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Abstract
Representation learning involves using an objective to learn a mapping from data space

to a representation space. When the downstream task for which a mapping must be

learned is unknown, or is too costly to cast as an objective, we must rely on proxy

objectives for learning. In this Thesis I focus on representation learning for images,

and address three cases where proxy objectives fail to produce a mapping that performs

well on the downstream tasks.

When learning neural network mappings from image space to a discrete hash space

for fast content-based image retrieval, a proxy objective is needed which captures the

requirement for relevant responses to be nearer to the hash of any query than irrele-

vant ones. At the same time, it is important to ensure an even distribution of image

hashes across the whole hash space for efficient information use and high discrimi-

nation. Proxy objectives fail when they do not meet these requirements. I propose

composing hash codes in two parts. First a standard classifier is used to predict class

labels that are converted to a binary representation for state-of-the-art performance on

the image retrieval task. Second, a binary deep decision tree layer (DDTL) is used

to model further intra-class differences and produce approximately evenly distributed

hash codes. The DDTL requires no discretisation during learning and produces hash

codes that enable better discrimination between data in the same class when compared

to previous methods, while remaining robust to real-world augmentations in the data

space.

In the scenario where we require a neural network to partition the data into clusters

that correspond well with ground-truth labels, a proxy objective is needed to define

how these clusters are formed. One such proxy objective involves maximising the mu-

tual information between cluster assignments made by a neural network from multiple

views. In this context, views are different augmentations of the same image and the

cluster assignments are the representations computed by a neural network. I demon-

strate that this proxy objective produces parameters for the neural network that are

sub-optimal in that a better set of parameters can be found using the same objective

and a different training method. I introduce deep hierarchical object grouping (DHOG)

as a method to learn a hierarchy (in the sense of easy-to-hard orderings, not structure)

of solutions to the proxy objective and show how this improves performance on the

downstream task.

When there are features in the training data from which it is easier to compute

class predictions (e.g., background colour), when compared to features for which it is
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relatively more difficult to compute class predictions (e.g., digit type), standard classi-

fication objectives (e.g., cross-entropy) fail to produce robust classifiers. The problem

is that if a model learns to rely on ‘easy’ features it will also ignore ‘complex’ features

(easy versus complex are purely relative in this case). I introduce latent adversarial

debiasing (LAD) to decouple easy features from the class labels by first modelling

the underlying structure of the training data as a latent representation using a vector-

quantised variational autoencoder, and then I use a gradient-based procedure to adjust

the features in this representation to confuse the predictions of a constrained classifier

trained to predict class labels from the same representation. The adjusted representa-

tions of the data are then decoded to produce an augmented training dataset that can be

used for training in a standard manner.

I show in the aforementioned scenarios that proxy objectives can fail and demon-

strate that alternative approaches can mitigate against the associated failures. I suggest

an analytic approach to understanding the limits of proxy objectives for every use case

in order to make the adjustments to the data or the objectives and ensure good perfor-

mance on downstream tasks.
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Lay summary

For neural networks to solve problems they often need to be taught using training

examples. Unfortunately, it can be extremely difficult to collect or construct enough

such examples. There may, however, be related ‘proxy’ problems for which it is easier

to construct training examples. While it is common practice to use proxy problems as

tools for teaching neural networks, there is a trade-off: neural networks tend to find

shortcut solutions that could render proxy problems unusable.

In this thesis I dealt with three use-cases where training using proxy problems fail.

First, when learning to map images to an extremely compact and discrete space for fast

and efficient comparisons between images, widely used proxies fail for teaching neural

networks to capture sufficient detail from images. My solution to this is to restructure

the discrete space into a tree structure and amend the proxy problem to encourage a

neural network into spreading its training data over the entire tree structure. The result

is a neural network that maps images to a compact, yet sufficiently descriptive, space

because the new proxy problem now requires better use of this space in order to be

solved.

Second, the proxy problem of grouping images into clusters is insufficient because

neural networks tend to group images based on easy features in the data (e.g., colour)

as opposed to more complex features (e.g., object type). I deal with this by encouraging

a neural network to learn many diverse solutions to the proxy problem and show that

this improves its overall performance on the real problem it must later solve.

Third, when the proxy problem does not pay heed to differences in the data col-

lection processes during training and test time, neural networks can tend to rely on

easy-to-compute features in the training data that might not be present at test time. I

show how we can intentionally model and then remove these easy-to-compute features

from the training data and thereby improve performance at test time.
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Chapter 1

Introduction

The field of Representation Learning is seen to represent a fundamental challenge for

machine learning [Bengio et al., 2013a]. The general problem of learning representa-

tions is that of finding a map f : X → Z from a data space X to some representation

space Z that somehow simplifies the data and maintains or improves the usefulness of

the data. Typically usefulness is understood as the ability to achieve good performance

on some downstream task or set of such tasks through only using information from

the representation. A downstream task is typically an evaluable prediction task, but

one that is not necessarily known when learning the map f . Likewise simplification is

understood as enabling good performance on the downstream task to be achieved more

easily (e.g., using smaller or simpler models, less data or with less training) than when

trying to achieve that task directly from the data space X .

Simplification by representation learning might also involve information compres-

sion – i.e., f maps the data to a representation that has lower dimensionality than the

data space. When learning to predict a lower dimension target (e.g., class labels) infor-

mation compression is expected [Shwartz-Ziv and Tishby, 2017, Tishby and Zaslavsky,

2015].

Learning a representation typically involves defining an objective function L for a

good representation, parameterising the map f as a fθ (differentiable w.r.t. θ), and then

using ∇θL in an optimisation of that objective [Gori and Tesi, 1992, Swirszcz et al.,

2016]. Non-convexity of the objective means there is a potential of optimising to a

local optimum rather than a global one.
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Chapter 1. Introduction 3

Figure 1.1: Visual depiction of proxy objectives. These can take many forms, but typ-

ically involve some proxy ‘task’ with which we train the underlying neural network in

the hope that it performs well on the desired downstream task. Proxy objectives often

involve altering the input data in some manner (e.g., with augmentations for images).

1.1 Proxy objectives

When the downstream tasks are not known while f is being optimised, it is not possible

to formulate an objective function based on the performance on that task. In such

a setting, a proxy objective is formed instead, and the representation map is learnt

via optimising the proxy objective. A proxy objective usually takes the form of a loss

function with which we can train a neural network even when we do not have sufficient

labelled data or information to train this network on the desired downstream objective

(e.g., classification). Figure 1.1 gives a visual depiction of proxy objectives, where the

underlying neural network parameters, θ, are optimised using proxy objectives in the
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hope that this network will eventually perform well on the desired downstream task.

However there can be a mismatch between the proxy objective and the true objec-

tive, and I argue that this mismatch can have far reaching consequences. The impli-

cations of such a mismatch is the primary topic of this Thesis. This issue has become

increasingly important in the self-supervised learning domain [Chen et al., 2021, Li

et al., 2020b, Robinson et al., 2021, Wang et al., 2021], but is also prevalent when

training data causes model bias [Zhang et al., 2018, Das et al., 2018], or when learn-

ing discrete representations for which gradient-based optimisation methods for neural

networks are ill-suited [Dubey, 2021].

1.2 Failure of proxy objectives

A large neural network can outperform most other model types on many predictive

(e.g., classification) and generative (e.g., image generation) tasks given enough data,

compute, and a reasonable choice of hyper-parameters [Sun et al., 2017, Sejnowski,

2020, Fabbri and Moro, 2018, Aggarwal, 2018]. Nonetheless, large neural networks

also have many failure modes. For example, they are not immediately interpretable

[Alvarez Melis and Jaakkola, 2018, Zhang et al., 2021b], they require long and data-

inefficient optimisation to fit [Sun et al., 2017, Ying, 2019], and they can produce non-

robust representations [Goodfellow et al., 2015, Geirhos et al., 2019]. Moreover, proxy

objectives are not necessarily sufficient for learning useful representations because they

might not fully capture the properties required by the downstream task(s).

In the work described in this Thesis, I consider a common failure of neural net-

works: learning settles in local optima characterised by the reliance of easy-to-compute

or easy-to-learn features. This happens because: (1) proxy objectives are unable to

fully capture or describe the properties required of a representation; (2) proxy objec-

tives can sometimes be optimised for or satisfied in a number of ways; and (3) proxy

objectives can result in compression of relevant information (to the downstream task)

because this information may not be relevant to optimise the proxy objective.

A neural network with parameter values stuck in this type of local optima will

be poorly matched to downstream tasks. A better local optima may exist – one that

requires learning abstract features that have better utility for downstream use – but

proxy objective failure prevents the learning process for the parameters from reaching

it. The following are examples of specific instances where proxy objectives fail.
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1. Proxy objectives are insufficient at fully describing the task at hand. This could

be because the task is ill-posed or that fully describing the task is far too costly

because of the constraints imposed by the user. In such cases, information com-

pression in the learned representation [Shwartz-Ziv and Tishby, 2017] will tend

to discard any additional information that is not captured by the proxy objective.

This additional information might be useful for the downstream task. Therefore,

this phenomenon is called over-compression – it is an unwanted consequence of

‘irrelevant’ information compression [Darlow and Storkey, 2020, Shwartz-Ziv

and Tishby, 2017], where optimising the proxy objective discards information

that is useful for the downstream task. In Chapter 3 the task is to provide a hash

function suitable for image retrieval, and I focus on methods for learning such

a semantic hash function. Class labels are sufficient to optimise supervised re-

trieval performance metrics (e.g., mean average precision – see Section 3.2.2),

but insufficient at ensuring high-coverage hash functions. The result of learn-

ing hash functions with supervision alone is a constrained set of hash codes that

are overly consistent within each class. For example, when failure occurs every

hash code for an image of a cat is nearly identical, thereby disabling compar-

isons between cats. I expand on this in Section 2.5.7 and provide evidence in

Section 3.2.3. Existing methods fail to produce hash codes with high-coverage

of the available hash space [Knuth, 1997, Cichelli, 1980, Dietzfelbinger et al.,

Luo et al., 2021] (see Section 3.2.3), which in turn leads to reduced retrieval

performance. I mitigate against this failure in Chapter 3 by learning a binary

deep decision tree to evenly partition the training images for high-coverage hash

codes.

2. Greedy gradient-based optimisation fails to find a local optima of the proxy ob-

jective that also results in good performance on downstream tasks. Often proxy

objectives are ill-defined in that they have many local minima that are quanti-

tatively similar (e.g., the loss is similar) but which rely on different features in

the data (e.g., one could rely on colour or object type). In Chapter 4 the task

is clustering using a neural network and the proxy objective is to maximise the

mutual information between cluster assignments from different augmentations

of the same image. I demonstrate that such a proxy objective finds parameters

that are sub-optimal during learning, in that there are better parameter settings

that can be learned by a different training method targeting the same objective.
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My approach is to sequentially expand the knowledge base of the model into

a hierarchy of solutions by minimising mutual information between successive

clusterings.

3. Even if the proxy objective is fully descriptive of the downstream objective and

optimisation is not affected by the aforementioned local optima issue, optimisa-

tion can result in a representation that is not robust to the types of distributional

shift we might reasonably expect. In Chapter 5 I detail a setup where a model

learns to rely on easy-to-compute spurious signals from extraneous variables,

and ignores other predictive information that transfers better to the test setting.

To deal with easy-to-compute spurious signals I propose the following process:

(1) model the data as a latent representation using a vector quantised variational

autoencoder [Van Den Oord et al., 2017]; (2) fit a shallow neural network that

predicts the class label to this representation; (3) compute gradients of the latent

representation with respect to the shallow network’s predictions, and apply these

changes to confuse the shallow network, effectively disassociating the spurious

features and the class labels; and (4) use the resulting decoded (via the same

autoencoder) images as training data in a standard classification training setup.

The remainder of this Thesis is arranged as follows. In Section 2 I provide the

technical background and literature reviews for work relevant to later chapters. In

Chapter 3 I present the deep decision tree layer for improving information efficiency

of deep semantic hash functions. In Chapter 4 I present deep hierarchical object group-

ing for learning a diverse set of solutions that optimise the deep clustering objective

for improved downstream classification performance. In Chapter 5 I present latent

adversarial debiasing as a technique to remove spurious signals from training data to

improve robustness at test time. Chapter 6 concludes this work with a summary and

discusses implications and directions for future work.



Chapter 2

Technical background and literature review

This chapter provides a technical background of concepts and literature review of ex-

isting work that is relevant to the remainder of this Thesis. In Section 2.1 I argue the

importance of representation learning, briefly describe the neural network architecture

used through this Thesis as a backbone that produces representations in Section 2.1.1.

In Section 2.1.2 I delineate the main differences between supervised and unsupervised

learning.

In Section 2.2 I describe how proxy objectives are widely used for representation

learning and give specific examples for: information maximisation (Section 2.2.1),

contrastive learning (Section 2.2.2), and deep clustering (Section 2.2.3). I also review

the relevant literature for each of these examples while explaining them.

In Section 2.3 I give the technical background as to why proxy objectives can

result in sub-optimal solutions. I explain the phenomenon of over-compression in Sec-

tion 2.3.1 and explain how it leads to sub-optimal representations when the training

objective fails to capture the full requirements of a downstream task. I use deep clus-

tering (Section 2.3.2) as an example where the proxy objective fails to prevent learning

representations computed from easy features (e.g., colour) instead of complex features

(e.g., object type). I also describe how neural network bias (Section 2.3.3) is an exam-

ple where the proxy objective fails to delineate between easy-to-compute features and

complex features, each of which are informative of the class label in the training data

but not at test time.

In Section 2.4 I review the literature associated with the use of decision trees with

neural networks – this is relevant for Chapter 3. In Section 2.5 I review the literature

related to learning deep semantic hash functions – this is relevant for Chapter 3

7
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2.1 Representation learning

Learning a mapping of data to representation space is seen as a fundamental challenge

in machine learning (see Chapter 1). Different representations of data can disentangle

or compress factors present in the data [Bengio et al., 2013a]. What makes a repre-

sentation ‘good’ is a question of its relevance for a downstream task. For example, if

the downstream task is object detection, a representation that disentangles factors such

that objects are simple to detect with a small model (e.g., a linear projection) is useful.

Important questions that have driven deep learning of representations are: (1) is this

representation amenable to solving the downstream task? and (2) does learning on this

representation enable generalisation to reasonable unseen data and/or tasks?

Mechanisms such as standardisation, whitening, normalisation, and various kinds

of transformations are widely used on data before fitting many classes of models.

These mechanisms can be seen as mappings of the data space that help improve the

learning or generalisation of models. For example, standardisation is the process of

scaling individual features in the data such that they have zero mean and unit variance.

When a model relies internally on a distance measure between data points to make

predictions, standardisation can improve performance. Dimensionality reduction (e.g.,

principle component analysis (PCA) [Abdi and Williams, 2010]) and kernel methods

are ways of representing or comparing data that often result in improved model perfor-

mance or generalisation. Hand crafted features for images, such as the scale-invariant

feature transform [Lowe, 1999] or variations of histogram analysis, were widely used

in computer vision before end-to-end feature learning using neural networks began to

dominate.

Better representations of image data for computer vision tasks are typically those

that capture high-level semantic information, such as object types, as opposed to low-

level information (such as pixel colours) or mid-level information (such as textures).

Neural networks [Rosenblatt, 1958, LeCun et al., 2015] are widely and successfully

used for image problems problems because they are capable of modelling and syn-

thesising complex non-linear functions at multiple scales, thereby enabling learning

representations that are expressive of abstract semantic variation in the data.

Representation learning for image data using neural networks is a wide-reaching

domain because of the ubiquity of image data and the difficulty associated with de-

veloping performant representations. The question central to this Thesis is: how can

we learn data mappings that perform well on downstream tasks when proxy training



Chapter 2. Technical background and literature review 9

objectives fail? I discuss the backbone neural network we use to produce represen-

tations throughout this Thesis in the next section. In Section 2.1.2 I discuss the two

main learning paradigms – supervised and unsupervised learning – both of which are

explored to varying degrees in later chapters.

2.1.1 The ResNet backbone

A neural network consists of many densely interconnected computing nodes (neurons).

These computing nodes are parameterised and are typically set up in a ‘feed-forward’

mode, such that they process data in a single direction only. Feed-forward process-

ing via multiple densely connected compute layers, each of which is usually passed

through a non-linear function, produces sequentially arranged latent representations

of the data. These representations are often called activations or latent features. Op-

timising the parameters of a neural network is typically done using gradient-based

approaches [Rumelhart et al., 1986, Kingma and Ba, 2015] that involve computing the

gradient of the loss with respect to the parameters. This loss depends on the proxy

objective. For image data, convolutional neural networks (CNNs) [LeCun et al., 1998]

are ubiquitous as they enable translation invariant feature detection to map data to rep-

resentations that demonstrably generalise better to unseen data and tasks.

The strength of CNNs is partly owing to weight sharing, since a convolution in-

volves computing features via a small kernel applied to many local regions in the

data/representation. Therefore, the features produced via the convolution of a kernel

are invariant to the relative position of those features in the data/representation. Shar-

ing weights like this improves the compute and learning efficiency of CNNs – small

local regions can be viewed as different data points, effectively expanding the dataset.

Nonetheless, neural network depth (number of compute layers) and capacity (which is

related to the total number of parameters) still strongly dictates how powerful a CNN

can be and issues do arise when training very deep neural networks [Xiao et al., 2018].

Notably, vanishing gradients [Hochreiter, 1998] occur during backpropagation where

the computation of the gradient with respect to the weights gets vanishingly small

for layers closer to the inputs. Batch normalisation [Ioffe and Szegedy, 2015] and

skip connections [He et al., 2016a,b] were innovations that enabled learning very deep

neural networks. These are the core technical components to the backbone models –

residual neural networks (ResNets) – I use throughout this Thesis.

Architecture choice also impacts the generalisation capability of a neural network.
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A large model will have a tendency to overfit without sufficient regularisation [Krogh

and Hertz, 1991, Kingma and Ba, 2015, DeVries and Taylor, 2017, Kingma and Ba,

2015, Zhang et al., 2021a]. In this Thesis I use standard approaches to identify and

mitigate against overfitting: cross-validation, data augmentation, and weight decay

[Loshchilov and Hutter, 2019]. Cross-validation is a re-sampling method where dif-

ferent subsets of the data are used for training and testing in order to estimate the

performance of a model on various splits of the data. Data augmentation involves ap-

plying realistic changes to the image data (e.g., colour/lighting changes or horizontal

flips) as a pseudo expansion of the training data. Weight decay adds a quadratic penalty

on the weights of a neural network, resulting in relatively smaller weights and better

generalising neural networks.

Figure 2.1: A residual compute ‘block’ introduced by He et al. [2016a]. The skip con-

nection enables the weight layers to model a residual function, pass information forward

without computing anything, and pass gradient information efficiently during backprop-

agation.

The ResNet He et al. [2016a] introduced the idea of residual connections for neural

networks. Residual connections enable learning much deeper networks that generalise

well to unseen data and which do not suffer from gradient degradation issues such

as vanishing gradients. They reformulated the standard neural network layer to learn

a residual function as opposed to the standard unreferenced function. Figure 2.1 il-

lustrates the residual connection method in the form of a basic compute unit called

a residual block. The residual block consists of: (1) multiple weight layers, usually

convolutions; (2) activation functions; and (3) a skip connection. Intuitively, the resid-
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ual connection helps to pass information forward through the network and also to pass

gradients backward through the network during optimisation. Batch Normalisation

[Ioffe and Szegedy, 2015] is applied before each activation function – it is a layer-

wise technique that centres and re-scales the input on a minibatch basis to improve

training stability and model performance. The standard variant of the ResNet consists

of stacked residual compute blocks (Figure 2.1). While many architectural advances

have been explored since the standard ResNet variant was introduced [Xie et al., 2017,

Huang et al., 2017, Zagoruyko and Komodakis, 2016, Hu et al., 2018], the standard

variant is used through this Thesis.

2.1.2 Supervised versus unsupervised learning

The main difference between supervised and unsupervised learning is the presence of

target data. Supervised learning involves fitting a model that maps input data X to

predict some target quantity Y . This target data can be continuous (for regression)

or categorical (for classification). Supervised dimension reduction also incorporates

target data (e.g., linear discriminant analysis [Izenman, 2013]).

Unsupervised learning, on the other hand, works by modelling the inherent struc-

ture in the input data without any pre-specified target data. The differences between

various unsupervised learning methods are a consequence of the design choices, lim-

its, and algorithms of those methods. For example, different cluster analysis methods

(e.g., k-means [Lloyd, 1982] versus spectral clustering [Ng et al., 2001]) find sub-

stantially different clusters in data because of the underlying prior assumptions being

made by algorithms used to compute cluster assignments. Unsupervised dimension-

ality reduction [Van Der Maaten et al., 2009], cluster analysis [Driver and Kroeber,

1932], manifold learning [Cayton, 2005], novelty detection, and density estimation

are examples of unsupervised methods. Unsupervised methods can be assessed using

supervised information (e.g., ground truth class labels to assess clustering).

Self-supervised learning [Ando et al., 2005] is a widely used approach for train-

ing neural networks to map image data to useful representations. The key to self-

supervised learning is incorporating low-cost prior knowledge in a way that enables

learning representations that perform well on downstream tasks. It is expensive (in

terms of both money and time) to label many images. In contrast, defining self-

supervised objectives can be relatively inexpensive; e.g., image augmentations are

inexpensive to define or choose and they can be used to drive self-supervised repre-
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sentation learning. Creating proxy objectives (Section 2.2) for image data is relatively

easy (compared to tabular data or time-series data, for example) because of how easy it

is to generate reasonable transformations of an image and to define appropriate losses

that leverage these transformations. Context prediction [Doersch et al., 2015], infor-

mation maximisation of different views of an image [van den Oord et al., 2018], and

rotation prediction [Gidaris et al., 2018] are proxy objectives where additional knowl-

edge about image data is used to drive self-supervised representation learning.

In Section 2.2 I discuss several proxy objectives that leverage self-supervision. I

identify and discuss how neural networks prefer to model easy solutions to these proxy

objectives in Section 2.3, and discuss three focus examples that typify this issue. These

examples are explored and addressed in Chapters 3, 4, and 5.

2.2 Proxy objectives

A proxy objective is a training objective constructed using data and additional (usually

inexpensive) prior knowledge about the data, such that this prior knowledge is not di-

rectly informative of the downstream task. Therefore, an objective is a ‘proxy’ when

there is a disconnect between the training objective and the downstream task. Mod-

ern proxy objectives are usually formed by altering the input data in some automatic

fashion (e.g., via image rotation) followed by predicting some automatically generated

target value (e.g., the rotation angle). The intuition is that a useful representation must

be learned to predict these quantities.

Formulating proxy objectives that result in good performance on downstream tasks

can be challenging. Self-supervised learning has become popular for image data be-

cause of well-formed proxy objectives that can be optimised for using powerful neural

networks. The impact of recent self-supervised methods (e.g., SimCLR [Chen et al.,

2020a]) for common downstream tasks (e.g., object classification) is high – the down-

stream performance almost matches fully supervised training. Ericsson et al. [2021]

studied how well self-supervised learning models transfer, and found that there was

not a single method that dominated overall. I cover three broad areas that use proxy

objectives in Sections 2.2.1, 2.2.2, and 2.2.3.
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2.2.1 Information maximisation

The infoMAX principle involves using mutual information (MI) maximisation for rep-

resentation learning [Linsker, 1988, Tschannen et al., 2019]. Self-supervised methods

that use the infoMAX principle must define ‘views’ on the data to produce pseudo ran-

dom variables as input to a MI maximisation procedure. It is challenging to define

views in a reasonable fashion such that learning using the infoMAX principle results

in good downstream performance. Furthermore, computing MI can be intractable and

its estimation is not straightforward [Tschannen et al., 2019] or always possible.

Contrastive predictive coding [van den Oord et al., 2018] (CPC) models a 2D latent

space using an autoregressive model and defines a predictive setup to maximise MI be-

tween distinct spatial locations. Deep InfoMAX [Hjelm et al., 2019] (DIM) does not

maximise MI across a set of data augmentations, but instead uses mutual information

neural estimation [Belghazi et al., 2018] and negative sampling to balance maximis-

ing MI between global representations and local representations (e.g., a crop of an

image). Augmented multiscale Deep InfoMAX [Bachman et al., 2019] (AMDIM) in-

corporates MI maximisation across data augmentations and multiscale comparisons.

Deep comprehensive correlation mining [Wu et al., 2019] (DCCM) constructs a sam-

ple correlation graph for pseudo-labels and maximises the MI between augmentations,

and the MI between local and global features for each augmentation.

2.2.2 Contrastive learning

Contrastive learning is a popular method that is also based on the infoMAX principle.

The proxy objective in this case involves mapping different views of the same data

(e.g., image augmentations) to similar representations, while simultaneously encour-

aging representations from different data to have dissimilar representations. ‘Contrast-

ing’ involves computing a loss that drives representations from positive sample pairs to

be similar and representations from negative sample pairs to be dissimilar. Wang and

Isola [2020] presented an informative perspective to understanding contrastive learn-

ing: that it is a balance between (1) maximising alignment between positive pairs of

data, and (2) maximising the uniformity of the distribution of (normalised) represen-

tations on the unit hypersphere. Tian et al. [2020] suggested that good views for con-

trastive learning fulfil the criterion that they retain the minimal information necessary

to perform the downstream task, and showed that the optimal views are necessarily

dependent on the downstream task.



Chapter 2. Technical background and literature review 14

Instance discrimination Instance discrimination involves learning a mapping of im-

age data such that each individual training image, and the same image processed using

various augmentations, can be distinguished from all other images [Wu et al., 2018b].

This is essentially a N-way classification problem, where N is the number of train-

ing data points. The authors acknowledged that a parametric classification approach

would require individual weight vectors per data point to act as a ‘class prototype’,

which is infeasible for large datasets. Instead, they replaced these prototypes with the

L2-normalised representations of each image, and kept an updated working memory

of these representations during training. By sampling different data augmentations

throughout training, the resultant representation must enable discrimination of train-

ing data while being invariant to the augmentations used. It is the use of data aug-

mentations in this way that posits instance discrimination in the gamut of contrastive

learning.

SimCLR SimCLR is framework for applying contrastive learning to image data [Chen

et al., 2020a]. It operates in a similar manner as instance discrimination, and even uses

a similar loss function. The main difference is that contrasting is done on a large mini-

batch basis as opposed to using a memory bank, which results in a better learning

signal: the contrastive loss does not rely on out-of-date representations from a slowly

updating memory bank. A disadvantage of contrasting on a minibatch basis is that the

proxy objective is dependent on minibatch size, and downstream task performance is

impacted by different choices of minibatch size. A number of architecture and learn-

ing adjustments were also included by the authors to facilitate the success of SimCLR.

They emphasised the importance of choosing appropriate data augmentations, show-

ing how stronger augmentations (i.e., those that alter the original image to a greater

degree) can form a more challenging proxy objective that results in better downstream

task performance. A sufficiently large neural network (i.e., a ResNet 4× wider than

usual) was able to achieve results comparable with supervised learning on ImageNet.

An updated version of the framework [Chen et al., 2020b] further improved down-

stream task performance.

Momentum contrast One major drawback of SimCLR is that large minibatch sizes

are required for good downstream performance. Momentum contrast (MoCo) [He

et al., 2020] was designed to alleviate this issue by using a queue for encoding ear-

lier minibatches. The solution was two-fold: (1) a momentum-based moving average
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encoder – a slowly updated copy of the neural network – and (2) a queue mechanism

that kept track of the most current momentum encoded representations. The queue can

be large in order to retain a collection of diverse negative samples, thus alleviating the

need for large minibatch sizes. The proxy objective in this case involves contrasting be-

tween the current encoded representations and their momentum encoded counterparts

against all other momentum encoded counterparts.

Bootstrap your own latent Bootstrap your own latent (BYOL) [Grill et al., 2020]

takes a different approach to mitigating the need for negative samples. BYOL used

two networks: an online and a target network. The target network was updated simi-

larly to MoCo using a moving average of the online network. Two augmentations are

computed for a given image and processed by both online and target networks. The

resultant representation from the online network is projected to produce a ‘prediction’

(of the same dimensionality as the representation). The target for this prediction is

the representation computed by the target network (but without the final projection

stage). One might expect that this setup admits collapsed solutions, where the net-

work yields constant representations. The authors hypothesised that a combination of a

slow-moving average for the target network and the prediction projection for the online

network were enough to prevent collapsed solutions. Even without negative samples,

this proxy objective still involves producing similar representations of an image under

reasonable data augmentations.

2.2.3 Clustering

Clustering methods are designed to group data into two or more clusters. Cluster analy-

sis was first used in the fields of anthropology and psychology to help draw conclusions

about natural patterns in data [Driver and Kroeber, 1932]. Xu and Wunsch [2005]

presented a survey of clustering methods that existed before deep learning became

popular. The SK-Learn documentation [SKLearn, 2022] also provides an excellent

overview of popular methods with corresponding visualisation of clustering results.

Early clustering methods had two key features: (1) they found natural patterns

directly in the data, as opposed to building representations that are amenable to clus-

tering (as is done with modern deep learning methods); and (2) the choice of data

preprocessing (e.g., standardisation and whitening) and distance metrics had a large

impact on the cluster analysis.
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Perhaps the most well known clustering method is k-means clustering, first pro-

posed by MacQueen [1967], and on which several modern deep-learning-based clus-

tering methods are based [Fard et al., 2020, Wang et al., 2014a]. k-means aims to group

data such that each datum belongs to the cluster with the nearest mean (of all member

data). Fuzzy c-means [Dunn, 1973] extends this idea using a soft cluster attribution

such that any datum can belong to more than one cluster.

Hierarchical clustering aims to group data into a hierarchy of clusters using either

agglomerative or divisive methods. Agglomerative hierarchical clustering is a bottom-

up approach where each datum starts in its own cluster and clusters are merged up

the hierarchy. Divisive hierarchical clustering is a top-down approach where all data

starts in a single cluster which is then split down the hierarchy. While divisive methods

less widely used than agglomerative methods, divisive hierarchical clustering is closely

related to the work presented in Chapter 3.

Spectral clustering uses dimensionality reduction by computed the eigenvalue de-

composition of the data before performing clustering (with k-means, for example).

Affinity propagation uses a complex message passing approach to cluster data, and is

useful because it does not pre-require a specification of the number of clusters, unlike

other methods. Affinity propagation results in exemplar data for each cluster. Density-

based spatial clustering of applications (DBSCAN) operates under the assumption that

clusters of data exist in high-density regions in space that are separated by low-density

regions. A major advantage of DBSCAN over simpler methods like k-means is that

the clusters can be any shape (whereas k-means assumes clusters are convex shaped).

What was a feature is now a challenge Finding natural patterns in data is useful,

particularly for a user who seeks to understand the presence or absence of features

that define a dataset. This advantage, however, can become an issue for neural net-

works because of how powerful and flexible they are. A neural network can learn to

construct a representation that minimises a clustering objective by relying on simple

features (e.g., colour) while suppressing other features (e.g., object type). When this

representation needs to be useful for other downstream tasks, it becomes challenging

to constrain neural networks from building representations that satisfy the clustering

objective but which do not generalise well.

Deep clustering Deep clustering proxy objectives enable learning the parameters

of a neural network such that the mapping it computes is a discrete labelling of data.



Chapter 2. Technical background and literature review 17

Therefore, it is typically possible to measure the performance of such representations

directly using ground truth labels. Conversely, continuous and unconstrained repre-

sentations (produced by contrastive learning, for example) require additional learning

to decode (e.g., logistic regression if the downstream task is classification). Tschannen

et al. [2019] identified that the decoding setup impacted significantly downstream per-

formance, and experiments done for Deep InfoMax [Hjelm et al., 2019] showed how

selecting representations closer to the input data (i.e., the outputs of shallower layers

in the network) could benefit some downstream tasks. Chapter 4 was written before

some of the following methods existed – I have partitioned the following discussion

accordingly.

Pre-DHOG Deep embedding for clustering (DEC) [Xie et al., 2016] jointly learns

an embedding suited to clustering and a clustering itself. They argued that the no-

tion of distance in the feature space is crucial to a clustering objective. DEC used no

contrastive-learning component to encourage an augmentation invariant representation

space. Instead, it used a self-reinforcing mechanism to iteratively increase model con-

fidence in the predictions it made. Without any signal to pull different views to the

same predictions (via a contrastive component, for example), this method is inherently

limited: there is no mechanism to drive the neural network to form clusters that are in-

variant to differences in views (e.g., colour differences). This is in some sense a failure

of the DEC objective since it lacks the necessary delimiting information (e.g., image

augmentations) that might drive a neural network to learn a useful clustering.

Yang et al. [2016] proposed joint unsupervised learning of deep representations and

image clusters (JULE). JULE adapted an agglomerative clustering approach [Rokach

and Maimon, 2005] to deep clustering. Agglomerative clustering is a variant of hierar-

chical clustering where clusters are recursively merged to form larger clusters. JULE

was designed to increase the affinity of the neural network’s output representation to-

ward agglomeration. The authors argued that JULE performs agglomerative clustering

in the forward pass and representation learning in the backward pass. As with DEC,

JULE does not utilise data augmentations and is therefore limited in that it can only

model structures inherent in the data and does not rely on additional information for

representation learning.

One could argue that there exists a learnable partitioning of the data that is informa-

tive of the downstream task (in this case matching clusters to a ground truth labelling

by a one-to-one mapping of cluster to class), and by extension argue that the use of
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self-supervised learning methods is unnecessary – we simply need to find the ‘right’

partitioning. Why do DEC and JULE fail to find a partitioning that performs as well as

partitions found by methods that also use contrastive methods (discussion to follow) to

drive learning? There are no constraints on either the DEC or JULE objectives to drive

learning clusterings of the data that are related to high-level semantic information.

One approach to constrain a representation is to use an autoencoder architecture

to learn a bottleneck representation from which cluster assignments are computed.

This setup ensures sufficient information retention such that the representation can be

decoded back into image space, and thereby avoids cluster degeneracy (i.e., mapping

all images to the same class). Ghasedi Dizaji et al. [2017] jointly optimised for image

decoding and minimised relative entropy between latent factors in the representation.

Fard et al. [2020] applied k-means in the representation space and defined a loss that

reinforced the clusters found. The proxy objective for such methods can be seen as

finding abstract features that form clusters and also enable decoding into the image

space.

Deep adaptive clustering [Chang et al., 2017] (DAC) used a binary pseudo-labelling

approach to perform clustering, where a positive binary label denoted a positive pair

(i.e., both images in the same cluster). Cosine similarities of representations were

computed between all images for each minibatch and an adaptive threshold parame-

ter was learned such that the learned pseudo-labels produced pairs. The representa-

tion was constrained to tend toward a one-hot representation. A quadratic constraint

was imposed on the representation to prevent collapsed predictions, where all images

are mapped to the same cluster. Another mechanism that could be used to deal with

collapsed solutions is to use a standard clustering algorithm, such as k-means, to it-

eratively group on learned features. This approach was used by DeepCluster [Caron

et al., 2018]. Both DAC and DeepCluster used a pseudo-labelling proxy objective to

reinforce the groups inherent in the structure of the data. The inadequacy of these

types of proxy objectives is made apparent by the additional constraints they require to

prevent collapsed solutions.

Associative deep clustering (ADC) [Haeusser et al., 2018] leveraged the idea that

associations in the representation space could be used as a learning signal. What this

means is that there are natural consistencies due to the structure of data that are present

in representation space and that these can be latched onto and used to drive learning.

They introduced centroids of the same size as the representation space and devised

an objective to learn both the representation and centroids simultaneously. ADC used
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four data augmentations per image and defined a loss that pulled their subsequent rep-

resentations into the same clusters (in a similar fashion to contrastive learning).

Invariant information clustering (IIC) [Ji et al., 2019] used a neural network to

predict a probability distribution over clusters for images, and maximised the mutual

information (MI) between these predictions and others computed from differently aug-

mented images. They effectively avoid collapsed solutions because MI maximisation

implicitly targets marginal entropy and a collapsed solution would have lower marginal

entropy than one that was not collapsed. IIC was used as the base method for DHOG

in Chapter 4. That said, DHOG can be applied to any neural network that yields a

distribution over clusters and is invariant to the underlying deep clustering method. I

chose IIC when writing DHOG because it was the state-of-the-art deep image cluster-

ing method at the time. We will now discuss methods introduced after DHOG.

Post-DHOG Semantic clustering by adopting nearest neighbours (SCAN) [Van Gans-

beke et al., 2020] used a two step approach: (1) a self-supervised method to learn a se-

mantically meaningful representation; and (2) a clustering method that uses the nearest

neighbours from these representations as drivers for learning. They tested instance dis-

crimination [Wu et al., 2018b] and rotation prediction [Gidaris et al., 2018] as methods

for learning the underlying representation. The strength of SCAN is directly related to

the use of a self-supervised method.

Multi-model deep clustering (MMDC) [Shiran and Weinshall, 2021] involved train-

ing a neural network to align the learned representation with target points from a pre-

defined Gaussian mixture model. Similar to SCAN, MMDC required an underlying

self-supervised method (rotation prediction in this case) to learn useful representations

of images. MMDC alternated between self-supervised and clustering objectives on a

per epoch basis. Cluster allocation was determined by representation alignment with

the Gaussian mixtures.

Matching priors and conditionals for clustering (MPCC) [Astorga et al., 2020] ex-

tended the autoencoder approach [Ghasedi Dizaji et al., 2017, Fard et al., 2020] using

principles from generative adversarial networks (GANs) [Goodfellow et al., 2014].

The bottleneck latent representation was optimised to: (1) enable convincing decoded

images (when assessed by a discriminator model as per the GAN framework); and

(2) partition the data into clusters. Gaussian attention network for image clustering

(GATCluster) used a number of self-supervised tasks to satisfy their constraints for a

clustering algorithm and optimised toward one-hot encoding in cluster allocation prob-
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abilities in order to ensure higher inter-cluster distances.

Prototypical contrastive learning (PCL) [Li et al., 2021] used an expectation max-

imisation (EM) setup to learn cluster centroids in an effort to bridge the gap between

contrastive learning and clustering. The E-step involved applying k-means clustering

to momentum encoded (in the same fashion as with MoCO) representations to produce

k centroids (called ‘prototypes’ in this paper). The M-step was interpreted as maximis-

ing the log-likelihood of representations’ alignment with their nearest centroids. The

loss used for the M-step was similar to the contrastive loss used for SimCLR: align-

ment between a representation and its closest centroid was maximised and alignment

between the same representation and all other centroids was minimised. An impor-

tant caveat is that their method also included the standard SimCLR contrastive loss to

‘bootstrap’ clustering. Therefore, the proxy objective for PCL is similar to SimCLR

but also includes a centroid approximation step.

The swapping assignments between multiple views (SwAV) method [Caron et al.,

2020] also operates by maximising alignment between representations and centroids.

SwAV is ‘online’ in the sense that it does not require an expectation step to compute

cluster centroids (while PCL does), but instead learns centroids as model parameters.

SwAV works by first processing two augmentations of a single image to produce cor-

responding representations (R1 and R2). The alignment between these representations

and all centroids is then computed to select the closest centroids (C1 and C2). Opposite

representations and centroids are then paired (C1 with R2; C2 with R1) and alignment

between these pairs is maximised using a standard contrastive loss, where negative

samples are other centroids instead of representations from other data. SwAV enables

learning cluster assignments and centroids in an end-to-end fashion.

2.3 Proxy objective failure modes

In this section I identify and describe the tendency of neural networks to rely on easy-

to-compute features in the data when trained using proxy objectives. What is meant

by easy-to-compute features is situation dependent. For example, an easy feature for

clustering might be average colour, while a complex feature might be object type.

Intuitively, average colour is simple to compute, while object type might require a

large neural network to compute. The tendency of neural networks to learn a mapping

that relies on easy features exposes the failure of proxy objectives to mitigate against

such reliance.
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The failure of proxy objectives used in contrastive learning has recently been dis-

cussed by Chen et al. [2021] and Li et al. [2020b] – the problem is referred to as feature

suppression in these works. They argued that the inclusion of stronger data augmen-

tation to the contrastive learning framework was the implicit mechanism to mitigate

against reliance on ‘irrelevant features’. Wang et al. [2021] used the information bot-

tleneck principle as a basis to explain that the ‘minimal sufficient representation’ for

contrastive learning compresses away information that might be relevant for down-

stream tasks, and improved downstream performance by explicitly increasing the mu-

tual information between the learned representation and input data. Li et al. [2020b]

also retained information by decoding a representation to predict the input. Robinson

et al. [2021] explored how well contrastive learning avoids shortcut solutions under

different strengths of image augmentations, and proposed an implicit feature modifica-

tion scheme to drive contrastive learning toward capturing a greater variety of features.

The concept of a proxy objective need not be limited to self-supervised learning. A

standard classification objective (e.g., cross-entropy between predictions and ground

truth labels) can also be cast as a proxy objective. In this case, any difference between

the proxy objective and the downstream task is owing to differences between train

and test data, instead of differences between the training loss downstream evaluation.

Casting common training objectives as proxy objectives helps us to characterise their

failure modes.

Jo and Bengio [2017] identified a possible cause for the sensitivity of high per-

forming CNNs to imperceptible adversarial perturbations in the data [Szegedy et al.,

2013]: that these neural networks learned to detect objects by computing low-level im-

age statistics instead of detecting high-level abstract features. Earlier research provided

evidence that such statistics were often sufficient for scene categorisation [Torralba and

Oliva, 2003]. The proxy objective (which is the standard supervised classification ob-

jective in this case) failed in that it could not delineated between detection via statistics

versus detection via abstract features – I address a similar issue in Chapter 5. Geirhos

et al. [2019] studied how convolutional neural networks relied on texture as opposed

to shape, even when shape reliance better optimised the proxy objective.

2.3.1 Over-compression

One perspective used to explain why neural networks with many parameters generalise

well to unseen data is the information bottleneck (IB) principle [Tishby and Zaslavsky,
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2015, Shwartz-Ziv and Tishby, 2017]. It posits that the internal representations pro-

duced by a neural network learn to compress task-irrelevant information while retain-

ing maximal mutual information with the targets. This compression happens gradually

after an initial information increase stage. Shwartz-Ziv and Tishby [2017] credited

this to a diffusion process and claimed that the stochastic nature of stochastic gradi-

ent descent (SGD) optimisation produced this diffusion process. Prior to this Thesis I

explored the applicability of the IB principle to a ResNet [Darlow and Storkey, 2020]

and showed that compression did indeed occur in a real-world image classification

setup. Elad et al. [2019] also validated the IB principle in a layer-wise learning setup

by employing an objective function derived from the IB bottleneck principle to learn

the internal representations of a neural network. They also explored the relationship

between weight decay and the IB principle and did not observe compression without

weight decay.

In some circumstances over-compression can be countered with suitable regular-

isation techniques like weight decay [Krogh and Hertz, 1991], L2-normalisation, or

dropout [Srivastava et al., 2014]. The downstream task of mapping images to semantic

hash codes for image retrieval (Chapter 3) is an example where regularisation does

not suffice. Exisiting methods tends to produce hash functions that use only a small

portion of the available hash space, meaning that images from the same class often get

mapped to identical hash codes. This mapping is therefore insufficient for comparing

images in the same class. This manifestation of over-compression results in reduced

retrieval performance and poor coverage of the hash space.

2.3.2 Clustering local minima

Modern clustering methods usually incorporate additional constraints in the form of

self-supervision to prevent forming partitionings of the data that perform poorly on

downstream tasks (see Section 2.2.3). Self-supervision is used because clustering ob-

jectives alone do not necessarily enable learning neural network parameters that com-

pute partitionings according to abstract features. There is no reason to expect a clus-

tering objective to encourage partitioning by object type (an abstract feature) instead

of partitioning by brightness (a low-level feature), for example [Grimmer and King,

2011].

I describe and demonstrate in Chapter 4 that greedy SGD optimisation results in

neural network parameters that correspond to a sub-optimal local minima of the clus-
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tering objective. Sub-optimality is two-fold here: (1) the clusters computed by the

neural network are non-robust in that they do not correspond well with ground truth

class labels; and (2) there is a relatively better local minima of the same clustering ob-

jective. Self-supervision can improve robustness, but it is nevertheless a symptomatic

treatment of the underlying issue: neural networks trained using SGD will tend to rely

on easy-to-compute features when available.

I approach this issue differently in Chapter 4. Intuitively, I first let the neural net-

work learn the ‘easy’ solutions to the clustering objective (those that rely on non-robust

low-level features), and then let it build a sequence of additional solutions that each

have low MI with earlier solutions. The result is a set of solutions to the clustering

objective that are arranged in a hierarchy of complexity (easy-to-hard). This approach

has similarities with curriculum learning [Bengio et al., 2009]. I show that later (in the

hierarchy) solutions tend to be more robust in that they perform better on the down-

stream task.

2.3.3 Neural network bias

Neural network bias is another problem that results when a proxy objective fails. When

there is more than one way to map from images to target predictions, neural networks

will prefer to learn a mapping from easy-to-compute features as opposed to a mapping

from complex features (Chapter 5). ‘Easy’ versus ‘complex’ is relative: brightness

is easy while shape is complex, for example. Both mappings correspond to different

parameters of the neural network, each of which in turn corresponds to a distinct local

minima of the loss surface. It is well-known that highly non-linear neural networks

can have different parameter configurations that correspond to similar local minima of

a loss surface [Swirszcz et al., 2016]. The issue is that when fundamentally different

mappings can be learned, the training objective fails to provide any information as to

which of these mappings should be preferred.

There are situations where spurious correlations exist in the data, such that the

training objective can be optimised by relying on this correlation instead of the causal

signal. For example, if all aeroplanes in a object classification training dataset contain

blue sky in the background, a neural network can learn to map blue sky to the aeroplane

class. This correlation is spurious when it prevents the neural network from learning to

detect the shape of an aeroplane. Over-reliance on spurious signals result in non-robust

classifiers that perform poorly at test time.
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In Chapter 5 I demonstrate neural network bias by modifying training images with

easy-to-compute features that correlate with target classes. It is a common assumption

in this field that spurious correlations are characterised by easy-to-compute features

[Nam et al., 2020, Bras et al., 2020]. My solution is to first capture the spurious cor-

relation with a ‘simple’ classifier attached to a latent representation of the data, and

then to remove this correlation using a quantised latent adversarial walk. I then decode

the augmented latent representation to the original image space and train a standard

classifier with the decoded images.

2.4 Decision trees and neural networks

Decision trees for regression and classification have a long history [Loh, 2011, Crim-

inisi and Shotton, 2013]. They are non-parametric models that are designed to infer

decisions on a target variable by learning decision rules from features in data. As such,

the structure and rules depend on the data itself. Fitting decision trees can result in

overly complex structures that do not generalise well. Decision trees are particularly

useful when interpretability is a concern – they are white-box models where individual

decisions can be interpreted.

Hehn and Hamprecht [2018] proposed an expectation maximisation method for

optimising probabilistic decision trees in an end-to-end fashion. An advantage of this

approach was that during optimisation any given data point could be mapped through

the full decision tree, while an annealing mechanism recovers a favourable property

of decision trees – that a datum only passes through a subset of nodes. This is similar

to the method I present in Chapter 3, but does not use stochastic gradient descent nor

a neural network to parameterise the decision tree. Norouzi et al. [2015] found that

the problem of finding optimal decision trees was related to structured prediction with

latent variables, and consequently developed and presented an efficient and non-greedy

optimisation technique.

Richmond et al. [2015] explored the relationship between stacked decision forests

and CNNs. These decision forests were used as an initialisation strategy for CNNs such

that only a small amount of labelled data was required for fine-tuning these networks.

McGill and Perona [2017] explored the idea of dynamic routing for training neural

networks. They hypothesised that complex decisions could be broken down into less

complex sub-decisions, and used inspiration from methods such as random forests that

use dynamic routing during inference, in order to amend neural network training (and
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proposed three separate methods to do so).

Little research has been done to partner decision trees with neural networks, likely

because these models are at odds with each other. The main use-case of decision trees

is interpretability, while neural networks are black-box models. Yang et al. [2018]

combined decision trees and neural networks for tabular data and showed how these

trees ‘self-prune’ at both split and feature levels. Wang et al. [2014b] introduced the

concept of neural-backed decision trees, where they constructed decision trees by run-

ning hierarchical agglomerative clustering on the pre-trained final weights of a classi-

fier network.

Unlike standard decision trees, deep decision trees require some parameterisation

of the decision structure, where decisions are not directly made on the input features.

Chapter 3 presents a different take on deep decision trees by imposing a parametric

decision tree structure apriori. The objective is then to learn the parameters of that

decision structure using contrastive learning.

2.5 Deep semantic hashing

This section covers the literature related to deep semantic hashing (relevant to Chapter

3). Conventional hashing is the process of mapping data of arbitrary size to a fixed size

hash code. A good hash function should minimise collisions of data in the hash space.

Contrary to this, locality sensitive hashing (LSH) [Slaney and Casey, 2008] is when

hash functions produce hash codes such that semantic distances in the data space are

preserved in the hash space (usually using hamming distance). For example, cats are

semantically similar and the hamming distance between hashes of different cat images

should be close, but the hamming distance between hashes from cat images versus

dog images should be comparatively large. LSH has applications in nearest neighbour

search and data clustering. There is no single approach to LSH, but all approaches

rely on the idea of mapping similar data to similar hash codes. Balancing between the

requirements of (1) capturing semantic similarity in hash codes, and (2) minimal total

collisions is challenging.

2.5.1 Semantic hashing

Images present a challenge for hashing since they are high-dimensional and contain

semantic content that is usually equivariant to many spatial, lighting, scale, and textu-
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ral changes. To deal with this, features can be computed from images prior to hashing

[Deselaers et al., 2008]. How these features are computed is crucial to the performance

of downstream tasks that might use the hash codes. Local binary patterns [Ojala et al.,

1994], localised wavelet patterns [Mallat, 1996], and other hand-engineered descrip-

tors were invented or repurposed for hash-based image retrieval [Zhou et al., 2017,

Lowe, 1999, Ojala et al., 2002, Dubey et al., 2014, Jacob et al., 2014, Song and Tao,

2009, Jégou et al., 2011, Murala et al., 2012, Dubey et al., 2015, Gong et al., 2012,

Fan and Hung, 2014, Dubey et al., 2016, Chakraborty et al., 2016]. Features from

pretrained neural networks can be used to construct hashes [Sun et al., 2015, Babenko

et al., 2014]. Training deep neural networks as semantic hash functions has been in-

vestigated for over a decade (see Section 2.5.2)

Before deep learning was applied to semantic hashing, iterative quantisation (ITQ)

[Gong et al., 2012] was the leading technique to transform images into semantic hash

codes. ITQ was formulated as an optimisation to find the best rotation of zero-centred

data onto the binary hyper-cube. It is related to spectral clustering [Ng et al., 2001]

and can be applied after dimension reduction techniques.

2.5.2 Deep learning for semantic hashing

Dubey [2021] presented a comprehensive survey on image retrieval methods using

deep learning for the 2011 – 2020 decade. They largely focused on hash-based meth-

ods and argued that hash-based image retrieval is superior in retrieval quality and effi-

ciency. They outlined a number of approaches to learning (supervised, unsupervised,

and semi-supervised), architecture types, modalities, assessment criteria, and hash de-

scriptor types (discrete versus continuous). In light of the advances enabled by deep

neural networks, they pointed out that a retrieval system must: (1) be discriminative

in that supervision information is well-utilised and hashes capture class distinctions;

(2) be robust to distribution shift in the data (e.g., lighting and pose changes); and (3)

enable fast image search by way of maximally compact hashes.

Autoencoders were among the first models to be used for learning deep hash func-

tions [Kang et al., 2012, Krizhevsky and Hinton, 2011]. An important assumption

is that the latent codes produced by (bottleneck or denoising) autoencoders should

capture semantic features even without supervision. Babenko et al. [2014] used the la-

tent vectors produced by a pretrained neural network, and a PCA-compressed variant

thereof, as features to perform image retrieval.
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2.5.3 Pairwise and triplet losses

Pairwise and triplet losses have been widely used for many years, providing improve-

ments in a variety of fields. One such example is in face recognition, where Schroff

et al. [2015] used a triplet loss to train a neural network to produce an efficient (128-

byte) representation of a face.

Some of the first end-to-end deep hash function learning was accomplished using

variations on the triplet loss [Chechik et al., 2010]. Training using a triplet loss involves

minimising the distance from a reference data point (called an anchor) to positive sam-

ples and maximising the distances from the anchor to negative samples. Wang et al.

[2014c] applied a triplet loss and a triplet sampling mechanism to train a neural net-

work that produced a continuous representation for image retrieval. Xia et al. [2014]

proposed learning a convolutional neural network as a hash function (CNNH). They

separated the problem into: (1) approximate hash function learning by minimising the

reconstruction error between a class label-based similarity matrix and hash code ap-

proximations computed by the network, and (2) supervised fine-tuning of the neural

network such that classes could be predicted from the hash codes. Lai et al. [2015]

extended this work into a single stage process (they called it DNNH) using a triplet

loss approach to directly learn the hash function. DNNH required using a piece-wise

threshold function to approximate quantisation.

Zhang et al. [2015] also used a triplet-based approach called deep regularised simi-

larity comparison hashing (DRSCH). Weightings were applied on bits during learning

to enable code-length manipulation by truncating low weighted bits. Li et al. [2016]

introduced deep pairwise-supervised hashing (DPSH) as one of the first methods to

integrate a pairwise loss into an end-to-end deep hash function learning framework.

Training using a pairwise loss involves minimising the distance between sampled pos-

itive pairs and maximising the distance between sampled negative pairs. DPSH was

extended to use a triplet loss – this is called deep triplet-supervised hashing (DTSH)

[Wang et al., 2016]. Pairwise correlation discrete hashing (PCDH) [Chen and Lu,

2020] used a standard supervised objective along with a pairwise loss, where pairs

were sampled according to their vicinity in representation space. Deep discrete super-

vised hashing (DDSH) [Jiang et al., 2018] used a pairwise loss to directly guide both

the discrete coding procedure and feature learning.
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2.5.4 Quantisation

Supervised discrete hashing (SDH) [Shen et al., 2015] introduced the hash as an auxil-

iary variable prior to linear classification and showed how a variant of greedy gradient

descent (i.e., greedy in the sense of learning the hash function bit by bit) could be used

to circumvent the non-differentiable binarisation. The deep hashing network (DHN)

Zhu et al. [2016] was the outcome of exploring the effect of quantisation error. DHN

used a loss that better matched to the hamming distance typically measured in image

retrieval. Husain and Bober [2016] developed a feature aggregation approach that used

local CNN features to build descriptors. Deep hashing, and the extension called super-

vised deep hashing (called SDH2, for convenience) [Lu et al., 2017] aimed to learn

a hash function that maximised the variance of learned binary codes in an effort to

improve the distribution of the resultant hash codes.

Zhong et al. [2016] proposed a simple solution to learning a deep hash function:

apply a sigmoid activation function to the penultimate representation of a standard

classification setup and discretise the output after learning. They achieved impressive

retrieval results but also showed that the resultant hash codes were not well distributed

over the hash space. Wu et al. [2017] argued that multi-label setups are most indicative

of a hash function’s performance and that retrieval metrics do not measure fine-grained

semantic similarity. They endeavoured to make the best use of pairwise similarities

by leveraging multi-label datasets and showed superior performance when measured

using the Jaccard index [Jaccard, 1912].

HashNet [Cao et al., 2017] asserted that learning a deep hash function is made

challenging because of the need for gradient approximations. Gradient approxima-

tions are needed because quantisation (e.g., taking the sign as output activation) is a

non-differential procedure and therefore incompatible with gradient-based optimisa-

tion methods. They proposed an approach that involved annealing a hyperbolic tan

function toward a binary output as training progresses. Additionally, they proposed an

adjustment to a pairwise binary cross-entropy loss that accounted for degrees of simi-

larity often found in multi-object, scene, and retrieval datasets (e.g., NUS-wide[Chua

et al., 2009]). They showed how HashNet was well distributed according to a 2D

t-distributed stochastic neighbour embedding (t-SNE) [Van der Maaten and Hinton,

2008]. Nonetheless, they never directly measured the distribution of the resultant hash

codes as we do in Chapter 3. Gordo et al. [2017] explored how imbalanced data was

a contributing factor to poor performance in image retrieval. Deep supervised discrete
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hashing (DSDH) [Li et al., 2017] instead learned directly on discrete hash codes and

proposed a greedy discrete cyclic coordinate descent method to approximate gradients

for gradient descent.

Deep product quantisation (DPQ) [Klein and Wolf, 2019] used ideas from product

quantisation [Jegou et al., 2010] to produce separate components of hash codes. These

components were concatenated to form the full hash codes. Deep positional aware

hashing (DPAH) [Wang et al., 2020] used learnable class-specific hash codes as pseudo

targets for learning. The authors argued that it was a lack of ‘global’ information (e.g.,

a class-specific hash code for each class) that caused poor downstream performance.

They also introduced a Kurtosis loss that penalised long-tailedness of the continuous

representation immediately prior to binarisation. In effect, the difference between the

continuous representation and binary codes was diminished. Deep hashing with anchor

graph (DHAG) [Chen et al., 2019] leveraged information from the full training dataset

to build a measure of ‘global’ similarity to learn a deep hash function. The authors

argued that minibatching resulted in an inefficient use of global similarity information,

and this inefficiency reduced downstream retrieval performance. They proposed the

use of an anchor graph as a means to alleviate this. The core idea behind an anchor

graph is to use a small number of representative data points as anchor points, such

that the difference between any two data points can be computed implicitly using the

anchor points.

Deep supervised hashing (DSH) [Liu et al., 2016] is an earlier work that proposed

regularisation on the continuous representation such that it better matched its quantised

counterpart. Semantics-preserving deep hashing (SPDH) [Yang et al., 2017] proposed

a three-part loss function including (1) cross-entropy, (2) a discretisation criterion, and

(3) an entropy maximisation term. This issue of hash code quality is raised in Section

2.5.7 – SPDH is an example that failed to test hash code distribution even though they

proposed a mechanism to encourage a good distribution of hash codes. The neurons

merging layer (NML) [Fu et al., 2019] was introduced to reduce redundancy between

bits in a hash function. Reducing redundancy led to improved hash efficiency and

better downstream performance

Deep Weibull hashing with maximum mean discrepancy quantisation (DWH) [Feng

et al., 2021a] used a Weibull distribution [Rinne, 2008] to enable better control the of

the distance between hash codes of positive pairs in the triplet loss framework. Max-

imum mean discrepancy was used to reduce the difference between the continuous

and discrete hash codes. The authors of deep fisher hashing (DFH) [Li et al., 2019]
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argued that working in the hash space was essential to ensure that the hash codes re-

mained separable at inference. Deep balanced discrete hashing (DBDH) [Zheng et al.,

2020] used the straight-through estimator [Bengio et al., 2013b] to operate directly on

a binary space for optimisation. Deep polarised networks (DPN) [Fan et al., 2020]

imposed a polarisation loss on the continuous output space to encourage binary-like

outputs.

Morgado et al. [2021] introduced a different kind of solution to the quantisation

problem. Their method started by pre-determining class-specific sets of weights to be

applied on an embedding space (to be learned later) such that maximal discrimination

between classes was achieved. To do this, they used a classical optimisation technique

known as sphere packing [Tammes, 1930] to find maximally discriminating weights

and ideas from ITQ [Gong et al., 2012] to rotate the weight space into its most binary

solution. These weights – called hash-consistent large margin (HCLM) proxies – were

then frozen to train the rest of the network.

Su et al. [2018] argued that it was advantageous to avoid continuous approxima-

tions of discrete hash codes, and proposed a gradient passing method for back propa-

gation to target the hash space directly. They called this Greedy Hash because discreti-

sation can be thought of as a greedy process. Policy gradient deep hashing (PGDH)

[Yuan et al., 2018] addressed the non-differentiability of discretisation by recasting

it as sampling with a stochastic policy. By lending ideas from reinforcement learn-

ing they were able to maximise the expectation of rewards for preserving similarity

directly in hash space. Discrepancy minimising deep hashing (DMDH) [Chen et al.,

2018] used Taylor series expansions of the training objective to resolve discrepancies

between continuous representations and their discretisations. They effectively min-

imised this discrepancy by gradually increasing the weight of higher order terms in the

Taylor expansion.

2.5.5 Targeting properties in Hamming space

Cao et al. [2018] argued that Hamming space retrieval [Norouzi et al., 2012] is a nec-

essary consideration since it is more time-efficient than linear scan or approximate

nearest neighbour search. The Hamming space retrieval algorithm operates on binary

hashes and has sub-linear run-time when the hash codes are approximately uniformly

distributed. Hamming retrieval returns all data within a given hamming radius by way

of hash table lookup. A ‘Hamming ball of radius 2’ around a query point refers to all
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data with 2 or fewer bit-differences in hash codes. Deep Cauchy hashing (DCH) [Cao

et al., 2018] used a probability transformation based on the Cauchy distribution. Their

method penalised more strongly similar data points if they had a Hamming distance

greater than the pre-set required Hamming radius (typically≤ 2 since it is expensive for

larger hamming balls). Concentrated hashing with neighbourhood embedding (CHNE)

[Morgado et al., 2021] used the same probability distribution as DCH and argued that

classification performance of the hash function was also important.

Maximum-margin Hamming hashing (MMHH) [Kang et al., 2019] accounted di-

rectly for a Hamming radius by explicitly characterising the Hamming ball with a

max-margin t-distribution. Hu et al. [2022] presented boundary aware hashing (BAH)

that used a contrastive loss and re-balanced the alignment and uniformity components

according to whether pairs were inside or outside the Hamming ball (and whether they

were positive or negative pairs). Wu et al. [2018a] proposed deep index-compatible

hashing (DICH) to learn deep hash functions that used the multi-index Hamming rank-

ing (a further refinement of Hamming space retrieval) [Greene et al., 1994].

Zhang et al. [2019] argued that multi-label datasets (e.g., NUS-wide) should be

treated differently to single-label datasets, and that ‘similarity’ can be defined by the

number of shared labels in the multi-label setup. Their method, improved deep hashing

network (IDHN), leveraged multi-label similarity for a refined pairwise weighting to

improve retrieval performance.

2.5.6 Alternative learning paradigms

Deep incremental hashing network (DIHN) argued that new incoming classes posed

a significant challenge for deep hash functions, and used ideas from online learning

[Carliner, 2004] to tackle this issue. Deep spherical quantisation (DSQ) [Eghbali and

Tahvildari, 2019] used ideas from multi-codebook optimisation [Martinez et al., 2018]

to partition the hash learning procedure into (1) supervision, (2) quantisation, and (3)

dictionary learning. The ‘spherical’ component of DSQ is because of L2-normalisation

(i.e., a projection onto the unit hypersphere) prior to quantisation. Multi-granularity

feature learning hashing (MFLH) [Feng et al., 2021b] combined global and local infor-

mation to build hash codes and also proposed an approximate discretisation procedure

that enabled gradient flow and reduced quantisation error.

Deep progressive hashing (DPH) [Bai et al., 2019] used saliency information to

build recursively aggregated deep hash functions. A saliency map enables ‘zoom-
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ing’ into regions with more salient information. DPH used a graph long short-term

memory (LSTM) compute module to aggregate features at multiple levels of detail.

The motivation for this approach was the observation that humans conduct an im-

plicit ‘nonsaliency-to-saliency’ attention scheme when analysing image data. Xu et al.

[2019] proposed DHA, a method that shifted, scaled, and adjusted the similarity loss

in order to account for (1) gradient degradation when learning discrete representations,

and (2) differences in similarity for different pairs. Multi-level supervised hashing

(MLSH) [Ng et al., 2020] found that constructing the hash codes from multiple reso-

lution scales in a CNN was advantageous.

Just-maximising-likelihood hashing (JMLH) [Shen et al., 2019] proposed a com-

paratively simple method for learning deep hash functions. JMLH used the deep vari-

ational bottleneck (VIB) method [Alemi et al., 2017] as a theoretical basis to bound

the MI in the hash space between images and their class labels. They used a reparame-

terisation trick along with gradient estimation to enable end-to-end learning. The VIB

approach naturally yields a regularisation term – the KL-divergence between the prior

(pre-selected) and the learned posterior, where this learned posterior is the discrete out-

put of the target representation in the neural network. As it happens, this regularisation

amounts to improving the entropy of the learned binary encoding, which means that it

should result in well-distributed hash codes. Nonetheless, hash code distribution was

never adequately measured.

Asymmetric deep supervised hashing (ADSH2) [Jiang and Li, 2018] used only the

query images to train the neural network because this was argued to be a more real-

istic setup. The hash codes for the database were learned directly too, but this data

was never used to learn the neural network. Weighted multi-deep ranking supervised

hashing (MDRSH) [Li et al., 2020a] used multiple hashes, ranked according to mean

average precision on held-out data computed after learning, to improve retrieval per-

formance. Zhang et al. [2016] used a layer-wise learning technique to train very deep

supervised Hashing (VDSH) networks.

Deep spatial attention hashing (DSAH) [Ge et al., 2019] used a spatial transformer

network (STN) [Jaderberg et al., 2015] to better localise salient information. The STN

approach was combined with a standard network to produce local and global repre-

sentations, respectively. Deep transfer hashing (DTH) [Zhai et al., 2020] used ideas

from another area of machine learning called knowledge distillation [Hinton et al.,

2015]. First, a teacher network was designed with a latent continuous representation

of the same number of dimensions as the desired hash space. The teacher network was
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trained by minimising cross-entropy between predictions and class labels. The contin-

uous representation was then discretised and used as the target for a student network

to emulate.

2.5.7 The question of hash quality

Zhong et al. [2016] inadvertently highlighted a pervasive issue in the field of supervised

hash learning: the distribution of hash codes is seldom assessed. They evidenced

how hashes from similar samples were nearly identical. HCLM proxies were even

designed such that all images in the same class map to the same hash. One measure

of quality of a deep semantic hash function is how well the computed hash codes

capture semantic similarity (measured using standard supervised retrieval metrics –

see Chapter 3). The other, often ignored, measure, is how efficient the hash function

is at using the available hash space. The implications of efficiency on generalisation,

transfer, and usefulness are explored in Chapter 3.

Some of the works discussed in this section mention the importance of hash quality

and proposed means to deal with it, but never measured the distribution of hash codes,

nor how well they transfer to other (similar) datasets (we do this in Chapter 3). For

example, SPDH included a loss that encouraged hash codes with equal numbers of 0’s

and 1’s. This approach is insufficient at distributing the hash codes over the available

space as it is measured on a point-wise basis, as opposed to across all data or a mini-

batch. SDH2 aimed to maximise the variance of hash codes but never measured their

distribution, while the NML aimed to reduce bit redundancy but never evidenced any

performance gains. There are only a few earlier works where the transferability and

distribution of the learned hash codes was measured or accounted for – e.g., t-SNE for

HashNet and DWH.

2.6 Debiasing and adversarial learning

The following literature is relevant to the work in Chapter 5 regarding latent adversarial

debiasing (LAD).

Neural networks lack robustness to human imperceptible perturbation called adver-

sarial examples [Goodfellow et al., 2015, Madry et al., 2018], other semantic transfor-

mations such as rotations or translations [Kanbak et al., 2018, Engstrom et al., 2019,

Hendrycks and Dietterich, 2019], and more broadly to a domain shift in the input dis-
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tribution [Gulrajani and Lopez-Paz, 2021]. However, most relevant to this work is the

observation that neural networks tend to rely on easy-to-learn biases or features that

do not generalise outside the training distribution [Geirhos et al., 2020]. In image clas-

sification, this is exemplified by the reliance of neural networks on the high frequency

components in the image [Jo and Bengio, 2017]. In natural language processing, neu-

ral networks were shown to latch onto statistical cues such as the present or absence of

individual words [McCoy et al., 2019].

Adversarial learning is a set of techniques particularly useful for improving the

robustness of deep neural networks [Goodfellow et al., 2015, Madry et al., 2018]. Pre-

dominantly, prior work focused on applying adversarial learning to improving the ro-

bustness to small perturbations bounded in ℓp norm.

Adversarial learning was also applied to de-biasing models [Goel et al., 2021,

Qiu et al., 2019, Zhang et al., 2018, Beutel et al., 2017, Edwards and Storkey, 2016,

Arjovsky et al., 2019, Stachura et al., 2020]. Zhang et al. [2018], Beutel et al. [2017],

Edwards and Storkey [2016] remove the information about the bias from the input or

latent representation. Arjovsky et al. [2019] use adversarial learning to reduce reliance

of a neural network on features that change between different domains. In contrast,

LAD does not require annotated data on the presence of a bias.

Data augmentation has also been shown to be effective in improving robustness

of deep neural networks to semantically meaningful perturbations [Fawzi et al., 2016,

Hendrycks et al., 2020]. LAD can be seen as an automatic method for creating such

augmentations.

LAD is most closely related to unsupervised methods to de-biasing models [Nam

et al., 2020, Bras et al., 2020, Gowal et al., 2020, Bahng et al., 2020], but substantially

differ in the assumptions made. Gowal et al. [2020] assume access to a disentan-

gled representation with an identified factor that is not causally related to the label.

Then they use a decoder to produce augmented images by mixing the spurious factor

between different pairs of images. Specifically, they train StyleGAN [Karras et al.,

2018], and use its first stage representation as the spurious factor. Their method is

hence limited to image classification scenarios in which features identified by Style-

GAN correspond to the learned biases. Bahng et al. [2020] require providing a biased

model that heavily relies on the bias information in the dataset (e.g., a CNN that has

small receptive fields that bias the model towards textural information). They train

a debiased classifier by regularising its representation to be statistically independent

from the representation learned by the biased model.
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Similarly to Nam et al. [2020] and Bras et al. [2020], LAD hinges on a relaxed

assumption that the spurious signal is easier-to-learn than the causal signal. Nam et al.

[2020] assumes that the first examples cause learning to be biased, and trains a second

network that has an intentionally high loss on these examples. Bras et al. [2020] filters

out examples that can be classified using a simple linear model. These approaches are

inspired by the phenomenon that neural networks first prioritise learning a consistent

subset of easy-to-learn examples [Swayamdipta et al., 2020, Arpit et al., 2017].

In contrast to Nam et al. [2020], Bras et al. [2020] we do not assume that a subset

of examples is free of bias. Instead, I modify all images using a gradient walk on the

underlying image manifold to produce new images where spurious signals are decou-

pled from target information. I compare directly to Nam et al. [2020] and Bahng et al.

[2020] and show markedly improved generalisation performance. These were the only

available methods at the time of experimenting with LAD.

Finally, LAD is related to Minderer et al. [2020]. Similarly to LAD, they reduce

the reliance of training on easy-to-learn features by performing an adversarial walk in

the latent space of an autoencoder. The key difference is that they use the method to

improve self-supervised learning, in which they note the self-supervised objective can

be too easily optimised by relying on shortcut (easy-to-learn) features.



Chapter 3

Deep decision tree layer: learning efficient
discrete representations

The focus of this chapter is on learning compact and efficient discrete representations.

Given a fixed capacity compact representation, efficiency here means making full use

of the capacity of that representation. Discrete representations are of particular in-

terest because their capacity is known and efficiency is measurable by how well a

neural network that maps images to representations makes use of this available capac-

ity. Compact discrete representations can be used as hash codes to enable fast image

retrieval because of the low-cost of comparing hash codes. Training neural networks

as deep semantic hash functions has been researched for over a decade [Dubey, 2021]

(see Section 2.5 for a literature review). A semantic hash function for images takes an

image as input and yields a binary vector that represents semantic information from the

image (e.g., object type). A deep semantic hash function is a neural network trained to

map images to such semantic hash codes. Deep semantic hash functions are used for

fast content-based image retrieval (CBIR). CBIR produces an ordering of a database

of images according to a query image from most similar to most dissimilar, where the

differences between the query and database hash codes inform this ordering.

Mapping images to compact and discrete representations is challenging because of

the high degree of compression needed to achieve this mapping – images are high-

dimensional and typically contain complex semantic content that is difficult to sum-

marise succinctly into small discrete representations. Furthermore, working with dis-

crete representations presents an additional challenge when training neural networks:

optimisation of a neural network loss to learn parameters is usually done by gradient-

based methods; discretisation operations (e.g., taking the sign of a value) are non-

differentiable and would result in non-differentiable loss functions and thus are incom-

36
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patible with gradient-based methods. Some earlier methods included a quantisation

loss (e.g., deep Cauchy hashing [Cao et al., 2018]) to pull continuous representations

closer to their discrete counterparts. Forcing continuous representations to be close to

their discrete counterparts necessitates discarding potentially useful information.

The problem: inefficient discrete representations I demonstrate in this chapter

that there is a pervasive problem with learning deep semantic hash functions: objec-

tives proposed by a number of earlier methods fail to produce hash functions that make

efficient use of the available hash space. Practically this means that a large number of

images are mapped to a much smaller number of hash codes, even when the hash space

is large enough for a one-to-one mapping from training images to hash codes – see Sec-

tion 3.2.3. This proxy objective failure is one of over-compression (see Section 2.3.1)

that occurs because (1) training with class labels typically encourages a high degree

of compression, and (2) the aforementioned additional compression that occurs when

discretising continuous representations.

A solution to over-compression: the DDTL I consider the usual setting of lever-

aging a labelled dataset to learn hash codes Dubey [2021]. To overcome the issue of

over-compression and improve hash code coverage for better information efficiency, I

compose the hash code from a supervised portion and an unsupervised portion. Both

portions are computed from a shared backbone, but with the former learnt using a clas-

sification head and a standard supervised objective, and the latter using a novel model

structure – a deep decision tree layer (DDTL) – and a contrastive learning mechanism.

The supervised component is constructed to be a minimal binary representation that

captures fully the class label(s). For the unsupervised component, the DDTL provides

a binary tree partitioning of the image space; each image is mapped to a binary vec-

tor that describes traversal through the tree (from root to leaf). This decision path

builds the unsupervised portion of the hash. An advantage of our approach is that dis-

cretisation operations are never used during learning, mitigating one of the challenges

associated with learning discrete representations. The DDTL enables:

1. efficient and ordered (in terms of bit-importance – see Section 3.1.1) semantic

hash codes that are robust to realistic changes in input images (e.g., lighting

changes, see Section 3.3.2);

2. better transfer to more complex or challenging datasets because of improved
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information retention (Section 3.2.5);

3. image retrievals that respect fine-grained intra-class differences (Section 3.2.4);

4. neural network interpretability and dataset exploration by way of decision tree

analysis (Section 3.4)

The DDTL matches or improves state-of-the-art mean average precision (mAP) on

CIFAR-10 (with mAP = 0.953± 0.002), ImageNet100 (with mAP = 0.804± 0.002

without pretraining and mAP = 0.872 with pretraining to match setups with the pre-

vious state-of-the-art), and comparably performance on NUS-wide-21 (with mAP =

0.897± 0.002). Regarding hash function efficiency, several methods from the litera-

ture are compared to the DDTL in Section 3.2.3, and I show that the DDTL is the only

method that performs well at the task of retrieval and that has low collisions in the hash

space. A new baseline is proposed in Section 3.3.1 that combines a classifier (for accu-

rate supervised retrievals) and repeated PCA on the deepest latent representation of this

classifier. This baseline is designed to be directly comparable to the DDTL in order to

understand which is more robust to realistic changes in the image space (Section 3.3.2).

Furthermore, a DDTL trained on CIFAR-100-20 (coarse grained super-class labels, 20

classes) matches the underlying fine-grained labelling (100 classes) with an accuracy

of 42.13±0.39% – see Section 3.2.5.

This chapter is organised as follows: Section 3.1 describes the DDTL in terms of

architecture design and objective functions, and explains how the bit-ordering of the

resultant hash codes is related to levels of semantic similarity; Section 3.2 gives the

experimental results of comparing supervised retrieval performance of DDTL to ear-

lier methods; Section 3.2.3 measures the efficiency and quality of hash codes from

several methods, including the DDTL; Section 3.3 provides a number of ablation stud-

ies, including experiments in the fully unsupervised training setup in Section 3.3.4 and

the supervised-only setup in Section 3.3.5; and Section 3.4 demonstrates how decision

paths can be used for interpretability and dataset exploration.

3.1 Method: deep decision tree layer

Figure 3.1 gives an overview of the DDTL. Consider a (directed) binary tree T of depth

d, directed from the root to leaves. Let i = 1,2, . . . ,2d−1 index the nodes in the binary

tree from the root to the leaves. Let k = 1,2, . . . ,2d−1 index the leaf nodes of the tree.
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Figure 3.1: Deep Decision Tree Layer overview. An image is processed through the

backbone neural network (a ResNet-34 in this case) to a standard sized representa-

tion. Two linear projections are then applied to (1) predict the class label(s), and (2)

parameterise the decision tree. The latter is a vector that is then rearranged to com-

pute the probabilities in the decision tree. The hash code is composed by concatenating

the class prediction (in binary) and the decision path through the tree (see Figure 3.2).

We will consider an intermediate representation vector uuu with length 2d−1, i.e. each

element in uuu corresponds to a non-leaf node in the tree T ; these will come to determine

choice probabilities in the tree, effectively treating the tree as a decision tree. We will

also consider a final representation vector zzz with length 2d−1, i.e. each element in zzz

corresponds to a leaf node of the tree T .

Now, for each leaf node k, let path(k) denote the set of all nodes i in T on the path

from the root to the leaf k (exclusive of 1 and inclusive of the leaf). Let Pa(i) denote

the parent of node i in the tree. Let si ∈ (0,1) denote whether i is the left child (si = 0)

or right child (si = 1) of Pa(i) in binary tree T .

By way of further notation, let σ(r) = 1/(1+ exp(−r)) denote the sigmoid func-

tion, and overload the vector function σσσ to be the sigmoid vector function for scalar
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arguments (returning a two-vector of probabilities) or a softmax vector function for

(non-scalar) vector arguments:

σ j(r) =
exp(r j)

∑ j′ exp(r j′)
(3.1)

σσσ(r) = (σ(r),1−σ(r))T . (3.2)

Additionally, we define a thresholding function as:

H(r) =

1, r > 0.5

0, r ≤ 0.5
(3.3)

Model definition With the notation defined, we can progress to define the model.

Given an image x, parameterise the vector uuu using

uuu = ggg1( fff (x,θθθ1),θθθ2), (3.4)

where fff (x,θθθ1) is a neural network with parameters collected as θθθ1, and ggg1 is linear

projection with parameters collected as θθθ2. All these parameters need to be estimated.

For each element k = 1,2, . . . ,2d−1 of the vector zzz, define

zk = ∏
i∈path(k)

σ(uPa(i))
si(1−σ(uPa(i)))

1−si. (3.5)

This equation defines zzz as the product of choice probabilities that are used to make

each decision to eventually arrive at each leaf node in the decision tree.

Unsupervised hash In order to enable extracting a binary vector from the decision

tree for a given image, we must first define a choice vector

ck = ∏
i∈path(k)

H(σ(uPa(i)))
si(1−H(σ(uPa(i))))

1−si (3.6)

to enable the selection of a single path path(k∗), where k∗ = argmax(ccc), that effec-

tively describes the decision path (see right hand side of Figure 3.2). Having defined

path(k∗) we can traverse this path from root to leaf to define a binarised hash

hhhpath = (s1,s2, . . . ,sd−1). (3.7)

Supervised If there is supervised information about a particular classification of the

images, a second linear projection ggg2 that yields an m-way class prediction can also be

included. This prediction can either be used for single-label (i.e., one label per image)

or multi-label (i.e., one or more labels per image) classification. Both of these setups

are common in the literature (Section 2.5).
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Single-label classification For single-label classification the class probability vector

is computed using the m-way softmax function,

ŷyysingle = σσσ(ggg2( fff (x,θθθ1),θθθ3)) (3.8)

with parameters collected as θθθ3. To compute supervised component of the hash code

we need to first compute the class prediction ŷ∗ = argmax(ŷyysingle). Following this we

can convert ŷ∗ into a binary vector of length ⌊log2(m)⌋+1:

hhhsingle =

(
⌊ ŷ∗

20 ⌋ mod 2,⌊ ŷ∗

21 ⌋ mod 2, . . . ,⌊ ŷ∗

2⌊log2(m)⌋+1
⌋ mod 2

)
, (3.9)

where ⌊ ⌋ is integer division. hhhsingle is essentially the binary encoding of ŷ∗.

Multi-label classification For multi-label classification the class probability vector is

computed using the sigmoid function applied to each element of the linear projection,

ŷyymulti = (σ(g2,1( fff (x,θθθ1),θθθ3)),σ(g2,2( fff (x,θθθ1),θθθ3)), . . . ,σ(g2,m( fff (x,θθθ1),θθθ3))).

(3.10)

The notation g2,m refers to the mth element of the linear projection ggg2. To compute the

supervised component of the hash code for multi-label classification we can apply the

thresholding function to produce a likely-sparse vector

hhhmulti = (H(ŷmulti,1),H(ŷmulti.2), . . . ,H(ŷmulti,m)), (3.11)

that will be 1 at an index where the class is predicted as ‘present’ with a probability

greater than 0.5, otherwise it will be 0 at that index.

Combined hash codes The supervised component of the hash code is therefore

selected depending on classification setting as follows:

hhhsup =

hhhsingle, if single-label

hhhmulti, otherwise.
(3.12)

The full hash code is the concatenation of both components (see Figure 3.2):

hhh = hhhsup⊕hhhpath (3.13)
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Figure 3.2: Construction of full hash code from an image. The supervised component

of the hash code is constructed by transforming either single-label or multi-label class

probabilities (ŷyy) into a binary vector. The unsupervised component is the decision path

(see Figure 3.3 for more details).

3.1.1 Building hash codes in two parts

Figure 3.2 shows, for a given image, how a hash code is constructed using the class

predictions, ŷyy, and the decision path through the tree, path(k∗). Figure 3.3 shows an

alternative intuitive perspective of how the decision path is extracted for an image. The

goal of the decision tree is not to model the class labels (that is accomplished succinctly

using ŷyy) but rather to capture additional class-unrelated information inherent in the

images.

Relationship to divisive hierarchical clustering Since path(k∗) describes which

nodes an image is allocated to at every depth of the decision tree, the collection of

decision paths for multiple images can be viewed as a divisive hierarchical clustering

mechanism [Johnson, 1967]: at each level of the decision tree images that followed the

same path are clustered together. Note that the discretisation needed to build the full

hash code is not used during learning, meaning that no quantisation loss is required
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and no gradient propagation tricks are necessary to stabilise learning as is needed by

some earlier methods. The full hash code is then used for the downstream CBIR task.

An ordered hash code The concatenated hash output from the DDTL – Equation

3.13 and Figure 3.2 – is ordered. The first component of the hash captures the class

information. The second component is the decision path that captures information to

distinguish between images from the same class. The decision path is also ordered

from root to leaf. The implication of this structure is that retrievals can be ordered to

various degrees of granularity, ranging from class-level all the way to orderings that

use the final decisions in the tree.

A sorted hash enables lexicographical ordering when performing CBIR. In practise

this means sorting the retrieved data according to bit-wise differences between query

and database images from left to right in their hashes. This type of lexicographical re-

trieval ordering enables a fast sub-linear time search, where each subsequent bit is only

compared between query and a subset of database images, where this subset matches

the query on all previous bits. The next sections describes how the DDTL is trained.

Figure 3.3: An alternative perspective of how the decision path constructed is con-

structed using decisions down the tree. The decision at each depth is the argmax

between the probability of going left versus the probability of going right.
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3.1.2 Training

The parameters θθθ = (θθθ1,θθθ2,θθθ3) require two losses to optimise: a supervised loss to

learn the mapping to ŷyy and a contrastive loss to learn the mapping to zzz. The supervised

loss between prediction ŷyy and true label yyy is denoted by Lsupervised. This supervised

loss is cross-entropy for single-label classification and an asymmetric multi-label loss

proposed by Ben-Baruch et al. [2021] for multi-label classification.

Computing the contrastive loss involves first computing the cosine similarity be-

tween two 1D representations. The cosine similarity is the dot product between L2-

normalised vector representations, uuu and vvv (placeholder names, not to be confused with

uuu in Equation 3.4), and is defined by:

sim(uuu,vvv) = uuu⊺vvv/∥uuu∥∥vvv∥ . (3.14)

The contrastive loss is then defined between a positive pair of representations (a,b):

la,b(τ) =− log
exp(sim(zzza,zzzb)/τ)

∑
2N
c=11[c̸=a] exp(sim(zzza,zzzc)/τ)

, (3.15)

where 1[c̸=a] ∈ {0,1} is an indicator function that is 1 iff c ̸= a, τ is known as the

‘temperature’, and N is the minibatch size. Positive pairs (a,b) are representations

computed from the same source image under two different augmentations. Negative

pairs are constructed using all other images (two augmentations each) into 2(N− 1)

pairs, hence the 2N in the denominator. Following SimCLR [Chen et al., 2020a] the

full contrastive loss is computed over all positive pairs, both (a,b) and (b,a), for each

minibatch and aggregated into

Lcontrastive(zzz,τ) =
1

2N ∑
pairs

[
la,b(τ)+ lb,a(τ)

]
. (3.16)

Supervised and contrastive losses are combined for an element in the minibatch:

LDDTL(ŷyy,yyy,zzz,τ) = α ·Lsupervised(ŷyy,yyy)+β ·Lcontrastive(zzz,τ), (3.17)

where α and β are loss scaling hyper-parameters. The contrastive loss is computed sep-

arately per-class in each minibatch and averaged over the classes and minibatch. This

ensures the decision tree is making decisions according to class-unrelated features, in-

stead of reinforcing the supervised cross-entropy signal. Early experiments evidenced

that this resulted in more uniformly distributed hash codes.

For clarity, the contrastive loss in Equation 3.16 is applied for each separately sep-

arately in order to learn features that enable the unsupervised hash code in Equation
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3.7. In some sense this loss is not strictly unsupervised because the class labels inform

the negative samples for contrasting. Tian et al. [2021] proposed to ‘divide and con-

trast’ and applied contrastive learning to clustered subsets of data in order to improve

results in challenging datasets. Khosla et al. [2020] also evidenced how contrastive

learning can be adapted to use class labels and reported improved performance on a

ResNet-200.

The DDTL parameters θθθ are then optimised using a gradient based method to min-

imise the loss:

argmin
θθθ

LDDTL (3.18)

3.2 Experiments

Experiments were conducted on three datasets commonly used to assess deep semantic

hash-based CBIR: CIFAR-10 [Krizhevsky et al., 2009], ImageNet [Deng et al., 2009]

constrained to 100 randomly sampled classes (called ImageNet100), and NUS-wide-

21 [Chua et al., 2009] constrained to the 21 most common classes.

3.2.1 DDTL training parameters

The neural network backbone for the DDTL was set to be a ResNet-34 (i.e., a standard

ResNet architecture with 34 layers – see Section 2.1.1). The full model (backbone

and two linear projections – see Section 3.1) was trained from scratch without any

pretraining (unlike many existing methods – see Section 3.2.2). The Adam optimiser

[Kingma and Ba, 2015] was used for optimisation. A cosine annealing learning rate

schedule was applied to an initial learning rate of 0.001. For CIFAR-10: the model

was trained for 500 epochs with a batch size of 512. For NUS-wide-21: images were

resized to square images with sides of length 224, a batch size of 256 was used, and

the model was trained for 500 epochs. For ImageNet100: a random square crop with

sides of length 224 was taken from the input images, a batch size of 256 was used,

and the model was trained for 200 epochs. The temperature τ for the contrastive loss

was set to 1 for all experiments. The only hyper-parameters for the DDTL are the loss

balancing factors α and β for supervision and contrastive losses, respectively. Cross-

validation on CIFAR-10 was carried out to determine values of α = 1.0 and β = 0.1.

When error bars are given these are the standard deviation over three different random

initialisations of the network parameters.
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Results for the DDTL are compared to many existing methods in Section 3.2.2.

Several methods (for which code was available or could be re-implemented) were

trained from scratch using the same backbone architecture and training settings as the

DDTL – analysis of the resultant hash functions is given in Section 3.2.3. Retrievals are

given in Section 3.2.4. Results from several ablation studies are given in Section 3.3.

Demonstrations of interpretability and dataset exploration are given in Section 3.4.

3.2.2 Comparison of the DDTL to other methods

Experimental methodology differs throughout the literature described in Section 2.5.

The two most common experimental setups are:

1. Partial – starting with backbones pretrained on ImageNet, small subsets of im-

ages are used for training and retrieval. For CIFAR-10 and NUS-wide-21, 100

images per class are sampled as the query set, 500 images per class are sam-

pled for training, and the remaining data is used as the retrieval database. For

ImageNet100 the test set is the query set, 100 images per class are sampled for

training, and the remaining data is used as the retrieval database.

2. Full – no sub-sampling of datasets is done in this setup, meaning that the test

data of all three datasets are used as query sets, and the training data is used for

training and as the databases. Pretraining is also not consistent.

The partial setup was dominant for earlier methods because of the computation cost

associated with learning. Compute restrictions have since become less of a concern be-

cause of improvements to deep learning frameworks and hardware advances. Using a

pretrained network makes it difficult to assess clearly the true capabilities of a method.

For the DDTL all experiments were carried out on the full experimental setup without

pretraining to enable a clearer evaluation of whether the DDTL can learn robust and

efficient discrete representations.

Supervised retrieval assessment metric The metric used to compare retrieval per-

formance is mean average precision (mAP). It is computed by evaluating the average

precision over all images in a query set Q. The mAPk refers to the mAP considering

only the top k (called the rank threshold) retrieved images for each query image. It is

defined as:

mAPk = EQ

[
∑

K
k=1 Pkδ(k)

∑
K
k=1 δ(k)

]
, (3.19)
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where Pk is the precision
(
|true neighbours∩all retrievals|

|all retrievals|

)
at rank threshold k. δ(k) = 1 if

the kth retrieved result is a true neighbour of the query (they are of the same class

for CIFAR-10 and ImageNet100 or they share at least one class for NUS-wide-21),

otherwise δ(k) = 0. For example, a perfect mAP1000 would be equal to 1 and would

mean that the top k = 1000 retrieved images are true neighbours for every query image.

Tables 3.1, 3.2, and 3.3 give the mAP supervised retrieval results from the methods

discussed in the literature review (Section 2.5) and gives the performance of the DDTL

in the final rows. These tables are segmented according to the experimental setups for a

more fair comparison. Unfortunately there is a broad disagreement in earlier literature

regarding experimental setups, particularly when considering pre-training.

DDTL outperformed all other existing methods (from Section 2.5) at the supervised

CBIR task for CIFAR-10 with a mAP5000 of 0.953±0.002. For NUS-wide-21 DDTL

achieved a mAP5000 of 0.897±0.002. For ImageNet100 DDTL achieved a mAP1000 of

0.804±0.002. The closest competitors on NUS-wide-21 and ImageNet100 were DTH

and DPQ, respectively. Both of these methods used pretraining on a ResNet-50 model,

meaning that it is impossible to compare directly the DDTL to these methods as they

have access to more data via pretraining.

That said, an additional experiment on ImageNet100 was undertaken for a clearer

comparison: the same pretrained ResNet-50 (used for DPQ) backbone was used for

the DDTL and training was undertaken as before. This setup achieved a mAP1000 of

0.872 at 12 bits (an improvement of 0.028 over DPQ at 16 bits). The DDTL is the

only method within the gamut of high-performing methods on large image datasets

that does not require pretraining to achieve state-of-the-art supervised CBIR results.

Owing to the two-stage setup for the DDTL (Section 3.1) only 4 bits are needed for

CIFAR-10 (since 4 bits enable 16 unique hash codes), 21 bits for NUS-wide-21 (since

this is a 21-way multi-label setup), and 7 bits for ImageNet100 (since 7 bits enable 128

unique hash codes) to achieve the supervised CBIR results given in this section. The

results for the DDTL listed in Tables 3.1, 3.2, and 3.3 are in the columns corresponding

to the length of the supervised part of the hash code because the decision path is not

needed for these results. In each case a decision tree of depth 12 was used to build the

rest of the hash codes; the full informational capacities are 16 bits, 33 bits, and 19 bits,

for CIFAR-10, NUS-wide-21, and ImageNet100, respectively.
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Method
CIFAR-10 mAP (using n bits)

4 12 16 24 32 48 64
Experimental setup: partial

PCDH - - 0.843 0.856 0.861 0.868 0.875
DDSH - 0.769 - 0.829 0.835 0.819 -
CNNH - 0.465 - 0.521 0.521 0.532 -
DNNH - 0.552 - 0.566 0.558 0.581 -
DPSH - 0.713 - 0.727 0.744 0.757 -
DTSH - 0.710 - 0.750 0.765 0.774 -
DHN - 0.555 - 0.594 0.603 0.621 -

DSDH - 0.740 - 0.786 0.801 0.820 -
DCH - - 0.790 - 0.798 0.807 0.794

CHNE - - 0.942 - 0.938 0.947 -
MMHH - - 0.792 - 0.818 0.825 0.819

BAH - - 0.850 - 0.843 0.841 0.840
GreedyHash - 0.774 - 0.795 0.810 0.822 -

PGDH - - 0.736 - 0.741 0.747 0.762
DMDH - - 0.703 - 0.719 0.732 0.737

DPH - 0.698 - 0.729 0.749 0.755 -
DHA - - 0.652 - 0.681 0.690 0.699
JMLH - - 0.805 - 0.841 - 0.837
DHAG - 0.934 - 0.933 0.934 0.932 -
NML - 0.786 - 0.813 0.821 0.828 -
DWH - 0.726 - 0.741 0.755 0.765 -
SDH2 - - 0.310 - 0.359 - 0.385
DPQ - 0.744 - 0.745 0.755 0.760 -

MLSH - - 0.667 0.697 0.719 0.738 0.748
MFLH - 0.726 - 0.758 0.771 0.781 -
ADSH2 - 0.847 - 0.906 0.918 0.926 -
DSHC - 0.740 - 0.786 0.801 0.820 -
DSAH - 0.822 - 0.841 0.845 0.849 -
DFH - 0.803 - 0.825 0.831 0.844 -

DBDH - - 0.730 0.736 0.743 0.748 0.751
DPN - - 0.825 - 0.838 - 0.830

Experimental setup: full
DSHC - 0.935 - 0.940 0.939 0.939 -

DRSCH - - 0.615 0.622 0.629 0.631 0.633
DSAH - - 0.941 0.945 0.942 0.944 -
DTH - 0.921 - 0.933 0.937 0.949 -

MDRSH - - 0.769 0.799 0.809 0.813 0.815
HCLM - - 0.945 0.947 0.949 0.950 -
DSH - 0.616 - 0.651 0.661 0.676 -
DICH - - - - 0.8839 0.9047 0.9082
DSQ - - 0.7212 - 0.7346 0.7418 0.7589

ADSH - 0.754 - 0.780 0.786 0.795 -
GreedyHash - - 0.942 0.943 0.943 0.944 -

DSDH - - 0.935 0.940 0.939 0.939 -
SDH - - - - - - 0.455

DDTL 0.953 ± 0.002 - - - - - -

Table 3.1: Retrieval results for CIFAR-10. With the exception of the DDTL, all of these

results were extracted from the literature (Section 2.5). Commonly mAP5000 and occa-

sionally mAP50000 is measured in the literature; I listed mAP5000 for the DDTL. The rows

are segmented according to experimental setup for simplified comparison. Error bars

are standard deviation over 3 runs.
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Method
NUS-wide-21 mAP (using n bits)

12 16 21 24 32 48 64
Experimental setup: partial

PCDH - 0.810 - 0.826 0.832 0.836 0.839
DDSH 0.791 - - 0.815 0.821 0.827 -
CNNH 0.623 - - 0.630 0.629 0.625 -
DNNH 0.674 - - 0.697 0.713 0.715 -
DPSH 0.794 - - 0.822 0.838 0.851 -
DTSH 0.773 - - 0.808 0.812 0.824 -
DHN 0.708 - - 0.735 0.748 0.758 -

HashNet - 0.662 - - 0.699 0.711 0.716
DSDH 0.776 - - 0.808 0.820 0.829 -
DCH - 0.740 - - 0.772 0.769 0.712

CHNE - - - 0.751 0.723 - 0.622
MMHH - 0.772 - - 0.799 0.789 0.755

BAH - 0.775 - - 0.804 0.794 0.783
PGDH - 0.761 - - 0.780 0.786 0.792
DMDH - 0.751 - - 0.781 0.787 0.789
ADSH 0.780 - - 0.808 0.815 0.823 -
DPH 0.770 - - 0.784 0.790 0.786 -
DHA - 0.669 - - 0.706 0.721 0.727
JMLH - 0.795 - - 0.818 - 0.820
DPAH - 0.816 - - 0.827 0.835 0.828
DHAG 0.760 - - 0.789 0.793 0.802 -
NML 0.801 - - 0.824 0.832 0.840 -
DWH 0.794 - - 0.819 0.828 0.835 -
MLSH - 0.643 - 0.646 0.670 0.687 0.709
MFLH 0.782 - - 0.814 0.817 0.824 -
ADSH2 0.857 - - 0.894 0.901 0.907 -
MDRSH - 0.701 - 0.719 0.724 0.737 0.741
DSHC 0.776 - - 0.808 0.820 0.829 -
DSAH 0.885 - - 0.902 0.898 0.906 -
DFH 0.795 - - 0.823 0.833 0.842 -
DPN - 0.847 - - 0.859 - 0.863
IDHN 0.730 - - 0.759 - 0.769 -

Experimental setup: full
DSDH - 0.815 - 0.814 0.820 0.821 -
DICH - - - - 0.768 0.769 0.774
DSQ - 0.779 - - 0.790 0.792 0.799
DSH 0.548 - - 0.551 0.558 0.562 -

HCLM - 0.814 - 0.825 0.830 0.835 -
DSHC 0.815 - - 0.814 0.820 0.821 -
DSAH - 0.834 - 0.856 0.883 0.901 -
DTH 0.876 - - 0.900 0.907 0.917 -

DRSCH - 0.618 - 0.622 0.623 0.628 0.641
DDTL - - 0.897 ± 0.002 - - - -

Table 3.2: Supervised image retrieval results for NUS-wide-21. With the exception of

the DDTL (final row), all of these results were extracted from the literature (Section 2.5).

Commonly mAP5000 and occasionally mAP50000 is measured in the literature; I listed

mAP5000 for the DDTL. The rows are segmented according to experimental setup for

simplified comparison. Error bars are standard deviation over 3 runs.
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Method
ImageNet100 mAP1000 (using n bits)

7 16 24 32 48 64
Experimental setup: partial

SDH - - - - - 0.650
HashNet - 0.506 - 0.631 0.663 0.684
CHNE - 0.590 0.625 - - -
BAH - 0.706 - 0.726 0.724 0.725

GreedyHash - 0.625 - 0.662 0.682 0.688
PGDH - 0.518 - 0.653 0.707 0.716
DMDH - 0.513 - 0.612 0.673 0.692

DSQ - 0.577 - 0.654 0.680 0.694
JMLH - 0.668 - 0.714 - 0.727
DPAH - 0.652 - 0.700 0.715 0.714
DWH - 0.626 - 0.699 0.717 0.724
DPQ - 0.844 - 0.879 - 0.874
DFH - 0.590 - 0.697 - 0.747
DPN - 0.684 - 0.740 - 0.756

Experimental setup: full
HCLM - - - 0.230 0.290 0.321
DDTL 0.804 ± 0.002 - - - - -

Table 3.3: Supervised image retrieval results for ImageNet100. With the exception of

the DDTL (final row), all of these results were extracted from the literature (Section 2.5).

The rows are segmented according to experimental setup for simplified comparison.

Columns correspond to different numbers of bits in the hash codes. Error bars are

standard deviation over 3 runs.

3.2.3 Hash code quality

Evaluating a deep semantic hash function must be two-fold. First, supervised CBIR

performance is important. However, this can be optimised simply using a standard

classifier for both single-label and multi-label classification setups (as shown by the

performance of the DDTL in the previous section). Second, a good distribution of the

resultant hash codes is an important requirement of a hash function: hash functions

should minimise collisions in the hash space for high-coverage. The latter is almost al-

ways ignored in the literature because it is difficult to measure whether the coverage
of a hash function respects useful semantics in the input images.

Well-distributed hash codes do not necessarily capture useful semantic informa-

tion. Nonetheless, in order to maximise efficiency and thereby avoid over-compression

(Section 2.3.1), we ideally require a deep semantic hash function to minimise collisions

within each class. An ideal semantic hash function produces hash codes that: (1) have

no inter-class collisions (i.e., have a perfect mAP score), and (2) are evenly distributed

over the available hash space. This section measures the degree to which several meth-

ods, including the DDTL, meet these requirements. For the following experiments, all
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the existing methods were configured with the same backbone network and training

in the same way as the DDTL on CIFAR-10. The methods tested in this section are

limited to those with available implementations.

Supervised and retrieval metrics

Method mAP5000 mAP50000

Accuracy

CIFAR-10

Accuracy

CIFAR-100 (transfer)
Nearest N. Log. reg Nearest N.

Greedy

hash
0.946±0.001 0.954±0.001 94.30±0.15 26.29±1.35 7.67±0.53

DCH 0.951±0.002 0.959±0.001 94.68±0.13 31.98±0.81 5.83±0.27
DHN 0.769±0.035 0.736±0.029 80.13±3.51 7.54±0.29 5.10±0.22
DPN 0.891±0.005 0.872±0.007 91.84±0.27 10.85±0.58 5.17±0.14

DPSH 0.536±0.080 0.531±0.076 55.99±9.04 7.27±1.16 4.42±0.26
DSDH 0.443±0.004 0.378±0.024 49.44±0.21 5.96±0.39 4.33±0.16
DSH 0.704±0.092 0.636±0.103 78.16±7.45 6.77±0.05 4.85±0.33

DTSH 0.927±0.001 0.934±0.001 93.23±0.13 20.39±0.77 5.71±0.29
Hashnet 0.744±0.005 0.746±0.005 75.54±0.42 21.60±0.63 5.08±0.01
IDHN 0.691±0.117 0.656±0.123 75.68±9.42 11.28±1.46 5.25±0.15

DDTL

(β = 0.1)
0.947±0.003 0.953±0.002 94.72±0.28 55.20±0.54 10.64±0.33

Table 3.4: Supervised retrieval metrics on methods for which code was available.

Each method was run using the full experimental setup for CIFAR-10 and trained from

scratch on the same backbone (ResNet-34) and hyper-parameters as DDTL. The near-

est neighbour accuracies were computed using the 16-bit hash codes and hamming

distance. The logistic regression-based accuracy on CIFAR-100 measures the transfer

performance of the 512-dimensional continuous representation yielded by the ResNet-

34 backbone network. Error bars are standard deviation over three seeded runs.

Supervised results are given in Table 3.4, including mAP5000 and mAP50000, nearest

neighbour accuracy on CIFAR-10, transfer to CIFAR-100 using both logistic regres-

sion (on the final continuous representation from the ResNet-34 output) and nearest

neighbour assessments. All nearest neighbours were determined using the hamming

distance on hash codes. The hash code length was set to 16 bits for each method.

While DCH marginally outperformed the DDTL on mAP scores (columns 2 and 3),

the DDTL produced hash codes that transferred better than any other method (10.64%

on CIFAR-100 using nearest neighbour, final column; DCH achieved only 5.83%).

This evidences that the decision tree component of the DDTL acts as a mechanism to
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retain information that is also useful for transfer. All error bars are standard deviation

over the three seeded runs.

Hash performance

Method
Entropy

(bits)

100∗ ∑unique hash codes
num training data

(%)
Average collision count

Greedy

hash
4.06±0.05 1.74±0.10 4298±40

DCH 3.39±0.00 0.37±0.02 4942±3
DHN 4.13±0.15 0.63±0.03 4632±543
DPN 3.55±0.00 0.48±0.07 4778±2

DPSH 3.35±0.76 0.47±0.12 9525±5623
DSDH 4.58±0.39 0.61±0.21 5756±1578
DSH 5.11±0.90 2.56±0.80 3388±756

DTSH 3.46±0.02 0.15±0.01 4848±22
Hashnet 3.22±0.04 0.58±0.08 6594±65
IDHN 5.43±0.71 1.82±0.33 2788±701

DDTL (β = 0.1) 14.37±0.00 51.29±0.15 3±0

Table 3.5: Hash codes quality for 16 bit hashes trained on CIFAR-10. Measurements

were taken using the training set. The entropy is measured by computing the number of

training images mapped to each available bin in the hash space. Column 3 measures

the ratio of unique hash codes to training data. Error bars are standard deviation over

three seeded runs.

Table 3.5 lists several hash quality metrics measured on the hash codes from the

tested methods. It is clear that DDTL distributes hash codes over the available hash

space far better than any other method tested here. For instance, consider column 3

that gives the ratio of unique hash codes to training images. DDTL yielded on average

of over 25000 unique hash codes for the CIFAR-10 training data (of which there are

50000 images). The closest competitor in this case was DSH with an average of 1280

unique hash codes. However, DSH only achieved a mAP5000 = 0.794± 0.092 and a

mAP50000 = 0.636± 0.103, meaning that the better distribution of DSH (compared to

other existing methods) came at the cost of poor supervised performance. Consider

the collision rates in column 4, where the DDTL has an average collision rate of 3.

This is 929 × better than IDHN, the closest competitor. Again, IDHN also evidenced

poor performance on the retrieval task. The hash codes computed by the DDTL enable

distinction between training images at a far finer scale than any other method tested

here, but that also enable good performance on the supervised retrieval task.
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Why does DDTL produce efficient binary representations? The contrastive loss

used to train the DDTL is known to result in an approximately uniform projection of

the training images by the neural network onto the unit hypersphere [Wang and Isola,

2020]. Since the input representations to the contrastive loss are the leaf probabilities

after processing images through the DDTL, the distribution of images over leaf nodes

in the tree will be approximately uniform after training. This approach is unsupervised

and therefore does not suffer from the high-compression owing to training using class

labels alone.

Evenly distributed hash codes are not necessarily usefully distributed. While the

evidence in Table 3.5 sets DDTL apart from other methods, achieving well-distributed

hash codes can be trivial (see Section 3.3.1). Do the evenly distributed hash codes

from the DDTL capture any useful semantic meaning beyond class labels? This is a

challenging question that is closely related to assessing unsupervised clustering – there

is no ground truth by which to measure the relevance of any semantic information in

the hash codes. Grimmer and King [2011] discussed the difficulty of knowing apriori

which partition of a data is ‘the best’ partition. Choosing a good clustering is often

subjective and user or use-case specific when there are no known ground-truth labels.

I aim to address this concern regarding the DDTL hash codes in the following sections.

Section 3.2.4 gives retrievals for a qualitative analysis. Section 3.2.5 details the results

of an experiment where the DDTL was trained on a coarse labelling of CIFAR-100

(called CIFAR-100-20, collected into 20 ‘super-classes’) and tested on the original fine

labelling of CIFAR-100. A number of ablation studies are discussed in Section 3.3 to

further evidence the utility of the DDTL.

3.2.4 Retrievals

Figures 3.4 and 3.5 are retrieval results on CIFAR-10 for all classes and for a single

class, respectively. Image attributes such as shape, background, texture, and orientation

seem to be distinguishing features of the retrieved images, although this assessment is

subjective. As an example, the horses in Figure 3.5 can be distinguished according to

the presence or absence of a rider, background characteristics (e.g., grass), or portion

of horse in the image (e.g., upper or full body). The red highlight in Figure 3.4 shows

an incorrect retrieval (a truck was predicted as a cat) and the yellow highlight shows an

interesting finding: the test and train sets of CIFAR-10 contain near-identical copies.

Figure 3.6 gives retrievals on Imagenet100, showing that the DDTL can scale to
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Figure 3.4: Image retrievals on CIFAR-10. The query images are in the leftmost column,

followed by the average of retrieved images. The retrieved images are ordered from left

to right according to the lexicographical ordering that respects the tree hierarchy (see

Section 3.1).
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high-resolution large datasets and still enable a fine granularity for retrieval. Multi-

ple retrievals per class are intentionally shown to demonstrate the difference between

queries from the same class. For example, the final two rows contain the same breed

of dog, where a distinguishing factor in the retrievals is the number of dogs (multiple

in the first case and singular in the second case).

3.2.5 Coarse to fine-grained label transfer

For this experiment the DDTL was trained on CIFAR-100-20: a coarse-grained group-

ing of CIFAR-100 into 20 super-classes. The hypothesis was that the decision tree

would split images according to semantic content that corresponds to the fine-grained

CIFAR-100 classes. This experiment was designed to assess whether the decision path

from the DDTL has value when measured using a known fine-grained labelling. Ac-

curacy was measured on the CIFAR-100 test set when using the decision tree directly

as a classifier (by counting the number of CIFAR-100 training images in each class

for each leaf nodes of the tree to assign class predictions to leaves). The test accuracy

was 42.13±0.39 (averaged over three seeded runs). This means that over 42% of the

leaves modelled by the decision tree correspond well with the ground truth CIFAR-100

labels.

3.3 Ablations

Several ablation studies are detailed in this section. A comparison baseline that uses

a classifier and repeated principle component analysis is tested in Section 3.3.1. The

robustness of decision paths computed by the DDTL is tested in Section 3.3.2. The im-

pact of fitting the decision tree after representation learning is explored in Section 3.3.3.

3.3.1 A comparison baseline

A simple baseline can be built that also uses a multi-stage hash construction (see Sec-

tion 3.1). To do so, a standard classifier can be trained to meet the supervised re-

quirement for good CBIR and an unsupervised method can be used to mimic the tree

structure of the DDTL. To these ends, a ResNet-34 was trained using the same setup

as the DDTL using CIFAR-10. Training included optimising a contrastive loss applied

to the continuous representation from the ResNet-34 backbone (prior to a linear pro-

jection to class predictions). The supervised and contrastive losses were balanced with
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Figure 3.5: Extended image retrievals on CIFAR-10. These are ordered in the same

fashion as Figure 3.4 but show more retrievals for these two specific classes (boat and

horse) in order to show the high distinction enabled by the DDTL hash codes.



Chapter 3. Deep decision tree layer: learning efficient discrete representations 57

Figure 3.6: Image retrievals on Imagenet100. The query images are in the leftmost

column, followed by the average of retrieved images. The retrieved images are ordered

from left to right according to the lexicographical ordering that respects the tree hierar-

chy (see Section 3.1).



Chapter 3. Deep decision tree layer: learning efficient discrete representations 58

the same α and β as was used to train the DDTL. To ensure a well-distributed hash

code that is comparable to the DDTL, repeated principle component analysis (rPCA)

was applied to the same continuous representation. rPCA operates as follows:

1. Apply PCA to the continuous representations from the ResNet-34 for all the

training images.

2. Split the training images into two equally sized subsets along the first principle

component (analogous to left versus right decisions for the DDTL decision path).

3. For each split apply PCA to the same continuous representations but only on the

training images from this split.

4. Repeat splitting until a desired depth is reached.

Each split of rPCA is analogous to a single decision in the decision path of the

DDTL. This baseline is called CrPCA (Classifier with repeated PCA).

Table 3.6 lists the results for CrPCA and the DDTL. It is evident that the repeated

PCA strategy was unable to produce a hash as well distributed as DDTL, yet better

than the methods listed in Table 3.5. This is because the DDTL is trained such that

the decision tree spreads each class over the unit hypersphere [Wang and Isola, 2020],

while the singular values of CrPCA are computed over the entire training dataset. This

relative poor performance of the CrPCA baseline is likely due to the dominance of

class-relevant directions in the representation to which PCA was applied.

Hash performance

Method
Entropy

(bits)

100∗ ∑unique hash codes
num training data

(%)
Average collision count

CrPCA 11.67±0.54 8.53±0.54 23±16
DDTL (β = 0.1) 14.37±0.00 51.29±0.15 3±0

Table 3.6: Hash codes quality for 16 bit hashes, comparing the CrPCA baseline to

DDTL. Measurements were taken using the training set. Error bars are standard devia-

tion over three seeded runs.

The transfer performance of CrPCA was also evaluated. Two accuracies were com-

puted (for comparison to the final two columns in Table 3.4): (1) test accuracy using

logistic regression on the continuous representation output of the ResNet-34, and (2)
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nearest neighbour accuracy using the hash codes and hamming distance. The test ac-

curacies were 4.77± 0.06% and 50.84± 0.55%, respectively: ∼ 5.9% and ∼ 4.4%

worse than the DDTL. The following section tests the robustness of both the DDTL

and CrPCA approaches to realistic changes in the input images.

3.3.2 Robustness to changes in the input images

If the hash codes computed by a deep semantic hash function were found to be robust

to realistic changes in input images, these hash codes would be related to high-level

semantics that are not altered by said changes. To test this sort of robustness for the

DDTL and the CrPCA baseline, unaltered test images were first processed to determine

ground-truth hash codes for each method. The test images were then altered at various

degrees of colour distortion or occlusion. The hash codes were recomputed for each

level of distortion. Since each of these methods computes hash functions using tree

structures, it is expected that the bits corresponding to the deepest decisions will be

relatively more susceptible to change than bits corresponding to shallower decisions,

because errors in the decisions will propagate from root to leaf.

Figure 3.7 shows the ‘hash code retention accuracy’ for both the DDTL and CrPCA

under increasing degrees of image distortion strength, for (a) colour and (b) occlusion

distortions. This metric measures the percentage of images that map to the same hash

codes after distortion. Colour distortions use the built-in colour jitter functionality of

the PyTorch framework [Paszke et al., 2019] that alters the brightness, contrast, and

hue of images. Occlusion refers to the removal (by zero masking) of a portion of an

image. Depth in this figure refers to the level of truncation applied to the hash codes:

at a tree depth of 5 a hash code is truncated to length 5, keeping the leftmost bits.

This is done to measure robustness at all levels of the trees. As expected, the bits

corresponding to deeper decisions in the trees were less robust to changes in the input

images.

While CrPCA was relatively more robust to lower levels of colour distortion at

deeper tree levels (some of the dashed lines are above the solid lines in Figure 3.7 (a)

at lower distortion strengths), DDTL was more robust to higher colour distortion levels

and almost always more robust to occlusion.
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Figure 3.7: Retention of hash codes under increasing distortion strengths, measured

as accuracy with respect to the hash codes under no distortion. Robustness to colour

changes (random changes in brightness, contrast, saturation, and hue) is shown in (a)

and robustness to occlusions (i.e., zero-masking regions of increasing size) is shown

in (b). The solid lines are computed using DDTL and the dashed lines are computed

using the baseline described in Section 3.3.1. ‘Depth’ refers to at which index the hash

codes are truncated (e.g., a hash code of length 5 is truncated to length 5).

3.3.3 Fitting the decision tree after learning

For this experiment the backbone network was trained without the decision tree com-

ponent but with an additional unsupervised contrastive loss applied to the continuous

representation output by the backbone. It is expected that this would generate a map-
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ping to a representation with similar properties to the corresponding representation in

the backbone of the DDTL. To evaluate this hypothesis, the decision tree component

of the DDTL was trained alongside a standard contrastive learning setup (to learn the

mapping to a continuous representation prior to linear projection for the DDTL) but

without propagating gradients after the decision tree parameters.

Fitting the decision tree separately resulted in similar retrieval performance to the

DDTL setup, with a mAP5000 of 0.945±0.002 and a mAP50000 of 0.951±0.002. Re-

garding the distribution of the resultant hash codes, this setup yielded an entropy of

14.39± 0.01, a unique hash codes to training images ratio of 51.45± 0.07, and an

Figure 3.8: Retrievals when training the decision tree alongside a representation learn-

ing setup.
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average collision count of 3.

Figure 3.8 shows CIFAR-10 retrievals when fitting the decision tree alongside rep-

resentation learning. The DDTL can be applied alongside representation learning with-

out the need to learn the decision tree parameters in an end-to-end fashion, provided a

contrastive loss is also used.

3.3.4 Unsupervised setup

For the fully unsupervised setting the DDTL was trained with α = 0 and β = 1. This

equates to training using only a contrastive loss on the leaf probabilities of the deci-

sion tree. In this setup a stronger data augmentation scheme was used to match the

scheme used by SimCLR [Chen et al., 2020a]. Logistic regression was applied to the

continuous representation output by the ResNet backbone after learning, as is standard

practise in contrastive learning. A test accuracy of 85.04% on CIFAR-10 was achieved.

3.3.5 Supervised only setup

In this setting the DDTL was trained with α = 1 and β = 0 (i.e., no contrastive loss),

yielding a mAP5000 = 0.955± 0.151. It is expected that the supervised retrieval per-

formance is high here, owing to the relationship between retrieval and classification.

However, a collision rate of 5000 for CIFAR-10 (with 50000 images in the training

dataset) means that training without the contrastive loss hinders utility of the resultant

representation. Further, transfer to CIFAR-100 was worse, with a nearest neighbour

accuracy of 4.77± 0.064 (±6% worse than the setting in Table 3.4), and a logistic

regression accuracy of 50.84±0.55 (±5% worse than the setting in Table 3.4).

3.4 Demonstration of decision tree utility

Figure 3.9 demonstrates how the decision tree can be used to understand the mistakes

made by the classification network, enabling insight into what might have gone wrong.

Further research needs to be done to fully leverage the decision tree as this assessment

is purely subjective. Of particular interest is the frog example that looks remarkably

like a truck (note the topmost image to the left of the frog, for example). This shows

how fine-grained comparison between images can help users understand how a neural

network might fail.
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Figure 3.9: Interpretation by way of tree neighbour comparison. Each query image

(centre) was incorrectly classified by the DDTL. The left and right retrievals are com-

puted by using the predicted classes and true classes, respectively. This fine-grained

analysis gives insight into similarities between instances in different classes: the aircraft

in the first row is evidently mistaken for antlers, the truck in the second row has a similar

shape and colour set to frogs, the third row shows how images from birds on the ground

and deer are similar in quality, and the fourth row evidences how the classification de-

tects a ‘sail’ shape instead of a bird.

Figures 3.10 and 3.11 demonstrates how the decision tree can be used for dataset

exploration, for all classes and a single class, respectively. For example, it is imme-

diately evident via this visualisation that there are many training images in CIFAR-10

that are nearly identical. This view on the data also helps to contextualise what features

in the images the decision tree component of the DDTL is leveraging to minimise the

contrastive loss.



Chapter 3. Deep decision tree layer: learning efficient discrete representations 64

3.5 Conclusion

In this chapter I presented the deep decision tree layer (DDTL) for learning efficient

and robust discrete representations of images for use in the content-based image re-

trieval task. I identified a pervasive issue of over-compression when learning deep

semantic hash functions owing to (1) high-compression supervised objectives and (2)

discretisation operations that also compress information away. To address this issue

I proposed building hash codes in two parts. First, a class prediction provided the

minimal hash codes for high-performance supervised image retrieval. Second, a bi-

nary decision tree was learned that models further intra-class differences to enable

distinction between images from the same class. Concatenation of the output of these

two components yields ordered and evenly distributed hash codes for images. Neither

component required discretisation during learning, meaning that compression because

of discretisation was effectively mitigated against.

The DDTL achieved state-of-the-art results on supervised hash-based image re-

trieval metrics on three widely used datasets, with a mAP5000 of 0.953± 0.002 for

CIFAR-10, a mAP5000 of 0.897± 0.002 for NUS-wide-21, and a mAP1000 of 0.804±
0.002 for ImageNet100. Experiments with consistent neural network backbones and

training hyper-parameters were undertaken to assess how well the DDTL compared

to a number of existing methods with regard to learning a ‘good quality’ semantic

hash function. Good quality here means that a hash function produces hash codes

that enable high performance on supervised retrieval metrics while also being evenly

distributed over the available hash space. The DDTL was shown to: (1) be amongst

the top performing methods regarding the supervised retrieval task; (2) transfer better

to unseen data (training on CIFAR-10 with transfer to CIFAR-100); and (3) yield far

more evenly distributed hash codes with minimal collisions.

Further experiments showed that the DDTL produced hash codes that were robust

to realistic changes in the input images (e.g., colour/lighting changes) when compared

to a strong baseline that used a supervised classifier paired with repeated principle com-

ponent analysis for comparable hash code construction. The DDTL was also trained

on the CIFAR-100-20 super-classes to test whether the decision tree was informative

of the fine-grained CIFAR-100 classes: over 42% of the time the leaves in the tree

corresponded well with ground-truth test set labels. Examples of (1) interpretability

by way of the decision tree output and (2) dataset exploration were also given.

Future work will entail making better use of the tree structure to build model in-
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terpretation approaches, and making use of ensembles of independent decision trees to

improve both supervised and unsupervised image retrieval.
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Figure 3.10: Decision tree visualisation for dataset exploration on all classes from CIFAR-10. Only 7

layers of the 12-bit tree could be shown owing to space constraints. Different features determine clusters

at different parts of the tree. For example, object angle and background colour are distinguishing features

in the lower right area. Latter regions are zoomed for legibility. The blue lines within the zoomed section

separate images within unique nodes.
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Figure 3.11: Decision tree visualisation for dataset exploration on the vehicle class from CIFAR-10.

Only 7 layers of the 12-bit tree could be shown owing to space constraints. This type of exploration

enables fast understanding of an image dataset. For example, note the near identical repetition of many

vehicle types – pixel difference would not be informative in this case because the images are slightly

different but nonetheless seem to share the same source. Latter regions are zoomed for legibility. The

blue lines within the zoomed section separate images within unique nodes.



Chapter 4

Deep hierarchical object grouping

4.1 Overview

In this chapter I propose Deep Hierarchical Object Grouping (DHOG), a method to im-

prove the optima to which a deep clustering objective converges. The deep clustering

objective (see Section 2.2.3) is chosen as an example of a modern approach to mutual

information (MI) maximisation between data augmentations (see Section 2.2.1). This

chapter focuses on a particular mode of proxy objective failure in the field of deep

clustering: where greedy SGD optimisation results in neural network parameters that

correspond to demonstrably sub-optimal local minima of the clustering objective – see

Section 2.3.2. Neural networks with these sub-optimal parameters typically produce

worse performance on the downstream task than those with more optimal parameters.

The downstream task in this case is matching cluster allocations with ground truth

labels of the images.

DHOG is designed to account for, and circumvent, the tendency of neural net-

works to get stuck in sub-optimal local optima of the clustering objective. Learning

for DHOG involves simultaneously optimising for many diverse local optima of the

underlying objective. Each solution to the objective is captured by a compute ‘head’

that yields a probability over cluster assignments. Since each of these heads define

probability distributions over clusters we can minimise the pairwise MI between all

heads such that they maximise coverage of the solution space in a way that improves

performance on the downstream task.

DHOG is a multi-head approach that is designed specifically to model and account

for poor local minima of the clustering objective. I demonstrate that requiring DHOG

to account for multiple local optima of the clustering objective leads to some compute

heads that better optimise this objective, thus mitigating against proxy objective failure

68
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(see Section 2.3.2). DHOG yields accuracy improvements on the downstream task

when trained and evaluated on the CIFAR-10, CIFAR-100-20, and SVHN datasets.

4.2 Introduction

It is very expensive to label a dataset with respect to a particular task. Consider the

alternative where a user, instead of labelling a dataset, specifies a simple set of class-

preserving transformations or ‘augmentations’. For example, lighting changes will not

change a dog into a cat. Is it possible to learn a model that produces a useful represen-

tation by leveraging a set of such augmentations? This representation would need to

be good at capturing salient information about the data, and enable downstream tasks

to be done efficiently. If the representation were a discrete labelling which groups the

dataset into clusters, an obvious choice of downstream task is unsupervised clustering.

Ideally the clusters should match direct labelling, without ever having been learnt on

explicitly labelled data.

Using data augmentations to drive unsupervised representation learning for im-

ages has been explored by a number of authors [Dosovitskiy et al., 2015, Bachman

et al., 2019, Chang et al., 2017, Wu et al., 2019, Ji et al., 2019, Cubuk et al., 2020].

These approaches typically involve learning neural networks that map augmentations

of the same image to similar representations. For more information, literature related

to MI maximisation for representation learning is detailed in Section 2.2.1, relevant

contrastive learning approaches are discussed in Section 2.2.2, and deep clustering

approaches are discussed in Section 2.2.3.

A number of earlier works target maximising mutual information (MI) between

augmentations [van den Oord et al., 2018, Hjelm et al., 2019, Wu et al., 2019, Ji

et al., 2019, Bachman et al., 2019]. Targeting high MI between representations com-

puted from distinct augmentations enables learning representations that perform well

on challenging downstream tasks (e.g., object detection or classification). We are in-

terested in a particularly parsimonious representation: a discrete labelling of the data.

This labelling can be seen as a clustering [Ji et al., 2019] procedure, where MI can be

computed and assessment can be done directly using the learned labelling, as opposed

to via an auxiliary model trained posthoc.

One widespread and well-known issue with methods that maximise MI between

augmentations is that these methods are strongly dependent on the augmentation strat-

egy chosen. While it is fairly straightforward to define what is considered ‘strong’



Chapter 4. Deep hierarchical object grouping 70

augmentations for images that demonstrably improve performance [Chen et al., 2020b,

Tian et al., 2020, Wang and Qi, 2021], this is not true for all data types or domains.

I propose in this Thesis that the underlying issue – neural networks prefer easy-to-

compute solutions – can be alleviated or circumvented using techniques such as DHOG,

as opposed to defining stricter and stronger data augmentations.

4.2.1 Sub-optimal mutual information maximisation

I show that the MI objective is not maximised effectively in existing work due to:

1. Greedy optimisation algorithms used to train neural networks, such as stochas-

tic gradient descent (SGD), which potentially target local optima; and

2. The use of a limited set of data augmentations that can result in the existence of

multiple local optima to the MI maximisation objective.

SGD is greedy in the sense that early-found high-gradient features can dominate

and so networks will tend to learn easier-to-compute locally-optimal representations

(for example, one that can be computed using fewer neural network layers) over those

that depend on complex features. I demonstrate this phenomenon in the next chapter

using a toy problem (see Section 5.3.2). Neural network solutions are difficult to as-

sess and characterise absolutely because of the non-linear computation and their large

size. Instead we can compare two locally-optimal representations by assessing (1)

how well they optimise for the training objective and (2) how well they perform on the

downstream assessment task(s).

By way of example, in natural images, average colour is easy-to-compute, whereas

object type is not. If an augmentation policy tends to preserves average colour, then

a reasonable neural network mapping need only compute colour to obtain high MI

between image representations from different augmentations. A mapping like this is

sub-optimal in the sense that hypothetical higher MI optima exists that also captures

semantic information, assuming the model has sufficient capacity to learn and repre-

sent this. The conceivable existence of many such local optima coupled with greedy

optimisation presents the challenge I tackle in this chapter: how can we leverage pow-

erful image augmentation-driven MI objectives while avoiding greedily-found local

optima?

Dealing with greedy solutions Heuristic approaches to dealing with easy, greedily

found solutions are viable and widely implemented. One such example is to apply
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None Ideal: Task
preserving onlyReasonable

Too much? 
(task destructive)

Confounding?
(undesired correlations)

effort required by user/complexity

Figure 4.1: A spectrum of augmentations. Doing no augmentations (left) requires zero

effort by the user. Ideal augmentations (right) preserve only task relevant information

(object class, here), and effectively requires full labelling.

Sobel edge-detection [Caron et al., 2018, Ji et al., 2019] to images as a pre-processing

step. This has been suggested to remove/alter the features in images that may cause

trivial representations to be learned. However, taking this approach is a symptomatic

treatment and not a solution. In the work presented in this chapter, I acknowledge that

greedy SGD can cause neural networks to get stuck in local optima of the MI maximi-

sation objective because of the limits of data augmentations (see Figure 4.1). Instead

of trying to prevent a greedy solution, DHOG enables a model to learn a representa-

tion that relies on easy-to-compute features using a deep clustering objective, but also

requires this model to learn an additional representation such that there is low MI be-

tween them. We can then extend this principle by adding representations, each time

requiring the latest representations to be distinct from all previous representations.

Greedy optimisation finds sub-optimal minima The issue of sub-optimal augmen-

tations is exacerbated by how we train neural networks. Greedy optimisation algo-

rithms, such as SGD, will tend to prefer easier-to-compute valid solutions to the ob-

jective over those that depend on complex features in the data (see Section 2.3.2).

These solutions are stable local optima because of the insufficiency of the predefined

data augmentations. It should be noted that this is not a problem with the methods

defined using augmentations but rather a shortcoming of augmentations as a learning

driver: the better the augmentation strategy, the more expensive they are to produce

(see Figure 4.1; the ideal augmentation for matching clusters with ground-truth classes

requires the class labels themselves). SGD always runs the risk of getting stuck in

these sub-optimal local optima.
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Downstream task: clustering The focus of this chapter is on learning representa-

tions that result in higher MI between representations from differently augmented im-

ages. Assessment is on the downstream task of matching predicted clusters to ground-

truth classes. There are two important advantages to clustering methods, namely: (1)

they typically yield, or can be made to yield, a distribution of clusters for a given im-

age, meaning that they are amenable to information theoretic analysis and methods;

and (2) they offer a direct comparison because they require no labels for learning a

mapping from the learned representation to class labels. Training labels are only re-

quired to assign specific clusters to appropriate classes and no learning is done using

these.

4.2.2 Contributions

Learning a set of representations by encouraging them to have low MI, while still max-

imising the original augmentation-driven MI objective for each representation, is the

core idea behind deep hierarchical object grouping (DHOG). DHOG defines a mecha-

nism to produce a set of hierarchically-ordered solutions (in the sense of easy-to-hard

orderings, not tree structures). DHOG is able to better maximise the original MI ob-

jective between augmentations since each representation must correspond to a unique

local optima. The contributions of this chapter are as follows.

1. A demonstration that current methods do not effectively maximise the MI objec-

tive1 because greedy SGD typically results in sub-optimal local optima.

2. To mitigate against this problem I propose DHOG as a robust neural network

image grouping method to learn diverse and hierarchically arranged sets of dis-

crete image labellings (Section 4.3). DHOG explicitly models, accounts for,

and avoids spurious local optima, requiring only simple data augmentations, and

needing no Sobel edge detection.

3. I show a marked improvement over the baseline method used for clustering (in-

variant information clustering [Ji et al., 2019]) which was the state-of-the-art

when creating DHOG. Assessments are carried out using standard benchmarks

in end-to-end image clustering for CIFAR-10, CIFAR-100-20 (a 20-way class

grouping of CIFAR-100), SVHN, and STL-10. A new accuracy benchmark is

also set on CINIC-10.
1I find and measure higher MI solutions using DHOG, and hence show that such better solutions

exist.
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To be clear, DHOG still learns to map data augmentations to similar representations

as this is imperative to the learning process. The difference is that DHOG enables a

number of intentionally distinct discrete data labellings to be learned, arranged hierar-

chically in terms of source feature complexity.

4.3 Method
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Figure 4.2: DHOG architecture. The skeleton is a ResNet18 [He et al., 2016b]. 1

Augmentations of each image, xa...d , are separately processed by the network. 2 Each

shallow ResNet block (1 . . .3) constitutes shared computation for deeper blocks, while

also computing separate probability vectors, z1 . . .z3. Each zi is viewed as the proba-

bility for each outcome of the random variable ci that makes a discrete labelling choice.

The notation MI(z,z′) between probability vectors is shorthand for MI(c,c′) between

random variables. 3 The final ResNet block is repeated k− 3 times (k = 8 here) to

compute further z>3. 4 The network is trained by maximising the MI between alloca-

tions ci from all data augmentations, and 5 separately for each node i, minimising the

MI between ci and c<i for the same data augmentation. 6 This is implemented by stop-

ping gradients such that they are not back-propagated for later computation paths (red

crosses).

Figure 4.2 shows the DHOG architecture. DHOG is an approach for obtaining

jointly trained multi-level representations as discrete labellings, arranged in a simple-
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to-complex hierarchy, and computed by separate ‘heads’. A head is an unit that com-

putes a multivariate class probability vector. By requiring low MI between heads, a

diversity of solutions to the MI maximisation objective can be found. The head that

best maximises MI between augmentations typically aligns better with a ground truth

task that also relies on complex features that augmentations are designed to preserve.

Figure 4.2 demonstrates the DHOG architecture and training principles. There are

shared model weights ( 2 : ResNet blocks 1, 2, and 3) and head-specific weights (the

MLP layers and 3 : ResNet blocks 4 to 8). For the sake of brevity, we abuse notation

and use MI(z,z′) between labelling probability vectors as an overloaded shorthand for

the mutual information MI(c,c′) between the labelling random variables c and c′ that

have probability vectors z and z′ respectively.

Any branch of the DHOG architecture ( 1 to any zi) can be regarded as a single

neural network. These are trained to maximise the MI between the label variables

at each head for different augmentations; i.e., between label variables with probability

vectors zi(x) and zi(x
′) for augmentations x and x′. Four augmentations are shown at 1 .

The MI is maximised pairwise between all pairs, at 4 . This process can be considered

pulling the mapped representations together.

Following IIC [Ji et al., 2019], we compute the MI directly from the label proba-

bility vectors within a minibatch. Let zi,z′i denote the random probability vectors at

head i associated with sampling a data item and its augmentations, and passing those

through the network. Then we can compute the mutual MI between labels associated

with each augmentation using

MIaug(ci,c′i) = Tr(E[zi(z′i)
T ]T log(E[zi(z′i)

T ]))

−E[zT
i ] logE[zi]−E[(z′i)

T ] logE[z′i],
(4.1)

where Tr is the matrix trace, logarithms are computed element-wise, and expectations

are over data samples and augmentations of each sample. In practice we compute an

empirical estimate of this MI based on samples from a minibatch.

4.3.1 Distinct heads

Each clustering head in DHOG is encouraged to compute unique solutions via cross-

head MI minimisation. For a minibatch of images, the labelling from any head is

optimised to have low MI with other heads’ labellings. We assume multiple viable

labellings because of natural patterns in the data. By encouraging low MI between

heads, these must capture different patterns in the data.
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Simple concepts (brightness, colour, etc.) are axes of variation that are reasonable

and easy to group by. Groupings according to complex features (e.g., object type) typ-

ically require more processing and greedy optimisation may not discover these group-

ings without explicit encouragement. Unfortunately, the easier-to-compute groupings

typically correspond poorly to downstream tasks. Without a mechanism to explore

viable patterns in the data, greedy optimisation will avoid finding them.

Cross-head MI minimisation DHOG addresses sub-optimal MI maximisation (see

Section 2.3.2) by encouraging unique solutions at sequential heads (z1 . . .z8 in Figure

4.2), which rely on different features. Let zi,z j denote the random probability vectors

from two heads. We can minimise the MI across heads:

MIhead(ci,c j) = Tr(E[zizT
j ]

T log(E[zizT
j ]))

−E[zT
i ] log(E[zi])−E[(z j)

T ] log(E[z j]).
(4.2)

Logarithms are element-wise, and expectations are over the data and augmentations.

Note zi and z j are each computed from the same data augmentation. We estimate this

from each minibatch sample. This process can be thought of as pushing the heads

apart. We note that the Tr operator is commutative – the hierarchical arrangement is

accomplished through gradient stopping.

Hierarchical arrangement Requiring k heads (where k = 8 here) to produce unique

representations is not necessarily the optimal method to account for sub-optimal MI

maximisation. Instead, a simple-to-complex hierarchy structure to the heads is en-

couraged, defined according to cross-head comparisons made using Equation 4.2. The

hierarchy enables a reference mechanism to produce diverse labellings of the data.

Figure 4.2 shows 8 heads, 3 of which are computed from early residual blocks of

the network. The hierarchical arrangement is induced by only updating head-specific

weights according to comparisons made with earlier heads. In practice this is done

by stopping the appropriate gradients – 6 and all red crosses. For example, when

computing the MI between zi=6 and those using zi ̸=6, gradient back-propagation is

allowed when i < 6 but not when i > 6. In other words, when learning to produce zi=6,

the network is encouraged to produce a head that is distinct from heads ‘lower’ on the

hierarchy. Extending this concept for i = 1 . . .8 gives rise to the hierarchy (in terms

of complexity). Initial experiments showed that if this routine was ignored, the gains

were reduced.
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4.3.2 Objective

The part of the objective producing high MI representations by ‘pulling’ together dis-

crete labellings from augmentations is Equation 4.1 normalised over k heads:

MIpull =
1
k

k

∑
i=0

MIaug(ci,c′i). (4.3)

The quantity used to ‘push’ heads apart is Equation 4.2 normalised per head:

MIpush =
k

∑
i=1

∑
i
j=1
j ̸=i

MIhead(ci,c j)

i
, (4.4)

where each cross-head MI term is scaled by the head index, i, since that directly tracks

the number of comparisons made for each head. i scales up the hierarchy, such that

the total MIhead associated with any head is scaled according to the number of com-

parisons. Scaling ensures that head-specific weight updates are all equally important.

The final optimisation objective is:

θ
∗ = argmax

θ

MIpull−αMIpush, (4.5)

where θ are the network parameters, α is a hyper-parameter we call the cross-head

MI-minimisation coefficient. For an ablation study we set α = 0 in Section 4.4.

4.3.3 Design and training choices

The DHOG architecture (Figure 4.2) is based on a ResNet-18 backbone, where each

residual block has two layers (with a skip connection over these). Blocks 1 to 3 have

64, 128, and 256 output units, respectively. Each parallel final block (4 to 8, here)

have 512 units. Each MLP has a single hidden layer of width 200. Early experiments

showed that entire block repetition was important to enable sufficient model flexibility.

Similar to IIC [Ji et al., 2019] we used four data augmentation repeats with a batch size

of 220.

DHOG maximises MI between discrete labellings from different data augmenta-

tions. This is equivalent to a clustering and is similar to IIC. There are, however, key

differences. In our experiments:

• We train for 1000 epochs with a cosine annealing learning rate schedule.

• We do not use sobel edge-detection or any other preprocessing as a fixed pro-

cessing step.
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• We make use of the fast auto-augment CIFAR-10 data augmentation strategy

(for all tested datasets) found by [Lim et al., 2019]. We then randomly apply

(with p = 0.5) grayscale and take random square crops of sizes 64 and 20 pixels

for STL-10 and other datasets, respectively.

The choice of data augmentation is important, and we acknowledge that for a fair

comparison to IIC the same augmentation strategy must be used. The ablation of any

DHOG-specific loss (when α = 0) largely recreates the IIC approach but with network

and head structure matched to DHOG; this enables a fair comparison between an IIC

and DHOG approach.

Since STL-10 has much more unlabelled data of a similar but broader distribution

than the training data, the idea of ‘overclustering’ was used by Ji et al. [2019]; they

used more clusters than the number of classes (70 versus 10 in this case). We repeat

each head with an overclustering head that does not play a part in the cross-head MI

minimisation. The filter widths are doubled for STL-10. We interspersed the training

data evenly and regularly through the minibatches.

To determine the DHOG cross-head MI-minimisation coefficient, α, we carried out

a non-exhaustive hyper parameter search using only CIFAR-10 images (without the

labels), assessing performance on a held out validation set sampled from the training

data. This did not use the evaluation data.

Assessment Once learned, the optimal head can be identified either using the high-

est MI, or a small set of labelled data. Alternatively all heads can be used according to

some posthoc selection for a downstream task. In this chapter the head that maximises

the normalised mutual information on the training data is chosen. This is then fully

unsupervised, as with the head selection protocol of IIC. We also give results for the

best posthoc head to show the potential for downstream analysis.

4.4 Experiments

The datasets used for assessment were CIFAR-10 [Krizhevsky et al., 2009], CIFAR-

100-20 (CIFAR-100 [Krizhevsky et al., 2009] where classes are grouped into 20 super-

classes), CINIC-10 [Darlow et al., 2018] (an extension of CIFAR-10 using images

from Imagenet [Deng et al., 2009] of similar classes), street view house numbers [Net-

zer et al., 2011] (SVHN), and STL-10 [Coates et al., 2011]. For CINIC-10 only the

standard training set of 90000 images (without labels) was used for training.
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Table 4.1 gives the accuracy, normalised mutual information (NMI), and the ad-

justed rand index (ARI) between remapped assignments and classification targets. Be-

fore assessment a labelling-to-class remapping was computed using the training data

and the Hungarian method [Kuhn, 1955]. The results listed for DHOG were com-

puted using 3 seeded runs, where the error bars are standard deviation over these runs.

IIC was state of the art over the course of development of DHOG, and DHOG still

provides an alternative approach to other concurrent methods. Importantly, no Sobel

edge-detection was used for any of our experiments, including when we set α = 0.

We used an unsupervised posthoc head selection using NMI(ci,c′i) – which corre-

sponds directly to the original MI objective. The selected heads almost always corre-

sponded with the head that maxmimised NMI(ci,y), where y are class labels. DHOG

produces data groupings that:

1. Better maximise the widely used MI objective and therefore is an effective

mechanism for dealing with sub-optimal MI optimization owing to greedy SGD,

as discussed in this work. Table 4.2 gives the NMI with and without DHOG

(controlled by α) to confirm this.

2. Correspond better with the challenging underlying object classification test
objective.

The advantage of a hierarchical ordering is evident when considering the ablation

study: with (α= 0.05) and without (α= 0) cross-head MI minimisation. Figure 4.3 (a)

and (b) are accuracy versus head curves, showing that without cross-head MI minimi-

sation later heads converge to similar solutions. The confusion matrices in Figure 4.4

(b) show the classes the final learned network confuses in CIFAR-10. Compare this to

the confusion matrix in Figure 4.4 (a) where α = 0 and note the greater prevalence of

cross-class confusion.

A claim throughout this chapter is that greedy training of neural networks can result

in sub-optimal MI maximisation. Table 4.2 shows that for all datasets except STL-

10 (for which further experiments are needed) DHOG resulted in a better MI result,

thereby directly improving the training objective.

4.4.1 Cluster Visualisation

In order to aid understanding of the types of solutions that form with respect to the

complexity hierarchy discussed throughout this section, we can visualise the consis-
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Method Accuracy NMI(c, y) ARI

C
IF

A
R

-1
0

Cartesian K-means 22.89 0.0871 0.0487
JULE 27.15 0.1923 0.1377

DEC † 30.1 - -
DAC 52.18 0.3956 0.3059

DeepCluster † 37.40 - -
ADC 29.3±1.5 - -

DCCM 62.3 0.496 0.408
IIC † 61.7 - -

SCAN 87.6±0.4 0.787±0.005 0.758±0.007
MMDC 82.0±1.9 0.703±0.011 -
MPCC 64.25±5.31 - -

GATCluster 61.0 0.475 0.402
DHOG (α = 0, ablation) 57.49±0.8929 0.5022±0.0054 0.4010±0.0091

DHOG, unsup. (α = 0.05) 66.61±1.699 0.5854±0.0080 0.4916±0.0160
DHOG, best (α = 0.05) 66.61±1.699 0.5854±0.0080 0.4916±0.0160

C
IF

A
R

-1
00

-2
0

DAC † 23.8 - -
DeepCluster † 18.9 - -

ADC 16.0 - -
IIC † 25.7 - -

SCAN 45.9±2.7 0.468±0.013 0.301±0.021
MPCC 35.21±1.69 - -

GATCluster 28.1 0.215 0.116
DHOG (α = 0, ablation) 20.22±0.2584 0.1880±0.0019 0.0846±0.0026

DHOG, unsup. (α = 0.05) 26.05±0.3519 0.2579±0.0086 0.1177±0.0063
DHOG, best (α = 0.05) 27.57±1.069 0.2687±0.0061 0.1224±0.0091

C
IN

IC
-1

0

K-means on pixels 20.80±0.8550 0.0378±0.0001 0.0205±0.0007
DHOG (α = 0, ablation) 41.66±0.8273 0.3276±0.0084 0.2108±0.0034

DHOG, unsup. (α = 0.05) 37.65±2.7373 0.3317±0.0096 0.1993±0.0030
DHOG, best (α = 0.05) 43.06±2.1105 0.3725±0.0075 0.2396±0.0087

SV
H

N

ADC 38.6±4.1 - -
DHOG (α = 0, ablation) 14.27±2.8784 0.0298±0.0321 0.0209±0.0237

DHOG, unsup. (α = 0.05) 45.81±8.5427 0.4859±0.1229 0.3686±0.1296
DHOG, best (α = 0.05) 49.05±8.2717 0.4658±0.0556 0.3848±0.0557

ST
L

-1
0

JULE † 27.7 - -
DEC 35.90 - -
DAC 46.99 0.3656 0.2565

DeepCluster † 33.40 - -
ADC 47.8±2.7 - -

DCCM 48.2 0.376 0.262
IIC † 59.6 - -

SCAN 76.7±1.9 0.680±0.012 0.616±0.018
MMDC 69.4±1.3 0.593±0.005 -

GATCluster 58.3 0.446 0.363
DHOG (α = 0, ablation) 38.70±4.4696 0.3878±0.0331 0.2412±0.0265

DHOG, unsup. (α = 0.05) 48.27±1.915 0.4127±0.0171 0.2723±0.0119
DHOG, best (α = 0.05) 48.27±1.915 0.4127±0.0171 0.2723±0.0119

Table 4.1: Test set results on all dataset. Results with † are from [Ji et al., 2019].

NMI(c,y) is between remapped predicted label assignments and class targets. Ab-

lation is DHOG with α = 0.0, which is most similar to IIC. Our method is DHOG

with α = 0.05, highlighted in blue. We give results for the head chosen for the best

NMI(z,z′) and the head chosen for the best NMI(c,y).
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Dataset NMI(c,c′), α = 0 NMI(c,c′), α = 0.05

CIFAR-10 0.7292±0.0066 0.7994±0.0081

CIFAR-100-20 0.6104±0.0098 0.6506±0.0040

CINIC-10 0.6408±0.0015 0.6991±0.0044

SVHN 0.6337±0.0085 0.7265±0.0093

STL-10 0.6713±0.0175 0.6610±0.0084

Table 4.2: NMI between representations of augmentations for the training dataset, ev-

idencing that cross-head MI minimisation does indeed aid in avoiding local optima of

this objective function.
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(b) With DHOG training

Figure 4.3: Accuracy per head. DHOG causes heads to learn distinct solutions.

tency of clusters in terms of average images and top-probability examples. Table 4.3

shows the average images in clusters as well as top-probability examples. Note how

for the earlier head the average images pay heed to very similar pixel values, while for

the later head the low-level pixel values have less influence.

4.5 Conclusion

I presented deep hierarchical object grouping (DHOG): a method that improves the

capability of a deep clustering neural network by modelling simultaneously multiple

local optima to the training objective. Learning a good representation of an image us-

ing data augmentations is limited by the user, who chooses the set of plausible data

augmentations but who is also unable to cost-effectively define an ideal set of augmen-
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Predicted labels:
1 2 3 4 5 6 7 8 9 10

Earlier head

Later head

Table 4.3: Images that yielded the top probability for each discrete label for an early,

i = 2, and late, i = 8, head, taken from a single DHOG run on Cifar-10. The average

image for the top 10 is also shown. Note particularly the those images grouped by the

early head are less diverse than those grouped by the later head. The label associated

largely with frogs (8 for the earlier head and 3 for the later head) exemplifies this well.
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Figure 4.4: Confusion matrices from the same seed (a) without and (b) with DHOG

cross-head MI minimisation. These networks struggle with distinguishing natural ob-

jects (birds, cats, deer, etc.), although DHOG does improve this.

tations. I argued and showed that learning using greedy optimisation typically causes

models to get stuck in local optima, since the data augmentations fail to fully describe

the sought after invariances to all task-irrelevant information.

DHOG learns a simple-to-complex ordered hierarchy of representations to prevent

a neural network from getting stuck in a sub-optimal local optima of the clustering

objective. DHOG works by minimising mutual information between these represen-

tations such that those later in the hierarchy are encouraged to produce unique and

independent discrete labellings of the data (w.r.t. earlier representations). Therefore,

later heads avoid becoming stuck in the same local optima of the original mutual in-

formation objective (between augmentations, applied separately to each head). Our

tests showed that DHOG resulted in an improvement over the baseline on CIFAR-10,

CIFAR-100-20, and SVHN, without using preprocessing such as Sobel edge detection,

and a consistent improvement of the underlying MI objective.

Subsequent to the work done in this chapter developments have been made in this

line of work by a variety of authors. I detail several advances at the end of Sec-

tion 2.2.3.



Chapter 5

Latent adversarial debiasing

The work in this chapter was completed with Dr Stanisław Jastrzębski [Darlow et al.,

2020], who helped with discussions about the latent adversarial walk and to collect

and summarise the relevant literature. My contributions constitute the majority of this

work, including the core idea, implementation, and experiments.

5.1 Overview

In any predictive modelling problem, it is possible for bias to be introduced when an

underlying causal variable ends up being strongly correlated with other variables only

as a result of the training data collection procedure. These other variables are often

called extraneous variables as their connection with any dependent variable we wish

to predict is not there in the environment, but only induced by data collection. This sort

of bias is called collider bias, and is a harmful form of sample selection bias that, in

this chapter, I demonstrate neural networks are ill-equipped to handle. Model training

can build dependence on the spurious signal, which results in model failure at test time

when that dependence is not present. An example of this is given in Section 5.2.1.

Typically we do not observe dependent or extraneous variables directly. Rather we

observe an image that might express signals from both variables at the same time. In

the situation where the dependence on spurious signals from the extraneous variable

is easy-to-learn, deep neural networks will latch onto this and the resulting model will

generalise poorly to in-the-wild test scenarios. We argue in this chapter that the cause

of failure is a combination of the deep structure of neural networks and the greedy

gradient-driven learning process used – one that prefers easy-to-compute signals when

available. We show it is possible to mitigate against this by generating bias-decoupled

training data using latent adversarial debiasing (LAD), even when the spurious signal is

83
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present in 100% of the training data. By training neural networks on these adversarial

examples, we can improve their generalisation in collider bias settings. Experiments

show state-of-the-art performance of LAD in label-free debiasing with gains of 76.12%

on background coloured MNIST, 35.47% on foreground coloured MNIST, and 8.27%

on corrupted CIFAR-10.

5.2 Introduction

Invariably, in real-world machine learning settings, training and test sets are different.

This general phenomenon has become known as dataset shift [Caron et al., 2018].

Yet there are many causes for such shifts [Storkey, 2009]. One common scenario

is sample selection bias [Heckman, 1979] where the process of curating a training

dataset differs from the process by which data arrives during deployment. This issue

is ubiquitous; even standard machine learning benchmarks (e.g. ImageNet) contain

images selected for the clarity with which a class is represented, a clarity missing in

many real applications, where for example you might see an object occluded.

One pernicious form of sample selection bias is collider bias. This is illustrated and

characterised in Figure 5.1. Consider two variables: a causal variable that determines

the target, and what we will call an extraneous variable, that is not directly related to

the target. In collider bias, these two variables that are, for the most part, independent in

the test scenario, become co-dependent in the training sample because of the restrictive

way the training data is selected. Collider bias can cause a predictive algorithm to

mistakenly target information from features associated with the extraneous variable

rather than the causal variable; such features then do not generalise to the test scenario.

Even if the causal signal has higher information content than the spurious signal

it may be harder to discover. This is usually due to extraneous variables being easier

to disentangle from images than causal variables – a highly linear spurious signal,

for example can be discovered before a highly non-linear causal signal. When this is

combined with the greediness of neural network learning, it can mean the causal signal

is simply never used. It is precisely this scenario that is the topic of this chapter.

I argue that collider bias can be a pervasive cause of non-robustness in deep neural

networks. A main contribution of this work is the demonstration of a specific approach

to mitigate the situation: latent adversarial debiasing (LAD), which pushes a network

to recognise all sources of information for a problem by augmenting training using

adversarially perturbed latent representations. In these latent representations, easy-to-
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learn spurious signals are decoupled from the classification targets, forcing networks

to also learn information from the causal signal.

5.2.1 Collider bias

Consider a toy classification problem: distinguishing dog images from cat images. A

collected training dataset for dogs and cats may be biased: people take pictures of dogs

outside while they take them for a walk, e.g., in a field, and take pictures of cats in their

homes, e.g., on a sofa. Yet both cats and dogs go inside and outside.

It might be critical in the test setting to distinguish between dogs and cats each

presented in indoor and outdoor settings. In this training dataset the simple feature of

the background colour in the image is an extraneous variable that may overshadow the

causal variable when learning a neural network to detect the difference in appearance

between dogs and cats.1

This easy-to-learn bias-inducing signal is a spurious signal, as opposed to the true

causal signal. A model relying on the causal signal will generalise well, while a model

relying on the spurious signal will generalise poorly, because that dependence is not

present at test time. I propose a solution that hinges on the assumption that spuri-

ous signals are typically easier-to-compute in that their gradients during learning are

stronger than the gradients of causal signals (see Section 5.3.1). A similar assumption

was also made in related earlier work [Nam et al., 2020, Bahng et al., 2020, Bras et al.,

2020, Minderer et al., 2020]. I hypothesise that a specific form of adversarial exam-

ples can be used to augment training data such that spurious signal is decoupled from

the causal signal. Adversarial data can be generated by gradient descent in the latent

space of an autoencoder-like model to produce augmented training data. The effect

of training on this data is a reduced association between spurious and causal signals,

requiring a model to rely on the causal signal. LAD shows marked improvement over

state-of-the-art, without relying on any presence of bias-free data (as opposed to Nam

et al. [2020], Bras et al. [2020] and Bahng et al. [2020]).

1The Neural Network Tank Urban Legend (https://www.gwern.net/Tanks) is, in fact, another
example of collider bias failure in neural networks. Or at least, it would be, if it had ever happened.

https://www.gwern.net/Tanks
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5.3 Problem Definition

Consider the probabilistic graphical model in Figure 5.1. In this setup there are multi-

ple underlying unobserved variables2, e.g. z1 and z2, a binary sample selection variable,

s, and observed variables x and y. Here z1 and z2 correspond to causal and extraneous

variables that influence the observed data. While for most problems we do not have

access to this distribution, PD(x,y) for data D , representative empirical samples are

typically available. Setting s to a value (e.g., without loss of generality, s = 1) implies

the data is subject to a particular selection criterion which restricts the data to samples

from P(z1,z2|s). Ideally, we want a model to generalise across all possible values of s;

that is to the unconditioned case P(z1,z2).

z1

z2

x

y

s

Figure 5.1: Graphical model for collider bias. z1, z2 are latent information sources. The

target y is causally dependent on z1 but not z2. But x contains information from both

latent sources. s is a binary sample selection variable. Setting s implies data is subject

to some selection criterion.

When selecting or collecting data for a problem we inevitably introduce a sampling

bias, effectively setting s to some value, which can be thought of as a form of rejection

sampling. For example, all the times a user implicitly chooses not to take a photo, or

not to include a photo in a particular collection. In this way sampling bias couples

the underlying variables of the observed data in a manner that neural networks are

ill-equipped to handle.

We have included the sampling mechanism, s, explicitly in Figure 5.1. Condition-

ing on s is what actually causes the association between underlying variables. In both

cases the secondary signal does not cause the target and is therefore a spurious signal.

5.3.1 Spurious signals have high-gradient learning signals

Crucial to our insight into the tendency of neural networks to rely on easy-to-learn

spurious signals in the training data is understanding how the gradient of the training
2Regarding notation, we are using x to denote a random variable and x to denote an observation

thereof.
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loss with respect to these signals evolves over learning. To this end I present a toy

problem, called the one-pixel problem 3 in Section 5.3.2, and track the average gradient

ratio (GR) to determine the relative reliance on causal (z+) and spurious (z−) variables:

GR(z+,z−) =
1
N

N

∑
i

[∥∥∥∥ ∂L
∂z+,i

∥∥∥∥
2

/∥∥∥∥ ∂L
∂z−,i

∥∥∥∥
2

]
, (5.1)

where ∥·∥2 is the L2 Norm. The notation z·,i refers to an observation i of the variable.

When GR = 1 the learning process is not favouring either signal. When GR < 1 the

learning process is favouring the spurious signal and when GR > 1 it is favouring the

causal signal. As this quantity is impossible to compute when we do not have direct

access to the causal variable, we have focused here on a toy problem to enable us to

assess this.

5.3.2 One-Pixel problem

The one-pixel problem is a bias-reliance demonstration that can be constructed simply

using any image dataset for classification: all that it requires is setting the kth pixel of

the first row of each training image to a pre-selected value (where k is the class index)

– see Figure 5.2.

Figure 5.2 tracks the gradient ratio between gradients with respect to the causal

signal and those with respect to the spurious signal, GR(z+,z−). This is measured as

the ratio of the L2 norm of gradients w.r.t. the image pixels (all but the k pixels of

the one-pixel problem) and the L2 norm of gradients w.r.t. the k pixels encoding class

information, over 1000 minibatch iterations. This is simple to compute for the one-

pixel problem as there are distinct pixels associated with each signal. At initialisation

the gradients are stronger over the image space (the causal signal), but become domi-

nated by the gradients over the k-pixel space (spurious) after only 230 iterations. This

demonstration serves to show that neural networks prefer easy-to-compute spurious

signals and that gradient information is the mechanism that preference takes.

3Identification of this issue was a result of discussions within in the research group with Harrison
Edwards in 2016.
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Figure 5.2: One-pixel problem on MNIST. The class information is encoded as a spuri-

ous signal in the first k pixels of the first row in each image (a). We show the training

loss (b), training accuracy (b), l2 norm of gradients on the informative pixel and the re-

maining image (c), and the ratio of said gradients (d). In this case the test accuracy is

no better than random chance.

5.4 Prior Work

5.5 LAD: Latent Adversarial Debiasing

In this work, I consider countering collider bias in neural networks by augmenting

the training data to artificially disassociate spurious signals and causal signals. Three

components are required to achieve this:

• A latent representation, h, of the underlying data manifold, modelled by a neural

network mapping g, such that the spurious and causal signals are approximately

disentangled and accessible.

• A biased classifier, f , trained to predict classes y from observations h.

• A method to remove spurious signals from training examples using both f and

g.

In the rest of this section I describe each component. Note that similar but more

restrictive assumptions were made by prior works [Nam et al., 2020, Bras et al., 2020,
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Bahng et al., 2020, Karras et al., 2018]. Perhaps most importantly, we assume f re-

lies on the easy-to-learn spurious signal when trained on h observations. f is also

constrained to ensure this is the case.

5.5.1 Manifold Access

We assume the data distribution is conditional on a set of underlying variables resulting

in the distributions: p(x | z1,z2) and p(y | z1) (see Figure 5.1). This corresponds to an

underlying low-dimensional manifold that dictates the space of plausible images in the

data.

We need access to (an approximation of) the latent manifold parameterised in a

way that the easy-to-compute spurious signal is disentangled from the causal signal.

This helps ensure that when we train a classifier f , it learns to rely on the information

that induces bias, and allows us to alter or remove this information.

Stutz et al. [2019] demonstrated a means of producing on-manifold adversarial

examples by training class-specific variational autoencoder generative adversarial net-

work (VAEGAN) hybrid models [Larsen et al., 2016] for each class in the data. Via an

adversarial walk on the approximated manifold space, Stutz et al. [2019] were able to

generate adversarial images with plausible deviations from the originals.

VQ-VAE: quantised latent space To satisfy the above desiderata, we can use a vec-

tor quantised-variational autoencoder (VQ-VAE) [Van Den Oord et al., 2017]. This

model enables learning of a discrete (quantised) latent representation, where the num-

ber and size of the discrete codes are chosen prior to learning. Where Stutz et al.

[2019] learned VAEGAN models for each class to constrain the changes such that they

remain approximately on-manifold, the quantisation constraint of VQ-VAE offers a

similar effect. We use the quantisation mechanism directly in the latent adversarial

walk to project gradient-based changes onto the manifold. Early experimentation with

standard autoencoders and VAEs evidenced that a strong constraint in the adversarial

walk was paramount to downstream performance.

The VQ-VAE is effectively an encoder decoder structure (See Figure 5.3) with a

quantised latent space. The straight-through gradient trick [Bengio et al., 2013b] is

used to enable learning given the quantised space. Consider that the original image
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can be reconstructed as:

x̂ = g(x)

= dec(h),h = enc(x),
(5.2)

where x and x̂ are the input and reconstructed images, respectively, g(·) is the VQ-

VAE, (dec, enc) are the decoder and encoder components thereof, and h is the latent

representation for x.

Classification from bias We can then attach a classifier f to the latent space h in

order to approximate the decision boundary associated with the easy-to-learn spurious

signal:

ŷ = f (h), (5.3)

where ŷ is a class prediction, and train it using standard SGD to minimise the cross-

entropy loss. While h will contain both spurious and causal signals, it is the ten-
dency of f to latch onto easy-to-learn features that enables LAD to work. In the

following section I discuss how to use the two models f (·) and g(·) to traverse the la-

tent space h, thereby augmenting the training data such that resultant decoded images

are observations where the causal and extraneous variables are decoupled.

LAD bears resemblance to the work by Gowal et al. [2020], who assume that the

lowest level representation learned by StyleGAN is not causally linked to the label.

We relax this assumption in the sense that we only require our latent variable model

to disentangle the underlying causal variables. We will rely on a (simple) classifier

( f ) and a gradient-based latent adversarial walk to decouple the spurious and causal

signals.

5.5.2 Latent adversarial walk

While a number of adversarial attack example generation algorithms exist [Szegedy

et al., 2013, Madry et al., 2018, Goodfellow et al., 2015], these aim at producing im-

perceptible changes to an image such that a target classifier makes an incorrect, yet

often highly confident, prediction on that image. Consider the family of white-box

adversarial attacks [Madry et al., 2018] that maximise the training loss:

max
δ

Lce( f (x+δ),y) (5.4)

where Lce is the cross-entropy loss and δ is computed via projected gradient descent.

δ is constrained to ensure perceptual similarity between x and x+ δ. This is an opti-

misation process on the image space: an adversarial walk to systematically alter the
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Figure 5.3: Model setup. The VQ-VAE is the encoder decoder structure, tasked with

learning quantised latent representation, h. The ‘simple’ classifier, f , is learned using

(h,y) as input-target pairs, where y is the class label. The latent adversarial walk (blue

circle) alters h such that f produces high entropy (maximally uncertain) class predic-

tions. The altered representation, hδ, can then be decoded into xδ where the easy-

to-learn spurious signal and causal signal are decoupled. The ultimate aim is to train

an additional classifier, fstrong using this augmented data for improved generalisation in

collider bias settings.

image and maximise the training loss. In our case, however, we perform the adversarial

walk on the latent space with the objective of maximising the entropy of the predictive

probability:

max
δ

H( f (quantise(h+δ,G))), (5.5)

where H is the entropy of the class probabilities f computes, the quantise(·) function

is the quantisation mechanism of VQ-VAE with learned latent codes. We compute

δ as the standardised partial gradient to preserve the strength of the changes for any

example:

δ = α ·

(
∂H
∂h −mean(∂H

∂h )

std(∂H
∂h )

)
, (5.6)

where mean(·) and std(·) are the mean and standard deviation computed over the en-

tire gradient vector for each image, and α is a hyper-parameter dictating the step size

of the walk. Standardisation helps ensure the steps taken by the gradient walk are

approximately equal in length.

Algorithm 1 details the quantisation-constrained entropy-targeted adversarial
walk (QE-walk) used for LAD. The end-goal here is to produce an altered latent rep-

resentation, hδ = advwalk(h, , f ).
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Algorithm 1: Quantisation-constrained entropy-targeted adversarial walk.
Input : f (·), y, h, α, steps, g(·)
Output: Adjusted latent representation, hδ

hδ← h // initialise hδ to h

for i← 1 to steps do
ŷ← f (hδ) // compute prediction

H← entropy(ŷ) ;

backprop to maximise H;

compute δ;

hδ← hdelta +α ·δ ;

hδ← quantise(g,hδ) ;
end

5.5.3 Post-walk classification

Once the latent representation has been adjusted such that the simple classifier, f ,

outputs high entropy probabilities (i.e., it is unsure which class to predict for h), we

can then decode the new representation using the VQ-VAE decoder to construct a new

image:

x̂δ = dec(hδ). (5.7)

The goal is that this new image should contain very little information related to what

f used to classify. Since f is constrained and we assume it will latch onto the easy-to-

learn spurious signals, this gives us a way of intentionally augmenting data to remove

these signals. We can then use xδ to learn an additional classifier in a standard fashion.

We call this final debiased classifier fstrong.

5.6 Experiments

I explored three datasets of increasing difficulty to assess the relative merit of LAD. For

comparison with earlier works, I tested LAD using two variants of coloured MNIST

[LeCun et al., 1998] (background and foreground) in Sections 5.6.2 and 5.6.3. Al-

though seemingly similar, these two variants of MNIST differ in the level of entan-

glement between image shape and colour. For the background-coloured variant, the

colour is largely independent of the image shape, while for the foreground-coloured

variant, the colour always occurs with shape. Following Nam et al. [2020], I also
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tested LAD using the corrupted CIFAR-10 dataset [Krizhevsky et al., 2009].

I consider two forms of assessment. The first is the independent setting, denoted

‘cross-bias’ by Bahng et al. [2020], where the spurious signal is independent of the

causal signal during test (e.g., colours are sampled independently at random during test

for coloured MNIST datasets). The second is called the conditioned setting, where the

sample selection is changed so the spurious signal is held constant during the test (e.g.,

the original MNIST test set with black a background and white foreground). These

cover two different test-scenarios where the spurious signal has no influence in the test

setting.

Bias ratio For comparison to earlier works the concept of bias ratio needs to be in-

troduced. This is the ratio of biased to unbiased training data. For example, using the

concepts defined in this chapter, a bias ratio of 90% would mean that 9 out of 10 train-

ing observations would be affected by sample selection bias such that the underlying

causal and extraneous variables are coupled. The remaining training samples will not

exhibit this coupling.

Unlike earlier works, I chose to consider the circumstance where the different spu-

rious signals are pervasive. Therefore I did not assume any training data was free from

bias. The idea behind LAD is to handle the fundamental issue of easy-to-compute

spurious signals, instead of leveraging small amounts of bias-free data. Since earlier

works do not consider training data that is never free from bias, I also compared LAD

on the settings they target, ensuring the proportion of biased data is listed consistently

for earlier works.

5.6.1 Implementation Details

For all datasets a ResNet-20 [He et al., 2016b] was used for the final fstrong classifier,

and a single hidden-layer multi-layer perceptron (with a width of 100 units) was used

for f . For both MNIST datasets, the VQ-VAEs were trained with 20 discrete latent

codes of length 64. For corrupted CIFAR-10 the VQ-VAE was trained with 2056

discrete latent codes of length 64.

Regarding the QE-walk: 20 steps with α = 0.1 was used for background coloured

MNIST; 7 steps with α = 0.1 was used for foreground coloured MNIST; and 4 steps

with α = 0.07 was used for corrupted CIFAR-10. These settings were determined

using a brief hyper-parameter search and cross-validation. The results given in the
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Dataset Method Bias ratio Accuracy (independent) Accuracy (conditioned)

BG

coloured

MNIST

LAD 100% 98.82 ± 0.039 % 95.35±0.32%

Vanilla 100% 0.00±0.00% 10.64±0.65%

ReBias 99% 88.1% -

ReBias 99.9% 22.7% -

FG

coloured

MNIST

LAD 100% 98.86 ± 0.10% 98.34±0.40%

Vanilla 100% 0.01±0.01% 9.90 +- 0.13

LfF 95% 85.39±0.94% -

LfF 99% 74.01±2.21% -

LfF 99.5% 63.39±1.97% -

Corrupted

CIFAR-10

LAD 100% 39.93 ± 0.62% 51.89±0.32%

Vanilla 100% 12.16±0.16 21.49±0.16

LfF 95% 59.95±0.16% -

LfF 99% 41.37±2.34% -

LfF 99.5% 31.66±1.18% -

Table 5.1: Test accuracy on all datasets for two test conditions: the independent case

and the conditioned case. The vanilla method is simply a fstrong (c.f. Figure 5.1) model

trained on the original data. While we include results from ReBias [Bahng et al., 2020]

and LfF [Nam et al., 2020], their methods are not directly comparable because they

assume the training set contains some percentage of unbiased data.

following sections were computed on the held-out test data. Regarding training data

augmentation, random crops with padding size of 4 was used for all datasets, random

affine transformations were applied to the MNIST images (with limits of: rotation =

15 degrees, scale = [0.8,1.1], and shear = 15 degrees), and random horizontal flips

were applied to the corrupted CIFAR-10 images.

5.6.2 Background coloured MNIST

To produce this dataset we used the code provided 4 by the authors of ReBias [Bahng

et al., 2020] and compare to their results in Table 5.1. It is evident that ReBias is

strongly dependant on using a small portion of unbiased data: at a bias ratio of 99%,

they achieved 88.1% test accuracy on an unbiased test set but only 22.6% at a bias ratio

of 99.9%. LAD achieved 98.82% on this dataset at 100% bias ratio, approaching what

is achievable on standard MNIST.
4https://github.com/clovaai/rebias

https://github.com/clovaai/rebias
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(a) x: BG coloured MNIST (b) x̂δ: LAD reconstruction

(c) x: FG coloured MNIST (d) x̂δ: LAD reconstruction

(e) x: corrupted CIFAR-10 (f) x̂δ: LAD reconstruction

Figure 5.4: Training data examples for (a) background coloured MNIST, (c) foreground

colorued MNIST, and (e) corrupted CIFAR-10, with corresponding LAD reconstructions

for each dataset in (b), (d), and (f), respectively.
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The efficacy of LAD is clearly evident by these results. Figure 5.4 (a) and (b) shows

the input data and LAD reconstructions, respectively. LAD is clearly able to augment

the colour information such that it is decoupled from the classification targets.

5.6.3 Foreground coloured MNIST

To generate this data the protocol in LfF [Nam et al., 2020] was followed. Ten colours

were randomly chosen for each class. For each image an RGB colour is sampled

(which is correlated to the class for training data – see Section 5.3) from N ∼ (RGB,0.005):

Gaussian noise is added to the selected mean colour with a standard deviation of 0.005.

Similar to background coloured MNIST, LAD exceeds the state-of-the-art at the

time of testing, even though we consider 100% biased training data: the closest com-

parison of LfF achieves a test accuracy of 63.39% at 99.5% bias while we achieve

98.86% test accuracy. Again, these results are approaching what is achievable on the

standard MNIST dataset. However, a close inspection of Figure 5.4 (c) and (d) will

evidence that the alterations owing to LAD do begin to affect the the digit shape – note

particularly the digit 9 in Figure 5.4 (d). Compare this to (b) where the altered data

leaves the digit shape almost entirely unchanged. This difference is owing to the level

of entanglement between spurious and true signal. Foreground coloured MNIST has

the extraneous variable (colour) overlayed on the causal signal (digit shape) instead of

as a static background. Nonetheless, the test accuracies are almost identical.

5.6.4 Corrupted CIFAR-10

Next I consider a constructed dataset where the bias and signal variables are far more

entangled. Following Nam et al. [2020], a variant of corrupted CIFAR-10 was con-

structed with corruptions: Snow, Frost, Fog, Brightness, Contrast, Spatter, Elastic,

JPEG, Pixelate, Saturate. During training these correlate with each class such that the

causal and spurious signals are coupled. Using corruptions to benchmark neural net-

work robustness is not new – Hendrycks and Dietterich [2019], and using them as a

class-informative signal yields an extremely challenging dataset.

Not only are corruptions often nuanced, they are also destructive, meaning that dis-

tentangling these from the underlying image is not always possible. Blurring, elastic

distortion, JPEG compression, and pixelation are all examples non-reversible corrup-

tions. While some (like contrast or brightness adjustment) are easier to alter, it is

understandable that earlier work was only able to achieve 31.66% test accuracy at a
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high bias ratio. We were able to achieve 39.93% test accuracy at a bias ratio of 100%.

While LfF can achieve 59.95% on corrupted CIFAR-10, this requires a relatively low

bias ratio of 95%, once more evidencing the reliance of earlier works on bias-free

training data. Note that the reconstructions in Figure 5.4 (f) are blurry, highlighting the

need for an improved encoder-decoder model.

5.7 Discussion and Conclusion

Neural networks tend to focus on easy-to-learn features, should those features be suf-

ficiently informative of the target. In this chapter I showed that this problematic be-

haviour means that neural networks are ill-equipped to handle a form of sample se-

lection bias known as collider bias. The process of collecting and curating training

data can often create a scenario where test data differs substantially from training data.

When the training data contains a spurious signal (such as lighting conditions), neu-

ral networks will generalise poorly. We argue that it is the deep structure of neural

networks, combined with the gradient-driven learning process used that amplifies their

dependence on easy-to-learn spurious signals.

I presented LAD, a method to produce latent adversarial examples that specifically

target the easy-to-learn spurious signals in the data manifold. Using a VQ-VAE to

approximate the data manifold corresponding to causal and spurious signals, the ten-

dency of neural networks to latch on to easy-to-learn features could be leveraged to

define an appropriate adversarial walk on this manifold. Decoding the adjusted latent

manifold back to the image space yielded augmented data where the effect of spurious

signals were largely mitigated against. A classifier trained on this new data generalises

better. I evidenced substantial test accuracy gains of 76.12% on background coloured

MNIST, 35.47% on foreground coloured MNIST, and 8.27% on corrupted CIFAR-10,

even when 100% of the training data contained spurious signals.

Since LAD does not require any data without spurious signals, it can be seen as

a step toward solving the broad issue that neural networks latch on to easier-to-learn

features. While I focused on constructed datasets that demonstrated effectively the

problem at hand, extending the ideas and solutions presented in this chapter to broader

notions of dataset bias and neural network robustness is a natural progression and is

planned for future work.
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Conclusion

Learning good representations of images is important to meet the demands made by

downstream tasks, yet challenging because of the high-dimensionality and complex

composition of images, and the cost of labelling data for specific tasks. Proxy objec-

tives are widely used when the downstream task is unknown apriori, or when it is too

costly or too difficult to label data. For example in self-supervised learning, proxy

objectives are cost-constrained such that they do not use classification labels, while

the downstream task is classification. The recent success of self-supervised learning

[Chen et al., 2020a, Radford et al., 2021] shows that good proxy objectives can enable

learning useful and robust representations of images.

However, proxy objective failure can occur when there is a disconnection between

training objective and downstream task, such that the learned representations fail to

meet the requirements for good performance on the downstream task. In the work de-

scribed in this Thesis, I considered a common failure where neural networks learned

via proxy objective tend to settle in local optima of the objective that are characterised

by easy-to-learn features. This is a failure of proxy objectives to adequately describe

representational requirements (such as invariance to changes in image colours, for ex-

ample) or constrain learning (to not rely on easy features in the data, for example),

resulting in neural networks that fit adequately the training objective but which fail to

generalise to the downstream task(s).

Deep decision tree layer In Chapter 3 I focused on learning efficient compact dis-

crete representations. This type of representation is of particular interest because infor-

mation efficiency is measurable for fixed capacity discrete representations. Semantic

hash codes are compact discrete representations used for the task of fast content-based

image retrieval because comparing hash codes is low-cost. Yet it is challenging to use

98
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neural networks to learn deep semantic hash functions because the mapping from im-

age to hash space is highly compressive and involves a non-differential discretisation

operation that is incompatible with gradient-based optimisation methods. I showed

that common objectives in the literature can also have the tendency to over-compress;

that is they lose more information than they should in forming hash codes, resulting in

reduced retrieval performance and inefficient representations.

I presented the deep decision tree layer to overcome the issue of over-compression

and improve the information efficiency of hash codes. To do this, hash codes were

composed from a supervised portion and an unsupervised portion, with the former

learnt using a classification head and a standard supervised objective, and the latter

using a novel deep decision tree layer and a contrastive learning mechanism. The

supervised portion was constructed to be a minimal binary representation that full

captures the class label(s). The decision path from root to leaf through the decision

tree builds the unsupervised portion. Training the decision tree using an unsupervised

contrastive objective ensured an approximately even partitioning of images over the

leaves in the tree, which in turn resulted in hash codes with good coverage of the avail-

able hash space. I provided evidence of: state-of-the-art image retrieval performance

on CIFAR-10 and ImageNet100, and comparable performance on NUS-wide; better

transfer to more complex datasets (CIFAR-10 to CIFAR-100, and CIFAR-100-20 to

CIFAR-100); hash code robustness to distortions in the image space; image retrievals

that could be precisely arranged by increasing relevancy with the query image, lever-

aging both high-level (e.g., class labels) and low-level (e.g., texture or colour) abstract

features; and decision tree use for interpretability and dataset exploration.

Deep hierarchical object grouping In Chapter 4 I focused on the proxy objective

of maximising mutual information between cluster assignments from differently aug-

mented images. This proxy objective is ill-defined because it has multiple quantita-

tively similar local optima (e.g., they have similar losses), but which rely on substan-

tially different features in the data (e.g., one could rely on average colour while another

could rely on object type). Greedy gradient-based optimisation methods fail to find lo-

cal optima that also result in good performance on the downstream task of clustering.

Instead, neural networks optimised to map differently augmented images to high mu-

tual information representations tend to learn mappings that favour reliance on easy-
to-compute features in the data, when available. While stronger image augmentations

(e.g., Sobel edge-detection or small image crops) make unavailable easy-to-compute
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features, they also tend to destroy potentially useful semantic information in an image

and are only a symptomatic treatment of the underlying proxy objective failure.

I presented deep hierarchical object grouping (DHOG) to address this proxy objec-

tive failure. Instead of trying to prevent a neural network from getting stuck in a bad

local optima by imposing increasingly destructive image augmentations, I proposed

to sequentially expand the knowledge base of the neural network into a hierarchy of

solutions (i.e., clusterings) that optimise the proxy objective. By minimising the mu-

tual information between cluster assignments from different compute heads, a neural

network can be encouraged to learn diverse clustering solutions. These solutions are

arranged in a hierarchy of complexity (from ‘simple’ to ‘complex’) by applying com-

pute heads at different depths in the network, each of which yields cluster allocations.

Gradient stopping was used to ensure the hierarchical arrangement, such that earlier

compute heads were always unaffected by the solutions found by later compute heads.

When it was developed DHOG improved performance on the state-of-the-art image

deep clustering method while also using less destructive image augmentations.

Latent adversarial debiasing In Chapter 5 I showed how a pernicious form of sam-

ple selection bias, called collider bias, can result in training images with entangled

features from both causal and extraneous unobserved underlying variables. In such a

setup the presence of extraneous variables can result in training images with spurious
signals on which a dependence is easy-to-learn when compared to a dependence on

causal signals. This becomes a problem for learning neural networks for classification

when it is easier to compute class predictions from spurious signals. I showed that a

standard training objective failed to produce a robust classifier for three datasets from

the literature constructed with spurious signals; e.g., MNIST where the background

colours are correlated with the class in only the training images but not at test time.

I introduced latent adversarial debiasing (LAD) as a technique to decouple the spu-

rious signals from the class labels in the training data. LAD works by first modelling

the training images using a vector-quantised variational autoencoder in order to pro-

duce latent representations for the images. A simple classifier is then trained using the

latent representations as input. Given an image, the relationship between the spuri-

ous signal and the class is then removed using a gradient walk in the latent space that

targets high entropy in the simple classifier’s predictions, with the vector-quantisation

ensuring minimum deviation from the underlying data manifold. The adjusted latent

space can then be decoded for this image, resulting in a new image that retains the
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relationship between the causal signal and class but for which the spurious signal is

not informative of the class. A different neural network trained on the altered images

is substantially more robustness at test time.

6.1 Implications and direction for future work

What I have come to learn throughout this work is that there are many, often hidden,

examples of proxy objective failure, for which circumvention is often challenging.

The notion of a proxy objective is broad enough to encompass many different training

paradigms and objectives, and it enables a perspective on representation learning that

brings to light the tendency of neural networks to find simple, non-robust, or poorly

generalising solutions to the problems users wish them to solve. This justifies a more

pragmatic approach to questioning whether existing training objectives are sufficient

at preventing non-performant neural networks. Instead of investing more money, com-

pute, or time into training large neural networks, perhaps we should first make sure

that the proxy objectives we use do not fail.

I would like to combine the ideas from DHOG and DDTL to create new deep deci-

sion forests, where each tree partitions the data in a unique way, and where the forest

can be trained to maximise coverage of the space of possible binary tree partitionings.

There has also been interesting recent work in comparing distributions [Feydy et al.,

2019] that might enable better comparisons between clusters allocations or decision

tree leaf probabilities, but this remains to be explored. Using gradient walks to pro-

duce neural network-dependent image augmentations is of interest to me. I explored

this for a time during this work, with the goal of ‘augmentation-free’ self-supervised

learning, but the degree of success was not sufficient to warrant inclusion in this Thesis.

Nonetheless, combining the gradient walk from LAD with self-supervised learning in

an online framework may be a particularly interesting direction for future work.

My original plan was to look into layer-wise training of neural networks toward

the idea of ‘instant neural networks’. In some sense the objectives used in layer-wise

learning fail because they are usually intended for end-to-end training, and the features

they produce are ill-suited to further downstream processing. Therefore, mitigating

proxy objective failure is relevant for layer-wise learning and should still be explored.

Finally, the notion of ‘exploration’ in deep reinforcement learning is intuitively similar

to the ideas of finding unique solutions for optimising objectives, similar to what I did

for DHOG, which warrants further exploration.
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