

This thesis has been submitted in fulfilment of the requirements for a

postgraduate degree (e. g. PhD, MPhil, DClinPsychol) at the University of

Edinburgh. Please note the following terms and conditions of use:

• This work is protected by copyright and other intellectual property rights,

which are retained by the thesis author, unless otherwise stated.

• A copy can be downloaded for personal non-commercial research or

study, without prior permission or charge.

• This thesis cannot be reproduced or quoted extensively from without

first obtaining permission in writing from the author.

• The content must not be changed in any way or sold commercially in

any format or medium without the formal permission of the author.

• When referring to this work, full bibliographic details including the

author, title, awarding institution and date of the thesis must be given.

Learning Universal Representations Across

Tasks and Domains

Wei-Hong Li

T
H

E

U N I V E R
S

I
T

Y

O
F

E
D I N B U

R
G

H

Doctor of Philosophy

Institute of Perception, Action and Behaviour

School of Informatics

University of Edinburgh

2022

Abstract
A longstanding goal in computer vision research is to produce broad and general-purpose

systems that work well on a broad range of vision problems and are capable of learning

concepts only from few labelled samples. In contrast, existing models are limited to

work only in specific tasks or domains (datasets), e.g., a semantic segmentation model

for indoor images (Silberman et al., 2012). In addition, they are data inefficient and

require large labelled dataset for each task or domain. While there has been works

proposed for domain/task-agnostic representations by either loss balancing strategies

or architecture design, it remains a challenging problem on optimizing such universal

representation network. This thesis focuses on addressing the challenges of learning

universal representations that generalize well over multiple tasks (e.g. segmentation,

depth estimation) or various visual domains (e.g. image object classification, image

action classification). In addition, the thesis also shows that these representations can

be learned from partial supervision and transferred and adopted to previously unseen

tasks/domains in a data-efficient manner.

The first part of the dissertation focuses on learning universal representations, i.e. a

single universal network for multi-task learning (e.g., learning a single network jointly

for different dense prediction tasks like segmentation and depth estimation) and multi-

domain learning (e.g. image classification for various vision datasets, each collected

for a different problem like texture, flower or action classification). Learning such

universal representations by jointly minimizing the sum of all task-specific losses is

challenging because of the interference between tasks and it leads to unbalanced results

(i.e. some tasks dominate or interfere other tasks and the universal network performs

worse than task/domain-specific networks each of which is trained for a task/domain

independently). Hence a new solution is proposed to regularize the optimization of the

universal network by encouraging the universal network to produce the same features

as the ones of task-specific networks. The experimental results demonstrate that the

proposed method learns a single universal network that performs well for multiple tasks

or various visual domains.

Despite the recent advances in multi-task learning of dense prediction problems,

most methods rely on expensive labelled datasets. Relaxing this assumption gives rise

to a new multi-task learning setting, called multi-task partially-supervised learning

in this thesis, in which the goal is to jointly learn of multiple dense prediction tasks

on partially annotated data (i.e. not all the task labels are available for each training

image). In the thesis, a label efficient approach is proposed to successfully leverage

iii

task relations to supervise its multi-task learning when data is partially annotated. In

particular, the proposed method learns to map each task pair to a joint pairwise task-

space which enables sharing information between them in a computationally efficient

way through another network conditioned on task pairs, and avoids learning trivial

cross-task relations by retaining high-level information about the input image.

The final part of the dissertation studies the problem of adapting a model to pre-

viously unseen tasks (from seen or unseen domains) with very few labelled training

samples of the new tasks, i.e. cross-domain few-shot learning. Recent methods have

focused on using various adaptation strategies for aligning their visual representations

to new domains or selecting the relevant ones from multiple domain-specific feature

extractors. In this dissertation, new methods are formulated to learn a single task-

agnostic network from multiple domains during meta-training and attach light-weight

task-specific parameters that are learned from limited training samples and adapt the

task-agnostic network to accommodate the previously unseen tasks. Systematic analysis

is performed to study various task adaptation strategies for few-shot learning. Extensive

experimental evidence demonstrates that the proposed methods that learn a single set

of task-agnostic representations and adapt the representations via residual adapters in

matrix form attached to the task-agnostic model significantly benefits the cross-domain

few-shot learning.

iv

Acknowledgements

I feel grateful and very fortunate for studying and living in Edinburgh. I would like to

thank everyone who has been with me and offered help to me during this unforgettable

journey.

I would like to thank my supervisor Hakan Bilen for including me in the Visual

Computing (VICO) Group at the University of Edinburgh, and for his enthusiasm and

support throughout this thesis. Special thanks also to Timothy Hospedales and Iain

Murray for their co-supervision. Thanks also to Amir Zamir and Laura Sevilla for

finding time to evaluate my thesis and viva, and for all of the insightful comments. I am

very hornored to have such distinguished researchers as my examiners.

I am grateful to my collaborators, Xialei Liu and Chuan-Sheng Foo for their conta-

gious enthusiasm for universal representation learning and semi-supervised learning and

dedicated hard work, and to friends in our group, office, flat, university and elsewhere

who made the experience fun and memorable. I would like to thank several people here:

Titas Anciukevicius, Lucas Deecke, Boyan Gao, Arushi Goel, Adrian Salazar Gomez,

Shangmin Guo, Wenbin Hu, Vitor Ivanov, Zonglin Ji, Ruochun Jin, Taha Kocyigit,

Changjiang Liu, Muyang Liu, Konda Reddy Mopuri, Octave Mariotti, Kunkun Pang,

Simon Reinkemeier, Yinbing Tian, Robin Vogel, Yuan Wen, Yu Yang, Biao Zhang,

Xueting Zhang, Ying Zhang, Bo Zhao, Yanpeng Zhao, Hao Zheng. Special thanks to

Yuedong Chen and Jiabo Huang. We were looking for PhD opportunities together and

supporting each other during the PhD study.

Lastly, I want to deeply thank my family for their unconditional love and support

throughout my studies, especially when I was working remotely from home.

v

Declaration

I declare that this thesis was composed by myself, that the work contained herein is my

own except where explicitly stated otherwise in the text, and that this work has not been

submitted for any other degree or professional qualification except as specified.

(Wei-Hong Li)

vi

Table of Contents

1 Introduction 1

1.1 Contributions . 5

1.2 Thesis Structure . 6

2 Learning Universal Representations 9

2.1 Introduction . 9

2.2 Related Work . 13

2.2.1 Multi-task Learning . 13

2.2.2 Multi-domain learning (MDL) 15

2.2.3 Knowledge distillation . 16

2.3 Preliminaries . 16

2.3.1 Single-task Learning . 18

2.3.2 Multi-task Learning . 18

2.4 Universal Representation Learning 19

2.4.1 Multi-Task Dense Prediction 20

2.4.2 Multi-Domain Classification 21

2.5 Experiments . 22

2.5.1 Learning multiple dense prediction tasks 23

2.5.2 Encoder-based Architecture 24

2.5.3 Decoder-based Architectures 28

2.5.4 Multi-domain Learning . 30

2.5.5 Further Analysis . 32

2.5.6 Qualitative results . 35

2.6 Conclusion and Limitations . 36

3 Multi-task Learning from Partially Annotated Data 37

3.1 Introduction . 37

vii

3.2 Related Work . 40

3.2.1 Multi-task Semi-supervised Learning 40

3.2.2 Cross-task Relations . 41

3.3 Method . 41

3.3.1 Problem setting . 41

3.3.2 Cross-task consistency learning 43

3.4 Experiments . 47

3.4.1 Results . 48

3.4.2 Further results . 51

3.4.3 Ablation study . 53

3.4.4 Qualitative results . 53

3.5 Conclusion and Limitations . 54

4 Cross-domain Few-shot Classification 57

4.1 Introduction . 58

4.2 Related Work . 62

4.3 Method . 64

4.3.1 Task-agnostic representation learning 64

4.3.2 Task-specific weight learning 67

4.3.3 Task-specific adapter parameterization (ϑ) 68

4.4 Experiments . 70

4.4.1 Experimental setup . 71

4.4.2 Comparison to state-of-the-art methods 72

4.4.3 Analysis of task-specific parameterizations 76

4.4.4 Further results . 78

4.4.5 Ablation study for task-agnostic weight learning 79

4.4.6 Ablation study for task-specific weight learning 81

4.4.7 Qualitative results . 84

4.5 Conclusion and Limitations . 85

5 Conclusion and Future Work 89

5.1 Limitations and Future work . 89

5.2 Broader Impact . 94

A Learning Universal Representations 97

A.1 Implementation Details . 97

viii

A.1.1 Multi-task Dense Prediction 97

A.1.2 Multi-domain Learning . 98

A.2 More results . 100

B Multi-task Learning from Partially Annotated Data 103
B.1 Implementation Details . 103

B.2 More results . 106

B.2.1 Quantitative results . 106

B.2.2 Qualitative results . 112

C Cross-domain Few-shot Classification 117
C.1 Implementation details . 117

C.1.1 Task-agnostic learning . 117

C.1.2 Task-specific learning . 119

C.2 More results . 120

C.2.1 Task-agnostic learning . 120

C.2.2 Task-specific parameterizations 122

C.2.3 Results evaluated with updated evaluation protocol. 122

C.2.4 Ablation study . 123

C.2.5 Qualitative results . 127

Bibliography 137

ix

Chapter 1

Introduction

Over the last decade, computer vision has advanced rapidly and achieved impressive re-

sults for many tasks like image classification for general object categories (Russakovsky

et al., 2015), fungi categories (Brigit and Yin, 2018), or birds (Wah et al., 2011) so

on, semantic segmentation (Long et al., 2015), depth estimation (Eigen et al., 2014),

surface normal estimation (Wang et al., 2015) and so on. While the best performance in

each task is achieved by designing and learning a single network per task in a dataset

independently, these models are specialized to a dataset and heavily rely on large-scaled

labelled training data.

An important goal in computer vision is to learn broad and general-purpose models

that perform well on a wide range of vision problems and are capable of learning for

new problems only from limited supervision. Datasets collected to achieve this goal

contain either data from a single vision domain (e.g. indoor images (Silberman et al.,

2012)) for multiple vision tasks (e.g. semantic segmentation (Long et al., 2015), depth

estimation (Eigen et al., 2014)) or multiple sub-datasets (Rebuffi et al., 2017a) each

sampled from a visual domain for a task (e.g. object classification (Russakovsky et al.,

2015), action classification (Soomro et al., 2012)).

Learning universal representations, a single deep network, for jointly performing

multiple vision tasks in a single domain (multi-task learning, MTL Fig. 1.1) (Caru-

ana, 1997; Vandenhende et al., 2021) or over various visual domains (multi-domain

learning, MDL Fig. 1.2) (Rebuffi et al., 2017a), is able to efficiently share features and

computations across tasks and domains. This is computationally efficient and crucial

in platforms with limited resources like mobile devices and autonomous vehicles and

enables the network to learn more complete representations. This thesis focuses on

learning universal representations that generalize well over multiple vision tasks and

1

2 Chapter 1. Introduction

various visual domains. A new method is formulated to learn these representations and

show that they can be learned from partial supervision. As more complete universal

representations are obtained, learning of new domains and tasks can be easier and

performed efficiently from only a few samples by task adaptation.

feature
encoder

decoder A decoder T

Image

Pred A

decoder B

Pred B Pred T

GT A GT B GT T

Task A Task B Task T

Ground-truth

Prediction

Figure 1.1: Multi-task Learning.

feature
encoder

decoder A decoder T

Image
Domain A

Pred A

decoder B

Pred B Pred T

GT A GT B GT T

Task A Task B Task T

Ground-truth

Prediction

Image
Domain B

Image
Domain T

Figure 1.2: Multi-domain Learning.

Despite the high efficiency of compact universal representations, learning multiple

problems simultaneously involves minimizing a weighted sum of multiple loss functions

with different magnitudes and characteristics and thus results in unbalanced state of

one loss dominating the optimization and poor results compared to learning a separate

model for each problem (Kendall et al., 2018; Gong et al., 2019; Chen et al., 2018b).

As highlighted in Sec. 2.2, existing methods propose to address this challenge by

either designing better network architectures (e.g. Misra et al. (2016); Liu et al. (2019);

Vandenhende et al. (2020a,b)) or optimization strategies by loss weighting (e.g. Poggi

et al. (2020); Guo et al. (2018)) or gradient modification (e.g. Chen et al. (2018b); Yu

et al. (2020); Liu et al. (2021a)).

Chapter 2 instead tackles the challenge from a different perspective and proposes

a new learning formulation that distills knowledge of multiple task/domain-specific

networks into a single deep neural network after aligning its representations with the

task/domain-specific ones through small capacity adapters (Sec. 2.3), namely Universal

Representation Learning (URL). Extensive experimental results in Sec. 2.5 demonstrate

that universal representations learned by the proposed method achieve state-of-the-art

performances in learning of multiple dense prediction problems in NYU-v2 (Silberman

et al., 2012) and Cityscapes (Cordts et al., 2016) and multiple image classification

problems from diverse domains in Visual Decathlon Dataset (Rebuffi et al., 2017a).

Most recent methods in learning universal representations require all training data

to be labelled for all tasks, which is costly and impractical. In real-world scenarios,

3

curating fully annotated dataset for multiple dense prediction tasks often involves using

multiple sensors to collect annotations for several tasks and requires very accurate

synchronization between sensors. Hence synchronization errors result in partially

annotated data and algorithms that can learn from such data are needed. To this end,

Chapter 3 proposes a more realistic and general setting for multi-task dense prediction

problems where not all the task labels are available for each image and called multi-task

partially supervised learning (MTPSL). In particular, this chapter assumes that each

image is at least labelled for one task and each task at least has few labelled images and

aims to learn a multi-task learning model from them.

feature
encoder

decoder A decoder B

Image

Pred A Pred B

GT B

Task A Task B

Supervised
Loss

Unsupervised
Loss

Figure 1.3: Supervised

Learning.

feature
encoder

decoder A decoder B

Image

Pred A Pred B

GT B

Task A Task B

Supervised
Loss

Pseudo-
label

Unsupervised
Loss

Figure 1.4: Semi-

supervised Learning.

feature
encoder

decoder A decoder B

Image

Pred A Pred B

GT B

Task A Task B

Supervised
Loss

Cross-task
Consistency

Figure 1.5: Cross-task

Consistency Learning

(Ours).

While one can train the MTL model only on available labels Fig. 1.3 or extend

existing single-task semi-supervised learning methods to MTL Fig. 1.4, the former can

not extract task-specific information from the images for the unlabelled tasks and the

latter does not guarantee consistency across the related tasks. To this end, in Chapter 3,

a multi-task training procedure that successfully leverages task relations Fig. 1.5 to

provide supervision signal for unlabelled images is formulated (Sec. 3.3). In particular,

Chapter 3 proposes to learn to map each task pair to a joint pairwise task-space which

enables sharing information between them in a computationally efficient way through

another network conditioned on task pairs, and avoids learning trivial cross-task relations

by retaining high-level information about the input image. Sec. 3.4 demonstrates that the

proposed method effectively exploits the images with unlabelled tasks and outperforms

existing semi-supervised learning approaches and related methods on three standard

benchmarks.

4 Chapter 1. Introduction

An advantage of universal representations is their ability to generalize to unseen

domains from few samples only. Hence we look at the few-shot classification prob-

lem (Lake et al., 2011; Miller et al., 2000) that aims at learning a model that can be

efficiently adapted to recognize unseen classes from few samples. A typical strategy for

few-shot learning involves two steps: learning a task-agnostic network (universal repre-

sentations) from a large training set (i.e. meta-training) and adapting this task-agnostic

network to learn new classes from a given support set and the adapted model is then

evaluated on a query set where the support set and query set are sampled form a testing

set.

decoder A decoder T

Image
Domain A

Pred A

decoder B

Pred B Pred T

GT A GT B GT T

Task A Task B Task T

Image
Domain B

Image
Domain T

Image Image Image Query
Image

(a) Learning universal representations
(feature encoder) from multiple domains.

Class 1 Class 2 Class 3 Class ?

A few training images per class
 (Support set)

A new task from an unseen domain (e.g. Domain T+1)

Testing Images
(Query set)

(b) Adapting the universal representations for unseen
domains with a few training samples by task adaptation.

Training set Testing set

feature
encoder

feature
encoder

Figure 1.6: Cross-domain Few-shot Learning

Chapter 4 focuses on cross-domain few-shot learning, where test data is sampled

from an unknown or previously unseen domain (Triantafillou et al., 2020). To learn

universal representations (task-agnostic network), previous methods use various adap-

tation strategies for aligning their visual representations to new domains Requeima

et al. (2019); Bateni et al. (2020b,a) or select the relevant ones from multiple domain-

specific feature extractors (Dvornik et al., 2020; Liu et al., 2021b; Triantafillou et al.,

2021; Liu et al., 2021c). Chapter 4 shows that the URL method proposed in Chapter 2

can be applied to this problem and learns a single task-agnostic (universal) network

from multiple domains Fig. 1.6(a). Universal representations can still benefit from

small modifications, i.e. task-specific adaptations, and Chapter 4 propose to attach

light-weight adapters into the task-agnostic network and learn them from the support

set Fig. 1.6(b). Systematic analysis is also performed to study various task adaptation

strategies for cross-domain few-shot learning. Extensive experimental results in Sec. 4.4

1.1. Contributions 5

shows that the URL method learns well generalized features for previously unseen tasks

and requires less and fixed computational cost during inference time regardless of the

number of domains. Adapting the representations via residual adapters in matrix form

attached to the task-agnostic model significantly benefits learning new domains and

tasks with few samples.

To conclude the thesis, Chapter 5 summarizes the broader impact of the proposed

methods, discusses their limitations, and proposes future research directions for univer-

sal representations learning across tasks and domains.

1.1 Contributions

The main contributions of this thesis are as following:

• Universal Representation Learning (URL, Sec. 2.4): an optimization algorithm for

learning compact universal representations over multiple vision tasks and various

visual domains by distilling knowledge of multiple task/domain-specific networks

into a single deep neural network after aligning its representations with the

task/domain-specific ones through small capacity adapters. As learning universal

representations over visually diverse domains is more challenging than learning

multiple tasks of a single domain, a loss function based on CKA (Kornblith

et al., 2019) similarity is proposed for aligning features. It is demonstrated that

URL is able to learn universal representations for both multi-task learning and

multi-domain learning and it achieves better or comparable results compared

with task/domain-specific models while URL only requires one network for

multiple tasks and domains. It outperforms vanilla MTL and MDL methods and

related optimization strategies in several benchmarks, including multi-task dense

prediction and multi-domain classification.

• Multi-task Partially Supervised Learning (MTPSL, Sec. 3.3.1): a more practical

and general setting for multi-task learning, which aims at learning multi-task

learning models on partially annotated data where not all the tasks labels are

available for each image.

• Regularized Conditional Cross-task Joint Space Mapping (Sec. 3.3.2): a new

algorithm for leveraging cross-task relations between related tasks to learn MTL

model from partially annotated data. The proposed method is shown to efficiently

6 Chapter 1. Introduction

learn from partially annotated data and outperforms related baselines in three

multi-task learning benchmarks for dense prediction problems.

• Task-specific adapters (TSA Sec. 4.3.2) for cross-domain few-shot learning.

Adapting a model for previously unseen domains and tasks from very few samples

is challenging due to limited ability of learning deep models from few samples and

the large generalization domain gap between training and testing samples. TSA

is proposed to attach light-weight task-specific adapters to a frozen task-agnostic

model obtained during meta-training and learn the adapters from the support

set during meta-testing. Systematic study shows that using residual adapters in

matrix form with a pre-classifier alignment obtains the best performance and

significantly boost the performance of existing methods in the leaderboard 1 of a

recent challenging MetaDataset (Triantafillou et al., 2020).

1.2 Thesis Structure

The thesis is divided into five chapters. Chapter 1 contains the introduction, followed

by Chapter 2, which proposes a new universal representation learning algorithm that

generalizes over multiple vision tasks and over various visual domains. Chapter 3

focuses on multi-task partially supervised learning and presents a new method that

efficiently leverages the cross-task relations between related tasks to learn the MTL

model from partially annotated data. Chapter 4 focuses on cross-domain few-shot

learning. Chapter 4 demonstrates that the URL method proposed in Chapter 2 learns

well generalized universal features from multiple domains and proposes to efficiently

adapt the universal features with task-specific adapters for previously unseen domains

and tasks. Chapter 5 introduces ideas for future research and discusses the broader

impact of the methods proposed in this work.

The technical content in this thesis (Chapters 2 to 4) is based on peer-reviewed

papers and a journal submission which is currently under review. The publications

associated with the individual chapters are as follows:

• Chapter 2 is based on “Universal Representations: A Unified Look at Multi-

ple Task and Domain Learning”, W.H. Li, X. Liu, H. Bilen, arXiv preprint

1https://github.com/google-research/meta-dataset#leaderboard-in-progress (ac-
cessed on July 13th, 2022)

https://github.com/google-research/meta-dataset#leaderboard-in-progress

1.2. Thesis Structure 7

arXiv:2204.02744 (2022) and “Knowledge distillation for multi-task learning”,

W.H. Li, H. Bilen, European Conference on Computer Vision Workshop (2020).

• Chapter 3 is based on “Learning Multiple Dense Prediction Tasks from Partially

Annotated Data”, W.H. Li, X. Liu, H. Bilen, IEEE/CVF Conference on Computer

Vision and Pattern Recognition (2022).

• Chapter 4 is based on “Universal representation learning from multiple domains

for few-shot classification”, W.H. Li, X. Liu, H. Bilen, IEEE/CVF International

Conference on Computer Vision (2021) and “Cross-domain Few-shot Learning

with Task-specific Adapters”, W.H. Li, X. Liu, H. Bilen, IEEE/CVF Conference

on Computer Vision and Pattern Recognition (2022).

Chapter 2

Learning Universal Representations

Learning universal representations through a single network to jointly perform multiple

tasks or generalize over visually diverse domains remains a challenging problem.

Existing methods attempt to address this challenge by designing network architectures

that better share parameters across tasks or domains and keep irrelevant ones task-

specific or balancing optimization techniques by either losses weighting or gradients

updating schemes. In this chapter, we focus on addressing the optimization challenges

of learning universal representations in a new direction. This chapter begins with

an introduction of the background of universal representations learning and the key

idea of the proposed method for both multi-task dense prediction and multi-domain

classification in Sec. 2.1, reviewing related literatures in Sec. 2.2, elaborating the

proposed URL method by knowledge distillation in Sec. 2.3, evaluating and analyzing

the proposed method in multi-task dense prediction and multi-domain classification

problems in Sec. 2.5, concluding in Sec. 2.6.

2.1 Introduction

A major limitation of state-of-the-art image interpretation systems is their narrow scope.

Different models are learned to recognize faces (Taigman et al., 2014; Parkhi et al., 2015;

Schroff et al., 2015; Zhong et al., 2016), textures (Cimpoi et al., 2014), sketches (Eitz

et al., 2012) and drawings (Lake et al., 2015), various fine-grained flower (Nilsback

and Zisserman, 2008), bird (Wah et al., 2011), fungi categories (Brigit and Yin, 2018),

detect (Ren et al., 2015; Liu et al., 2016) and segment (Dai et al., 2016) object categories,

and perform various low and mid-level tasks such as depth (Eigen et al., 2014), surface

normal estimation (Wang et al., 2015), so on.

9

10 Chapter 2. Learning Universal Representations

In contrast, humans in the early years of their development develop powerful internal

visual representations that are subject to small refinements in response to later visual

experience (Atkinson, 2002; Maurer and Lewis, 2001; Lewis and Maurer, 2005). Once

these visual representations are formed, they are universal and later employed in many

diverse vision tasks from reading text, recognizing faces to interpreting visual art forms.

Presence of universal representations in computer vision (Bilen and Vedaldi, 2017),

has important implications. First, it means that vision has limited complexity. A grow-

ing number of visual domains and tasks1 can be modeled with a bounded number of

representations. As a result, one can use a compact set of representations for learning

multiple domains and tasks, and efficiently share features and computations across

them, which is crucial in platforms with limited computational resources such as mobile

devices and autonomous cars. Second, as we obtain more complete universal represen-

tations, learning of new domains and tasks can be easier and performed efficiently from

only few samples by transfer learning.

In practice, learning universal representations requires addressing several chal-

lenges. First, modelling diverse visual data demands deep network architectures that

can simultaneously learn representations while selectively sharing only the relevant

representations across multiple tasks and domains.

To this end, previous multi-task works proposed controlling representation sharing

across tasks through latent connections (Misra et al., 2016; Ruder et al., 2019), construct-

ing branched deep neural networks based on task affinities (Vandenhende et al., 2020a),

custom attention mechanisms (Liu et al., 2019), neural architecture search (Liang et al.,

2018; Bruggemann et al., 2020; Guo et al., 2020), developing progressive communica-

tion across multiple tasks through recurrent networks (Bilen and Vedaldi, 2016; Zhang

et al., 2018; Vandenhende et al., 2020b), multi-scale feature sharing (Xu et al., 2018a;

Vandenhende et al., 2020b). Other previous works assume that features extracted from

pretrained deep networks on ImageNet provide basis for universal representations and

adapt them with a set of compact adapters to various domains (Rebuffi et al., 2017a,

2018; Rosenfeld and Tsotsos, 2018; Deecke et al., 2022). In cross-domain few-shot

classification, where the goal is to generalize to unseen tasks and domains from few

samples, features from multiple domain-specific networks are considered as universal

1While domain and and task definitions vary in previous work and are used interchangeably, in our
experiments each domain denotes a data domain, dataset such as ImageNet, Omniglot and each task
denotes either different prediction task such as semantic segmentation and depth estimation, and also
same prediction task such as image classification, albeit, over different sets of categories. A subtle
difference between two settings is that for a single image there can be multiple tasks defined, however,
only a single domain.

2.1. Introduction 11

features and transferred to previously unseen domains and tasks after a post selection

step (Dvornik et al., 2020; Liu et al., 2021b).

The second challenge is to develop training algorithms to learn representations that

achieve good performance not only in one of the tasks or domains but in all of them. This

problem is especially visible when the training involves jointly minimizing a set of loss

functions (i.e. one for each task) with significantly different difficulty levels, magnitudes,

and characteristics. Thus a naive strategy of uniformly weighing multiple losses can

lead to sub-optimal performances and searching for optimal weights in a continuous

hyperparameter space can be prohibitively expensive. Previous works (Chen et al.,

2018b; Sener and Koltun, 2018; Kendall et al., 2018; Guo et al., 2018; Liu et al., 2019)

address the unbalanced loss optimization problem by weighing loss functions based

on the task-dependent uncertainty of the model at training time (Kendall et al., 2018),

proposing Pareto optimal solution (Sener and Koltun, 2018), eliminating conflicting

gradient components between the tasks (Yu et al., 2020). Although these methods are

shown to improve over the uniform weighing loss strategy in some benchmarks, they

do not consistently outperform the baseline that simply weighs each loss function with

a constant scalar (Vandenhende et al., 2021).

Encoder shared
across tasks

Task-specific
decoders

task T

Encoder shared
across domains

Domain-specific
decoders

General Object
Classification

Action
Recognition domain T

Encoder shared
across domains

Domain-specific
decoders

General Object
Classification

Character
Recognition domain T Support Set Query Set

Support Set

...

Query Set

Seen Domain

Unseen Domain

Task-specific networks

Distill

Universal Network

Meta-Training:
Learning from Multiple Domains

Meta-Testing:
Adapting for Unseen Few-shot Tasks

(b) Multi-task Dense Prediction.

(d) Cross-domain Few-shot Classification.(c) Multi-domain Classification.

(a) Our method for Universal Representation Learning.

Figure 2.1: We propose a Universal Representation Learning framework in (a) that

generalizes over multi-task dense prediction tasks (b), multi-domain many-shot learning

(c), cross-domain few-shot learning (d) (validated and detailed in Chapter 4).

In this chapter, we focus on the second challenge. Inspired from knowledge distilla-

tion (Romero et al., 2015; Hinton et al., 2014), we approach the problem from a different

perspective and propose a general methodology for universal representation learning

12 Chapter 2. Learning Universal Representations

that can be applied to a diverse set of problems including multi-task and multi-domain

learning in few- and many-shot settings. We propose a two-stage procedure for universal

representation learning where we first train a set of task or domain-specific models and

freeze their parameters, and then distill their knowledge to a universal representation

network while simultaneously training it over multiple-tasks/domains. In contrast to

the standard knowledge distillation, in our setting each “teacher” network is trained

for either significantly different task (e.g. semantic segmentation, depth estimation)

and/or domain (e.g. flowers, handwritten characters), and encodes significantly different

representations. Hence naively distilling their representations into a single network

would result in poor performance. To this end, we propose aligning the universal

network with the individual ones via small task-specific adapters before the distillation,

and using specific loss functions that are invariant to certain transformations between

representations. Our method has multiple key advantages over the previous work. First,

in contrast to relying solely on weighing the individual loss functions (Kendall et al.,

2018) or modifying the direction of their gradients (Yu et al., 2020) that are limited

to prevent one task dominating or interfering the rest, we propose more explicit con-

trol on the model parameters through knowledge distillation such that representations

from all tasks/domains are included in the universal representations. Second, unlike

task/domain-specific loss functions with different characteristics which are difficult

to balance, the distillation loss function is the same for all tasks/domains and hence

provides balanced optimization by design. Third, unlike Dvornik et al. (2020); Liu

et al. (2021b) that employ multiple feature extractors, our model learns a single set of

universal representations (a single feature extractor) over multiple domains which has a

fixed computational cost regardless of the number of domains at inference. Finally, our

method can be successfully incorporated to various state-of-the-art multi-task/domain

customized network architectures (Vandenhende et al., 2020b; Rebuffi et al., 2018) and

loss balancing strategies (Kendall et al., 2018; Liu et al., 2021c,a).

We illustrate our universal representation learning method and its applications to

three standard vision problems in Fig. 2.1. The common step for all the applications

is to first train a task- or domain-specific model and then distill their knowledge to a

single universal network (see Fig. 2.1(a)). We show that the universal representations

(depicted by the green network) can successfully be employed in jointly learning (i)

multiple dense vision problems such as semantic segmentation, depth estimation (see

Fig. 2.1(b)), (ii) multiple image classification problems from diverse datasets such as

ImageNet (Deng et al., 2009), Omniglot (Lake et al., 2015), FGVC Aircraft (Maji et al.,

2.2. Related Work 13

2013) (see Fig. 2.1(c)), (iii) learning to classify images from few training samples of

unseen tasks and domains (detailed in Fig. 2.1(d) and Chapter 4). In all applications, the

computations and representations are largely shared across tasks and domains through

the universal network, while light-weight task or domain-specific heads are used to

obtain the predictions by mapping the universal representations to the task output space.

2.2 Related Work

2.2.1 Multi-task Learning

Multi-task Learning (MTL) (Caruana, 1997) aims at learning a single model that can

infer all desired task outputs given an input. Existing methods can be broadly divided

into two groups. The first one (Misra et al., 2016; Ruder et al., 2019; Gao et al., 2019;

Liu et al., 2019; Lu et al., 2017; Vandenhende et al., 2020a; Bruggemann et al., 2020;

Guo et al., 2020; Bragman et al., 2019; Xu et al., 2018a; Zhang et al., 2019, 2018;

Vandenhende et al., 2020b; Zhou et al., 2020; Bruggemann et al., 2021; Xu et al.,

2022; Raychaudhuri et al., 2022; Ye and Xu, 2022; Wallingford et al., 2022) focuses on

improving network architecture by better sharing information across tasks and learning

task-specific representation by devising cross-task attention mechanism (Misra et al.,

2016), task-specific attention modules (Liu et al., 2019), gating strategies (Bruggemann

et al., 2020; Guo et al., 2020; Raychaudhuri et al., 2022), developing progressive

communication across multiple tasks through recurrent networks (Bilen and Vedaldi,

2016; Zhang et al., 2018; Vandenhende et al., 2020b; Bruggemann et al., 2021; Xu et al.,

2022), learning by adapting a pretrained network to another task by selecting which

layers to tune (Wallingford et al., 2022), using Vision Transformer (Dosovitskiy et al.,

2020) for better capture spatial position and tasks relations (Ye and Xu, 2022), so on.

The second group aims to address the unbalanced optimization that is caused by

jointly optimizing multiple task loss functions with varying characteristics through

either actively changing weight of each loss term (Kendall et al., 2018; Liu et al., 2019;

Guo et al., 2018; Chen et al., 2018b; Lin et al., 2019; Sener and Koltun, 2018; Liu

et al., 2021c, 2022b) and/or modifying the gradients of loss functions w.r.t. the shared

network weights to alleviate the conflicts among tasks (Yu et al., 2020; Liu et al., 2021a;

Chen et al., 2020c; Chennupati et al., 2019; Suteu and Guo, 2019). More specifically,

Kendall et al. (2018) proposes to weigh multiple loss functions by considering the

homoscedastic uncertainty of each task during training. Chen et al. (2018b) develops a

14 Chapter 2. Learning Universal Representations

training strategy, namely GradNorm, that looks at the gradient’s norm of each task and

learns the weight to normalize each task’s gradient so as to balance the losses for MTL.

In MGDA (Sener and Koltun, 2018), Sener et al. formulate the MTL as a multiple

objectives optimization problem and proposed an approximation Pareto optimization

method using Frank-Wolfe algorithm to learn weights of losses. To design the weighting

scheme, Guo et al. (2018) observe that the imbalances in task difficulty can lead to an

unnecessary emphasis on easier tasks, thus neglecting and slowing progress on difficult

tasks. Based on the observation, they introduce dynamic task prioritization for MTL,

which allows the model to dynamically prioritize difficult tasks during training, where

the difficulty is inversely proportional to performance. Liu et al. (2022b) formulate

the loss weighting as a meta-learning problem where the loss weights are optimized

such that the performance of the network learned with the loss weights obtains good

performance on the validation set. Rather than weighing the losses, Yu et al. (2020)

propose a form of gradient “surgery” that projects each task’s gradient onto the normal

plane of the gradient of any other task and modifies the gradients for each task so as to

minimize negative conflict with other task gradients during the MTL optimization. Liu

et al. (2021a) modifies the parameter update such that the update not only minimizes

the average of task-specific losses but also decreases each task-specific loss.

Our method is complementary to the first line of work. In fact, we show in Sec. 2.5

that our method can be used to boost the state-of-the-art multi-task architectures in

dense prediction problems. While our goal is aligned with the one of the second group,

we propose a significantly different strategy based on knowledge distillation to solve

the unbalanced loss optimization problem. To this end, we first train a task-specific

model for each task in an offline stage and freeze their parameters. We then train the

universal representation (multi-task) network for minimizing task-specific loss and also

for producing the same features with the task-specific networks. As each task-specific

network encodes different features, we introduce small task-specific adapters to project

the universal features to the task-specific features and then minimize the discrepancy

between task-specific and universal features. In contrast to prior works that either rely

solely on weighing the individual loss functions (e.g. Uncertainty (Kendall et al., 2018))

or modifying their gradients for parameter updates (e.g. PCGrad (Yu et al., 2020)) that

are limited to prevent one task dominating or interfering the rest, our method provides a

more direct control on the model parameters through knowledge distillation such that

representations from all tasks are included in the universal representations. Second,

unlike task-specific loss functions with different characteristics which are difficult to

2.2. Related Work 15

balance, the distillation loss function is the same for all tasks and hence provides a

balanced optimization by design. In addition, in this chapter, we show that our method

can also generalize to learning multiple diverse visual domains for standard image

classification (Rebuffi et al., 2017a) and few-shot classification (Triantafillou et al.,

2020).

2.2.2 Multi-domain learning (MDL)

A parallel line of research is learning representations jointly on multiple domains (Bilen

and Vedaldi, 2017; Rosenfeld and Tsotsos, 2018; Rebuffi et al., 2018; Deecke et al.,

2022). Unlike Ganin et al. (2016); Tzeng et al. (2017); Hoffman et al. (2018); Xu et al.

(2018b); Peng et al. (2019); Sun et al. (2019b) that focus on domain adaptation, this line

of work aims at learning a single set of universal representations over multiple tasks

and visual domains. Bilen and Vedaldi (Bilen and Vedaldi, 2017) proposed to learn

a compact multi-domain representation for standard image classification in multiple

visual domains using domain-specific scaling parameters. This idea was later extended

to the use of domain-specific adapters (Rebuffi et al., 2017a; Rosenfeld and Tsotsos,

2018; Rebuffi et al., 2018) and latent domains learning without access to domain

annotations by learning gating functions to select domain-specific adapters for the given

images (Deecke et al., 2022). In this chapter, we also learn a single set of universal

(multi-domain) representations by sharing most of the computation across domains (e.g.

the feature encoder is shared across all domains, followed by multiple domain-specific

classifiers).

However, unlike Rebuffi et al. (2017a); Rosenfeld and Tsotsos (2018); Rebuffi et al.

(2018); Deecke et al. (2022) that use representations pretrained only on ImageNet (Deng

et al., 2009) as the universal ones, and then learn additional domain-specific representa-

tions resulting, our method is capable of learning a single set of universal representations

from multiple domains which requires less number of parameters and it is also a signifi-

cantly harder task due to the challenges in the multi-loss optimization. In addition, those

works do not scale up to multi-task learning in a single domain, as they require running

a network with the corresponding task-specific adaptors for each task separately, while

ours requires only a single forward computation for all tasks.

16 Chapter 2. Learning Universal Representations

2.2.3 Knowledge distillation

Our work is related to knowledge distillation (KD) methods (Hinton et al., 2014; Li

and Bilen, 2020; Ma and Mei, 2019; Phuong and Lampert, 2019; Romero et al., 2015;

Tian et al., 2020a) that distill the knowledge of an ensemble of large teacher models to

a small student neural network at the classifier (Hinton et al., 2014) and intermediate

layers (Romero et al., 2015). Born-Again Neural Networks (Furlanello et al., 2018)

uses KD proposes to consecutively distill knowledge from an identical teacher network

to a student network, which is further applied to few-shot learning by Tian et al. (2020b)

and multi-task learning by Clark et al. (2019).

While our method can also be seen as a distillation method, our goal differs signifi-

cantly. In contrast to the standard KD that aims to learn a single task/domain network

from multiple teachers, our goal is to learn a multi-task/domain network. The differ-

ence is subtle. Multi-task/domain learning typically involves solving an unbalanced

optimization, while aligning the predictions of the multi-task/domain (student) network

with the task-specific (teacher) networks does not necessarily alleviate this issue, as this

alignment problem leads to another unbalanced optimization problem due to varying

dimensionality of task outputs and loss functions required for matching different tasks’

predictions (Clark et al., 2019), e.g., a kl-divergence loss for classification and l2-norm

loss for regression. While alignment of intermediate representations are studied for

KD by Romero et al. (2015), such an alignment is substantially harder when the rep-

resentations vary significantly across different teacher networks. We demonstrate that

mapping the student (or universal) representations to the teacher’s representation space

before the alignment is crucial. Finally, we also show that intermediate representation

matching across very diverse domains can indeed be improved by using a loss function

that is invariant to linear transformations, inspired from Centered Kernel Alignment

(CKA) similarity (Kornblith et al., 2019).

2.3 Preliminaries

In this section, we review the problem setting for single-task and multi-task learning

to provide the required background for universal representation learning. Let D be a

training set consisting of N RGB training images and their respective labels. We con-

sider two general label settings, multi-task learning (MTL) and multi-domain learning

(MDL). In MTL, we assume that training images are sampled from a single distri-

2.3. Preliminaries 17

Frozen task-specific modelsUniversal Network

feature feature feature

Encoder shared
across tasks

Task-specific
decoders

Task-specific
adapters

Feature
alignment

Single-task learning

Task-specific
decoders

Task-specific
encoders

task 1 task T
task 1 task 2 task T

(a) Stage 1 (b) Stage 2

Figure 2.2: Illustration of universal representation learning. In the first stage (a), we

learn a task-specific deep network for each task. In the second stage (b), our goal is

to learn a multi-task network that shares the feature encoder across all tasks and build

multiple task-specific decoders on top of the feature encoder such that it performs well

on these tasks compared to task-specific models trained in (a). To achieve this, we

train such a multi-task network by jointly minimizing task-specific losses and aligning

the feature between the multi-task network and task-specific network. For the feature

alignment, we introduce a set of task-specific adapters to transform the feature from

multi-task network to task-specific space before the alignment with task-specific features.

bution, i.e. dataset, and each training image xxx is associated with labels for T tasks,

y = {yyy1,yyy2, . . . ,yyyT}. This is a common setting for dense prediction problems where

multiple tasks such as semantic segmentation and depth estimation are performed on

the same image. In MDL, the training set contains samples from T different domains,

where each image is associated only with a single domain and its domain-specific task.

The standard MDL benchmarks (Rebuffi et al., 2017a; Triantafillou et al., 2020) contain

images from diverse datasets (e.g. ImageNet, Omniglot, VGG Flowers), each with

a classification task over a mutually exclusive set of categories. Hence, an image xxx

associated with domain t is labelled only with the domain-specific task yyyt . In both MTL

and MDL settings, our goal is to learn a function ŷt for each task t in MTL and for each

domain t in MDL that accurately predicts the ground-truth label yyyt of previously unseen

images.

Note that while in MTL different tasks involve solving different problems such as

semantic segmentation and depth estimation, in MDL they involve solving the same

problem, e.g. image classification, however over a different set of categories. We do not

focus on other scenarios where images from different domains are associated with the

same task (e.g. digit recognition from hand-written notes and real street-numbers).

18 Chapter 2. Learning Universal Representations

2.3.1 Single-task Learning

Single-task learning (STL) involves learning a task-specific function ŷt
stl

2 independently

for each task by optimizing a task-specific loss function `t(ŷt
stl,yyy

t) (e.g. cross-entropy

for classification), which measures the mismatch between the ground-truth label and

prediction as following:

min
φt

stl ,ψ
t
stl

1
N

N

∑
n=1

`t(ŷt
stl(xxxn),yyyt

n), ∀t ∈ {1, . . . ,T} (2.1)

where each ŷt
s is composed of i) a feature encoder fφt

stl
: R3×H×W → RC×H ′×W ′ parame-

terized by φt
stl that takes in an H×W dimensional RGB image and outputs a H ′×W ′

dimensional feature map with C channels, where C > 3, H ′ < H and W ′ < W ; ii) a

decoder hψt
stl

: RC×H ′×W ′→ROt×Ht×W t
that decodes the extracted feature to predict the

label for the task t, i.e. ŷt
stl(xxx) = hψt

stl
◦ fφt

stl
(xxx) where Ot , Ht , W t are the dimensions of

the output space for task t and ψt
stl are its parameters.

2.3.2 Multi-task Learning

A more efficient design is to share a significant portion of the computations and pa-

rameters across the tasks via a common feature encoder fφ : R3×H×W → RC×H ′×W ′ , i.e.

convolutional neural network parameterized by φ that takes in an image xxx and produces

a H ′×W ′ dimensional C feature maps. The parameters φ are shared across all the tasks.

In this setting, fφ is followed by T task-specific decoders hψt : RC×H ′×W ′→ROt×Ht×W t
,

each with its own task-specific weights ψt that decodes the extracted feature to predict

the label for the task t, i.e. ŷt(xxxt) = hψt ◦ fφ(xxxt). A common way of learning ŷt for all

tasks is to jointly optimize the shared and task-specific parameters as following:

min
φ,{ψt}|Tt=1

1
N

N

∑
n=1

∑
yyyt

n∈yn

λ
t`t(ŷt(xxxn),yyyt

n), (2.2)

where λt is a scaling hyperparameter for task t to balance the loss functions among the

tasks. However, obtaining good universal representations through solving Eq. (2.2) is a

challenging problem, as it requires to leverage commonalities between the tasks while

balancing their loss functions and minimizing interference (negative transfer (Chen

et al., 2018b; Yu et al., 2020)) between them. Hence solving Eq. (2.2) often leads to

lower results than the ones of task-specific models, where each task is independently

learned.
2The subscript stl in ŷt

stl indicates single-task learning

2.4. Universal Representation Learning 19

2.4 Universal Representation Learning

Motivated by these challenges, previous methods mainly focus on dynamically bal-

ancing the loss functions through loss weights (λt) or manipulating gradients of each

task w.r.t. the shared encoder to alleviate the conflicts between them while optimizing

Eq. (2.2). However, as reported in a study by Vandenhende et al. (2021), existing

solutions fail to improve over carefully tuning these hyperparameters. We hypothe-

size that modifying hyperparameters and/or gradients provide only a limited control

on the learned representations, and propose a different view on this problem, a two

stage procedure inspired by the knowledge distillation methods (Romero et al., 2015;

Hinton et al., 2014). Assuming that single-task learning often performs well when

sufficient training data is available, we argue that single-task representations provide

powerful representations and hence they provide good approximations to universal

representations.

To this end, we first train task-specific deep networks {ŷt
stl}

T
t=1 as described in

Sec. 2.3.1, where each network consists of a task-specific feature encoder fφt
stl

and

decoder hψt
stl

with parameters φt
stl and ψt

stl respectively. In the second stage, we freeze

their weights, the task-specific feature extractors fφt
stl

and decoders hψt
stl

, and transfer

their knowledge to learn a single set of universal representations by minimizing the

distance between the task-specific and universal representations for given training

samples (see Fig. 2.2).

As minimizing the distance between a single set of universal representations and

multiple single-task representations would not yield a satisfactory solution, i.e. the aver-

age of the single-task representations, we instead first map the universal representations

to each task-specific representation space through small task-specific adapters, and then

compute the distance in this space. In addition, we consider minimizing the distance

between the outputs of the universal and single-task networks as Hinton et al. (2014).

With the introduction of these two distillation terms, Eq. (2.2) can be rewritten as:

min
φ,{ψt ,θt}|Tt=1

1
N

N

∑
n=1

∑
yyyt

n∈yn

(
λ

t`t(ŷt(xxxn),yyyt
n)+

λ
t
f ` f (aθt ◦ fφ(xxxt

n), fφt
stl
(xxxt

n))+λ
t
p`

t
p(ŷ

t(xxxt
n), ŷ

t
stl(xxx

t
n))

)
,

(2.3)

where λt
f and λt

p are task-specific hyperparameters for distilling representations and

predictions respectively. aθt : RC×H ′×W ′ → RC×H ′×W ′ is the adapter for task t which is

parameterized by θt , ` f and `p are distance functions in the task representation space t.

20 Chapter 2. Learning Universal Representations

While a single distance function is used for distilling representations (i.e. ` f), distilling

predictions may require a task-specific distance function (i.e. `t
p). We provide these

details in Sec. 2.5. The adapters are jointly trained along with the network parameters.

Note that we discard the task-specific networks and adapters at test time, only use the

universal network to predict the labels of unseen images. Hence, the inference time of

our method is fixed and does not depend on the number of tasks/domains.

Next we describe how the universal representations are learned for different scenar-

ios including multi-task dense prediction, multi-domain classification and cross-domain

few-shot classification problems.

2.4.1 Multi-Task Dense Prediction

In multi-task dense prediction setting in a single domain, each image xxx is associated

with labels for all tasks. The spatial dimensions of labels for each task is equal to the

image size – hence it is called dense or pixelwise prediction – and is the same for all

tasks. We consider semantic segmentation, monocular depth estimation and surface

normal prediction in our experiments.

In this setting, we only minimize the difference between intermediate representations

of the universal network and task-specific ones, and do not minimize the difference

between the predictions of the universal and single-task networks as Clark et al. (2019);

Hinton et al. (2014); Romero et al. (2015) and set λt
p to zero. In our preliminary

experiments, we observed that matching the predictions leads to a significant drop in

the final performance. As each task prediction has a different magnitude range and

characteristic, we argue that jointly minimizing these distances along with other loss

terms in Eq. (2.3) leads to a challenging unbalanced optimization.

Let mmmt = aθt ◦ fφ(xxx) ∈ RC×H ′×W ′ and ssst = fφt
stl
(xxx) ∈ RC×H ′×W ′ denote representa-

tions obtained from the universal and single-task encoder for a given image xxxn and task

t, respectively. We normalize two feature maps with L2 Norm: m̃mmchw = mmmchw/||mmm·hw||2
and s̃sschw = ssschw/||sss·hw||2, where mmmchw indicates a hidden unit at c,h,w in mmm. We then

measure the distance between two normalized feature maps by using the Euclidean

distance function for ` f as following:

` f (mmm,sss) =
W

∑
w=1

H

∑
h=1

C

∑
c=1
‖m̃mmchw− s̃sschw‖2

2 . (2.4)

We investigate different designs for aθ (e.g. aligning features without adapters, with

linear adapter or nonlinear) and ` f (e.g. Attention Transfer Komodakis and Zagoruyko

2.4. Universal Representation Learning 21

(2017), Cosine Distance) and show that using linear adapters for aθ with Euclidean

distance function for ` f obtains the best performance in Sec. 2.5.5.

2.4.2 Multi-Domain Classification

We also consider a multi-domain scenario as in Visual Decathlon (Rebuffi et al., 2017a),

where the training set D contains T subdatasets, each sampled from a different domain.

Each image is associated with only one domain and hence one task. The associated task

is known in both train and test time as in in Visual Decathlon (Rebuffi et al., 2017a).

Like the multi-dense prediction problem, our goal is to learn a single network with a

shared feature encoder fφ across the domains, thus the tasks. Unlike the multi-dense

prediction problem, the output of the feature encoder is a vector (i.e. H ′ = 1 and W ′ = 1)

and also the predictions (i.e. Ht = 1 and W t = 1). In particular, the feature encoder fφ

is a convolutional neural network followed by an average global pooling layer as in

ResNet (He et al., 2016).

Following the two stage procedure, we first independently train a set of domain-

specific deep networks {ŷt
stl}

T
t=1 by Eq. (2.1) where each consists of a specific feature

encoder fφt
stl

and classifier hψt
stl

with parameters φt
stl and ψt

stl respectively in the first

stage. Unlike the previous setting that trains multiple task-specific networks on the

same training set, this setting involves training each domain network on a different

training set from a different domain. In the second stage, we then learn the universal

network over training images of multiple domains using Eq. (2.3). Rather than setting

λp in Eq. (2.3) to zero as in Sec. 2.4.1, here we use KL divergence loss for `p in Eq. (2.3)

to align predictions of single-task and universal networks.

Though we use domain-specific adapters to map the universal features to the domain-

specific space, learning a single set of representations over substantially diverse domains

still remains challenging, requires to model complex non-linear relations between and

hence a more elaborate distance function (` f) than the Euclidean one. To this end,

we propose to adopt the Centered Kernel Alignment (CKA) (Kornblith et al., 2019)

similarity index with the Radial Basis Function (RBF) kernel that is originally proposed

as an analysis tool to measure similarities between neural network representations and

shown to be invariant to various transformations, capable of capturing meaningful

non-linear similarities between representations of higher dimension than the number

of data points. Differently from the original goal, we use CKA as a loss function to

minimize the distance between universal and domain-specific representations rather

22 Chapter 2. Learning Universal Representations

than an analysis tool.

Next we briefly describe CKA. Given a set of images {xxxt
1, . . . ,xxx

t
B}, let M = [aθt ◦

fφ(xxxt
1), . . . ,aθt ◦ fφ(xxxt

B)]
> ∈ RB×C and S = [fφt

stl
(xxxt

1), . . . , fφt
stl
(xxxt

B)]
> ∈ RB×C denote the

features that are computed by the multi-domain network adapted by aθt and domain-

specific networks respectively. We first compute the RBF kernel matrices P and T of M
and S respectively and then use two kernel matrices P and T to measure CKA similarity

between M and S:

CKA(M,S) = tr(PHTH)/
√

tr(PHPH)tr(THTH), (2.5)

where tr(·) and H denote the trace of a matrix and centering matrix Hn = In− 1
n11>

respectively. The loss ` f (M,Y) can be derived as ` f (M,S) = 1−CKA(M,S) as

dissimilarity between the multi-domain and domain-specific features. As the original

CKA similarity requires the computation of the kernel matrices over the whole datasets,

which is not scalable to large datasets, we follow Nguyen et al. (2021) and compute

them over each minibatch in our training. We refer to Kornblith et al. (2019); Nguyen

et al. (2021) for more details.

Discussion. In contrast to the previous setting where the universal representations

are learned over multiple domains from sufficiently large data, cross-domain few-shot

learning requires obtaining the domain-specific knowledge from only few samples

in an unseen domain, which is extremely challenging. Hence, our hypothesis is that

transferring universal representations should yield more effective learning of new

domains, as the base assumption is that there is a bounded number of representations

for vision problems.

2.5 Experiments

In this section, we analyze and evaluate our method in three problems, i) learning

multiple dense prediction tasks on two popular benchmarks, NYU-v2 (Silberman et al.,

2012) and Cityscapes (Cordts et al., 2016) in Sec. 2.5.1, ii) learning multiple diverse

visual domains on the Visual Domain Decathlon (Rebuffi et al., 2017a) in Sec. 2.5.4

and iii) few-shot classification on MetaDataset (Triantafillou et al., 2020) in Sec. 4.4.

Finally, we conduct extensive analysis over various design choices in Sec. 2.5.5. 3

3The code and models that are used in our experiments will be available at https://github.com/
VICO-UoE/UniversalRepresentations.

https://github.com/VICO-UoE/UniversalRepresentations
https://github.com/VICO-UoE/UniversalRepresentations

2.5. Experiments 23

2.5.1 Learning multiple dense prediction tasks

Here, we evaluate our method on learning universal representations for performing

multiple dense prediction tasks on two standard multi-task learning benchmarks NYU-

v2 (Silberman et al., 2012) and Cityscapes (Cordts et al., 2016) as in the prior works (Liu

et al., 2019, 2021a).

Datasets and experimental setting. We follow the training and evaluation settings

in the prior works (Liu et al., 2019, 2021a) for both single-task and multi-task learning

in both datasets. More specifically, NYU-V2 (Silberman et al., 2012) contains RGB-D

indoor scene images, where we evaluate performances on 3 tasks, including 13-class

semantic segmentation, depth estimation, and surface normals estimation. We use the

true depth data recorded by the Microsoft Kinect and surface normals provided by Eigen

and Fergus (2015) for depth and surface normal estimation as in the prior work Liu

et al. (2019). All images are resized to 288×384 resolution as in MTAN (Liu et al.,

2019). We follow the default setting (Silberman et al., 2012; Liu et al., 2019) where 795

and 654 images are used for training and testing, respectively. Cityscapes (Cordts et al.,

2016) consists of street-view images, which are labeled for two tasks: 7-class semantic

segmentation4 and depth estimation. We resize the images to 128×256 to speed up the

training as Liu et al. (2019).

In both NYU-v2 and Cityscapes, we follow the training and evaluation protocol

in the prior work (Liu et al., 2019). We apply our method and all the baseline meth-

ods to two common multi-task architectures, encoder and decoder based ones. The

encoder-based methods only share information in the encoder before decoding each

task with an independent task-sepcific decoder while the decoder-based approaches

also exchange information during the decoding stage (Vandenhende et al., 2021). For

the encoder-based, we use the SegNet (Badrinarayanan et al., 2017) as the backbone.

Following Liu et al. (2019), we use cross-entropy loss for semantic segmentation, l1-

norm loss for depth estimation in Cityscapes, and cosine similarity loss for surface

normal estimation in NYU-v2. We use the exactly same hyper-parameters including

learning rate, optimizer and also the same evaluation metrics, mean intersection over

union (mIoU), absolute error (aErr) and mean error (mErr) in the predicted angles to

evaluate the semantic segmentation, depth estimation and surface normals estimation

task, respectively in the prior work (Liu et al., 2019).

4The original version of Cityscapes provides labels 7&19-class semantic segmentation. We follow
the 7-class semantic segmentation evaluation protocol as in the prior work (Liu et al., 2019) to be able to
compare to the related works.

24 Chapter 2. Learning Universal Representations

For the decoder-based, we build our method on PAD-Net (Xu et al., 2018a) and

MTI-Net (Vandenhende et al., 2020b) that use multi-scale feature extractor (encoder)

based on the HRNet-18 (Sun et al., 2019a) initialized with ImageNet pretrained weight

as the feature encoder. We use the same loss functions, evaluation metrics, and training

and evaluation protocol as done for SegNet backbone. For our method, we use the

uniform loss weights (i.e. λt = 1 for all tasks) for task-specific losses, unless stated

otherwise. As we do not minimize the difference between predictions of the universal

and single-task networks, we set λt
p in Eq. (2.3) to zero. We then first split the train

set as train and validation set to search λt
f ∈ {1,2} by cross-validation and train our

network on the whole training set. We set λt
f to 1 for semantic segmentation and depth

and 2 for surface normal estimation. Please refer to Appendix A.1.1 for more details.

Multi-task performance. In addition to the abovementioned evaluation metric for

each task, following prior works (Vandenhende et al., 2021; Li et al., 2022), we also

report the multi-task performance4MTL whih measures the average per-task drop in

performance w.r.t. the single-task baseline:

4MTL =
1
T

T

∑
t=1

(−1)`t (Pt−Pt
stl)/Pt

stl, (2.6)

where `t = 1 if a lower value of Pt means better performance for metric of task t, and 0

otherwise. Pt and Pt
stl are performance (e.g. mIoU for semantic Segmentation) of the

universal (multi-task) network and single-task network, respectively.

2.5.2 Encoder-based Architecture

Compared methods. Encoder-based architectures, including the vanilla MTL using

SegNet (Badrinarayanan et al., 2017) that shares the whole feature encoder across

all tasks and consists of task-specific decoders, and MTAN (Liu et al., 2019) which

extends the vanilla MTL baseline by sharing the SegNet across tasks and using task-

specific attention modules in each layer to extract task-specific features. We compare

our method to the single-task learning (STL) baseline, i.e. train individual network

per task, the vanilla multi-task learning network with uniform loss weights (MTL),

and balanced optimization strategies, including Uncertainty (Kendall et al., 2018),

GradNorm (Chen et al., 2018b), MGDA (Sener and Koltun, 2018), DWA (Liu et al.,

2019), PCGrad (Yu et al., 2020), GradDrop (Chen et al., 2020c), IMTL (Liu et al.,

2021c) and CAGrad (Liu et al., 2021a). We also consider the BAM (Clark et al.,

2019) which is originally designed for natural language processing and adapt this

2.5. Experiments 25

method for visual dense prediction tasks by aligning dense predictions. Importantly,

this model performs knowledge distillation on predictions when learning the multi-task

network and hence comparing this method sheds light onto the importance of matching

intermediate representations in the task-specific spaces. Here we use KL-divergence

loss, l1-norm loss and cosine similarity loss as knowledge distillation loss on predictions

for semantic segmentation, depth estimation and surface normal estimation, respectively.

We reproduce all methods in the same settings for fair comparison and the results of

the compared methods are similar or better than the ones reported in the corresponding

papers.

Results on NYU-v2. Table 2.1 depicts the results of our method and other compared

approaches in NYU-v2. We see that the vanilla MTL (Uniform) using SegNet achieves

better performance in depth estimation, however, its performance drops in surface

normal estimation in comparison with STL. This indicates that joint optimization of

multiple tasks with uniform loss weights leads to unbalanced results, and overall worse

performance than STL models in ∆MTL metric. While only few balanced optimization

algorithms help to improve the MTL performance, IMTL-H and CAGrad obtains the

best when applied to SegNet and MTAN. IMTL-H improves by balancing the pace

at which tasks are learned via looking at the projection onto individual tasks of the

average gradient w.r.t. the shared parameters while CAGrad achieves improvement by

modifying the parameter update such that the update not only minimizes the average of

task-specific losses but also decreases each task-specific loss. While BAM optimizes

the multi-task learning network by knowledge distillation, it performs worse than

the Uniform baseline as it aligns the predictions which requires using different loss

functions (e.g. cross-entropy for segmentation) and requires solving another unbalanced

optimization problem. This shows that simply distilling the predictions of the multiple

single task network leads to poor performance. Finally, our method outperforms

these methods with either SegNet or MTAN backbones significantly, +7.84% MTL

performance improvement over the IMTL-H, the best baseline. The results suggest that

distilling features from multiple single-task networks provides a more effective learning

of shared representations.

Results on Cityscapes. We also evaluate all methods in Cityscapes and report the

results in Tab. 2.2. Similar to the results in NYU-v2, BAM obtains worse results

compared with the STL methods (e.g.-0.58% MTL performance when using the vanilla

MTL method with SegNet). Among the loss balancing methods, Uncertainty and IMTL-

26 Chapter 2. Learning Universal Representations

Arch Method Seg. (mIoU) ↑ Depth (aErr) ↓ Norm. (mErr) ↓ 4MTL ↑

SegNet

STL 40.54 0.6276 24.28 +0.00

Uniform 40.22 0.5196 29.09 -1.13

Uncertainty (Kendall et al., 2018) 37.35 0.5014 26.74 +0.72

GradNorm (Chen et al., 2018b) 40.15 0.5824 27.70 -2.60

MGDA (Sener and Koltun, 2018) 39.77 0.5669 29.05 -3.95

DWA (Liu et al., 2019) 40.27 0.5247 28.71 -0.82

PCGrad (Yu et al., 2020) 39.55 0.5236 28.54 -1.13

GradDrop (Chen et al., 2020c) 39.25 0.5226 29.41 -2.52

IMTL-H (Liu et al., 2021c) 40.62 0.5224 26.14 +3.11

CAGrad (Liu et al., 2021a) 37.99 0.5196 25.77 +1.61

BAM (Clark et al., 2019) 37.72 0.5571 28.58 -4.47

Ours 45.52 0.4912 24.57 +10.95

MTAN

STL 38.69 0.5701 24.85 +0.00

Uniform 40.60 0.5238 26.87 +1.65

Uncertainty (Kendall et al., 2018) 39.59 0.5382 26.21 +0.83

GradNorm (Chen et al., 2018b) 38.97 0.5269 26.22 +0.94

MGDA (Sener and Koltun, 2018) 40.08 0.5410 26.84 +0.23

DWA (Liu et al., 2019) 40.34 0.5418 27.65 -0.68

PCGrad (Yu et al., 2020) 39.42 0.5290 27.17 -0.07

GradDrop (Chen et al., 2020c) 39.19 0.5552 27.35 -2.05

IMTL-H (Liu et al., 2021c) 41.12 0.5200 25.73 +3.86

CAGrad (Liu et al., 2021a) 42.17 0.5227 25.42 +5.01

BAM (Clark et al., 2019) 40.49 0.5412 26.84 +0.58

Ours 43.91 0.5019 24.58 +8.85

Table 2.1: Test performance on NYU-v2. We evaluate single-task learning (STL) method

and multi-task learning methods (MTL) on NYU-v2. Mean intersection over union (mIoU)

for semantic segmentation, absolute error (aErr) for depth estimation, mean error (mErr)

for surface normal estimation and multi-task performance (4MTL) are reported.

H obtain the best MTL performance in both backbones (i.e. SegNet and MTAN) but

their performance is lower than the STL models in both tasks. This shows the difficulty

of optimizing the MTL network in a balanced way in this problem. Our method obtains

significant gains on both tasks than all the compared methods and also achieves better

results than the STL results. The results again demonstrate that our method is able to

optimize the MTL model in a more balanced way and to achieve better overall results.

In addition, our method has much less parameters (one network) than the STL models

(two networks) in Cityscapes.

2.5. Experiments 27

Arch Method Seg. (mIoU) ↑ Depth (aErr) ↓ 4MTL ↑

SegNet

STL 74.19 0.0122 +0.00

Uniform 73.82 0.0126 -0.74

Uncertainty (Kendall et al., 2018) 72.74 0.0123 -0.29

GradNorm (Chen et al., 2018b) 73.67 0.0130 -2.75

MGDA (Sener and Koltun, 2018) 73.86 0.0130 -2.43

DWA (Liu et al., 2019) 73.51 0.0126 -1.13

PCGrad (Yu et al., 2020) 73.55 0.0126 -1.16

GradDrop (Chen et al., 2020c) 73.09 0.0125 -0.96

IMTL-H (Liu et al., 2021c) 73.26 0.0124 -0.56

CAGrad (Liu et al., 2021a) 74.50 0.0136 -4.34

BAM (Clark et al., 2019) 74.02 0.0123 -0.58

Ours 75.53 0.0119 +2.21

MTAN

STL 75.92 0.0119 +0.00

Uniform 75.31 0.0119 -0.56

Uncertainty (Kendall et al., 2018) 74.95 0.0121 -1.73

GradNorm (Chen et al., 2018b) 74.88 0.0123 -2.70

MGDA (Sener and Koltun, 2018) 75.84 0.0129 -4.65

DWA (Liu et al., 2019) 75.39 0.0121 -1.42

PCGrad (Yu et al., 2020) 75.62 0.0122 -1.73

GradDrop (Chen et al., 2020c) 75.69 0.0123 -2.15

IMTL-H (Liu et al., 2021c) 75.33 0.0120 -1.20

CAGrad (Liu et al., 2021a) 75.45 0.0124 -2.69

BAM (Clark et al., 2019) 75.74 0.0122 -1.44

Ours 76.42 0.0117 +0.81

Table 2.2: Testing results on Cityscapes. We evaluate single-task learning (STL) method

and multi-task learning methods (MTL) on Cityscapes. Mean intersection over union

(mIoU) for semantic segmentation, absolute error (aErr) for depth estimation and multi-

task performance (4MTL) are reported.

Incorporating loss balancing to ours. While our method achieves consistent im-

provements over all the target tasks, solving Eq. (2.3) also involves minimizing a

weighted sum of multiple loss terms. Hence here we investigate whether our method

can also benefit from dynamically setting weights of the individual loss terms in NYU-

v2. In particular, we use SegNet as backbone, and we dynamically update the weights

of task-specific losses (i.e. λt) with keeping the weight of distillation loss fixed (λ f).

We evaluate our method with each of three best performing loss balancing methods, i.e.

Uncertainty, IMTL-H and CAGrad and report the results in Tab. 2.3. We see that our

method is complementary to these loss balancing methods and it significantly improves

28 Chapter 2. Learning Universal Representations

the performance of loss balancing methods (e.g. Ours (Uncertainty) obtains about +12

improvement in MTL performance over the Uncertainty). Also, we can see that by

applying our method to loss balancing methods obtains better performance than using

our method with the Uniform MTL baseline.

Arch Method Seg. (mIoU) ↑ Depth (aErr) ↓ Norm. (mErr) ↓ 4MTL ↑

SegNet

STL 40.54 0.6276 24.28 +0.00

Uniform 40.22 0.5196 29.09 -1.13

Ours (Uniform) 45.52 0.4912 24.57 +10.95

Uncertainty (Kendall et al., 2018) 37.35 0.5014 26.74 +0.72

Ours (Uncertainty) 46.03 0.4780 24.04 +12.80

IMTL-H (Liu et al., 2021c) 40.62 0.5224 26.14 +3.11

Ours (IMTL-H) 46.33 0.5000 23.65 +12.41

CAGrad (Liu et al., 2021a) 37.99 0.5196 25.77 +1.61

Ours (CAGrad) 45.58 0.5059 23.68 +11.44

Table 2.3: Testing results on NYU-v2. We evaluate single-task learning (STL) method

and multi-task learning methods (MTL) on NYU-v2. Mean intersection over union (mIoU)

for semantic segmentation, absolute error (aErr) for depth estimation, mean error (mErr)

for surface normal estimation and multi-task performance (4MTL) are reported.

2.5.3 Decoder-based Architectures

We also apply our method to the decoder-based methods, PAD-Net (Xu et al., 2018a)

and MTI-Net (Vandenhende et al., 2020b) which are particularly designed for MTL

by exchanging information during the decoding stage and achieve state-of-the-art

performances in MTL (Vandenhende et al., 2021). Apart from these results, we also

include results of the vanilla MTL method using the same backbone (HRNet-18 (Sun

et al., 2019a)) of PAD-Net and MTI-Net as baseline and we report all results in NYU-v2

and Cityscapes in Tab. 2.4 and Tab. 2.5.

First we see that decoder based methods achieve better performance than the encoder

based ones, as they use more powerful customized architectures and initialized with pre-

trained ImageNet weights. Similar to encoder-based methods, the vanilla MTL method

obtains better performance in Segmentation than STL while it performs worse in depth

and surface normal estimation than STL models in NYU-v2 due to the unbalanced

optimization. In Cityscapes, it performs worse in both tasks than STL baselines.

Our method when applied to the vanilla MTL method using HRNet-18 backbone

2.5. Experiments 29

improves the performance over the vanilla MTL method and achieves a balanced MTL

performance (i.e. better or comparable results than STL) in both datasets.

We see in Tab. 2.4 and Tab. 2.5 that the decoder-based methods (PAD-Net and

MTI-Net) obtain better performance than the vanilla MTL method by first employing

a multi-task network to make initial task predictions, and then leveraging features

from these initial predictions to improve each task output (MTI-Net obtains +1.72

MTL performance in NYU-v2). Here, PAD-Net improves over the vanilla MTL by

aggregating information from the initial task predictions of other tasks by spatial

attention for estimating the final task output while MTI-Net extends the PAD-Net to

a multi-scale procedure by making initial task predictions and distilling information

at each individual scale (of feature). However, they still suffer from the unbalanced

optimization problem (e.g. MTI-Net obtains worse performance in surface normal

estimation in NYU-v2 and semantic segmentation in Cityscapes, respectively). Building

our method on these decoder-based methods helps to boost their performance (Ours

(MTI-Net) vs MTI-Net: +4.11% vs +1.72%). These results indicate that our method

can be used with various architectures and enable more balanced performance over

multiple tasks, and boost their overall performance.

Method Seg. (mIoU) ↑ Depth (aErr) ↓ Norm. (mErr) ↓ 4MTL ↑

STL 53.07 0.3608 20.90 +0.00

MTL 53.39 0.3626 23.35 -3.87

Ours (MTL) 54.03 0.3565 21.43 +0.15

PAD-Net (Xu et al., 2018a) 54.07 0.3583 22.60 -1.85

Ours (PAD-Net) 54.75 0.3537 21.80 +0.28

MTI-Net (Vandenhende et al., 2020b) 54.59 0.3353 21.90 +1.72

Ours (MTI-Net) 56.48 0.3317 21.36 +4.11

Table 2.4: Testing results on NYU-v2. We evaluate single-task learning (STL) method

and decoder-based multi-task learning methods (MTL) with HRNet on NYU-v2. Mean

intersection over union (mIoU) for semantic segmentation, absolute error (aErr) for depth

estimation, mean error (mErr) for surface normal estimation and multi-task performance

(4MTL) are reported.

30 Chapter 2. Learning Universal Representations

Method Seg. (mIoU) ↑ Depth ↓ 4MTL ↑

STL 76.92 0.0111 +0.00

MTL 76.67 0.0115 -1.86

Ours (MTL) 77.20 0.0111 +0.06

PAD-Net (Xu et al., 2018a) 77.83 0.0109 +1.47

Ours (PAD-Net) 77.84 0.0107 +2.48

MTI-Net (Vandenhende et al., 2020b) 76.61 0.0111 -0.17

Ours (MTI-Net) 77.10 0.0109 +0.77

Table 2.5: Testing results on Cityscapes. We evaluate single-task learning (STL) method

and decoder-based multi-task learning methods (MTL) with HRNet on Cityscapes. Mean

intersection over union (mIoU) for semantic segmentation, absolute error (aErr) for depth

estimation and multi-task performance (4MTL) are reported.

Model #params ImNet Airc. C100 DPed DTD GTSR Flwr OGlt SVHN UCF avg ↑ S ↑ 4MDL ↑
#images 1.3m 7k 50k 30k 4k 40k 2k 26k 70k 9k

Feature (ImNet) (Rebuffi et al., 2017a) 1 59.67 23.31 63.11 80.33 45.37 68.16 73.69 58.79 43.54 26.80 54.28 544 - -

Scratch (Rebuffi et al., 2017a) 10 59.87 57.10 75.73 91.20 37.77 96.55 56.30 88.74 96.63 43.27 70.23 1625 - -

Finetune (Rebuffi et al., 2017a) 10 59.87 60.34 82.12 92.82 55.53 97.53 81.41 87.69 96.55 51.20 76.51 2500 +0.00

Serial RA (Rebuffi et al., 2017a) 2 59.67 56.68 81.20 93.88 50.85 97.05 66.24 89.62 96.13 47.45 73.88 2118 -3.95

DAN (Rosenfeld and Tsotsos, 2018) 2.17 57.74 64.12 80.07 91.30 56.54 98.46 86.05 89.67 96.77 49.38 77.01 2851 +0.60

Piggyback (Mallya et al., 2018) 1.28 57.69 65.29 79.87 96.99 57.45 97.27 79.09 87.63 97.24 47.48 76.60 2838 +0.00

MDL 1 59.30 67.21 79.60 97.08 57.66 97.28 83.88 87.41 96.39 45.76 77.16 2866 +0.75

Parallel RA (Rebuffi et al., 2018) 2 60.32 64.21 81.91 94.73 58.83 99.38 84.68 89.21 96.54 50.94 78.07 3412 +2.20

Parallel RA SVD (Rebuffi et al., 2018) 1.5 60.32 66.04 81.86 94.23 57.82 99.24 85.74 89.25 96.62 52.50 78.36 3398 +2.70

Ours 1 61.45 74.35 80.45 97.55 59.57 98.24 86.73 89.72 96.95 49.01 79.40 3626 +4.19

Ours (RA) 2 61.97 77.17 82.31 97.58 60.69 98.75 87.28 90.40 97.14 51.89 80.52 4005 +5.96

Table 2.6: Universal Representation Learning on Visual Decathlon. Accuracy on the test

sets of individual dataset, average accuracy of 10 datasets (avg), evaluation score (S),

multi-domain learning performance (4MDL) and the number of parameters (#params)

w.r.t. a single task network are reported.

2.5.4 Multi-domain Learning

Here we evaluate our method on learning universal representations for multiple image

classification tasks over multiple diverse domains in Visual Decathlon Benchmark (Re-

buffi et al., 2017a).

Dataset. The Visual Decathlon Benchmark (Rebuffi et al., 2017a) consists of 10

different well-known datasets: including ILSVRC 2012 (ImNet) (Russakovsky et al.,

2015), FGVC-Aircraft (Airc.) (Maji et al., 2013), CIFAR-100 (C100) (Krizhevsky

et al., 2009), Daimler Mono Pedestrian Classification Benchmark (DPed) (Munder

and Gavrila, 2006), Describable Texture Dataset (DTD) (Cimpoi et al., 2014), German

Traffic Sign Recognition (GTSR) (Houben et al., 2013), Flowers102 (Flwr) (Nilsback

2.5. Experiments 31

and Zisserman, 2008), Omniglot (OGlt) (Lake et al., 2015), Street View House Numbers

(SVHN) (Netzer et al., 2011), UCF101 (UCF) (Soomro et al., 2012). In this bench-

mark (Rebuffi et al., 2017a), images are resized to a common resolution of roughly 72

pixels to accelerate training and evaluation by the organizers.

Implementation details. We follow Rebuffi et al. (2017a, 2018), use the official

train/val/test splits, evaluation protocol, also use the ResNet-26 (He et al., 2016) as

the backbone for domain-specific network and universal network. In our universal

network, the backbone (i.e. ResNet-26) is shared across all domains and followed by

domain-specific linear classifiers. We use the same data augmentation (random crop,

flipping) and SGD as optimizer, and train domain-specific networks and our universal

network for 120 epochs as in the prior works (Rebuffi et al., 2017a, 2018). Here we set

the loss weights to 1 (i.e. λt = 1 for all tasks) and perform cross-validation to search loss

weights (λt
f ,λ

t
p) in {0.1,1,10} for knowledge distillations on features and predictions,

and set λ f and λp to 10 for ImageNet, 0.1 for DPed, and 1 for other datasets. Please

refer to Appendix A.1.2 for more details.

Results. In Visual Decathlon, we compare our method to Feature i.e. a feature extrac-

tor on ImageNet and learn classifiers on top of the feature extractor for other domains,

and single domain learning models that are learned from Scratch or Finetune from the

ImageNet pretrained feature extractor. We also compared our method with existing

approaches, including Serial Residual Adapters (RA) (Rebuffi et al., 2017a), Parallel

RA and Parallel RA SVD (Rebuffi et al., 2018), DAN (Rosenfeld and Tsotsos, 2018)

and Piggyback (Mallya et al., 2018). Results are from the corresponding papers.

We report the results on the test split on each domains by the official online evalua-

tion (Rebuffi et al., 2018) in Tab. 2.6, including testing accuracy in individual datasets,

average accuracy over 10 datasets (avg), decathlon evaluation score (S) (Rebuffi et al.,

2018), number of parameters (#params) w.r.t. one single task network. We also consider

the multi-domain performance (i.e.4MDL) as described in Eq. (2.6). First, while using

ImageNet features requires only 1× parameters, they do not generalize well to other

datasets when a large domain gap is present (e.g. SVHN). In contrast, single-task learn-

ing models obtained by either learning from scratch or finetuning achieves significantly

better performance (e.g. Finetune obtains 76.51 average accuracy and 2500 score) with

the expense of 10 times more parameters.

We use Finetune as the baseline as in the prior works (Rebuffi et al., 2017a, 2018)

and compute4MDL metric for existing methods and ours. We can see that Serial RA

which learns a set of domain-specific residual adapters for each task with a ImageNet

32 Chapter 2. Learning Universal Representations

pretrained feature extractor greatly reduce the number of parameter to 2× while it

obtains slightly worse performance than Finetune (e.g. 73.88 vs 76.51 average accuracy

for Serial RA and Finetune, respectively). The performance is further improved by

DAN which constrains newly learned filters to be linear combinations of existing ones

when adapting a pretrained model for other domains, i.e. DAN obtains 77.01 average

accuracy, +0.60 MDL performance and only requires 2.17 parameters). Piggyback

learns binary domain-specific masks to select effective filters to adapt a pretrained

model for each domain (it obtains 76.60 average accuracy, +0.00 MDL performance

and further reduces the number of parameters to 1.28). Connecting the RAs in parallel

to the backbone (Parallel RAs) boosts the performance of the serial configuration while

keeping the same computation cost (78.07 in average accuracy and +2.20 in MDL

performance). The authors show that the performance can be further improved by

decomposing residual adapters to low rank adapters through (78.36 average accuracy,

+2.70 MDL performance and 1.5 parameters).

Finally, we show that our method (Ours) successfully learns a single feature extractor

shared across all domains only with 1× parameters, the same number of parameters with

a single domain network. Our model obtains better results than the Finetune baseline

and existing methods in most domains (Ours obtains 79.40 average accuracy and +4.19

MDL performance). This clearly shows that learning representations from all domains

jointly produces more general features than ImageNet representations. However, this

is challenging due to the optimization issues. The difference between our model and

vanilla MDL model shows that simply optimizing over multiple domain-specific loss

functions is not sufficient to obtain good representations and representation distillation is

crucial. We also show that RAs can be incorporated into our universal network. Jointly

learning a shared ResNet-26 backbone with residual adapters (i.e. Ours (RA)) boosts

the performance, e.g. Ours (RA) obtains the best or second best performance in most

datasets (e.g. Airc., DTD, etc), best average accuracy (80.52), best MDL performance

(+5.96) while only requires 2 in parameters cost and best score (4005).

2.5.5 Further Analysis

In this section, we provide an extensive analysis over various adapter types, loss

functions for knowledge distillation for multi-task learning and multi-domain learning.

Effect of adapters. As explained in Sec. 2.4, we employ adapters to align the univer-

sal representations with each task-specific representation (see aθt in Eq. (2.3)). Here,

2.5. Experiments 33

we evaluate our method without any adapters (by directly matching universal repre-

sentations with task-specific ones), also with two different adapter parameterizations

including linear adapters (i.e. each adapter is constructed by a linear 1×1 convolutional

layer, this is the default setting in Sec. 2.5.1, Sec. 2.5.4), nonlinear adapters (i.e. each

adapter consists of two linear convolutional layers and a ReLU layer between them).

We report their results on the NYU-v2 dataset in Tab. 2.7. From the results, we can see

that, though directly aligning features without the adapters improves performance on

all tasks over the vanilla MTL baseline (Uniform), it still performs significantly worse

than using either linear or non-linear adapters. This verifies that the adapters help align

features between the multi-task network with features of different single-task networks.

We also observe that, using linear and nonlinear adapters obtains comparable results

and using linear adapters is sufficient. We hypothesize that there is a tradeoff between

the complexity of adapters and informativeness of aligned features. For instance, using

deep multi-layer adapters would overfit the data and align the pairs very accurately,

hence leading to inferior representation transfer. Thus we argue that the linear adapters

provide a good complexity/performance tradeoff.

Arch Type Method Seg. (IoU) ↑ Depth (aErr) ↓ Norm. (mErr) ↓ 4MTL ↑

SegNet

STL SL 40.54 0.6276 24.28 +0.00

MTL

Uniform 40.22 0.5196 29.09 -1.13

Ours (w/o adapter) 41.64 0.5086 25.88 +5.03

Ours (nonlinear) 44.84 0.4881 24.59 +10.52

Ours (linear) 45.52 0.4912 24.57 +10.95

Table 2.7: Testing results on NYU-v2. ‘linear’ means we use a linear convolutional

layer for adapters and ‘nonlinear’ means we use non-linear adapters (i.e. each adapter

consists of two linear convolutional layers and a ReLU layer between them). ‘w/o adapter’

means aligning features without any adapters

Loss functions for knowledge distillation. Here we evaluate various loss functions

for distilling intermediate representations (i.e. ` f (·) in Eq. (2.3)) including standard

ones such as L2, cosine distance, and also Attention Transfer (AT) (Komodakis and

Zagoruyko, 2017) that align the spatial attention maps computed by averaging the

feature maps along the channel dimension and CKA. Here, we use linear adapters for

aligning features between multi-task and single-task networks before measuring their

discrepancy with these loss functions.

34 Chapter 2. Learning Universal Representations

Arch Type Loss Seg. (IoU) ↑ Depth (aErr) ↓ Norm. (mErr) ↓ 4MTL ↑

SegNet

STL SL 40.54 0.6276 24.28 +0.00

MTL

-/- 40.22 0.5196 29.09 -1.13

AT 39.93 0.5060 28.81 -0.26

Cosine 44.22 0.4969 25.45 +8.37

L2 45.52 0.4912 24.57 +10.95

Table 2.8: Testing results on NYU-v2. ‘MTL’ and ‘STL’ means multi-task learning and

single-task learning, respectively. ‘AT’, ‘KL’, ‘Cosine’ and ‘L2’ means using Attention

Transfer, KL-divergence, Cosine and L2 loss functions respectively.

We first evaluate these loss functions for multiple dense prediction problems in

NYU-v2 and report the results in Tab. 2.8 where our default loss function is L2. Here,

we apply knowledge distillation with different loss functions to the vanilla MTL method

with SegNet (Badrinarayanan et al., 2017) as backbone (Note that CKA loss function is

not included as it requires too large memory cost to operate on feature maps). From the

results, we can see that AT obtains the worst performance among these loss functions

as it aligns the averaged features where some information is lost, but it still outperforms

the vanilla MTL with uniform loss weights. While Cosine loss function performs better

than AT, using L2 loss function obtains the best results.

As the official online evaluation (Rebuffi et al., 2018) of the Visual Decathlon

Benchmark only allow 10 submissions for the evaluation and the validation set is not

representative of the distribution of the test set for some datasets 5. To this end, we eval-

uate various adapter and loss function designs in learning universal representations from

multiple domains for cross-domain few-shot learning in Sec. 4.4.5 in MetaDataset (Tri-

antafillou et al., 2020). As shown in Sec. 4.4.5, we again show that directly aligning

features without adapters is worse than using linear adapters. We also show that the

proposed CKA loss function for aligning features performs better than L2 and COSINE

loss functions and adding additional KL loss function on predictions further boosts the

performance (See Sec. 4.4.5 for detailed results).

5The validation set is not representative of the distribution of the test set for some datasetsas mentioned
in this issue https://github.com/srebuffi/residual_adapters/issues/3.

https://github.com/srebuffi/residual_adapters/issues/3

2.5. Experiments 35

Ground-
Truth

Ours

IMTL-H

Uniform

STL

Figure 2.3: Qualitative results on NYU-v2. The fist column shows the RGB image, the

second column plots the ground-truth or predictions with the IoU (↑) score of all methods

for semantic segmentation, the third column presents the ground-truth or predictions

with the absolute error (↓), and we show the prediction of surface normal with mean error

(↓) in the last column.

2.5.6 Qualitative results

Here, we analyze our method and qualitatively compare our method to STL, MTL

with Uniform loss weights and the best compared method, i.e. IMTL-H (Liu et al.,

2021c) for multi dense prediction problem on NYU-v2 with SegNet backbone (see

Fig. 2.3, see Appendix A.2 for more examples). We can see that, Uniform baseline

obtains improvement on segmentation and depth estimation over STL, while it performs

worse in surface normal estimation. Though dynamically balancing the loss values with

36 Chapter 2. Learning Universal Representations

IMTL-H improves the overall performance, it still performs worse in surface normal

estimation. Finally by distilling representations from single-task learning model to the

universal network, our method can produce better or comparable results to STL, i.e.

our method produces similar outputs for surface normal as STL and more accurate

predictions for segmentation and depth estimation as our method enables a balanced

optimization of universal network and a task can be benefited from another one. This

indicates the effectiveness of our method on learning shared representations for multiple

dense predictions.

2.6 Conclusion and Limitations

We showed that learning general features from multiple tasks and domains is an im-

portant step for better generalization in various computer vision problems including

multiple dense prediction, multi-domain image classification and we also validate the

same capability for cross-domain few-shot learning in Chapter 4. By distilling represen-

tations from multiple task-specific or domain-specific networks, we can successfully

learn a single set of universal representations after aligning them via small task/domain-

specific adapters. These representations are compact and generalize better to unseen

samples, tasks and domains in multiple benchmarks.

A limitation of our method is that it requires multiple models to learn universal

representations at train time which can be computationally expensive in the presence

of many tasks. In future, we would like to alleviate this problem by hierarchically

grouping similar tasks and learning a single model on them, and then distilling their

knowledge into universal representations. We would also like to extend our method to

problems that involve multiple tasks and multiple domains at the same time such as

semantic segmentation and depth estimation from different cities (or domains).

Another limitation of learning universal representations for multiple dense prediction

tasks is that standard methods are data inefficient. In particular, they require all the task

labels are available to learn the multi-task learning model. However, in a real-world

scenario, it is costly and difficult to collect such datasets and it is more practical to

design algorithms to learn the MTL model in a more data efficient way, e.g. learning

MTL model from partial supervision. In the next chapter, we formulate this problem

in a more practical setting called multi-task partially supervised learning and present

an efficient algorithm that leverages cross-task relations to learn the MTL model from

partially annotated data.

Chapter 3

Multi-task Learning from Partially

Annotated Data

In this chapter, we look at the dense prediction problems, where a dense prediction task

aims to produce pixel-level predictions (e.g. semantic and instance segmentation, depth

estimation). The recent MTL dense prediction methods rely on fully annotated training

data where all training images are labelled for all tasks for training the multi-task

learning model from them. To address this, we propose a new and more practical setting

called multi-task partially supervised learning and presents an architecture-agnostic

method to learn the MTL model from partially annotated data by leveraging cross-task

relations.

This chapter begins with an introduction of background in MTL dense prediction

from partially annotated data and the main idea of the proposed method in Sec. 3.1.

Sec. 3.2 summarizes related literature of multi-task dense prediction and cross-task

relations. The multi-task partially supervised learning setting and a novel method for

learning MTL from partially annotated data are introduced in Sec. 3.3, followed by

experiments in Sec. 3.4 and a conclusion in Sec. 3.5.

3.1 Introduction

Recent MTL dense prediction methods broadly focus on designing MTL architec-

tures (Misra et al., 2016; Ruder et al., 2019; Gao et al., 2019; Liu et al., 2019; Lu et al.,

2017; Vandenhende et al., 2020a; Bruggemann et al., 2020; Guo et al., 2020; Bragman

et al., 2019; Xu et al., 2018a; Zhang et al., 2019, 2018; Vandenhende et al., 2020b; Zhou

et al., 2020) that enable effective sharing of information across tasks and improving

37

38 Chapter 3. Multi-task Learning from Partially Annotated Data

depth

(c) Cross-task consistency learning.

depthsegmentation

segmentation

depthsegmentation

(a) Fully annotated dataset.

(b) Partially annotated dataset.

segmentation
prediction depth prediction

depth groundtruthcross-task consistency
in joint space

Figure 3.1: Multi-task partially supervised learning. We look at the problem of

learning multiple tasks from partially annotated data (b) where not all the task labels

are available for each image, which generalizes over the standard supervised learning

(a) where all task labels are available. We propose a MTL method that employs a

shared feature extractor (fφ) with task-specific heads (hψ) and exploits label correlations

between each task pair by mapping them into a joint pairwise task-space and penalizing

inconsistencies between the provided ground-truth labels and predictions (c).

the MTL optimization (Gong et al., 2019; Kendall et al., 2018; Chen et al., 2018b; Liu

et al., 2019; Guo et al., 2018; Sener and Koltun, 2018; Lin et al., 2019; Yu et al., 2020;

Chen et al., 2020c; Li and Bilen, 2020) to balance the influence of each task-specific

loss function and to prevent interference between the tasks. We refer to Vandenhende

et al. (2021) for a more comprehensive review. One common and strong assumption in

these works is that each training image has to be labelled for all the tasks. There are two

main practical limitations to this assumption. First, curating multi-task image datasets

(e.g. KITTI (Geiger et al., 2012) and CityScapes (Cordts et al., 2016)) typically involves

using multiple sensors to produce ground-truth labels for several tasks and obtaining all

the labels for each image requires very accurate synchronization between the sensors,

which is a challenging research problem by itself (Voges and Wagner, 2018). Second,

imagine a scenario where i) one would like to add a new task to an existing image

3.1. Introduction 39

dataset which is already annotated for another task and ii) obtaining the ground-truth

for the new task requires using a different sensor (e.g. depth camera) to the one which is

used to capture the original data. In this case, labelling the previously recorded images

for the new task will not be possible for many visual scenes (e.g. uncontrolled outdoor

environments). Such real-world scenarios lead to obtaining partially annotated data and

thus ask for algorithms that can learn from such data.

In this chapter, we look at a more realistic and general case of the MTL dense

prediction problem where not all the task labels are available for each image and we call

this setting multi-task partially supervised learning. In particular, we assume that each

image is at least labelled for one task and there are at least few images labelled for each

task and we would like to learn a multi-task model on them. A naive way of learning

from such partial supervision is to train a multi-task model only on the available labels

(i.e. by setting the weight of the corresponding loss function to 0 for the missing task

labels). Though, in this setting, the MTL model is trained on all the images thanks to the

parameter sharing across the tasks, it cannot extract the task-specific information from

the images for the unlabelled tasks. To this end, one can extend existing single-task

semi-supervised learning methods to MTL by penalizing the inconsistent predictions

of images over multiple perturbations for the unlabelled tasks (e.g. consistency-based

methods (Chen et al., 2020d; Liu et al., 2008; Terzopoulos et al., 2019; Latif et al., 2019;

Imran et al., 2020)). While this strategy ensures consistent predictions over various

perturbations, it does not guarantee consistency across the related tasks.

An orthogonal information that has recently been used in MTL is cross-task relation

(Zamir et al., 2020; Lu et al., 2021; Saha et al., 2021) which aims at producing consistent

predictions across task pairs. Unfortunately existing methods are not directly applicable

for learning from partial supervision, as they require either each training image to be

labelled with all the task labels (Zamir et al., 2020; Saha et al., 2021) or cross-task

relations that can be analytically derived (Lu et al., 2021). In our setting, there are fewer

training images available with ground-truth labels of each task pair and thus it is harder

to learn the relationship. In addition, we focus on the general setting where one task

label cannot be accurately obtained from another (e.g. from semantic segmentation to

depth) and hence learning exact mappings between two task labels is not possible.

Motivated by these challenges, we propose a MTL approach that shares a feature

extractor between tasks and also learns to relate each task pair in a learned joint pairwise

task-space (illustrated in Fig. 3.1(c)), which encodes only the shared information

between them and does not require the ill-posed problem of recovering labels of one

40 Chapter 3. Multi-task Learning from Partially Annotated Data

task from another one. There are two challenges to this goal. First, a naive learning of

the joint pairwise task-spaces can lead to trivial mappings that take all predictions to

the same point such that each task produces artificially consistent encodings with each

other. To this end, we regulate learning of each mapping by penalizing its output to

retain high-level information about the input image. Second, the computational cost

of modelling each task pair relation can get exponentially expensive with the number

of tasks. To address this challenge, we use a single encoder network to learn all the

pairwise-task mappings, however, dynamically estimate its weights by conditioning

them on the target task pair.

The main contributions of our method are as follows. We propose a new and

practical setting for multi-task dense prediction problems and a novel MTL model that

penalizes cross-task consistencies between pairs of tasks in joint pairwise task-spaces,

each encoding the commonalities between pairs, in a computationally efficient manner.

We show that our method can be incorporated to several architectures and significantly

outperforms the related baselines in three standard multi-task benchmarks.

3.2 Related Work

3.2.1 Multi-task Semi-supervised Learning

Multi-task Learning (MTL) (Caruana, 1997; Vandenhende et al., 2021; Ruder, 2017;

Zhang and Yang, 2017) aims at learning a single model that can infer all desired task

outputs given an input. Standard multi-task learning works mainly focus on supervised

setting, where each sample in the dataset is annotated for all desired tasks as highlighted

in Sec. 2.2.

However, learning multi-task models on fully annotated data would require large-

scale labeled data and it is costly to collect sufficient labeled data. Thus few works

propose to learn multi-task learning model using semi-supervised learning strategy (Liu

et al., 2008; Zhang and Yeung, 2009; Wang et al., 2009; Chen et al., 2020d; Liu

et al., 2008; Terzopoulos et al., 2019; Latif et al., 2019; Imran et al., 2020) and they

assume that the dataset consists of limited labeled annotated with all tasks labels and

a large amount of unlabeled data. Liu et al. (Liu et al., 2008) extend single-task semi-

supervised learning to multi-task learning by learning a classifier per task jointly under

the constraint of a soft-sharing prior imposed over the parameters of the classifiers. In

prior works (Chen et al., 2020d; Liu et al., 2008; Terzopoulos et al., 2019; Latif et al.,

3.3. Method 41

2019; Imran et al., 2020), the authors employ a regularization term on the unlabeled

samples of each tasks that encourages the model to produce ‘consistent’ predictions

when its inputs are perturbed.

3.2.2 Cross-task Relations

A rich body of work (Liu et al., 2010; Bilen and Vedaldi, 2016; Zamir et al., 2016,

2018; Lu et al., 2021; Zamir et al., 2020; Saha et al., 2021; Zhou et al., 2017; Casser

et al., 2019; Wang et al., 2021; Hoyer et al., 2021; Sun et al., 2021) study the relations

between tasks in MTL. Most related to ours, Saha et al. (2021) explore the relations

between segmentation and depth and propose a better fusion strategy to fuse two task

predictions for domain adaptation. Zamir et al. (Zamir et al., 2020) study the cross-task

consistency learned from groundtruth of all tasks for robust learning, i.e. the predictions

made for multiple tasks from the same image are not independent, and therefore, are

expected to be ‘consistent’. Similar to Zamir et al. (2020), Lu et al. (Lu et al., 2021)

propose to leverage the cross-task consistency between predictions of different tasks

on unlabeled data in a mediator dataset when jointly learning multiple models for

distributed. To regularize the cross-task consistency, Lu et al. (Lu et al., 2021) design

multiple consistency losses according to the consistency between adjacent frames in

videos, relations between depth and surface normal, etc. In this chapter, we also exploit

the cross-task consistency in MTL, however, from partially annotated data where the

mapping from one task label to another cannot be analytically derived or exactly learned.

To this end, unlike Zamir et al. (2020); Lu et al. (2021), we learn a joint task-space for

each task pair rather than measuring consistency in one’s task space. Finally, our method

learns cross-task in a more computationally efficient way than the prior works (Zamir

et al., 2020; Lu et al., 2021) by sharing parameters across different mappings and

conditioning its output on the related task-pair.

3.3 Method

3.3.1 Problem setting

Let xxx ∈ R3×H×W and yyyt ∈ ROt×H×W denote an H×W dimensional RGB image and

its dense label for task t respectively, where Ot is the number of output channels for

task t. Our goal is to learn a function ŷt for each task t that accurately predicts the

ground-truth label yyyt of previously unseen images. While such a task-specific function

42 Chapter 3. Multi-task Learning from Partially Annotated Data

Depth

input image

ground-truth

Regularization

unlabelled
task

labelled
task

(b) Cross-task Consistency in joint space(a) Multi-task learning

 FiLM layers

(c) Conditional joint task-pair mapping
 FiLM layers

Semantic Segmentation

Figure 3.2: Illustration of our method for multi-task partially supervised learning. Given an

image, our method uses a shared feature extractor fφ taking in the input image and task-

specific decoders (hψs and hψt) to produce predictions for all tasks (a). We compute the

supervised loss Lt for labelled task. Besides, we regularize the cross-task consistency

Lct between the unlabelled task’s prediction ŷyys and the labelled task’s ground-truth yyyt in a

joint space for the unlabelled task (b). To learn the cross-task consistency efficiently, we

propose to use a shared mapping function whose output is conditioned on the task-pair

(c) and regularize the learning of mapping function using the feature from fφ to prevent

trivial solution.

can be learned for each task independently, a more efficient design is to share most

of the computations across the tasks via a common feature encoder, convolutional

neural network fφ : R3×H×W → RC×H ′×W ′ parameterized by φ that takes in an image

and produces a H ′×W ′ dimensional feature map with C channels, where typically

H ′ < H and W ′ <W . In this setting, fφ is followed by multiple task-specific decoders

hψt :RC×H ′×W ′→ROt×H×W , each with its own task-specific weights ψt that decodes the

extracted feature to predict the label for the task t, i.e. ŷt(xxx) = hψt ◦ fφ(xxx) (Fig. 3.2(a)).

Let D denote a set of N training images with their corresponding labels for K tasks.

Assume that for each training image xxx, we have ground-truth labels available only

for some tasks where we use T and U to store the indices of labeled and unlabelled

tasks respectively, where |T |+ |U|= K, U =∅ indicates all labels available for xxx and

T = ∅ indicates no labels available for xxx. In this chapter, we focus on the partially

annotated setting, where each image is labelled at least for one task (|T | ≥ 1) and there

exist at least few images with their ground-truth labels for each task available.

A naive way of learning ŷt for each task on the partially annotated data D is to

3.3. Method 43

jointly optimize its parameters on the labelled tasks as following:

min
φ,ψ

1
N

N

∑
n=1

1
|Tn| ∑

t∈Tn

Lt(ŷt(xxxn),yyyt
n), (3.1)

where n is the image index and Lt is the task-specific differentiable loss function. We

denote this setting as the (vanilla) MTL. Here, thanks to the parameter sharing through

the feature extractor, its task-agnostic weights are learned on all the images. However,

the task-specific weights ψt are trained only on the labeled images.

A common strategy to exploit such information from unlabeled tasks is to formu-

late the problem in a semi-supervised learning (SSL) setting. Recent successful SSL

techniques (Berthelot et al., 2019; Sohn et al., 2020) focus on learning models that

can produce consistent predictions for unlabelled images when its input is perturbed in

various ways.

min
φ,ψ

1
N

N

∑
n=1

(1
|Tn| ∑

t∈Tn

Lt(ŷt(xxxn),yyyt
n)+

1
|Un| ∑t∈U

Lu(er(ŷt(xxxn)), ŷt(er(xxxn))
)
, (3.2)

where Lu is the unsupervised loss function and er is a geometric transformation (i.e.

cropping) parameterized by the random variable r (i.e. bounding box location). In

words, for the unsupervised part, we apply our model to the original input xxx and also

its cropped version er(xxx), and then we also crop the prediction corresponding to the

original input er(ŷt(xxxn)) before we measure the difference between two by using Lu.

Note that we are aware of more sophisticated task-specific SSL methods for semantic

segmentation (Olsson et al., 2021; Mendel et al., 2020), depth estimation (Kuznietsov

et al., 2017; Guizilini et al., 2020), however, combining them for multiple tasks, each

with different network designs and learning formulations is not trivial and here we focus

on one SSL strategy that uses one perturbation type (i.e. random cropping) and Lu (i.e.

mean square error) can be applied to several tasks.

3.3.2 Cross-task consistency learning

While optimizing Eq. (3.2) allows learning both task-agnostic and task-specific weights

on the labeled and unlabelled data, it does not leverage cross-task relations, which can

be used to further supervise unlabelled tasks. Prior works (Zamir et al., 2020; Lu et al.,

2021) define the cross-task relations by a mapping function ms→t for each task-pair

(s, t) which maps the prediction for the source task s to target task t labels. The mapping

function proposed by Lu et al. (2021) is analytical based on the assumption that target

44 Chapter 3. Multi-task Learning from Partially Annotated Data

task labels can be analytically computed from source labels. While such analytical

relations is possible only for certain task pairs, each mapping function in the previous

work (Zamir et al., 2020) is parameterized by a deep network and its weights are learned

by minimizing Lct(ms→t(yyys),yyyt), where Lct is cross-task function that measures the

distance between the mapped source labels and target labels. There are two limitations

to this method in our setting. First the training set has a limited number of labelled

images for both source and target tasks (yyys and yyyt). Second, learning such pairwise

mappings accurately is not often possible in our case, as the labels of one task can

only be partially recovered from another task (e.g. semantic segmentation to depth

estimation). Note that this ill-posed problem can be solved accurately when strong prior

knowledge about the data is available.

To employ cross-task consistency to our setting, we map each task pair (s, t) to

a lower-dimensional joint pairwise task-space where only the common features of

both tasks are encoded (Fig. 3.2(b)). Formally, each pairwise task-space for (s, t) is

defined by a pair of mapping functions, mϑst
s

: ROs×H×W → RD and mϑst
t

: ROt×H×W →
RD parameterized by ϑst

s and ϑst
t respectively. The cross-task consistency can be

incorporated to Eq. (3.1) as following:

min
φ,ψ,ϑ

1
N

N

∑
n=1

(1
|Tn| ∑

t∈Tn

Lt(ŷt(xxxn),yyyt
n
)
+

1
|Un| ∑

s∈Un,t∈Tn

Lct
(
mϑst

s
(ŷs(xxxn)),mϑst

t
(yyyt

n)
))

,

(3.3)

where Lct is cosine distance (i.e. Lct(a,b) = 1−(a ·b)/(|a||b|). In words, along with the

MTL optimization, Eq. (3.3) minimizes the cosine distance between the embeddings of

the unlabelled task prediction ŷyys and the annotated task label yyyt in the joint pairwise task

space. Here mϑst
s

and mϑst
t

are not necessarily equal to allow for treating the mapping

from predicted and ground-truth labels differently. Note that one can also include the

semi-supervised term Lu in Eq. (3.3). However we empirically found that it does not

bring any tangible performance gain when used with the cross-task term Lct .

There are two challenges to learn non-trivial pairwise mapping functions in a com-

putationally efficient way. First the number of pairwise mappings to learn quadratically

grows with the number of tasks. Although the mapping functions are only used in

training, it can still be computationally expensive to train many of them jointly. In

addition, learning an accurate mapping for each task-pair can be challenging in case of

limited labels. Second, the mapping functions can simply learn a trivial solution such

that each task is mapped to a fixed point (e.g. zero vector) in the shared space.

3.3. Method 45

Conditional joint task-pair mapping. To address the first challenge, as shown in

Fig. 3.2(c), we propose to use a task-agnostic mapping function m̄ϑ with one set of

parameters ϑ whose output is conditioned both on the input task (s or t) and task-pair

(s, t) through an auxiliary network (aθ). Concretely, let A denote a variable that includes

the input task (s or t) and target pair (s, t) for a pairwise mapping which in practice we

encode with an asymmetric K×K dimensional matrix by setting the corresponding

entry to 1 (i.e. A[s, t] = 1 or A[t,s] = 1) and the other entries to 0. Note that the diagonal

entries are always zero, as we do not define any self-task relation. Let m̄ϑ be a multi-

layer network and hhhi denote a M channel feature map of its i-th layer for which the

auxiliary network aθ, parameterized by θ, takes in A and outputs two M-dimensional

vectors ac
θ,i and ab

θ,i. These vectors are applied to transform the feature map hhhi in a

similar way to the one proposed by Perez et al. (2018) as following:

hhhi← ac
θ,i(A)�hhhi +ab

θ,i(A)

where � denotes a Hadamard product. In other words, the auxiliary network alters the

output of the task-agnostic mapping function m̄ϑ based on A. For brevity, we denote

the conditional mapping from s to (s, t) as ms→st which is a function of m̄ϑ and aθ and

hence parameterized with ϑ and θ.

We implement each ac
i and ab

i as an one layer fully-connected network. Hence,

given the light-weight auxiliary network, the computational load for computing the

conditional mapping function, in practice, does not vary with the number of task-pairs.

Finally, as the dimensionality of each task label vary – e.g. while Ot is 1 for depth

estimation and Ot equals to number of categories in semantic segmentation –, we use

task-specific input layers and pass each prediction to the corresponding one before

feeding it to the joint pairwise task mapping. In the formulation, we include these layers

in our mapping m̄ϑ and explain their implementation details in Sec. 3.4.

Regularizing mapping function. To avoid learning trivial mappings, we propose

a regularization strategy (Fig. 3.2) that encourages the mapping to retain high-level

information about the input image. To this end, we penalize the distance between the

output of the mapping function and a feature vector that is extracted from the input

image. In particular, we use the output of the task-agnostic feature extractor fφ(xxx) in

46 Chapter 3. Multi-task Learning from Partially Annotated Data

the regularization. Now we can add the regularizer to the formulation in Eq. (3.3):

min
φ,ψ,ϑ,θ

1
N

N

∑
n=1

(1
|Tn| ∑

t∈Tn

Lt(ŷt(xxxn),yyyt
n
)
+

1
|Un| ∑

s∈Un,t∈Tn

Lct
(
ms→st(ŷs(xxxn)),mt→st(yyyt

n)
)

+R(fφ(xxxn),ms→st(ŷs(xxxn)))

+R(fφ(xxxn),mt→st(yyyt
n))
)
,

(3.4)

where fφ(xxx) is the feature from feature encoder fφ, R is the loss function and we use the

cosine similarity loss for R in this chapter.

Alternative mapping strategies. Here we discuss two different mapping strategies

to exploit cross-task consistency proposed by Zamir et al. (2020) and their adoption to

our setting. As both require learning a mapping from one task’s groundtruth label to

another one and we have either no or few images with both groundtruth labels, here

we approximate them by learning mappings from prediction of one task to another

task’s groundtruth. In the first case, one can substitute our cross-consistency loss and

regularization terms with Lct(ms→t(ŷs(xxx)),yyyt) in Eq. (3.4), which denote as Direct-Map.

In the second case, we replace our terms with Lct(ms→t(ŷs(xxx)),ms→t(yyys)) that maps

both the groundtruth yyys and predicted labels ŷyys and minimize their distance in task t’s

label space. We denote this setting as Perceptual-Map and compare our method to them

in Sec. 3.4.

Alternative loss and regularization strategies. Alternatively, our cross-consistency

loss and regularization terms can be replaced with another loss function only that does

not allow for learning of trivial mappings. One such loss function is contrastive loss

where one can define the predictions for two tasks on the same image as a positive

pair (i.e. ms→st(ŷs(xxxi)) and mt→st(yyyt
i)) and on different images as a negative pair (i.e.

ms→st(ŷs(xxx j)) and mt→st(yyyt
i)), and penalize when the distance from the positive one

is bigger than the negative one. We denote this setting as Contrastive-Loss. Another

method which also employs positive and negative pairs involves using a discriminator

network. The discriminator (a convolutional neural network) takes in positive and

negative pairs and predicts their binary labels, while the parameters of the MTL net-

work and mapping functions are alternatively optimized. We denote this setting as

Discriminator-Loss and compare our approach to the alternative methods in Sec. 3.4.

3.4. Experiments 47

3.4 Experiments

Datasets. We evaluate all methods on three standard dense prediction benchmarks,

Cityscapes (Cordts et al., 2016), NYU-V2 (Silberman et al., 2012), and PASCAL (Ever-

ingham et al., 2010). Cityscapes (Cordts et al., 2016) consists of street-view images,

which are labeled for two tasks: 7-class semantic segmentation1 and depth estima-

tion. We resize the images to 128×256 to speed up the training as Liu et al. (2019).

NYU-V2 (Silberman et al., 2012) contains RGB-D indoor scene images, where we

evaluate performances on 3 tasks, including 13-class semantic segmentation, depth

estimation, and surface normals estimation. We use the true depth data recorded by

the Microsoft Kinect and surface normals provided by Eigen and Fergus (2015) for

depth estimation and surface normal estimation. All images are resized to 288×384

resolution as in MTAN (Liu et al., 2019). PASCAL (Everingham et al., 2010) is a

commonly used benchmark for dense prediction tasks. We use the data splits from

PASCAL-Context (Chen et al., 2014) which has annotations for semantic segmentation,

human part segmentation and semantic edge detection. Additionally, Following Van-

denhende et al. (2021), we also consider the tasks of surface normals prediction and

saliency detection and use the annotations provided by Vandenhende et al. (2021).

Experimental setting. For the evaluation of multi-task models learned in different

partial label regimes, we design two settings: (i) random setting where, we randomly

select and keep labels for at least 1 and at most K−1 tasks where K is the number of

tasks, (ii) one label setting, where we randomly select and keep label only for 1 task for

each training image.

In Cityscapes and NYU-v2, we follow the training and evaluation protocol in the

prior work (Liu et al., 2019) and we use the SegNet (Badrinarayanan et al., 2017) as

the MTL backbone for all methods. As Liu et al. (2019), we use cross-entropy loss

for semantic segmentation, l1-norm loss for depth estimation in Cityscapes, and cosine

similarity loss for surface normal estimation in NYU-v2. We use the exactly same hyper-

parameters including learning rate, optimizer and also the same evaluation metrics,

mean intersection over union (mIoU), absolute error (aErr) and mean error (mErr) in the

predicted angles to evaluate the semantic segmentation, depth estimation and surface

normals estimation task, respectively in MTAN (Liu et al., 2019). We use the encoder

of SegNet for the joint pairwise task mapping (m̄ϑ) and one convolutional layer as

1The original version of Cityscapes provides labels for 19-class semantic segmentation. We follow the
evaluation protocol in the prior work (Liu et al., 2019), we use labels of 7-class semantic segmentation.
Please refer to Liu et al. (2019) for more details.

48 Chapter 3. Multi-task Learning from Partially Annotated Data

task-specific input layer in m̄ϑ. For Direct-Map and Perceptual-Map, as Zamir et al.

(2020) we use the whole SegNet as the cross-task mapping functions.

In PASCAL, we follow the training, evaluation protocol and implementation in the

prior work (Vandenhende et al., 2021) and employ the ResNet-18 (He et al., 2016) as

the encoder shared across all tasks and Atrous Spatial Pyramid Pooling (ASPP) (Chen

et al., 2018a) module as task-specific heads. We use the same hyper-parameters, e.g.

learning rate, augmentation, loss functions, loss weights as Vandenhende et al. (2021).

For evaluation metrics, we use the optimal dataset F-measure (odsF) (Martin et al.,

2004) for edge detection, the standard mean intersection over union (mIoU) for semantic

segmentation, human part segmentation and saliency estimation are evaluated, mean

error (mErr) for surface normals. We modify the ResNet-18 to have task-specific input

layers (one convolutional layer for each task) before the residual blocks as the mapping

function m̄ϑ in our method. We refer to Appendix B.1 for more details.

3.4.1 Results

We compare our method to multiple baselines including the vanilla MTL Supervised

Learning (SL) baseline in Eq. (3.1) on both all the labels and partial labels in Eq. (3.1),

and the MTL Semi-supervised Learning (SSL) in Eq. (3.2), also variations of our

method with Direct-Map, Perceptual-Map, Contrastive-Loss and Discriminator-Loss as

described in Sec. 3.3. We use uniform weights for task-specific losses for all, unless

stated otherwise. See Appendix B.2.1 for more results.

Results on Cityscapes. We first compare our method to the baselines on Cityscapes

in Tab. 3.1 for only one label setting as there are two tasks in total. The results of the

MTL model learned with SL when all task labels are available for training to serve as a

strong baseline. In the partial label setting (one task label per image), the performance

of the SL baseline drops substantially compared to its performance in full supervision

setting. While the SSL baseline, by extracting task-specific information from unlabelled

tasks, improves over SL, further improvements are obtained by exploiting cross-task

consistency in various ways except Discriminator-Loss. The methods that learn map-

pings from one task to another one (Perceptual-Map and Direct-Map) surprisingly

perform better than the ones learning joint space mapping functions (Contrastive-Loss

and Discriminator-Loss), possibly due to insufficient number of negative samples.

Due to the same reason, we exclude the further comparisons to Contrastive-Loss and

Discriminator-Loss in NYU-v2 and PASCAL and include them in Appendix B.2.1.

3.4. Experiments 49

Finally, the best results are obtained with our method that can exploit cross-task relations

more efficiently through joint pairwise task mappings with the proposed regularization.

Interestingly, our method also outperforms the SL baseline that has access to all the task

labels, showing the potential information in the cross-task relations.

label Method Seg. (IoU) ↑ Depth (aErr) ↓

full Supervised Learning 73.36 0.0165

one

Supervised Learning 69.50 0.0186

Semi-supervised Learning 71.67 0.0178

Perceptual-Map 72.82 0.0169

Direct-Map 72.33 0.0179

Contrastive-Loss 71.79 0.0183

Discriminator-Loss 68.94 0.0208

Ours 74.90 0.0161

Table 3.1: Multi-task learning results on Cityscapes. ‘one’ indicates each image is

randomly annotated with one task label.

Results on NYU-v2. We then evaluate our method along with the baselines on NYU-

v2 in the random and one label settings in Tab. 3.2. While we observe a similar trend

across different methods, overall the performances are lower in this benchmark possibly

due to fewer training images than CityScapes. As expected, the performance in the

random-label setting is better than the one in one-label setting, as there are more

labels available in the former. While the best results are obtained with SL trained

on the full supervision, our method obtains the best performance among the partially

supervised methods. Here SSL improves over SL trained on the partial labels and cross-

task consistency is beneficial except for Direct-Map in the one label setting, possibly

because the dataset is too small to learn accurate mappings between two tasks, while our

method is more data-efficient and more successful to exploit the cross-task relations.

Results on PASCAL-Context. We evaluate all methods on PASCAL-Context, in

both label settings, which contains a wider variety of tasks than the previous benchmarks

and report the results in Tab. 3.3. As the required number of pairwise mappings for

Direct-Map and Perceptual-Map grows quadratically (20 mappings for 5 tasks), we

omit these two due to their high computational cost and compare our method only to

SL and SSL baselines. We see that the SSL baseline improves the performance over SL

50 Chapter 3. Multi-task Learning from Partially Annotated Data

labels Method Seg. (IoU) ↑ Depth (aErr) ↓ Norm. (mErr) ↓

full Supervised learning 36.95 0.5510 29.51

random

Supervised Learning 27.05 0.6624 33.58

Semi-supervised Learning 29.50 0.6224 33.31

Perceptual-Map 32.20 0.6037 32.07

Direct-Map 29.17 0.6128 33.63

Ours 34.26 0.5787 31.06

one

Supervised Learning 25.75 0.6511 33.73

Semi-supervised Learning 27.52 0.6499 33.58

Perceptual-Map 26.94 0.6342 34.30

Direct-Map 19.98 0.6960 37.56

Ours 30.36 0.6088 32.08

Table 3.2: Multi-task learning results on NYU-v2. ‘random’ indicates each image is

annotated with a random number of task labels and ‘one’ means each image is randomly

annotated with one task.

in the random-label setting, however, it performs worse than the SL in one label setting,

when there are 60% less labels. Again, by exploiting task relations, our method obtains

better or comparable results to SSL, while the gains achieved over SL and SSL are more

significant in the low label regime (one-label). Interestingly, SSL and our method obtain

comparable results in the random-label setting which suggests that relations across tasks

are less informative than the ones in CityScape and NYUv2.

labels Method Seg. (IoU) ↑ H. Parts (IoU) ↑ Norm. (mErr) ↓ Sal. (IoU) ↑ Edge (odsF) ↑

full Supervised Learning 63.9 58.9 15.1 65.4 69.4

random

Supervised Learning 58.4 55.3 16.0 63.9 67.8
Semi-supervised Learning 59.0 55.8 15.9 64.0 66.9

Ours 59.0 55.6 15.9 64.0 67.8

one

Supervised Learning 48.0 55.6 17.2 61.5 64.6

Semi-supervised Learning 45.0 54.0 16.9 61.7 62.4

Ours 49.5 55.8 17.0 61.7 65.1

Table 3.3: Multi-task learning results on PASCAL. ‘random’ indicates each image is

annotated with a random number of task labels and ‘one’ means each image is randomly

annotated with one task.

3.4. Experiments 51

3.4.2 Further results

Learning from partial and imbalanced task labels. So far, we considered the par-

tially annotated setting where the number of labels for each task is similar. We further

evaluate all methods in an imbalanced partially supervised setting in Cityscapes, where

we assume the ratio of labels for each task are imbalanced, e.g. we randomly sample

90% of images to be labeled for semantic segmentation and only 10% images having

labels for depth and we denote this setting by the label ratio between segmentation and

depth (Seg.:Depth = 9:1). The opposite case (Seg.:Depth = 1:9) is also considered.

#labels Method Seg. (IoU) ↑ Depth (aErr) ↓

full Supervised Learning 73.36 0.0165

1:9

Supervised Learning 63.37 0.0161

Semi-supervised Learning 64.40 0.0179

Perceptual-Map 68.84 0.0141

Direct-Map 67.04 0.0153

Ours 71.89 0.0131

9:1

Supervised learning 72.77 0.0250

Semi-supervised Learning 72.97 0.0395

Perceptual-Map 73.36 0.0237

Direct-Map 73.13 0.0288

Ours 74.23 0.0235

Table 3.4: Multi-task learning results on Cityscapes. ‘#label’ indicates the number ratio of

labels for segmentation and depth, e.g. ‘1:9’ means we have 10% of images annotated

with segmentation labels and 90% of images have depth groundtruth.

We report the results in Tab. 3.4. The performance of supervised learning (SL) on

the task with partial labels drops significantly. Though SSL improves the performance

on segmentation, its performance on depth drops in both cases. In contrast to SL and

SSL, our method and Perceptual-Map obtain better results on all tasks in both settings

by learning cross-task consistency while our method obtains the best performance by

joint space mapping. This demonstrates that our model can successfully learn cross-task

relations from unbalanced labels thanks to its task-agnostic mapping function which

can share parameters across multiple task pairs.

Cross-task consistency learning with full supervision. Our method can also be

applied to the fully-supervised learning setting where all task labels are available for

52 Chapter 3. Multi-task Learning from Partially Annotated Data

each sample by mapping one task’s prediction and another task’s ground-truth to the

joint space and measuring cross-task consistency in the joint space. We applied our

method to NYU-v2 and compare it with the single task learning (STL) networks, vanilla

MTL baseline, recent multi-task learning methods, i.e. MTAN (Liu et al., 2019), X-

task (Zamir et al., 2020), and several methods focusing on loss weighting strategies, i.e.

Uncertainty (Kendall et al., 2018), GradNorm (Chen et al., 2018b), MGDA (Sener and

Koltun, 2018) and DWA (Liu et al., 2019) in Tab. 3.5.

Method Seg. (IoU) ↑ Depth (aErr) ↓ Norm. (mErr) ↓

STL 37.45 0.6079 25.94

MTL 36.95 0.5510 29.51

MTAN (Liu et al., 2019) 39.39 0.5696 28.89

X-task (Zamir et al., 2020) 38.91 0.5342 29.94

Uncertainty (Kendall et al., 2018) 36.46 0.5376 27.58

GradNorm (Chen et al., 2018b) 37.19 0.5775 28.51

MGDA (Sener and Koltun, 2018) 38.65 0.5572 28.89

DWA (Liu et al., 2019) 36.46 0.5429 29.45

Ours 41.00 0.5148 28.58

Ours + Uncertainty 41.09 0.5090 26.78

Table 3.5: Multi-task fully-supervised learning results on NYU-v2. ‘STL’ indicates stan-

dard single-task learning and ‘MTL’ means the standard multi-task learning network.

MTL, MTAN, X-task and Ours are trained with uniform loss weights. We see that

our method (Ours) performs better than the other methods with uniform loss weights,

e.g. MTAN and X-task, where X-task regularizes cross-task consistency by learning

perceptual loss with pretrained cross-task mapping functions. This shows that cross-

task consistency is informative even in the fully supervised case and our method is

more effective for learning cross-task consistency. Compared to recent loss weighting

strategies, our method (Ours) obtains better performance on segmentation and depth

estimation than other methods while slightly worse on normal estimation compared with

GradNorm and Uncertainty. This is because the loss weighting strategies enable a more

balanced optimization of the multi-task learning model than uniformly loss weighting.

Thus when we incorporate the loss weighing strategy of Uncertainty (Kendall et al.,

2018) to our method, i.e. (Ours + Uncertainty), our method obtains further improvement

and outperforms both GradNorm and Uncertainty.

3.4. Experiments 53

3.4.3 Ablation study

Here, we conduct an ablation study to evaluate the effect of task-pair conditional

mapping function and the regularization in Eq. (3.4). To this end, we report results

of our method without task-pair condition network (aθ), denoted as ‘Ours (w/o cond)’

where we use a single mapping (m̄ϑ) for all task pairs, and also our method without

the regularization in Eq. (3.4), denoted as ‘Ours (w/o reg)’ in Tab. 3.6. First our full

model outperforms both Ours (w/o cond) and Ours (w/o reg) which shows that both the

components are beneficial. Ours (w/o cond) which employs the same mapping for all

the task pairs still achieves better performance than the SL baseline. Surprisingly, even

after removing the regularization, despite the performance drop, the pairwise mappings

can still be regulated with a lower learning rate to avoid learning trivial mappings and it

still outperforms the SL baseline.

labels Method Seg. (IoU) ↑ Depth (aErr) ↓ Norm. (mErr) ↓

random

Supervised Learning 27.05 0.6624 33.58

Ours (w/o cond) 34.13 0.5968 31.65

Ours (w/o reg) 33.87 0.5887 31.24

Ours 34.26 0.5787 31.06

one

Supervised Learning 25.75 0.6511 33.73

Ours (w/o cond) 29.19 0.6181 32.62

Ours (w/o reg) 28.36 0.6407 32.92

Ours 30.36 0.6088 32.08

Table 3.6: Ablation study on NYU-v2. ‘cond’ indicates whether using conditional mapping

function. ‘reg’ indicates whether we use regularization in Eq. (3.4).

3.4.4 Qualitative results

Here, we present some qualitative results and refer to Appendix B.2.2 for more results.

Mapped outputs. Here, we visualize the intermediate feature maps of ms→st and

mt→st for one example in NYU-v2 in Fig. 3.3 where s and t correspond to segmentation

and surface normal estimation respectively. We observe that the functions map both

task labels to a joint pairwise space where the common information is around object

boundaries, which in turn enables the model to produce more accurate predictions for

both tasks.

54 Chapter 3. Multi-task Learning from Partially Annotated Data

Figure 3.3: Intermediate feature map of the mapping function of the task-pair (segmenta-

tion to surface normal) of one example in NYU-v2. The first column shows the prediction

or ground-truth and the second column present the corresponding mapped feature map

(output of the mapping function’s last second layer).

Predictions. Finally we show qualitative comparisons between our method, SL and

SSL baselines on NYU-v2 in Fig. 3.4. We can see that our method produces more

accurate predictions by leveraging cross-task consistency.

3.5 Conclusion and Limitations

In this chapter, we show that cross-task relations are crucial to learn multi-task dense

prediction problems from partially annotated data in several benchmarks. We present a

model agnostic method that learns relations between task pairs in joint latent spaces

through mapping functions conditioned on the task pair in a computationally efficient

way and also avoids learning trivial mappings with a regularization strategy.

Our method has limitations too. Despite the efficient learning of cross-task relations

through a conditioned network, modeling cross-task relations for all task pairs may not

be required. Thus it would be desirable to automatically identify which tasks are closely

related and only learn such cross-task relations.

This chapter improves the capacity of learning a deep network from partial super-

3.5. Conclusion and Limitations 55

Ground-
Truth

SL

SSL

Ours

Figure 3.4: Qualitative results on NYU-v2. The fist column shows the RGB image, the

second column plots the ground-truth or predictions with the IoU (↑) score of all methods

for semantic segmentation, the third column presents the ground-truth or predictions

with the absolute error (↓), and we show the prediction of surface normal with mean error

(↓) in the last column.

vision for multiple tasks by utilizing cross-task relations. The next chapter aims at

improving the ability of learning new domains and tasks from few (labelled) data, known

as cross-domain few-shot learning, in which models are learned in a large training set

and adapted for previously unseen domains and tasks with few labelled samples.

Chapter 4

Cross-domain Few-shot Classification

A fundamental shortcoming of deep neural networks is their limited ability to learn

new concepts from small data. Cross-domain few-shot classification aims to learn a

classifier from previously unseen classes and domains with few labeled samples. Recent

approaches broadly solve this problem by parameterizing their few-shot classifiers

with task-agnostic and task-specific weights where the former is typically learned on a

large training set and the latter is dynamically predicted through an auxiliary network

conditioned on a small support set. For learning task-agnostic weights, recent methods

use various adaptation strategies for aligning their visual representations to new domains

or select the relevant ones from multiple domain-specific feature extractors. This chapter

proposes to learn well generalized representations by training a single task-agnostic

network from multiple domains using the URL method introduced in Chapter 2. When

learning task-specific weights, through a systematic analysis of various task adaptation

strategies, this chapter shows that task-specific weights through parametric adapters in

matrix form with residual connections to multiple intermediate layers of a task-agnostic

backbone network significantly improves the performance of the state-of-the-art models

in the Meta-Dataset benchmark with minor additional cost.

The chapter introduces challenges and approaches in few-shot learning Secs. 4.1

and 4.2 respectively. Sec. 4.3 explains how to learn well-generalized features through

a task-agnostic network from multiple domains for cross-domain few-shot learning

and how to efficiently adapt the task-agnostic network with task-specific weights for

previously unseen domains and tasks with few samples. The experiments in Sec. 4.4

verify the effectiveness of two proposed methods on MetaDataset under different settings

and systematically study and analyze various task adaptation strategies for cross-domain

few-shot learning which has not been explored before.

57

58 Chapter 4. Cross-domain Few-shot Classification

4.1 Introduction

As deep neural networks progress to dramatically improve results in most of standard

computer vision tasks/problems, there is a growing community interest for more ambi-

tious goals. One of them is to improve the data efficiency of the standard supervised

methods that rely on large amounts of expensive and time-consuming hand-labeled

data. Just like the human intelligence is capable of learning concepts from few labeled

samples, few-shot learning (Lake et al., 2011; Miller et al., 2000) is inspired from this

limitation and aims at adapting a classifier to accommodate new classes not seen in

training, given a few labeled samples from these classes (Fig. 4.1). In particular, the

standard setting for learning few-shot classifiers involves two stages: (i) learning a

model, typically from a large training set, (ii) adapting this model to learn new classes

from a given small support set. These two stages are called meta-training and meta-

testing respectively. The adapted model is finally evaluated on a query set where the

task is to assign each query sample to one of the classes in the support set.

Support Set Query Set

Task

Class 1

Class 2

Class 3

Figure 4.1: Few-shot Learning aims at learning a classifier for previously unseen tasks

with few labeled samples (support set) such that the classifier accurately classifies the

query samples.

Early methods (Vinyals et al., 2016; Ravi and Larochelle, 2016; Finn et al., 2017;

Oreshkin et al., 2018; Rusu et al., 2020; Snell et al., 2017) pose the few-shot classifi-

cation problem in a learning-to-learn formulation by training a deep network over a

distribution of related tasks, which are sampled from the training set, and transfer this

experience to improve its performance for learning new classes. Concretely, Vinyals et

al. (Vinyals et al., 2016) learn a feature encoder that is conditioned on the support

set in meta-training and does not require any further training in meta-test thanks to

its non-parametric classifier. Ravi and Larochelle (Ravi and Larochelle, 2016) take

the idea of learning a feature encoder in meta-train further by also learning an update

4.1. Introduction 59

rule through an LSTM that produces the updates for a classifier in meta-test. Finn et

al. (Finn et al., 2017) pose the task as a meta-learning problem and learn the parameters

of a deep network in meta-training such that a network initialized with the learned

parameters can be efficiently finetuned on a new task. We refer to Wang et al. (2020);

Hospedales et al. (2020) for comprehensive review of early works.

One/Multiple domains

(d) Task adaptation with attached
adapters learned from support set

Learn task-agnostic parameters
in meta-training

Adapt with task-specific
parameters in meta-testing

(c) task-agnostic network

Few-shot learning task
from unseen domain

(a) task-agnostic network +
auxiliary network

(b) Task adaptation with adapters estimated
by the auxiliary network on support set

Support Set Query Set

...

+

Figure 4.2: Cross-domain Few-shot Learning considers to learn a model from one or

multiple domains to generalize to unseen domains with few samples. Prior works often

learn a task-agnostic model with an auxiliary network during meta-training (a) and a set

of adapters are generated by the auxiliary network to adapt to the given support set (b).

While in this chapter, we propose to attach adapters directly to a pretrained task-agnostic

model (c), which can be estimated from scratch during meta-testing (d). We also propose

different architecture topologies of adapters and their efficient approximations.

Despite the significant progress, the scope of the early methods has been limited to

a restrictive setting where training and test samples come from a single domain (or data

distribution) such as Omniglot (Lake et al., 2015), miniImageNet (Vinyals et al., 2016)

and tieredImageNet (Ren et al., 2018). They perform poorly in the more challenging

cross-domain few-shot tasks, where test data is sampled from an unknown or previously

unseen domain (Triantafillou et al., 2020). This setting poses an additional learning

challenge, not only requires leveraging the limited information from the small support

set for learning the target task but also selectively transferring relevant knowledge from

previously seen domains to the target task.

60 Chapter 4. Cross-domain Few-shot Classification

Broadly, recent approaches address this challenge by parameterizing deep networks

with a large set of task-agnostic and a small set of task-specific weights that encode

generic representations valid for multiple tasks and private representations are specific

to the target task respectively. While the task-agnostic weights are learned over multiple

tasks, typically, from a large dataset in meta-training, the task-specific weights are

estimated from a given small support set (e.g. 5 images per category) (Requeima et al.,

2019; Bateni et al., 2020b; Lee et al., 2019; Dvornik et al., 2020; Liu et al., 2021b; Li

et al., 2021b; Triantafillou et al., 2021).

In the literature, the task-agnostic weights are used to parameterize a single network

that is trained on large data from one domain (Requeima et al., 2019; Bateni et al.,

2020b; Doersch et al., 2020), or to be distributed over multiple networks, each trained

on a different domain (Dvornik et al., 2020; Liu et al., 2021b; Triantafillou et al., 2021)
1. Despite good performance obtained by Dvornik et al. (2020); Liu et al. (2021b);

Triantafillou et al. (2021) that learn task-agnostic parameters distributed over multiple

networks from multiple domains, they are computationally expensive and require

multiple forward passes through multiple networks during inference time.

Task
Adaptation

Retrieve or Blend
 Extractors

Unseen Domains

Multiple Seen Domains

(a) one extractor per domain (b) universal feature extractor by distillation

... ...
Distill

Figure 4.3: Task-agnostic weight learning. Unlike the previous methods (Dvornik

et al., 2020; Liu et al., 2021b) (illustrated in (a)) that learn T feature extractors { fφt
stl
}T

t ,

one for each domain, and retrieve or combine their features for the target task during

meta-test stage, our method (illustrated in (b)) learns a single universal feature extractor

fφ that is distilled from from multiple feature extractors { fφt
stl
}T

t . In meta-test stage, we

show that the universal representations can be adapted to unseen domains.

To this end, in this chapter, we propose an efficient and high performance few-shot
1Note that the task-agnostic weights can also be finetuned on the target task (e.g. Chen et al. (2020b);

Dhillon et al. (2020)).

4.1. Introduction 61

method, called URL based on Universal Representation Learning as introduced in

Chapter 2 to learn a single task-agnostic network on multiple domains. Like Dvornik

et al. (2020); Liu et al. (2021b), our method builds on multi-domain representations that

are learned in an offline stage. However, we learn a single set of universal representations

(a single feature extractor) over multiple domains which has a fixed computational cost

regardless of the number of domains at inference unlike them. Similar to the adaptation

based techniques (Bateni et al., 2020b; Requeima et al., 2019). In particular, we propose

to distill knowledge from multiple domains to a single model, which can efficiently

leverage useful information from multiple diverse domains. Learning multi-domain

representations is a challenging task and requires to leverage commonalities in the

domains while minimizing interference (negative transfer (Chen et al., 2018b; Rebuffi

et al., 2017a; Yu et al., 2020)) between them. To mitigate this, we align the intermediate

representations of our multi-domain network with the ones of the domain-specific

networks after carefully aligning each space by using small task-specific adapters and

Centered Kernel Alignment (CKA) (Kornblith et al., 2019) as in Sec. 2.3.

Given the task-agnostic weights, the task-specific weights are utilized to parameter-

ize a linear classifier (Lee et al., 2019), and an ensemble of classifiers at each layer of a

deep neural network (Adler et al., 2020). Recently, inspired from Perez et al. (2018),

task-specific adapters (Requeima et al., 2019; Bateni et al., 2020b), small capacity trans-

formations that are applied to multiple layers of a deep network, have been successfully

used to steer the few-shot classifiers to new tasks and domains. Their weights are often

estimated dynamically through an auxiliary network conditioned on the support set (Re-

queima et al., 2019; Bateni et al., 2020b; Liu et al., 2021b; Triantafillou et al., 2021)

(see Fig. 4.2.(a,b)), in a similar spirit to Bertinetto et al. (2016); Jia et al. (2016). As the

auxiliary network is trained on multiple tasks in meta-training, the premise of estimating

the task-specific adapter weights with it is based on the principle of transfer learning

such that it can transfer the knowledge from the previous tasks to better estimate them

for unseen tasks. However, learning an accurate auxiliary network is a challenging task

due to two reasons. First, it has to generalize to previously unseen tasks and especially

to significantly different unseen domains. Second, learning to predict high-dimensional

weights where each corresponds to a dimension of a highly nonlinear feature space is a

difficult learning problem too.

Motivated by this shortcoming, as shown in Fig. 4.2, we propose to employ a set of

light-weight task-specific adapters along with the task-agnostic weights for adapting

the few-shot classifier to the tasks from unseen domains. Unlike the prior work, we

62 Chapter 4. Cross-domain Few-shot Classification

learn the weights of these adapters from scratch by directly optimizing them on a

small support set (see Fig. 4.2.(c,d)). We also propose to attach a pre-classifier feature

mapping on top of the feature extractor to transform the adapted features to a more

discriminative space for the tasks from unseen domains. Moreover, we systematically

study various combinations of several design choices for task-specific adaptation, which

have not been explored before, including adapter connection types (serial or residual),

parameterizations (matrix and its decomposed variations, channelwise operations)

and estimation of task-specific parameters. Extensive experiments demonstrate that

attaching parametric adapters in matrix form to convolutional layers with residual

connections significantly boosts the state-of-the-art performance in most domains,

especially resulting in superior performance in unseen domains on Meta-Dataset with

negligible increase in computations.

4.2 Related Work

Few-shot learning is an extensively studied problem in computer vision. For the

methods that focus on single-domain few-shot tasks, we refer to Wang et al. (2020);

Hospedales et al. (2020) for comprehensive review. We focus on the more challenging

multi-domain few-shot tasks on Meta-Dataset (Triantafillou et al., 2020). The previous

work in this problem can be broadly grouped into two groups, learning well-generalized

task-agnostic weights or efficiently learning task-specific weights with few labelled

samples for previously unseen domains and tasks.

Task-agnostic learning for meta-training. CNAPS (Requeima et al., 2019) learns a

task encoder to modulate the task-agnostic feature extractor with FiLM layers (Perez

et al., 2018) and also adapts the classifier with new samples. Simple CNAPS (Requeima

et al., 2019) improves CNAPS by replacing its classifier with a non-parametric classifier

based on Mahalanobis distance. Transductive CNAP (Bateni et al., 2020b) extends the

few-shot setting to a transductive setting where the query set is exploited to boost its

performance. Both SUR (Dvornik et al., 2020) and URT (Liu et al., 2021b) first train an

independent network for each domain and then a fusion strategy is further proposed to

fuse features from all domains to adapt to unseen domains. FLUTE (Triantafillou et al.,

2021) learns a shared backbone network for all domains with a specific modulator for

each domain during meta-training. Domain modulators are later fused with an auxiliary

“blending network” to initialize for new tasks in meta-test. tri-M (Liu et al., 2021d)

adopts the same strategy of learning modulation parameters as CNAPS, where the

4.2. Related Work 63

parameters are further grouped into the domain-specific set and the domain-cooperative

set to explore the intra-domain information and inter-domain correlations, respectively.

Unlike these methods, in this chapter, we In this chapter, we instead propose to use

a more efficient method, the URL method introduced in Chapter 2, to learn a single

multi-domain network by distilling the knowledge of domain-specific networks. It

learns more general features that generalize to unseen tasks by leveraging data from

multiple domains and it has a fixed computational cost regardless of the number of

domains at inference which is more efficient.

Task-specific adaptation for meta-test. Non-parametric classifiers such as nearest

centroid classifier (NCC) and its variants (Snell et al., 2017; Requeima et al., 2019)

are commonly used in few-shot tasks due to their simplicity and do not require further

adaptation at meta-test. Meta-Baseline (Chen et al., 2020b) and Baseline (Dhillon

et al., 2020) fine-tune the whole model during meta-test, while Baseline++ (Chen

et al., 2019) only updates a parametric classifier with the cosine distance, RFS (Tian

et al., 2020b) learns a linear classifier with Logistic regression and MetaOptNet (Lee

et al., 2019) optimizes a linear support vector machine (SVM). MAML (Finn et al.,

2017) and LEO (Rusu et al., 2020) meta-learn how to update parameters during meta-

test. TADAM (Oreshkin et al., 2018) employs a task embedding network to predict

scaling and shifting parameters for each convolutional layer, similarly more dedicated

methods are proposed for multi-domain few-shot generalization with a task encoder to

generate conditioning parameters (Bateni et al., 2020a,b; Requeima et al., 2019) and the

generated conditioning paramters can be finetuned for better adapting the task-agnostic

network for previously unseen domains and tasks (Triantafillou et al., 2021).

There are also methods (e.g. Saikia et al. (2020); Doersch et al. (2020)) that do not

fit into task-agnostic and task-specific parameterization grouping. BOHB (Saikia et al.,

2020) proposes to use multi-domain data as validation objective for hyper-parameter

optimization such that the feature learned on ImageNet with the optimized hyper-

parameter generalizes well to multi-domain. CTX (Doersch et al., 2020) proposes to

learn spatial correspondences from ImageNet and evaluates on the remaining (unseen)

domains. We also compare our method to them in the setting where we use a standard

single domain learning network learned from ImageNet and adapt its representations

through residual adapters.

64 Chapter 4. Cross-domain Few-shot Classification

4.3 Method

Few-shot classification aims at learning to classify samples of new categories effi-

ciently from few samples only. Each few-shot learning task consists of a support

set S = {(xxxi,yi)}
|S |
i=1 with |S | sample and label pairs respectively and a query set

Q = {(xxx j)}
|Q |
j=1 with |Q | samples to be classified. The goal is to learn a classifier

on S that accurately predicts the labels of Q . Note that this chapter focuses on the

few-shot image classification problem, i.e. xxx and y denote an image and its label.

As in (Dvornik et al., 2020; Liu et al., 2021b), we solve this problem in two steps

involving i) representation learning where we learn a task-agnostic feature extractor

f from a large dataset Dtrain, ii) task adaptation where we adapt the task-agnostic

representations through various task-specific weights to the target tasks (S ,Q) that are

sampled from another large dataset Dtest by taking the subsets of the dataset to build S
and Q . Note that Dtrain and Dtest contain mutually exclusive classes.

4.3.1 Task-agnostic representation learning

Learning task-agnostic or universal representations (Bilen and Vedaldi, 2017) has been

key to the success of cross-domain generalization. Representations learned from a large

diverse dataset such as ImageNet (Deng et al., 2009) can be considered as universal and

successfully transferred to tasks in different domains with minor adaptations (Rebuffi

et al., 2017a; Liu et al., 2021b; Dvornik et al., 2020). We denote this setting as single

domain learning (SDL).

More powerful and diverse representations can be obtained by learning the represen-

tations from multiple domains. One strategy of obtaining multi-domain representations

is to employ multiple domain-specific feature extractors, one for each domain, and

adaptively “fuse” their features for each task (Dvornik et al., 2020; Liu et al., 2021d;

Triantafillou et al., 2021). While these methods are effective, they require computing

features for each image through multiple feature extractors and are thus computationally

expensive.

Alternatively, the multi-domain representations can be obtained in a more efficient

way by training a single network over multiple domains. Let Dtrain = {Dt}T
t=1 consists

of K subdatasets, each sampled from a different domain. The vanilla multi-domain

learning (MDL) strategy jointly optimizes network parameters over the images from all

4.3. Method 65

K subdatasets:

min
φ,ψt

T

∑
t=1

1
|Dt | ∑

xxx,y∈Dt

`(gψt ◦ fφ(xxx),y), (4.1)

where ` is cross-entropy loss, f is a feature extractor that takes an image as input and

outputs a d dimensional feature. f is parameterized by φ which is shared across T

domains. gψt is the classifier for domain t and parameterized by ψt which is discarded

in the meta-test. We denote this setting as MDL.

Domain 1: ImageNet

Domain 2: Omniglot

Domain T: Fungi

Frozen
extractors Domain-specific

adaptors

Knowledge Distillation
on features by CKA Classifiers and

cross-entropy loss
Frozen

Classifiers
Distillation

on predictions

Figure 4.4: Training pipeline for universal representation learning. Given training

images from T different domains, we first train T domain-specific networks f
φ1

stl
, . . . , f

φT
stl

and their classifiers h
ψ1

stl
, . . . ,h

ψT
stl

, freeze their weights and distill their knowledge to

our multi-domain network by matching their features and predictions through two loss

functions ` f and `p respectively. As matching multiple features is challenging, we co-

align all the features by using light-weight adaptors aθ1 ,aθ2 , . . . ,aθT and centered kernel

alignment.

Universal Representation Learning (URL). The challenge in MDL is to efficiently

share the knowledge across the domains while preventing negative transfer between

them and also carefully balancing the individual loss functions ((Chen et al., 2018b)).

In Chapter 2, we introduce a two stage procedure to learn multi-domain representations,

a variant of MDL, inspired by the previous distillation methods (Hinton et al., 2014; Li

and Bilen, 2020) as introduced in Chapter 2. Here, we briefly explain our URL method

in the context of learning universal representation for cross-domain few-shot learning

and illustrated in Fig. 4.4. As in Sec. 2.4.2, we first train a set of domain-specific deep

networks where each consists of a specific feature extractor fφt
stl

and classifier hψt
stl

with parameters φt
stl and ψt

stl respectively, similarly to Dvornik et al. (2020); Liu et al.

(2021b). However, instead of using T domain-specific feature extractors and selecting

66 Chapter 4. Cross-domain Few-shot Classification

the most relevant ones like them, we propose to learn a single multi-domain network

that performs well in T domains by distilling the knowledge of T pretrained feature

extractors. This has two key advantages over the prior works (Dvornik et al., 2020;

Liu et al., 2021b). First, using a single feature extractor, which has the same capacity

with each domain-specific one, is significantly more efficient in terms of run-time and

number of parameters in the meta-test stage. Second learning to find the most relevant

features for a given support and query set (Liu et al., 2021b) is not trivial and may

also suffer from overfitting to the small number of datasets in the training set, while

the multi-domain representations, by definition, automatically contain the required

information from the relevant domains.

In the second stage, we freeze the pretrained weights of the domain-specific feature

extractors fφt
stl

and transfer their knowledge into the multi-domain model at train time.

Knowledge distillation can be performed at the prediction (Hinton et al., 2014) and fea-

ture level (Li and Bilen, 2020; Romero et al., 2015) by minimizing the distance between

(i) the predictions of the multi-domain and corresponding single-domain network, and

also between (ii) the multi-domain and single-domain features respectively for given

training samples. While Kullback-Leibler (KL) divergence is the standard choice for the

predictions in the original knowledge distillation article (Hinton et al., 2014), matching

the multi-domain features to multiple single-domain ones simultaneously is an ill-posed

problem, as the features from different domain-specific extractors for a given image xxx

are not necessarily aligned and can vary significantly. To this end, as in Eq. (2.3), we

propose to map each domain-specific feature into a common space by using adaptors

aθt ∈ Rd×d with parameters θt and jointly train them along with the parameters of the

multi-domain network:

min
φ,ψt ,θt

T

∑
t=1

1
|Dt | ∑

xxx,y∈Dt

(
`(hψt ◦ fφ(xxx),y)+

λ
t
p`p(hψt ◦ fφ(xxx),hψt

stl
◦ fφt

stl
(xxx))+λ

t
f `

f (aθt ◦ fφ(xxx), fφt
stl
(xxx))

) (4.2)

where `p is KL divergence, ` f is a distance function in the feature space, λt
p and λt

f are

their domain-specific weights for task t.

Due to its simplicity and effectiveness, we conduct experiments with the feature

extractor of URL along with the SDL one learned from ImageNet as the task-agnostic

network and study various task-adaptation strategies for cross-domain few-shot learning.

4.3. Method 67

prediction

Support Set

Query
Set

cos

Support set
Features

Class
Centroids

Query Feature

module1 module2

block1

module1 module2

block2

module1 module2

block4
...

3x3 BN ReLU 3x3 BN ReLU

module1/2 (a) Task adaptation in Meta-test.

3x3 3x3

(b) Serial adapter. (c) Residual adapter.

Different options for

(d) Matrix (e) Channel-wise.
Adapter topologies Adapter parameterization

Figure 4.5: Illustration of our task adaptation for cross-domain few-shot learning. In

meta-test stage (a), our method first attaches a parametric transformation rα to each

layer, where α can be constructed by (b) a serial or (c) a residual topology. They can be

parameterized with matrix multiplication (d) or channel-wise scaling (e). We found that

(c) is the best configuration with matrix parameterization which is further improved by

attaching a linear transformation Aβ to the end of the network. We adapt the network

for a given task by optimizing α and Aβ on a few labeled images from the support set,

then map query images to the task-specific space and assign them to the nearest class

center.

4.3.2 Task-specific weight learning

A good task-agnostic feature extractor fφ is expected to produce representations that

generalize to many previously unseen tasks and domains. However this gets more

challenging when there is a large domain gap between the training set Dtrain and test

set Dtest which requires further adaptation to the target task. In this chapter, we propose

to incorporate additional capacity to the task-agnostic feature extractor by adding task-

specific weights to adapt the representations to the target task by using the support set.

Specifically, we directly attach task-specific weights to a learned task-agnostic model,

and estimate them from scratch given the support set. We denote the task-specific

weights with ϑ and task-adapted classifier with p(φ,ϑ) that outputs a softmax probability

vector whose dimensionality equals to the number of categories in the support set S .

To obtain the task-specific weights, we freeze the task-agnostic weights φ and

minimize the cross-entropy loss ` over the support samples in meta-test w.r.t. the

68 Chapter 4. Cross-domain Few-shot Classification

task-specific weights ϑ (Dvornik et al., 2020; Tian et al., 2020b; Li et al., 2021b):

min
ϑ

1
|S | ∑

(xxx,y)∈S
`(p(φ,ϑ)(xxx),y), (4.3)

where S is sampled from the test set Dtest . Most previous works freeze the task-agnostic

weights but estimate the task-specific weights through an auxiliary network (or a task

encoder) (Requeima et al., 2019; Bateni et al., 2020b; Li et al., 2021b; Triantafillou

et al., 2021), where inaccurate prediction of parameters can lead to noisy adaptation

and wrong prediction.

4.3.3 Task-specific adapter parameterization (ϑ)

Task adaptation techniques can be broadly grouped into two categories that aims to

adapt the feature extractor or classifier to a given target task. We use α and β to denote

task-specific weights for adapting the feature extractor and classifier respectively where

ϑ = {α,β}.

Feature extractor adaptation. A simple method to adapt fφ is finetuning its pa-

rameters on the support set (Chen et al., 2020b; Dhillon et al., 2020). However, this

strategy tends to suffer from the unproportionate optimization, i.e. updating very high-

dimensional weights from a small number of support samples. In this chapter, we

propose to attach task-specific adapters directly to the existing task-agnostic model,

e.g. we attach the adapters to each module of a ResNet backbone in Fig. 4.5 (a), and

the adapters can be efficiently learned/estimated from few samples. Concretely, let

fφl denote the l-th layer of the feature extractor fφ (i.e. a convolutional layer) with the

weights φl . Given a support set S , the task-specific adapters rα parameterized by α, can

be incorporated to the output of the layer fφl as

f{φl ,α}(hhh) = rα(fφl(hhh),hhh) (4.4)

where hhh ∈ RW×H×C is the input tensor, fφl is a convolutional layer in fφ. Importantly,

the number of the task-specific adaptation parameters α are significantly smaller than

the task-agnostic ones. The adapters can be designed in different ways.

Next we propose two connection types for incorporating rα to fφl : i) serial connec-

tion by subsequently applying it to the output of layer fφl(hhh) as

f{φl ,α}(hhh) = rα ◦ fφl(hhh)

4.3. Method 69

which is illustrated in Fig. 4.5(b), and ii) parallel connection by a residual addition as

the residual adapters proposed by Rebuffi et al. (2018)

f{φl ,α}(hhh) = rα(hhh)+ fφl(hhh)

which is illustrated in Fig. 4.5(c). In our experiments, we found the parallel setting

performing the best when α is learned on a support set during meta-test (illustrated in

Fig. 4.5(c)) which we discuss in Sec. 4.4.

For the parameterization of rα, we consider two options. Matrix multiplication

(illustrated in Fig. 4.5(d)) with α ∈ RC×C:

rα(hhh) = hhh∗α,

where ∗ denotes a convolution, α ∈ RC×C and the transformation is implemented as

a convolutional operation with 1× 1 kernels in our code. And channelwise scaling

(illustrated in Fig. 4.5(e)):

rα(hhh) = hhh�α,

where � is a Hadamard product and α ∈ RC. Note that one can also use an additive

bias weight in both settings, however, this has not resulted in any significant gains in

our experiments. While the matrix multiplication is more powerful than the scaling

operation, it also requires more parameters to be estimated or learned. Note that, in a

deep neural network, the number of input Cin and output channels Cout for a layer can

be different. In that case, one can still use a non-square matrix: α ∈ RCout×Cin , however,

it is not possible to use a scaling operator in the parallel setting. In our experiments, we

use ResNet architecture (He et al., 2016) where most input and output channels are the

same. rα connected in parallel with matrix multiplication form, when its parameters α

are learned on the support set, is known as residual adapter (Rebuffi et al., 2018) and rα

connected serial in channelwise is known as FiLM (Perez et al., 2018).

An alternative to reduce the dimensionality of α in case of matrix multiplication

is matrix decomposition: α = V γ>, where V ∈ RC×B and γ ∈ RC×B, B�C. Using a

bottleneck, i.e. setting B <C/2, reduces the number of parameters in the multiplication.

In this chapter, we set B = [C/N] and evaluate the performance for various N in Sec. 4.4.

Classifier learning. Finally, the adapted feature extractor f(φ,α) can be combined with

a task-specific classifier cβ, parameterized by β to obtain the final model, i.e. c◦ f(φ,α).

Based on the recent works, we investigate use of various linear classifiers (Dhillon et al.,

2020; Lee et al., 2019; Chen et al., 2020b; Requeima et al., 2019), also nonparameteric

70 Chapter 4. Cross-domain Few-shot Classification

ones including nearest centroid classifier (NCC) (Mensink et al., 2013; Snell et al.,

2017) and their variants based on Mahalanobis distance (MD) (Bateni et al., 2020b).

In this chapter, we also propose to combine the nonparametric classifiers with a

pre-classifier transformation. Concretely, the transformation proposed in this chapter

takes in the features computed from the network f{φ,α} ∈ Rd and applies an affine

transformation Aβ parameterized by β to obtain the network embedding that is fed into

the classifier, i.e. pφ,ϑ = c ◦Aβ ◦ f{φ,α}. Note that in the case of the non-parametric

classifier, c is not parameterized by β and we use β to denote the transformation

parameters.

More specifically, given a support set S = {(xxxi,yi)}
|S |
i=1 of a new learning task, we

use the multi-domain model attached with task-specific adapters to extract features

{ f{φ,α}(xxxi)}
|S |
i=1. We then apply a linear transformation Aβ : Rd → Rd with learnable

parameters β to the computed features, i.e. {zzzi}
|S |
i=1 = {Aβ ◦ f{φ,α}(xxxi)}

|S |
i=1 where β ∈

Rd×d . Then we follow a similar pipeline to the one used by Dvornik et al. (2020);

Mensink et al. (2013); Snell et al. (2017) to build a centroid classifier c = {ccc1, · · · ,cccC}
by averaging the embeddings belonging to this class:

ccc j =
1
|S j| ∑

zzzi∈S j

zzzi,S j = {zzzk : yk = j}, j = 1, . . . ,C (4.5)

where C is the number of classes in the support set. Next the likelihood of a support

sample zzz in Eq. (4.3) can be computed as:

p{φ,ϑ}(y = l|zzz) = exp(−d(zzz,cccl))

∑
C
j=1 exp(−d(zzz,ccc j))

, (4.6)

where d(zzz,cccl) is the negative cosine similarity and ϑ = {α,β}.

In our experiments, the best performing (adaptation) setting uses parallel adapters,

whose parameters are in the matrix form, to adapt the feature extractor and followed by

the pre-classifier transformation and NCC.

4.4 Experiments

Here we start with experimental setup, and then we compare our methods (URL and

TSA) to state-of-the-art methods and rigorously evaluate various design decisions. We

finally provide further analysis.

4.4. Experiments 71

4.4.1 Experimental setup

Dataset. We use the Meta-dataset (Triantafillou et al., 2020) which is a few-shot clas-

sification benchmark that initially consists of ten datasets: ILSVRC 2012 (Russakovsky

et al., 2015) (ImageNet), Omniglot (Lake et al., 2015), FGVC-Aircraft (Maji et al.,

2013) (Aircraft), CUB-200-2011 (Wah et al., 2011) (Birds), Describable Textures (Cim-

poi et al., 2014) (DTD), QuickDraw (Jongejan et al., 2016), FGVCx Fungi (Brigit and

Yin, 2018) (Fungi), VGG Flower (Nilsback and Zisserman, 2008) (Flower), Traffic

Signs (Houben et al., 2013) and MSCOCO (Lin et al., 2014) then further expands

with MNIST (LeCun et al., 1998), CIFAR-10 (Krizhevsky et al., 2009) and CIFAR-

100 (Krizhevsky et al., 2009). We follow the standard procedure (Triantafillou et al.,

2020) and consider both the ‘Training on all datasets’ (multi-domain learning) and

‘Training on ImageNet only’ (single-domain learning) settings. In ‘Training on all

datasets’ setting, we follow the standard procedure and use the first eight datasets for

meta-training, in which each dataset is further divided into train, validation and test

set with disjoint classes. While the evaluation within these datasets is used to measure

the generalization ability in the seen domains, the remaining five datasets are reserved

as unseen domains in meta-test for measuring the cross-domain generalization ability.

In ‘Training on ImageNet only’ setting, we follow the standard procedure and only

use the train split of ImageNet for meta-training. The evaluation of models is in the

test split of ImageNet and the rest 12 datasets which are reserved as unseen domains

in meta-test. Following Triantafillou et al. (2020), we evaluate our method on 600

randomly sampled tasks for each dataset with varying number of ways and shots, and

report average accuracy and 95% confidence score in all experiments.

Implementation details. We use PyTorch (Paszke et al., 2019) library to implement

our method. In all experiments we build our method on ResNet-18 (He et al., 2016)

backbone for both single-domain and multi-domain networks, unless stated otherwise.

In the multi-domain network, we share all the layers but the last classifier across the

domains.

For learning the task-agnostic network, we strictly follow the training protocol in the

prior work (Dvornik et al., 2020), use a SGD optimizer with a momentum and the cosine

annealing learning scheduler with the same hyperparameters to train single-domain

models. For our multi-domain network (URL), we use the same optimizer and scheduler

as before, training it for 240,000 iterations. We set λ f and λp to 4 for ImageNet and 1

for other datasets and use early-stopping based on cross-validation over the validations

72 Chapter 4. Cross-domain Few-shot Classification

sets of 8 training datasets.

Once the task-agnostic network is learned, we freeze its paramters and attach the

task-specific weights (ϑ) to it. For learning task-specific weights (ϑ), including the

pre-classifier transformation β and the adapter parameters, we directly attach them to

the task-agnostic weights and learn them on the support samples in meta-test by using

Adadelta optimizer (Zeiler, 2012).

In the study of various task adaptation strategies in Section 4.4.3, we consider to

only estimate the adapter parameters and learn the auxiliary network parameters by

using Adam optimizer as Requeima et al. (2019); Bateni et al. (2020b) in meta-train.

Note that estimation of pre-classifier and classifier weights via the auxiliary network

leads to noisy and poor results and we do not report them. Similarly, we found that

the auxiliary network fails to estimate very high-dimensional weights. Hence we only

use it to estimate adapter weights that are parameterized with a vector for channelwise

multiplication but not with a matrix. See Appendix C.1 for more details.

4.4.2 Comparison to state-of-the-art methods

We first evaluate our URL for task-agnostic weights learning in the multi-domain

learning setting. We then compare our TSA in two settings with multi-domain or

single-domain feature extractor to existing state-of-the-art methods. For evaluation, we

follow the standard protocol (Triantafillou et al., 2020), randomly sample 600 tasks for

each dataset, and report average accuracy and 95% confidence score in all experiments.

As in Meta-Dataset (Triantafillou et al., 2020), we sample each task with a varying

number of ways and shots and report the results in Tab. 4.1.

Task-agnostic Weight Learning. First we compare our URL method (with pre-

classifier alignment (Aβ)) for task-agnostic weight learning to our own baselines, i) the

best single-domain model (Best SDL) where we use each single-domain network as

the feature extractor and test it for few-shot classification in each dataset and pick the

best performing model (see Appendix C.2.1 for the complete results). This involves

evaluating 8 single-domain networks on 13 datasets, serves a very competitive baseline,

ii) the vanilla multi-domain learning baseline (MDL) that is learning by optimizing

Eq. (4.1) without the proposed distillation method. As an additional baseline, we include

the state-of-the-art methods for task-agnostic weight learning, CNAPS (Requeima et al.,

2019), SUR (Dvornik et al., 2020), URT (Liu et al., 2021b), and Simple CNAPS (Bateni

4.4. Experiments 73

Test Dataset CNAPS
Simple

SUR URT
Best

MDL
Transductive

triM FLUTE URL (Ours) TSA (Ours)
CNAPS SDL CNAPS

ImageNet 50.8±1.1 58.4±1.1 56.2±1.0 56.8±1.1 55.8±1.0 53.4±1.1 57.9±1.1 58.6±1.0 51.8±1.1 58.8±1.1 59.5±1.0
Omniglot 91.7±0.5 91.6±0.6 94.1±0.4 94.2±0.4 93.2±0.5 93.8±0.4 94.3±0.4 92.0±0.6 93.2±0.5 94.5±0.4 94.9±0.4
Aircraft 83.7±0.6 82.0±0.7 85.5±0.5 85.8±0.5 85.7±0.5 86.6±0.5 84.7±0.5 82.8±0.7 87.2±0.5 89.4±0.4 89.9±0.4
Birds 73.6±0.9 74.8±0.9 71.0±1.0 76.2±0.8 71.2±0.9 78.5±0.8 78.8±0.7 75.3±0.8 79.2±0.8 80.7±0.8 81.1±0.8

Textures 59.5±0.7 68.8±0.9 71.0±0.8 71.6±0.7 73.0±0.6 71.4±0.7 66.2±0.8 71.2±0.8 68.8±0.8 77.2±0.7 77.5±0.7
Quick Draw 74.7±0.8 76.5±0.8 81.8±0.6 82.4±0.6 82.8±0.6 81.5±0.6 77.9±0.6 77.3±0.7 79.5±0.7 82.5±0.6 81.7±0.6

Fungi 50.2±1.1 46.6±1.0 64.3±0.9 64.0±1.0 65.8±0.9 61.9±1.0 48.9±1.2 48.5±1.0 58.1±1.1 68.1±0.9 66.3±0.8

VGG Flower 88.9±0.5 90.5±0.5 82.9±0.8 87.9±0.6 87.0±0.6 88.7±0.6 92.3±0.4 90.5±0.5 91.6±0.6 92.0±0.5 92.2±0.5

Traffic Sign 56.5±1.1 57.2±1.0 51.0±1.1 48.2±1.1 47.4±1.1 51.0±1.0 59.7±1.1 63.0±1.0 58.4±1.1 63.3±1.1 82.8±1.0
MSCOCO 39.4±1.0 48.9±1.1 52.0±1.1 51.5±1.1 53.5±1.0 49.6±1.1 42.5±1.1 52.8±1.1 50.0±1.0 57.3±1.0 57.6±1.0

MNIST - 94.6±0.4 94.3±0.4 90.6±0.5 89.8±0.5 94.4±0.3 94.7±0.3 96.2±0.3 95.6±0.5 94.7±0.4 96.7±0.4
CIFAR-10 - 74.9±0.7 66.5±0.9 67.0±0.8 67.3±0.8 66.7±0.8 73.6±0.7 75.4±0.8 78.6±0.7 74.2±0.8 82.9±0.7

CIFAR-100 - 61.3±1.1 56.9±1.1 57.3±1.0 56.6±0.9 53.6±1.0 61.8±1.0 62.0±1.0 67.1±1.0 63.5±1.0 70.4±0.9

Average Seen 71.6 73.7 75.9 77.4 76.8 77.0 75.1 74.5 76.2 80.4 80.4

Average Unseen - 67.4 64.1 62.9 62.9 63.1 66.5 69.9 69.9 70.6 78.1

Average All - 71.2 71.4 71.8 71.5 71.6 71.8 72.7 73.8 76.6 79.5

Average Rank - 7.1 6.7 6.4 6.7 6.5 6.3 5.6 5.3 2.5 1.8

Table 4.1: Comparison state-of-the-art methods on Meta-Dataset under multi-domain

learning setting. Mean accuracy, 95% confidence interval are reported. The first eight

datasets are seen during training and the last five datasets are unseen and used for test

only.

et al., 2020b)2. We reproduce results by training and evaluating SUR (Dvornik et al.,

2020), URT (Liu et al., 2021b), and Simple CNAPS (Bateni et al., 2020b) using their

code for fair comparison as recommended by Meta-Dataset. To better analyze the re-

sults, we divide the table into two blocks that show the few-shot classification accuracy

in previously seen domains and unseen domains along with their average accuracy. We

also report average accuracy over all domains and the average rank as Triantafillou et al.

(2021); Li et al. (2021b).

Comparing the state-of-the-art methods (CNAPS, Simple CNAPS, SUR, URT) for

learning task-agnostic weight, our URL method obtains better performance in seven out

of eight seen datasets and four out of five unseen datasets. We also compute average

rank as recommended by Triantafillou et al. (2020), our method ranks 2.5 in average and

the state-of-the-art methods SUR, URT rank 6.7 and 6.4, respectively. More specifically,

we obtain significantly better results than the second best approach of task-agnostic

weight learning methods (CNAPS, Simple CNAPS, SUR, URT, Best SDL and MDL) on

Aircraft (+2.8), Birds (+2.1), Texture (+4.2), and VGG Flower (+1.5) for seen domains

and Traffic Sign (+6.1)3 and MSCOCO (+3.8). The results show that jointly learning a

2Results of CNAPS (Requeima et al., 2019) are obtained from Meta-Dataset.
3The accuracy of all methods on Traffic Sign is different from the one in the original papers as

one bug has been fixed in Meta-Dataset repository. See https://github.com/google-research/
meta-dataset/issues/54 for more details. As mentioned in the Meta-Dataset repository, we further

https://github.com/google-research/meta-dataset
https://github.com/google-research/meta-dataset
https://github.com/google-research/meta-dataset/issues/54
https://github.com/google-research/meta-dataset/issues/54

74 Chapter 4. Cross-domain Few-shot Classification

single set of representations provides better generalization ability than fusing the ones

from multiple single-domain feature extractors as done in SUR and URT. Notably, our

method requires less parameters and computations to run during inference than SUR

and URT, as it runs only one universal network to extract features, while both SUR and

URT need to pass the query set to multiple single-domain networks.

We also see that our URL method outperforms two strong baselines, Best SDL

and MDL in all datasets except in QuickDraw. This indicates that i) universal repre-

sentations are superior to the single-domain ones while generalizing to new tasks in

both seen and unseen domains, while requiring significantly less number of parameters

(1 vs 8 neural networks), ii) our distillation strategy is essential to obtain good multi-

domain representations. While MDL outperforms the best SDL in certain domains

by transferring representations across them, its performance is lower in other domains

than SDL, possibly due to negative transfer across the significantly diverse domains.

Surprisingly, MDL achieves the third best in average rank among task-agnostic weight

learning methods, indicating the benefit of multi-domain representations.

Task-specific Weight Learning. We then incorporate the proposed residual adapters

in matrix form (TSA) to the multi-domain feature extractor of our URL method

and compare its performance with the the state-of-the-art methods (CNAPS (Re-

queima et al., 2019), SUR (Dvornik et al., 2020), URT (Liu et al., 2021b), Simple

CNAPS (Bateni et al., 2020b), and more recent state-of-the-art methods including

Transductive CNAPS (Bateni et al., 2020a), FLUTE (Triantafillou et al., 2021), and

tri-M (Liu et al., 2021d)) in Tab. 4.1. Simple CNAPS improves over CNAPS by

adopting a simple Mahalanobis distance instead of learning an adapted linear classifier.

Transductive CNAPS further improves by using unlabelled test images. SUR and

URT fuse multi-domain features to get better performance. FLUTE improves URT

by fusing FiLM parameters as initialization which is further finetuned on the support

set in meta-test. tri-M adopts the same strategy of learning modulation parameters

as CNAPS, where the parameters are further divided into the domain-specific set and

the domain-cooperative set to explore the intra-domain information and inter-domain

correlations, respectively. URL surpasses previous methods by learning a universal

representation with distillation from multiple domains and can be further improved by

our TSA.

From the results, our TSA method outperforms other methods on most domains

(10 out of 13), especially obtaining significant improvement on 5 unseen datasets than

update the evaluation protocol and report the updated results of all methods in Appendix C.2.3.

4.4. Experiments 75

the second best method, i.e. Average Unseen (+7.5). More specifically, our method

obtains significantly better results than the second best approach on Traffic Sign (+19.5),

CIFAR-10 (+8.7), and CIFAR-100 (+6.8). Achieving improvement on unseen domains

is more challenging due to the large gap between seen and unseen domain and the

scarcity of labeled samples for the unseen task. We address this problem by attaching

light-weight adapters to the feature extractor residually and learn the attached adapters

on the support set from scratch. This allows the model to learn more accurate and

effective task-specific parameters (adapters) from the support set to efficiently steer

the task-agnostic features for the unseen task, compared with predicting task-specific

parameters by an auxiliary network learned in meta-train, e.g. Simple CNAPS, tri-M,

or fusing representations from multiple feature extractors e.g. SUR, URT. Though

FLUTE uses a hybrid approach which uses auxiliary networks learned from meta-

train to initialize the FiLM parameters for further fine-tuning, their results are not

better than URL, which achieves very competitive results as it learns a good universal

representation that generalizes well to seen domains and can be further improved with

the adaptation strategy proposed in this chapter, especially significant improvements on

unseen domains.

ResNet-18 ResNet-34

Test Dataset Finetune ProtoNet
fo-Proto ALFA+fo

BOHB FLUTE TSA (Ours) ProtoNet CTX TSA (Ours)
-MAML -Proto-MAML

ImageNet 45.8±1.1 50.5±1.1 49.5±1.1 52.8±1.1 51.9±1.1 46.9±1.1 59.5±1.1 53.7±1.1 62.8±1.0 63.7±1.0

Omniglot 60.9±1.6 60.0±1.4 63.4±1.3 61.9±1.5 67.6±1.2 61.6±1.4 78.2±1.2 68.5±1.3 82.2±1.0 82.6±1.1
Aircraft 68.7±1.3 53.1±1.0 56.0±1.0 63.4±1.1 54.1±0.9 48.5±1.0 72.2±1.0 58.0±1.0 79.5±0.9 80.1±1.0
Birds 57.3±1.3 68.8±1.0 68.7±1.0 69.8±1.1 70.7±0.9 47.9±1.0 74.9±0.9 74.1±0.9 80.6±0.9 83.4±0.8

Textures 69.0±0.9 66.6±0.8 66.5±0.8 70.8±0.9 68.3±0.8 63.8±0.8 77.3±0.7 68.8±0.8 75.6±0.6 79.6±0.7
Quick Draw 42.6±1.2 49.0±1.1 51.5±1.0 59.2±1.2 50.3±1.0 57.5±1.0 67.6±0.9 53.3±1.1 72.7±0.8 71.0±0.8

Fungi 38.2±1.0 39.7±1.1 40.0±1.1 41.5±1.2 41.4±1.1 31.8±1.0 44.7±1.0 40.7±1.1 51.6±1.1 51.4±1.2

VGG Flower 85.5±0.7 85.3±0.8 87.2±0.7 86.0±0.8 87.3±0.6 80.1±0.9 90.9±0.6 87.0±0.7 95.3±0.4 94.0±0.5

Traffic Sign 66.8±1.3 47.1±1.1 48.8±1.1 60.8±1.3 51.8±1.0 46.5±1.1 82.5±0.8 58.1±1.1 82.7±0.8 81.7±0.9

MSCOCO 34.9±1.0 41.0±1.1 43.7±1.1 48.1±1.1 48.0±1.0 41.4±1.0 59.0±1.0 41.7±1.1 59.9±1.0 61.7±0.9
MNIST - - - - - 80.8±0.8 93.9±0.6 - - 94.6±0.5

CIFAR-10 - - - - - 65.4±0.8 82.1±0.7 - - 86.0±0.6
CIFAR-100 - - - - - 52.7±1.1 70.7±0.9 - - 78.3±0.8

Average Seen 45.8 50.5 49.5 52.8 51.9 46.9 59.5 53.7 62.8 63.7
Average Unseen 58.2 56.7 58.4 62.4 60.0 53.2 71.9 61.1 75.6 76.2

Average All 57.0 56.1 57.5 61.4 59.2 52.6 70.7 60.4 74.3 74.9

Average Rank 7.9 8.3 7.0 5.3 6.0 8.9 2.8 5.5 1.8 1.5

Table 4.2: Comparison to state-of-the-art methods on Meta-Dataset (using a single-

domain feature extractor which is trained only on ImageNet). Mean accuracy, 95%

confidence interval are reported. Only ImageNet is seen during training and the rest

datasets are unseen for test only.

Despite incorporating TSA with our URL multi-domain feature extractor, we also

76 Chapter 4. Cross-domain Few-shot Classification

evaluate our TSA method with a single-domain feature extractor trained on ImageNet

only on ResNet-18 as Triantafillou et al. (2020) or ResNet-34 as Doersch et al. (2020).

This setting is more challenging than the multi-domain one, as the model is trained

only on one domain and tested on both the test split of ImageNet and the ones of

other domains. We report the results of our method and state-of-the-art methods

(BOHB (Saikia et al., 2020), FLUTE (Triantafillou et al., 2021), Finetune (Triantafillou

et al., 2020), ProtoNet (Triantafillou et al., 2020), fo-Proto-MAML (Triantafillou et al.,

2020), and ALFA+fo-Proto-MAML (Triantafillou et al., 2020), CTX (Doersch et al.,

2020)) in Tab. 4.2. ALFA+fo-Proto-MAML achieves the prior best performance by

combining the complementary strengths of Prototypical Networks and MAML (fo-

Proto-MAML), with extra meta-learning of per-step hyperparameters: learning rate

and weight decay coefficients. FLUTE fails to surpass it with one training source

domain, probably due to the lack of FiLM parameters from multiple domains. Our TSA

method, when using the ResNet18 backbone, outperforms other methods on all domains,

especially obtaining significant improvement, i.e. Average Unseen (+9.5), on 12 unseen

datasets than the second best method. We compare our method to CTX and ProtoNet,

which use the ResNet-34 backbone. 4 CTX is very competitive by learning coarse

spatial correspondence between the query and the support images with an attention

mechanism. Ours is orthogonal to CTX and both CTX and our method can potentially

be complementary, but we leave this as future work due to the high computational cost

of CTX. Specifically, we see that our TSA method obtains the best average rank and

outperforms CTX on most domains (6 out of 10) while our method being more efficient

(We train our model on one single Nvidia GPU for around 33 hours while CTX requires

8 Nvidia V100 GPUs and 7 days for training. Please refer to Appendix C.2.4 for more

details).

4.4.3 Analysis of task-specific parameterizations

Classifier learning. First we study the adaptation strategies for learning only a task-

specific classifier on the pretrained feature extractor of our URL method. We evaluate

non-parametric classifiers including nearest cetroid classifier (NCC) and NCC Maha-

lanobis Distance (MD) and parametric classifiers including logistic regression (LR),

support vector machine SVM whose parameters are learned on support samples. We also

4Note that CTX also uses augmentation strategies such as AutoAugment (Cubuk et al., 2019) and
other ones from SimClr (Chen et al., 2020a). We expect applying the same augmentation strategies to our
method would yield further improvements, but we leave this for future work.

4.4. Experiments 77

Test Dataset classifier
Aux-Net serial or M or

β #params
Image Omni Air-

Birds
Tex- Quick

Fungi
VGG Traffic MS-

MNIST
CIFAR CIFAR

or Ad residual CW -Net -glot craft tures Draw Flower Sign COCO -10 -100

NCC NCC - - - % - 57.0 94.4 88.0 80.3 74.6 81.8 66.2 91.5 49.8 54.1 91.1 70.6 59.1

MD MD - - - % - 53.9 93.8 87.6 78.3 73.7 80.9 57.7 89.7 62.2 48.5 95.1 68.9 60.0

LR LR - - - % - 56.0 93.7 88.3 79.7 74.7 80.0 62.1 91.1 59.7 51.2 93.5 73.1 60.1

SVM SVM - - - % - 54.5 94.3 87.7 78.1 73.8 80.0 58.5 91.4 65.7 50.5 95.4 72.0 60.5

Finetune NCC - - - % - 55.9 94.0 87.3 77.8 76.8 75.3 57.6 91.5 86.1 53.1 96.8 80.9 65.9

Aux-S-CW NCC Aux-Net serial CW % 76.98% 54.6 93.5 86.6 78.6 71.5 79.3 66.0 87.6 43.3 49.1 87.9 62.8 51.5

Aux-R-CW NCC Aux-Net residual CW % 76.98% 56.1 94.2 88.4 80.6 74.9 82.0 66.4 91.6 48.5 53.5 90.8 70.2 59.7

Aux-S-CW MD Aux-Net serial CW % 76.98% 55.1 93.8 86.8 77.4 73.2 79.9 57.4 88.1 58.4 50.1 92.7 66.5 55.7

Aux-R-CW MD Aux-Net residual CW % 76.98% 54.8 93.8 87.4 78.2 73.4 81.1 58.8 90.1 63.6 48.5 94.8 69.6 60.6

Ad-S-CW NCC Ad serial CW % 0.06% 56.8 94.8 89.3 80.7 74.5 81.6 65.8 91.3 73.9 53.6 95.7 78.4 64.3

Ad-R-CW NCC Ad residual CW % 1.57% 57.6 94.7 89.0 81.2 75.2 81.5 65.4 91.8 79.2 54.7 96.4 79.5 67.4

Ad-S-M NCC Ad serial M % 12.50% 56.2 94.4 89.1 80.6 75.8 81.6 67.1 92.1 67.6 54.8 95.9 78.9 66.6

Ad-R-M NCC Ad residual M % 10.93% 57.3 94.9 88.9 81.0 76.7 80.6 65.4 91.4 82.6 55.0 96.6 82.1 66.4

Ad-R-CW-PA NCC Ad residual CW ! 3.91% 58.6 94.5 90.0 80.5 77.6 81.9 67.0 92.2 80.2 57.2 96.1 81.5 71.4
Ad-R-M-PA NCC Ad residual M ! 13.27% 59.5 94.9 89.9 81.1 77.5 81.7 66.3 92.2 82.8 57.6 96.7 82.9 70.4

Table 4.3: Comparisons to methods that learn classifiers and model adaptation methods

during meta-test stage based on URL model. NCC, MD, LR, SVM denote nearest

centroid classifier, Mahalanobis distance, logistic regression, support vector machines

respectively. ‘Aux-Net or Ad’ indicates using Auxiliary Network to predict α or attaching

adapter α directly. ‘M or CW’ means using matrix multiplication or channel-wise scaling

adapters. ‘S’ and ‘R’ denote serial adapter and residual adapter, respectively. ‘β’

indicates using the pre-classifier adaptation. The standard deviation results can be found

in Appendix C.2.2. The first eight datasets are seen during training and the last five

datasets are unseen and used for test only.

include another baseline with NCC that finetunes all the feature extractor parameters,

and report the results in Tab. 4.3. We observe that NCC obtains the best results for the

seen domains and its performance is further improved by MD, while SVM achieves

the best for the unseen domains among other classifiers. Finetuning baseline provides

competitive results especially for the unseen domains. However, it performs poorly in

most seen domains.

Feature extractor adaptation. Next we analyze various design decisions for the

feature extractor adaptation including connection types (serial, residual), i.e. Fig. 4.5(b),

(c), its parameterization including channelwise modulation (CW) when they are es-

timated by an auxiliary network (Aux-Net), which has around 77% capacity of the

feature extractor. We use with each combination with two nonparameteric classifier,

either NCC or MD. While the adaptation strategies using residual connections perform

better than the serial one in almost all cases, the gains are more substantial when

generalizing to unseen domains. Learning adapter weights from few samples only can

be very noisy. With residual addition, it is not necessary to change all connections for

passing the information forward, which can improve the robustness of useful features

78 Chapter 4. Cross-domain Few-shot Classification

and reduce learning burdens for new tasks, hence increasing the generalization ability.

While the serial connections may damage the previous learned structures. We also

observe that NCC and MD obtain comparable performances. Note that Aux-S-CW with

MD corresponds to our implementation of Simple CNAPS (Bateni et al., 2020b) with

the more powerful feature extractor. We show that replacing its serial connection with a

residual one leads to a strong performance boost.

Next we look at the adaptation strategy that learns the task-specific weights directly

on the support set as in Eq. (4.3). We evaluate serial and residual connection types

with channelwise and matrix parameterizations by using NCC. We denote this setting

as Ad in Tab. 4.3. Note that we omit MD here, as it produces similar results to NCC.

First we observe that learning the weights on the support set outperforms the strategy

of estimating them through an auxiliary network in almost all cases. In addition,

the learnable weights require less number of parameters per task, while the capacity

of the auxiliary network is fixed. We again observe that the residual connections

are more effective, especially when used with the matrix parameterization (Ad-R-

M). However,the channelwise ones provide a good performance/computation tradeoff.

Finally, using the pre-classifier alignment (Ad-R-CW-PA and Ad-R-M-PA) further

boosts the performance of the best models and we use our best model Ad-R-M-PA to

compare against the state-of-the-art.

4.4.4 Further results

Varying-way Five-shot. After evaluating our methods (URL and TSA) over a broad

range of varying shots (e.g. up to 100 shots), we follow Doersch et al. (2020); Li et al.

(2021b) to further analyze our method in 5-shot setting of varying number of categories.

In this setting, we sample a varying number of ways with a fixed number of shots to

form balanced support and query sets. As shown in Table 4.4, overall performance for

all methods decreases in most datasets compared to results in Table 4.1 indicating that

this is a more challenging setting. It is due to that five-shot setting samples much less

support images per class than the standard setting. Our URL and TSA methods obtain

better performance than other compared state-of-the-art methods and our TSA method

improves over our URL method when the number of support images per class is fewer,

especially on unseen domains (Average Unseen +6.2).

Five-way One-shot. A similar conclusion can be drawn from this challenging case.

Note that there are extremely few samples available for training in this case. As we

4.4. Experiments 79

Varying-Way Five-Shot Five-Way One-Shot

Test Dataset
Simple

SUR URT URL (Ours) TSA (Ours)
Simple

SUR URT URL (Ours) TSA (Ours)
CNAPS CNAPS

ImageNet 47.2±1.0 46.7±1.0 48.6±1.0 49.4±1.0 48.3±1.0 42.6±0.9 40.7±1.0 47.4±1.0 49.6±1.1 48.0±1.0

Omniglot 95.1±0.3 95.8±0.3 96.0±0.3 96.0±0.3 96.8±0.3 93.1±0.5 93.0±0.7 95.6±0.5 95.8±0.5 96.3±0.4
Aircraft 74.6±0.6 82.1±0.6 81.2±0.6 84.8±0.5 85.5±0.5 65.8±0.9 67.1±1.4 77.9±0.9 79.6±0.9 79.6±0.9
Birds 69.6±0.7 62.8±0.9 71.2±0.7 76.0±0.6 76.6±0.6 67.9±0.9 59.2±1.0 70.9±0.9 74.9±0.9 74.5±0.9

Textures 57.5±0.7 60.2±0.7 65.2±0.7 69.1±0.6 68.3±0.7 42.2±0.8 42.5±0.8 49.4±0.9 53.6±0.9 54.5±0.9
Quick Draw 70.9±0.6 79.0±0.5 79.2±0.5 78.2±0.5 77.9±0.6 70.5±0.9 79.8±0.9 79.6±0.9 79.0±0.8 79.3±0.9

Fungi 50.3±1.0 66.5±0.8 66.9±0.9 70.0±0.8 70.4±0.8 58.3±1.1 64.8±1.1 71.0±1.0 75.2±1.0 75.3±1.0
VGG Flower 86.5±0.4 76.9±0.6 82.4±0.5 89.3±0.4 89.5±0.4 79.9±0.7 65.0±1.0 72.7±0.0 79.9±0.8 80.3±0.8

Traffic Sign 55.2±0.8 44.9±0.9 45.1±0.9 57.5±0.8 72.3±0.6 55.3±0.9 44.6±0.9 52.7±0.9 57.9±0.9 57.2±1.0

MSCOCO 49.2±0.8 48.1±0.9 52.3±0.9 56.1±0.8 56.0±0.8 48.8±0.9 47.8±1.1 56.9±1.1 59.2±1.0 59.9±1.0
MNIST 88.9±0.4 90.1±0.4 86.5±0.5 89.7±0.4 92.5±0.4 80.1±0.9 77.1±0.9 75.6±0.9 78.7±0.9 80.1±0.9

CIFAR-10 66.1±0.7 50.3±1.0 61.4±0.7 66.0±0.7 72.0±0.7 50.3±0.9 35.8±0.8 47.3±0.9 54.7±0.9 55.8±0.9
CIFAR-100 53.8±0.9 46.4±0.9 52.5±0.9 57.0±0.9 64.1±0.8 53.8±0.9 42.9±1.0 54.9±1.1 61.8±1.0 63.7±1.0

Average Seen 69.0 71.2 73.8 76.6 76.7 65.0 64.0 70.6 73.4 73.5
Average Unseen 62.6 56.0 59.6 65.2 71.4 57.7 49.6 57.5 62.4 63.4

Average All 66.5 65.4 68.3 72.2 74.6 62.2 58.5 65.5 69.2 69.6

Average Rank 4.1 3.9 3.4 2.1 1.5 3.8 4.5 3.3 1.7 1.7

Table 4.4: Results of Varying-Way Five-Shot and Five-Way One-Shot scenarios. Mean

accuracy, 95% confidence interval are reported.

can see, both TSA and URL outperforms other approaches and TSA achieves similar

results with URL on seen domains but much better performance on unseen domains

due to the learning of attached residual adapters is less over-fitting.

4.4.5 Ablation study for task-agnostic weight learning

Test Dataset ImageNet Omniglot Aircraft Birds Textures Quick Draw Fungi VGG Flower Traffic Sign MSCOCO MNIST CIFAR-10 CIFAR-100

Recall@k 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2

Sum 22.1 30.3 84.7 91.8 69.7 80.7 45.9 59.7 66.3 78.2 77.4 84.3 31.9 42.9 85.1 92.1 94.6 97.2 62.6 71.2 98.3 99.2 54.0 68.9 27.8 37.4

Concate 20.2 28.0 84.4 91.5 44.3 58.1 35.5 48.8 68.8 78.2 73.0 80.8 30.7 40.4 83.4 91.3 95.1 97.3 60.7 69.8 98.7 99.3 49.7 65.3 25.4 34.6

MDL 29.8 39.6 89.8 94.3 80.3 87.1 63.2 75.9 67.0 77.1 79.5 85.4 40.2 51.7 86.9 93.3 89.5 94.1 63.6 72.6 97.6 98.8 58.9 72.9 31.6 42.0

Simple CNAPS 34.0 43.8 84.9 91.6 70.5 82.5 55.9 70.5 64.8 76.9 75.3 83.0 29.1 39.0 88.1 94.1 79.9 86.9 65.2 73.8 97.5 98.8 66.2 79.3 33.2 44.2

URL (Ours) 36.1 46.2 89.7 94.3 83.3 90.4 66.7 78.9 70.2 80.8 79.9 86.5 44.5 56.2 90.0 94.6 87.9 93.0 67.4 76.3 97.0 98.4 62.1 76.5 35.1 46.1

Table 4.5: Global retrieval performance on MetaDataset. Here we evaluate our

method in a non-episodic retrieval task to further compare the generalization ability of

our universal representations.

Global retrieval. Here we go beyond the few-shot classification experiments and

evaluate the generalization ability of our representations (URL) that are learned in

the multi-domain network in a retrieval task, inspired from metric learning litera-

ture (Oh Song et al., 2016; Yu et al., 2019). To this end, for each test image, we find the

nearest images in the entire test set in the feature space and test whether they correspond

to the same category. For evaluation metric, we use Recall@k which considers the

80 Chapter 4. Cross-domain Few-shot Classification

predictions with one of the k closest neighbors with the same label as positive. In

Tab. 4.5, we compare our method with Simple CNAPS in Recall@1 and Recall@2

(see Appendix C.2.1 for more results). URT and SUR require adaptation using the

support set and no such adaptation in retrieval task is possible, we replace them with

two baselines that concatenate or sum features from multiple domain-specific networks.

Our method achieves the best performance in ten out of thirteen domains with sig-

nificant gains in Aircraft, Birds, Textures and Fungi. This strongly suggests that our

multi-domain representations are the key to the success of our method in the previous

few-shot classification tasks.

Effect of adaptors in knowledge distillation In this section, we evaluate our URL

method with (linear) adaptors or without adaptors for aligning features when we use

CKA for knowledge distillation. From Tab. 4.6, we can see that using adaptors can

improve the performance, such as Birds (+1.7) and VGG Flower (+3.6), MSCOCO

(+1.3). This indicates that the adaptors aθ help align features between multi-domain

and single-domain learning networks which are learned from very different domains.
Test Dataset Ours (CKA w/o aθ) Ours (CKA)

ImageNet 58.3±1.0 59.0±1.0
Omniglot 94.4±0.4 94.7±0.4
Aircraft 88.9±0.5 88.9±0.4
Birds 78.7±0.8 80.4±0.7

Textures 74.8±0.7 74.5±0.7

Quick Draw 82.1±0.6 81.9±0.6

Fungi 65.4±0.9 66.4±0.9
VGG Flower 87.5±0.6 91.3±0.5

Traffic Sign 63.3±1.1 63.2±1.1

MSCOCO 55.3±1.0 56.6±1.0
MNIST 94.9±0.4 94.7±0.4

CIFAR-10 73.4±0.7 73.8±0.7
CIFAR-100 61.8±1.0 62.1±1.0

Table 4.6: Results of our URL method using CKA, CKA without adaptors (i.e. aθ).

Mean accuracy and 95% confidence interval are reported. Here, Ours (CKA w/o aθ)

indicates that adaptors are not applied for aligning features. All results are obtained with

pre-classifier alignment during meta-test stage.

Different distillation loss functions. Compared to learning multiple dense prediction

tasks in a single domain in Chapter 2, learning universal representations from multiple

visually-diverse domains is a more challenging problem. Hence we use CKA as the

loss function for representation distillation, i.e. ` f . Here we evaluate the effect of CKA

in MetaDataset and compare it to different distillation loss functions, and report their

4.4. Experiments 81

performances in Tab. 4.7. In this study, we set λp to zero and do not match the prediction

of the universal network with the one of the domain-specific ones. Among these loss

functions, the best results are obtained with CKA loss in all domains. Although the

universal representations are first mapped to the domain-specific spaces via adapters, L2

and cosine loss functions are not sufficient to match features from very diverse domains

and further aligning features with CKA is significantly beneficial.

Test Dataset L2 COSINE CKA

ImageNet 55.7±1.1 57.0±1.1 59.0±1.0
Omniglot 94.0±0.4 94.1±0.4 94.7±0.4
Aircraft 87.4±0.5 88.3±0.5 88.9±0.5
Birds 78.5±0.7 77.5±0.8 80.4±0.7

Textures 72.8±0.6 73.2±0.7 74.5±0.7
Quick Draw 81.2±0.6 80.8±0.6 81.9±0.6

Fungi 65.7±0.9 65.9±0.9 66.4±0.9
VGG Flower 87.5±0.6 85.0±0.6 91.3±0.5

Traffic Sign 61.6±1.1 59.5±1.1 63.2±1.1
MSCOCO 53.4±1.0 53.8±1.1 56.6±1.0

MNIST 94.7±0.3 93.2±0.5 94.7±0.4
CIFAR-10 71.1±0.8 68.1±0.8 73.8±0.7

CIFAR-100 59.1±1.0 58.1±1.0 62.1±1.0

Table 4.7: Quantitative analysis of knowledge distillation loss functions for ` f .

Mean accuracy, 95% confidence interval are reported. COSINE denotes negative

cosine similarity. All the loss functions are applied to measure the difference between

intermediate representations of neural networks. All results are obtained with pre-

classifier alignment during meta-test stage.

We then evaluate individual contributions of distillation through representations

and predictions while using CKA and KL-divergence respectively in Tab. 4.8. Com-

pared to only applying KL loss on predictions (‘URL (Ours) w/o ` f ’), only aligning

representations with CKA loss function (‘URL (Ours) w/o `p’) performs better in most

domains. Finally, combining ` f (CKA) with `p (KL divergence), i.e. ‘URL (Ours)

(` f + `p)’, gives the best performance over the multi-domain models that are trained

with the individual loss functions.

4.4.6 Ablation study for task-specific weight learning

Here, we conduct ablation study for task-specific weight learning of using residual

adapters in matrix form with pre-classifier alignment, including the evaluation of our

82 Chapter 4. Cross-domain Few-shot Classification

Test Dataset URL (Ours) w/o `p URL (Ours) w/o ` f URL (Ours) (` f + `p)

ImageNet 59.0±1.0 57.0±1.1 58.8±1.1

Omniglot 94.7±0.4 94.5±0.4 94.5±0.4

Aircraft 88.9±0.5 89.3±0.4 89.4±0.4
Birds 80.4±0.7 78.6±0.8 80.7±0.8

Textures 74.5±0.7 73.3±0.7 77.2±0.7
Quick Draw 81.9±0.6 81.6±0.6 82.5±0.6

Fungi 66.4±0.9 67.6±0.9 68.1±0.9
VGG Flower 91.3±0.5 89.6±0.5 92.0±0.5

Traffic Sign 63.2±1.1 62.5±1.2 63.3±1.2
MSCOCO 56.6±1.0 55.6±1.1 57.3±1.0

MNIST 94.7±0.4 95.3±0.4 94.7±0.4

CIFAR-10 73.8±0.7 72.9±0.8 74.2±0.8
CIFAR-100 62.1±1.0 60.8±1.0 63.6±1.0

Table 4.8: Quantitative analysis of knowledge distillation loss functions on repre-

sentations and predictions. Mean accuracy, 95% confidence interval are reported.

‘Ours w/o `p’ and ‘Ours w/o ` f ’ means we only apply CKA function on representations

and apply KL divergence on predictions for knowledge distillation, respectively. ‘Ours

(` f + `p)’ is our model using both CKA on features and KL on predictions. All results are

obtained with pre-classifier alignment during meta-test stage.

TSA incorporated with different feature extractors, i.e. SDL, MDL, and URL, the

sensitivity analysis for number of iterations, initialization analysis of adapters, layer

analysis for adapters, and decomposed residual adapters. We summarize results in

figures and refer to Appendix C.2.4 for more detailed results.

TSA with different feature extractors Tab. 4.9 shows the results of our TSA (the

proposed residual adapters in matrix form) when incorporated to different feature

extractors, single domain model with ResNet-18 backbone (SDL-ResNet-18) pretrained

on ImageNet, single domain model with ResNet-34 (SDL-ResNet-34) pretrained on

ImageNet, vanilla multi-domain learning (MDL) and URL introduced in this chapter.

We see that attaching and learning residual adapters can significantly improve the

performance on all domains over SDL-ResNet-18, SDL-ResNet-34 and MDL and

obtain better performance on most domains over URL (11 out of 13 domains). This

strongly indicates that our method can efficiently adapt the model for unseen categories

and domains with few support samples while being agnostic to the feature extractor

with different backbone and resolution of images.

Sensitivity analysis for number of iterations. In our TSA (residual adapters in

matrix form with pre-classifier alignment) method, we optimize the attached parameters

(α,β) with 40 iterations. Figure 4.6 reports the results with 10, 20, 40, 60 iterations and

4.4. Experiments 83

Test Dataset ImageNet Omniglot Aircraft Birds Textures Quick Draw Fungi VGG Flower Traffic Sign MSCOCO MNIST CIFAR-10 CIFAR-100

MDL 53.4±1.1 93.8±0.4 86.6±0.5 78.6±0.8 71.4±0.7 81.5±0.6 61.9±1.0 88.7±0.6 51.0±1.0 49.7±1.1 94.4±0.3 66.7±0.8 53.6±1.0

TSA (MDL) 55.6±1.0 94.3±0.4 86.7±0.5 79.4±0.8 73.2±0.8 81.7±0.6 64.0±0.9 90.9±0.5 81.1±0.9 51.4±1.1 96.9±0.3 78.5±0.8 64.3±1.1

URL (Ours) 58.8±1.1 94.5±0.4 89.4±0.4 80.7±0.8 77.2±0.7 82.5±0.6 68.1±0.9 92.0±0.5 63.3±1.2 57.3±1.0 94.7±0.4 74.2±0.8 63.6±1.0

TSA (URL) 59.5±1.0 94.9±0.4 89.9±0.4 81.1±0.8 77.5±0.7 81.7±0.6 66.3±0.9 92.2±0.5 82.8±1.0 57.6±1.0 96.7±0.4 82.9±0.7 70.4±1.0

SDL-ResNet-18 55.8±1.0 67.4±1.2 49.5±0.9 71.2±0.9 73.0±0.6 53.9±1.0 41.6±1.0 87.0±0.6 47.4±1.1 53.5±1.0 78.1±0.7 67.3±0.8 56.6±0.9

TSA (SDL-ResNet-18) 59.5±1.1 78.2±1.2 72.2±1.0 74.9±0.9 77.3±0.7 67.6±0.9 44.7±1.0 90.9±0.6 82.5±0.8 59.0±1.0 93.9±0.6 82.1±0.7 70.7±0.9

SDL-ResNet-34 62.2±1.1 72.8±1.1 62.9±0.9 79.6±0.8 75.6±0.6 64.5±0.8 47.4±1.1 90.4±0.6 54.8±1.0 56.1±1.0 79.3±0.6 83.0±0.6 74.8±0.8

TSA (SDL-ResNet-34) 63.7±1.0 82.6±1.1 80.1±1.0 83.4±0.8 79.6±0.7 71.0±0.8 51.4±1.2 94.0±0.5 81.7±0.9 61.7±0.9 94.6±0.5 86.0±0.6 78.3±0.8

Table 4.9: Results of attaching residual adapters to different baselines. ‘SDL-ResNet-

18’ is the single domain model with ResNet-18 backbone pretrained on ImageNet.

‘SDL-ResNet-34’ is the single domain model with ResNet-34 backbone pretrained on

ImageNet. ‘MDL’ is a vanilla Multi-Domain Learning (MDL) model trained on eight seen

datasets jointly.

indicates that our method (solid green) converges to a stable solution after 20 iterations

and achieves better average performance on all domains than the baseline URL (dash

green).

10 20 30 40 50 60
Iterations

73

74

75

76

77

78

79

80

81

Ac
cu

ra
y

Average seen
Average unseen
Average all
Average all (baseline)

Figure 4.6: Sensitivity of performance to number of iterations.

Initialization analysis for adapters. Here, we investigate using different initializa-

tion strategies for adapters: i) Identity initialization: in this chapter we initialize each

residual adapter as an identity matrix scaled by a scalar δ and we set δ = 1e− 4; ii)

randomly initialization: alternatively, we can randomly initialize each residual adapter.

As shown in Tab. 4.10, we can see that our methods with different initialization strate-

gies obtain similar results, which indicates that our method works also with randomly

initialization and again verifies the stability of our method. More detailed results with

different backbones are shown in Appendix C.2.4.

Layer analysis for adapters. Here we investigate whether it is sufficient to attach

the adapters only to the later layers. We evaluate this on ResNet18 which is composed

of four blocks and attach the adapters to only later blocks (block4, block3,4, block2,3,4

84 Chapter 4. Cross-domain Few-shot Classification

Test Dataset ImageNet Omniglot Aircraft Birds Textures Quick Draw Fungi VGG Flower Traffic Sign MSCOCO MNIST CIFAR-10 CIFAR-100

Ours(URL)-I 59.5±1.0 94.9±0.4 89.9±0.4 81.1±0.8 77.5±0.7 81.7±0.6 66.3±0.9 92.2±0.5 82.8±1.0 57.6±1.0 96.7±0.4 82.9±0.7 70.4±1.0

Ours(URL)-R 58.8±1.1 94.9±0.4 90.5±0.4 81.8±0.6 77.7±0.7 82.3±0.6 66.8±0.9 92.6±0.5 83.7±0.8 57.7±1.1 96.9±0.4 82.5±0.7 72.0±0.9

Table 4.10: Initialization analysis of adapters. ‘Ours(URL)-I’ indicates our method using

URL as the pretrained model and initializing residual adapters as identity matrix (scaled

by δ = 0.0001) while ‘Ours(URL)-R’ means our method initialize residual adapters

randomly.

and block-all, see Fig. 4.5). Figure 4.7 shows that applying our adapters to only the last

block (block4) obtains around 78% average accuracy on all domains which outperforms

the URL. With attaching residual adapters to more layers, the performance on unseen

domains is improved significantly while the one on seen domains remains stable.

block4 block3,4 block2,3,4 block-all
72

74

76

78

80

82

84

86

Ac
cu

ra
y

Average Seen
Average Unseen
Average All

Figure 4.7: Block (layer) analysis for adapters.

Decomposing residual adapters. Here we investigate whether one can reduce the

number of parameters in the adapters while retaining its performance by using matrix

decomposition (see Sec. 4.3). As in deep neural networks, the adapters in earlier layers

are relatively small; we then decompose the adapters in the last two blocks only where

the adapter dimensionality goes up to 512×512. Figure 4.8 shows that our method can

achieve good performance with less parameters by decomposing large residual adapters,

(e.g. when N = 32 where the number of additional parameters equal to around 4% vs

13%, the performance is still comparable to the original form of residual adapters, i.e.

N=0). We refer to Appendix C.2.4 for more details.

4.4.7 Qualitative results

We qualitatively analyze our methods (URL and TSA) and compare it to Simple

CNAPS (Bateni et al., 2020b), SUR (Dvornik et al., 2020), and URT (Liu et al., 2021b)

4.5. Conclusion and Limitations 85

0 2 4 8 16 32
N

73

74

75

76

77

78

79

80

81

Ac
cu

ra
y

Average seen
Average unseen
Average all

Figure 4.8: Decomposed residual adapters on block-3,4.

in all test datasets (See Appendix C.2.5) and here we report results in Birds (seen)

dataset Fig. 4.9, CIFAR-100 (unseen) dataset and the Traffic Sign (unseen) dataset

Fig. 4.10, by illustrating the nearest neighbors given a query image as in the prior

work (Doersch et al., 2020). It is clear that our methods produce more correct neighbors

than other methods. While other methods retrieve images with more similar colors,

shapes and backgrounds, our methods are able to retrieve semantically similar images.

More specifically, as shown in Fig. 4.9 (seen dataset), by learning task-agnostic weights

by URL and adapting the task-agnostic weight by TSA, our whole method correctly

produces neighbors of the bird in the query image while other methods pick images

with similar appearances or similar background, e.g. images with twigs. In an unseen

dataset (e.g. Fig. 4.11), other methods including SUR, URT are distracted by the blue

background. While the URL learns more generalized features and is less distracted by

the color and background. By using our TSA with the URL task-agnostic model, our

TSA method selects the correct shark images. It again suggests that the URL method

provides an efficient and effective way to learn a single task-agnostic network and

generalized features from multiple domains and our TSA method is able to quickly

adapt the features for unseen few-shot tasks. In Fig. 4.10, other methods and even URL

mainly retrieve the triangle sign while our TSA method is able to retrieve the correct

sign with illumination distortion.

4.5 Conclusion and Limitations

In this chapter, we first demonstrate that learning a single set of universal representations

integrated with a feature refining step achieves superior performance than existing task-

agnostic weight learning methods in the recent Meta-Dataset benchmark. We then

86 Chapter 4. Cross-domain Few-shot Classification

Figure 4.9: Qualitative comparison to Simple CNAPS (Bateni et al., 2020b), SUR (Dvornik

et al., 2020), and URT (Liu et al., 2021b) in Birds. Green and red colors indicate correct

and false predictions respectively.

Figure 4.10: Qualitative comparison to Simple CNAPS (Bateni et al., 2020b),

SUR (Dvornik et al., 2020), and URT (Liu et al., 2021b) in Traffic Sign. Green and

red colors indicate correct and false predictions respectively.

4.5. Conclusion and Limitations 87

Figure 4.11: Qualitative comparison to Simple CNAPS (Bateni et al., 2020b),

SUR (Dvornik et al., 2020), and URT (Liu et al., 2021b) in CIFAR-100. Green and

red colors indicate correct and false predictions respectively.

investigate various strategies for adapting deep networks to few-shot classification

tasks and show that light-weight adapters connected to a deep network with residual

connections achieves strong adaptation to new tasks and domains only from few samples

and obtains state-of-the-art performance while being efficient in the challenging Meta-

Dataset benchmark. We demonstrate that the proposed solution can be incorporated to

various feature extractors with a negligible increase in the number of parameters.

Our method has limitations too. We build our method on existing backbones such

as ResNet-18 and ResNet-34, employ fixed adapter parameterizations and connection

types which may not be optimal for every layer and task in multi-domain few-shot

learning. Thus it would be desirable to have more flexible adapter structures that can be

altered and tuned based on the target task.

Chapter 5

Conclusion and Future Work

Learning universal representations across tasks and domains presents several challenges

for standard computer vision models. This thesis presented new methods for learning

compact universal representations, i.e. a single deep network, that performs well on

multiple vision tasks and various visual domains, formulating a more practical and

realistic setting for multi-task learning and proposing a new method for learning MTL

model from partially annotated data, as well as, novel approaches for cross-domain

few-shot learning.

In the following, Sec. 5.1 discusses existing limitations and highlights future research

directions for universal representation learning, cross-task relations learning, learning

models from limited supervision, including learning MTL model from limited labels

and cross-domain few-shot learning. This is followed by a discussion in Sec. 5.2 that

aims to assess the broader impact of the methods and ideas proposed in this thesis.

5.1 Limitations and Future work

In this thesis, the common thread of the proposed solution for three related problems

is learning universal representations from multiple tasks or domains through a single

network. And the thesis shows that it is possible to learn universal representations within

a single network for different problems by the proposed architecture-agnostic algorithms.

This is more data efficient and important for platforms that have limited resources and

are demanded to be versatile. In addition, this learns more complete representations

and also allows knowledge transfer between tasks which can help improve performance

of tasks that do not have enough data (e.g. medical problems). This will be helpful

for better understanding the optimization in universal representation learning, studying

89

90 Chapter 5. Conclusion and Future Work

relations across tasks, and grouping tasks in the future. The solutions proposed in this

thesis can also be useful for learning compact universal representations by leveraging

existing resources of different problems (e.g. datasets that are collected for different

problems) for these problems without collecting new datasets for all problems, which

is more practical and more scalable for the community. It would be also beneficial for

studying better ways of learning representations from multiple tasks and domains.

Despite the advance in universal representation or multi-task learning, the difficul-

ties of learning a single network that works well for many tasks remain. It remains

unclear whether the standard optimizers with adaptive gradient updates are optimal

when learning multiple tasks, whether any network architecture provides more balanced

solution when its weights are learned over multiple tasks, whether any pretraining strate-

gies provide a better start point for learning multiple tasks, whether any regularization

enables a more balanced optimization when learning multiple tasks. To this end, a more

systematic analysis of unbalanced optimization in multi-task learning is needed and

will be beneficial for better studying the interference/transferability among tasks.

Beyond these points, most existing benchmarks for evaluating universal representa-

tion learning are either too small (e.g. small dataset size and number of tasks) or noisy,

e.g. labels in NYU-v2 (Silberman et al., 2012) and Pascal-Context (Chen et al., 2014)

are noisy. Though some clean and large-scale synthetic datasets (Eftekhar et al., 2021)

and large scale data, e.g. Taskonomy (Zamir et al., 2018), which is pseudo-labelled for

multiple tasks are proposed, clean and large-scale real datasets are needed for better

evaluating universal representation learning methods. Clean large-scale dataset for

universal representation learning is inherently costly and challenging to collect and to

annotate with clean groundtruth for many tasks. Alternatively, as discussed above, it

would be interesting to leverage existing large-scale and clean datasets (different one for

each problem) and learn universal representations from multiple datasets for multiple

tasks.

Apart from this, existing evaluation metrics in universal representations are limited

to testing accuracy (loss) for each task or domain. However, it would be useful to

include other ways for the evaluation of universal representations as the goal is not only

achieving good performance in individual tasks but also obtaining balanced solutions

compared to single-task learning networks. To this end, the multi-task performance

metric (Vandenhende et al., 2021) and multi-domain performance score (Rebuffi et al.,

2017a) provide better ways of measuring how well the universal representations are by

comparing the performance of universal network and task/domain-specific networks.

5.1. Limitations and Future work 91

Another possible way is to include visual comparison of prediction errors made by

different approaches to better study the improvement achieved by the proposed methods.

Alternatively, similar to the analysis in MultiMAE (Bachmann et al., 2022), one can

change parts of the input and visualize the predictions of different tasks to monitor

the impact of the input changes (e.g. whether all tasks behave similarly (consistently)).

Alternatively, one can evaluate the learned universal representations on downstream

problems which are not seen during training without finetuning on the downstream

problems and with finetuning using limited samples and so on.

In universal representation learning, tasks are defined manually (e.g. labels) and

learned together without considering the intra-task and inter-task relations. It would be

interesting to automatically detect and group related tasks and leverage the relations

among related tasks for universal representation learning. In addition, the effect of

architecture designs and optimization strategies are also important when detecting or

grouping related tasks/problems (e.g. one can learn universal representations hierar-

chically). Apart from detecting tasks, designing architectures that can automatically

and efficiently share related information among tasks and keep the rest task-specific

while keeping less computational cost is important as well. Though recent efforts

have been made by Neural Architecture Search (Guo et al., 2020; Vandenhende et al.,

2020a), attention layers (Liu et al., 2019; Misra et al., 2016), learning relations using

transformers (Bruggemann et al., 2021; Ye and Xu, 2022), ensembling tasks predic-

tions (Yeo et al., 2021), factoring networks to different modulars (Mallya et al., 2018)

or sub-networks (Yang et al., 2022), it would be interesting to explore more network

architectures (e.g. Vision Transformers (Dosovitskiy et al., 2020)) that are shown to be

more effective for universal representation learning (Ye and Xu, 2022).

Instead of learning a single universal network that requires data from multiple tasks

to learn from them, one can also learn to merge pretrained task-specific networks for

a downstream problem (Matena and Raffel, 2021). This provides a cheaper way for

learning universal representations and for transferring knowledge for the downstream

tasks (Matena and Raffel, 2021). Besides, recent task transferability analysis (Zamir

et al., 2018; Pándy et al., 2022) shows that the success of positive knowledge transfer

across tasks is heavily dependent on both the source and target task types. Given a target

task, identifying related tasks and domains (data) for pretraining is important for learning

useful representations for the target task. Instead of pretraining the representations

with all possible combination candidates and testing them on the target tasks, which

is costly and cumbersome, developing methods that can automatically and efficiently

92 Chapter 5. Conclusion and Future Work

identify related source tasks/domains can greatly reduce the cost and help study the

transferability across tasks.

Universal representations learning. Learning universal representations that can gen-

eralize well to multiple tasks or various visual domains is one of important goals in

computer vision and is crucial for platforms with limited resources such as mobile

devices, autonomous cars and so on. Despite good performance in universal representa-

tions learning for related tasks and domains achieved by the URL method proposed in

Chapter 2, it has limitations too. More specifically, it requires multiple models to learn

universal representations at train time which can be computationally expensive in the

presence of many tasks. This problem can be potentially alleviated by hierarchically

grouping similar tasks (e.g. evaluating task grouping candidates and grouping tasks via

early stopping or high order approximation (Standley et al., 2020) or grouping tasks

through a inter-task affinity by examining the effect to which one task’s gradient would

increase or decrease another task’s loss (Fifty et al., 2021)) and learning a single model

on them, and then distilling their knowledge into universal representations.

So far, we focused on multi-task or multi-domain learning. Another interesting

extension is to extend the proposed URL method to problems that involve multiple tasks

and multiple domains at the same time (i.e. multi-domain multi-task learning) (He et al.,

2022; Ghiasi et al., 2021) such as semantic segmentation and depth estimation from

different cities, time of day (e.g. day or night time), weather (e.g. clear, rainy, snowy),

or domains.

Existing multi-task and multi-domain learning also limited to the presence of data

for all tasks and domains at the same time. Ours (Chapter 2) has the same too. However,

one a new task or domain is added, standard methods requires to merge all tasks and

domains for learning a new model for all tasks. This would result in large computational,

storage and memory cost and some data of previous tasks may not be accessible when

a new task is added. Thus, it is more desired to adapt the model for the new task

without the access to previous data and prevent the catastrophic forgetting of previous

tasks (Kirkpatrick et al., 2017; Lee et al., 2017) as this does not require the access to

previous data and is more computationally efficient. Thus, one potential solution is to

exploit the idea of continual learning to learn the model to accommodate new tasks

without forgetting new tasks. Unlike conventional continual learning work (Castro et al.,

2018; Rebuffi et al., 2017b) that focus on continually learning new image classification

tasks, it would be interesting to focus on a more realistic setting where semantic tasks

such as semantic segmentation, depth estimation are considered.

5.1. Limitations and Future work 93

Multi-task partially supervised learning. Standard multi-task learning methods

requires fully annotated dataset where all tasks labels are available for each image. To

facilitate the research in multi-task learning, a more realistic and general setting, multi-

task partially supervised learning is formulated in this thesis. Though it is shown that

the propose method in Chapter 3 enables the efficient learning of cross-task relations

through a conditioned network, modeling cross-task relations for all task pairs may not

be required. Thus it would be desirable to automatically identify which tasks are closely

related (i.e. the transferability between tasks and domains (Zamir et al., 2018; Mensink

et al., 2022)) by measuring feature similarity (Dwivedi and Roig, 2019; Dwivedi et al.,

2020), efficient transferability metrics (Fifty et al., 2021) such as H-score (Bao et al.,

2019), LEEP (Nguyen et al., 2020), LogME (You et al., 2021), or GBC (Pándy et al.,

2022) and learn such cross-task relations only between related tasks.

Another potential research direction is to extend multi-task partially supervised learn-

ing for multi-domain multi-task learning, where multiple tasks and multiple domains

are presented at the same time as mentioned above. such as semantic segmentation and

depth estimation from different cities (or domains). In MDMTL, for example, semantic

segmentation and depth estimation from different cities (or domains) (He et al., 2022;

Ghiasi et al., 2021), the data for depth estimation is unlabelled data for segmentation

and the data may contains novel categories which are not seen in data for segmetna-

tion. Instead of learning MTL model on MDMTL setting by only applying supervised

loss over labelled tasks, one can explore the task-specific information of unlabelled

task (Ghiasi et al., 2021). Alternatively, learning to augment the label space with novel

categories for the unlabelled tasks is important and learning cross-task relations can be

potential benefits the learning of MTL models in MDMTL.

Cross-domain few-shot learning. The method proposed in Chapter 4 aims to learn

a well-generalized single task-agnostic model from multiple domains and efficiently

adapt the task-agnostic model with light-weight adapters from very few samples to

accommodate new domains and tasks. And the proposed method is built on existing

backbones such as ResNet-18 and ResNet-34 with fixed adapter parameterizations and

connection types which may not be optimal for every layer and task in cross-domain

few-shot learning. It would be desirable to have more flexible adapter structures that

can be altered and tuned based on the target task.

In addition, instead of attaching adapters to all layers which can be computationally

costly, a more flexible strategy is to learn to select which layers to be attach adapters.

Another potential solution is to explore more powerful architecture such as vision

94 Chapter 5. Conclusion and Future Work

transformer (Dosovitskiy et al., 2020) with more effective pretraining strategies (Hu

et al., 2022) to learn more general features in meta-training for generalizing to unseen

domains and tasks.

5.2 Broader Impact

Universal representation learning over multiple tasks and domains are crutial for

smart devices such as smart phones and autonomous vehicle that only have limited

resource and are demanded to be versatile. Chapter 2 showed that learning general

features from multiple tasks and domains is an important step for better generalization

in various computer vision problems including multiple dense prediction, multi-domain

image classification and cross-domain few-shot learning problems in Chapter 4. By

distilling representations from multiple task-specific or domain-specific networks, the

URL method can successfully learn a single set of universal representations after align-

ing them via small task/domain-specific adapters. These representations are compact

and generalize better to unseen samples, tasks and domains in multiple benchmarks.

Our URL method obtains the best results in multiple standard benchmarks Visual

Decathlon (Rebuffi et al., 2017a), MetaDataset (Triantafillou et al., 2020), NYU-v2 (Sil-

berman et al., 2012), and Cityscapes (Cordts et al., 2016). The idea of our URL

method has shown to be effective in Multilingual ASR (Li et al., 2021a), WiFi-based

Sensing (Zhang et al., 2021), Stereo Matching (Liu et al., 2022a), Surgical Scene

Understanding (Seenivasan et al., 2022), Object Detection (Zhang et al., 2022), Large-

Scale Embedding Retrieval Systems (Ramanujan et al., 2022) and extended for Eye

Authentication and Presentation Attack Detection (Dhar et al., 2022)

While existing literatures mainly focus on either learning multiple task from a single

domain (Vandenhende et al., 2021; Caruana, 1997) or learning multiple domains for a

single task (Rebuffi et al., 2017a; Zhou et al., 2022; Lambert et al., 2020; Ranftl et al.,

2020), relatively less works focus on learning a single model in multi-domain multi-task

learning (MDMTL) (He et al., 2022; Ghiasi et al., 2021), e.g. semantic segmentation

and depth estimation from different domains (e.g. cities, scene, weather, time of day).

The proposed URL can be a useful tool to learn compact and generalized representations

in multi-domain multi-task learning.

Multi-task partially supervised learning and cross-task relations learning. In

real-world scenarios, collecting a dataset that contains labels for all (dense predic-

tion) tasks is very costly (e.g. medical imaging, self-driving) while it is more common

5.2. Broader Impact 95

that the dataset collected dataset is partially annotated or the dataset consists subdatasets

each annotated for different tasks. To facilate the research in this direction, this thesis

formulates the multi-task partially supervised learning setting where not all tasks labels

are available in each image and each image is annotated for at least one task.

Learning multi-task learning models from such partially annotated data is challeng-

ing and it is shown in Sec. 3.4 that good performance of the MTL model on multi-task

partially supervised learning is achieved by the proposed method in Chapter 3 that

learns consistency cross related tasks by the proposed regularized conditional joint space

mapping in an efficient way. The proposed new setting and method can potentially be

helpful for cancer tissue segmentation from medical images, landslide and earthquake

damage estimation from satellite images where it is challenging and expensive to obtain

labelled data.

Cross-domain few-shot learning which aims to adapt a model for previously unseen

domains and tasks with limited data, is important for industry applications such as

personalization (Massiceti et al., 2021), speech recognition (Xiong et al., 2018) which

require efficient knowledge transfer across tasks with few samples. This is typically

solved by learning a task-agnostic model (universal representations) over a diverse

dataset or multiple datasets and adapting the task-agnostic model for unseen tasks by

estimating task-specific weights from the support set for the target task.

Given that the proposed URL and TSA method in Chapter 4 perform better than

existing few-shot learning methdos in recent challenging MetaDataset, it can potentially

be used in many machine learning applications such as personalization (Massiceti et al.,

2021) where it is costly and difficult to collect data for the target task and the paltforms

only has limited resources for adapting the models.

Appendix A

Learning Universal Representations

A.1 Implementation Details

A.1.1 Multi-task Dense Prediction

We evaluate our method on learning universal representations for performing multiple

dense prediction tasks on two standard multi-task learning benchmarks NYU-v2 (Sil-

berman et al., 2012) and Cityscapes (Cordts et al., 2016) as Liu et al. (2019, 2021a).

Here, we provide more details about our implementation.

We follow the training and evaluation settings in the prior works (Liu et al., 2019,

2021a) for both single-task and multi-task learning in both datasets. More specifically,

NYU-V2 (Silberman et al., 2012) contains RGB-D indoor scene images, where we

evaluate performances on 3 tasks, including 13-class semantic segmentation, depth

estimation, and surface normals estimation. We use the true depth data recorded by

the Microsoft Kinect and surface normals provided by Eigen and Fergus (2015) for

depth estimation and surface normal estimation as in Liu et al. (2019). All images are

resized to 288×384 resolution as Liu et al. (2019). We follow the default setting in

the prior work (Silberman et al., 2012; Liu et al., 2019) where 795 and 654 images are

used for training and testing, respectively. Cityscapes (Cordts et al., 2016) consists of

street-view images, which are labeled for two tasks: 7-class semantic segmentation1

and depth estimation. We resize the images to 128×256 to speed up the training as Liu

et al. (2019).

In both NYU-v2 and Cityscapes, we follow the training and evaluation protocol in

1The original version of Cityscapes provides labels 7&19-class semantic segmentation. We follow the
7-class semantic segmentation evaluation protocol as in MTAN (Liu et al., 2019) to be able to compare to
the related works.

97

98 Appendix A. Learning Universal Representations

the prior works (Liu et al., 2019). We consider two backbone cases. For encoder-based

ones, we use the SegNet (Badrinarayanan et al., 2017) as the backbone. Following Liu

et al. (2019), we use cross-entropy loss for semantic segmentation, l1-norm loss for

depth estimation in Cityscapes, and cosine similarity loss for surface normal estima-

tion in NYU-v2. We use the exactly same hyper-parameters including learning rate,

optimizer and also the same evaluation metrics, mean intersection over union (mIoU),

absolute error (aErr) and mean error (mErr) in the predicted angles to evaluate the se-

mantic segmentation, depth estimation and surface normals estimation task, respectively

in the prior work (Liu et al., 2019). More specifically, we use Adam as the optimizer

and train the model for 200 epochs as Liu et al. (2019) with the learning rate of 0.0001

which is halved at the 100-th epoch. The batch size is set to 2 and 8 for NYU-v2 and

Cityscapes, respectively. We use the same augmentation as in MTAN (Liu et al., 2019),

such as random crop, flipping.

For the decoder-based methods, as the MTI-Net (Vandenhende et al., 2020b) requires

multi-scale feature extractor (encoder), we follow Vandenhende et al. (2020b, 2021), use

the HRNet-18 backbone (Sun et al., 2019a) initialized with ImageNet pretrained weight

as the feature encoder. As in the prior works (Vandenhende et al., 2020b, 2021), the

batch size is set to 8 for both NYU-v2 and Cityscapes. We use the same loss functions,

evaluation metrics, and training and evaluation protocol as the encoder-based methods.

In our method, we use the uniform loss weights (i.e. λt = 1 for all tasks) for task-

specific losses, unless stated otherwise. As we do not minimize the difference between

predictions of the universal and single-task networks, we set λt
p in Eq. (3) to zero. We

then first split the train set as train and validation set to search λt
f ∈ {1,2} by cross-

validation and train our network on the whole training set. We set λt
f to 1 for semantic

segmentation and depth and 2 for surface normal estimation. For the optimization of

adapters, we use Adam as optimizer with the learning rate of 0.01 and weight decay of

0.0001 and anneal the learning rate to 0 using cosine scheduler.

A.1.2 Multi-domain Learning

Dataset. The Visual Decathlon Benchmark (Rebuffi et al., 2017a) consists of 10

different well-known datasets: including ILSVRC 2012 (ImNet) (Russakovsky et al.,

2015), FGVC-Aircraft (Airc.) (Maji et al., 2013), CIFAR-100 (C100) (Krizhevsky

et al., 2009), Daimler Mono Pedestrian Classification Benchmark (DPed) (Munder

and Gavrila, 2006), Describable Texture Dataset (DTD) (Cimpoi et al., 2014), German

A.1. Implementation Details 99

Traffic Sign Recognition (GTSR) (Houben et al., 2013), Flowers102 (Flwr) (Nilsback

and Zisserman, 2008), Omniglot (OGlt) (Lake et al., 2015), Street View House Numbers

(SVHN) (Netzer et al., 2011), UCF101 (UCF) (Soomro et al., 2012). In this bench-

mark (Rebuffi et al., 2017a), images are resized to a common resolution of roughly 72

pixels to accelerate evaluation.

Implementation details. Each dataset has train/val/test splits and we follow the

standard training and evaluation protocol (Rebuffi et al., 2017a, 2018). For ImageNet,

we random crop and center crop a 72×72 patch for training and evaluation respectively.

For other datasets, as the aspect ratio in Airc. and DPed is quite different from other

datasets, we first resize the images in both datasets to 72×72, and we random crop and

center crop a 64×64 patch for training and evaluation as Rebuffi et al. (2017a).

We follow Rebuffi et al. (2017a, 2018), use the ResNet-26 (He et al., 2016) as

the backbone for domain-specific network and universal network. In our universal

network, the backbone (i.e. ResNet-26) is shared across all domains and followed by

domain-specific linear classifiers. We use the same data augmentation as in the prior

works (Rebuffi et al., 2017a, 2018), such as random crop, flipping. We use SGD as

optimizer with weight decay and train domain-specific networks and our universal

network for 120 epochs as Rebuffi et al. (2017a, 2018).

For domain-specific models, i.e., learning one model per domain, we first train

a model on ImageNet with learning rate of 0.1 and weight decay of 0.0005 and we

finetune it for other datasets with weight decay of 0.0005. For finetuning on each dataset

(except ImageNet), we set learning rate to 0.1 for Airc., Flwr, OGlt, SVHN, UCF and

0.01 for C100, DPed, DTD, GTSR.

Here we set the loss weights to 1 (i.e. λt = 1 for all tasks) and perform cross-

validation to search loss weights (λt
f ,λ

t
p) in {0.1,1,10} for knowledge distillations on

features and predictions, and set λ f and λp to 10 for ImageNet, 0.1 for DPed, and 1

for other datasets. We optimize our universal network and vanilla MDL using SGD

as optimizer as Rebuffi et al. (2017a, 2018) with the learning rate of 0.01 and weight

decay of 0.0001 for 120 epochs. The learning rate is scaled by 0.1 at 80-th and 100-th

epoch as in the prior works (Rebuffi et al., 2017a, 2018). We optimize the parameters

of adapters by using the Adam as optimizer with the learning rate of 0.01 which is

annealed to zero using cosine scheduler and weight decay of 0.0005. We evaluate our

method though the official online evaluation provided by Rebuffi et al. (2017a).

100 Appendix A. Learning Universal Representations

A.2 More results

Here, we analyze our method and qualitatively compare our method to STL, MTL

with Uniform loss weights and the best compared method, i.e. IMTL-H (Liu et al.,

2021c) and other related methods for multi dense prediction problem on NYU-v2

with SegNet backbone (see Fig. A.1). We can see that, Uniform baseline obtains

improvement on segmentation and depth estimation over STL, while it performs worse

in surface normal estimation. Though dynamically balancing the loss values with

IMTL-H improves the overall performance, it still performs worse in surface normal

estimation. Finally by distilling representations from single-task learning model to the

universal network, our method can produce better or comparable results to STL, i.e.

our method produces similar outputs for surface normal as STL and more accurate

predictions for segmentation and depth estimation as our method enables a balanced

optimization of universal network and a task can be benefited from another one. This

indicates the effectiveness of our method on learning shared representations for multiple

dense predictions.

A.2. More results 101

GradNorm

Uncertainty

MGDA

DWA

PCGrad

GradDrop

CAGrad

BAM

Uniform

IMTL-H

Ours

STL

Ground-
Truth

Figure A.1: Qualitative results on NYU-v2. The fist column shows the RGB image, the

second column plots the ground-truth or predictions with the IoU (↑) score of all methods

for semantic segmentation, the third column presents the ground-truth or predictions

with the absolute error (↓), and we show the prediction of surface normal with mean error

(↓) in the last column.

Appendix B

Multi-task Learning from Partially

Annotated Data

B.1 Implementation Details

Tab. B.1 and Tab. B.2 provide an overview of the experimental settings, in particu-

lar report the number of train and test samples for each benchmark and number of

labels used in different partially annotated settings respectively. Next we explain the

implementation details for each dataset.

Cityscapes. The Cityscapes dataset (Cordts et al., 2016) contains 3475 labelled im-

ages. Following Liu et al. (2019), we use 2975 images for training and 500 images for

testing. In multi-task partially supervised learning setting, we consider the one-label

setting in Cityscapes, as there are only two tasks in total, i.e. we randomly select and

keep label only for 1 task for each training image, resulting in 1487 training images

annotated for segmentation and 1488 training images labelled for depth estimation, as

shown in Tab. B.2.

We follow the training and evaluation protocol in the prior work (Liu et al., 2019)

and we use SegNet (Badrinarayanan et al., 2017) as the MTL backbone for all methods,

use cross-entropy loss for semantic segmentation, l1-norm loss for depth estimation.

We use the exact same hyper-parameters including learning rate, optimizer as Liu et al.

(2019). More specifically, we use Adam optimizer with a learning rate of 0.0001 and

train all models for 200 epochs with a batch size of 8 and halve the learning rate at

the 100-th epoch. We also employ the same evaluation metrics, mean intersection over

union (mIoU) and absolute error (aErr) to evaluate the semantic segmentation and depth

estimation task, respectively as in the prior work (Liu et al., 2019).

103

104 Appendix B. Multi-task Learning from Partially Annotated Data

For our model, we use the encoder architecture of SegNet for instantiating the joint

pairwise task mapping (m̄ϑ) and include one convolutional layer as task-specific input

layer in m̄ϑ. For Direct-Map and Perceptual-Map, following Zamir et al. (2020)

we use the whole SegNet as the cross-task mapping functions. We use the same data

augmentations from the updated implementation in MTAN (Liu et al., 2019)1, i.e.

random crops and rand horizontal flips.

Dataset # Train # Test Segmentation Depth Human Parts Normals Saliency Edges

Cityscapes (Cordts et al., 2016) 2975 500 ! ! - - - - - - - -

NYU-v2 (Silberman et al., 2012) 795 654 ! ! - - ! - - - -

PASCAL (Chen et al., 2014) 4998 5105 ! - - ! ! ! !

Table B.1: Details of multi-task benchmarks.

NYU-v2. The dataset (Silberman et al., 2012) contains 795 training images and 654

test images. To evaluate the multi-task partially supervised learning, we consider one-

label and random-label settings. For one-label setting, we randomly select and keep

label for only 1 task for each training image, resulting in 265 images with annotation

for segmentation, 265 images labelled for depth estimation and 265 images for surface

normal. For random-label setting, we randomly select and keep labels for at least 1 and

at most 2 tasks (1.49 labels per image), i.e. 392 images for semantic segmentation, 408

images for depth estimation, 385 images for surface normal, as shown in Tab. B.2.

We follow the training and evaluation protocol in the prior work (Liu et al., 2019) and

we use the SegNet (Badrinarayanan et al., 2017) as the MTL backbone for all methods.

Following Liu et al. (2019), we use cross-entropy loss for semantic segmentation, l1-

norm loss for depth estimation and cosine similarity loss for surface normal estimation,

use the same optimizer and hyper-parameters, i.e. Adam optimizer with a learning rate

of 0.0001. We train the all model for 200 epochs with a batch size of 2 and halve

the learning rate at the 100-th epoch and employ the same evaluation metrics, mean

intersection over union (mIoU), absolute error (aErr) and mean error (mErr) in the

predicted angles to evaluate the semantic segmentation, depth estimation and surface

normals estimation task, respectively as in MTAN (Liu et al., 2019).

We use the encoder of SegNet architecture for the joint pairwise task mapping

(m̄ϑ) and one convolutional layer as task-specific input layer in m̄ϑ. For Direct-Map

and Perceptual-Map, following Zamir et al. (2020) we use the whole SegNet as the

cross-task mapping functions. To regularize training, we use the exact same data

1https://github.com/lorenmt/mtan

B.1. Implementation Details 105

Dataset # label
labelled images

Segmentation Depth Human Parts Normals Saliency Edges

Cityscapes (Cordts et al., 2016) one 1487 1488 - - - - - - - -

NYU-v2 (Silberman et al., 2012)
random 392 408 - - 385 - - - -

one 265 265 - - 265 - - - -

PASCAL (Chen et al., 2014)
random 2450 - - 2553 2480 2445 2557

one 1000 - - 999 1000 1000 999

Table B.2: Details about multi-task partially supervised learning settings in three bench-

marks used in this work. ‘random’ means the random-label setting where each training

image has a random number of task labels and ‘one’ indicates the one-label setting

where each training image is annotated with one task label. ‘# labelled images’ shows

the number of images containing labels for each task, e.g. segmentation.

augmentations from the updated implementation from the prior work (Liu et al., 2019),

e.g. random crops and rand horizontal flips augmentations.

PASCAL-context. The dataset (Chen et al., 2014) contains 4998 training images and

5105 testing images for five tasks, i.e. semantic segmentation, human parts segmentation,

surface normal, saliency detection and edge detection. We consider two partially

supervised learning settings, random-label and one-label setting. For one-label setting,

we have 1 label per image, i.e. 1000, 999, 1000, 1000, 999 labelled images for semantic

segmentation, human parts, surface normal, saliency and edge detection, respectively.

In random-label setting, we randomly sample and keep labels for at least 1 and at most 4

tasks (2.50 labels per image), resulting in 2450, 2553, 2480, 2445, 2557 labelled images

for semantic segmentation, human parts, surface normal, saliency and edge detection,

respectively, as shown in Tab. B.2.

We follow exactly the same training, evaluation protocol and implementation in the

prior work (Vandenhende et al., 2021) and employ the ResNet-18 (He et al., 2016) as

the encoder shared across all tasks and Atrous Spatial Pyramid Pooling (ASPP) (Chen

et al., 2018a) module as task-specific heads. We use the same hyper-parameters, e.g.

learning rate, augmentation, loss functions, loss weights in the prior work (Vandenhende

et al., 2021). More specifically, we use Adam as the optimizer with a learning rate

of 0.0001 and a weight decay of 0.0001. Following Vandenhende et al. (2021) all

experiments are performed using pretrained ImageNet weights. We train all multi-task

learning methods for 100 epochs with a batch size of 6 and we anneal the learning

rate using the ‘poly’ learning rate scheduler as Vandenhende et al. (2021); Chen et al.

106 Appendix B. Multi-task Learning from Partially Annotated Data

(2017). We follow Vandenhende et al. (2021) and use fixed loss weights for training

all multi-task learning methods, i.e. the loss weight is 1, 2, 10, 5, 50 for semantic

segmentation, human parts segmentation, surface normal estimation, saliency detection

and edge detection, respectively. Please refer to Vandenhende et al. (2021) for more

details. For evaluation metrics, we use the optimal dataset F-measure (odsF) (Martin

et al., 2004) for edge detection, the standard mean intersection over union (mIoU) for

semantic segmentation, human part segmentation and saliency estimation are evaluated,

mean error (mErr) for surface normals. We modify the ResNet-18 to have task-specific

input layers (one convolutional layer for each task) before the residual blocks as the

mapping function m̄ϑ in our method.

Multi-task performance. Following prior work (Vandenhende et al., 2021), we also

report the multi-task performance 4MTL of the multi-task learning model as the

average per-task drop in performance w.r.t. the single-task baseline:

4MTL =
1
T

T

∑
t=1

(−1)`i(Pt
mtl−Pt

stl)/Pt
stl, (B.1)

where `i = 1 if a lower value of Pt means better performance for metric of task t, and 0

otherwise.

B.2 More results

Here, we report more results from the single-task learning (STL) model, Contrastive-

Loss and Discriminator-Loss and also qualitative results.

B.2.1 Quantitative results

Results on Cityscapes. Here, we report the results on Cityscapes for only one label

setting as there are two tasks in total in Tab. B.3. We also report results of single-task

learning models which are used to compute the multi-task performance (4MTL) to

better analyze the results as Vandenhende et al. (2021). The performance of MTL

methods are worse than single-task learning models for some tasks as the MTL models

have less capacity and there is a problem of imbalanced optimization etc as discussed

in the prior works (Kendall et al., 2018; Li and Bilen, 2020; Vandenhende et al., 2021).

The results show that the MTL model learned with SL when all task labels are

available for training serves as a strong baseline for multi-task learning methods. In the

partial label setting (one task label per image), the performance of the SL baseline drops

B.2. More results 107

substantially compared to its performance in full supervision setting. While the SSL

baseline, by extracting task-specific information from unlabelled tasks, improves over

SL, further improvements are obtained by exploiting cross-task consistency in various

ways except Discriminator-Loss. The methods that learn mappings from one task to

another one (Perceptual-Map and Direct-Map) surprisingly perform better than the

ones learning joint space mapping functions (Contrastive-Loss and Discriminator-Loss),

possibly due to insufficient number of negative samples. Finally, the best results (e.g.

the best multi-task performance4MTL) are obtained with our method that can exploit

cross-task relations more efficiently through joint pairwise task mappings with the

proposed regularization. Interestingly, our method also outperforms the SL baseline

that has access to all the task labels, showing the potential information in the cross-task

relations.

label Type Method Seg. (IoU) ↑ Depth (aErr) ↓ 4MTL ↑

full
STL Supervised Learning 74.19 0.0124 +0.00

MTL Supervised Learning 73.36 0.0165 -17.00

one

STL Supervised Learning 70.26 0.0141 +0.00

MTL

Supervised Learning 69.50 0.0186 -16.55

Semi-supervised Learning 71.67 0.0178 -12.22

Perceptual-Map 72.82 0.0169 -8.37

Direct-Map 72.33 0.0179 -11.94

Contrastive-Loss 71.79 0.0183 -13.77

Discriminator-Loss 68.94 0.0208 -24.95

Ours 74.90 0.0161 -3.81

Table B.3: Multi-task learning results on Cityscapes. ‘one’ indicates each image is

randomly annotated with one task label. ‘STL’ means single-task learning and ‘MTL’

indicates multi-task learning.

Results on Cityscapes with larger images. We also provide results for 256× 512

setting in Tab. B.4. Performance of all methods improve significantly compared to their

ones using small images (in Tab. B.3) and our method achieves significant improvement

over the baselines.

Results on NYU-v2 Here, we evaluate our method and related methods in the random

and one label settings on NYU-v2 and we report the results in Tab. B.5. We also

report results of single-task learning models which are used to compute the multi-task

performance (4MTL) to better analyze the results as Vandenhende et al. (2021).

While we observe a similar trend across different methods, overall the performances

108 Appendix B. Multi-task Learning from Partially Annotated Data

label Type Method Seg. (IoU) ↑ Depth (aErr) ↓ 4MTL ↑

one

STL Supervised Learning 77.97 0.0126 +0.00

MTL

Supervised Learning 77.71 0.0165 -15.95

Semi-supervised Learning 79.24 0.0161 -13.38

Ours 82.41 0.0143 -4.08

Table B.4: Multi-task learning results on Cityscapes using 256×512 images. ‘one’ indicates each image

is randomly annotated with one task label. ‘STL’ means single-task learning and ‘MTL’ indicates multi-task

learning.

are lower in this benchmark possibly due to fewer training images than CityScapes. As

expected, the performance in the random-label setting is better than the one in one-label

setting, as there are more labels available in the former. While the best results are

obtained with SL trained on full supervision, our method obtains the best performance

(e.g. best results on all tasks and the best multi-task performance) among the partially

supervised methods. Here SSL improves over SL trained on the partial labels and

cross-task consistency is beneficial except for Direct-Map in the one label setting and

Discriminator-Loss, possibly because the dataset is too small to learn accurate mappings

between two tasks, while our method is more data-efficient and more successful to

exploit the cross-task relations. In random-label setting, where images might have

labels for more than one task, we also report our method also leveraging the labelled

corss-task relations (‘Ours+’) in Tab. B.5 and it can indeed further boost the average

performance.

Results on PASCAL. We evaluate all methods on PASCAL-Context, in both label

settings, which contains a wider variety of tasks than the previous benchmarks and

report the results in Tab. B.6. As in Cityscapes and NYU-v2, we also report results

of single-task learning models which are used to compute the multi-task performance

(4MTL) to better analyze the results as Vandenhende et al. (2021).

As the required number of pairwise mappings for Direct-Map and Perceptual-Map

grows quadratically (20 mappings for 5 tasks), we omit these two due to their high

computational cost and compare our method only to SL, SSL, Contrastive-Loss and

Discriminator-Loss baselines. We see that the SSL baseline improves the performance

over SL in the random-label setting, however, it performs worse than the SL in one

label setting, when there are 60% less labels. By leveraging cross-task consistency,

Contrastive-Loss and Discriminator-Loss obtains better performance than the SL base-

line in one label setting while they get similar multi-task performance to the SL baseline

B.2. More results 109

labels Type Method Seg. (IoU) ↑ Depth (aErr) ↓ Norm. (mErr) ↓ 4MTL ↑

full
STL Supervised learning 37.45 0.6079 25.94 +0.00

MTL Supervised learning 36.95 0.5510 29.51 -1.92

random

STL Supervised Learning 28.72 0.7540 28.95 +0.00

MTL

Supervised Learning 27.05 0.6624 33.58 -3.23

Semi-supervised Learning 29.50 0.6224 33.31 +1.70

Perceptual-Map 32.20 0.6037 32.07 +7.10

Direct-Map 29.17 0.6128 33.63 +1.38

Contrastive-Loss 30.75 0.6143 32.05 +4.96

Discriminator-Loss 26.76 0.6354 33.13 -1.84

Ours 34.26 0.5787 31.06 +11.81

Ours+ 34.91 0.5738 31.20 +12.57

one

STL Supervised Learning 24.71 0.7666 30.14 +0.00

MTL

Supervised Learning 25.75 0.6511 33.73 +1.14

Semi-supervised Learning 27.52 0.6499 33.58 +3.16

Perceptual-Map 26.94 0.6342 34.30 +2.31

Direct-Map 19.98 0.6960 37.56 -12.86

Contrastive-Loss 26.65 0.6387 34.69 +1.31

Discriminator-Loss 25.68 0.6566 34.02 +0.04

Ours 30.36 0.6088 32.08 +10.24

Table B.5: Multi-task learning results on NYU-v2. ‘random’ indicates each image is

annotated with a random number of task labels and ‘one’ means each image is randomly

annotated with one task. ‘STL’ means single-task learning and ‘MTL’ indicates multi-task

learning.

in random label setting. Again, by exploiting task relations, our method obtains better

or comparable results to the second best method, i.e. SSL, while the gains achieved over

SL and SSL are more significant in the low label regime (one-label). Interestingly, SSL

and our method obtain comparable results in the random-label setting which suggests

that relations across tasks are less informative than the ones in CityScape and NYUv2.

Learning from partial and imbalanced task labels. We also evaluate our method

and baselines in an imbalanced partially supervised setting in Cityscapes, where we

assume the ratio of labels for each task are imbalanced, e.g. we randomly sample 90%

of images to be labeled for semantic segmentation and only 10% images having labels

for depth and we denote this setting by the label ratio between segmentation and depth

(Seg.:Depth = 9:1). The opposite case (Seg.:Depth = 1:9) is also considered. We report

the results in Tab. B.7, where we also report results of single-task learning models

which are used to compute the multi-task performance (4MTL) to better analyze the

results as Vandenhende et al. (2021).

The performance of supervised learning (SL) on the task with partial labels drops

110 Appendix B. Multi-task Learning from Partially Annotated Data

labels Type Method Seg. (IoU) ↑ H. Parts (IoU) ↑ Norm. (mErr) ↓ Sal. (IoU) ↑ Edge (odsF) ↑ 4MTL ↑

full
STL Supervised Learning 66.4 58.9 13.9 66.7 68.3 +0.00

MTL Supervised Learning 63.9 58.9 15.1 65.4 69.4 -2.75

random

STL Supervised Learning 60.9 55.3 14.7 64.8 66.8 +0.00

MTL

Supervised Learning 58.4 55.3 16.0 63.9 67.8 -2.67

Semi-supervised Learning 59.0 55.8 15.9 64.0 66.9 -2.44

Contrastive-Loss 59.0 55.3 16.0 63.8 67.8 -2.44

Discriminator-Loss 57.9 55.2 16.2 63.4 67.4 -3.35

Ours 59.0 55.6 15.9 64.0 67.8 -2.15

one

STL Supervised Learning 47.7 56.2 16.0 61.9 64.0 +0.00

MTL

Supervised Learning 48.0 55.6 17.2 61.5 64.6 -1.34

Semi-supervised Learning 45.0 54.0 16.9 61.7 62.4 -3.02

Contrastive-Loss 48.5 55.4 17.1 61.3 64.6 -1.25

Discriminator-Loss 48.2 56.0 17.1 61.7 64.7 -1.04

Ours 49.5 55.8 17.0 61.7 65.1 -0.40

Table B.6: Multi-task learning results on PASCAL. ‘random’ indicates each image is

annotated with a random number of task labels and ‘one’ means each image is randomly

annotated with one task. ‘STL’ means single-task learning and ‘MTL’ indicates multi-task

learning.

significantly. Though SSL improves the performance on segmentation, its performance

on depth drops in both cases. Different from SSL, Direct-Map, Contrastive-Loss and

Discriminator-Loss improves the performance on both tasks in 1:9 setting while their

performance on depth drops in the 9:1 case. In contrast to SL and the baselines, our

method and Perceptual-Map obtain better results on all tasks in both settings by learning

cross-task consistency while our method obtains the best performance (i.e. best results

in all tasks and best multi-task performance, 4MTL) by joint space mapping. This

demonstrates that our model can successfully learn cross-task relations from unbalanced

labels thanks to its task-agnostic mapping function which can share parameters across

multiple task pairs.

Cross-task consistency learning in conventional semi-supervised learning. We

evaluate our method and SSL baseline on conventional SSL setting where 1
3 of training

data in NYU-v2 are labeled for all tasks and 2
3 are unlabeled, and report the results in

Tab. B.8. In this setting, our method obtains better performance than SL and SSL.

Cross-task consistency learning with full supervision. Our method can also be

applied to the fully-supervised learning setting where all task labels are available for

each sample by mapping one task’s prediction and another task’s ground-truth to the

joint space and measuring cross-task consistency in the joint space. We applied our

method to NYU-v2 and compare it with the single-task learning (STL) networks, vanilla

B.2. More results 111

#labels Type Method Seg. (IoU) ↑ Depth (aErr) ↓ 4MTL ↑

full
STL Supervised learning 74.19 0.0124 +0.00

MTL Supervised Learning 73.36 0.0165 -17.00

1:9

STL Supervised learning 62.23 0.0126 +0.00

MTL

Supervised Learning 63.37 0.0161 -13.07

Semi-supervised Learning 64.40 0.0179 -19.36

Perceptual-Map 68.84 0.0141 -0.68

Direct-Map 67.04 0.0153 -6.90

Contrastive-Loss 67.12 0.0151 -5.95

Discriminator-Loss 68.92 0.0144 -1.80

Ours 71.89 0.0131 +5.63

9:1

STL Supervised learning 72.62 0.0191 +0.00

MTL

Supervised learning 72.77 0.0250 -15.25

Semi-supervised Learning 72.97 0.0395 -53.11

Perceptual-Map 73.36 0.0237 -11.34

Direct-Map 73.13 0.0288 -19.38

Contrastive-Loss 73.75 0.0243 -12.86

Discriminator-Loss 72.97 0.0248 -14.65

Ours 74.23 0.0235 -10.23

Table B.7: Multi-task learning results on Cityscapes. ‘#label’ indicates the number ratio of

labels for segmentation and depth, e.g. ‘1:9’ means we have 10% of images annotated

with segmentation labels and 90% of images have depth groundtruth. ‘STL’ means

single-task learning and ‘MTL’ indicates multi-task learning.

Type Method Seg. (IoU) ↑ Depth (aErr) ↓ Norm. (mErr) ↓ 4MTL ↑

MTL

Supervised Learning 24.78 0.6681 33.90 +1.48

Semi-supervised Learning 26.09 0.6510 33.60 +4.37

Ours 28.43 0.6366 33.01 +8.83

Table B.8: Multi-task learning results on NYU-v2 in SSL setting where 1
3 of training data in NYU-v2 are

labeled for all tasks and 2
3 are unlabeled. ‘MTL’ indicates multi-task learning.

MTL baseline, recent multi-task learning methods, i.e. MTAN (Liu et al., 2019), X-

task (Zamir et al., 2020), and several methods focusing on loss weighting strategies,

i.e. Uncertainty (Kendall et al., 2018), GradNorm (Chen et al., 2018b), MGDA (Sener

and Koltun, 2018) and DWA (Liu et al., 2019) in Tab. B.9. Here, we also report the

multi-task performance (4MTL) of all MTL methods.

MTL, MTAN, X-task and Ours are trained with uniform loss weights. We see that

our method (Ours) performs better than the other methods with uniform loss weights,

112 Appendix B. Multi-task Learning from Partially Annotated Data

Method Seg. (IoU) ↑ Depth (aErr) ↓ Norm. (mErr) ↓ 4MTL

STL 37.45 0.6079 25.94 +0.00

MTL 36.95 0.5510 29.51 -1.92

MTAN (Liu et al., 2019) 39.39 0.5696 28.89 +0.03

X-task (Zamir et al., 2020) 38.91 0.5342 29.94 +0.89

Uncertainty (Kendall et al., 2018) 36.46 0.5376 27.58 +0.86

GradNorm (Chen et al., 2018b) 37.19 0.5775 28.51 -1.86

MGDA (Sener and Koltun, 2018) 38.65 0.5572 28.89 +0.06

DWA (Liu et al., 2019) 36.46 0.5429 29.45 -1.82

Ours 41.00 0.5148 28.58 +4.88

Ours + Uncertainty 41.09 0.5090 26.78 +7.57

Table B.9: Multi-task fully-supervised learning results on NYU-v2. ‘STL’ indicates stan-

dard single-task learning and ‘MTL’ means the standard multi-task learning network.

e.g. MTAN and X-task, where X-task regularizes cross-task consistency by learning

perceptual loss with pretrained cross-task mapping functions. This shows that cross-

task consistency is informative even in the fully supervised case and our method is

more effective for learning cross-task consistency. Compared to recent loss weighting

strategies, our method (Ours) obtains better multi-task performance (4MTL) and better

performance on segmentation and depth estimation than other methods while slightly

worse on normal estimation compared with GradNorm and Uncertainty. This is because

the loss weighting strategies enable a more balanced optimization of the multi-task

learning model than uniformly loss weighting. Thus when we incorporate the loss

weighing strategy of Uncertainty (Kendall et al., 2018) to our method, i.e. (Ours +

Uncertainty), our method obtains further improvement and outperforms both GradNorm

and Uncertainty, e.g. ‘Ours + Uncertainty’ obtains the best multi-task performance

(+7.57).

B.2.2 Qualitative results

Here, we present some qualitative results.

Mapped outputs. Here, we visualize the intermediate feature maps of ms→st and

mt→st for one example in Cityscapes in Fig. B.1 where s and t correspond to segmenta-

tion and depth estimation respectively and one example in NYU-v2 in Fig. B.2 where

s and t correspond to segmentation and surface normal estimation respectively. We

observe that the functions map both task labels to a joint pairwise space where the

common information is around object boundaries, which in turn enables the model to

B.2. More results 113

produce more accurate predictions for both tasks.

Figure B.1: Intermediate feature map of the mapping function of the task-pair (segmen-

tation to depth) of one example in Cityscapes. The first column shows the prediction or

ground-truth and the second column present the corresponding mapped feature map

(output of the mapping function’s last second layer).

Predictions. Finally we show qualitative comparisons between our method, SL and

SSL baselines, Perceptual-Map (PM), Direct-Map (DM), Contrastive-Loss (CL) and

Discriminator-Loss (DL) on Cityscapes in Fig. B.3 and on NYU-v2 in Fig. B.4. We

can see that our method produces more accurate predictions by leveraging cross-task

consistency. Specifically, in Fig. B.3, compared with methods that do not leverage

cross-task consistency, the prediction of segmentation and depth are improved by our

method (top left region) and our results are more accurate than related baselines (PM,

DM, CL and DL). In Fig. B.4, we can see that SSL produces more accurate predictions

on segmentation and surface normal than SL. And PM obtains more accurate results on

depth and surface normal than SL. While they do not achieve consistent improvement

on all three tasks, our method can improve the results consistently on three tasks which

shows that our method is more effective on learning cross-task consistency for MTL

from partially annotated data.

114 Appendix B. Multi-task Learning from Partially Annotated Data

Figure B.2: Intermediate feature map of the mapping function of the task-pair (segmenta-

tion to surface normal) of one example in NYU-v2. The first column shows the prediction

or ground-truth and the second column present the corresponding mapped feature map

(output of the mapping function’s last second layer).

B.2. More results 115

*URXQG�
7UXWK

6/

66/

2XUV

30

'0

&/

'/

Figure B.3: Qualitative results on Cityscapes. The fist column shows the RGB image,

the second column plots the ground-truth or predictions with the IoU (↑) score of all

methods for semantic segmentation and we show the ground-truth or predictions with

the absolute error (↓) in the last column.

116 Appendix B. Multi-task Learning from Partially Annotated Data

Figure B.4: Qualitative results on NYU-v2. The fist column shows the RGB image, the

second column plots the ground-truth or predictions with the IoU (↑) score of all methods

for semantic segmentation, the third column presents the ground-truth or predictions

with the absolute error (↓), and we show the prediction of surface normal with mean error

(↓) in the last column.

Appendix C

Cross-domain Few-shot Classification

C.1 Implementation details

In this section, we explain the details of task-agnostic (feature extractor) learning and

then task-specific (adapter) learning.

C.1.1 Task-agnostic learning

Here we consider learning the parameters of the feature extractor from either multiple

or single domains.

Best SDL. One way of learning universal representations over multiple domains for

cross-domain few-shot learning is to use each single-domain network learned from one

dataset as the feature extractor and test it for few-shot classification in each dataset

and pick the best performing model. To this end, we train one ResNet-18 model for

each training dataset. For optimization, we follow the training protocol in the prior

work (Dvornik et al., 2020). Specifically, we use SGD optimizer and cosine annealing

for all experiments with a momentum of 0.9 and a weight decay of 7× 10−4. The

learning rate, batch size, annealing frequency, maximum number of iterations are shown

in Tab. C.2. To regularize training, we also use the exact same data augmentations as in

SUR (Dvornik et al., 2020), e.g. random crops and random color augmentations.

Vanilla multi-domain learning (MDL) and our URL. When we learn a single

feature extractor from multiple domains, we consider two cases. In the first case, which

we call vanilla multiple domain learning (or MDL), we design a deep network where we

share all the layers across all domains and have domain-specific classifiers. This setting

corresponds to Eq. (4.1). Second, in this thesis, we propose the URL method which

117

118 Appendix C. Cross-domain Few-shot Classification

Dataset learning rate batch size annealing freq. max. iter.

ImageNet 3×10−2 64 48,000 480,000

Omniglot 3×10−2 16 3000 50,000

Aircraft 3×10−2 8 3000 50,000

Birds 3×10−2 16 3000 50,000

Textures 3×10−2 32 1500 50,000

Quick Draw 1×10−2 64 48,000 480,000

Fungi 3×10−2 32 15,000 480,000

VGG Flower 3×10−2 8 1500 50,000

Table C.1: Training hyper-parameters of single domain learning.

also learns a single network with shared and domain-specific layers as such, however, it

is learned by distilling information from multiple domain-specific networks.

To train the multi-domain network for both MDL and URL, we use the same

optimizer with a weight decay of 7×10−4 and a scheduler as single domain learning

models for learning 240,000 iterations. The learning rate is 0.03 and the annealing

frequency is 48,000. Similar to Triantafillou et al. (2020) that the training episodes have

50% probability coming from the ImageNet data source, each training batch for our

multi-domain network consists of 50% data coming from ImageNet. In other words.

The batch size for ImageNet is 64×7 and is 64 for the other 7 datasets.

To learn the URL, we set λ f and λp as 4 for ImageNet and 1 for other datasets,

respectively. And we linearly anneal λ by λ← λ× (1− k
K), where, k is the current

iteration and K is the total number of iterations to anneal λ to zero. Here, K = e×
(anneal. f req.), where anneal. f req. is 48, 000 in this work. We search the u =

{1,2,3,4,5} based on cross-validation over the validation sets of 8 training datasets

and e is 5 (i.e. K = 240,000) for ImageNet, is 2 for Omniglot, Quick Draw, Fungi

and is 1 for other datasets. For all experiments, early-stopping is performed based on

cross-validation over the validations sets of 8 training datasets.

Single domain learning (SDL). We also evaluate our method on a feature extractor

that is learned on a single domain which we call SDL. Here we evaluate our method on

two backbones, ResNet-18 (SDL-ResNet-18) and ResNet-34 (SDL-ResNet-34).

SDL-ResNet-18. Following Triantafillou et al. (2020); Dvornik et al. (2020); Li et al.

(2021b), we train a ResNet-18 on the train split of ImageNet and use 84×84 image

size, which is denoted as SDL-ResNet-18. For optimization, we follow the training

protocol in the prior works (Dvornik et al., 2020; Li et al., 2021b). Specifically, we

C.1. Implementation details 119

Backbone learning rate batch size annealing freq. max. iter.

SDL-ResNet-18 3×10−2 64 48,000 480,000

SDL-ResNet-34 3×10−2 128 48,000 480,000

Table C.2: Training hyper-parameters of single domain learning.

use SGD optimizer and cosine annealing for all experiments with a momentum of 0.9

and a weight decay of 7×10−4. Some other hyperparameters are shown in Tab. C.2 as

Dvornik et al. (2020); Li et al. (2021b). To regularize training, we also use the exact

same data augmentations as in the prior works (Dvornik et al., 2020; Li et al., 2021b),

e.g. random crops and random color augmentations.

SDL-ResNet-34. We also apply our method to the single domain learning model with

ResNet-34 backbone learned on ImageNet only as Doersch et al. (2020). We follow

Doersch et al. (2020) and use higher-resolution (224×224) images for meta-training

and meta-testing. For optimization, we follow the training protocol as in the prior

works (Dvornik et al., 2020; Li et al., 2021b). Specifically, we use SGD optimizer and

cosine annealing with a momentum of 0.9, a weight decay of 1×10−4 with a batch size

of 128. Other hyperparameters are the same as in SDL-ResNet-18 and are shown in

Tab. C.2. To regularize training, we also use the exact same data augmentations as in the

prior works (Dvornik et al., 2020; Li et al., 2021b), e.g. random crops and random color

augmentations with an additional stage that randomly downsamples and upsamples

images as Doersch et al. (2020).

C.1.2 Task-specific learning

Attaching and learning adapters. For the optimization of the adaptation parameters

α which is attached directly and learned on support set and the pre-classifier adaptation

β, we initialize β as an identity matrix and optimize both α and β for 40 iterations using

Adadelta (Zeiler, 2012) as optimizer. The learning rate of β is 0.1 for first eight datasets

and 1 for the last five datasets as in URL (Li et al., 2021b) and we set the learning rate

of α as half of the learning rate of β, i.e. 0.05 for the first eight datasets and 0.5 for

the last five datasets. Note that, we learn α and β on a per-task basis using the task’s

support set during the meta-test. That is, α and β are not re-used across the test tasks

drawn from Dtest .

Predicting rα. In the case of modulating α with the auxiliary network, we follow

the auxiliary training protocols in CNAPS (Bateni et al., 2020b). We train for 10K

120 Appendix C. Cross-domain Few-shot Classification

episodes to optimize the task encoder using Adam with a learning rate of 1×10−5 on

eight training domains in meta-train. We validate every 5K iterations to save the best

model for testing.

C.2 More results

C.2.1 Task-agnostic learning

Complete results of Best SDL To study the universal representation learning from

multiple datasets, we train one network on each training dataset and use each single-

domain network as the feature extractor and test it for few-shot classification in each

dataset. This involves evaluating 8 single-domain networks on 13 datasets using Nearest

Centroid Classifier (NCC). Tab. C.3 shows the results of single domain learning models,

where each column present the mean accuracy and 95% confidence interval of a single-

domain network trained on one dataset (e.g. ImageNet) and evaluated on 13 test datasets.

The average accuracy and 95% confidence intervals computed over 600 few-shot tasks.

The numbers in bold indicate that a method has the best accuracy per dataset.

As shown in Tab. C.3, the feature of the ImageNet model generalizes well and

achieves the best results on four out of eight seen datasets, e.g. ImageNet, Birds,

Texture, VGG Flower and four out of five previously unseen datasets, e.g. Traffic Sign,

MSCOCO, CIFAR-10, CIFAR-100. The models trained on Omniglot, Aircraft, Quick

Draw, and Fungi perform the best on the corresponding datasets while the Omniglot

model also generalizes well to MNIST which has the similar style images to Omniglot.

We then pick the best performing model, forming the best single-domain model (Best

SDL) which serves a very competitive baseline for universal representation learning.

Complete global retrieval results. Here we go beyond the few-shot classification

experiments and evaluate the generalization ability of our representations that are

learned in the multi-domain network in a retrieval task, inspired from metric learning

literature (Oh Song et al., 2016; Yu et al., 2019). To this end, for each test image,

we find the nearest images in the entire test set in the feature space and test whether

they correspond to the same category. For evaluation metric, we use Recall@k which

considers the predictions with one of the k closest neighbors with the same label

as positive. In Tabs. C.4 and C.5, we compare our method with Simple CNAPS in

Recall@1, Recall@2, Recall@4 and Recall@8. URT and SUR require adaptation using

the support set and no such adaptation in retrieval task is possible, we replace them

C.2. More results 121

Test Dataset

Train Dataset
ImageNet Omniglot Aircraft Birds Textures Quick Draw Fungi Vgg Flower

ImageNet 55.8±1.0 17.1±0.6 21.7±0.7 25.4±0.8 24.2±0.8 24.1±0.8 32.9±0.9 25.0±0.8

Omniglot 67.4±1.2 93.2±0.5 58.2±1.2 58.7±1.4 57.3±1.4 78.4±1.0 57.6±1.3 54.6±1.3

Aircraft 49.5±0.9 16.8±0.5 85.7±0.5 31.4±0.8 26.0±0.7 23.8±0.6 31.0±0.7 24.6±0.6

Birds 71.2±0.9 13.0±0.6 19.9±0.7 65.0±0.9 19.6±0.7 16.7±0.7 42.8±1.0 28.9±0.8

Textures 73.0±0.6 25.0±0.5 38.6±0.7 42.2±0.7 54.9±0.7 38.6±0.6 54.1±0.7 42.3±0.7

Quick Draw 53.9±1.0 51.0±1.0 38.8±1.0 38.2±1.0 36.8±0.9 82.8±0.6 37.7±0.9 39.7±1.0

Fungi 41.6±1.0 9.1±0.5 14.9±0.7 25.5±0.8 15.6±0.7 12.5±0.6 65.8±0.9 23.3±0.8

VGG Flower 87.0±0.6 23.8±0.6 45.5±0.8 62.9±0.8 44.4±0.8 33.4±0.7 79.6±0.7 78.3±0.7

Traffic Sign 47.4±1.1 15.1±0.7 30.8±0.9 31.0±0.9 38.8±1.1 31.1±0.9 28.0±0.9 30.4±0.9

MSCOCO 53.5±1.0 12.9±0.6 22.5±0.8 25.1±0.9 23.7±0.8 21.3±0.8 32.5±1.0 25.7±0.8

MNIST 78.1±0.7 89.8±0.5 68.0±0.8 73.0±0.7 64.5±0.8 88.2±0.5 62.2±0.8 72.1±0.7

CIFAR-10 67.3±0.8 28.5±0.6 41.2±0.7 41.8±0.8 36.9±0.7 40.0±0.7 38.8±0.7 41.3±0.8

CIFAR-100 56.6±0.9 12.3±0.6 24.3±0.9 28.8±0.9 24.2±0.9 23.4±0.8 25.2±0.9 29.1±1.0

Table C.3: Results of all single domain learning models. Mean accuracy and 95%

confidence interval are reported. The first eight datasets are seen during training and

the last five datasets are unseen for test only.

with two baselines that concatenate or sum features from multiple domain-specific

networks. Our method achieves the best performance in ten out of thirteen domains

with significant gains in Aircraft, Birds, Textures and Fungi. This strongly suggests

that our multi-domain representations are the key to the success of our method in the

previous few-shot classification tasks.

Test Dataset ImageNet Omniglot Aircraft Birds Textures Quick Draw Fungi VGG Flower

Recall@k 1 2 4 8 1 2 4 8 1 2 4 8 1 2 4 8 1 2 4 8 1 2 4 8 1 2 4 8 1 2 4 8

Sum 22.1 30.3 39.6 50.0 84.7 91.8 95.8 97.8 69.7 80.7 88.6 94.5 45.9 59.7 72.0 84.1 66.3 78.2 87.3 94.0 77.4 84.3 89.1 92.1 31.9 42.9 54.0 65.4 85.1 92.1 96.7 98.6

Concate 20.2 28.0 36.9 47.8 84.4 91.5 95.8 97.8 44.3 58.1 71.1 82.9 35.5 48.8 62.8 76.0 68.8 78.2 87.3 93.9 73.0 80.8 86.2 90.6 30.7 40.4 51.8 63.0 83.4 91.3 95.2 98.2

MDL 29.8 39.6 49.9 60.9 89.8 94.3 96.8 98.2 80.3 87.1 92.5 95.9 63.2 75.9 84.7 91.6 67.0 77.1 85.4 92.9 79.5 85.4 89.7 92.8 40.2 51.7 63.0 72.4 86.9 93.3 96.6 98.4

Simple CNAPS (Bateni et al., 2020b) 34.0 43.8 54.4 65.1 84.9 91.6 95.5 97.5 70.5 82.5 91.3 96.1 55.9 70.5 82.0 90.2 64.8 76.9 87.6 94.4 75.3 83.0 88.0 91.7 29.1 39.0 49.6 61.5 88.1 94.1 97.6 99.2
Ours 36.1 46.2 56.3 66.6 89.7 94.3 97.2 98.3 83.3 90.4 93.7 96.3 66.7 78.9 87.9 94.1 70.2 80.8 87.5 93.8 79.9 86.5 90.5 93.2 44.5 56.2 67.3 76.4 90.0 94.6 97.5 98.9

Table C.4: Global retrieval performance on Meta-Dataset (seen datasets). In addition to

few-shot learning experiments, we evaluate our method in a non-episodic retrieval task

to further compare the generalization ability of our universal representations.

Test Dataset Traffic Sign MSCOCO MNIST CIFAR-10 CIFAR-100

Recall@k 1 2 4 8 1 2 4 8 1 2 4 8 1 2 4 8 1 2 4 8

Sum 94.6 97.2 98.5 99.3 62.6 71.2 78.9 85.0 98.3 99.2 99.6 99.8 54.0 68.9 81.9 90.6 27.8 37.4 48.4 60.4

Concate 95.1 97.3 98.6 99.2 60.7 69.8 77.4 83.6 98.7 99.3 99.6 99.8 49.7 65.3 79.4 88.9 25.4 34.6 45.3 57.2

MDL 89.5 94.1 96.6 98.3 63.6 72.6 79.9 86.0 97.6 98.8 99.2 99.6 58.9 72.9 84.1 92.2 31.6 42.0 53.4 64.8

Simple CNAPS (Bateni et al., 2020b) 79.9 86.9 92.6 96.2 65.2 73.8 81.1 86.6 97.5 98.8 99.3 99.7 66.2 79.3 88.5 94.7 33.2 44.2 57.3 68.7

Ours 87.9 93.0 96.1 98.2 67.4 76.3 83.0 88.5 97.0 98.4 99.1 99.5 62.1 76.5 86.0 93.3 35.1 46.1 57.8 69.0

Table C.5: Global retrieval performance on Meta-Dataset (unseen datasets). In addition

to few-shot learning experiments, we evaluate our method in a non-episodic retrieval

task to further compare the generalization ability of our universal representations.

122 Appendix C. Cross-domain Few-shot Classification

Test Dataset classifier
Aux-Net serial or M or

β #params ImageNet Omniglot Aircraft Birds Textures Quick Draw Fungi VGG Flower Traffic Sign MSCOCO MNIST CIFAR-10 CIFAR-100
or Ad parallel CW

NCC NCC - - - % - 57.0±1.1 94.4±0.4 88.0±0.5 80.3±0.7 74.6±0.7 81.8±0.6 66.2±0.9 91.5±0.5 49.8±1.1 54.1±1.0 91.1±0.4 70.6±0.7 59.1±1.0

MD MD - - - % - 53.9±1.0 93.8±0.5 87.6±0.5 78.3±0.7 73.7±0.7 80.9±0.7 57.7±0.9 89.7±0.6 62.2±1.1 48.5±1.0 95.1±0.4 68.9±0.8 60.0±0.9

LR LR - - - % - 56.0±1.1 93.7±0.5 88.3±0.6 79.7±0.8 74.7±0.7 80.0±0.7 62.1±0.8 91.1±0.5 59.7±1.1 51.2±1.1 93.5±0.5 73.1±0.8 60.1±1.1

SVM SVM - - - % - 54.5±1.1 94.3±0.5 87.7±0.5 78.1±0.8 73.8±0.8 80.0±0.6 58.5±0.9 91.4±0.6 65.7±1.2 50.5±1.0 95.4±0.4 72.0±0.8 60.5±1.1

Softmax Softmax - - - % - 42.2±1.0 85.3±0.7 71.9±0.8 59.6±1.0 62.0±0.8 61.2±1.0 37.3±0.9 66.7±1.0 51.4±1.1 48.2±1.1 93.5±0.5 70.4±0.8 59.3±1.0

KNN KNN - - - % - 48.1±1.1 94.1±0.4 84.5±0.6 70.7±0.8 65.9±0.8 74.8±0.7 53.5±0.9 86.0±0.6 56.9±1.2 44.7±1.1 91.4±0.5 60.3±0.8 49.4±1.0

PA NCC - - - ! - 58.8±1.1 94.5±0.4 89.4±0.4 80.7±0.8 77.2±0.7 82.5±0.6 68.1±0.9 92.0±0.5 63.3±1.1 57.3±1.0 94.7±0.4 74.2±0.8 63.5±1.0

PA Softmax - - - ! - 53.4±1.2 92.7±0.5 85.7±0.6 76.1±0.9 73.9±0.8 76.5±0.8 51.1±0.9 86.9±0.7 52.5±1.1 48.2±1.1 94.3±0.4 69.7±0.8 60.4±1.0

Finetune NCC - - - % - 55.9±1.2 94.0±0.5 87.3±0.6 77.8±0.9 76.8±0.8 75.3±0.9 57.6±1.1 91.5±0.6 86.1±0.9 53.1±1.2 96.8±0.4 80.9±0.8 65.9±1.1

Finetune Softmax - - - % - 48.4±1.2 92.2±0.6 81.6±0.9 70.3±1.3 72.0±0.9 73.5±1.0 44.2±1.1 90.3±0.7 65.5±1.4 41.0±1.3 96.3±0.4 71.6±1.0 53.8±1.4

Aux-S-CW NCC Aux-Net serial CW % - 54.6±1.1 93.5±0.5 86.6±0.5 78.6±0.8 71.5±0.7 79.3±0.6 66.0±0.9 87.6±0.6 43.3±0.9 49.1±1.0 87.9±0.5 62.8±0.8 51.5±1.0

Aux-R-CW NCC Aux-Net residual CW % - 56.1±1.1 94.2±0.4 88.4±0.5 80.6±0.7 74.9±0.6 82.0±0.6 66.4±0.9 91.6±0.5 48.5±1.0 53.5±1.0 90.8±0.5 70.2±0.8 59.7±1.0

Aux-S-CW MD Aux-Net serial CW % - 55.1±1.1 93.8±0.5 86.8±0.5 77.4±0.8 73.2±0.8 79.9±0.7 57.4±0.9 88.1±0.7 58.4±1.1 50.1±1.1 92.7±0.5 66.5±0.8 55.7±1.1

Aux-R-CW MD Aux-Net residual CW % - 54.8±1.1 93.8±0.5 87.4±0.5 78.2±0.7 73.4±0.7 81.1±0.7 58.8±0.9 90.1±0.5 63.6±1.2 48.5±1.1 94.8±0.4 69.6±0.8 60.6±0.9

Ad-S-CW NCC Ad serial CW % 0.06% 56.8±1.1 94.8±0.4 89.3±0.5 80.7±0.7 74.5±0.7 81.6±0.6 65.8±0.9 91.3±0.5 73.9±1.1 53.6±1.1 95.7±0.4 78.4±0.7 64.3±1.0

Ad-R-CW NCC Ad residual CW % 1.57% 57.6±1.1 94.7±0.4 89.0±0.4 81.2±0.8 75.2±0.7 81.5±0.6 65.4±0.8 91.8±0.5 79.2±1.1 54.7±1.1 96.4±0.4 79.5±0.8 67.4±1.0

Ad-S-M NCC Ad serial M % 12.50% 56.2±1.1 94.4±0.4 89.1±0.5 80.6±0.7 75.8±0.7 81.6±0.6 67.1±0.9 92.1±0.4 67.6±1.2 54.8±1.1 95.9±0.4 78.9±0.7 66.6±1.1

Ad-R-M NCC Ad residual M % 10.93% 57.3±1.1 94.9±0.4 88.9±0.5 81.0±0.7 76.7±0.7 80.6±0.6 65.4±0.9 91.4±0.5 82.6±1.0 55.0±1.1 96.6±0.4 82.1±0.7 66.4±1.1

Ad-R-CW-PA NCC Ad residual CW ! 3.91% 58.6±1.1 94.5±0.4 90.0±0.4 80.5±0.8 77.6±0.7 81.9±0.6 67.0±0.9 92.2±0.5 80.2±0.9 57.2±1.0 96.1±0.4 81.5±0.8 71.4±0.9
Ad-R-M-PA NCC Ad residual M ! 13.27% 59.5±1.0 94.9±0.4 89.9±0.4 81.1±0.8 77.5±0.7 81.7±0.6 66.3±0.9 92.2±0.5 82.8±1.0 57.6±1.0 96.7±0.4 82.9±0.7 70.4±1.0

Table C.6: Comparisons to methods that learn classifiers and model adaptation methods

during meta-test stage based on URL model. NCC, MD, LR, SVM, Softmax, KNN denote

nearest centroid classifier, Mahalanobis distance, logistic regression, support vector

machines, softmax classifier and k-nearest neighbors classifier respectively. PA indicates

pre-classifier alignment. ‘Aux-Net or Ad’ indicates using Auxiliary Network to predict α or

attaching adapter α directly. ‘M or CW’ means using matrix multiplication or channel-wise

scaling adapters. ’S’ and ’R’ denote serial adapter and residual adapter, respectively. ‘β’

indicates using the pre-classifier adaptation. Mean accuracy, 95% confidence interval

are reported. The first eight datasets are seen during training and the last five datasets

are unseen and used for test only.

C.2.2 Task-specific parameterizations

In Tab. C.6, we report an additional 95% confidence interval of each dataset to Sec. 4.4

for the comparison of different rα choices based on the URL model. The first eight

datasets are seen during training and the last five datasets are unseen and used for testing

only. We can see that the confidence intervals for different methods have marginal

differences.

C.2.3 Results evaluated with updated evaluation protocol.

As the code from Meta-dataset has been updated, we evaluate all methods with the

updated evaluation protocol from the Meta-dataset 1 and report the results 2 in Tab. C.7.

1As mentioned in https://github.com/google-research/meta-dataset/issues/54, we also
set the shuffle buffer size as 1000 to evaluate all methods and report the results in Tab. C.7. This change
does not affect much on the results as the datasets we used were shuffled using the latest data convert
code from Meta-Dataset.

2The results of Simple CNAPS (Bateni et al., 2020b) and Transductive CNAPS (Bateni et al., 2020a)
are reproduced by the authors and reported at https://github.com/peymanbateni/simple-cnaps.

https://github.com/google-research/meta-dataset/issues/54
https://github.com/google-research/meta-dataset
https://github.com/peymanbateni/simple-cnaps

C.2. More results 123

As shown in Tab. C.7, the update does not affect much on the results and our method

rank 1.5 in average and the state-of-the-art method URL rank 2.7. Our method outper-

forms other methods on most domains (9 out of 13), especially obtaining significant

improvement on 5 unseen datasets than the second best method, i.e. Average Unseen

(+7.9). More specifically, our method obtains significant better results than the second

best approach (URL) on Traffic Sign (+20.2), CIFAR-10 (+8.7), and CIFAR-100 (+7.0).

Test Dataset CNAPS (Requeima et al., 2019) Simple CNAPS (Bateni et al., 2020b) TransductiveCNAPS (Bateni et al., 2020a) SUR (Dvornik et al., 2020) URT (Liu et al., 2021b) FLUTE (Triantafillou et al., 2021) tri-M (Liu et al., 2021d) URL (Ours) Ours

ImageNet 50.8±1.1 56.5±1.1 57.9±1.1 54.5±1.1 55.0±1.1 51.8±1.1 58.6±1.0 57.5±1.1 57.4±1.1

Omniglot 91.7±0.5 91.9±0.6 94.3±0.4 93.0±0.5 93.3±0.5 93.2±0.5 92.0±0.6 94.5±0.4 95.0±0.4
Aircraft 83.7±0.6 83.8±0.6 84.7±0.5 84.3±0.5 84.5±0.6 87.2±0.5 82.8±0.7 88.6±0.5 89.3±0.4
Birds 73.6±0.9 76.1±0.9 78.8±0.7 70.4±1.1 75.8±0.8 79.2±0.8 75.3±0.8 80.5±0.7 81.4±0.7

Textures 59.5±0.7 70.0±0.8 66.2±0.8 70.5±0.7 70.6±0.7 68.8±0.8 71.2±0.8 76.2±0.7 76.7±0.7
Quick Draw 74.7±0.8 78.3±0.7 77.9±0.6 81.6±0.6 82.1±0.6 79.5±0.7 77.3±0.7 81.9±0.6 82.0±0.6

Fungi 50.2±1.1 49.1±1.2 48.9±1.2 65.0±1.0 63.7±1.0 58.1±1.1 48.5±1.0 68.8±0.9 67.4±1.0

VGG Flower 88.9±0.5 91.3±0.6 92.3±0.4 82.2±0.8 88.3±0.6 91.6±0.6 90.5±0.5 92.1±0.5 92.2±0.5

Traffic Sign 56.5±1.1 59.2±1.0 59.7±1.1 49.8±1.1 50.1±1.1 58.4±1.1 63.0±1.0 63.3±1.2 83.5±0.9
MSCOCO 39.4±1.0 42.4±1.1 42.5±1.1 49.4±1.1 48.9±1.1 50.0±1.0 52.8±1.1 54.0±1.0 55.8±1.1

MNIST - 94.3±0.4 94.7±0.3 94.9±0.4 90.5±0.4 95.6±0.5 96.2±0.3 94.5±0.5 96.7±0.4
CIFAR-10 - 72.0±0.8 73.6±0.7 64.2±0.9 65.1±0.8 78.6±0.7 75.4±0.8 71.9±0.7 80.6±0.8

CIFAR-100 - 60.9±1.1 61.8±1.0 57.1±1.1 57.2±1.0 67.1±1.0 62.0±1.0 62.6±1.0 69.6±1.0

Average Seen 71.6 74.6 75.1 75.2 76.7 76.2 74.5 80.0 80.2

Average Unseen - 65.8 66.5 63.1 62.4 69.9 69.9 69.3 77.2

Average All - 71.2 71.8 70.5 71.2 73.8 72.7 75.9 79.0

Average Rank - 6.3 4.9 5.8 5.7 4.3 4.8 2.7 1.5

Table C.7: Comparison state-of-the-art methods on Meta-Dataset (using a multi-domain

feature extractor of (Li et al., 2021b)). Mean accuracy, 95% confidence interval are

reported. The first eight datasets are seen during training and the last five datasets are

unseen and used for test only.

C.2.4 Ablation study

Here, we conduct an ablation study of our method with the URL model, unless stated

otherwise.

Sensitivity analysis for number of iterations. In our method, we optimize the at-

tached parameters (α,β) with 40 iterations. Figure C.1 and Figure C.2 report the results

with 10, 20, 40, 60 iterations and indicates that our method (solid green) converges

to a stable solution after 20 iterations and achieves better average performance on all

domains than the baseline URL (dash green). The mean accuracy with 95% confidence

interval are reported in Tabs. C.8 and C.9

Influence of α and β. We evaluate different components of our method and report

the results in Tab. C.10. The results show that both residual adapters α and the linear

transformation β help adapt features to unseen classes while residual adapters signifi-

cantly improve the performance on unseen domains. The best results are achieved by

using both α and β.

Results of FLUTE (Triantafillou et al., 2021) and tri-M (Liu et al., 2021d) are from their papers. We
reproduce the results of SUR (Dvornik et al., 2020) and URT (Liu et al., 2021b) with the updated
evaluation protocol for fair comparison.

124 Appendix C. Cross-domain Few-shot Classification

10 20 30 40 50 60
Iterations

66

68

70

72

74

76

78

Ac
cu

ra
y

Average seen
Average unseen
Average all
Average all (baseline)

Figure C.1: Sensitivity of performance to number of iterations based on MDL model.

10 20 30 40 50 60
Iterations

73

74

75

76

77

78

79

80

81

Ac
cu

ra
y

Average seen
Average unseen
Average all
Average all (baseline)

Figure C.2: Sensitivity of performance to number of iterations based on URL model.

Initialization analysis for adapters. Here, we investigate using different initializa-

tion strategies for adapters: i) Identity initialization: in this chapter we initialize each

residual adapter as an identity matrix scaled by a scalar δ and we set δ = 1e− 4; ii)

randomly initialization: alternatively, we can randomly initialize each residual adapter.

The results of different initialization are summarized in Fig. C.3. We can see that our

methods with different initialization strategies obtain similar results, which indicates

that our method works also with randomly initialization and again verifies the stability

of our method. Detailed results of each dataset are shown in Tab. C.11.

Layer analysis for adapters. Here we investigate whether it is sufficient to attach the

adapters only to the later layers. We evaluate this on ResNet18 which is composed of

four blocks and attach the adapters to only later blocks (block4, block3,4, block2,3,4 and

block-all. Figure C.4 shows that applying our adapters to only the last block (block4)

obtains around 78% average accuracy on all domains which outperforms the URL.

With attaching residual adapters to more layers, the performance on unseen domains

is improved significantly while the one on seen domains remains stable. The mean

C.2. More results 125

Test Dataset ImageNet Omniglot Aircraft Birds Textures Quick Draw Fungi VGG Flower Traffic Sign MSCOCO MNIST CIFAR-10 CIFAR-100

10 iterations 55.5±1.1 93.9±0.5 86.4±0.5 78.6±0.7 73.3±0.7 81.9±0.6 63.1±0.9 90.3±0.5 77.6±1.0 50.6±1.1 96.9±0.3 77.0±0.8 62.6±1.1

20 iterations 56.2±1.1 94.7±0.4 86.3±0.5 78.3±0.8 73.9±0.7 81.6±0.6 63.4±0.9 90.1±0.6 79.4±1.0 52.8±1.1 97.2±0.3 78.6±0.8 65.9±1.1

40 iterations 55.6±1.0 94.3±0.4 86.7±0.5 79.4±0.8 73.2±0.8 81.7±0.6 64.0±0.9 90.9±0.5 81.1±0.9 51.4±1.1 96.9±0.3 78.5±0.8 64.3±1.1

60 iterations 55.9±1.1 95.1±0.4 85.9±0.6 77.5±0.8 74.7±0.7 80.9±0.6 62.1±0.9 90.7±0.6 82.2±0.9 52.2±1.1 97.0±0.4 78.4±0.8 64.4±1.1

Table C.8: Sensitivity of performance to number of iterations based on MDL model.

Test Dataset ImageNet Omniglot Aircraft Birds Textures Quick Draw Fungi VGG Flower Traffic Sign MSCOCO MNIST CIFAR-10 CIFAR-100

10 iterations 58.4±1.1 94.8±0.4 89.9±0.4 81.3±0.7 76.6±0.7 81.8±0.6 68.4±0.9 92.5±0.5 76.5±1.1 55.6±1.1 96.4±0.4 79.0±0.7 66.9±1.0

20 iterations 58.2±1.1 94.8±0.4 89.9±0.4 81.1±0.7 77.5±0.8 81.9±0.6 68.0±0.9 92.4±0.5 81.8±1.0 57.8±1.1 96.7±0.4 81.7±0.8 69.1±0.9

40 iterations 59.5±1.0 94.9±0.4 89.9±0.4 81.1±0.8 77.5±0.7 81.7±0.6 66.3±0.9 92.2±0.5 82.8±1.0 57.6±1.0 96.7±0.4 82.9±0.7 70.4±1.0

60 iterations 58.7±1.1 94.9±0.4 89.5±0.5 80.8±0.7 77.4±0.8 81.8±0.6 66.2±0.9 92.5±0.5 83.7±0.9 56.9±1.0 96.6±0.3 82.0±0.8 72.0±0.9

Table C.9: Sensitivity of performance to number of iterations based on URL model.

Ours(MDL)-I Ours(MDL)-R Ours(URL)-I Ours(URL)-R
72

74

76

78

80

82

84

86

Ac
cu

ra
y

Average Seen
Average Unseen
Average All

Figure C.3: Initialization analysis for adapters. ’-I’ indicates identity initialization and ‘-R’

is randomly initialization.

accuracy with 95% confidence interval for layer analysis are shown in Tab. C.12.

Decomposing residual adapters. Here we investigate whether one can reduce the

number of parameters in the adapters while retaining its performance by using matrix

decomposition. As in deep neural networks, the adapters in earlier layers are relatively

small; we then decompose the adapters in the last two blocks only where the adapter

dimensionality goes up to 512×512. Figure C.5 shows that our method can achieve

good performance with less parameters by decomposing large residual adapters, (e.g.

when N = 32 where the number of additional parameters equal to around 4% vs 13%,

the performance is still comparable to the original form of residual adapters, i.e. N=0).

Results of each dataset in Tab. C.13, also show that, by decomposing large residual

adapters, the performance of our method is still comparable to the original form of

residual adapters (i.e. Ours) with less parameters.

The similar conclusion can be drawn from results (shown in Fig. C.6) of our method

using decomposed residual adapters in all layers. When N increases, i.e., smaller

residual adapters, the average accuracy on all domains is still comparable to the original

126 Appendix C. Cross-domain Few-shot Classification

Test Dataset ImageNet Omniglot Aircraft Birds Textures Quick Draw Fungi VGG Flower Traffic Sign MSCOCO MNIST CIFAR-10 CIFAR-100

Ours w/o α & β 57.0±1.1 94.4±0.4 88.0±0.5 80.3±0.7 74.6±0.7 81.8±0.6 66.2±0.9 91.5±0.5 49.8±1.1 54.1±1.0 91.1±0.4 70.6±0.7 59.1±1.0

Ours w/o β 57.3±1.1 94.9±0.4 88.9±0.5 81.0±0.7 76.7±0.7 80.6±0.6 65.4±0.9 91.4±0.5 82.6±1.0 55.0±1.1 96.6±0.4 82.1±0.7 66.4±1.1

Ours w/o α 58.8±1.1 94.5±0.4 89.4±0.4 80.7±0.8 77.2±0.7 82.5±0.6 68.1±0.9 92.0±0.5 63.3±1.2 57.3±1.0 94.7±0.4 74.2±0.8 63.6±1.0

Ours 59.5±1.0 94.9±0.4 89.9±0.4 81.1±0.8 77.5±0.7 81.7±0.6 66.3±0.9 92.2±0.5 82.8±1.0 57.6±1.0 96.7±0.4 82.9±0.7 70.4±1.0

Table C.10: Effect of each component. We build our method on the URL model and ‘Ours

w/o α & β’ means we remove both residual adapters α and the pre-classifier adaptation

layer β in our method.

Test Dataset ImageNet Omniglot Aircraft Birds Textures Quick Draw Fungi VGG Flower Traffic Sign MSCOCO MNIST CIFAR-10 CIFAR-100

Ours(SDL-ResNet-18)-I 59.5±1.1 78.2±1.2 72.2±1.0 74.9±0.9 77.3±0.7 67.6±0.9 44.7±1.0 90.9±0.6 82.5±0.8 59.0±1.0 93.9±0.6 82.1±0.7 70.7±0.9

Ours(SDL-ResNet-18)-R 58.2±1.0 78.4±1.2 71.1±1.1 74.4±1.0 77.1±0.7 67.2±1.0 45.9±1.0 90.7±0.6 81.9±1.0 57.7±1.1 94.1±0.5 81.9±0.7 70.5±0.9

Ours(MDL)-I 55.6±1.0 94.3±0.4 86.7±0.5 79.4±0.8 73.2±0.8 81.7±0.6 64.0±0.9 90.9±0.5 81.1±0.9 51.4±1.1 96.9±0.3 78.5±0.8 64.3±1.1

Ours(MDL)-R 56.0±1.1 94.1±0.4 87.1±0.5 79.7±0.8 74.0±0.7 82.0±0.6 62.6±0.9 90.6±0.6 80.9±0.9 51.7±1.1 96.9±0.4 77.7±0.9 65.8±1.1

Ours(URL)-I 59.5±1.0 94.9±0.4 89.9±0.4 81.1±0.8 77.5±0.7 81.7±0.6 66.3±0.9 92.2±0.5 82.8±1.0 57.6±1.0 96.7±0.4 82.9±0.7 70.4±1.0

Ours(URL)-R 58.8±1.1 94.9±0.4 90.5±0.4 81.8±0.6 77.7±0.7 82.3±0.6 66.8±0.9 92.6±0.5 83.7±0.8 57.7±1.1 96.9±0.4 82.5±0.7 72.0±0.9

Table C.11: Initialization analysis of adapters. ‘Ours(URL)-I’ indicates our method using

URL as the pretrained model and initializing residual adapters as identity matrix (scaled

by δ = 0.0001) while ‘Ours(URL)-R’ means our method initialize residual adapters

randomly.

Test Dataset ImageNet Omniglot Aircraft Birds Textures Quick Draw Fungi VGG Flower Traffic Sign MSCOCO MNIST CIFAR-10 CIFAR-100

Ours (block4) 59.0±1.1 95.0±0.4 90.0±0.4 80.6±0.8 77.8±0.7 82.3±0.6 68.2±0.9 91.8±0.6 70.6±1.1 57.1±1.1 95.9±0.4 77.2±0.8 65.9±1.0

Ours (block3,4) 60.4±1.1 94.7±0.4 90.0±0.5 80.4±0.7 77.8±0.7 82.2±0.6 67.2±0.8 92.5±0.5 77.2±1.0 57.9±1.0 96.7±0.3 78.8±0.9 68.6±0.9

Ours (block2,3,4) 59.6±1.1 94.9±0.4 89.9±0.5 81.0±0.8 78.2±0.7 82.4±0.6 67.6±0.9 92.3±0.5 81.5±1.0 57.9±1.0 96.6±0.4 81.5±0.8 70.6±1.0

Ours (block-all) 59.5±1.0 94.9±0.4 89.9±0.4 81.1±0.8 77.5±0.7 81.7±0.6 66.3±0.9 92.2±0.5 82.8±1.0 57.6±1.0 96.7±0.4 82.9±0.7 70.4±1.0

Table C.12: Block (layer) analysis for adapters based on URL model.

form of residual adapters (i.e. N=0) with less parameters though the average accuracy on

unseen domains drops slightly. From the results depicted in Tab. C.14, we can see that

when N increases, the performance of most domains are still comparable to the original

form of residual adapters (i.e. Ours) while the performance on Traffic Sign drops slightly

as the adapters in earlier layers are small and when N is larger the decomposed residual

adapters might be too small to tranform the features. Overall, our method can achieve

good performance with less parameters by decomposing large residual adapters.

Training time. The training time (meta-train) of our method is equal to the one

of URL (hence no additional cost), i.e. 48 hours in multi-domain setting, 6 hours

for Resnet-18 and 33 hours for Resnet-34 in single-domain learning in one Nvidia

V100 GPU. Whereas CTX meta-training requires 8 Nvidia V100 GPUs for 7 days and

approximately 40 times more expensive than ours. During the meta-test stage, the model

parameters are further trained using the support set of each episode. Meta-test training

cost is depicted in Tab. C.15 for Meta-Dataset tasks. URL baseline only finetunes

parameters of PA β. Finetune+NCC updates the entire backbone parameters. Ours

C.2. More results 127

block4 block3,4 block2,3,4 block-all
72

74

76

78

80

82

84

86

Ac
cu

ra
y

Average Seen
Average Unseen
Average All

Figure C.4: Block (layer) analysis for adapters.

0 2 4 8 16 32
N

73

74

75

76

77

78

79

80

81

Ac
cu

ra
y

Average seen
Average unseen
Average all

Figure C.5: Decomposed residual adapters on block-3,4.

learn RA and PA parameters. While URL is the fastest baseline, as it does not require

backpropagating the error to early layers, ours is more efficient than finetuning all the

backbone parameters.

C.2.5 Qualitative results

We qualitatively analyze our methods (URL and TSA) and compare it to Simple

CNAPS (Bateni et al., 2020b), SUR (Dvornik et al., 2020), and URT (Liu et al., 2021b)

in Figs. C.7 to C.19 by illustrating the nearest neighbors in all test datasets given a

query image as Li et al. (2021b). It is clear that our methods produce more correct

neighbors than other methods. While other methods retrieve images with more similar

colors, shapes and backgrounds, e.g. in Figs. C.15, C.16, C.18 and C.19, our method is

able to retrieve semantically similar images. More specifically, as shown in Fig. C.10,

by learning task-agnostic weights by URL and adapting the task-agnostic weight by

TSA, our whole method correctly produces neighbors of the bird in the query image

while other methods pick images with similar appearances or similar background, e.g.

128 Appendix C. Cross-domain Few-shot Classification

0 2 4 8 16
N

73

74

75

76

77

78

79

80

81

Ac
cu

ra
y

Average seen
Average unseen
Average all

Figure C.6: Decomposed residual adapters on all layers.

Test Dataset ImageNet Omniglot Aircraft Birds Textures Quick Draw Fungi VGG Flower Traffic Sign MSCOCO MNIST CIFAR-10 CIFAR-100

Ours 59.5±1.0 94.9±0.4 89.9±0.4 81.1±0.8 77.5±0.7 81.7±0.6 66.3±0.9 92.2±0.5 82.8±1.0 57.6±1.0 96.7±0.4 82.9±0.7 70.4±1.0

Ours(N=2) 58.9±1.1 95.2±0.4 89.7±0.5 80.9±0.7 76.7±0.7 81.4±0.6 67.7±0.9 92.2±0.5 82.4±1.0 57.1±1.0 96.5±0.4 82.4±0.7 70.3±1.0

Ours(N=4) 58.7±1.1 94.9±0.4 89.7±0.5 80.3±0.7 77.0±0.7 82.5±0.6 67.2±0.9 92.5±0.5 82.6±1.0 57.5±1.1 96.5±0.4 82.5±0.7 70.8±0.9

Ours(N=8) 59.1±1.1 95.0±0.4 89.8±0.5 80.2±0.8 77.2±0.7 82.1±0.6 67.0±0.9 92.2±0.5 82.5±1.0 57.2±1.1 96.8±0.4 82.6±0.7 71.8±0.9

Ours(N=16) 58.2±1.1 94.7±0.4 90.1±0.4 80.3±0.8 76.9±0.7 81.7±0.6 67.6±0.9 92.0±0.5 81.8±1.0 58.1±1.1 96.4±0.4 81.8±0.7 71.1±0.9

Ours(N=32) 59.2±1.1 94.8±0.4 89.6±0.5 80.0±0.8 77.3±0.6 82.4±0.6 67.2±0.9 92.1±0.5 82.1±1.0 57.1±1.0 96.7±0.3 81.6±0.8 71.1±0.9

Table C.13: Results of using decomposed RA on layer3,4.

Test Dataset ImageNet Omniglot Aircraft Birds Textures Quick Draw Fungi VGG Flower Traffic Sign MSCOCO MNIST CIFAR-10 CIFAR-100

Ours 59.5±1.0 94.9±0.4 89.9±0.4 81.1±0.8 77.5±0.7 81.7±0.6 66.3±0.9 92.2±0.5 82.8±1.0 57.6±1.0 96.7±0.4 82.9±0.7 70.4±1.0

Ours(N=2) 58.1±1.1 94.8±0.4 89.7±0.5 80.2±0.8 76.9±0.7 82.1±0.6 67.8±0.9 92.0±0.6 82.5±0.9 56.9±1.1 96.7±0.3 82.0±0.8 70.3±1.0

Ours(N=4) 59.6±1.1 94.8±0.4 89.9±0.5 80.3±0.8 77.4±0.7 82.6±0.6 66.6±0.9 92.9±0.5 79.7±1.1 57.6±1.1 96.5±0.4 80.9±0.8 70.6±1.0

Ours(N=8) 58.2±1.1 94.6±0.4 89.6±0.5 81.2±0.8 76.6±0.7 82.7±0.6 66.5±0.9 92.3±0.5 78.1±1.1 57.3±1.0 96.3±0.3 81.0±0.8 70.9±0.9

Ours(N=16) 58.9±1.1 94.6±0.4 89.7±0.5 80.1±0.7 77.0±0.7 82.1±0.6 68.4±0.9 91.9±0.5 78.3±1.0 57.8±1.1 96.0±0.4 82.0±0.7 70.3±1.0

Table C.14: Results of using decomposed RA on all layers.

Test Dataset
Image Omni Air-

Birds
Tex- Quick

Fungi
VGG Traffic MS-

MNIST
CIFAR CIFAR

-Net -glot craft tures Draw Flower Sign COCO -10 -100

URL 0.7 0.7 0.4 0.7 0.4 1.0 1.0 0.5 0.9 0.9 0.4 0.4 1.0

Finetune+NCC 7.7 2.5 7.4 7.0 5.8 9.3 8.7 6.6 9.1 9.0 6.5 6.7 9.3

Ours (URL+RA+PA) 7.2 2.4 6.1 6.8 4.8 8.9 7.4 5.2 8.8 8.3 6.0 6.2 8.6

Table C.15: Computation cost (# second per task) during meta-test.

images with twigs. In Fig. C.15, other methods and even URL mainly retrieve the

triangle sign while our TSA method is able to retrieve the correct sign with illumination

distortion. In Fig. C.19, other methods including SUR, URT are distracted by the blue

background. While the URL learns more generalized features and is less distracted by

the color and background. By using our TSA with the URL task-agnostic model, our

TSA method selects the correct shark images. It again suggests that the URL method

provides an efficient and effective way to learn a single task-agnostic network and

generalized features from multiple domains and our TSA method is able to quickly

adapt the features for unseen few-shot tasks.

C.2. More results 129

Figure C.7: Qualitative comparison to Simple CNAPS (Bateni et al., 2020b),

SUR (Dvornik et al., 2020), and URT (Liu et al., 2021b) in ImageNet. Green and

red colors indicate correct and false predictions respectively.

Figure C.8: Qualitative comparison to Simple CNAPS (Bateni et al., 2020b),

SUR (Dvornik et al., 2020), and URT (Liu et al., 2021b) in Omniglot. Green and red

colors indicate correct and false predictions respectively.

130 Appendix C. Cross-domain Few-shot Classification

Figure C.9: Qualitative comparison to Simple CNAPS (Bateni et al., 2020b),

SUR (Dvornik et al., 2020), and URT (Liu et al., 2021b) in Aircraft. Green and red

colors indicate correct and false predictions respectively.

Figure C.10: Qualitative comparison to Simple CNAPS (Bateni et al., 2020b),

SUR (Dvornik et al., 2020), and URT (Liu et al., 2021b) in Birds. Green and red

colors indicate correct and false predictions respectively.

C.2. More results 131

Figure C.11: Qualitative comparison to Simple CNAPS (Bateni et al., 2020b),

SUR (Dvornik et al., 2020), and URT (Liu et al., 2021b) in Textures. Green and red

colors indicate correct and false predictions respectively.

Figure C.12: Qualitative comparison to Simple CNAPS (Bateni et al., 2020b),

SUR (Dvornik et al., 2020), and URT (Liu et al., 2021b) in Quick Draw. Green and

red colors indicate correct and false predictions respectively.

132 Appendix C. Cross-domain Few-shot Classification

Figure C.13: Qualitative comparison to Simple CNAPS (Bateni et al., 2020b),

SUR (Dvornik et al., 2020), and URT (Liu et al., 2021b) in Fungi. Green and red

colors indicate correct and false predictions respectively.

Figure C.14: Qualitative comparison to Simple CNAPS (Bateni et al., 2020b),

SUR (Dvornik et al., 2020), and URT (Liu et al., 2021b) in VGG Flower. Green and red

colors indicate correct and false predictions respectively.

C.2. More results 133

Figure C.15: Qualitative comparison to Simple CNAPS (Bateni et al., 2020b),

SUR (Dvornik et al., 2020), and URT (Liu et al., 2021b) in Traffic Sign. Green and

red colors indicate correct and false predictions respectively.

Figure C.16: Qualitative comparison to Simple CNAPS (Bateni et al., 2020b),

SUR (Dvornik et al., 2020), and URT (Liu et al., 2021b) in MSCOCO. Green and

red colors indicate correct and false predictions respectively.

134 Appendix C. Cross-domain Few-shot Classification

Figure C.17: Qualitative comparison to Simple CNAPS (Bateni et al., 2020b),

SUR (Dvornik et al., 2020), and URT (Liu et al., 2021b) in MNIST. Green and red

colors indicate correct and false predictions respectively.

Figure C.18: Qualitative comparison to Simple CNAPS (Bateni et al., 2020b),

SUR (Dvornik et al., 2020), and URT (Liu et al., 2021b) in CIFAR-10. Green and

red colors indicate correct and false predictions respectively.

C.2. More results 135

Figure C.19: Qualitative comparison to Simple CNAPS (Bateni et al., 2020b),

SUR (Dvornik et al., 2020), and URT (Liu et al., 2021b) in CIFAR-100. Green and

red colors indicate correct and false predictions respectively.

Bibliography

Adler, T., Brandstetter, J., Widrich, M., Mayr, A., Kreil, D., Kopp, M., Klambauer, G.,

and Hochreiter, S. (2020). Cross-domain few-shot learning by representation fusion.

arXiv preprint arXiv:2010.06498. 61

Atkinson, J. (2002). The developing visual brain. 10

Bachmann, R., Mizrahi, D., Atanov, A., and Zamir, A. (2022). Multimae: Multi-modal

multi-task masked autoencoders. In ECCV. 91

Badrinarayanan, V., Kendall, A., and Cipolla, R. (2017). Segnet: A deep convolutional

encoder-decoder architecture for image segmentation. PAMI, 39(12):2481–2495. 23,

24, 34, 47, 98, 103, 104

Bao, Y., Li, Y., Huang, S.-L., Zhang, L., Zheng, L., Zamir, A., and Guibas, L. (2019).

An information-theoretic approach to transferability in task transfer learning. In ICIP,

pages 2309–2313. IEEE. 93

Bateni, P., Barber, J., van de Meent, J.-W., and Wood, F. (2020a). Enhancing few-shot

image classification with unlabelled examples. arXiv preprint arXiv:2006.12245. 4,

63, 74, 122, 123

Bateni, P., Goyal, R., Masrani, V., Wood, F., and Sigal, L. (2020b). Improved few-shot

visual classification. In CVPR, pages 14493–14502. 4, 60, 61, 62, 63, 68, 70, 72, 73,

74, 78, 84, 86, 87, 119, 121, 122, 123, 127, 129, 130, 131, 132, 133, 134, 135

Berthelot, D., Carlini, N., Goodfellow, I., Papernot, N., Oliver, A., and Raffel, C. (2019).

Mixmatch: A holistic approach to semi-supervised learning. NeurIPS. 43

Bertinetto, L., Henriques, J. F., Valmadre, J., Torr, P., and Vedaldi, A. (2016). Learn-

ing feed-forward one-shot learners. In Advances in neural information processing

systems, pages 523–531. 61

137

138 Bibliography

Bilen, H. and Vedaldi, A. (2016). Integrated perception with recurrent multi-task neural

networks. In Advances in Neural Information Processing Systems, pages 235–243.

10, 13, 41

Bilen, H. and Vedaldi, A. (2017). Universal representations: The missing link between

faces, text, planktons, and cat breeds. arXiv preprint arXiv:1701.07275. 10, 15, 64

Bragman, F. J., Tanno, R., Ourselin, S., Alexander, D. C., and Cardoso, J. (2019).

Stochastic filter groups for multi-task cnns: Learning specialist and generalist convo-

lution kernels. In ICCV, pages 1385–1394. 13, 37

Brigit, S. and Yin, C. (2018). Fgvcx fungi classification challenge. online. 1, 9, 71

Bruggemann, D., Kanakis, M., Georgoulis, S., and Van Gool, L. (2020). Auto-

mated search for resource-efficient branched multi-task networks. arXiv preprint

arXiv:2008.10292. 10, 13, 37

Bruggemann, D., Kanakis, M., Obukhov, A., Georgoulis, S., and Van Gool, L. (2021).

Exploring relational context for multi-task dense prediction. In ICCV. 13, 91

Caruana, R. (1997). Multitask learning. Machine learning, 28(1):41–75. 1, 13, 40, 94

Casser, V., Pirk, S., Mahjourian, R., and Angelova, A. (2019). Depth prediction without

the sensors: Leveraging structure for unsupervised learning from monocular videos.

In AAAI, volume 33, pages 8001–8008. 41

Castro, F. M., Marı́n-Jiménez, M. J., Guil, N., Schmid, C., and Alahari, K. (2018).

End-to-end incremental learning. In ECCV, pages 233–248. 92

Chen, L.-C., Papandreou, G., Kokkinos, I., Murphy, K., and Yuille, A. L. (2017).

Deeplab: Semantic image segmentation with deep convolutional nets, atrous convo-

lution, and fully connected crfs. PAMI, 40(4):834–848. 105

Chen, L.-C., Zhu, Y., Papandreou, G., Schroff, F., and Adam, H. (2018a). Encoder-

decoder with atrous separable convolution for semantic image segmentation. In

ECCV, pages 801–818. 48, 105

Chen, T., Kornblith, S., Norouzi, M., and Hinton, G. (2020a). A simple framework

for contrastive learning of visual representations. In International conference on

machine learning, pages 1597–1607. PMLR. 76

Bibliography 139

Chen, W.-Y., Liu, Y.-C., Kira, Z., Wang, Y.-C. F., and Huang, J.-B. (2019). A closer

look at few-shot classification. In ICLR. 63

Chen, X., Mottaghi, R., Liu, X., Fidler, S., Urtasun, R., and Yuille, A. (2014). Detect

what you can: Detecting and representing objects using holistic models and body

parts. In CVPR, pages 1971–1978. 47, 90, 104, 105

Chen, Y., Wang, X., Liu, Z., Xu, H., and Darrell, T. (2020b). A new meta-baseline for

few-shot learning. arXiv preprint arXiv:2003.04390. 60, 63, 68, 69

Chen, Z., Badrinarayanan, V., Lee, C.-Y., and Rabinovich, A. (2018b). Gradnorm:

Gradient normalization for adaptive loss balancing in deep multitask networks. In

ICML, pages 794–803. PMLR. 2, 11, 13, 18, 24, 26, 27, 38, 52, 61, 65, 111, 112

Chen, Z., Ngiam, J., Huang, Y., Luong, T., Kretzschmar, H., Chai, Y., and Anguelov,

D. (2020c). Just pick a sign: Optimizing deep multitask models with gradient sign

dropout. NeurIPS. 13, 24, 26, 27, 38

Chen, Z., Zhu, L., Wan, L., Wang, S., Feng, W., and Heng, P.-A. (2020d). A multi-task

mean teacher for semi-supervised shadow detection. In CVPR, pages 5611–5620. 39,

40

Chennupati, S., Sistu, G., Yogamani, S., and A Rawashdeh, S. (2019). Multinet++:

Multi-stream feature aggregation and geometric loss strategy for multi-task learning.

In CVPR Workshop. 13

Cimpoi, M., Maji, S., Kokkinos, I., Mohamed, S., and Vedaldi, A. (2014). Describing

textures in the wild. In CVPR, pages 3606–3613. 9, 30, 71, 98

Clark, K., Luong, M.-T., Khandelwal, U., Manning, C. D., and Le, Q. V. (2019). Bam!

born-again multi-task networks for natural language understanding. In ACL. 16, 20,

24, 26, 27

Cordts, M., Omran, M., Ramos, S., Rehfeld, T., Enzweiler, M., Benenson, R., Franke,

U., Roth, S., and Schiele, B. (2016). The cityscapes dataset for semantic urban scene

understanding. In CVPR, pages 3213–3223. 2, 22, 23, 38, 47, 94, 97, 103, 104, 105

Cubuk, E. D., Zoph, B., Mane, D., Vasudevan, V., and Le, Q. V. (2019). Autoaugment:

Learning augmentation strategies from data. In CVPR, pages 113–123. 76

140 Bibliography

Dai, J., He, K., and Sun, J. (2016). Instance-aware semantic segmentation via multi-task

network cascades. In CVPR, pages 3150–3158. 9

Deecke, L., Hospedales, T., and Bilen, H. (2022). Visual representation learning over

latent domains. In ICLR. 10, 15

Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., and Fei-Fei, L. (2009). Imagenet: A

large-scale hierarchical image database. In CVPR, pages 248–255. 12, 15, 64

Dhar, P., Kumar, A., Kaplan, K., Gupta, K., Ranjan, R., and Chellappa, R. (2022).

Eyepad++: A distillation-based approach for joint eye authentication and presentation

attack detection using periocular images. In CVPR, pages 20218–20227. 94

Dhillon, G. S., Chaudhari, P., Ravichandran, A., and Soatto, S. (2020). A baseline for

few-shot image classification. In ICLR. 60, 63, 68, 69

Doersch, C., Gupta, A., and Zisserman, A. (2020). Crosstransformers: spatially-aware

few-shot transfer. In NeurIPS. 60, 63, 76, 78, 85, 119

Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn, D., Zhai, X., Unterthiner,

T., Dehghani, M., Minderer, M., Heigold, G., Gelly, S., et al. (2020). An image is

worth 16x16 words: Transformers for image recognition at scale. arXiv preprint

arXiv:2010.11929. 13, 91, 94

Dvornik, N., Schmid, C., and Mairal, J. (2020). Selecting relevant features from a

multi-domain representation for few-shot classification. In ECCV, pages 769–786. 4,

11, 12, 60, 61, 62, 64, 65, 66, 68, 70, 71, 72, 73, 74, 84, 86, 87, 117, 118, 119, 123,

127, 129, 130, 131, 132, 133, 134, 135

Dwivedi, K., Huang, J., Cichy, R. M., and Roig, G. (2020). Duality diagram similarity:

a generic framework for initialization selection in task transfer learning. In ECCV,

pages 497–513. Springer. 93

Dwivedi, K. and Roig, G. (2019). Representation similarity analysis for efficient task

taxonomy & transfer learning. In CVPR, pages 12387–12396. 93

Eftekhar, A., Sax, A., Malik, J., and Zamir, A. (2021). Omnidata: A scalable pipeline

for making multi-task mid-level vision datasets from 3d scans. In ICCV, pages

10786–10796. 90

Bibliography 141

Eigen, D. and Fergus, R. (2015). Predicting depth, surface normals and semantic labels

with a common multi-scale convolutional architecture. In ICCV, pages 2650–2658.

23, 47, 97

Eigen, D., Puhrsch, C., and Fergus, R. (2014). Depth map prediction from a single

image using a multi-scale deep network. arXiv preprint arXiv:1406.2283. 1, 9

Eitz, M., Hays, J., and Alexa, M. (2012). How do humans sketch objects? TOG,

31(4):1–10. 9

Everingham, M., Van Gool, L., Williams, C. K., Winn, J., and Zisserman, A. (2010).

The pascal visual object classes (voc) challenge. IJCV, 88(2):303–338. 47

Fifty, C., Amid, E., Zhao, Z., Yu, T., Anil, R., and Finn, C. (2021). Efficiently identifying

task groupings for multi-task learning. NeurIPS, 34:27503–27516. 92, 93

Finn, C., Abbeel, P., and Levine, S. (2017). Model-agnostic meta-learning for fast

adaptation of deep networks. In ICLR, pages 1126–1135. 58, 59, 63

Furlanello, T., Lipton, Z. C., Tschannen, M., Itti, L., and Anandkumar, A. (2018). Born

again neural networks. In ICML. 16

Ganin, Y., Ustinova, E., Ajakan, H., Germain, P., Larochelle, H., Laviolette, F., Marc-

hand, M., and Lempitsky, V. (2016). Domain-adversarial training of neural networks.

JMLR, 17(1):2096–2030. 15

Gao, Y., Ma, J., Zhao, M., Liu, W., and Yuille, A. L. (2019). Nddr-cnn: Layerwise

feature fusing in multi-task cnns by neural discriminative dimensionality reduction.

In CVPR, pages 3205–3214. 13, 37

Geiger, A., Lenz, P., and Urtasun, R. (2012). Are we ready for autonomous driving?

the kitti vision benchmark suite. In CVPR, pages 3354–3361. IEEE. 38

Ghiasi, G., Zoph, B., Cubuk, E. D., Le, Q. V., and Lin, T.-Y. (2021). Multi-task self-

training for learning general representations. In ICCV, pages 8856–8865. 92, 93,

94

Gong, T., Lee, T., Stephenson, C., Renduchintala, V., Padhy, S., Ndirango, A., Keskin,

G., and Elibol, O. H. (2019). A comparison of loss weighting strategies for multi

task learning in deep neural networks. IEEE Access, 7:141627–141632. 2, 38

142 Bibliography

Guizilini, V., Li, J., Ambrus, R., Pillai, S., and Gaidon, A. (2020). Robust semi-

supervised monocular depth estimation with reprojected distances. In Conference on

robot learning, pages 503–512. PMLR. 43

Guo, M., Haque, A., Huang, D.-A., Yeung, S., and Fei-Fei, L. (2018). Dynamic task

prioritization for multitask learning. In ECCV, pages 270–287. 2, 11, 13, 14, 38

Guo, P., Lee, C.-Y., and Ulbricht, D. (2020). Learning to branch for multi-task learning.

In ICML, pages 3854–3863. PMLR. 10, 13, 37, 91

He, K., Zhang, X., Ren, S., and Sun, J. (2016). Deep residual learning for image

recognition. In CVPR, pages 770–778. 21, 31, 48, 69, 71, 99, 105

He, Y., Huang, G., Chen, S., Teng, J., Kun, W., Yin, Z., Sheng, L., Liu, Z., Qiao, Y.,

and Shao, J. (2022). X-learner: Learning cross sources and tasks for universal visual

representation. arXiv preprint arXiv:2203.08764. 92, 93, 94

Hinton, G., Vinyals, O., and Dean, J. (2014). Distilling the knowledge in a neural

network. In NeurIPS Deep Learning Workshop. 11, 16, 19, 20, 65, 66

Hoffman, J., Tzeng, E., Park, T., Zhu, J.-Y., Isola, P., Saenko, K., Efros, A., and Darrell,

T. (2018). Cycada: Cycle-consistent adversarial domain adaptation. In ICML, pages

1989–1998. PMLR. 15

Hospedales, T., Antoniou, A., Micaelli, P., and Storkey, A. (2020). Meta-learning in

neural networks: A survey. arXiv preprint arXiv:2004.05439. 59, 62

Houben, S., Stallkamp, J., Salmen, J., Schlipsing, M., and Igel, C. (2013). Detection of

traffic signs in real-world images: The german traffic sign detection benchmark. In

IJCNN, pages 1–8. Ieee. 30, 71, 99

Hoyer, L., Dai, D., Wang, Q., Chen, Y., and Van Gool, L. (2021). Improving semi-

supervised and domain-adaptive semantic segmentation with self-supervised depth

estimation. arXiv preprint arXiv:2108.12545. 41

Hu, S. X., Li, D., Stühmer, J., Kim, M., and Hospedales, T. M. (2022). Pushing the

limits of simple pipelines for few-shot learning: External data and fine-tuning make

a difference. In CVPR, pages 9068–9077. 94

Bibliography 143

Imran, A.-A.-Z., Huang, C., Tang, H., Fan, W., Xiao, Y., Hao, D., Qian, Z., and

Terzopoulos, D. (2020). Partly supervised multitask learning. arXiv preprint

arXiv:2005.02523. 39, 40, 41

Jia, X., De Brabandere, B., Tuytelaars, T., and Gool, L. V. (2016). Dynamic filter

networks. Advances in neural information processing systems, 29:667–675. 61

Jongejan, J., Henry, R., Takashi, K., Jongmin, K., and Nick, F.-G. (2016). The quick,

draw! a.i. experiment. online. 71

Kendall, A., Gal, Y., and Cipolla, R. (2018). Multi-task learning using uncertainty to

weigh losses for scene geometry and semantics. In CVPR, pages 7482–7491. 2, 11,

12, 13, 14, 24, 26, 27, 28, 38, 52, 106, 111, 112

Kirkpatrick, J., Pascanu, R., Rabinowitz, N., Veness, J., Desjardins, G., Rusu, A. A.,

Milan, K., Quan, J., Ramalho, T., Grabska-Barwinska, A., et al. (2017). Overcoming

catastrophic forgetting in neural networks. Proceedings of the national academy of

sciences, 114(13):3521–3526. 92

Komodakis, N. and Zagoruyko, S. (2017). Paying more attention to attention: improving

the performance of convolutional neural networks via attention transfer. In ICLR. 20,

33

Kornblith, S., Norouzi, M., Lee, H., and Hinton, G. (2019). Similarity of neural network

representations revisited. In ICML, pages 3519–3529. PMLR. 5, 16, 21, 22, 61

Krizhevsky, A., Hinton, G., et al. (2009). Learning multiple layers of features from tiny

images. Citeseer. 30, 71, 98

Kuznietsov, Y., Stuckler, J., and Leibe, B. (2017). Semi-supervised deep learning for

monocular depth map prediction. In CVPR, pages 6647–6655. 43

Lake, B., Salakhutdinov, R., Gross, J., and Tenenbaum, J. (2011). One shot learning of

simple visual concepts. In Proceedings of the annual meeting of the cognitive science

society, volume 33. 4, 58

Lake, B. M., Salakhutdinov, R., and Tenenbaum, J. B. (2015). Human-level concept

learning through probabilistic program induction. Science, 350(6266):1332–1338. 9,

12, 31, 59, 71, 99

144 Bibliography

Lambert, J., Liu, Z., Sener, O., Hays, J., and Koltun, V. (2020). Mseg: A composite

dataset for multi-domain semantic segmentation. In CVPR, pages 2879–2888. 94

Latif, S., Rana, R., Khalifa, S., Jurdak, R., Epps, J., and Schuller, B. W. (2019). Multi-

task semi-supervised adversarial autoencoding for speech emotion recognition. arXiv

preprint arXiv:1907.06078. 39, 40

LeCun, Y., Bottou, L., Bengio, Y., and Haffner, P. (1998). Gradient-based learning

applied to document recognition. Proceedings of the IEEE, 86(11):2278–2324. 71

Lee, K., Maji, S., Ravichandran, A., and Soatto, S. (2019). Meta-learning with differen-

tiable convex optimization. In CVPR, pages 10657–10665. 60, 61, 63, 69

Lee, S.-W., Kim, J.-H., Jun, J., Ha, J.-W., and Zhang, B.-T. (2017). Overcoming

catastrophic forgetting by incremental moment matching. NeurIPS, 30. 92

Lewis, T. L. and Maurer, D. (2005). Multiple sensitive periods in human visual develop-

ment: evidence from visually deprived children. Developmental Psychobiology: The

Journal of the International Society for Developmental Psychobiology, 46(3):163–

183. 10

Li, B., Pang, R., Sainath, T. N., Gulati, A., Zhang, Y., Qin, J., Haghani, P., Huang, W. R.,

Ma, M., and Bai, J. (2021a). Scaling end-to-end models for large-scale multilingual

asr. In ASRU, pages 1011–1018. IEEE. 94

Li, W.-H. and Bilen, H. (2020). Knowledge distillation for multi-task learning. In ECCV

Workshop on Imbalance Problems in Computer Vision, pages 163–176. Springer. 16,

38, 65, 66, 106

Li, W.-H., Liu, X., and Bilen, H. (2021b). Universal representation learning from

multiple domains for few-shot classification. ICCV. 60, 68, 73, 78, 118, 119, 123,

127

Li, W.-H., Liu, X., and Bilen, H. (2022). Learning multiple dense prediction tasks from

partially annotated data. In CVPR. 24

Liang, J., Meyerson, E., and Miikkulainen, R. (2018). Evolutionary architecture

search for deep multitask networks. In Proceedings of the Genetic and Evolutionary

Computation Conference, pages 466–473. 10

Bibliography 145

Lin, T.-Y., Maire, M., Belongie, S., Hays, J., Perona, P., Ramanan, D., Dollár, P., and

Zitnick, C. L. (2014). Microsoft coco: Common objects in context. In ECCV, pages

740–755. Springer. 71

Lin, X., Zhen, H.-L., Li, Z., Zhang, Q.-F., and Kwong, S. (2019). Pareto multi-task

learning. NeurIPS, 32:12060–12070. 13, 38

Liu, B., Gould, S., and Koller, D. (2010). Single image depth estimation from predicted

semantic labels. In CVPR, pages 1253–1260. IEEE. 41

Liu, B., Liu, X., Jin, X., Stone, P., and Liu, Q. (2021a). Conflict-averse gradient descent

for multi-task learning. NeurIPS. 2, 12, 13, 14, 23, 24, 26, 27, 28, 97

Liu, B., Yu, H., and Qi, G. (2022a). Graftnet: Towards domain generalized stereo

matching with a broad-spectrum and task-oriented feature. In CVPR, pages 13012–

13021. 94

Liu, L., Hamilton, W., Long, G., Jiang, J., and Larochelle, H. (2021b). A universal

representation transformer layer for few-shot image classification. In ICLR. 4, 11,

12, 60, 61, 62, 64, 65, 66, 72, 73, 74, 84, 86, 87, 123, 127, 129, 130, 131, 132, 133,

134, 135

Liu, L., Li, Y., Kuang, Z., Xue, J.-H., Chen, Y., Yang, W., Liao, Q., and Zhang, W.

(2021c). Towards impartial multi-task learning. In ICLR. 4, 12, 13, 24, 26, 27, 28,

35, 100

Liu, Q., Liao, X., and Carin, L. (2008). Semi-supervised multitask learning. In NeurIPS,

pages 937–944. 39, 40

Liu, S., James, S., Davison, A. J., and Johns, E. (2022b). Auto-lambda: Disentangling

dynamic task relationships. TMLR. 13, 14

Liu, S., Johns, E., and Davison, A. J. (2019). End-to-end multi-task learning with

attention. In CVPR, pages 1871–1880. 2, 10, 11, 13, 23, 24, 26, 27, 37, 38, 47, 52,

91, 97, 98, 103, 104, 105, 111, 112

Liu, W., Anguelov, D., Erhan, D., Szegedy, C., Reed, S., Fu, C.-Y., and Berg, A. C.

(2016). Ssd: Single shot multibox detector. In ECCV, pages 21–37. Springer. 9

146 Bibliography

Liu, Y., Lee, J., Zhu, L., Chen, L., Shi, H., and Yang, Y. (2021d). A multi-mode

modulator for multi-domain few-shot classification. In ICCV, pages 8453–8462. 62,

64, 74, 123

Long, J., Shelhamer, E., and Darrell, T. (2015). Fully convolutional networks for

semantic segmentation. In CVPR, pages 3431–3440. 1

Lu, Y., Kumar, A., Zhai, S., Cheng, Y., Javidi, T., and Feris, R. (2017). Fully-adaptive

feature sharing in multi-task networks with applications in person attribute classifica-

tion. In CVPR, pages 5334–5343. 13, 37

Lu, Y., Pirk, S., Dlabal, J., Brohan, A., Pasad, A., Chen, Z., Casser, V., Angelova, A.,

and Gordon, A. (2021). Taskology: Utilizing task relations at scale. In CVPR, pages

8700–8709. 39, 41, 43

Ma, J. and Mei, Q. (2019). Graph representation learning via multi-task knowledge

distillation. In NeurIPS GRL Workshop. 16

Maji, S., Rahtu, E., Kannala, J., Blaschko, M., and Vedaldi, A. (2013). Fine-grained

visual classification of aircraft. arXiv preprint arXiv:1306.5151. 12, 30, 71, 98

Mallya, A., Davis, D., and Lazebnik, S. (2018). Piggyback: Adapting a single network

to multiple tasks by learning to mask weights. In ECCV, pages 67–82. 30, 31, 91

Martin, D. R., Fowlkes, C. C., and Malik, J. (2004). Learning to detect natural image

boundaries using local brightness, color, and texture cues. PAMI, 26(5):530–549. 48,

106

Massiceti, D., Zintgraf, L., Bronskill, J., Theodorou, L., Harris, M. T., Cutrell, E.,

Morrison, C., Hofmann, K., and Stumpf, S. (2021). Orbit: A real-world few-shot

dataset for teachable object recognition. In CVPR, pages 10818–10828. 95

Matena, M. and Raffel, C. (2021). Merging models with fisher-weighted averaging.

arXiv preprint arXiv:2111.09832. 91

Maurer, D. and Lewis, T. L. (2001). Visual acuity: the role of visual input in inducing

postnatal change. Clinical Neuroscience Research, 1(4):239–247. 10

Mendel, R., De Souza, L. A., Rauber, D., Papa, J. P., and Palm, C. (2020). Semi-

supervised segmentation based on error-correcting supervision. In ECCV, pages

141–157. Springer. 43

Bibliography 147

Mensink, T., Uijlings, J., Kuznetsova, A., Gygli, M., and Ferrari, V. (2022). Factors

of influence for transfer learning across diverse appearance domains and task types.

PAMI. 93

Mensink, T., Verbeek, J., Perronnin, F., and Csurka, G. (2013). Distance-based image

classification: Generalizing to new classes at near-zero cost. TPAMI, 35(11):2624–

2637. 70

Miller, E. G., Matsakis, N. E., and Viola, P. A. (2000). Learning from one example

through shared densities on transforms. In CVPR, volume 1, pages 464–471. IEEE.

4, 58

Misra, I., Shrivastava, A., Gupta, A., and Hebert, M. (2016). Cross-stitch networks for

multi-task learning. In CVPR, pages 3994–4003. 2, 10, 13, 37, 91

Munder, S. and Gavrila, D. M. (2006). An experimental study on pedestrian classifica-

tion. PAMI, 28(11):1863–1868. 30, 98

Netzer, Y., Wang, T., Coates, A., Bissacco, A., Wu, B., and Ng, A. Y. (2011). Reading

digits in natural images with unsupervised feature learning. NeurIPS Workshop on

Deep Learning and Unsupervised Feature Learning. 31, 99

Nguyen, C., Hassner, T., Seeger, M., and Archambeau, C. (2020). Leep: A new measure

to evaluate transferability of learned representations. In ICML, pages 7294–7305.

PMLR. 93

Nguyen, T., Raghu, M., and Kornblith, S. (2021). Do wide and deep networks learn the

same things? uncovering how neural network representations vary with width and

depth. In ICLR. 22

Nilsback, M.-E. and Zisserman, A. (2008). Automated flower classification over a large

number of classes. In 2008 Sixth Indian Conference on Computer Vision, Graphics

& Image Processing, pages 722–729. IEEE. 9, 30, 71, 99

Oh Song, H., Xiang, Y., Jegelka, S., and Savarese, S. (2016). Deep metric learning via

lifted structured feature embedding. In CVPR, pages 4004–4012. 79, 120

Olsson, V., Tranheden, W., Pinto, J., and Svensson, L. (2021). Classmix: Segmentation-

based data augmentation for semi-supervised learning. In WACV, pages 1369–1378.

43

148 Bibliography

Oreshkin, B. N., Rodriguez, P., and Lacoste, A. (2018). Tadam: Task dependent adaptive

metric for improved few-shot learning. In NeurIPS. 58, 63

Pándy, M., Agostinelli, A., Uijlings, J., Ferrari, V., and Mensink, T. (2022). Transferabil-

ity estimation using bhattacharyya class separability. In Proceedings of the IEEE/CVF

Conference on Computer Vision and Pattern Recognition, pages 9172–9182. 91, 93

Parkhi, O. M., Vedaldi, A., and Zisserman, A. (2015). Deep face recognition. In

Proceedings of the British Machine Vision Conference (BMVC), pages 41.1–41.12.

BMVA Press. 9

Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z.,

Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison,

M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., and Chintala, S. (2019).

Pytorch: An imperative style, high-performance deep learning library. In Wallach,

H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., and Garnett, R., editors,

NeurIPS, pages 8024–8035. Curran Associates, Inc. 71

Peng, X., Bai, Q., Xia, X., Huang, Z., Saenko, K., and Wang, B. (2019). Moment

matching for multi-source domain adaptation. In ICCV, pages 1406–1415. 15

Perez, E., Strub, F., De Vries, H., Dumoulin, V., and Courville, A. (2018). Film: Visual

reasoning with a general conditioning layer. In Proceedings of the AAAI Conference

on Artificial Intelligence. 45, 61, 62, 69

Phuong, M. and Lampert, C. (2019). Towards understanding knowledge distillation. In

ICML, pages 5142–5151. 16

Poggi, M., Aleotti, F., Tosi, F., and Mattoccia, S. (2020). On the uncertainty of self-

supervised monocular depth estimation. In CVPR, pages 3227–3237. 2

Ramanujan, V., Vasu, P. K. A., Farhadi, A., Tuzel, O., and Pouransari, H. (2022).

Forward compatible training for large-scale embedding retrieval systems. In CVPR,

pages 19386–19395. 94

Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., and Koltun, V. (2020). Towards

robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset

transfer. PAMI. 94

Ravi, S. and Larochelle, H. (2016). Optimization as a model for few-shot learning. 58

Bibliography 149

Raychaudhuri, D. S., Suh, Y., Schulter, S., Yu, X., Faraki, M., Roy-Chowdhury, A. K.,

and Chandraker, M. (2022). Controllable dynamic multi-task architectures. In CVPR,

pages 10955–10964. 13

Rebuffi, S.-A., Bilen, H., and Vedaldi, A. (2017a). Learning multiple visual domains

with residual adapters. In NeurIPS. 1, 2, 10, 15, 17, 21, 22, 30, 31, 61, 64, 90, 94, 98,

99

Rebuffi, S.-A., Bilen, H., and Vedaldi, A. (2018). Efficient parametrization of multi-

domain deep neural networks. In CVPR, pages 8119–8127. 10, 12, 15, 30, 31, 34,

69, 99

Rebuffi, S.-A., Kolesnikov, A., Sperl, G., and Lampert, C. H. (2017b). icarl: Incremental

classifier and representation learning. In CVPR, pages 2001–2010. 92

Ren, M., Triantafillou, E., Ravi, S., Snell, J., Swersky, K., Tenenbaum, J. B., Larochelle,

H., and Zemel, R. S. (2018). Meta-learning for semi-supervised few-shot classifica-

tion. In ICLR. 59

Ren, S., He, K., Girshick, R., and Sun, J. (2015). Faster r-cnn: Towards real-time object

detection with region proposal networks. NeurIPS, 28. 9

Requeima, J., Gordon, J., Bronskill, J., Nowozin, S., and Turner, R. E. (2019). Fast

and flexible multi-task classification using conditional neural adaptive processes. In

NeurIPS. 4, 60, 61, 62, 63, 68, 69, 72, 73, 74, 123

Romero, A., Ballas, N., Kahou, S. E., Chassang, A., Gatta, C., and Bengio, Y. (2015).

Fitnets: Hints for thin deep nets. In ICLR. 11, 16, 19, 20, 66

Rosenfeld, A. and Tsotsos, J. K. (2018). Incremental learning through deep adaptation.

PAMI, 42(3):651–663. 10, 15, 30, 31

Ruder, S. (2017). An overview of multi-task learning in deep neural networks. arXiv

preprint arXiv:1706.05098. 40

Ruder, S., Bingel, J., Augenstein, I., and Søgaard, A. (2019). Latent multi-task architec-

ture learning. In AAAI, volume 33, pages 4822–4829. 10, 13, 37

Russakovsky, O., Deng, J., Su, H., Krause, J., Satheesh, S., Ma, S., Huang, Z., Karpathy,

A., Khosla, A., Bernstein, M., et al. (2015). Imagenet large scale visual recognition

challenge. IJCV, 115(3):211–252. 1, 30, 71, 98

150 Bibliography

Rusu, A. A., Rao, D., Sygnowski, J., Vinyals, O., Pascanu, R., Osindero, S., and Hadsell,

R. (2020). Meta-learning with latent embedding optimization. In ICLR. 58, 63

Saha, S., Obukhov, A., Paudel, D. P., Kanakis, M., Chen, Y., Georgoulis, S., and

Van Gool, L. (2021). Learning to relate depth and semantics for unsupervised domain

adaptation. In CVPR, pages 8197–8207. 39, 41

Saikia, T., Brox, T., and Schmid, C. (2020). Optimized generic feature learning for

few-shot classification across domains. arXiv preprint arXiv:2001.07926. 63, 76

Schroff, F., Kalenichenko, D., and Philbin, J. (2015). Facenet: A unified embedding for

face recognition and clustering. In CVPR, pages 815–823. 9

Seenivasan, L., Mitheran, S., Islam, M., and Ren, H. (2022). Global-reasoned multi-task

learning model for surgical scene understanding. IEEE Robotics and Automation

Letters, 7(2):3858–3865. 94

Sener, O. and Koltun, V. (2018). Multi-task learning as multi-objective optimization.

NeurIPS. 11, 13, 14, 24, 26, 27, 38, 52, 111, 112

Silberman, N., Hoiem, D., Kohli, P., and Fergus, R. (2012). Indoor segmentation and

support inference from rgbd images. In European conference on computer vision,

pages 746–760. Springer. iii, 1, 2, 22, 23, 47, 90, 94, 97, 104, 105

Snell, J., Swersky, K., and Zemel, R. S. (2017). Prototypical networks for few-shot

learning. In NeurIPS. 58, 63, 70

Sohn, K., Berthelot, D., Li, C.-L., Zhang, Z., Carlini, N., Cubuk, E. D., Kurakin, A.,

Zhang, H., and Raffel, C. (2020). Fixmatch: Simplifying semi-supervised learning

with consistency and confidence. NeurIPS. 43

Soomro, K., Zamir, A. R., and Shah, M. (2012). A dataset of 101 human action classes

from videos in the wild. arXiv preprint arXiv:1212.0402. 1, 31, 99

Standley, T., Zamir, A., Chen, D., Guibas, L., Malik, J., and Savarese, S. (2020). Which

tasks should be learned together in multi-task learning? In ICML, pages 9120–9132.

PMLR. 92

Sun, B., Xing, J., Blum, H., Siegwart, R., and Cadena, C. (2021). See yourself in others:

Attending multiple tasks for own failure detection. arXiv preprint arXiv:2110.02549.

41

Bibliography 151

Sun, K., Xiao, B., Liu, D., and Wang, J. (2019a). Deep high-resolution representation

learning for human pose estimation. In CVPR, pages 5693–5703. 24, 28, 98

Sun, Y., Tzeng, E., Darrell, T., and Efros, A. A. (2019b). Unsupervised domain

adaptation through self-supervision. arXiv preprint arXiv:1909.11825. 15

Suteu, M. and Guo, Y. (2019). Regularizing deep multi-task networks using orthogonal

gradients. arXiv preprint arXiv:1912.06844. 13

Taigman, Y., Yang, M., Ranzato, M., and Wolf, L. (2014). Deepface: Closing the gap

to human-level performance in face verification. In CVPR, pages 1701–1708. 9

Terzopoulos, D. et al. (2019). Semi-supervised multi-task learning with chest x-ray

images. In International Workshop on Machine Learning in Medical Imaging, pages

151–159. Springer. 39, 40

Tian, Y., Krishnan, D., and Isola, P. (2020a). Contrastive representation distillation. In

ICLR. 16

Tian, Y., Wang, Y., Krishnan, D., Tenenbaum, J. B., and Isola, P. (2020b). Rethinking

few-shot image classification: a good embedding is all you need? In ECCV. 16, 63,

68

Triantafillou, E., Larochelle, H., Zemel, R., and Dumoulin, V. (2021). Learning a

universal template for few-shot dataset generalization. In ICML. 4, 60, 61, 62, 63,

64, 68, 73, 74, 76, 123

Triantafillou, E., Zhu, T., Dumoulin, V., Lamblin, P., Evci, U., Xu, K., Goroshin, R.,

Gelada, C., Swersky, K., Manzagol, P.-A., et al. (2020). Meta-dataset: A dataset of

datasets for learning to learn from few examples. In ICLR. 4, 6, 15, 17, 22, 34, 59,

62, 71, 72, 73, 76, 94, 118

Tzeng, E., Hoffman, J., Saenko, K., and Darrell, T. (2017). Adversarial discriminative

domain adaptation. In CVPR, pages 7167–7176. 15

Vandenhende, S., Georgoulis, S., De Brabandere, B., and Van Gool, L. (2020a).

Branched multi-task networks: deciding what layers to share. In BMVC. 2, 10,

13, 37, 91

152 Bibliography

Vandenhende, S., Georgoulis, S., Van Gansbeke, W., Proesmans, M., Dai, D., and

Van Gool, L. (2021). Multi-task learning for dense prediction tasks: A survey. PAMI.

1, 11, 19, 23, 24, 28, 38, 40, 47, 48, 90, 94, 98, 105, 106, 107, 108, 109

Vandenhende, S., Georgoulis, S., and Van Gool, L. (2020b). Mti-net: Multi-scale task

interaction networks for multi-task learning. In ECCV, pages 527–543. Springer. 2,

10, 12, 13, 24, 28, 29, 30, 37, 98

Vinyals, O., Blundell, C., Lillicrap, T., Kavukcuoglu, K., and Wierstra, D. (2016).

Matching networks for one shot learning. In NeurIPS. 58, 59

Voges, R. and Wagner, B. (2018). Timestamp offset calibration for an imu-camera

system under interval uncertainty. In IROS. IEEE. 38

Wah, C., Branson, S., Welinder, P., Perona, P., and Belongie, S. (2011). The caltech-ucsd

birds-200-2011 dataset. California Institute of Technology. 1, 9, 71

Wallingford, M., Li, H., Achille, A., Ravichandran, A., Fowlkes, C., Bhotika, R., and

Soatto, S. (2022). Task adaptive parameter sharing for multi-task learning. In CVPR,

pages 7561–7570. 13

Wang, F., Wang, X., and Li, T. (2009). Semi-supervised multi-task learning with task

regularizations. In ICDM, pages 562–568. IEEE. 40

Wang, Q., Dai, D., Hoyer, L., Van Gool, L., and Fink, O. (2021). Domain adaptive

semantic segmentation with self-supervised depth estimation. In ICCV, pages 8515–

8525. 41

Wang, X., Fouhey, D., and Gupta, A. (2015). Designing deep networks for surface

normal estimation. In CVPR, pages 539–547. 1, 9

Wang, Y., Yao, Q., Kwok, J. T., and Ni, L. M. (2020). Generalizing from a few examples:

A survey on few-shot learning. ACM Computing Surveys (CSUR), 53(3):1–34. 59, 62

Xiong, W., Wu, L., Alleva, F., Droppo, J., Huang, X., and Stolcke, A. (2018). The

microsoft 2017 conversational speech recognition system. In ICASSP, pages 5934–

5938. IEEE. 95

Xu, D., Ouyang, W., Wang, X., and Sebe, N. (2018a). Pad-net: Multi-tasks guided

prediction-and-distillation network for simultaneous depth estimation and scene

parsing. In CVPR, pages 675–684. 10, 13, 24, 28, 29, 30, 37

Bibliography 153

Xu, R., Chen, Z., Zuo, W., Yan, J., and Lin, L. (2018b). Deep cocktail network:

Multi-source unsupervised domain adaptation with category shift. In CVPR, pages

3964–3973. 15

Xu, Y., Li, X., Yuan, H., Yang, Y., Zhang, J., Tong, Y., Zhang, L., and Tao, D. (2022).

Multi-task learning with multi-query transformer for dense prediction. arXiv preprint

arXiv:2205.14354. 13

Yang, X., Ye, J., and Wang, X. (2022). Factorizing knowledge in neural networks. In

ECCV. 91

Ye, H. and Xu, D. (2022). Inverted pyramid multi-task transformer for dense scene

understanding. arXiv preprint arXiv:2203.07997. 13, 91

Yeo, T., Kar, O. F., and Zamir, A. (2021). Robustness via cross-domain ensembles. In

ICCV, pages 12189–12199. 91

You, K., Liu, Y., Wang, J., and Long, M. (2021). Logme: Practical assessment of

pre-trained models for transfer learning. In ICML, pages 12133–12143. PMLR. 93

Yu, L., Yazici, V. O., Liu, X., Weijer, J. v. d., Cheng, Y., and Ramisa, A. (2019).

Learning metrics from teachers: Compact networks for image embedding. In CVPR,

pages 2907–2916. 79, 120

Yu, T., Kumar, S., Gupta, A., Levine, S., Hausman, K., and Finn, C. (2020). Gradient

surgery for multi-task learning. NeurIPS. 2, 11, 12, 13, 14, 18, 24, 26, 27, 38, 61

Zamir, A. R., Sax, A., Cheerla, N., Suri, R., Cao, Z., Malik, J., and Guibas, L. J. (2020).

Robust learning through cross-task consistency. In CVPR, pages 11197–11206. 39,

41, 43, 44, 46, 48, 52, 104, 111, 112

Zamir, A. R., Sax, A., Shen, W., Guibas, L. J., Malik, J., and Savarese, S. (2018).

Taskonomy: Disentangling task transfer learning. In CVPR, pages 3712–3722. 41,

90, 91, 93

Zamir, A. R., Wekel, T., Agrawal, P., Wei, C., Malik, J., and Savarese, S. (2016).

Generic 3d representation via pose estimation and matching. In ECCV, pages 535–

553. Springer. 41

Zeiler, M. D. (2012). Adadelta: an adaptive learning rate method. arXiv preprint

arXiv:1212.5701. 72, 119

154 Bibliography

Zhang, H., Mao, F., Xue, M., Fang, G., Feng, Z., Song, J., and Song, M. (2022).

Knowledge amalgamation for object detection with transformers. arXiv preprint

arXiv:2203.03187. 94

Zhang, X., Tang, C., An, Y., and Yin, K. (2021). Wifi-based multi-task sensing. In In-

ternational Conference on Mobile and Ubiquitous Systems: Computing, Networking,

and Services, pages 169–189. Springer. 94

Zhang, Y. and Yang, Q. (2017). A survey on multi-task learning. arXiv preprint

arXiv:1707.08114. 40

Zhang, Y. and Yeung, D.-Y. (2009). Semi-supervised multi-task regression. In ECML

PKDD, pages 617–631. Springer. 40

Zhang, Z., Cui, Z., Xu, C., Jie, Z., Li, X., and Yang, J. (2018). Joint task-recursive

learning for semantic segmentation and depth estimation. In ECCV, pages 235–251.

10, 13, 37

Zhang, Z., Cui, Z., Xu, C., Yan, Y., Sebe, N., and Yang, J. (2019). Pattern-affinitive

propagation across depth, surface normal and semantic segmentation. In CVPR,

pages 4106–4115. 13, 37

Zhong, Y., Arandjelović, R., and Zisserman, A. (2016). Faces in places: Compound

query retrieval. In BMVC. 9

Zhou, L., Cui, Z., Xu, C., Zhang, Z., Wang, C., Zhang, T., and Yang, J. (2020). Pattern-

structure diffusion for multi-task learning. In CVPR, pages 4514–4523. 13, 37

Zhou, T., Brown, M., Snavely, N., and Lowe, D. G. (2017). Unsupervised learning of

depth and ego-motion from video. In CVPR, pages 1851–1858. 41

Zhou, X., Koltun, V., and Krähenbühl, P. (2022). Simple multi-dataset detection. In

CVPR, pages 7571–7580. 94

	Cover Sheet.pdf
	weihong_thesis.pdf
	Introduction
	Contributions
	Thesis Structure

	Learning Universal Representations
	Introduction
	Related Work
	Multi-task Learning
	Multi-domain learning (MDL)
	Knowledge distillation

	Preliminaries
	Single-task Learning
	Multi-task Learning

	Universal Representation Learning
	Multi-Task Dense Prediction
	Multi-Domain Classification

	Experiments
	Learning multiple dense prediction tasks
	Encoder-based Architecture
	Decoder-based Architectures
	Multi-domain Learning
	Further Analysis
	Qualitative results

	Conclusion and Limitations

	Multi-task Learning from Partially Annotated Data
	Introduction
	Related Work
	Multi-task Semi-supervised Learning
	Cross-task Relations

	Method
	Problem setting
	Cross-task consistency learning

	Experiments
	Results
	Further results
	Ablation study
	Qualitative results

	Conclusion and Limitations

	Cross-domain Few-shot Classification
	Introduction
	Related Work
	Method
	Task-agnostic representation learning
	Task-specific weight learning
	Task-specific adapter parameterization ()

	Experiments
	Experimental setup
	Comparison to state-of-the-art methods
	Analysis of task-specific parameterizations
	Further results
	Ablation study for task-agnostic weight learning
	Ablation study for task-specific weight learning
	Qualitative results

	Conclusion and Limitations

	Conclusion and Future Work
	Limitations and Future work
	Broader Impact

	Learning Universal Representations
	Implementation Details
	Multi-task Dense Prediction
	Multi-domain Learning

	More results

	Multi-task Learning from Partially Annotated Data
	Implementation Details
	More results
	Quantitative results
	Qualitative results

	Cross-domain Few-shot Classification
	Implementation details
	Task-agnostic learning
	Task-specific learning

	More results
	Task-agnostic learning
	Task-specific parameterizations
	Results evaluated with updated evaluation protocol.
	Ablation study
	Qualitative results

	Bibliography

