from the DR-Lvl.3 dataset.

Dataset We rendered all scenes using a resolution of 64× 64 for 40 frames (4-

second motions)—record 40 images with their corresponding viewpoints {(xt,vt)}1:40,
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where we represent the viewpoints using their 3-D Cartesian coordinates. The

sampler specifications, i.e. the categorical distributions Cat(...)), used to gener-

ate the five DRoom subsets are listed in Table 5.5. As discussed in Sec.3.3, we

clustered all the data samples based on their average camera speeds across each

sequence to assign them into the FCSO and SCFO partitions. We visualize the

clustering results for DR-Lvl.1∼ 3 in Figure 5.7.

Table 5.5: DRoom Generator Specs

Force Magnitude Camera Random Walk Next Move

Subsets (constant in its range) (for both azi and ele)

DR0-|fz| — {1,0,0, ...,0} {0,0,0,0,0,0,0.01,0.11,0.28,0.3,0.3}

DR0-|fv| — {0,0,0,0,0,0.02,0.08,0.15,0.35,0.35,0.05} {1,0,0, ...,0}

DR-Lvl.1
FCSO {0.05,0.095,0.095,0.095,0.095,0.095,0.095,0.095,0.095,0.095,0.095} {0.05,0.095,0.095,0.095,0.095,0.095,0.095,0.095,0.095,0.095,0.095}

SCFO {0.05,0.095,0.095,0.095,0.095,0.095,0.095,0.095,0.095,0.095,0.095} {0.05,0.095,0.095,0.095,0.095,0.095,0.095,0.095,0.095,0.095,0.095}

DR-Lvl.2
FCSO {0.2,0.2,0.2,0.2,0.2,0,0,0,0,0,0} {0,0,0,0,0,0,0.2,0.2,0.2,0.2,0.2}

SCFO {0,0,0,0,0,0.2,0.2,0.2,0.2,0.2,0} {0.2,0.2,0.2,0.2,0.2,0,0,0,0,0,0}

DR-Lvl.3
FCSO {0.25,0.38,0.33,0.02,0.02,0,0,0,0,0,0} {0,0,0,0,0,0,0.01,0.11,0.28,0.3,0.3}

SCFO {0,0,0,0,0,0.02,0.08,0.15,0.35,0.35,0.05} {0.3,0.3,0.28,0.11,0.01,0,0,0,0,0,0}
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Figure 5.7: Visualization of the data assignment results on the DR-Lvl.1∼ 3 datasets.

5C.2 MJC-Arm (Mujoco-Arm)

Simulation Environment The environment is built with MuJoCo physics simu-

lator (Todorov et al., 2012), and the Franka Emika robot arm with a Barret hand
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attached to the main scene object. The arm has 7 degrees of freedom and the

joints of robotic hand are fixed during the data generation. 8 different collision-

free robot arm motion trajectories are pre-defined, and each has unique initial

and target joint configuration. Every joint is controlled in the position-derivative

manner with a constant velocity, which is the product of the nominal velocity

and the sampled weight. The nominal velocities for all 7 arm joints (from base

to end-effector) are [0.65,0.65,0.27,0.27,0.03,0.03,0.005], which are related to the

link lengths of the robot arm. The joint velocity weights for FCSO and SCFO

data trials are sampled from:

random.choiceF CSO({0,0.1,0.2, ...,1},probs = {0.34,0.34,0.25,0.07,0.0, ...,0.0})

random.choiceSCF O({0,0.1,0.2, ...,1},probs = {0.0, ...,0.0,0.07,0.25,0.34,0.34})

We also introduced a moving ball with random fixed direction and constant

weighted velocity in the simulation. The control of the RGB camera is the same

as introduced in the former section, with a fixed point of view towards the base

link of the robot arm.

FC
SO

SC
FO

Figure 5.8: Left: Mujoco simulation environment. Right: One fast-camera-slow-

object (FCSO) sample (top row) and slow-camera-fast-object (SCFO) sample. Both

are randomly selected from the MJC-Arm dataset.

Dataset For each data sample, the scenes are rendered with resolution 64× 64

at 10Hz for 4 seconds (40 frames per sample). At the beginning of every trial,

the textures of the robot arm and the moving ball are randomly selected from a
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colour set. The robot arm is initialised with the starting pose of the randomly

selected motion trajectory.

5C.3 Real-World Data (CubeLand)

Figure 5.9: CubeLand data-collection platform.

Data-collection Environment We created CubeLand in a controlled real-world

environment. Four cubes of different colours (i.e., red, blue, green and yellow)

were placed on a table. To avoid unnecessary background clutter, a bicolor data

collection environment was set up with white surface and brown walls. A camera

was mounted on the end effector of Franka arm (a robotic arm with 7 D.O.F.)

as shown in Figure 5.9. The end effector had a fixed motion, i.e., it only rotated

back and forth 120 degrees. The cubes were connected by threads at the bottom

to move them freely and randomly. Moreover, the simulations had two config-

urations, i.e., slow camera, fast objects (SCFO) and fast camera, slow objects

(FCSO) (see Figure 5.10). In the first configuration, the speed of the rotation

of the end effector was 1.67 rpm (10 degrees per second) while the objects were

manually pulled and thrown back into the scene at an arbitrary faster speed. In

the latter configuration, the speed of the rotation of the end effector was set to

be 4.17 rpm (25 degrees per second) whereas the objects were pulled and pushed

by hand back into the scene at a slower rate. The height of the camera and the
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radius of the assembly (center of the end effector to the camera) spanned 14.5

cm and 19.5 cm, respectively.

FCSO

SCFO

Figure 5.10: CubeLand data samples. Top: a fast camera, slow objects (FCSO) data

sample. Bottom: a slow camera, fast objects (SCFO) data sample.

Appendix 5D. Additional Results

5D.1 Ablation Study

We highlight two hyperparameters that play significant roles in the training of

DyMON: 1) the updating periods of v and z, i.e. ∆tv and ∆tz, 2) weighting

coefficient of viewpoint-queried generative log likelihood β. We varied these two

groups of parameters and visualized their influences on DyMON. We measure

DyMON’s novel-view synthesis performance at every time point and visualize

them as a function of these hyperparameters. We varied ∆tz and ∆tv with values

that are selected from discrete sets {3,5} and {5,6,8}, this allows us to show

the joint effects of these two updating periods in a 2× 3 grid (see top half of

Figure 5.11). To analyze the independent effects of ∆tz and ∆tv, we “squeezed”

the 2×3 grid by computing the MSE averaged over the ∆tz axes and ∆tv axes of

the grid (see bottom right two plots of Figure 5.11 for the results). One can see

that a short updating period for ∆tz is preferred as this allows to capture more

detailed scene object motions, while the selection of ∆tv is relatively difficult.

One might run pre-analysis before training, e.g. visually look several sequences,
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Figure 5.11: Ablation study results. Top: Space-time queried view synthesis MSE vs.

nested ∆tz and ∆tv. Bottom left: MSE vs. different β (in log2 space). Bottom

middle: MSE vs. different ∆tz (MSE computed by averaging across different ∆tv).

Bottom right: MSE vs. different ∆tv (MSE computed by averaging across different

∆tz).

to select a better ∆tv. Similarly, we varied β by setting its values to 0.5, 1.0, and

2.0 respectively and we show the relatively insensitive results in the bottom left

of Figure 5.11.

5D.2 T-GQN Results

We used the official implementation of T-GQN7 and trained a T-GQN on the DR-

Lvl.3 data. Although the training has converged (see Figure 5.13), we observe

7https://github.com/singhgautam/snp

https://github.com/singhgautam/snp
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GT

T-GQN

recon/gen

Context Frames Observation Frames Query Frames

T-GQN-PD

recon/gen

Figure 5.12: Qualitative results of T-GQN on DR-Lvl.3 test data.

Figure 5.13: T-GQN training curves. We train t-GQN on our DRoom data until it

converges.

that it fails to represent the underlying 3D scenes (see Figure 5.12) and training

T-GQN with a posterior dropout, i.e. T-GQN-PD, does not fix the issue. We

speculate that this is because it lacks multiple views at each time steps to resolve

the temporal entanglement issue. However, future investigations are required to

validate our speculation.

5D.3 Additional Qualitative Results
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Figure 5.14: Spatial-temporal factorization results of a DRoom scene.
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Figure 5.15: Dynamics replay of a DRoom scene.
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Figure 5.16: Qualitative comparisons: DyMON vs. MulMON in spatial-temporal

factorization (on DRoom). We train DyMON on DR-Lvl.3 and train MulMON on

DR0-|fz|.
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Figure 5.17: Qualitative comparisons of DyMON and GSWM on DR0-|fv|. Top:

reconstruction performance. Bottom: segmentation performance (we observe that

DyMON outperforms GSWM in segmenting scenes).
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Figure 5.18: Dynamics replay of a MJC-Arm scene.
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Figure 5.19: Dynamics replay of a real scene (i.e. CubeLand data). We conduct ex-

periments on real-world data to show DyMON’s potential for real-world applications.



Chapter 6

Discussions

In this thesis, we have explored the idea of empowering machines to understand

visual compositionality, which holds great promise in improving the i) system-

atic generalization and ii) representation interpretability limitations of most ex-

isting machine learning systems. Specifically, we established our study in the

scenarios of object-centric representation learning (abbr. OCRL). In this case,

our goal is to address the factorization problem such that the artificial systems

can uncover the compositional generative structures around objects that under-

lie the scene observation data. We have investigated three common issues in

object-centric factorization, i.e. i) single-view ambiguities (see chapter 3), ii)

latent-representation duplicates (see chapter 4), and iii) temporal-structure en-

tanglement (see chapter 5), and proposed three methods that effectively handle

these issues. Moreover, we have approached these three issues from a generative

perspective without any supervision.

6.1 Summary Of Contributions

In Chapter 3, we presented MulMON as a method for learning accurate,

object-centric representations of multi-object scenes by leveraging multiple views.

131



132 Chapter 6. Discussions

We have shown that MulMON’s ability to aggregate information across multiple

views does indeed allow it to better-resolve spatial ambiguity (or uncertainty)

and better-capture 3D spatial structures, and as a result, outperform state-of-

the-art models for unsupervised object segmentation. We have also shown that,

by virtue of addressing the more complicated multi-object-multi-view scenario,

MulMON achieves new functionality—the prediction of both appearance and ob-

ject segmentations for novel viewpoints, i.e. it has learned about objects and 3D

structure. We believe the object-wise multi-view uncertainty reduction design

of MulMON can make it a promising element in downstream tasks that involve

environment exploration and interaction.

In Chapter 4, we presented a differentiable prior (the LDS prior) that

leverages similarity measures to regulate the object-centric latent representations

inferred by multi-object VAEs, i.e. CompVAEs. Despite its simplicity, we have

demonstrated its effectiveness in fixing known issues, namely the uniqueness is-

sues, of the multi-object VAE models — inferring duplicate object representa-

tions. We ascribed the uniqueness issues to the violation of the uniqueness as-

sumption that is implicitly introduced by the scene-mixture-model assumption,

i.e. each part of a scene observation (e.g. a pixel) must be explained by one

and only one scene object. Therefore, we have demonstrated through experi-

ments that suppressing duplicates can lead to better variational approximation

and task performance.

In Chapter 5, we presented the Dynamics-aware Multi-Object Network

(DyMON) as a method for learning object-centric representations in a multi-

view-dynamic-scene setting. We have made two weak assumptions that allow

DyMON to recover the independent generative mechanism of observers and scene

objects from both training and testing multi-view-dynamic-scene data—achieving

spatial-temporal factorization. We have shown through our experiments that such
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spatial-temporal factorization permits querying the predictions of scene appear-

ances and segmentations across both space and time. We believe the ability to

perform counterfactual reasoning about space and time (as well as objects) is

essential for building world models (Ha and Schmidhuber, 2018) and training

intelligent agents.

6.2 Limitations and Future Works

The Severe Gap To Real-world Applications The study of generative object-

centric representation learning is still in an early stage. Though the existing

methods, including the three methods published in this thesis, have demonstrated

great success in well-controlled environments, e.g. CLEVR (Johnson et al., 2017)

and Mujoco (Todorov et al., 2012), they are far from being ready for real-world

applications with texture-rich scenes (see an example in Greff et al. 2019). Ac-

cording to Eslami et al. (2018); Greff et al. (2019), such limitation is likely re-

sulting from the insufficient computational capacity for generative modeling of

high-dimensional data with complex structures. Regarding this limitation, we

consider observation complexity reduction by ignoring trivial details (e.g. using

super-pixel methods Achanta et al. 2012) a promising direction to explore. How-

ever, it is often tricky to answer “what details should be ignored”—this connects

to the discussions of granularity (see the last paragraph of this section).

Dynamics Modeling and Extrapolation As discussed in chapter 5, DyMON

focuses on capturing the spatial status of the scene objects at every specific time

point rather than describing their full trajectories. As a result, although DyMON

can predict a scene’s appearances and segmentations at arbitrary past times

(querying across time) and from arbitrary viewpoints (querying across space),

it cannot predict the future evolution of scenes. In other words, DyMON sup-

ports interpolating query points within the observed time but not extrapolating.
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Obs. Rec. Seg.Generated K Scene Components.

Figure 6.1: MulMON treats a Shep7 object as a composition of parts (cubes) instead

of one object. Adapted from Figure 3.12.

Enabling a model to describe the scene objects’ trajectories and interactions is

necessary for physics understanding (Jaques et al., 2020; Lin et al., 2020) and

intuitive physics planning (Janner et al., 2019; Smith et al., 2019). If we treat

“predicting the future evolution of scenes” as an initial-value problem (Codding-

ton and Levinson, 1955), the extrapolation limitation can be potentially resolved

by fitting ordinary differential equations, e.g. using Neural ODE (Chen et al.,

2018b), to describe the scene object dynamics in the representation space.

On The Granularity of Compositional Structures We have shown in chap-

ter 3 that MulMON successfully uncovered both object-level and feature-level

compositional structures. However, as shown in Figure 6.1, MulMON seems

to fail in disentangling “objects” with a “desired” granularity—i.e. it treats

a Shep7 object as a composition of parts (cubes) instead of one object. This

raises an intriguing question: “what levels of granularities are desired?”, which

is closely connected to the long-standing discussions of objectness, i.e. the defi-

nition of “object” (Caesar et al., 2018; Kosiorek, 2020), but more general. The

“objectness” discussion often implies a setting where only one level of granular-

ity is of interest, while we are interested in modeling compositional structures

at multiple granularities. For example, in the settings of OCRL, one potential

future exploration can be shaping an interpretable latent space in the hierarchy

of “features→

⟲

objects→scenes”.
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6.3 Societal Impact

In this thesis, we presented methods for learning object-centric representations

of multi-object scenes. Object-centric scene representations can support many

downstream tasks, such as autonomous scene exploration, object segmentation

(tracking) and scene synthesizing.

Autonomous scene exploration has real-world applications in exploring hazardous

environments, mines, potential bomb threats, nuclear waste zones. This could

have societal impacts through increased worker safety or potential military (mis)uses.

Object detection and tracking has real-world applications in tracking people in

CCTV footage, detecting buildings from aerial footage, and spotting potential

hazards for autonomous vehicles. Potential societal impacts include safer au-

tonomous vehicles and unwanted/increased surveillance.

Finally, scene synthesizing has applications in automated scene modeling for com-

puter games. This further transitions society away from labor-intensive tasks to

higher-level cognitive tasks. This could have both positive (more time for cogni-

tive tasks) and negative (less employment) impacts on society.
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