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Abstract
The impossibility of creating perfect identical copies of unknown quantum systems
is a fundamental concept in quantum theory and one of the main non-classical
properties of quantum information. This limitation imposed by quantum mechan-
ics, famously known as the no-cloning theorem, has played a central role in quan-
tum cryptography as a key component in the security of quantum protocols. In
this thesis, we look at Unclonability in a broader context in physics and computer
science and more specifically through the lens of cryptography, learnability and
hardware assumptions. We introduce new notions of unclonability in the quan-
tum world, namely quantum physical unclonability, and study the relationship with
cryptographic properties and assumptions such as unforgeability, randomness and
pseudorandomness. The purpose of this study is to bring new insights into the
field of quantum cryptanalysis and into the notion of unclonability itself. We also
discuss applications of this new type of unclonability as a cryptographic resource
for designing provably secure quantum protocols.

First, we study the unclonability of quantum processes and unitaries in relation
to their learnability and unpredictability. The instinctive idea of unpredictability
from a cryptographic perspective is formally captured by the notion of unforge-
ability. Intuitively, unforgeability means that an adversary should not be able to
produce the output of an unknown function or process from a limited number of
input-output samples of it. Even though this notion is almost easily formalized
in classical cryptography, translating it to the quantum world against a quantum
adversary has been proven challenging. One of our contributions is to define a
new unified framework to analyse the unforgeability property for both classical and
quantum schemes in the quantum setting. This new framework is designed in such
a way that can be readily related to the novel notions of unclonability that we will
define in the following chapters. Another question that we try to address here is
"What is the fundamental property that leads to unclonability?" In attempting to
answer this question, we dig into the relationship between unforgeability and learn-
ability, which motivates us to repurpose some learning tools as a new cryptanalysis
toolkit. We introduce a new class of quantum attacks based on the concept of
‘emulation’ and learning algorithms, breaking new ground for more sophisticated
and complicated algorithms for quantum cryptanalysis.

Second, we formally represent, for the first time, the notion of physical un-
clonability in the quantum world by introducing Quantum Physical Unclonable
Functions (qPUF) as the quantum analogue of Physical Unclonable Functions
(PUF). PUF is a hardware assumption introduced previously in the literature of
hardware security, as physical devices with unique behaviour, due to manufacturing
imperfections and natural uncontrollable disturbances that make them essentially
hard to reproduce. We deliver the mathematical model for qPUFs, and we for-
mally study their main desired cryptographic property, namely unforgeability, using
our previously defined unforgeability framework. In light of these new techniques,
we show several possibility and impossibility results regarding the unforgeability of
qPUFs. We will also discuss how the quantum version of physical unclonability

iii



relates to randomness and unknownness in the quantum world, exploring further
the extended notion of unclonability.

Third, we dive deeper into the connection between physical unclonability and
related hardware assumptions with quantum pseudorandomness. Like unclonabil-
ity in quantum information, pseudorandomness is also a fundamental concept in
cryptography and complexity. We uncover a deep connection between Pseudo-
random Unitaries (PRU) and quantum physical unclonable functions by proving
that both qPUFs and the PRU can be constructed from each other. We also
provide a novel route towards realising quantum pseudorandomness, distinct from
computational assumptions.

Next, we propose new applications of unclonability in quantum communica-
tion, using the notion of physical unclonability as a new resource to achieve prov-
ably secure quantum protocols against quantum adversaries. We propose several
protocols for mutual entity identification in a client-server or quantum network
setting. Authentication and identification are building-block tasks for quantum
networks, and our protocols can provide new resource-efficient applications for
quantum communications. The proposed protocols use different quantum and
hybrid (quantum-classical) PUF constructions and quantum resources, which we
compare and attempt in reducing, as much as possible throughout the various
works we present. Specifically, our hybrid construction can provide quantum se-
curity using limited quantum communication resources that cause our protocols
to be implementable and practical in the near term.

Finally, we present a new practical cryptanalysis technique concerning the prob-
lem of approximate cloning of quantum states. We propose variational quantum
cloning (VarQlone), a quantum machine learning-based cryptanalysis algorithm
which allows an adversary to obtain optimal (approximate) cloning strategies with
short depth quantum circuits, trained using the hybrid classical-quantum tech-
nique. This approach enables the end-to-end discovery of hardware efficient quan-
tum circuits to clone specific families of quantum states, which has applications
in the foundations and cryptography. In particular, we use a cloning-based attack
on two quantum coin-flipping protocols and show that our algorithm can improve
near term attacks on these protocols, using approximate quantum cloning as a
resource. Throughout this work, we demonstrate how the power of quantum
learning tools as attacks on one hand, and the power of quantum unclonability
as a security resource, on the other hand, fight against each other to break and
ensure security in the near term quantum era.
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Lay summary
One of the most routine tasks we do almost every day on our computers is copying a file.
A computer file contains information in the form of a string of zeros and ones. But, what if
instead of a normal file, data was encoded inside a tiny physical system? In fact, a system
from the subatomic world where different rules of physic would apply to it. The set of
rules in that scale is known as the theory of quantum mechanics, and quantum mechanics
says that if you have a ‘quantum file’, it is forbidden to copy it! This fundamental rule
of physics called the ‘no-cloning theorem’, or unclonability, while seemingly very limiting,
is a very convenient property of nature. It allows us to conceal information and share
it securely. Controlling quantum systems for the secure transmission of information and
similar cryptographic tasks is called quantum cryptography.

On the other hand, we can also control these subatomic systems to perform computa-
tion, leading to physical devices known as quantum computers that perform computational
tasks in a fundamentally different way from any ‘classical’ computer. Despite applications
in many areas, such as solving some mathematical problems, optimizing some operations,
and simulating complex molecules, quantum computers do not bring good news for our
cryptosystems. For the same reason that they are efficient in solving some mathemat-
ical problems, they can break many of today’s cryptosystems as they are based on the
assumption that solving those problems would take a too long time to be feasible.

Even given the long and challenging technological road ahead of building quantum
computers, there has been incredible progress in recent years that has brought the idea
of quantum computing to reality. Todays’s quantum computers, although ‘small’ in scale
and ‘low’ in quality, can perform interesting tasks even now. Plus, we believe that sooner
or later, we will get to the regime where quantum computers will surpass the limit of
computation for any classical computers. Thus we need to be prepared for the threats
that they will bring on.

The study of cryptography, in the near future, where we can both exploit quantum
systems in our favour and will be at risk due to their computational power, is the art and
science called quantum cryptanalysis. To master this art, one needs to understand the
strengths and limitations of quantum systems. As such, the unclonability will be at the
heart of it.

In this thesis, we study quantum unclonability beyond its usual scope. We explore
other forms of natural unclonability that not only, are fundamentally connected to no-
cloning, but can also be exploited for cryptography. An example of unclonable objects
is optical devices that are particularly unique since their formation or manufacturing pro-
cesses involve factors that we cannot control. As a result, they become physical devices
that are not reproducible. This uniqueness makes them also a physical key. These phys-
ically unclonable objects can be modelled in the regime of quantum mechanics. A major
part of this thesis includes the comprehensive study of them in the quantum regime, their
several interesting properties, and finally, their applications in cryptography.

We also explore the relationship between unclonability and learning, that is how effi-
ciently one can learn a quantum or classical system. In this research area, we use different
tools from other fields of physics and computer science, such as machine learning. Specif-
ically, we show that we can make a quantum machine to learn how to efficiently create an
’almost’ satisfactory copy of a quantum system. This machine-learning algorithm can be
used to attack the security of protocols. These attack analyses give a better perspective
on the security of cryptosystems with current and future quantum technology and help
us design our systems more securely.
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Introduction

“See that the imagination of nature is far, far greater than the imagina-
tion of man.”

– Richard Feynman

One of the most impactful scientific revolutions of the 20th century was the de-
velopment of quantum mechanics. Revolutionary discoveries about the behaviour
of light and matter in the late 19th and early 20th centuries, not explainable
by existing knowledge of physics by that time, or what we call today classical
physics, led to a need for a completely new theory. Arguably, the most important
among these was the illumination of the nature of light by Planck in 1900 and
the photoelectric effect between 1883 and 1900. These physical phenomena that
classical physics has still to date failed to explain have created one of those mu-
tually horrifying and exciting situations in science: the sparks of maybe we got it
all wrong!

Fanning the flames of this idea led to the birth of the main concepts of quantum
theory and eventually to a well-established formalisation of quantum mechanics as
we know it today. Quantum theory has changed our mindset and understanding
of nature to a great degree. Even though it has gracefully and even surprisingly
explained those phenomena which classical physics fell short in describing, it did
so at the cost of being counter-intuitive and odd to our classical minds. It comes
with predictions about nature, not as it appears in our everyday life, but as Richard
Feynman famously put it “nature, ... she is absurd” [Ric88]. Quantum mechanics
left our human mind with questions and mysteries about probabilistic nature of
observation, non-locality, unclonability (which is the core topic of this thesis), and
many more to ponder about over the years.

Attempting to unravel some of the mysteries of quantum mechanics led to
the appearance of quantum information theory [NC10], which takes an informa-
tion theory approach to study quantum systems. This new field, together with
the rise of quantum computation, has engaged physicists, mathematicians, and
computer scientists with new fundamental questions about the concept of com-
putation and the differences between classical and quantum versions of it [AC16].
Quantum information, in its simplest form, starts with the idea of considering dis-
crete quantum systems as carriers of information and treating them as quantum
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versions of the binary systems we use for the storage and manipulation of informa-
tion. However, the field expands extensively beyond this humble foundation and
incorporates the full framework of information theory and many other powerful
mathematical tools such as probability theory, group theory, representation theory
and so on. Using all this powerful machinery, quantum information sheds a light
on complicated problems of dealing with quantum properties of nature. Thanks
to quantum information, we have now developed a much better understanding of
these problems to the point that most of them are no longer mysteries, even if
still strange. The idea of quantum computing, on the other hand, emerged from
the idea of using physical quantum mechanical systems to simulate themselves.
A task that seemed to be too hard to simulate using classical digital computers.
This idea was introduced by Feynman1 in 1981, at a conference where he talks
about the difficulties of such simulations and asks “Can you do it with a new kind
of computer? A quantum computer?”[Pre21].

To realise Feynman’s groundbreaking idea would require us to understand this
new kind of computation and to eventually acquire the ability to control quantum
systems for performing our desired computational or simulation task. Obtaining
this ability, as Feynman has predicted “doesn’t look easy”, and almost 40 years of
relentless research (from his talk) has proved to be truly the case. Notwithstanding
the unresolved challenges of controlling quantum systems, there has been remark-
able progress in this area, especially in recent years. One of the main challenges is
to achieve quantum computers able to perform useful computational tasks, out-
side the reach of classical computers, which requires a considerably large scale and
a high level of control over such systems. In 2019 the Google AI Quantum group
announced their quantum computer, with 53 working qubits, has surpassed this
limit and has achieved what is famously known as quantum supremacy or quantum
advantage in the realm of computation [AAB+19]. Despite the scepticism and
critics about this result [Kal21, HS21, RSK21], it is an undeniable indication of
an important fact: quantum computers are no longer just an idea, and we have
entered a new era. More specifically, this new era is named NISQ, standing for
Noisy Intermediate-Scale Quantum devices [Pre18]. The NISQ devices provide on
the orders of 10s to 100 noisy qubits, but they can exploit the quantum behaviours
of light or matter to execute some limited quantum programs. Although limited,
they can provide a laboratory for theoretical research in the field of quantum
computation and quantum information that was not possible until very recently.

The future large-scale quantum computers, on the other hand, are believed to
have significant quantum advantages over classical computers for some specific
problems, which are not limited to the simulation of physical systems. The range
of problems we hope to be able to solve more efficiently with quantum comput-
ers extends to decision problems, search problems and learning problems. The
ability to solve these problems, not just faster, but perhaps in a different way,
using quantum properties, has already and will continue to impact many areas of

1Although not all the credit should be given to Mr Feynman! The idea of quantum computing
in other forms, was also mentioned by Yuri Manin [man80] and Paul Benioff [Ben80] in 1980.
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physics, computer science, chemistry [LWG+10, CRO+19, MEAG+20], biology
[EWA+21, CRAG18, OSS+21], and even linguistics [HSG13, CK18, MTdFC20,
MGdF+21]. One of the fields that has been hugely affected by quantum comput-
ing and quantum information is cryptography. Quantum mechanics has a rather
fascinating and somewhat contradictory relationship with cryptography. When
quantum steps into the realm of cryptography, not only does it threaten security,
but it may as well enhance it! But most definitely, it has changed the way one
can look at cryptography, as it has done with computation. Let us first start with
the negative side of the story.

It is well-known that Shor’s quantum algorithm [Sho94] menaces many widely-
used cryptographic schemes that are based on the mathematical hardness assump-
tions of factoring and the discrete logarithm problems (such as RSA). A sufficiently
large, fault-tolerant and universal quantum computer will be able to run this algo-
rithm and solve these problems efficiently [WK19]. Furthermore, Shor’s algorithm
is not the only quantum algorithm that can be used as an attack on classical
cryptography schemes. Other famous algorithms, such as Grover or Simon, have
also been used for this purpose [BHT98, KLLNP16, JL18, LM17, GLRS16, AL13].
Generally speaking, a quantum computer can be seen as a powerful computational
resource in the hands of an attacker. Yet, this extra computational power is not
the only aspect that can raise an issue. An adversary who has been given the
possibility to exploit non-classical properties of quantum data may as well, have
other advantages. For example, a quantum adversary can also use entanglement
to extract crucial information from a system or use the power of quantum su-
perposition while interacting with cryptosystems. Hence a very central question
to ask is What are the possible advantages of an attacker equipped with quan-
tum capabilities? Answering this question, in full generality, is brutally challenging
and requires a profound understanding of the underlying assumptions (both com-
putational and physical) of cryptographic schemes, as well as the new potential
ways for these quantum capabilities to be exploited to break them. Nevertheless,
partially addressing this question is one of the central ideas of this thesis.

On the bright side, quantum mechanics and its odd properties provide us with
a new way of achieving cryptographic functionalities, or that is to say, a funda-
mentally distinct type of cryptography: one that is based on the laws of quantum
mechanics and the limitations that it imposes on the adversary. The field of re-
search that studies this direction is known as quantum cryptography. The most
well-known problem studied in this field is Quantum Key Distribution (QKD), a
protocol that enables two remote parties to establish a secure key by relying on the
characteristics of quantum mechanics [BB14] in the presence of the most possibly
powerful quantum adversary. Perhaps one of the most intriguing aspects of QKD
is that, under a carefully specified set of assumptions and requirements about
the underlying physical systems, it provably achieves the strongest known level of
security without any computational assumptions. QKD, however, is not the only
example of what quantum cryptography can bring to the table. For example, the
wide range of capabilities that quantum features equip us with has motivated the
construction of networks where the nodes are armed with the ability to transmit,
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store and manipulate small quantities of quantum information2[WEH18]. These
quantum networks (also called a quantum internet) can enable applications fun-
damentally impossible for purely classical networks and systems, such as quantum
money, quantum multi-party computations, and delegated quantum computing.
For a better overview of these functionalities and developed protocols, we refer
the reader to the quantum protocol zoo [Ver19], an open repository for quantum
protocols.

In quantum cryptanalysis3, which is the other main topic of this thesis, we
walk a thin line between these two sides, trying to win the everlasting battle be-
tween making and breaking cryptosystems in a world (probably not too far away in
the future) where both sides can make the most of quantum mechanical systems
and computers. As such, quantum cryptanalysis encompasses many subfields of
quantum sciences from quantum computing and quantum information to the foun-
dations of quantum mechanics, to better manipulate them for designing secure
systems. Furthermore, it has even merged with relatively younger fields, such as
quantum machine learning and quantum learning theory, since they provide a new
ground for cryptanalysis. Also, given that quantum technology is usually more
expensive and resource-intensive than the usual classical computers and existing
systems, another balance to maintain in quantum cryptanalysis is between the se-
curity guarantees and the required quantum resources. Maintaining this balance,
although challenging, is what makes the design of such quantum systems and
protocols thought-provoking and theoretically satisfying.

As mentioned above, a key factor for building efficient and secure quantum
cryptosystems in the presence of a quantum attacker is to deeply understand
the fundamental and non-classical aspects of quantum systems in general. In
this spirit, we can ask: What are the key elements of quantum security? or in
other words, What is it that leads to the security (of primitives or protocols) in
the regime of quantum mechanics? Depending on the required functionality or
protocol, different quantum features have been used, such as entanglement and
non-locality, the probabilistic nature of measurements, the indistinguishability of
quantum states and conjugate coding, and most of all, unclonability.

The unclonability of the quantum state is one of the most exploited and most
common non-classical features in any cryptographic functionality that uses quan-
tum systems. This fundamental limitation of quantum mechanics that forbids
creating perfect copies of unknown quantum systems is one of the most central
properties of quantum mechanics. Maybe that is why it is inherent in almost all
quantum protocols and functionalities, even if not consciously employed. It is per-
haps safe to say that unclonability is a resource for achieving quantum security.
However, many questions still remain regarding unclonability, such as Is the no-
cloning of quantum states the only existing form of unclonability? If not, what are

2Often referred to as quantum communication.
3In cryptography, the term ‘cryptanalysis’ is commonly used for referring to the study of attacks

on cryptosystems and often at a practical or implementation level. However, in this thesis, we
use this term in a slightly different sense to address both cases of breaking cryptosystems and
designing secure ones, or more generally for analysing the cryptographic properties of a system
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the other notions of unclonability? and how can we relate them to cryptographic
properties? Or maybe we can ask more fundamental questions such as Is there
any deeper level to the concept of unclonability? These are some of the questions
that we try to tackle in this thesis as we continue to uncover the relationship
between the broader notion of unclonability and quantum cryptanalysis. Finally,
we aim to use the tools and concepts that we develop and gather along the way
for practical applications.

1.1 Thesis overview

We give a brief summary of our contributions and the structure of the thesis. We
exclude Chapter 2, which includes the preliminaries and background materials for
the various tools we used in this thesis.

• Chapter 3: We start from the foundations while focusing on three primary
notions: unclonability, unforgeability and learnability. We first lay an ar-
gument about the relationship between unclonability and unknownness, a
concept that we formally define for unitary transformations, and then we
bring unclonability into a greater regime which encompasses both cryptog-
raphy and learning theory. This chapter serves as a roadmap for the rest of
the thesis, where we focus on different aspects of each of the concepts we
will discuss. Moreover, we introduce two main contributions which we will
widely employ in the rest of the thesis. The first one is a new class of quan-
tum attacks based on the concept of emulation, and the next one is a new
unified framework for quantum unforgeability. Within this framework, we en-
close the notion of unforgeability for both quantum and classical primitives,
and we also provide a hierarchy of definitions. Finally, as a case study of
our framework, several impossibility results are given, and some quantum-
secure constructions have been introduced. The content of this chapter
is the combination of two papers, Quantum physical unclonable functions:
possibilities and impossibilities. Quantum 5 (2021)[ADDK21] and A Unified
Framework For Quantum Unforgeability." arXiv preprint arXiv:2103.13994
(2021)[DDKA21], and some unpublished results which were excluded from
the mentioned papers.

• Chapter 4: This chapter focuses on defining the notion of quantum Physi-
cal Unclonable Functions (qPUF) and studying its cryptographic properties
using the unforgeability framework that has been introduced in the previous
chapter. PUFs are a concept borrowed from the hardware security literature.
However, as we will see in this chapter, defining a quantum counterpart is
not a straightforward translation to the quantum regime but a rather more
fundamental generalisation of the notion of physical unclonability. Here, we
answer one of the questions we have asked before, i.e. we confirm the ex-
istence of other forms of unclonability, not unrelated to the unclonability of
quantum states in quantum mechanics, while this relationship is more lucid

https://quantum-journal.org/papers/q-2021-06-15-475/
https://quantum-journal.org/papers/q-2021-06-15-475/
https://arxiv.org/abs/2103.13994
https://arxiv.org/abs/2103.13994
https://arxiv.org/abs/2103.13994
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in the context of quantum PUF compared to classical ones. We focus on
the unitary subclass of quantum PUFs, and we prove general no-go results
about the unforgeability property of any such primitives. Finally, we formally
prove that a large class of them can satisfy a level of quantum unforgeability
powerful enough to make them strong and useful hardware tokens for cryp-
tography. This chapter is based on the paper Quantum physical unclonable
functions: Possibilities and impossibilities. Quantum 5 (2021)[ADDK21] as
a part of a collaboration with Mahshid Delavar, Myrto Arapinis and Elham
Kashefi.

• Chapter 5: This chapter is concerned with quantum pseudorandomness
and its relationship with physical unclonability and, more generally, quan-
tum hardware assumptions. Pseudorandomness is also one of the most
rudimentary building blocks of modern cryptography as it provides the ran-
domness required for cryptographic schemes in an efficient manner. In the
quantum world, quantum pseudorandomness has been recently introduced
by [JLS18] via the notions of pseudorandom quantum states and pseudoran-
dom unitaries. The pseudorandom quantum objects provide an efficient and
computational form of perfect uniform randomness over the Hilbert spaces
known as Haar-randomness. In this chapter, we first study the connec-
tion between pseudorandom quantum states and unforgeability. We prove
that using quantum pseudorandomness will allow the same level of security
guarantee for unforgeability while improving efficiency. Then we delve into
the relationship between quantum physical unclonability and pseudorandom
unitaries, and we show that they are closely connected to the point that
they can be derived from each other in terms of functionality. We also
show that, interestingly, considering some assumptions over the family of
qPUFs, even without assuming the full extent of quantum physical unclon-
ability, will lead to quantum pseudorandom objects. This chapter is the
result of a collaboration between Kaushik Chakraborty, Niraj Kumar and
Elham Kashefi, published in On the connection between quantum pseudo-
randomness and quantum hardware assumptions. Quantum Science and
Technology 7.3 (2022)[DKKC22].

• Chapter 6: This chapter which includes three main results from three projects
is dedicated to applications of quantum physical unclonability and quantum-
enhanced physical unclonable functions. In the first part of the chapter,
we introduce two new identification protocols based on qPUFs as we have
defined and studied in earlier chapters. Our protocols include client-server
scenarios: that is, in the first one, a quantum server intends to identify a
low-resource client who only owns a qPUF device, and in the second pro-
tocol, the client identifies a quantum server with a qPUF device, while we
manage to delegate the quantum verification to the server as well such that
the client only needs to run a classical verification test. Amid the secu-
rity proof of these two protocols lies one of our leading arguments earlier
concerning unclonability, since we will see how quantum physical unclon-

https://quantum-journal.org/papers/q-2021-06-15-475/
https://quantum-journal.org/papers/q-2021-06-15-475/
https://iopscience.iop.org/article/10.1088/2058-9565/ac66fb
https://iopscience.iop.org/article/10.1088/2058-9565/ac66fb
https://iopscience.iop.org/article/10.1088/2058-9565/ac66fb
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ability serves as a resource for these protocols to achieve exponential se-
curity in only a polynomial number of rounds of quantum communication.
We also thoroughly discuss the role of differed quantum testing algorithms
as our verification subroutines and compare them, which can be of inter-
est even outside the scope of the presented protocols and more generally
for other quantum communication protocols. Furthermore, to provide suf-
ficient theoretical ground and benchmark for the experimental realisation
of these protocols in the future, we give a resource analysis in terms of
quantum memory, quantum communication and quantum computation re-
sources. In the second part of the chapter, we will show that the results we
have demonstrated in Chapter 5 bring on efficiency and practicality to our
qPUF-based protocols. Finally, in the last part of this chapter, we introduce
a new quantum-enhanced PUF construction that combines classical physical
unclonability with quantum communication and combines the best of both
worlds. This construction, although weaker than a full quantum PUF, al-
lows for an efficient identification protocol that is implementable with today’s
technology, for instance, the existing QKD infrastructure, while it achieves
a high level of security against quantum adversaries. This application also
shows a particular provable advantage of quantum communication vs clas-
sical ones, as we will discuss through different properties that the protocol
achieves. To prove the security of our construction and protocol, we use
many tools and previous results from quantum information theory, includ-
ing entropic uncertainty relations. The first part of the chapter is based
on the work done in collaboration with Niraj Kumar, Mahshid Delavar and
Elham Kashefi, which resulted in this publication Client-server identification
protocols with quantum puf." ACM Transactions on Quantum Computing
2.3 (2021)[DKDK21]. The second part is from a small section of the paper
mentioned before [DKKC22], while it was more appropriate to be included
in this chapter. Lastly, the third part of this chapter is from a collaboration
with Kaushik Chakraborty, Yao Ma, Myrto Arapinis, and Elham Kashefi,
resulted in the paper Quantum Lock: A Provable Quantum Communication
Advantage. arXiv preprint arXiv:2110.09469 (2021)[CDM+21]. We note
that this last paper is included partially for more coherence and brevity of
the chapter.

• Chapter 7: Finally, we turn to another aspect of the relation between quan-
tum unclonability and quantum cryptanalysis, this time from a machine learn-
ing perspective. This chapter introduces a new cryptanalysis toolkit and
method based on approximate quantum cloning and variational algorithms.
We introduce our machine learning algorithm, VarQlone, that can efficiently
learn to (approximately) clone quantum states of a specified family opti-
mally and in a hardware-friendly manner. This algorithm can have several
applications in the context of quantum foundation and quantum comput-
ing, specifically since it can be run on NISQ devices, as we have done so.
However, in this thesis, we are particularly interested in its application for

https://dl.acm.org/doi/abs/10.1145/3484197
https://dl.acm.org/doi/abs/10.1145/3484197
https://dl.acm.org/doi/abs/10.1145/3484197
https://arxiv.org/abs/2110.09469
https://arxiv.org/abs/2110.09469
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cryptanalysis. For this purpose, we take two classes of quantum protocols,
QKD and quantum coin-flipping, for case studies, and we relate their security
to cloning-based attacks based on VarQlone. We argue that cryptanalysis in
this new fashion, even for protocols that have been information-theoretically
proven secure like QKD, is beneficial since it allows for benchmarking the
state of the art of the current technology with the state of the art of sophis-
ticated attacks that are also implementable on current hardware. Besides
the relevance in the application, this chapter allows us to come back to
the foundations. In the course of this chapter, we connect the security
of certain classes of quantum protocols to specific classes of approximate
cloning. This type of cloning-based cryptanalysis brings us one step closer
to understanding the role of unclonability as a source of security in quantum
cryptography. We even offer several theoretical guarantees and results on
the specifications of this algorithm that could be of interest to the quan-
tum machine learning community. The content of this chapter is from a
collaboration with Brian Coyle, Niraj Kumar and Elham Kashefi and was
published in Progress toward practical quantum cryptanalysis by variational
quantum cloning." Physical Review A 105.4 (2022)[CDKK22]. Again, since
the context of the research done in this paper is wider than the focus and
interest of this thesis, we have only included the most relevant parts and
main contributions of the current author.

https://journals.aps.org/pra/abstract/10.1103/PhysRevA.105.042604
https://journals.aps.org/pra/abstract/10.1103/PhysRevA.105.042604
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Preliminaries

Man, he took his time in the sun
Had a dream to understand
A single grain of sand
He gave birth to poetry
But one day’ll cease to be
Greet the last light of the library

– Nightwish, The Greatest Show on Earth

We start with a general remark regarding this chapter. This chapter attempts to
cover all the necessary backgrounds, topics, concepts and tools used in this thesis.
Some sections mainly provide general knowledge on the subject, and others, briefly
introduce, sometimes in more detail, the definitions or tools used later on in the
thesis. Throughout this preliminary chapter, whenever a specific notion or tool
is introduced, we navigate the reader to the part of the thesis it is employed.
However, for a reader with familiarity with the general topics covered here, we
suggest skipping this chapter and returning to each subsection when referred to
subsequently in the following chapters.

2.1 Quantum information and quantum computing

Let us begin the chapter by giving some background on quantum information and
quantum computing. We assume some familiarity with quantum mechanics and
although it will not be necessary for understanding the content of this thesis, it is
encouraged for enjoying it. We also assume familiarity with linear algebra.

2.1.1 Quantum states and Hilbert space

The concept of quantum states and where they live, which is called state space
comes from the first postulate of quantum mechanics. According to this postulate,
any isolated physical system can be described (or be associated with) a vector,
in a complex vector space with an inner product, known as Hilbert space. This
vector, that completely describes the physical system, or sometimes the physical

9
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quantum mechanical property of a physical system, is called the state of the
system and is a normalised unit vector in the Hilbert space [NC10]1. We denote a
Hilbert space of dimension d by H or sometimes Hd . Any d-dimensional Hilbert
space is equipped with a set of d orthonormal vectors called a basis. The most
important quantum systems in quantum information are 2-level quantum systems
or quantum states living in a 2-dimensional Hilbert space. We call this special
state a qubit. The following set of vectors is a complete basis for a qubit, referred
to as the computational bases:

|0⟩=
[
1

0

]
|1⟩=

[
0

1

]
(2.1)

Here |.⟩ (called ‘ket’) or ⟨.| (called ‘bra’) are known as Dirac notation and are
the most common notation in quantum. Moreover, for any Hilbert space H we
can define a dual space denoted by H∗, where for any |ψ⟩ ∈ H, there exists a
dual ⟨ψ| ∈ H∗, that is its complex conjugate, such that ⟨ψ|ψ⟩= 1. Also the inner
product between two vectors |ψ⟩ , |φ⟩ ∈H is shown in the Dirac notation as ⟨φ|ψ⟩.

Any qubit state can be written as a linear combination of the basis for instance:
|ψ⟩ = α |0⟩+β |1⟩ where |α|2+ |β|2 = 1 for any α,β ∈ C, since the state should
be normalised. This linear combination of other quantum states (for instance any
basis state) is called a superposition of those quantum states. According to quan-
tum mechanics, any normalised superposition of the states is also a valid member
of the Hilbert space, due to linearity and hence is another valid quantum state.
The coefficients α and β are also called amplitudes and are complex numbers.
One of the most useful superpositions, in the equal-weight superposition of the
computational basis like the following:

|+⟩=
1√
2
(|0⟩+ |1⟩), |−⟩=

1√
2
(|0⟩− |1⟩) (2.2)

one can see that the state |+⟩/ |−⟩ are also orthonormal and hence form another
basis for qubit Hilbert space. This basis is called plus-minus basis or X-basis (we
will see why in 2.1.6.2). The generalisation of such uniform superposition basis
states in higher dimension is also known as Fourier basis.

2.1.2 Mixed states and density matrices

Now, let us give a more general and complementary formalism for describing
qubits and quantum states. When we describe a quantum system by a vector in
the Hilbert space, we deterministically describe its state (however, as we will see,
the process of revealing the state is itself probabilistic), in this case, we call it
a pure quantum state. Nevertheless, not all the systems in nature are like that.

1There is an alternative version of the first postulate of quantum mechanics that has an
additional statement that the other way is also assumed, meaning that giving a Hilbert space,
where a physical system is described in it, any vector of the Hilbert space is also a potential
state of a physical system. Sometimes this is inherent in the evolution postulate, however, it is
interesting to think about it as the first postulate as well.
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Some systems, are in fact, a probability distribution over different pure quantum
states. We call these states mixed states, and we can represent them as follows:

ρ :=∑
s

ps |ψs⟩⟨ψs | (2.3)

where |ψs⟩⟨ψs | is the outer product of the two vectors. The above representation
means that we prepare a pure state |ψs⟩ with probability ps . Also, one can see that
ρ is no longer a vector, but a matrix. This kind of matrices, called density matrices
[Fan57] are a more general way of describing all quantum systems, including the
pure one, since if we have only one probability p = 1, then ρ= |ψ⟩⟨ψ|, which is a
pure state and the density matrix equivalent of |ψ⟩.

In operator language, a density operator for a system is a positive semi-definite,
Hermitian operator of trace one (Tr(ρ) = 1) acting on the Hilbert space of the
system. We denote the set of all the density matrices associated with the Hilbert
space H, as S(H). Geometrically, this is a convex set. Also a pure state always
satisfy Tr(ρ2) = 1, while as for a mixed state Tr(ρ2)< 1. This is a good criterion
for checking the purity of a density matrix.

2.1.2.1 Bloch sphere

For the 2-dimensional space of qubits, there is a simple and pleasant geometrical
representation for all the possible pure and mixed states. It is described as a unit
sphere, called Bloch sphere, as shown in Fig. 2.1.

Figure 2.1: The Bloch sphere (figure from: [Wik22])

The surface of the Bloch sphere represents the pure state of a qubit and all
the points inside of the sphere represent the set of the mixed states. A pure qubit
state can be described in terms of the angles associated with its Bloch vector, as
can be seen in the figure. For 0⩽ θ ⩽ π and 0⩽ φ < 2π, the state of a qubit |ψ⟩
is described as:

|ψ⟩= cos
θ

2
|0⟩+e iφ sin

θ

2
|1⟩ (2.4)

A general qubit density matrix, can be written as [BL06]:



12 2. Preliminaries

ρ=
1

2
(I+ x1X+ x2Y + x3Z) (2.5)

where I is the identity matrix and X, Y and Z are the following matrices known
as Pauli matrices:

X =

(
0 1

1 0

)
, Y =

(
0 −i
i 0

)
, Z =

(
1 0

0 −1

)
(2.6)

Thus, states of single qubits are characterized by a vector (x1,x2,x3) ∈ R3
taken from the unit ball, which is the Bloch sphere.

2.1.2.2 Composition of quantum systems and entanglement

The very original formulation of quantum mechanics talks about a single quantum
system described by a vector in Hilbert space. However, if we want to describe
the joint state of two quantum systems H1 and H2, we need to deal with their
composition. The most common framework for the composition of quantum
states is tensor product composition. In other words, the composite system |ψ1,2⟩
is described as a unit vector in the tensor product of the Hilbert spaces H1⊗H2.2

If a quantum state can be written as the tensor product of all its subsystems, we
say that the state is separable, for example: |ψAB⟩= |ψA⟩⊗ |ψB⟩. Nevertheless,
not all the states in HA⊗HB can be written as such. The states that cannot be
described in this tensor product form are called entangled states, and physically,
they contain some non-classical correlation known as entanglement. The following
defines the general definition of separable and entangled states for bipartite mixed
states:

Definition 1 (Separable and entangled mixed states [BL06]). A mixed state
ρAB is separable if and only if it can be represented as a convex combination
of the product of projectors on local states in the form of the following
equation. Otherwise, the mixed state is said to be entangled.

ρAB =
K

∑
i=1

pi |ei⟩⟨ei |⊗ |fi⟩⟨fi | (2.7)

where |ei⟩ and |fi⟩ are a basis for subsystem A and B respectively.

We also note that the states in Eq. (2.7) describe the most general state of
a class of states called LOCC, meaning the most general states that two parties,
Alice and Bob can prepare using only local operation and classical communication.

Another advantage of the density matrix formalism is that it allows us to
describe the quantum states of the subsystems of a joint quantum system, even

2This is usually considered as an (extended) axioms of the quantum mechanics, however, it is
also possible not to assume it, and to derive it instead from general composition rules and physical
evidence [AD78].
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if the state is not separable [NC10]. For this we can take the partial trace of the
other subsystem, to obtain the subsystems of interest, for instance:

ρA = TrB(ρAB), and, ρB = TrA(ρAB) (2.8)

where TrB meaning taking the trace over subsystem B, using the basis of this
subspace. ρA and ρB are called a reduced density matrix of the system.

Now, let us introduce the most important entangled bipartite states in quantum
information, also known as Bell states, which are as follows:

|Φ±⟩ :=
1√
2
(|00⟩± |11⟩)

|Ψ±⟩ :=
1√
2
(|01⟩± |10⟩)

(2.9)

where |00⟩ = |0⟩A⊗ |0⟩B (and similarly for the rest of the basis). These states
contain the maximum amount of entanglement between all the pure bipartite
states. Furthermore, they have an interesting property that their reduced density
matrices are the state I2 , which is a state known as maximally mixed state.3 For
instance, we have:

ρA = ρB = TrA(|Φ+⟩⟨Φ+|AB) =
I
2

(2.10)

Looking at the reduced density matrix of joint quantum systems can in general
give information about the amount of entanglement contained in these systems.

2.1.3 Quantum operations and measurements

So far we gave a brief introduction to quantum systems and some of their prop-
erties. Now it is time to talk about how quantum systems evolve and transform
into other quantum systems.

The first form of quantum operation that we know, according to postulates
of quantum mechanics, are unitary operators. A unitary matrix U, can transform
a pure and mixed quantum state as follows:

|ψ′⟩= U |ψ⟩ and, ρ′ = UρU† (2.11)

Recalling the Bloch sphere, the unitary operation of any pure qubit state is equiv-
alent to a rotation of the vector on the surface of the Bloch sphere (up to a
phase factor). However, unitary matrices are not the most general form of quan-
tum operations. General quantum transformations are Completely Positive Trace
Preserving (CPTP or CPT) maps which include also unitary matrices. These op-
erations are also called a quantum channel and can map a general density matrix
ρ ∈ H to another density matrix ρ′ ∈ H′ (where H′ is often the same as H, but
not necessarily), as follows:

E : S(H)→S(H′), ρ′ = E(ρ) (2.12)

3In general maximally mixed state for Hilbert space of dimension d is given as Idd .
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Quantum channels can take the following general from:

E(ρ) =∑
k

EkρE
†
k (2.13)

where Ek are operators that should satisfy the following criterion for the overall
operation E to be trace-preserving:

∑
k

E
†
kEk = I (2.14)

This representation of quantum channels is called operator-sum formalism [NC10]
and the decomposition of a quantum channel into such operators is also sometimes
called Kraus decomposition. There also exists an alternative way of representing
quantum channels from the point of view of system-environment interaction. This
point of view is very interesting since it shows that all the operations can eventually
be described via a unitary operation on a larger or expanded Hilbert space which
also includes the environment. Let the quantum state ρ be entangled with a
system |E⟩ that describes the environment. If a unitary operation is applied to the
joint state of the system-environment, the operation that is applied to the system
alone can be described as follows:

ρ′ = E(ρ) = TrE[U(ρ⊗|E⟩⟨E|)U†] (2.15)

This operation is no longer a unitary but a CPTP map. We should also note
that this later interpretation gives us a good intuition and toolkit to study the
effect of noise on the quantum system in the same way as we describe any other
transformations of them. A quantum noise is also described as a CPTP map
and be studied with the same mathematical toolkits theoretically. Commonly we
define specific classes of quantum channels that model the most common errors
and noisy behaviour that happens to the actual devices. The most famous ones are
bit-flip noise channel, phase-flip noise channel, Pauli noise channel, depolarising
noise channel, dephasing noise channel, and amplitude-damping noise channel
[BL06, NC10].

2.1.3.1 Measurements

We now introduce one of the most central types of operations in quantum mechan-
ics i.e. measurements. Measurement operators offer a mathematical formalism
for studying the process of observation and extracting the real values for the phys-
ical properties of a quantum system. These values are in some sense the classical
information of the system given by expectation values of a Hermitian observable.
Quantum measurements are described as a set of linear operators {Mm} acting
on the state where the index m refers to each measurement outcome. If |ψ⟩ is
the pure quantum state before the measurement, then the probability of obtaining
result m, and the state of the system after the measurement is given as follows
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[NC10]:

p(m) = P r [obtaining result m] = ⟨ψ|M†mMm |ψ⟩

|ψm⟩=
Mm |ψ⟩√

⟨ψ|M†mMm |ψ⟩
(2.16)

Thus quantum measurements are probabilistic in nature, and since the probability
should be preserved over the full set of measurement, they also satisfy the following
completeness equation:

∑
m

⟨ψ|M†mMm |ψ⟩=∑
m

p(m) = 1 (2.17)

This probability rule for quantum systems, also known as Born’s rule, for a
general mixed system is given as follows:

p(m) = P r [obtaining result m] = Tr[MmρM
†
m] (2.18)

The first type of measurement, and a very useful one, are projective mea-
surements, which are given by a set of projective operators. A simple example
is a set {M0,M1} where M0 = |0⟩⟨0| and M1 = |1⟩⟨1|. This is a qubit measure-
ment which projects everything in the Z basis of the Bloch sphere, and it is also
famously known as measurement in the computational basis.4

The most general class of measurement in the quantum world is given by a
mathematical formalism known as Positive Operator-Valued Measure (POVM).
A POVM is described as a set of positive operators {Em} satisfying the relation
∑mEm = I, and they obey the same Born’s rule as we described earlier. This class
also includes the projective measurements, however, one difference between the
projective measurements and a POVM non-projective one is that the cardinality
of the set of POVM measurements over a Hilbert space can be larger than the
dimension as opposed to the projective ones. For instance, for qubits, we have
seen that the full set of computational basis measurements, includes 2 projectors
(which is the same for measuring on any arbitrary basis), but one can define the
following valid set of POVM measurements on a qubit:

E1 = (2−
√
2) |1⟩⟨1| , E2 = (2−

√
2) |−⟩⟨−|

E3 = I−E1−E2
(2.19)

The POVM can be interpreted physically in different ways. The first one is
when we are applying a projective measurement on the joint state of our system
within a larger system or correlated with another system. In this case, although the
measurement on the larger Hilbert space is projective, the resulting measurement
on the main systems that we are interested in is not, and it’s instead a POVM. This
scenario is similar to the case we have discussed before regarding the CPTP maps

4The computational basis measurement can be easily generalised to any dimension by only
making the projective operator from the computational basis of that Hilbert space.
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and there is a good reason for this resemblance due to the fact that POVMs are
also CPTP maps and can be described in that formalism. Another way of physically
interpreting the POVM is when the real measurement devices are not perfect
and instead of performing a perfect projection, they perform a combination of a
projection and another quantum operation. In that case, again the measurement
can be mathematically described as a POVM. This last point is very important in
distinguishing quantum states from each other as we will see in Section 2.2.

2.1.4 Distance measures

Distance measures are mathematical tools for comparing systems on different as-
pects, for instance, their information quantity. In the classical world, these com-
parisons are often straightforward. As an example, to compare classical bit strings,
we can simply check their equality. But one can also define a better and more fine-
grained distance for classical information, for example, by counting the number of
places where two bitstrings are different. This distance is called Hamming distance
in classical information theory and gives a good measure for quantifying classical
information in many cases. But how about quantum information. As we know by
now, the quantum information lives inside the state of a qubit, that is, a vector
in a continuous vector space. And more importantly, while revealing this informa-
tion (measurement) we are dealing with a probabilistic process. Hence comparing
and quantifying the distance between quantum information and generally quantum
systems are more tricky! Fortunately, the mathematical background of quantum
mechanics and quantum information is strong enough to handle this more com-
plicated situation, and a large variety of quantum distance measures have been
defined in the literature, each of which, is useful for different problems that we
face in this field [NC10, BL06, GR18, MPS+10, MPO22, BDS+18, GLN05]. Here
we only introduce the very few most relevant distance measures for this thesis.

But before, that let us start with a classical distance, which has been incor-
porated in the quantum regime very similarly. This is the case when we want to
compare two probability distributions {p(x)} and {q(x)}. One very common and
quite intuitive way of defining a notion of distance for them is as follows:

d(p(x),q(x)) := dℓ1(p(x),q(x)) =
1

2∑
x

|p(x)−q(x)| (2.20)

This distance is called trace distance or ℓ1-norm. And the first quantum distance
that we introduce is the generalisation of this distance. The trace distance is
defined as follows:
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Definition 2 (Trace distance). For any general quantum state ρ and σ,
their trace distance is defined as:

dTr(ρ,σ) :=
1

2
Tr|ρ−σ|=

1

2∑
i

|λρσi | (2.21)

where |ρ−σ| :=
√
(ρ−σ)†(ρ−σ) is defined as the positive square root of

the matrix, and λρσi are eigenvalues of the Hermitian, but not necessarily
positive, matrix (ρ−σ).

The second measure of distance that is widely used all over quantum infor-
mation, and this thesis included, is fidelity. Although fidelity is not a metric on
the space of density matrices [NC10], it is one of the most useful measures of
the ‘closeness’ of two quantum states. One of the reasons is that fidelity has
an operational meaning: intuitively it expresses the probability that one state will
pass a test to identify as the other one. The fidelity between two quantum states
in the most general case is known as Uhlmann’s fidelity and is defined as follows:

Definition 3 (Fidelity). For any general quantum state ρ and σ, their
Uhlmann’s fidelity is defined as:

F (ρ,σ) :=

(
Tr

[√√
ρσ
√
ρ

])2
(2.22)

which is equal to the squared overlap F (|ψρ⟩ , |ψσ⟩) := | ⟨ψρ|ψσ⟩|2, for two
pure quantum states |ψρ⟩ and |ψσ⟩.

The third quantum distance that we introduce, is closely related to the fidelity.
In fact, we first define a geometrical metric in the space of quantum states, known
as Bures angle, as follows:

ΘBA(ρ,σ) := arccos
√
F (ρ,σ) (2.23)

The Bures angle is itself a distance but it is also associated with another
important metric in the quantum information, known as Bures distance which is
also the quantum equivalent of Fubini-Study metric [Stu05].

Definition 4 (Fubini-Study/Bures distance). For any general quantum state
ρ and σ, their Bures/Fubini-Study distance is defined as follows:

dFS(ρ,σ) :=
(
2(1−

√
F (ρ,σ))

) 1
2
=
√
2(1−cosΘBA) (2.24)

There are several important and useful properties and features of these dis-
tances which we need to cover for the purpose of this thesis. First, we need to
note that all these distances, including the trace distance and fidelity, should be



18 2. Preliminaries

preserved under the unitary evolution of quantum states. This is because unitaries,
preserve the inner product and hence should also preserve any notion of distance
that we define over the space of density matrices. Thus we have the following
central relations [NC10]:

dTr(UρU
†,UσU†) = dTr(ρ,σ)

F (UρU†,UσU†) = F (ρ,σ)
(2.25)

But how about the distance between quantum states, after a non-unitary gen-
eral quantum channel is applied to them? It can be shown that quantum channels
are contractive, meaning that they decrease the distance between quantum states.
This is captured in the following theorem in terms of trace distance:

Theorem 1. [Contractivity of quantum channels [NC10]] Suppose E is a
CPTP map. Let ρ and σ be any two density operators. We have:

dTr(E(ρ),E(σ))⩽ dTr(ρ,σ) (2.26)

The same result can be reformulated in terms of fidelity leading to the fact
that F (E(ρ),E(σ))⩾ F (ρ,σ) under any CPTP operation, which is usually referred
to as Monotonicity of the fidelity [NC10].

Another property of trace distance that will come in very handy in our proofs
is what is known as strong convexity and is stated as follows:

Theorem 2. [Strong convexity of the trace distance [NC10]] Let {pi} and
{qi} be two probability distributions over the same index set, and ρi and
σi be density matrices associated with the same index set. Then the trace
distance satisfies the following:

dTr

(
∑
i

piρi ,∑
i

qiσi

)
⩽ dℓ1(pi ,qi)+∑

i

dTr(ρi ,σi) (2.27)

where dℓ1(pi ,qi) is the classical trace-distance between the two probability
distribution.

Similarly, we have strong concavity for fidelity:

Theorem 3. [Strong concavity of fidelity [NC10]] Let {pi} and {qi} be two
probability distributions over the same index set, and ρi and σi be den-
sity matrices associated with the same index set. Then the trace distance
satisfies the following:

F

(
∑
i

piρi ,∑
i

qiσi

)
⩾∑

i

√
piqiF (ρi ,σi) (2.28)
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which also results in the weaker version called concavity of the fidelity:

F (∑
i

piρi ,σ)⩾∑
i

piF (ρi ,σ) (2.29)

Finally, it is important to be able to translate between fidelity and trace dis-
tance. The relation between the two, is given via the following inequality:

1−
√
F (ρ,σ)⩽ dTr(ρ,σ)⩽

√
1−F (ρ,σ) (2.30)

One can also define distances and norms on the operator space. These dis-
tances are called operator norms. The first important example is the operator
infinity norm or ℓ∞-norm. In general, an operator norm ℓ∞ is defined on a Banach
space5 or a bounded sequence of elements or vectors of that space as follows:

||x ||∞ = sup
n
|xn|, (2.31)

The operator norm on the Hilbert space is defined over the space of bounded
linear operators as,

||O||∞ = sup ||Ox || : ∀||x ||⩽ 1, (2.32)

We also note that for the operator norms, ||.||1 is the dual norm of ||.||∞ [HR16].
The final distance measures that we introduce, which is particularly beneficial

distance in the quantum setting, is a distance called diamond norm, defined as
follows:

Definition 5 (Diamond norm). For any two CPTP map (quantum channel)
Λ1, Λ2, their diamond norm is defined as,

∥ Λ1−Λ2 ∥⋄:= max
ρ
(∥ (Λ1⊗ I)[ρ]− (Λ2⊗ I)[ρ] ∥1) (2.33)

where ∥ . ∥1 is the ℓ1-norm, and the maximum has been taken over all the
density matrices ρ.

Operationally diamond norm quantifies the maximum probability of distinguish-
ing operation Λ1 from Λ2 in a single-use, and it is a sensible measure to quantify
the difference between unitary operators or other quantum channels.

2.1.5 Entropic uncertainty relations

In this section, we introduce a more advanced but very useful toolkit in quantum
information that is also related to cryptography. It consists of a mathematical
framework and several inequalities known as conditional entropies or entropic un-
certainty relations, which have been used in the formal security proofs of several

5Banach space is a complete normed vector space. That is, a Banach space is a vector space
with a metric that allows the computation of vector length and distance between vectors, and is
complete in the sense that a ‘Cauchy sequence’ of vectors always converges to a well-defined limit
that is within the space [AAD11]
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quantum protocols, specifically, the Quantum Key Distribution (QKD) protocols
[Ren08, TL17].6 We have mostly exploited the content of this section in Chap-
ter 6, Section 6.4.5.1 and 6.4.6 and Chapter 7 Section 7.2.1.

But first, we need to introduce the notion of entropy in quantum and classical
information. In classical information theory, the entropy for a random variable is
defined as follows, and it is called Shannon’s entropy.

Definition 6 (Shannon’s entropy). Let X be a discrete random variable on
a finite set X = {x1, . . . ,xn}, with probability distribution function p(x) =
P r(X = x). The entropy H(X) of X is defined as:

h(X) =− ∑
x∈X

p(x) logp(x) = E[− logp(X)] (2.34)

while we consider 0log0 = 0 and logarithm is usually taken to the base 2,
in which case the entropy is measured in bits.

Intuitively, this measure quantifies the amount of ‘information’ (or on the
other side ‘uncertainty’) in a system. As we mentioned, quantum states also
include a certain degree of classical information, which we can extract through
the probabilistic procedure of measurements. As a result, we can also assign
entropy to quantum states. The quantum version of Shannon’s entropy is called
Von Neumann entropy7 which is defined as follows:

Definition 7 (Von Neumann entropy). For a quantum-mechanical system
described by a density matrix ρ, the von Neumann entropy is

S(ρ) =−Tr(ρ logρ) =−∑
i

λi log2(λi) (2.35)

where λi are the eigenvalues of ρ, we consider 0log0 = 0 and logarithm is
taken to the base 2 or e. Furthermore S(ρ) is zero if and only if ρ represents
a pure state.

We are now ready to talk about uncertainty in quantum mechanics, in terms
of entropy. Heisenberg’s uncertainty principle is one of the most important funda-
mental properties of quantum mechanics which is mathematically speaking due to
the non-commuting property of observables, like Pauli X and Z. Reformulating

6For this subsection we assume some familiarity with the concept of QKD protocols since we
refer to it several times. However, the details of the protocol are not compulsory for understanding
the tools that we introduce here. We do not intend to give a background on the QKD protocol(s)
as it will make this preliminary even longer than it is. We refer the readers to [NC10] for a general
overview of the protocol and to [TL17] for a comprehensive and advanced description and security
proofs.

7In this thesis, we mostly use H(.) to denote the general notion of entropy which can in some
cases refer to Shannon’s entropy and in some others to Von Neumann entropy. However, if we
specifically want to emphasise Shannon’s entropy, we use the notation h(.)
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these relations in terms of entropic quantities has been very useful and the most
well-known uncertainty relation for these operators was given by Deutsch [Deu83]
and later improved [MU88]. The relation, for X and Z observables, is given as
follows:

H(X)+H(Z)⩾ log2(
1

c
) (2.36)

where c denotes the maximum overlap between any two eigenvectors of X
and Z. Since the entropy is defined with respect to a random variable, we need
to see what are our random variables here. First, we consider a quantum system
A where the state is described with the density matrix ρA on a finite-dimensional
Hilbert space. We then assume a measurement is performed on a X and Z basis
as projective operators that project the state into the subspace spanned by those
bases. Thus the random variables are defined via measurements of the observers X
and Y . In the most general case, the measurements are a set of POVM operators
on system A denoted as {Mx}x and {Nz}z satisfying the Born rule for obtaining
outcomes x and z to be as follows:

PX(x) = Tr[ρAM
x ] , PZ(z) = Tr[ρAN

z ] (2.37)

In this case, the Eq. (2.36) still gives the generalised uncertainty relation with
the difference that the c is defined as follows:

c =max
x,z

czx , and cxz =∥
√
Mx
√
Nz ∥2 (2.38)

where ∥ . ∥ denotes the operator norm (or infinity norm) defined in Section
2.1.4. The above uncertainty relation can be extended to conditional entropy as
well in the context of guessing games as has been defined in [CBTW17]. Assume
two parties, Alice and Bob, where Bob prepares a state ρA and Alice randomly
performs the X and Z measurements leading to a bit K. Then Bob wants to
guess K given the basis choice R = {0,1}. The conditional Shannon entropy is
defined as follows:

H(K|R) :=H(KR)−H(R) (2.39)

Thus one can get the same uncertainty relation with the conditional entropy as:

H(K|R = 0)+H(K|R = 1)⩾ log2(
1

c
) (2.40)

Similar, to the classical case, for a bipartite system ρAB the conditional Von
Neumann entropy is defined as follows:

H(A|B) :=H(ρAB)−H(ρB) (2.41)

Furthermore, this can be generalised to any tripartite quantum system with
state ρABC. An interesting property here is an inequality referred to as data pro-
cessing inequality [CBTW17] which states that the uncertainty of A conditioned
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on some system B never goes down if B performs a quantum channel on the sys-
tem. In other words for any tripartite system ρABC where system C will perform
a quantum operation on the quantum state to extract some information, we have
the following:

H(A|BC)⩽H(A|B) (2.42)

Given the above inequality leads to the general uncertainty relations between
any tripartite system. One of the most common scenarios is when we have two
honest parties, Alice and Bob, and an eavesdropper or adversary called Eve, for
example in the QKD protocol. In this case, the following entropic inequality holds:

H(K|ER)+H(K|BR)⩾ log2(
1

c
) (2.43)

Where K is the measurement output and R is the basis bit. This imposes a
fundamental bound on the uncertainty in terms of von Neumann entropy, in other
words, the amount of information that an eavesdropper can extract from the joint
quantum systems shared between the three parties, is fundamentally bounded by
quantum mechanics. These inequalities can also be extended to the case where
n bits are encoded in n quantum states where Rn and Kn are bit-strings denoting
the basis random choices for the qubits and measurement outputs respectively,
and Bn denotes Bob’s bit-string. Also, E denotes Eve’s system which is a general
quantum system operating on n-qubit messages and any arbitrary local system.
We have the following inequality:8

H(Kn|ERn)+H(Kn|BnRn)⩾ n log2(
1

c
) (2.44)

The amount of information shared between joint quantum systems can also
be defined in terms of other informatic quantities such as mutual information
or accessible information. Again, let us discuss these quantities in a two party
scenario. Consider a scenario where Alice prepares a pure quantum state drawn
from the ensemble {py , |ψy ⟩} with the density matrix ρAB, where

ρAB =∑
y

py |y⟩A⟨y |⊗ |ψy ⟩B⟨ψy |. (2.45)

Bob knows the ensemble i.e., the mixed state ρAB, but not the particular state
that Alice chose. He wants to acquire as much information as possible about
y . Bob collects his information by performing a generalized measurement, the
POVM Mỹ . Bob’s state is of the form ρB = TrA(ρAB) as it is the subsystem
of the larger density matrix. If Alice’s preparation choice was y , Bob will obtain
the measurement outcome ỹ with conditional probability p(ỹ |y) = ⟨ψy |Mỹ |ψy ⟩.
For this kind of classical-quantum state ρAB, the amount of information Bob can
extract from this measurement is given by a quantity called mutual information
(MI) I(Y ; Ỹ )ρ between Y, Ỹ which is defined as follows.

I(Y : Ỹ ) := h(Y )−h(Ỹ |Y ), (2.46)
8This is the main result we will use in Section 6.4.5.1 and Section 6.4.6 for our security proof.
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Nonetheless, all the entropic quantities that we have discussed so far, work well
in the asymptotic limit, while other similar quantities are more suited to capture
the finite-size systems. Min- and max-entropy are the notion first proposed by
Renner [Ren08] as the natural generalizations of what was known as conditional
Rényi entropies [Ré61] to the quantum setting. The definition is as follows:

Definition 8 (Min- and max- entropy [KRS09]). Let ρ= ρAB be a bipartite
density operator. The min-entropy of A conditioned on B is defined by:

Hmin(A|B)ρ :=− infD∞(ρAB ∥ IA⊗σB) (2.47)

where the infimum ranges over all normalized density operators σB on sub-
system B and D∞(. ∥ .) is defined as follows:

D∞(τ ∥ τ ′) := inf{λ ∈ R : τ ⩽ 2λτ ′} (2.48)

and the max-entropy is defined as:

Hmax(A|B)ρ :=−Hmin(A|C)ρ (2.49)

where the min-entropy is evaluated for a purification ρABC of ρAB.

The above entropies can be then parameterised by a parameter ε ⩾ 0 called
the smoothness parameter. The smooth version of the min and max entropies
can be defined as follows:

Definition 9 (ε-smooth min/max entropy [KRS09]). Let ρ= ρAB be a bi-
partite density operator and let ε⩾ be a parameter. The ε-smooth min/max
entropy of A conditioned on B are defined by:

Hεmin(A|B)ρ := sup
ρ′
Hmin(A|B)ρ′,

Hεmax(A|B)ρ := inf
ρ′
Hmax(A|B)ρ′

(2.50)

where the supremum ranges over all density operators ρ′ = ρ′AB which are
ε-close to ρ.a

aThe ε-closeness can be defined with respect to both trace distance and fidelity. How-
ever usually defining them in terms of fidelity is more suitable since it is invariant under
purification.

The final relevant tool of information theory that we need to introduce in this
section is called quantum Asymptotic Equipartition Property (AEP) defined in
[Ren08]. This is the quantum equivalent of classical (AEP) that roughly speaking,
talks about the probability of typical sets occurring in a random or stochastic
process when having a series of many random variables. Here we need a special
case of quantum AEP for a n-fold quantum-classical system, which we represent
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as the following theorem.

Theorem 4 (quantum AEP for quantum-classical states [Ren08]). Let
ρXB ∈ S(HX ⊗HB) be density operator that is classical on HX and let
N ∈ N. Then, for any ε⩾ 0 we have,

1

N
Hεmin(ρ

⊗N
XB|ρ

⊗N
B )⩾H(ρXB)−H(ρB)−η (2.51)

where η := (2Hmax(ρX) + 3)
√
log( 1ε )
N +1, is a function of the smoothing

parameter ε and N.

2.1.6 Quantum computing

We have so far given a brief and general background on quantum information. In
this section, we will glance over the necessary tools and concepts from quantum
computing that we will require for the rest of this thesis. Let us begin with this
question: What do we need to make a quantum computer? This question was
answered by DiVincenzo in [DiV00], where certain criteria have been proposed for
constructing a quantum computer. The following are the seven proposed criteria
(the last two are necessary for quantum communication).

DiVincenzo criteria [DiV00]

1. A scalable physical system with well-characterized qubit

2. The ability to initialize the state of the qubits to a simple fiducial state
(quantum state preparation)

3. Long relevant decoherence times

4. A qubit-specific measurement capability

5. A universal set of quantum gates

* The ability to interconvert stationary and flying qubits

* The ability to faithfully transmit flying qubits between specified loca-
tions

In the previous sections, we have covered the first four criteria since we have
introduced qubits and their transformations (as well as the notion of noise) and
measurements. In this section, we will focus on the fifth one while we introduce
quantum computation and quantum gates. To see why we need quantum gates,
we need to have a look at different models of computation, especially in the
quantum world.
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2.1.6.1 Different models of quantum computation

The first abstract classical model for computation was a Turing machine (TM).
A Turing machine contains four main elements [NC10]: (a) a program, (b) a
finite state control, co-ordinating the other operations of the machine; (c) a tape,
(which is like a memory); and (d) a read-write tape-head, which points to the
position on the tape which is currently readable or writable. This simple system
is capable of capturing any classical algorithm. The Quantum Turing machine
(QTM) gives the same type of abstraction for quantum computing. Quantum
Turing Machine was firstly proposed by Paul Benioff in 1980 and 1982 [Ben80,
Ben82], and then further formalised by David Deutsch in 1985 [Deu85] while
the alternative model which we will talk about has also been introduced. Similar
to the classical case, a QTM has also a finite set of states Q = {q0,q1, . . .}, a
finite set of input and working alphabet and an infinite quantum tape that models
the quantum memory and a single ‘head’. QTM is usually initialised at a state
|ψ(0)⟩ and will perform the computation by applying unitary transformation to the
state i.e. at every step |ψ(i +1)⟩ = U |ψ(i)⟩. Finally, the process of reading will
include quantum measurements as one can expect. Although the intuitive notion
of QTM is quite simple, the formal definition is rather complicated and hence we
skip introducing it here.9

The most common model of quantum computation (and the one used in this
thesis) is the quantum circuit model, which is a quantum generalisation of the
classical circuit model. Classically, a circuit consists of several inputs and outputs
(bits), wires which describe these systems, and several logical gates [NC10]. A
logical gate is a binary function f : {0,1}m→{0,1}n for example, AND, OR or NOT
gates. In the quantum circuit model, on the other hand, our inputs are qubit (or
more generally quantum states), and our logical gates are unitary transformations.
In the classical circuit model, to be able to perform any classical computation we
need a universal gate set. The quantum circuit model is no different. A set of
quantum gate G = {Gi} is universal if any general n-qubit unitary operation can be
approximated using a quantum circuits that uses this gate set, with an arbitrary
accuracy [NC10].

The set of universal quantum gates is not unique and different options have
been proposed with different theoretical and most importantly implementational
advantages and disadvantages for implementing over different types of hardware
[CGC+12]. All of them, however, require some sing-qubit gates and some en-
tangling gates. In the next section, we introduce some of the most widely used
quantum gates.

To conclude this section, let us briefly mention another model of quantum
computing known as Measurement-Based Quantum Computing (MBQC) intro-
duced in [RB01]. The reason for this naming is that in this model, the initial
resource is an entangled state in a form of a graph or cluster (called graph state
and cluster state), and each operation is performed by applying a measurement.
This technique is also known as gate teleportation [GC99]. Moreover, MBQC

9Moreover this is not the model of computation that we use in this thesis.
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has been shown to be equivalent to the circuit model. We do not go into further
details about this model, since we will not use it in the thesis.

2.1.6.2 Quantum gates

The first set of single-qubit quantum gates that we introduce is Pauli gates rep-
resented by the Pauli matrices we have seen in Eq. (2.6). We first note that the
computational basis, are the eigenvectors of Z, and the plus-minus basis, are the
eigenvectors of the Pauli matrix X. The eigenvectors of the Y operator are also
very similar to the X and are given as follows:

|+i⟩=
1√
2
(|0⟩+ i |1⟩), |−i⟩=

1√
2
(|0⟩− i |1⟩) (2.52)

Also one can easily check the action of X, Y and Z gate on the computational
basis, by applying their matrix on the basis vectors.

X |0⟩= |1⟩ , X |1⟩= |0⟩
Y |0⟩=−i |1⟩ , Y |1⟩= i |0⟩
Z |0⟩= |0⟩ , Z |1⟩=−|1⟩

(2.53)

The X gate is the equivalent of the classical ‘bit-flip’ gate, and the Z gate is a
‘Phase gate’. The Y gate is the combination of both since Y = iXZ.

The next gate is called Hadamard gate, denoted as H that acts as follows on
the computational basis:

H |0⟩= |+⟩=
1√
2
(|0⟩+ |1⟩)

H |1⟩= |−⟩=
1√
2
(|0⟩− |1⟩)

(2.54)

The Hadamard gate in fact transforms the computational basis to plus-minus
basis. Also, the Hadamard gate creates the symmetric superposition of computa-
tional basis even in higher dimension if it is applied as a tensor product form H⊗n

over n qubits. The matrix representation of H is as follows:

H =
1√
2

(
1 1

1 −1

)
(2.55)

As mentioned before, the unitary transformation of a qubit is equivalent (up to a
global phase) to rotation on the Bloch sphere, hence one can define the general
following rotation single-qubit gates [NC10]:

RX(θ) := e
−iθ/2X =

(
cos θ2 −i sin θ2
−i cos θ2 cos θ2

)
RY (θ) := e

−iθ/2Y =

(
cos θ2 −sin θ2
−cos θ2 cos θ2

)
RZ(θ) := e

−iθ/2Z =

(
e−iθ/2 0

0 e iθ/2

) (2.56)
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The most useful 2-qubit gates are CNOT (also called CX or controlled-X) and
CZ (or controlled-Z) gates. The importance of these gates is that they can create
entanglement. Let us first give the matrix representation of these gates:

CNOT=


1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0

 , CZ=


1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 −1

 (2.57)

In the above gates, the first qubit acts as a ‘control’ and the second qubit as a
‘target’. CNOT applies a bit-flip or X gate on the second qubit if the control
qubit is |1⟩ (and does nothing if it is |0⟩), and similarly, CZ applies a Z gate on
the second qubit conditioned on the first one being |1⟩. We also note that the
CNOT together with the set of all single-qubit unitary gates form a universal gate
set.

Other general controlled-gates can be also defined similarly as follows:

CU12 = |0⟩⟨0|1⊗ I1+ |1⟩⟨1|2⊗U2 (2.58)

where U is conditionally applied on the second qubit.
Finally, a quantum gate that we will use throughout this thesis is another 2-

qubit (or generally multi-qubit gate) gate known as the SWAP gate. The SWAP
gate on two quantum states with arbitrary dimensions acts as follows:

SWAP |ψ⟩ |φ⟩= |φ⟩ |ψ⟩ (2.59)

This gate swaps between the Hilbert space of two quantum states. The qubit
SWAP gate can be built from three CNOT gates, and is given with the following
matrix:

SWAP=


1 0 0 0

0 0 1 0

0 1 0 0

0 0 0 1

 (2.60)

As a final remark, we note that any single-qubit gate may be approximated
to arbitrary accuracy using a finite set of gates [NC10]. This is the result of one
of the most important theorems in quantum computing, namely Solovay–Kitaev
theorem [Kit97]. More precisely, the Solovay–Kitaev theorem states that for any
single-qubit gate U and any ε ⩾ 0, it is possible to approximate U to a precision
ε using Θ(logc(1/ε)) gates from a fixed finite set, where c is a small constant
approximately equal to 2.

2.2 Distinguishability and verification of quantum
states

An important difference between qubits and classical bits (and generally quantum
and classical states) is that it is impossible to obtain the exact classical descrip-
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tion10 of a single given copy of a quantum system. This important limitation
imposed by quantum mechanics is closely related to no-cloning theorem, which
we will thoroughly introduce in Section 2.3, and we will also further discuss this
fundamental connection in Section 3.2. However, having access to copies of the
same quantum system allows for the extraction of the state’s description. As
a result, there exists a bound on how well one can derive the classical descrip-
tion of quantum states depending on their dimension and the number of available
copies. This problem is known as the problem of state estimation in quantum
information [Hra97, PR04]. Due to the experimental relevance, in addition to
quantum information, this problem has been also widely studied in quantum op-
tics [PR04, DJ99, FKF00, OIO+12].

Another tightly related yet different problem in quantum information is the
problem of state discrimination. State discrimination refers to the task of dis-
tinguishing an unknown (pure or mixed) state ρ in a known set of states. More
precisely, given an d-level quantum system ρ be one of the states from the set
{qi ,ρi}Ni=1, that the ensemble of states ρis, each happening with probability qi ,
the goal is to determine ρ is which one of the states of the set, by performing the
best possible POVM, leading to the minimum error discrimination probability.

For the case of two mixed states, the best probability of discrimination is given
by a famous bound in quantum information theory known as Holevo-Helstrom
bound:

P roptguess =
1

2
+
1

2
||q1ρ1−q2ρ2||1 =

1

2
+dTr(q1ρ1−q2ρ2) (2.61)

Also, for two pure quantum states |ψ1⟩ and |ψ2⟩, there exists a general op-
timal strategy for state discrimination with projective measurements. This result
which we represent in the following theorem is an indirect consequence of Neu-
mark’s theorem (or Naimark’s theorem) for general POVMs [BK15], and hence
sometimes called Neumark’s measurements.

Theorem 5. The best discrimination strategy for two pure state |ψ1⟩ and
|ψ2⟩ with projective measurements {|v1⟩ , |v2⟩}, where |v1⟩ and |v2⟩ are in
the span of |ψ1⟩ and |ψ2⟩such that ⟨v1|v2⟩= 0, is when they are symmetric
with respect to the angle bisector of |ψ1⟩ and |ψ2⟩, and |vi⟩ is closer to
|ψi⟩ for i = 1,2. On outcome "|vi⟩", we guess |ψi⟩. Moreover, let the
angle between |ψ1⟩ and |ψ2⟩ be defined as: θ = arccos | ⟨ψ1|ψ2⟩|2. Then
the success probability of this strategy is given by:

P rsucc = | ⟨ψ1|v1⟩|2 = cos2 (
π/2− θ
2
) =
1

2
+
1

2
sinθ (2.62)

One can check that this optimal probability, can be obtained from Holevo-
Helstrom bound in Eq. (2.61) as a special case.

We can also assume another quantum state discrimination scenario where

10Here by ‘classical description’ we mean the value of the amplitudes in a specific basis with
arbitrary precision
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we do not get any false results, while we allow the measurement outcome to
be inconclusive. This means that if the measurement outcome indicates one of
the states, we know, for sure, that it’s the correct state. Although sometimes
the measurement’s outcome is: ‘I don’t know’ ! In the literature of quantum
computing, this scenario is known as unambiguous state discrimination [Iva87,
Die88, Per88]. We note that this problem is particularly of interest from an
experimental point of view and while dealing with imperfect measurement devices
and observers [Ber07, MSB04, Ber10]. In this problem again, the goal is to
find the best set of POVM measurements for this problem. Then minimise the
probability of an inconclusive outcome, finding the optimal POVMs. For the case
of two pure quantum states with equal prior probability, the following optimal
strategy has been given and proved optimal in [Iva87, Die88, Per88].

Theorem 6. The best strategy to unambiguously discriminate two pure
states |ψ1⟩ and |ψ2⟩ is to carry out the POVM {E0,E1,E2} where we
guess |ψ2⟩ if the outcome is 1, we guess |ψ1⟩ if the outcome is 2, and the
discrimination is inconclusive if the outcome is 0. The optimal probabilities
for this case are given as follows for the angle between |ψ1⟩ and |ψ2⟩ is θ.

P r [outcome 1] = tr(E1ρ) = 1−cosθ
P r [outcome 2] = tr(E2ρ) = 0

P r [outcome 0] = tr(E0ρ) = cosθ

(2.63)

Nevertheless, this is the simplest case of unambiguous state discrimination and
the problem has been generalised to N linearly independent states in [CB98], and
to mixed states in [BFH06, RST03] and the reader can also find one of the most
recent developments on this topic in [Kar21].

Note that, in general, the discrimination problem is directly related to the
trace distance between the given quantum states. More generally, distinguishing
between different quantum states is related to their quantum distance, quantified
by distance measures. We have introduced some of them in Section 2.1.4. While
possibly the most common distance measure for this purpose is the trace distance,
here we want to give a general definition of distinguishability with Uhlmann fidelity.
This definition is one of the most acquainted definitions in the thesis.

Definition 10 (µ-distinguishability). Let 0 ⩽ µ ⩽ 1 be the distinguisha-
bility threshold parameter. We say two quantum states ρ and σ are µ-
distinguishable if 0≤ F (ρ,σ)⩽ 1−µ.

Note that two quantum states, ρ and σ, are completely distinguishable or
1-distinguishable (µ= 1), if F (ρ,σ) = 0.

One can also define the ν-indistinguishability in the same manner:
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Definition 11 (ν-indistinguishability). Let 0 ⩽ ν ⩽ 1 the indistinguisha-
bility threshold parameter. We say two quantum states ρ and σ are ν-
indistinguishable if ν ≤ F (ρ,σ)≤ 1.

2.2.1 Verifying quantum states

Due to the impossibility of perfectly distinguishing quantum states, checking the
equality of two completely unknown states is a non-trivial task. The task of
equality testing is a simple but an extremely important task and a building block
for lots of complicated quantum protocols [BCWdW01, BBD+97, XAW+15]. The
objective is to test whether two unknown quantum states are the same. First,
we introduce the most well-known quantum algorithm for equality testing. The
content of this section is widely used throughout the thesis in all the chapters
(perhaps less used in Chapter 7). Thus, familiarity with the notions and notations
used here is crucial.

2.2.1.1 SWAP test

Given a single copy of two unknown quantum states ρ and σ, is there a simple test
to optimally determine whether the two states are equal or not? This question
was answered affirmatively by Buhrman et al. [BCWdW01] when they provided a
test called the SWAP test. This test was initially used by the authors to prove an
exponential separation between classical and quantum resources in the simultane-
ous message passing model. Since then it has been used as a standard tool in the
design of various quantum algorithms [BCMdW10, KDK17]. A SWAP test circuit
takes as an input the two unknown quantum states ρ and σ and attaches an an-
cilla |0⟩. A Hadamard gate is applied to the ancilla followed by the control-SWAP
gate and again a Hadamard on the ancilla qubit. Finally, the ancilla is measured
in the computational basis and we conclude that the two states are equal if the
measurement outcome is ‘0’ (labelled accept). Fig. 2.2 illustrates this test in the
special case when the state σ is a pure state and shown by |ψ⟩.

|0⟩ H • H

ρ

SWAP
|ψ⟩

Figure 2.2: The SWAP test circuit

It can be shown that the probability the SWAP test accepts the states ρ and
σ is [KMY03],

Pr[SWAP accept] =
1

2
+
1

2
Tr(ρσ) (2.64)
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In the special case of when at least one of the states (let’s say σ) is a pure
state σ = |ψ⟩⟨ψ|, the probability of acceptance is,

Pr[SWAP accept] =
1

2
+
1

2
| ⟨ψ|ρ |ψ⟩ |=

1

2
+
1

2
F (ρ, |ψ⟩⟨ψ|) (2.65)

Thus when at least one of the two states is a pure state, the acceptance
probability is related to the fidelity between the states. Implying that if the states
are the same, the acceptance probability is 1. However, when the states are
different, the SWAP test accepting the states implies an error. The error in the
SWAP test, when the states are not identical (also called the one-sided error), is
Pr[accept]. Nevertheless, this error can be brought down to any desired error ε> 0
by running multiple instances of the SWAP test circuit. Let M be the number
of copies of both input states. Then the number of instances, required to bring
down the error probability to a desired ε is,

Pr[SWAP error] =
M

∏
j=1

Pr[SWAP accept]j = (
1

2
+
1

2
F )M = ε

⇒M(log(1+F )−1) = log(ε)⇒M ≈O(log(1/ε))
(2.66)

where F = F (ρ, |ψ⟩⟨ψ|) = ⟨ψ|ρ |ψ⟩ and we use the fact that fidelity is independent
of ε.
Now let us introduce a generalisation of this equality test.

2.2.1.2 Generalised SWAP test

The above SWAP test is optimal in Equality testing (in a single instance) of two
unknown quantum states when one has a single copy of the two states. However,
there are certain quantum protocols where one has access to multiple copies of
one unknown state |ψ⟩ and only a single copy of the other unknown state ρ and
the objective is to provide an optimal Equality testing circuit. Considering this
scenario, Chabaud et al. [CDM+18] provided an efficient construction of such a
circuit, a generalised SWAP (GSWAP) test circuit. A GSWAP circuit takes as
an input a single copy of ρ, M copies of |ψ⟩ and ⌈logM+1⌉ copies of the ancilla
qubit |0⟩. The generalised circuit is then run on the inputs, and the ancilla qubits
are measured in the computational basis. Fig. 2.3 is a generic illustration of such
a circuit. For more details on the circuit refer to the original work [CDM+18].

It can be shown that the probability the GWAP circuit accepts two quantum
states ρ and |ψ⟩ is,

Pr[GSWAP accept] =
1

M+1
+

M

M+1
⟨ψ|ρ |ψ⟩=

1

M+1
+

M

M+1
F (2.67)

where F = F (ρ, |ψ⟩⟨ψ|). We note that in the special case of M = 1, the GSWAP
test reduces to the SWAP test. Also in a single instance, GSWAP provides a
better Equality test compared to the SWAP test since it reduces the one-sided
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Figure 2.3: GSWAP: A generalisation of the SWAP test with a single copy of ρ and M copies
of |ψ⟩. The circuit also inputs n =

⌈
logM+1

⌉
ancilla qubits in the state |0⟩. At the end of the

circuit, the ancilla states are measured in the computational basis.

error probability. In the limitM→∞, we obtain the optimal acceptance probability
of Pr[accept] = F = ⟨ψ|ρ |ψ⟩. Another important feature of GSWAP is that it can
achieve any desired success probability ε(⩾ F ) in just a single instance which is
impossible to achieve using SWAP circuit. However, the number of copies required
is exponentially more than the number of instances that the SWAP circuit has to
run to achieve the same error probability,

Pr[GSWAP error] = Pr[GSWAP accept] =
1

M+1
+

M

M+1
F = ε

⇒M ≈O(1/ε)
(2.68)

2.2.1.3 Abstract quantum test

We can also abstract the notion of quantum equality testing of quantum states.
We introduce our own abstract version of such test algorithms by defining the
necessary conditions for a general quantum test.
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Definition 12 (Quantum Testing Algorithm). Let ρ⊗κ1 and σ⊗κ2 be κ1
and κ2 copies of two quantum states ρ and σ, respectively. A Quantum
Testing algorithm T is a quantum algorithm that takes as input the tuple
(ρ⊗κ1,σ⊗κ2) and accepts ρ and σ as equal (outputs 1) with the following
probability

Pr[1←T (ρ⊗κ1,σ⊗κ2)] = 1−Pr[0←T (ρ⊗κ1,σ⊗κ2)] = f (κ1,κ2,F (ρ,σ))

where F (ρ,σ) is the fidelity and f (κ1,κ2,F (ρ,σ)) satisfies the following
limits:

limF (ρ,σ)→1 f (κ1,κ2,F (ρ,σ)) = 1 ∀ (κ1,κ2)
limκ1=1,κ2→∞ f (κ1,κ2,F (ρ,σ)) = F (ρ,σ)

limκ1→∞,κ2=1 f (κ1,κ2,F (ρ,σ)) = F (ρ,σ)

limF (ρ,σ)→0 f (κ1,κ2,F (ρ,σ)) = Err(κ1,κ2)

(2.69)

with Err(κ1,κ2) characterising the statistical error of the test algorithm.

As an example, for the GSWAP test where κ1=1 and κ2=M, we obtain from
Eq. (2.68) that the probability of acceptance in the limit F (ρ, |ψ⟩⟨ψ|)→ 1 is 1,
while it is 1

M+1 in the limit F (ρ, |ψ⟩⟨ψ|)→ 0. It can be inferred from the above
definition that the quantum test can be idealized by forcing the Err(κ1,κ2) to be
zero for any given number of copies. We discuss this last point later in Chapter 4,
when we introduce an ideal version of such abstract tests.

2.3 Quantum cloning

In this section, we introduce one of the core concepts of this thesis: the no-
cloning theorem and quantum cloning. This section (specifically subsection 2.3.1)
is essential for Chapter 7 and not mostly used in other chapters, except for the
general notion of no-cloning. First, we discuss the impossibility of perfectly cloning
quantum states via the no-cloning theorem and then we discuss how we can step
out of this limitation on the quantum world and go beyond this impossibility.

The no-cloning theorem states that it is not possible to perfectly clone an
unknown quantum state. The proof of this theorem is most commonly known
to be the work of Wootters and Zurek [WZ82], and also independently done by
Dieks [Die82] in 1982. Although it seems that it has originally been discovered in
1970 by Park [Par70]. One formulation of the no-cloning theorem is as follows.
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Theorem 7 (The no-cloning theorem). There exists no unitary transforma-
tion Uc that performs the following operation on an arbitrary unknown state
|ψ⟩ ∈H, a blank (or reference) state |0⟩ ∈H of the same Hilbert space and
any arbitrary ancillary state |a⟩:

|ψ⟩ |0⟩ |a⟩ Uc→ |ψ⟩ |ψ⟩ |aψ⟩ (2.70)

There exist several proofs of this theorem. Here we give a simple one, similar
to what can be found in [BL06]. The proof is by contradiction. Let us assume
that such a unitary Uc exists. We note that all the states |ψ⟩, |0⟩ and |a⟩ (whose
dimension does not need to be specified) are normalized. Since the state |ψ⟩ is
arbitrary, the unitary should be working similarly for any state. Now we assume
two non-orthogonal input states |ψ⟩ and |φ⟩, for which the cloning transformation
should be as follows.

Uc(|ψ⟩ |0⟩ |a⟩) = |ψ⟩ |ψ⟩ |aψ⟩
Uc(|φ⟩ |0⟩ |a⟩) = |φ⟩ |ψ⟩ |aφ⟩

(2.71)

where |aψ⟩ and |aφ⟩ represent the output states of the ancilla after the cloning
transformation. Regardless of the dimension of the ancillary states, we have that
| ⟨aψ|aφ⟩|⩽ 1. Also, the unitary transformation preserves the inner product. Now,
let us inner product both sides of the Eq. (2.71), which leads to the following:

⟨ψ|φ⟩= ⟨ψ|φ⟩2 ⟨aψ|aφ⟩ ⇒ ⟨ψ|φ⟩=
1

⟨aψ|aφ⟩
(2.72)

which can clearly be never satisfied and hence the contradiction has been shown.
There are two cases where one cannot reach such contradictions. The first one
is the trivial case of ⟨ψ|φ⟩= 1, and the other one is the two states are known to
be orthogonal i.e. ⟨ψ|φ⟩ = 0. The latter case is intuitively very insightful since
it corresponds to cloning a classical bit, which we know is possible. We will dig
further into this in Chapter 3. Moreover, we note that here, no assumption has
been made on the unitary, and the no-cloning has been only the result of the
unitarity of the transformations in quantum mechanics.

It is also worth mentioning that no-cloning is such a fundamental aspect of
nature that it extends to other areas of physics. In fact, cloning is also impossible
if we consider the impossibility of superluminal signalling to be held, which we do,
due to special relativity. This no-go theorem is known as no-signalling [Gis98,
NC03] and it is known that if perfect cloning could be possible, it would lead
to a contradiction with the fact that no signal can travel faster than the speed
of light. No-cloning, is also deeply connected to many other no-go results in
quantum information, such as no-broadcasting theorem [BCF+96, PHH08], no-
deleting theorem [KPB00], no-superposing theorem [OGHW16, DKK17].
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2.3.1 Cloning beyond the no-cloning theorem

Well, the show must go on! The no-cloning theorem has not been the end of the
road for this part of quantum information. On the contrary, the beginning of a
rich field of research. To go around the no-cloning limitation, we must lower our
expectations from the cloning machine! Remember that we expected the cloning
machine to be deterministic (meaning that we always want to get the clones with
probability 1) and exact (which means that the output states should be both
perfect copies of the initial state). It turned out that by relaxing each of these
conditions, quantum cloning can be made possible. We call the transformation
that achieves such tasks a quantum cloning machine (QCM).

Relaxing the first condition leads to a class of quantum cloning known as
probabilistic cloning, originated by these works [DG97, DG98]. A probabilistic
cloning machine produces perfect clones, but only some times, i.e. it succeeds
with a certain probability. As one can guess, there are information-theoretic upper
bounds on this success probability. In this thesis, we do not focus on probabilistic
cloning, although we refer the interested readers to these reviews on quantum
cloning, including the probabilistic cloning [SIGA05, FWJ+14, BL06].

The second condition, on the other hand, was historically the first one to
be relaxed by Buzek and Hillery in [BH96], leading to the field of Approximate
quantum cloning. In approximate cloning, the operation is deterministic, however,
we allow the clones to be not perfect, i.e. have some distance from the original
quantum state. The most important property of an approximate cloner is the
quality of the output clones, which is measured by the fidelity between the clone
and the original state. The next important factor is the family of states we
require the cloning machine to clone. Each family of states leads to a class of
approximate cloning machines. For instance, if the family of states we consider is
all the possible states of a Hilbert space, the cloner is called universal quantum
cloner. However, this set can be made more restricted, meaning that more prior
information of the initial states is known, which in turn will lead to cloners with
higher optimal fidelity as we will see.

Another property of a cloning machine is symmetry. When a cloning machine
is symmetric, it means that both of the outputted clones should be the same,
relative to the comparison measure. This symmetry is considered when the fidelity
is to be optimised, which means that most of the time the symmetric cloners are
optimised with respect to local fidelity, i.e. the fidelity of each clone state. While
we can also have asymmetric cloners [Cer00b, Cer00a, IAC+05, DFC05] where
the fidelity of one clone is higher than the other one. The quality (especially in
the asymmetric case) of the cloner can also be measured with respect to the joint
state of both of the clones in comparison to two perfect clones. This fidelity
measured is referred to as global fidelity. In Chapter 7, where we introduce a
machine learning algorithm for the task of cloning, this distinction between global
and local fidelity becomes a subtle and important factor.

Finally, the generalisation of the cloning problem is when we have M > 1 copies
of the input state and we require to create N >M approximate clones (known as
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N→M cloning). In this case enforcing symmetry would correspond to

F jL = F
k
L , ∀j,k ∈ {1, . . .N}. (2.73)

Where F denotes the fidelity. Now let us briefly discuss three main classes of
cloning machines.

2.3.1.1 Universal quantum cloning

The earliest result in approximate cloning was a universal symmetric cloning ma-
chine (UQCM) [BH96]. A UQCM is completely agnostic about the input state
and is aimed to clone any given quantum state of a Hilbert space with a given
dimension. For the case of a qubit, where we want to clone all the qubits on
the Bloch sphere, it has been shown that this cloner can achieve the optimal
cloning fidelity of 5/6 ≈ 0.8333. This optimal cloner, takes as input an initially
unknown state, a blank state and an ancillary qubit, and maps them to a 2-qubit
state (the ancillary state is traced out) where the fidelity of each subsystem, or in
other words, each reduced density matrices, is optimised to the maximum value
of fidelity, leading to the optimal local qubit fidelity of FU,1

L,opt = F
U,2
L,opt = 5/6.

Now, in the generalised case, we can provide multiple (M) copies of a state to
the cloner and request N output approximate clones which is referred to asM→N

cloning [GM97, BEM98]. Generalizing the universal cloning fidelity (FU,j
L,opt) :=

FU,j
L,opt(1,2)) to the M→ N scenario, the optimal local fidelity becomes:

FU,j
L,opt(M,N) = F

U
L,opt(M,N) =

MN+M+N

N(M+2)
(2.74)

Here N −M ancilla qubits are used to assist, so the initial state is |ψA⟩⊗M ⊗
|0⟩⊗N−M . We also note that in the limit M →∞, an optimal cloning machine
becomes equivalent to a quantum state estimation machine [SIGA05] for universal
cloning. We will further discuss the intuitive meaning and relevance of this impor-
tant result for our purpose in Chapter 3. In the context of cryptography, M→ N

cloning can be also modelled as having N adversaries, E1 . . .EN who receive M
copies of the state to be cloned.

2.3.1.2 Phase-covariant cloning

Phase-covariant (introduced by [BCMDM00]) states are equatorial states of Bloch
sphere. It is common to choose the X−Y plane to describe such states:

|ψxy (η)⟩=
1√
2

(
|0⟩+e iη |1⟩

)
(2.75)

It is known that a phase-covariant cloning machine (PCQCM) that clones one
equatorial qubit to two clones has the optimal local fidelity FPC

L,opt ≈ 0.85 > 5/6,
which is notably higher than the universal case.
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These states are relevant since they are used in BB84 QKD protocols and also
in universal blind quantum computation protocols [BB14, BFK09]. Here in the
context of QKD, we have the following scenario: Assume that Alice wishes to
transmit quantum information to Bob (here the information is the bits of the key)
but the channel is subject to an eavesdropper, Eve, who wishes to adversarially
gain knowledge on the message sent by Alice.

Figure 2.4: Cartoon illustration of an eavesdropping attack by Eve, trying to clone the state, ρA,
Alice sends to Bob. Eve injects a ‘blank’ state (which can be a specific state or an arbitrary state
depending on the scenario, which ends up as a clone of ρA) and an ancillary system (E∗). She
then applies the cloning unitary, U. We can assume the cloner is manufactured by Eve to give her
the greatest advantage. The state Bob receives will be the partial trace over Eve’s subsystems,
ρB = TrEE∗(ρBEE∗), and Eve’s clone will be ρE , where ρBEE∗ is the full output state from the
QCM.

We illustrate this in Fig. 2.4, for a single Eve. In this picture, Alice (A) sends
a quantum state11, ρA, to Bob (B). A cloning based attack strategy for Eve (E)
could be to try and clone Alice’s state, producing a second (approximate) copy
which she can use later in her attack, with some ancillary register (E∗).

Interestingly, the cloning of phase-covariant states can be accomplished in an
economical manner, meaning without needing an ancilla system for Eve, E∗[NG99].
However, as noted in [SIGA05], removing the ancilla is useful to reduce re-
sources if one is only interested in performing cloning, but if Eve wishes to at-
tack Alice and Bob’s communication, it is more beneficial to apply an ancilla-
based attack. Intuitively, this is because the ancilla also contains information
about the input state which Eve can extract. Of interest to our purposes, is
an explicit quantum circuit which implements the cloning transformation. A
unified circuit [BBHB97, FWJ+14, FMWW01] for the above cases (universal
and X−Y phase covariant) can be seen in Fig. 2.5. The parameters of the
circuit, α = {α1,α2,α3}, are given by the family of states the circuit is built
for [BBHB97, FWJ+14, FMWW01].

For phase-covariant cloning of X−Y states, we explicitly have the following

11This will typically be a pure state, ρA := |ψ⟩⟨ψ|A, but it can also be generalised to include
mixed states, in which the task is referred to as broadcasting[BCF+96, CC07, DF07]. The no-
broadcasting theorem is a generalisation of the no-cloning theorem in this setting.
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optimal angles:

αXY1 = αXY3 = arcsin

√
(
1

2
−
1

2
√
3
)≈ 0.477,

αXY2 =−arcsin

√
(
1

2
−
√
3

4
)≈−0.261

(2.76)

Figure 2.5: Ideal cloning circuit for universal and phase covariant cloning. The Preparation circuit
prepares Eve’s system to receive the cloned states, while the Cloning circuit transfers information.
Notice that the output registers which contain the two clones of |ψ⟩A to Bob and Eve in this
circuit are registers 2 and 3 respectively.

For completeness, let us also have a look at the optimal local fidelity for the
general M → N case, which has been studied in [FMWW01, DM03]. There is
no unique expression for the optimal local fidelity as a function of N and M.
However, for the 1→ N case the optimal phase covariant fidelity is given by
[DM03] as follows depending on N being odd or even:

FPC
L,opt(1,N) =

{
1
2(1+

N+1
2N ) odd N

1
2(1+

√
N(N+2)
2N ) even N

(2.77)

2.3.1.3 State-dependent cloning with fixed overlap

Now we introduce another class of cloning machines where we aim to clone two
non-orthogonal unknown quantum states with a known fixed overlap12. This was
one of the original scenarios studied in the realm of approximate cloning [BDE+98]
but is difficult to tackle analytically. Let us consider the simplest case first, where
one considers two states of the type:

|ψ1⟩= cosφ |0⟩+sinφ |1⟩
|ψ2⟩= sinφ |0⟩+cosφ |1⟩

(2.78)

which have a fixed overlap, s = ⟨ψ1|ψ2⟩= sin2φ. It has been shown in [BDE+98]
that the optimal local fidelity for this scenario is the following:

F FO,j
L,opt =

1

2
+

√
2

32s
(1+ s)(3−3s+

√
1−2s+9s2)

×
√
−1+2s+3s2+(1− s)

√
1−2s+9s2, j ∈ {1,2}

(2.79)

12This cloning is originally referred to as ‘state-dependent cloning’, so we herein use this term
referring to this scenario.
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It can be shown that the minimum value for this expression is achieved when s = 12
and gives F FO,j

L,opt≈ 0.987, which is much better than the symmetric phase-covariant
cloner.

Let us also have a look at the global fidelity in the general M → N case for
this cloning machine which is given as [BL06, BDE+98]:

F FO
G,opt =

1

2
(1+ sM+N+

√
1− s2M

√
1− s2N) (2.80)

Interestingly, it can be shown that the state-dependent quantum cloning ma-
chine (SDQCM) which achieves this optimal global fidelity, does not saturate
the optimal local fidelity. Computing the local fidelity for the globally optimized
SDQCM gives [BL06]:

F FO,jL,∗ (M,N) =
1

4
(
1+ sM

1+ sN

[
1+ s2+2sN

]
+
1− sM

1− sN
[
1+ s2−2sN

]
+2
1− s2M

1− s2N
[
1− s2

]
) ∀j

(2.81)

In contrast, computing the optimal local fidelity for this scenario [BDE+98] (for
1→ 2 cloning) is:

F FO,j
L,opt =

1

2
+

√
2

32s
(1+ s)

(
3−3s+

√
1−2s+9s2

)
×
√
−1+2s+3s2+(1− s)

√
1−2s+9s2, ∀j

(2.82)

It can be shown that the minimum value for this expression is achieved when
s = 12 and gives F FO,j

L,opt ≈ 0.987, which is also much better than the symmetric
phase-covariant cloner. Nevertheless, comparing Eq. (2.82) and Eq. (2.81)
reveals that F FO,jL,∗ (1,2) is actually a lower bound for the optimal local fidelity,

F FO,j
L,opt in Eq. (2.82). This point is crucially relevant for us and we will go back to

it in Chapter 7 where we will use this scenario as a case study for quantum coin
flipping protocols and for the design of our variational cloning algorithm.

The state-dependent cloning has been studied concerning the security of QKD.
Although, as we have discussed optimal cloning-based attacks for the BB84 pro-
tocol are given with the optimal phase covariant cloner. However, this type of
cloning has not been widely used for the study of other cryptographic protocols,
which is one of our main contributions in Chapter 7. We also note that, interest-
ingly, state-dependent cloning has been recently used to demonstrate advantages
related to quantum contextuality [LS20].
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2.4 Haar measure and random matrix theory

In this section, we introduce some mathematical background for a concept that is
the building block of quantum randomness. The notion of the Haar measure is a
particularly important one, and consequently, we have also used it in almost all the
chapters. However, other random matrix theory toolkits introduced in this section
are used in Chapter 5. In mathematics, the Haar measure assigns an ‘invariant
volume’ to subsets of a locally compact topological group. This measure was
introduced by Haar in 1933 [Haa33], though its special case for Lie groups had
been introduced earlier by Hurwitz as invariant integral [DF17]. This measure
has been used in many fields such as group theory, representation theory, random
matrix theory, ergodic theory and quantum information. Let us first introduce the
mathematical definitions and then give an intuition on its application in quantum
information.

A Haar measure is a non-zero measure on any locally compact group G such
that µ : G → [0,∞) such that for all X ⊂ G and x ∈ G we have the following
translation invariance property for µ(X) =

∫
x∈G dµ(x):

µ(xX) = µ(Xx) = µ(X) (2.83)

In particular, the Haar measure dµ(U) can be defined for a unitary group U(d).
Sampling unitaries from Haar measure on U(d) is equivalent to geometrically
uniform sampling from unitary groups of that dimension.

Let us take the 2-dimensional Hilbert space as an example. We recall that
pure qubit states can be represented as a vector or a point on the surface of
the Bloch sphere. Assume that we want to pick uniformly random qubits on the
surface of the Bloch sphere. Since every point on the sphere is parameterised
by θ and φ according to Eq. (2.4), one approach would be to uniformly sample
values for these two parameters and the result will be random qubits on the Bloch
sphere. Although, as it is shown in Fig. 2.6, by doing this, the resulting vectors will
not be uniformly distributed on the surface of the Bloch sphere and they will be
more concentrated around the poles. On the contrary, if one samples the vectors
uniformly at random according to the Haar measure over SU(2), they will be
distributed uniformly over the Bloch sphere (Fig. 2.6 (b)). In practice, however,
sampling from the Haar measure requires exponential (in d) resources [Kni95].

We are also interested in characterising the properties of the eigenvalues of
Haar-random unitary matrices and their distributions. Problems of this sort have
been widely studied in the field of random matrix theory. Here we introduce some
of the important results in this field that we will use later on in Chapter 5.

The first result that we need, is known as Weyl density formula or Weyl inte-
gration formula, and is stated as follows:



2.4. Haar measure and random matrix theory 41

(a) (b)

Figure 2.6: Haar measure and non-uniform sampling over the Bloch sphere. Figure (a) shows the
case where the qubits have been sampled through a uniform sampling of the qubit parameters.
This sampling leads to a geometrically non-uniform sampling over the sphere. Figure (b) shows
sampling qubits according to Haar measure over SU(2) which leads to a uniform sampling over
the Bloch sphere.

Lemma 1 (Weyl integration formula on U(n) [Mec19]). Let {e iθj}nj=1 be
the eigenvalues of n×n random unitary matrix. The unordered eigenvalues
of a random unitary matrix have the following eigenvalue density

1

n!(2π)n ∏
1⩽j<k⩽n

|e iθj −e iθk |2 (2.84)

with respect to dθ1 . . .dθn on (2π)n. That is, for any g : U(n)→ R with

g(U) = g(V UV ∗) for any U,V ∈ U(n),

(i.e., g is a class function), if U is Haar-distributed on U(n), then

E[g(U)] =
1

n!(2π)n

∫
[0,2π)n

g̃(θ1, . . . ,θn) ∏
1⩽j<k⩽n

|e iθj −e iθk |2dθ1 . . .dθn

(2.85)
where g̃ : [0,2π)n→R is the (necessarily symmetric) expression of g(U) as
a function of the eigenvalues of U.

As discussed in [Mec19], one consequence of the above lemma is that the
eigenvalues of random unitary matrices want to spread out. For any given pair of
eigenvalues labelled by (j,k), |e iθj −e iθk |2 is zero if θj = θk , and is 4 if θj = θk +π
(and in that neighborhood if they are roughly antipodal). This produces the effect
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alternatively known as ‘eigenvalue repulsion’.
Another important tool in the study of the eigenvalues of random matrices is

the empirical spectral measure defined as,

µ̃=
1

n

n

∑
j=1

δ
e
iθj (2.86)

where e iθj are the eigenvalues of the unitary matrix and δ is the probability distribu-
tion function over the eigenvalues. The empirical spectral measure is a probability
measure to encode the ensemble of eigenvalues which puts equal mass at each of
the eigenvalues of U. This encoding is very useful for representing the spreading
of the eigenvalues on the complex unit circle denoted by S1 ⊆ C.

Next, we need the following important theorem by Diaconis-Shashahani [DS94],
that shows the convergence of the eigenvalues of the Haar-random matrices to
the uniform distribution over the unit circle:

Theorem 8 ([DS94]). Let U be uniformly chosen from Haar-measure in
U(d), Let ν be the uniform distribution on S1. Then as d →∞, the µ̃U
converges, weakly in probability, to ν:

µ̃U
d→∞−→ ν (2.87)

Finally, we introduce the following result by Wieand [Wie02] which is very
useful in working with the statistics of the eigenvalues of random unitaries.

Theorem 9 ([Wie02]). Let U be a unitary matrix chosen from Haar measure
in U(d), and let {e iθ1, . . . ,e iθd} be the eigenvalues of U. Fix a finite number
of intervals on the unit circle I1 = (e iθ1j ,e iθ1l ), . . . , Im = (e iθmj ,e iθml ). Define
the random variables Nθ1, . . . ,Nθm to be the number of eigenvalues in each
arc defined by the intervals. In the limit of large d , the mean and variance
of Nθk are as follows:

Ed [Nθk ] =
d(θkj − θkl)
2π

(2.88)

and

V ar(Nθk ) =
1

π2
(log(d)+1+γ+log |2sin(

θkj − θkl
2

)|)+o(1). (2.89)

where γ ≈ 0.577 is the Euler’s constant.

This theorem, gives a concrete formula for calculating the expectation value
and variance of the random variable that represents the number of eigenvalues of
a random unitary matrix, in each arc of the unit circle and hence can be used to
study the distribution of eigenvalues of random matrices.
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2.5 Quantum cryptography

Now we focus on another field of research that we tightly connected with this
thesis, namely quantum cryptography. Quantum cryptography is almost as old
as quantum computing itself and studies different cryptographic problems that
involve, in several ways, quantum mechanical systems. These quantum systems
can be employed by honest parties to perform a cryptographic task, or else can be
exploited by an adversary, or a dishonest party, trying to attack the system. We
have already seen an example of a secure protocol (i.e. QKD) where parties have
some limited quantum capabilities like preparing and measuring qubit states in a
specific basis. We will introduce another example of such protocols in this chapter
that achieves a functionality which is impossible with only ‘classical’ cryptography
(see 2.5.7). Yet another sub-field of quantum cryptography is post-quantum
cryptography, dedicated to studying the security of ‘classical’ systems against
quantum adversaries and the design of quantum-secure cryptographic schemes.
In this field, the most vital aspect of a quantum adversary is its quantum computing
capability, especially after the discovery of algorithms such as Shor’s and Grover’s
where there exists (a potentially) significant quantum-speedup [WK19]. The main
idea here is to keep the cryptographic schemes classical while designing them
based on assumptions and mathematical problems that are also hard for quantum
computers to solve. Due to the current technological challenges and inefficiency of
quantum systems, as well as the incompatibility of many of the quantum protocols
with today’s existing classical cryptosystems, this idea is perhaps the most popular
discipline today for achieving security in the quantum world [WK19, BBGP16].
Among the existing attempts in this field to guarantee ‘quantum-resistant’ with
classical cryptographic schemes, one of the most successful ones is lattice-based
cryptography [MR09]. However, there is a full spectrum between going towards
fully quantum systems and keeping them fully classical. Numerous work has been
done in this area, which is also of particular interest in this thesis. Therefore, in
this section, we will introduce a handpick of concepts and protocols from different
branches of quantum cryptography, which are either essential for the results we
will establish later or will help the reader with an improved understanding of future
topics. However, the introduction we give here is by no means exhaustive.

Before going over the more technical materials, let us settle on a few basic
notations and terminologies that we will widely throughout the thesis.

We start with the notion of security parameter. The security parameter,
which we denote as λ in this thesis, is a parameter that quantifies the security
level of the systems, or in other words, the complexity of the problem based on
which the cryptographic scheme has been designed. Roughly speaking, the security
parameter measures how ‘hard’ it is for an attacker (which we call adversary
from now on) to break the cryptographic scheme. As such, the objective is to
design cryptographic schemes that for any adversary, the success probability of
the adversary is ‘small’ relative to this parameter.

Now let us focus on the word ‘small’ in the previous sentence and try to
formalise that. The smallness, in the world of cryptography, is usually formalised
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via a concept known as negligible function, defined as follows:

Definition 13 (Negligible function). A function ε : N→ R is a negligible
function, if for every positive integer c , (or equivalently every polynomial
function of the security parameter poly(.)) there exists an integer Nc > 0
(or Npoly > 0) such that for all x > Nc (x > Npoly ) the following holds:

|ε(x)|<
1

xc

(
or |ε(x)|<

1

poly(x)

)
(2.90)

Thus, we require the success probability of the adversary to be a negligible
function of the security parameter λ, which we denote as either negl(λ) or ε(λ).
We refer to [KL20] for properties of the negligible functions.

Another terminology that we need to introduce, is the notion of One-Way
Function (OWF). An OWF is a function that is ‘easy’ to compute on every input,
but ‘hard’ to invert given the image of a random input. OWFs are usually con-
sidered as a computational assumption on cryptography, referring to the hardness
complexity in the definition. More formally, an OWF is defined as follows [KL20]:

Definition 14 (One-way function (OWF)). A function f : {0,1}n→{0,1}l
is a one-way function if:

1. f can be evaluated in polynomial time on every input.

2. for every probabilistic polynomial time (PPT) algorithm A there exists
a negligible function ε such that:

P r
X←{0,1}n

[A(f (X),1n) ∈ f −1(f (X))]⩽ ε(n) ∀n. (2.91)

We also note that one-way-ness can be also defined over a family of functions.
OWFs are an important part of modern cryptography, hence we refer the interested
reader to [KL20] for more information about the topic. Now, let us introduce
another important terminology in the next section.

2.5.1 Formal frameworks for cryptanalysis

Security proofs in cryptography are usually given in a formal mathematical frame-
work that allows for careful analysis of the cryptographic tasks. The most widely-
used framework in modern cryptography is the game-based framework. In the
game-based framework, the cryptographic definition (or task) is formalised as a
game played between the adversary (In this thesis, we usually denote the adversary
as A) and a hypothetical honest party called challenger (we usually denote the
challenger by C). Both parties can be (and usually are) probabilistic algorithms
and processes. The game should be defined in a way that captures the task of
interest, and it is defined over a probability space. The security then is proved
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by performing a probabilistic analysis and measured in the success probability of
the adversary in winning the game. This model is quite popular in cryptography
as it is relatively easy to understand and utilise, while it is powerful enough to
capture the security of any cryptographic primitive. Moreover, the framework can
also be translated in the quantum regime, as has been previously done by several
works such as [BZ13a, BZ13b, AMRS20]. In this thesis, we will also use this
framework for our security proofs and will define our quantum definitions based
on this paradigm.

However, for completeness, we will also briefly mention other security paradigms.
The other famous security framework is simulation paradigm [GGM86].13 Here
the security is captured by comparing two scenarios (or two worlds): An ideal
scenario which is secure by definition, and a real-world, where an adversary can
interact with the real execution of the protocol. In this regime, the protocol is
secure, if any adversary in the real model cannot do much better than if it was
involved in the ideal model or, in other words, the two scenarios are indistinguish-
able.

The simulation-based framework, however, investigates the security in a stand-
alone model, i.e. when we consider the execution of that protocol only, as a single
instance. However, more complicated cryptographic protocols are often com-
posed of smaller sub-protocols and components and one requires to ensure the
security of the whole system is preserved if secure protocols are being composed
together. Although this is not only non-trivial, there are several examples where
this is not the case, i.e. composing secure protocols leads to a non-secure system
[KL20]. A cryptographic framework that addresses this problem has been intro-
duced by Canetti [Can01] and is called Universal Composability (UC) framework.
This framework is closer in nature to the simulation paradigm. Despite being very
powerful, often proving the security of protocols in this manner is more compli-
cated, and there are considerably fewer cryptographic schemes that have been
proven composabily secure. Another similar framework that also captures the
composability issue into account is a framework introduced by Maurer [Mau05]
and is called Abstract Cryptography (AC) framework. Both of these frameworks
have also been extended to quantum setting [MQR09, MR16].

2.5.2 Adversarial models in the quantum world

In this section, we will introduce different adversarial models in the quantum world,
specifically the ones that we will mostly encounter in this thesis. Some of the ad-
versaries that we discuss are more common in the quantum information literature
(for instance against quantum protocols such as QKD). While some others are,
generally speaking, translations of different classes of classical adversaries into the
quantum world, and as a result, mostly adopted from cryptography literature. As
in this thesis, we deal with various quantum adversaries we attempt to give a
general and coherent overview of them in this section.

13Also called simulation-based framework and real world/ideal world paradigm
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Let us first set up the definition of an adversary! An adversary is an algorithm,
defined as a polynomial-time uniform family of quantum circuits, that can be either
deterministic or probabilistic (the probabilistic ones are more common to consider
due to generality), and their goal is to perform a task that leads to breaking a
protocol, or more generally a cryptosystem, under specific assumptions. Hence,
each class of adversaries is usually characterised by the set of assumptions that
we consider for such algorithms.

In this thesis, we are interested in quantum adversaries, i.e. adversaries who
also possess quantum capabilities, in addition to their usual classical computational
power. As a result, the first assumption on our adversaries of interest is quantum
mechanics itself! Thus, we assume that a quantum adversary is subject to the
laws of quantum mechanics, which we also assume to be correct and complete14.

If no additional assumptions have been made on the adversary, which inherently
means that the adversary’s computational power is unbounded, the adversary is
often called unbounded quantum adversary. The security that is achieved against
such adversaries is called information-theoretic security, as opposed to compu-
tational security where there are assumptions on the computational capabilities
[PR21]. This is the strongest known notion of security that the marriage of
quantum mechanics and information theory has been made possible [BS16]. The
security of many quantum protocols, such as QKD, quantum money, quantum
coin-flipping and so on, has been studied in this security model. The adversary
sometimes appears in the form of an eavesdropper (usually called Eve) who wants
to access some encoded information that is being exchanged through a channel
controlled by this adversary (like in the case of QKD). In some other protocols, the
adversary plays the role of a malicious party in a protocol who wants to cheat or
deviate from the honest behaviour (like in the case of quantum money or quantum
coin-flipping).

Nevertheless, this notion is usually too strong, and almost none of the classical
cryptosystems that we have can resist unbounded quantum adversaries [WK19,
Mos18]. Thus a more common and standard adversarial model is the class of
quantum polynomial-time (QPT) adversaries. Here the computational power of
the adversary has been limited to polynomial time (in the security parameter).
The QPT adversary is, in fact, an efficient quantum adversary that, in terms of
complexity theory, is allowed to run polynomial-time uniform family of quantum
circuits. Despite being computationally bounded, this class of adversary is still
very powerful, and it is known that many existing cryptosystems based on compu-
tational hardness assumptions are still broken against this adversary as well, due
to the existence of efficient quantum algorithms such as Shor’s algorithm [Sho94],
and Grover’s algorithm [Gro96] that the adversary can exploit[WK19, Son14]. A

14Although one might consider quantum mechanics as an established model that describes the
nature, which is true to some extent and precision as all of the theories in physics, its correctness
and completeness is still an assumption we (happily) carry along with ourselves throughout this
thesis (and generally in quantum cryptography and quantum information). Despite debates on the
completeness of quantum theory, as discussed in [PR21], this is still a very justifiable assumption
to make
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QPT adversary can also be given oracle access to the classical or quantum primi-
tive. The oracle model is a common cryptographic technique that is widely used
in security proofs since it facilitates modelling adversarial behaviours where some
information about the scheme is gathered (in some earlier stages or by interact-
ing with the scheme and observing its properties). We discuss such oracles in
the next section as well in Section 3.3.3 in Chapter 3. Since a QPT adversary
is polynomial bounded, it is also bounded in the oracle model to a polynomial
number of queries to the given oracle 15. The quantum adversaries that have this
somewhat quantum communicative access to the primitives are also sometimes
called online quantum adversaries, while an offline quantum adversary can only
have classical information of the primitive, and later on, use a quantum algorithm
together with the classical data to break the cryptosystem. The study of the se-
curity of classical cryptosystems against offline quantum adversaries, is famously
known as post-quantum cryptography [BBGP16, BL17, Son14]. Moreover, the
more technical term for this security model is the standard security model, while
as when the oracle access to the primitive is considered quantum, the term quan-
tum security model is used [BZ13a, BZ13b, GHS16]. One of the key elements
of the quantum security model is the superposition queries, that is the adversary
can query many classical values in one quantum query in the form of a superposi-
tion of those states. Superposition queries enables a broader range of non-trivial
attacks [KLLNP16, SS17, BZ13a, GHS16] that are not possible in the classical
regime, or the standard security model.

Although the quantum security model might seem too strong to be considered
for classical schemes, there are well-justified reasons for considering it. First of all,
we note that for a quantum scheme, the natural model to consider is the quantum
security model, since any type of interaction with the primitives will be via quantum
states and since classical primitives can also be generalised as quantum ones,
this model is theoretically more general and hence interesting. Moreover, in the
future, one can consider a world where classical computers have been replaced with
quantum ones and hence even the classical routines and cryptographic algorithms
are being run on a quantum computer. This scenario argument has been also
given by Boneh and Zhandry in [BZ13b]. Nonetheless, from a more practical
point of view, one argument against this model for classical primitives is that a
possible countermeasure against superposition attacks is to forbid any kind of
quantum access to the oracle through measurements. However, in such a setting
the security relies on the physical implementation of the measurement tool which
itself could be potentially exploited by a quantum adversary. Thus, and as it has
previously been advocated in [BZ13b, BZ13a, KLLNP16, AMRS20], providing
security guarantees in the quantum security model is crucial even practically.

Once the oracle’s access to the primitive is considered, the adversarial models
can be further categorised based on the assumptions of the access level of the
adversary. These classes of adversaries are usually the adaptation of the usual

15In general, in the field of algorithm complexity, time complexity and query complexity has
been considered separately in many cases, while as in cryptography we usually consider the QPT
adversary to be polynomial in both.
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classical models in the quantum regime. As usual, we start with the strongest case.
The strongest access level is when an adversary can directly access the oracle and
query any arbitrary quantum state of their choice. Also, the queries can be issued
adaptively, meaning that the adversary can choose the next query depending on the
responses of the oracle to previous queries. In classical cryptography, this attack
model is called Chosen Message Attack (CMA) model. The quantum analogue
of this model has been introduced by Boneh and Zhandry [BZ13b], and called
Quantum Chosen Message Attack (qCMA)16. This is one of the main quantum
adversarial models that we use in this thesis. However, we will carefully define our
version of qCMA within our given security game in Chapter 3.

Another important note that is worth mentioning here is that although in
CMA/qCMA models the queries are adaptive, the term ‘adaptive’ is also used
in the literature for another security level, where the adversary has been given
an extra learning phase, usually after receiving the main message. This level of
adaptiveness is meaningful for some definitions for instance for encryption schemes
one can consider such a model for ciphertext, known as CCA2. This model has
also been brought into the quantum world [CEV20]. We will also briefly mention
this model for our case studies.

Next, the adversary can be weakened if we restrict the direct access to the
oracle and instead the adversary has access to a random set of queries, chosen
from a certain distribution17. This is often referred to as Random Message Attack
(RMA) and can also be translated in the quantum setting when the set of queries
are quantum input and output samples of the quantum oracle. Sometimes this
type of adversaries is also called non-adaptive or weak adversaries. As we will
see in Chapter 3, and also later in Chapter 6, this adversarial model has close
connections with the models that are considered in learning theory.

Bounding the computational power of the quantum adversary is not the only
option to go to a weaker quantum adversarial model. It is also possible to remain in
the information-theoretic security regime while making instead, some reasonable
assumptions about the storage capabilities of the adversary. Making an assump-
tion about the adversary’s capability in storing quantum data is a technologically
sensible assumption due to the difficulty of building quantum memories, despite
the latest efforts and progress [LST09, WLZ+19, BRA+19, GI20, LRGR+21,
BBFO+19, WMH+20, DKLP02]. This has given rise to a quantum adversarial
model known as bounded quantum-storage model. This model has been intro-
duced by [DFSS05] and inspired from its classical counterparts [Mau93, CM97].
In this model, we assume that a quantum adversary can only store a limited num-
ber of qubits, yet it is computationally unbounded. It is common for the protocols

16When used for encryption scheme, there are several attack models associated with this security
level. If the adversary can choose the plaintext arbitrarily, it is referred to as (quantum) chosen-
plaintext attack ((q)CPA) and if the adversary is allowed to choose the ciphertext, (quantum)
chosen ciphertext attack ((q)CCA). Also, due to the complications that exist in the quantum
setting and different notions of oracles, there are several definitions for this security level in the
literature [GHS16, CEV20, GKS21, CETU21]

17Which is usually the uniform distribution over all the possible set of messages
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in this model to assume no quantum memory for the honest parties, while the
adversaries can only store a small fraction of the qubits sent in the protocol by
assumption. Several protocols that are impossible to achieve in the unbounded
model have proven to be secure in the quantum bounded storage model, such
as oblivious transfer [DFSS05] or bit commitment [Unr11]. Moreover, another
realistic assumption to be made about the quantum memories is that they are
noisy. This assumption has been considered in [WST08], leading to a model called
noisy quantum-storage model. In this thesis, we do not consider the memory-
restricted adversarial models, but an enthusiastic reader can find further readings
in [BS16, PR21].

As the final note, since entanglement is also a precious quantum resource, one
can also consider models where quantum adversaries are restricted in using this
resource. This model has been studied in [BCF+14] in the context of position-
based cryptography, where it has been assumed that the adversaries cannot share
entanglement.

2.5.3 Quantum accessible oracles for classical functions

In the previous section, we have discussed different adversarial models and the
role of oracles in them. In this section, we define quantum oracles for classical
primitives. These oracles are also called quantum accessible oracles.

A quantum oracle is a unitary transformation O over a D-dimensional Hilbert
space that can be queried with quantum states. The quantum oracle can grant
quantum access to the evaluation transformation of a classical or quantum prim-
itive i. e. a classical function. The quantum accessible oracle gives, in fact, a
reversible quantum implementation of that function. The first way of doing so
is what is referred to as the standard oracle [KKVB02, BZ13b, BZ13a, GHS16,
GKS21, CEV20].

In the standard quantum-query model, the adversary A has black-box access
to a reversible version of f , which is a classical-polynomial-time computable de-
terministic or randomised function of the evaluation E , through an oracle ROEf
which is a unitary transformation. The evaluation oracle can be represented as:

ROEf : ∑
m,y

αm,y |r⟩O |m,y⟩ → ∑
m,y

αm,y |r⟩O |m,y ⊕ f (m; r)⟩ (2.92)

Here m is the message, and y is the ancillary system required for unitarity. In gen-
eral, the standard oracle can also capture randomised evaluations with a random-
ness r picked from R⊆{0,1}l as the randomness space, although in this case, the
oracle may not be a unitary transformation. The unitary representation of the stan-
dard oracle has been introduced in several works such as [GHS16, GKS21, CEV20]
with slightly different approaches that lead to an equivalent adversary’s state,
which is a completely mixed density matrix with respect to the randomness sub-
space. Nevertheless, in this thesis, to emphasise that the adversary cannot gain
access to the internal randomness register of the oracle directly and avoid some
potential artificial entanglement attacks, we opt for the approach of [GKS21] and



50 2. Preliminaries

consider the randomness as an internal state of the oracle which is re-initiated for
each query with a new classical value r . This choice is also due to the fact that the
oracle needs to output the randomness register as a separable state, otherwise, an
unwanted entanglement will be created between the adversary’s output state and
the internal register of the oracle, as also mentioned in [GKS21]. Moreover, if the
primitive requires that the randomness is returned to the adversary for each query
(as a classical bit-string or a function of r), it can be recorded in the adversary’s
auxiliary state y that can be extended to also capture the randomness space. An
example of such construction will be introduced later in Section 3.6. Finally, we
specify that for deterministic primitives (denoted by OEf ) the structure is similar,
except that the randomness register is not used.

Now let us introduce another type of quantum accessible oracles. First, let’s
assume that the function f : {0,1}n → {0,1}n is a bijection. In this case, the
following transformation is a unitary:

Of :∑
m

αm |m⟩ →∑
m

αm |f (m)⟩ (2.93)

This can be generalised for non-length-preserving functions as the following trans-
formation:

Of : ∑
m,y

αm,y |m,y⟩ → ∑
m,y

αm,y |φm,y ⟩ (2.94)

where the length of the ancillary register |y |= |f (m)|− |m| and φm,0 = f (m) for
every m. This type of oracles are called minimal oracles, and as one can see
this is closer to a general unitary, and hence they can consider to be a more
powerful oracle than the standard oracle. One main difference between minimal
and standard oracle is that if the function f is an encryption scheme Enck(.),
then the adjoint of the minimal encryption oracle is the decryption oracle i.e.
O†Enc =ODec , while as this is not the case for the standard oracle [GHS16].

Another type of quantum oracles is the Fourier oracle or Fourier phase oracle
which is defined as follows [KKVB02, Zha19]:

FourierOEf :
1√
2m2

n ∑
m,y

|m,y⟩ →
1√
2m2

n ∑
m,y

e2πif (m).y/2
n

|m,y⟩ (2.95)

It has been shown that the Fourier oracle and standard oracle are equivalent
[KKVB02]. Also in [Zha19] sophisticated techniques have been developed to
record the adversary’s queries made to the oracle, which is a very challenging
task in the quantum regime when the queries are quantum, due to properties
such as unclonability. Being able to record quantum queries is needed in some of
the proof techniques and reductions in cryptography, and it is specifically relevant
in the quantum random oracle model (QROM) [BDF+11]. This issue has been
addressed in [Zha19] by introducing a new type of oracle called compressed oracle,
which can be both defined as a standard or Fourier oracle. We avoid introducing
this technique here since we do not use oracle recording techniques in this thesis.
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2.5.4 Classical pseudorandomness

Randomness is perhaps one of the most crucial elements in modern cryptography.
However, it is folklore knowledge that achieving true randomness in the classical
world is practically impossible. That is why the concept of pseudorandomness has
been introduced in cryptography as an efficient and practical approximation of truly
random objects. Generally, a pseudorandom object, should not be distinguishable
from its truly random counterpart. To formally define this concept, first, we
need to ask the following question: ‘Indistinguishable to what?’ Since this is a
cryptographic concept, let’s consider an adversarial scenario. It is rather obvious
that an unbounded adversary who can cover all the possible objects of the set can
always make this distinction, then pseudorandomness is an computational security
assumption. Thus the answer to that question is to an efficient or computationally
bounded adversary (or, more generally, distinguisher). The pseudorandomness can
be generally defined as follows [KL20]:

Definition 15 (Pseudorandomness). Let D be a distribution over n-bit
strings.D is (t,ε)-pseudorandom if for all adversaries A running in time
at most t, A cannot distinguish D with a uniformly random distribution Un
over the n-bit. In other words, the following holds:

| P r
x←D
[A(x) = 1]− P r

x←Un
[A(x) = 1]|⩽ ε (2.96)

Nevertheless, in the asymptotic case, the ε needs to be a negligible function in
the security parameter and the pseudorandomness has been usually defined over
a finite family of objects with a specified distribution. Now, we can define the
first important pseudorandom object in modern cryptography, the Pseudorandom
Generators (PRG):

Definition 16 (PRG [KL20]). Let ℓ be a polynomial and let G be a de-
terministic polynomial-time algorithm such that for any n and any input
x ∈ {0,1}n, the result G(x) is a string of length ℓ(n). We say that G is a
Pseudorandom Generator (PRG) if the following conditions hold:

• (Expansion:) For every n it holds that ℓ(n)> n

• (Pseudorandomness:) For any PPT algorithmA, there is a negligible
function negl such that:

|P r [A(G(x)) = 1]−P r [A(r) = 1]|⩽ negl(n) (2.97)

where both probabilities are taken over the randomness of A, the first one
over uniform choice of x ∈ {0,1}n and, and the second one, over uniform
choice of r ∈ {0,1}ℓ(n).
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Thus a PRG is an efficient and deterministic algorithm that expands a short
uniformly random seed into a longer pseudorandom string.

Next, we define Pseudorandom Functions (PRF) which are a family (usually
keyed-family) of functions that are computationally indistinguishable from the set
of uniformly random functions from the same domain and range. PRFs are for-
mally defined as follows:

Definition 17. [Pseudorandom Functions (PRF)] Let K,X ,Y be the
keyspace, the domain and range, all implicitly depending on the security
parameter λ. A keyed family of functions {PRFk : X → Y}k∈K is a pseu-
dorandom function (PRF) if for any polynomial-time (PPT) algorithm A,
PRFk with a random k ←K is indistinguishable from a truly random func-
tion f ←YX in the sense that:

| P r
k←K
[APRFk (1λ) = 1]− P r

f←YX
[Af (1λ) = 1]|= negl(λ). (2.98)

PRFs can also be equivalently defined in a game-based fashion as an indistin-
guishability game [KL20]. At the beginning of the game, an honest challenger
flips a coin and selects to be in a random or pseudorandom world. Then accord-
ing to the selected world, the challenger picks either a function f from the truly
random family of functions; or picks a random key, and consequently, a pseudo-
random function Fk . Then every time the adversary issues a query, the challenger
responds with f or Fk , depending on the random bit b. The adversary’s objec-
tive is then to guess b, or in other words, distinguish between truly random and
pseudorandom worlds.

PRFs are extremely practical tools for cryptography, and many classically se-
cure constructions are based on them. It is also known that under the assumption
of OWF, a PRF family can be constructed.

One can also translate this concept to the quantum setting, where the ad-
versary/distinguisher is quantum. This notion is referred to as quantum-secure
Pseudorandom Functions (qPRF) and is defined as follows:

Definition 18. [quantum-secure Pseudorandom Functions (qPRF) [Zha12]]
Let K,X ,Y be the keyspace, the domain and range, all implicitly depend-
ing on the security parameter λ. A keyed family of functions {PRFk :
X →Y}k∈K is a quantum-secure pseudorandom function (qPRF) if for any
polynomial-time quantum oracle algorithm A, PRFk with a random k ←K
is indistinguishable from a truly random function f ←YX in the sense that:

| P r
k←K
[APRFk (1λ) = 1]− P r

f←YX
[Af (1λ) = 1]|= negl(λ). (2.99)

Similarly, it has been proven that qPRFs can exist under the assumption of
quantum-secure OWFs [Zha12].
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2.5.5 Quantum pseudorandomness

The definitions of this sections are directly used in Chapter 3, Section 3.6.2.2
and throughout Chapter 5. Like what we have seen in the previous section,
quantum pseudorandom objects can also be defined. The notion of quantum
pseudorandomness has been defined for the first time in [JLS18], by introducing
Pseudorandom Quantum States (PRS) and Pseudorandom Unitaries (PRU) as a
computational version of true quantum randomness. In Section 2.4 we have intro-
duced the Haar measure as a measure for perfect and uniform randomness over the
quantum states and unitary transformations. Informally, pseudorandom states/u-
nitaries are a set of states/unitaries that are computationally indistinguishable
from Haar-random states/unitaries to a quantum polynomial-time adversary.

More formally, PRS is defined as follows:

Definition 19. [Pseudorandom Quantum States (PRS) [JLS18]] Let H be
a Hilbert space and K the key space. H and K depend on the security
parameter λ. A keyed family of quantum states {|φk⟩ ∈ S(H)}k∈K is pseu-
dorandom, if the following two conditions hold:

• Efficient generation. There is an efficient quantum algorithm G

which generates the state |φk⟩ on input k . That is, for all k ∈
K,G(k) = |φk⟩.

• Pseudorandomness. Any polynomially many copies of |φk⟩ with the
same random k ∈K is computationally indistinguishable from the same
number of copies of a Haar random state. More precisely, for any
efficient quantum algorithm A and any m ∈ poly(λ),

| P r
k←K
[A(|φk⟩⊗m) = 1]− P r

|ψ⟩←µ
[A(|ψ⟩⊗m) = 1]|= negl(λ). (2.100)

where µ is the Haar measure on S(H).

And PRU that are the quantum equivalent of PRFs are also defined as follows:
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Definition 20. [Pseudorandom Unitary Operators (PRU) [JLS18]] A family
of unitary operators {Uk ∈ U(H)}k∈K is a pseudorandom unitary if two
conditions hold:

• Efficient computation. There is an efficient quantum algorithm Q

such that for all k and any state |ψ⟩ ∈ S(H),Q(k, |ψ⟩) = Uk |ψ⟩.

• Pseudorandomness. Uk with a random key k is computationally in-
distinguishable from a Haar random unitary operator. More precisely,
for any efficient quantum algorithm A that makes at most polynomi-
ally many queries to the oracle:

| P r
k←K
[AUk (1λ) = 1]− P r

U←µ
[AU(1λ) = 1]|= negl(λ). (2.101)

where µ is the Haar measure on S(H). Note that here we focus on the
Pseudorandomness condition of the PRU definition.

Another approximation of Haar-randomness in quantum information is the no-
tion of t-designs. Although these objects are also often called ‘pseudorandom’
in the mathematical physics literature, they are analogous to t-wise independent
random variables in theoretical computer science [JLS18]. Quantum state and
unitary t-designs are informally approximating the Haar measure up to t-th order
polynomials or tensor products. Thus one way of defining the quantum states
t-design is as follows:

∑
i

pi(|φi⟩⟨φi |)⊗t =
∫
µψ

(|ψ⟩⟨ψ|)⊗tdµψ (2.102)

where pi is the probability of each state |φi⟩ and the integration in the right hand
side is over Haar measure [DCEL09, EA5]. Similarly a unitary t-design can be
defined as follows:

∑
i

piU
⊗t
i ρ(U⊗ti )

† =
∫

Haar
U⊗tρ(U⊗t)†dU (2.103)

On the right-hand side of the equation is the expectation for the t-fold tensor
product of Haar measure is also denoted by EtH(ρ). Also, a t-design can be de-
fined approximately. The ε-approximate t-design has been introduced by Brandão,
Harrow and Horodecki [BHH16] as follows:

Definition 21 (ε-approximate t-design). We say a family of unitary with
distribution D given as the set {pi ,Ui} forms an ε-approximate t-design if
the following holds:

(1−ε)EtH(ρ)⩽∑
i

piU
⊗t
i ρ(U⊗ti )

† ⩽ (1+ε)EtH(ρ) ∀ρ ∈ S(H⊗t)

(2.104)
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We conclude this section by mentioning some of the numerous applications of
t-designs in different areas of quantum computing and quantum information, in-
cluding quantum supremacy [BFNV19], verification and benchmarking [HFGW18,
NZO+21, EHW+20], the physics of blackholes [HP07], cryptography [AM17,
JLS18], and machine learning [MBS+18].

2.5.6 Unforgeability

Unforgeability is the desired security property for many primitives such as Message
Authentication Codes (MACs) and digital signatures. Informally, unforgeability en-
sures that an adversary cannot produce valid input-output pairs of the evaluation
function of the primitive with only limited access to its oracle, or in other words,
from a previously learnt set of input and outputs of the function. The unforgeabil-
ity of a classical primitive can be studied against classical or quantum adversaries
in the different adversarial models that we have introduced in Section 2.5.2. In
this section, we first introduce different levels of classical unforgeability, and then
we also give some of the proposals for translating this notion to the quantum
setting. Later in Chapter 3, we generalise the quantum unforgeability inside a
formal and unified framework. Thus this section is mostly relevant for Chapter 3,
Section 3.5. Unforgeability is also a central security property for quantum schemes
such as quantum money, as we will further discuss in that chapter.

2.5.6.1 Classical Unforgeability

Goldwasser et al. [GMR88] define different notions of unforgeability for digital
signatures. They consider various types of attacks including CMA where the
adversary is allowed access to the signing oracle on a list of messages of their
choice. They define existential forgery as the attack where the adversary can
forge a valid signature for at least one new message; and the notion of selective
forgery as an attack where the adversary can forge a valid signature with non-
negligible probability for a particular message chosen by the adversary prior to
accessing the signing oracle.

An et al. [ADR02] define a slightly stronger notion of unforgeability called
strong unforgeability that requires the adversary not only to be unable to generate
a valid signature on a ‘new’ message but also to be unable to generate even a valid
‘new’ signature on an already signed message. Strong Existential Unforgeability
(SEUf), also called strong unforgeability, has formally been defined in [BSW06]
by Boneh et al.

Bellare et al. [BGR95] define the notion of Strong Existential Unforgeability
under chosen message and chosen verification queries attack (SEUF-CMVA) for
message authentication codes (MACs). In both of these attack models, the ad-
versary is allowed a chosen message oracle access, as defined for digital signatures
in [GMR88]. Although in the later attack model for message authentication codes,
the experiment also allows verifying queries through oracle access. This model is
justified for MACs as unlike digital signatures, where the verification algorithm is
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public, the adversary cannot run the verification algorithm on their own. (Weak)
Existential Unforgeability (EUf) under chosen message attacks is a natural defini-
tion for MACs defined by Bellare et al. [BKR00] and comes by extending the one
for digital signatures [GMR88].

Moreover, Dodis et al. [DKPW12] define the notion of selective unforgeability
under adaptive chosen message and chosen verification queries (SelUF-CMVA).

A yet weaker notion called universal unforgeability requires the adversary to
produce a fresh tag for a uniformly random message given as a challenge to the
adversary [AHM+14]. This notion, again, can be considered against both attack
models: chosen message and chosen verification query attack (UniUF-CMVA) and
chosen message attack (UniUF-CMA). Table 2.1 summarizes all these different
classical notions of unforgeability.

```````````````Def. level
Attack Model

CMVA CMA

SEUf (strong) - [ADR02, BSW06, BGR95]
EUf (weak) [DKPW12, BGM04] [BSW06, BKR00]

SelUf (selective) - [DKPW12]
UniUf (universal) [AHM+14] [AHM+14]

Table 2.1: Classical unforgeability definitions from strongest to weakest. CMVA - adaptive
chosen message queries and limited access to the verification oracle. CMA - (adaptive)
chosen message attacks. In the cases marked with “-", no definition has been proposed
yet to the best of our knowledge.

2.5.6.2 Unforgeability in the quantum world

In the quantum regime, the definition of unforgeability defined by Boneh and
Zhandry [BZ13b, BZ13a] (denoted by BZ), is described as a quantum analogue
of strong existential unforgeability and it is in the chosen message attack (CMA)
model. The formal definition of BZ (EUF-qCMA) for digital signatures is as
follows:

Definition 22. [BZ or (EUF-qCMA) [BZ13a]] A system S (Sign/Mac),
is existentially unforgeable under a quantum chosen message attack (EUF-
qCMA) if no adversary after issuing q quantum chosen message queries, can
generate q+1 valid classical message-tag pairs with non-negligible proba-
bility in the security parameter.

Another definition of unforgeability against quantum adversaries called blind
unforgeability was proposed in [AMRS20]. This more recent definition aims to
capture some attacks that are not captured by BZ. This notion defines an algo-
rithm to be forgeable if there exists an adversary who can use access to a ‘partially
blinded’ oracle to validate responses of the messages that are in the blinded re-
gion and hence only respond to the queries that are not in this region. A blinded
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operation for a function f :X→ Y and a subset of messages B ⊆X is defined as:

Bf (x) =

{
⊥, if x ∈ B
f (x), otherwise

(2.105)

Where in particular for the definition of unforgeability, the elements of X are placed
in B independently at random with a particular probability ε, denoted by Bε. Then
the security game of unforgeability has been defined as follows with the adversary
having access to the blinded oracle.

Definition 23. [[AMRS20](Def.4&5)] Let Π = (KeyGen,Mac,V er) be
a MAC with message set X. Let A be an algorithm, and ε : N →
R⩾0 an efficiently computable function. The blind forgery experiment
BlindForgeA,Π(n,ε) proceeds as follows:

1. Generate key: k ←KeyGen(1n)

2. Generate blinding: select Bε ⊆X by placing each m into Bε indepen-
dently with probability ε(n).

3. Produce forgery: (m,t)←ABεMACk (1n).

4. Outcome: output 1 if V erk(m,t)= acc andm∈Bε ; otherwise output
0.

From this game blind-unforgeability is defined as follows.
A MAC scheme Π is blind-unforgeable (BU) if for every polynomial-time
uniform adversary (A,ε)

P r [BlindForgeA,Π(n,ε(n)) = 1]⩽ negl(n).

and the probability is taken over the choice of key, the choice of blinding
set, and any internal randomness of the adversary.

Thus, in this definition, a forgery happens if the adversary can produce a
valid tag for a message within the blinded region. We refer to this definition of
unforgeability as BU. This definition imposes the challenge to be orthogonal to
the previously queried messages.

We also recall the following useful theorem from [AMRS20]:
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Theorem 10. [from [AMRS20]] Let A be a QPT such that supp(A)∩R=
∅a for some R ̸= ∅. Let MAC be a MAC, and suppose AMACk (1n) outputs a
valid pair (m,Mack(m)) with m ∈ R with non-negligible probability. Then
MAC is not BU-secure.

aHere supp(A) denotes the support of A that is defined as follows. Let A have oracle
access to a classical function f : {0,1}n→{0,1}m. Let |ψi ⟩ be the state of the the query i
or equivalently the intermediate state after applying Ui in the sequence of OUqO . . .U1 on
an initial state |0⟩XY Z where X denotes the input registers. Then supp(A) is defined to
be the set of input strings x such that there exists a function f with the respective oracle
such that ⟨x |ψi ⟩X ̸= 0 for at least one of the queries.

In addition to these two main definitions, another definition for quantum un-
forgeability has been given in [GYZ17] for one-time unforgeable schemes, which
we will skip representing it due to the lack of generality and since it is less relevant
for this thesis. Another related and interesting work is the study of non-malleability
and its relation to authentication in the quantum regime which has been studied
in [AM17].

2.5.7 Coin-flipping

In this section, we introduce coin-flipping which is a cryptographic task that al-
lows two mutually distrustful parties to agree on a common random bit. We
particularly need the familiarity with this cryptographic functionality for Chapter 7
(Section 7.2.2 and 7.4.2). This task has been first introduced by Blum [Blu83]
and has been motivated in the following scenario: Alice and Bob need to agree
on the output of a coin-flip over the phone for an important decision. However,
they don’t trust each other. The formal definition of a coin-flipping task is given
as follows:

Definition 24 ((Strong) coin-flipping). The task of coin flipping consists
of two mutually distrustful players, Alice and Bob, and the goal is for both
players to output the same random bit c ∈ {0,1} such that the following
properties hold:

• Correctness: if both Alice and Bob are honest then b is uniformly
distributed: p(c = 0) = p(c = 1) = 1/2.

• ε-secure: neither player can force p(c = 0) ⩾ 1/2+ ε or p(c = 1) ⩾
1/2+ ε, where p(c) is the probability that the honest player outputs
a value c .

The smallest ε for which a protocol is ε-secure is called the bias.

It has also been shown in [Blu83] that unconditionally secure coin-flipping is
impossible in the classical world, meaning that no classical coin-flipping protocol
is secure, or no value of ε < 1/2 can be achieved for security. Nevertheless,
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coin-flipping with computational assumptions is possible since there exists a coin-
flipping protocol, assuming perfectly secure OWF exists. Also, Cleve [Cle86,
CI93] extended the computational coin-flipping into r -rounds and showed an upper
bound of Ω(1/r) for any two-party r -round coin-flipping protocol as the bias.

Historically, the first quantum coin-flipping protocol was introduced by [MSCK99]
which has conjectured to achieve arbitrary small bias, although a full security proof
has not been given in the paper. In Chapter 7 we will introduce this protocol and
as one of our contributions, we show how it can be broken with cloning-based
cryptanalysis.

Later a quantum coin-flipping protocol has been introduced by Aharonov et
al. [ATSVY00] which provably achieves the bias 0.42 in an information-theoretic
way. We will also closely study this protocol in Chapter 7, so we avoid repetition
in here.

Another quantum coin-flipping protocol with qutrits has been introduced by
Ambainis in [Amb04] which achieves a better bias than Aharonov’s protocols with
0.25 bias. Given this improvement, an interesting question was whether one we
achieve arbitrary small bias for coin-flipping using quantum information. This
question has been answered negatively by Kitaev when given the following bound
for the bias of any strong coin-flipping protocols:

εqcfmin =

√
2−1
2

≈ 0.207. (2.106)

Hence perfectly secure quantum coin-flipping is also impossible.
The requirement on the coin-flipping can we weakened if the choice of Alice

and Bob is predetermined, say Alice always wants to bias the coin towards 0, and
Bob is vice versa. This leads to the notion of weak coin-flipping. Weak coin-
flipping has been studied in the literature for many years and it has been shown
in 2007 [Moc07] that that weak quantum coin flipping, with arbitrarily small (but
non-zero) bias, is possible. Although the protocol that achieved that arbitrary
small bias is complicated and scales exponentially in 1/ε in the number of rounds.
The long-standing problem of the weak coin-flipping has been finally solved by
Arora et al. in 2019 [ARW19].

2.6 Quantum and classical learning

In this section, we enter the last field of research where we have adopted and
exploited many of our toolkits and the concepts we have used in this thesis and
which is rather different from the other fields of research we have talked about so
far. Here, we will talk about ‘learning’ in a broad context which includes learning
theory, machine learning and some areas of quantum information processing such
as tomography. However, as each of these subjects has a very rich literature on
its own, and entering each of them with enough precision and care requires a
separate thesis, our introduction here will be very brief and we will mostly focus
on the tools that we have directly used in the thesis.
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Learning is the act of acquiring knowledge, but generally speaking, in physics
and computer science, there are two types of learning. Either we want to learn a
‘system’ or an unknown property or feature of the system by interacting with it,
or we want the ‘machines’ and computers to be able to do something of a similar
nature. However, later we need to teach the machines to ‘learn’ first, which means
adopting a methodical approach to leverage ‘data’ to improve the performance of
a learning task. The first case is a problem usually studied in physics (and generally
through experiments and simulations), and the second is a sub-field of computer
science known as learning theory18 and machine learning. Although seemingly
very different, the latest progress in the field of machine learning, as well as
different approaches to simulating physical systems, has brought these fields closer
together. An example of this is the applications of machine learning in particle
physics [RWR+18, AFFS19]. On the other hand, physics has also inspired machine
learning models, for instance in development of Boltzmann machine [SK75] or
Born machine [CCW18, CMDK20].

On the other hand, the potential advantage of quantum computing in bringing
speedup to some problems has motivated researchers to design quantum machine
learning techniques and algorithms. One of the earliest examples (perhaps the
earliest one) was an algorithm developed for solving linear equations and similar
problems in matrix algebra by Harrow, Hasidim, and Lloyd [HHL09], where ex-
ponential speedup for some operations has been shown. However, the field of
Quantum Machine Learning (QML) has expanded fast over the very few years
that have been past since its birth. For a great review of the field we refer the
reader to [SSP15, MGL22].

We start on the physics side, explaining the existing notions of learning in
quantum information processing, and we finish by introducing some of the tools
that we require from classical and quantum learning theory and quantum machine
learning.

2.6.1 Quantum state and process tomography

Quantum state tomography and quantum process tomography are the process
of determining the state of a quantum state or describing quantum dynamics
and are of great importance to quantum computation and quantum information,
both theoretically and experimentally. However, they are both challenging and
resource-intensive tasks [BCD+09].

In Section 2.2, we have explained the reason behind the difficulty of determining
and distinguishing quantum states. Quantum process tomography is even more
challenging since we aim to fully characterise the dynamics of a quantum system.
For example, we want to characterise a quantum gate (a unitary transformation),
or a quantum channel. Both of these tasks have applications in the verification
and benchmarking of quantum systems and quantum computers.

Let us start with state tomography. The easiest way (and clearly the most

18Also called computational learning theory
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inefficient) way to perform process tomography, is to simply use the Born’s rule.
This method also sometimes called linear inversion involves preparing (or acquir-
ing in any way) many copies of an unknown state ρ, and repeatedly performing
projective or POVM measurements, in order to extract the expectation values of
the probability, of obtaining a histogram of the observations of the measurements,
and finally, the amplitudes to fully describe the state. However, this method is
highly infeasible and requires asymptotically many copies and measurements to
achieve good precision. This duo to the fact that to reconstruct a d-dimensional
density matrix, one needs to determine d2− 1 independent parameters and re-
quires many measurements for each. (where d is already exponential in the input
size i.e. the number of qubits). A better approach is to restrict the domain of
the density matrices to a more ‘likely’ space. This method is called Maximum
Likelihood Estimation (MLE) and involves searching for the density matrix that
maximises the likelihood of giving the experimental results. The ‘likelihood’ is a
probability function assigned to the observable that would most likely detect the
state. Using this method a complexity of O(d4) has been achieved in the general
cases [PR04, QHL+13]. Yet another method is to use Bayesian estimations such
as Bayesian Mean Estimation (BME) for this task [BK10]. This method requires
reasonable prior information about the systems however it can achieve a minimum
estimation probability of 1

N+d , with N being the number of observables.
Exploiting machine learning techniques in recent years has enabled tremendous

improvements in this field. For instance a general complexity of O(d3) has also
been achieved using neural networks [XX18], and the results have been improved
in the following works [APJAD18, TMC+18, RKKN19].

Finally, the most recent breakthrough in this field has been made by Huang
et. al in [HKP20], where they have shown that even though the best-known
techniques for full state tomography are still exponential (and believed to remain
so), one can still extract many useful properties of a quantum state, efficiently
and without requiring exponential copies of that state. This discovery has a great
deal of significance in very different areas of quantum information and quantum
computing, as we will discuss further in the future chapters.

Going back to quantum process tomography, we first note that this process
is closely related to quantum state tomography. Let us give a simple example.
Assume you are given an unknown unitary gate (a single-qubit gate, for instance)
and want to extract the full unitary matrix. To do so, you need to know the
action of the unitary on a full set of basis (say, the computational basis). Thus
you will prepare states in the computational basis and apply the unitary to them.
However, the output state of the gate, U |ψ⟩, is unknown and can be any state
on the Bloch sphere in our specific example. Thus one needs to measure the
state and repeat the process many times to get a good approximation of the
action of U, only on the computational basis. Then for the state |1⟩, the same
process needs to be repeated. Nevertheless, similar to state tomography, this is
the most naive and inefficient way. A variety of different disciplines exist here
such as Standard quantum-process tomography (SQPT), ancilla-assisted process
tomography (AAPT), and direct characterization of quantum dynamics (DCQD).
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We refer the reader to [MRL08] for a review of these different strategies and their
required resources.

A point worth mentioning here is that for process tomography (maybe unlike
state tomography), the full characterisation of the dynamics might not be needed
for many problems and applications. An example of this is randomised benchmark-
ing which is a method for testing the quality and capability of quantum hardware
by estimating the average error rates of the gates [EA5]. The other example is
the idea of quantum emulation. Since quantum emulation will have particular
importance in our work, we will introduce it separately in the next section.

2.6.2 Quantum Emulation

We now describe the concept of Quantum Emulation (QE) and an algorithm called
universal quantum emulator developed by Marvian and Lloyd in [ML16].19 The
quantum emulation algorithm is a quantum process learning tool that can outper-
form the existing approaches based on quantum tomography [DLP01]. Generally
speaking, the goal of the quantum emulator is to mimic the action of an unknown
unitary transformation on an unknown input quantum state20 while having access
to some ‘data’ in the form of input-output samples of the unitary21. We return
to this algorithm in Chapter 3 Section 3.4 to further analyse the algorithm and
repurpose it.

Before diving into the details of this algorithm, we make a small remark on the
difference between ‘emulation’ and ‘simulation’.

2.6.2.1 Emulation vs simulation for a quantum process

Emulating a quantum process, in the sense that is introduced here, is different
from process tomography since the goal is not to extract the full description of
a quantum process but instead to ‘learn’ enough from it to be able to mimic its
behaviour. However, when one defines the notion of emulation in this manner,
it suggests a similarity with another notion, that is also particularly important for
physical systems i.e. ‘simulation’. Especially because the ‘unknown unitary’ that
we are trying to emulate here, can correspond to the Hamiltonian of a physi-
cal system. Despite similarities, here we want to emphasise that the notion of
simulation and emulation for a quantum process have crucial differences.

In simulating a quantum dynamics, for instance, a unitary, we usually start
from an initial state of a quantum system (for example, a many-body system of
particles), and we use abstractly speaking a ‘simulation machine’ that produces a

19Although this may not be the only possible algorithm for the purpose of quantum emulation,
is the only one we are aware of by the time of writing this thesis, and hence the content of this
section are mainly based on the mentioned work.

20The algorithm can be applied to any unknown state, however, the high fidelity performance
is achieved when the target state is in the span of the data hence, not fully unknown.

21The term ‘emulation’, however, has been used in other meanings both in physics and cryp-
tography. While throughout this thesis whenever we use the term, we refer to emulation in the
context used in this section.
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‘simulation’ or a mathematical approximation that mimics the required property
of the system. Sometimes the method consists of letting the system evolve with a
stochastic process [BCC+15].22 The key point here, is that the simulation of the
system needs to completely (however with some approximation) obey the same
dynamics and transformations, otherwise, it will not be useful to study the original
system.

An emulator, on the other hand, is not trying to completely recreate the
transformation. Instead, it outputs what that transformation is ‘supposed to do’
on a new quantum state. Although it mimics the system’s behaviour in an input-
output manner, it does not need to obey the same dynamics. In that sense,
an emulation algorithm is closer to a machine learning process, as we will also
discuss later in Chapter 3. This distinction between simulation and emulation has
been illustrated in Fig. 2.7. With these in mind, we now introduce the quantum
emulation algorithm.

Simulator EmulatorDataData

Figure 2.7: Illustration of the contrast between the notions of emulation and simulation. Par-
ticularly regarding a quantum process, denoted by a unitary U. An emulator, as opposed to a
simulator, does not necessarily recreate the same dynamics but instead mimics the action of the
unitary on a new quantum state.

2.6.2.2 QE: the circuit and description of the algorithm

The circuit of the quantum emulation algorithm is depicted in Fig. 2.8 (recreated
from [ML16]) and works as follows: Let U be a unitary transformation on a D-
dimensional Hilbert spaceHD, Sin = {|φi⟩ ; i =1, ...,K} be a sample of input states
and Sout = {|φouti ⟩ ; i = 1, ...,K} the set of corresponding outputs, i.e |φouti ⟩ =
U |φi⟩. Also, let d be the dimension of the Hilbert space Hd spanned by Sin and
|ψ⟩, a challenge state. The goal of the algorithm is to find the output of U on
|ψ⟩, that is U |ψ⟩.

22This is usually referred to as quantum random walk
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Figure 2.8: The circuit of the quantum emulation algorithm. |φr ⟩ is the reference state and |φoutr ⟩
is the output of the reference state. R(∗) gates are controlled-reflection gates. In each block of
Step 1, a reflection around the reference and another sample state is being performed.

The main building blocks of the algorithm are controlled-reflection gates de-
scribed as:

Rc(φ) = |0⟩⟨0|⊗ I+ |1⟩⟨1|⊗e iπ|φ⟩⟨φ| (2.107)

A controlled-reflection gate acts as the identity (I) if the control qubit is |0⟩, and
as R(φ) = e iπ|φ⟩⟨φ| = I−2 |φ⟩⟨φ| if the control qubit is |1⟩. The circuit also uses
Hadamard and SWAP gates and consists of four stages.
Stage 1. K number of sample states and a specific number of ancillary qubits are
chosen and used through the algorithm. We assume the algorithm uses all of the
states in Sin. The ancillary systems are all qubits prepared at |−⟩. Let |φr ⟩ ∈ Sin
be considered as the reference state. This state can be chosen at random or
according to some distribution. The first step consists of K− 1 blocks wherein
each block the following gates run on the state of the system and an ancilla:

W (i) = Rc(φi)HRc(φr ). (2.108)

In each block represented by Eq. (2.108), a controlled-reflection around the
reference state |φr ⟩ is performed on |ψ⟩ with the control qubit being on the |−⟩
ancillary state. Then a Hadamard gate (H) runs on the ancilla followed by another
controlled-reflection around the sample state |φi⟩. This repeats for each of the K
states in Sin, such that the input state is being entangled with the ancillas, and
also it is being projected into the subspace Hd . By doing this, the information of
|ψ⟩ is encoded in the coefficients of the general entangled state. This information
is the overlap of |ψ⟩ with all the sample inputs. By reflecting around the reference
state in each block, the main state is pushed to |φr ⟩ and the probability of finding
the system at the reference state increases. The overall state of the circuit after
Stage 1 is:

[W (K)...W (1)] |ψ⟩ |−⟩⊗K ≈ |φr ⟩ |Ω(anc)⟩ (2.109)

where |Ω(anc)⟩ is the entangled state of K ancillary qubits. The approximation
comes from the fact that the state is not only projected on the reference quantum
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state but is also projected on other sample quantum states with some probability.
We present a more precise formula in the next subsection.

Stage 2. In this stage, first a reflection around |φr ⟩ is performed and after applying
a Hadamard gate on an extra ancilla, that ancilla is measured in the computa-
tional basis {|0⟩ , |1⟩}. Based on the output of the measurement, one can decide
whether the first step was successful (i.e. the output of the measurement is 0) or
not. If the first step is successful, the main state has been pushed to the refer-
ence state. In this case, the algorithm proceeds with Stage 3. If the output is 1,
it implies that the projection was unsuccessful and that the input state remains
almost unchanged. In this case, either the algorithm aborts or it goes back to the
first stage and picks a new state as the reference. This stage has a post-selection
role which can be skipped, to output a mixed state of two possible outputs.

Stage 3. The main state is swapped with |φoutr ⟩ = U |φr ⟩ that is the output of
the reference state. This is done by employing a SWAP gate. At this point, the
overall state of the system is:

(SWAP⊗ I⊗K) |φoutr ⟩ |φr ⟩ |Ω(anc)⟩= |φr ⟩ |φoutr ⟩ |Ω(anc)⟩ . (2.110)

By tracing out the first qubit, the state of the system becomes |φoutr ⟩ |Ω(anc)⟩.

Stage 4. The last stage is very similar to the first one except that all blocks are
run in reverse order, and the reflection gates are made from corresponding output
quantum states. The action of stage 4 is equivalent to:

W out(i) = Rc(φ
out
i )HRc(φ

out
r ) = (U⊗ I)W (i)(U†⊗ I). (2.111)

After repeating this gate for all the output samples, U is applied to the projected
components of |ψ⟩, and by restoring the information of |ψ⟩ from the ancilla, the
input state approaches U |ψ⟩. The overall output state of the circuit at the end
of this stage is:

[W out(1)...W out(K)] |φoutr ⟩ |Ω(anc)⟩ ≈ U |ψ⟩ |−⟩
⊗K (2.112)

where equality is obtained whenever the success probability of Stage 2 is equal to
1.

The property of interest to measure the success or quality of the emulation
algorithm is the fidelity of the output state |ψQE⟩ (the output state of QE on the
main register) and the intended output U |ψ⟩. In the original paper, the fidelity
analysis is first provided for ideal controlled-reflection gates and later a protocol is
presented to implement them efficiently using a technique called quantum principal
component analysis introduced by Lloyd, Mohseni and Rebentrost [LMR14].23 We
now recall the following central theorem from [ML16]:

23For the purpose of this thesis as we are more interested in the theoretical bounds for the
fidelity, all the gates including the controlled-reflection gates are assumed to be ideal keeping in
mind that the implementation is possible.
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Theorem 11. [ML16] Let EU be the quantum channel that describes the
overall effect of the algorithm presented above. Then for any input state ρ,
the Uhlmann fidelity of EU(ρ) and the desired state UρU† satisfies:

F (ρQE,UρU
†)⩾ F (EU(ρ),UρU†)⩾

√
Psucc−stage1 (2.113)

where ρQE = |ψQE⟩⟨ψQE | is the main output state(tracing out the ancillas)
when the post-selection in Stage 2 has been performed. EU(ρ) is the output
of the whole circuit without the post-selection measurement in Stage 2 and
Psucc−stage1 is the success probability of Stage 1.

We point out that this algorithm with ideal controlled-reflection gates performs
the emulation task with K total blocks and arbitrary precision ε given that,

T ⩾
d × log(8dε−2)
1−|λD|

(2.114)

where λD is the eigenvalue of the overall channel with the second largest magni-
tude. Thus the algorithm (both sample and run time) complexity, in this case, is
polynomial in d . Nevertheless, the spectral gap of the channel, namely 1−|λD|,
plays an important role as well, according to the Eq. (2.114), which is not very
clear and easy to determine. This is why in Chapter 3 where we use this algorithm,
we do not use these complexity results. Instead, we perform fidelity analysis based
on the output of the algorithm.

Finally, in the imperfect setting and given the algorithm for approximating the
controlled reflection gates, the overall algorithm can be implemented using the
Ntot number of samples, and in time ttot with precision ε > 0, as follows:

Ntot = Õ
(
d2×ε−1

(1−|λD|)2

)
, ttot = Õ(Ntot × logD) (2.115)

where Õ suppresses more slowly-growing terms.

2.6.3 Learning theory

In this section we discuss learning theory and we mainly use the definitions pro-
vided here in Chapter 3, Section 3.6.3.1. Learning theory is a theoretical subfield
of machine learning or computational learning that provides the mathematical
framework for studying and quantifying learning problems as well as the design
and analysis of algorithms to solve them. The ‘learner’ is a classical/quantum
algorithm (either deterministic or probabilistic), but the target of learning, can be
very different objects, including functions, quantum states, quantum processes,
distributions, etc. Also, depending on the learning task, one might not need to
fully learn all the characteristics or a full description of the target, but perhaps
some specific properties. Often the main question here is how efficient can the
learning target be learned. This efficiency is measured commonly in time (time
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complexity) or the size of the sample data (query complexity) [Ang92]. Another
essential element of learning is data. We need data to learn from or train our
machines to perform the desired task. The dataset, in learning theory, is also
called learning data, ortraining set. Let of start by defining this sample data:

Definition 25 (Learning/sample/training dataset). Let T be the learning
object and let X be the domain or instance space of T , and Y be the label set
(for instance the range, if T is a function). The learning/sample/training
data is a set S = {(xi ,yi)}Ki=1 ⊆ (X ×Y)K, where K = |S| is the size of
the set. Furthermore, the datapoints xi may have been chosen according a
distribution D.

Note that we have defined the above definition in a general way, such that it
can be applied to different learning targets and different classical or quantum data.
For instance, for a fully quantum data we have ρi ,σi ∈H and hence X = Y =H.

Also, the learning problems are usually categorised in two types in the literature
of learning theory, as follows [KV94]:

• Unsupervised learning: we require the learner to discover hidden structures
in a set of unlabeled data points.

• Supervised learning: we want to learn a property or make a prediction
based on a labelled dataset.

The next terminology that we need to introduce here is the notions of concept
class and hypothesis. A ‘concept’ is a specific sample of the learning object. It is
most commonly used for Boolean functions, so a concept is a specific f :X →Y.
A ‘concept class’ is the set of all the learning objects of interest e.g. for a function
that would be a family of functions F such that f ∈ F . A ‘hypothesis’ h, is the
learner’s output or guess for the function f . One ideally wants h to be as close
as possible to f , for the learning process to be successful. We can also define a
‘hypothesis class’ H where all the h ∈H, and by restricting the learner to choose
h from H, we can bias the learner towards a particular set of solutions.

Before introducing the first formal learning definition for functions, we need
to introduce one last concept. In Section 2.5.3 we have introduced oracles and
their importance in cryptography. Here as well, we can assume the data has been
obtained via interacting with an oracle. However, this is an specific oracle called
example oracle or PEX [SG04, AdW17a]. An example oracle gets a concept f ,
a distribution D, and when queried, outputs a sample data point as defined in
Definition 25:

PEX(f ,D)→ [(x, f (x)) : (x ←D)] (2.116)

Now, we are ready to introduce the definition of Probably Approximately Cor-
rect (PAC) learning, introduced first by Valiant [Val84]. The name refers to the
learner not being required to learn a function exactly (h(x) = f (x)), but rather
approximately with a high probability. The definition has been given in different



68 2. Preliminaries

ways with slight variations in the literature, however, for our purpose, we choose
the one closer to [SG04, AdW17a].

Definition 26 (PAC-learnability). A concept class F is (ε,δ)-PAC learnable,
if a learning algorithm L, given access to a PEX oracle, can generate a
hypothesis h, for all distributions D, and for any concept f ∈ F , such that
h is an ε-approximation of f under D, with at least 1− δ probability. i.e.

P r [h←LPEX : P r
x∈D
[h(x) ̸= f (x)]⩽ ε]⩾ 1− δ (2.117)

Similar to what has been discussed in Section 2.5.3, the classical oracles can
be translated to quantum setting, for modelling quantum access and to be able
to leverage the quantum properties of a data that is encoded in quantum states,
such as superposition. In this case, as well, the example oracle has been defined in
the quantum setting in [BJ95]. A Quantum Example Oracle (QPEX) (also called
quantum random access oracle), for a classical function (or concept) f , over a
distribution D outputs the following state when queried:

QPEX(f ,D)→ |ψEX⟩ :=∑
x

√
D(x) |x, f (x)⟩ (2.118)

Another way of translating the dataset queries into the quantum world, is by
Quantum Membership Query (QMQ) oracles [SG04], that is much closer to the
back-box oracles we have discussed in Section 2.5.3. A QMQ for a concept f ,
operates as follows:

QMQf : |x,b,y⟩ → |x,b⊕ f (x),y⟩ (2.119)

which can also take as input superposition state of classical inputs. However, the
QMQ is mostly used in the context of exact learning instead of PAC-learning. Us-
ing the QPEX, one can define a quantum variant of PAC-learnability24 as follows:

Definition 27 (PAC-learnability with QPEX). We say a concept class F
is (ε,δ)-quantum-PAC learnable or (ε,δ)-PAC learnable with QPEX, if it
is PAC-learnable according to Definition 26, with the difference that the
learner has been given oracle access to QPEX.

We also point out that this notion of PAC-learnability is quite strong since
it is over all the possible distributions. However, one can be interested in the
learnability of a concept class over a specific distribution, for instance, a uniform
distribution. We refer to this case as PAC-learnability over D, where we fix a
distribution D from a larger set or all the possible distributions D. We come back
to this point in Chapter 3, Section 3.6.3.1.

24Although it is better to call this quantum-assisted PAC-learning or PAC-learning with QPEX
oracle, to make a distinction with PAC-learning of quantum objects, for instance in this work
[PM22a]
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We conclude this section by mentioning that, as shown in [SG04], the notions
of classical and quantum PAC-learning are equivalent, although not in terms of
efficiency. More precisely, if a concept class F is quantum-PAC-learnable according
to Definition 27, it is also classically PAC-learnable, while there exists a gap in
terms of efficient PAC-learnability between quantum and classical case.

2.6.4 Quantum machine learning and variational algorithms

We have reached now the final section of the background and preliminary materi-
als. In this section, we will give a very high-level introduction to Quanutm Machine
Learning (QML). This section is only needed for Chapter 7. As mentioned be-
fore, the QML is only about a decade old. However, due to the huge background
brought into the field from classical machine learning and the particular interest
and attention of the researchers in this field, it has grown quickly compared to
its age. Here we only focus on a sub-filed quantum machine learning that we will
need for this thesis, namely Variational Quantum Algorithms (VQA). For a com-
prehensive review of quantum machine learning we refer the enthusiastic reader
to [SSP15, BWP+17, MGL22, SP18b].

We also note that the term quantum in QML, refers to different classes of
problems. In the first class, the learning algorithm is classical but the data is
quantum (for instance, using neural networks to analyse measurement statistics
from a quantum experiment), in the second one the learning algorithm is quantum,
but the data is classical. However, we encode them in quantum states to enable
the quantum algorithms to run on them (for instance [HHL09]). And lastly, both
data and learning algorithms are quantum (we will see an example of this case in
Chapter 7). For a better overview of each of these subfields and to see examples
of each case in the NISQ era, we refer the reader to this thesis [Coy22]. Let us
begin by introducing VQC.

2.6.4.1 Variational quantum algorithms

Generally speaking, a variational quantum algorithm is, in fact, a hybrid quantum-
classical algorithm where the classical part is usually in charge of optimising pa-
rameters of a quantum object (a parameterised quantum state or a parameterised
unitary circuit). The quantum part is the part of the algorithm that deals with
interacting with a quantum input and producing a parametrised output such as
ρ(θ), while θ is the hyper-parameter that will be optimised [Coy22].

Since the first part of the systems that interact with the quantum data, has a
quantum nature, and the outputted result are quantum states (while the classical
part works with classical data), at some point, the data needs to be measured.
This process is defined through a set of observable {Oi}Ki=1, producing the set of
measurement outcomes, or expectation values {⟨Oi⟩θ}, passed on to the classical
optimiser. As one can guess, VQAs are quite heuristic methods, but lately, several
works have been done to provide theoretical frameworks and guarantees for them,
including [MRBAG16]. One of the key components of VQAs is the cost function
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which defines the learning problem of interest, and we will briefly introduce it in
what follows.

2.6.4.2 Cost function

A cost function is a function of the parameters of our model, which quantifies the
quality of the learning algorithm. We define the cost function as follows:

Definition 28 (Cost function). Let a learning problem T be parameterised
and characterised by the hyperparamaeter θ, a cost function C(θ) is a func-
tion of θ, which a learner L, attempts to find its global minimum in order
to solve the learning task T .

According to [CAB+21], a good cost function needs satisfy four main proper-
ties. Faithfulness: meaning that its minimum point should be a solution for the
problem of interest in the parameter landscape; efficient computability: meaning
that it should be reasonably feasible to estimate C in polynomial time. trainability
(or efficient optimisation property): meaning that the cost function should be
optimisable efficiently, i.e. it should be differentiable for calculating the gradients,
or navigatable in the parameter landscape. And finally, it should have operational
meaning: that is, a smaller cost function should correspond to closeness to the
solution and quality of the learning.

Finding a suitable cost function for the learning problem of interest is one
of the most crucial parts of a VQA, and it would contribute significantly to the
success and efficiency of the VQA algorithm.

Finally, a cost function can be local or global [Coy22, CSV+21]. A local cost
function corresponds to a local observable and a global cost function to a global
one respectively. This distinction about the locality becomes very important in the
quantum case, unlike classical cost functions, since local and global observables
may differ in important quantum qualities such as entanglement. In Chapter 7, we
will see that this property will become very relevant and theoretically interesting
to study for our problem.

2.6.4.3 Ansätze

Another essential part of a VQA is its ansatz. This is the part of VQA that
creates the parameterised states. Therefore, the form of the ansatz is relevant
in the geometrical properties and the landscape of θ [CAB+21]. More precisely,
from an initial state |ψ0⟩ which is the input of the algorithm, the ansatz creates
the parameterised state as follows:

|ψ(θ)⟩= U(θ) |ψ0⟩= UL(θL) . . .U2(θ2)U1(θ1) |ψ0⟩ (2.120)

As it is clear from the above equation, the parameterisation can be made
by applying a series of parameterised unitaries U(θ), that is also referred to as
parameterised quantum circuits. The structure of the ansätzecan be tailored
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to the problem (problem-inspired ansatz), or it can be generic (which is also
called problem-agnostic ansatz) [CAB+21]. One advantage of adopting problem-
agnostic ansätzeis that they can be tailored to the specific hardware instead, or
in other words, be made hardware-native or hardware-efficient. This type will
be particularly desirable for NISQ devices where a limited set of native gates are
available, such as Rigetti or QCIBM quantum machines. Finally, hardware-efficient
ansätzeaim to reduce circuit depth in VQAs, which is yet another important point
for NISQ machines.

2.6.4.4 Optimisation techniques

Finally, the last part of VQA is the classical optimisation method used to minimise
the cost function. This part is essentially a classical machine learning subroutine.
Hence, different classical optimisation methods can be used depending on the
problem and training structure. One of the most exploited optimisation meth-
ods that are of particular interest for VQAs is the gradient-based optimisation
technique. We will also use the same method for our purpose in this thesis.

The gradient of a parameterised cost function in the parametrised landscape
is given by the following important result, famously known as the parameter shift
rule. It states the following [CAB+21, SBG+19, MBK21]:

Theorem 12 (Parameter-shift rule). Let C(θ) be the cost function, gener-
ated using an ansatz of the form U(θi) = e

−iθi/2σi where σi are the Pauli
operators, the gradient of C with respect to parameter θi is given as follows:
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(2.121)

where θ±i = (θ1, . . . ,θi ±
π
2 , . . . ,θL)

In general the above theorem can be generalised to a shift α, instead of π2 , in
that case the coefficient will be 1

2sinα , instead of 12 [CAB+21]. Generally speak-
ing, the above theorem shows that one can evaluate the gradient by shifting the
parameter by some amount α, which makes the calculation of the cost function
more efficient.





3

Unclonability, Unforgeability and
Learnability

“I like crossing the imaginary boundaries people set up between different
fields - it’s very refreshing.”

– Maryam Mirzakhani

3.1 Introduction

As mentioned, unclonability is one of the pillars of quantum information and per-
haps one of the most fundamental sources of security in quantum cryptography. In
this chapter, we make an effort to shine new lights on the meaning of unclonability
by bringing it into a broader context. We try to understand a generalisation of no-
cloning via two other equally fascinating notions: Unforgeability and Learnability.
The former is a cryptographic notion which we have introduced in Section 2.5.6,
and the latter is the subject of study in learning theory and machine learning,
which we have briefly discussed in Section 2.6. We first set the scene for the rest
of the thesis by expressing the intuitive meaning and connections among these
concepts. As we move forward in the chapter, we attempt to formalise some of
the presented ideas while also introducing the tools and definitions that we will
need to establish our results in the upcoming chapters. In fact, in this chapter,
we sketch a big picture, of which we manage to paint only some tiny sections in
detail. However, we believe that the general and intuitive overview represents the
idea that binds different chapters of this thesis together and will hopefully initiate
further thought-provoking questions in this area of research.

Apart from introducing the concepts and notions of interest, we also discuss
two main contributions in this chapter. The first one is a new cryptanalysis tool,
namely quantum emulation, which serves as a new attack model, as well as a
learning tool which builds a bridge between cryptography and learning and leads
to several no-go results that we will introduce in this chapter and Chapter 4.

The second contribution is a new framework that formalises the notion of
unforgeability in the quantum world. This framework generalises unforgeability

73
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for both quantum and classical primitives and provides us with an accurate yet
intuitive tool to study the notion of unclonability from a cryptographic point of
view in our future chapters. We also show several case studies as well as no-go
and positive results in this framework to demonstrate the broader applicability of
the framework in cryptography, and outside the coverage of the cases studied in
connection to unclonability.

3.1.1 Structure of the chapter

In Sections 3.2 and 3.3.1 we mostly provide intuitions on the relationships between
several concepts including unclonability, unknown transformations, learnability, un-
forgeability and so on. These two sections can be viewed as extensions of the
introduction since we introduce a few novel results. Nevertheless, the reader may
find novelty in some of the arguments and more importantly, the way they have
been described. In Section 3.4, we revisit the quantum emulation algorithm that
we introduced in Section 2.6.2 (Chapter 2), and we give several attack examples
based on this algorithm in 3.4.2. In Section 3.5, we introduce our generalised
quantum framework for unforgeability and finally, in Section 3.6, we discuss the
relevance of our framework through several no-go results, examples and new se-
cure constructions.

3.2 Unclonability and Unknownness

Let us start with this rudimentary question: Why quantum states are unclonable?
A straightforward answer to this question, and one often found in quantum me-
chanics and quantum computing textbooks is something along these lines: Due
to the unitarity of quantum mechanics. Even though this answer is correct (as
we have also seen in the proof of the no-cloning theorem in Chapter 2), we want
to start this section by pondering whether perhaps there is a more fundamental
answer to this question. To dive into this deeper level, we first need to ask the
question in a manner that captures the more precise statement of the no-cloning
theorem: Why ‘unknown’ quantum states are unclonable?

Allow us to discuss why the word ‘unknown’ bares such a great deal of sig-
nificance here. First, a ‘known’ quantum state, i.e. a state which we precisely
know its classical description, is perfectly clonable merely because by knowing the
classical description, one can prepare as many copies as desired of that state. In
fact, one can see the classical description as a recipe for making a unitary opera-
tion that generates that state over and over from a fixed state (for instance the
computational basis |0⟩). The second point is, as we have seen in Section 2.3, not
all quantum states are unclonable! A known set of orthogonal quantum states is
clonable. For the qubit case, if, for example, the state |ψ⟩ ∈ {|0⟩ , |1⟩} (but let’s
say we don’t know which one) then there is a simple cloning machine using the
CNOT gate as follows:

|ψ⟩ |0⟩ CNOT−→ |ψ⟩ |ψ⟩ (3.1)
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Figure 3.1: Illustration of ‘unknownness’ property of quantum states and act of measurement as a
probabilistic and destructive operation. Here the quantum object, can be seen as a closed envelope
that contains information (for instance about its spin, polarization, etc.). While to know this in-
formation one needs to open the envelope (measurement) which leads to a probabilistic outcome,
and the envelope cannot be closed again, illustrating the destructiveness of the measurement.
Moreover having multiple copies of the quantum states allows for extracting the classical descrip-
tion of the state in terms of the statistics of the measurement outcomes.

However, a set of orthogonal quantum states with a known basis, is not a piece
of quantum information at all, but rather a classical one, even though carried by a
quantum system. The reason is that one can always measure the quantum system
on the given basis and deterministically know the state of the system. We note
that in both examples, we are still in the regime of quantum mechanics, where
all the transformations between pure quantum states are unitary, and we are still
talking about a quantum mechanical property of a physical system, such as the
spin of an electron. Therefore, it seems that unclonability, is an aspect of the
quantum information that we believe to exist in a quantum mechanical system,
not the system itself, or in other words, the lack of information about a quantum
mechanical system, in the realm where we have uncertainty.

This ‘unknownness’ for quantum states comes from the two most fundamental
qualities of measurement in quantum mechanics: Any measurement is inherently
probabilistic, and it is usually destructive. That is, a quantum system, carries
some information about its own physical property 1 (for instance, about its spin,
polarization, etc.), while the physics would not allow us to know that information
with certainty and without leaving a mark on the object, that is in a non-reversible
way. We illustrate this in Fig. 3.1. On the other hand, imagine a world where
perfect cloning of these unknown states is possible. In this world, an observer

1Whether this physical properties are ‘carried’ by the system in reality, or even whether such
states bare existential reality, is a matter of philosophical and scientific debates to date. Despite
the author’s personal affection for the subject, it is very far from the topic of this thesis, and
hence we avoid entering that realm, and we note that the sentence has been merely used with an
illustrative purpose. We refer enthusiastic readers to some interesting references [Har13, PBR12,
LJBR12, Bro19, Omn02, AK16]
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who owns such a cloning machine, could make many copies of the quantum state
and start measuring them one by one. This observer does not need to worry
about destrying the states via measurement since they can keep increasing their
knowledge of the quantum system, to the point of certainty, only forming a single
copy2. Therefore, a perfect cloner would provide a free source of information for
a quantum system, which is nonphysical.

Finally, we emphasise that as the amount of a priori information about the
quantum state increases, cloning becomes more and more feasible. We recall
the concept of approximate cloning that we have introduced in Section 2.3. As
we have seen, restricting the family of states to be cloned to a specific family,
and therefore have partial prior information about the state (for instance, phase-
covariant or state-dependent cloning as opposed to universal cloning), lead to
cloning machines that produce clones with higher optimal fidelity. We will go
back to this point in Chapter 7 where we use cloning machines for cryptanalysis.

As we move along this thesis, we aim to show that the unknownness that is
profoundly connected to the unclonability of quantum states, manifests itself in
other forms of unclonability.

3.2.1 From unclonability of quantum states to unclonability of
transformations

Now, we discuss another notion of quantum unclonability which is the unclonability
of quantum transformations. Here, by quantum transformation, we mean either a
unitary transformation or more generally, a CPTP map. First, we need to clarify
what it means to clone a quantum process.

There are several ways to capture the unclonability of quantum transforma-
tions. The first one is as defined by Chiribella et. al. in [CDP08] where cloning a
transformation Λ means exploiting a single use of Λ inside a quantum circuit, to
perform the transformation Λ⊗Λ on bipartite states. In this context, a more gen-
eral no-cloning theorem exists which subsumes the no-cloning of quantum states
as a special case: Two black boxes O1 and O2 cannot be perfectly cloned by a
single-use, unless they are the same, or they are perfectly distinguishable. Here
the cloning is intertwined with the task of discrimination between two black boxes
via a single-use and is characterised by the minimum of the worst-case error prob-
ability for discrimination.3 An interesting consequence of this theorem is that not
only quantum black-box operations, like unitary gates, are unclonable by a single
use, but also classical transformations such as permutations of classical regis-
ters, are also unclonable by this definition. Let us highlight two key ingredients
in this notion of unclonability: black-box and single-use. One can easily relate
the ‘black-box’ to the concept of ‘unknownness’ that we have been discussing so
far. But the notion of ‘single-use’ here reveals a yet more interesting fact about

2However, we need to emphasise that this does not mean that the uncertainty which exists
due to quantum measurements disappears by having the classical deception of a quantum state

3The clonable cases then are when this discrimination probability is p = 0 (perfect discrimina-
tion) or p = 12 (no discrimination).
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the unclonability of quantum transformations, which shows an elementary relation
between quantum cloning and quantum learning, as has been also noted in the
paper. The reason is that the approximate version of the cloner that clones black
boxes is allowed to slightly learn the transformation (up to a single interaction).
We will elaborate on this point further and try to portray this connection more
clearly in Section 3.3.

Another way one may look at the unclonability of quantum transformations
is as a pre-processing step for the unclonability of quantum states. Assume we
have again a black-box or unknown unitary U, which we use as a generator for
an unknown state |ψ⟩ i.e. we always input a known state (take state |0⟩ as an
example) and receive a state |ψ⟩= U |0⟩. Now, since the unitary is fully unknown,
the output state is also unknown, therefore unclonable. Thus the unclonability of
quantum states can also be viewed as the unclonability of its unknown generator.
Nonetheless, in this case too, if the unitary is used repeatedly, the generated
copies could be used to learn the state, as well as the unitary itself. Generalising
this notion, we can think of the task of cloning a quantum transformation, as a
general operation while having multiple time access to a fully unknown unitary,
which can generate similar outputs of that unitary on different states (e.g.: on
the full or partial set of bases). We pursue the understanding of this more general
notion of unclonability, and its relation to cryptography.

Our first contribution to this end is to formalise the concept of unknown
or black-box unitary in a way that would best suit our purpose. We introduce
the notion of Unknown Unitary (UU), which we will use throughout the thesis.
Intuitively, an unknown unitary is a unitary that we have no prior information
about prior to any interactions with it, i.e. querying it. However, we formalise
this ‘lack of prior information as a distinguishability problem. Let us elaborate on
this: What we mean by knowing nothing about a unitary, in fact, means that the
unitary can be any unitary matrix from the family of all possible unitaries that
can operate over a Hilbert space (or the associated linear operator space) of a
certain dimension. In other words, if this set was finite, the probability that we
could guess which unitary has been selected from the set would be the completely
random guessing probability over the uniform distribution, which would depend on
the cardinality of the set. However, this set is infinite, but as we have seen in
Section 2.4, the Haar measure, can describe a uniform measure of randomness
over the space of quantum states and unitary transformations. Therefore, we can
define the ‘unknownness’ of a unitary in terms of distinguishability from the Haar
measure, as follows:
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Definition 29 (Unknown Unitary (UU)). Let Uu be a family of unitary
transformation where each U ∈ Uu is a unitary over a D-dimensional Hilbert
space, HD. Also, let λ be a parameter related to D.a We say Uu is a
family of Unknown Unitaries (UU), if for all the quantum polynomial-time
algorithms A, there exists a negligible function ε(λ)= negl(λ) such that the
difference between the probability of estimating the output of any U ∈ Uu
on any randomly picked state |ψ⟩ ∈ HD and the probability of estimating
the output of a Haar random unitary operator on the same state is bounded
by ε(λ):

E
|ψ⟩

[∣∣∣∣ P rU←Uu
[F (A(|ψ⟩),U |ψ⟩)⩾ δ(λ)]− P r

Uµ←µ
[F (A(|ψ⟩),Uµ |ψ⟩)⩾ δ(λ)]

∣∣∣∣]⩽ ε(λ).
(3.2)

where µ denotes the Haar measure, F denotes fidelity, δ(λ) = non-negl(λ)
is non-negligible value in λ.

aIn cryptography, since this parameter is usually related to the security, it is called the
security parameter.

In Section 2.5.5, we introduced the notion of quantum pseudorandomness and
particularly pseudorandom quantum unitaries (PRUs). The definition of UU is, in
its essence, very similar to that of PRUs. The reason is that, as discussed above,
we have intuitively defined the unknownness with respect to perfect randomness in
the quantum world, which is the Haar measure. Quantum pseudorandomness is an
approximation of Haar measure or, in another perspective, a computational version
of Haar measure. Additionally, we note that UU is a weaker notion, than PRU
and can be considered as a single-shot pseudorandomness. We further explore this
beautiful relationship between randomness/pseudorandomness, unknownness and
unclonability in Chapter 5. As a final remark to conclude this section, we note that
the relationship between unclonability and pseudorandomness has been discussed
in [JLS18] as well, where the authors have demonstrated a cryptographic variant
of the no-cloning theorem.

3.3 Unclonability and different notions of learning

In the previous section, we discussed the intuitive connection between unclonability
and the lack of knowledge about a quantum mechanical object such as a quantum
state or a quantum transformation, which is what we referred to as unknownness.
As anything ‘unknown’ can eventually become ‘known’ through the process of
interacting and learning,4 our next favourite concept to study in this chapter would
be ‘learning’. Here, we look at learning from two perspectives: learning theory
and cryptography. We seek to find similarities in what can be called learning in

4Although this may sound like a philosophical statement, it is also a scientific one! From a
physics point of view, it simply refers to the fact that any quantum operation can be learned
asymptotically.
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these two different views, which will help us better connect them for the rest of
the chapter and the following chapters.

3.3.1 Learning, forging and emulation

First, we start with learning. The term learning can correspond to numerous dif-
ferent definitions and meanings in different contexts covering purely fundamental
to entirely practical spectrum. We are interested in learning in its most theoretical
and fundamental sense, as it is often studied in learning theory. Therefore we con-
sider learning as the operation of an algorithm (either deterministic or probabilistic)
that targets to learn/predict an object (a function, quantum state, quantum pro-
cess, distribution, etc.) from a given set of data, usually known as learning data,
or sometimes training set, that includes information about that object. Moving
into the quantum realm, both the learning algorithm and the sample data can
be quantum, which has given rise to the massive field of quantum learning theory
and quantum machine learning. Our principal interest lies in quantum objects such
as quantum states and quantum operations.5 We recall from Section 2.6.3 that
the main question regarding learning is How efficiently can we learn the object?
Where the question is usually answered in time complexity or sample complexity.
In particular, the separation between classical and quantum algorithms in terms
of the two above efficiency factors stands among the most challenging problems
in the field.

Given this very general description of the learning task, the first notion of
learning that we discuss is learning an unknown quantum state, which usually
means learning the classical description or similar properties and characteristics
of that state. Here the learning data is multiple physical copies of the same
unknown state. The learning algorithm measures these copies and then post-
processes the measurement outcomes to extract the classical description or the
respective property.6 In general, extracting a complete classical description with
arbitrary precision requires an exponential number of samples. However, Huang
et.al. introduced a technique known as classical shadow [HKP20], which allows
the efficient learning of many properties of a quantum state. Another note worth
mentioning here is that there is a well-known result in quantum information show-
ing an equivalence between optimal universal N →∞ quantum cloning of pure
states and optimal state estimation devices taking as input N copies of an un-
known pure state [SIGA05, GM97]. More importantly, bounds on optimal cloning
can be derived from this equivalence. This result establishes the deep connection
between unclonability and unlearnability of quantum states.

The next notion is perhaps the most well-studied concept in learning theory:
function learnability. We recall from Section 2.6.3, the scenario where given a
family of functions, F , we want to efficiently learn a representation of any function,
f ∈F . The task of learning f can be considered to be exact or approximate where

5However, classical functions can also be represented via a quantum unitary (Section 2.5.3).
Thus, they too are subjects of our investigation.

6This process is also known as state tomography [NC10, BCD+09], discussed in Section 2.6.1.
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the latter, the function is learned approximately but with high probability, which is
denoted as PAC-learning (Definition 26). In this learning model, the sample data
is sample pairs (x, f (x)) where x has been sampled according to some distribution
D, given to the learning algorithm via an oracle, which outputs one such pair on
each call. In the quantum version of these learning notions, one can also allow
the oracle to give quantum access to the underlying classical function, producing
superposition queries.

Next, assume a weaker notion of learning, where we do not expect the learner
to be able to learn all the functions in a family (or a concept class), but instead
given a function f , selected from a family F , the learning algorithm needs to
output a correct new pair (x,h(x)), from the set of inputs and outputs of f
(which can also be given via interacting with an oracle). The validity of the pair is
tested with a verification algorithm, which in many cases (but not all the times),
checks whether h(x) = f (x) or not. This scenario is a very well-known scenario
in cryptography, known as forgery. In fact, in cryptography, one would ideally
want to avoid all such cases where an efficient forger can exist for a function f .
More precisely, in classical cryptography, the function f is usually selected from a
keyed-family of functions (where the key is sampled uniformly at random) and the
input x can be either selected from a distribution or by the forger itself arbitrarily.
Here to ensure the security of a cryptographic scheme which employs function f ,
we require that no adversary is able to produce such valid pairs. In other words,
the function f should be not easily learnable/predictable from a limited set of
samples. Here the adversary, which is a probabilistic algorithm, runs an efficient
learning process for this specific instance of a learning problem that we call forgery.
In Section 3.3.3 we will further discuss this relationship and the specifications of
the oracles.

Finally, learning a quantum transformation is yet another notion of learning,
that shares similarities with the above. The most conventional notion is known
as quantum process tomography in the literature. In process tomography, given
an unknown unitary or quantum channel, we are interested in learning the clas-
sical description, or characteristics of the quantum process by interacting with it
with many quantum states and measuring the outcomes. It is not hard to see
that without any prior information about the unitary or channel, this task is highly
inefficient [NC10, MRL08], given the fact that even learning a good approxima-
tion of an unknown quantum state is quite resource-intensive. Nevertheless, this
is not the only notion of learning one can imagine for quantum processes. In
Section 2.6.2.1, we introduced the notion of emulation and how it differs from
simulation. As the simulation is probably closer to the concept of tomography
(and even PAC-learning to some degree), we argue that emulation is very close
to the notion of forging, where here, the emulation will forge an unknown unitary
instead of a classical function. We recall that an emulation algorithm aims to
produce a close approximation of the output of a unitary U, on a given state |ψ⟩,
from a set of input and output samples, which is similar to the forgery scenario
presented above.

We keep these intuitions in mind as we move forward, and we focus on some
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of these notions of learning such as emulation (Section 3.4).

3.3.2 Unforgeability and unclonability

Here, we look at the relation between unforgeability and unclonability. These two
properties become particularly related for quantum tokens like quantum money
[Wie83? , AC12], quantum coin [Gav12], and more generally what is known
as unforgeable tokens. These are unique objects which can be produced and
verified by an honest party, but no untrusted party can generate such valid tokens.
Considering that the generators of such objects are classical functions or quantum
processes, the role of the adversary would be to forge or learn them, as discussed
in the previous section, and in the cryptography world, resisting forgery attacks is
captured by the property of unforgeability. Despite its simple intuitive meaning,
unforgeability is not very easy and trivial to capture formally, especially in the
quantum world. In Section 2.5.6, we discussed different classical definitions of
unforgeability and some candidates for unforgeability definitions in the quantum
world. We will also present our formal framework for quantum unforgeability later,
in this chapter. But for now, let us see how this property is related to unclonability.

Let us look at it through a very simple example regarding quantum money.
Assume a bank (or the mint) producing some notes, i.e. the physical objects
used as money. Each note has a unique serial number attached to it which pro-
vides a basis for the verification of the note when the user wants to use it for a
transaction [Ver19]. These notes are distributed among untrusted users, who are
willing to create more notes than they originally had in their possession. Thus
unforgeability is an important property for a note, meaning that the dishonest
party cannot come up with another unique serial number that would be also valid,
and hence pass the verification. But on the other hand, an easy way of creating
more notes is to simply copy the whole note, since the new one will also have a
valid serial number. As a result, cloning a token is a simple but applicable forging
attack.

In the classical world, nothing prevents a user with sufficient resources to
forge the note physically. However, in 1983, Wiesner first introduced the idea
of quantum money, based on the no-cloning theorem [Wie83]. Assuming your
token to be a physical quantum system described by the quantum state |$serial⟩
with the serial number serial, the unclonability of these states leads to the
unforgeability of the quantum money scheme. This unforgeability stems from
quantum mechanics, without any extra assumption. On the contrary, if a perfect
quantum cloning machine could exist, no such quantum systems could satisfy
unforgeability, irrespective of the scheme.

Wiesner’s quantum money is not the only cryptographic primitives where un-
forgeability and unclonability are related. Another example is a public-key quantum
money scheme known as Quantum Lightning [Zha21]. Similar to Wiesner’s quan-
tum money, quantum lightning also relies on the unclonability of quantum states to
prevent forgery and duplication attacks. This scheme uses a one-time signature,
and as discussed in the preliminaries, the main security property of a signature
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scheme is unforgeability. Moreover, the public-key quantum money functionality
has often been seen as a computational or cryptographic variant of the no-cloning
theorem.

Another relevant cryptographic functionality that is worth mentioning in this
section, is Quantum copy-protection, initially proposed by Aaronson [Aar09], and
that has been developed throughout several works recently [ALP21, ALL+21,
BJL+21, SW22]. The idea behind quantum copy-protection is to use quantum
unclonability to achieve programs that cannot be copied. This functionality has
many interesting applications such as Secure software leasing [ALP21, BJL+21].
Assume a program f is given not as a classical function but instead, in the form
of a quantum state |ψf ⟩, such that from this state, f can be computed on any
arbitrary input, yet it is infeasible to copy it or convert it into two other arbi-
trary states from which you can still compute f . Despite the clear connection
between this functionality and the unclonability of quantum states, quantum copy
protection is a stronger and more demanding requirement than simple unclon-
ability. Also, quantum copy-protection does not directly link with unforgeability
to the best of our knowledge. However, we argue that it is related to another
concept that we have been discussing in this section, i.e. learnability. Aaron-
son shows that any ‘learnable’ program can be copy-protected. Here learnability
means that the output of the function cannot be predicted from input and output
behaviour, which is very similar to unforgeability. Thus it would not be surpris-
ing that ‘forgeable’ functions could also not be copy-protected. Nonetheless, as
there are different definitions and levels of unforgeability, there are also several
definitions for learnability in this context. Some of them have been introduced
in [ALL+21]. More surprisingly, a recent result [ALP21] shows, that under certain
computational assumptions, even certain unlearnable programs cannot be copy-
protected. Therefore, the connection between learnability (as well as unforgeabil-
ity) and copy-protection is still an intriguing open problem. We conjecture that
the categorisation of copy-protectable functions from an unforgeability point of
view can also be insightful.

Finally, we note that there are plenty of other cryptographic primitives of this
sort, where unclonability is a core aspect which enables features that are infeasible
classically. However, the careful study of every one of them, including the above
examples, is a research field on its own and indeed, outside the scope of this
thesis. Our goal in this section was to sketch the existence of this relation via
some well-known examples to be able to highlight it later in the other forms of
unclonability, such as the one we present in Chapter 4.

3.3.3 Unforgeability and learnability with quantum oracles

As we have discussed, unforgeability has a close and intuitive connection with the
notion of learning. On the other hand, unforgeability is a cryptographic property
we require for many different primitives and cryptographic schemes. We can
therefore ask:
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What does it mean to learn a cryptographic primitive?

First, we note that the core element of a cryptographic primitive is a classical
function (or equivalently a quantum process in the quantum case) which maps
the domain to the range, where the specific properties of this function (or op-
eration) often are employed to achieve different cryptographic functionalities. In
this context, learning a primitive means either learning the full underlying function
(or quantum process) or alternatively learning the desired property. This learning
process as we discussed in Section 3.3.1, can be used by an adversary who tries
to break the cryptosystem. For this learning algorithm to be able to function, one
needs the learning data. In the cryptography literature, similar to the learning the-
ory, this learning data is usually obtained by interacting with an oracle that models
an interactive platform for the full and perfect implementation of the evaluation
function.

Here, we are mainly interested in quantum algorithms (and hence quantum
adversaries) and the notion of quantum unclonability. Thus the relevant case for us
is when the interaction with the primitive is also realised quantumly. For quantum
primitives, this is a natural model to consider, as we are dealing with a quantum
process that produces quantum outputs and often takes quantum inputs as well.
For classical primitives on the other hand, according to the different adversarial
models that we have introduced in Section 2.5.2, this brings us to the quantum
security regime, where the interaction with the primitive is also considered to be
quantum.

In the preliminaries (Section 2.5.3), we have already discussed how a quantum
accessible oracle can be defined for a classical function. Here, we recall that notion
and we also present the same model for quantum primitives. In this way, we can
study both classes of primitives in an analogous model, i.e. the quantum oracle
model, which we will use throughout the chapter and the thesis. We also discuss
how learning from these quantum oracles, can essentially link to unforgeability or
other similar cryptographic properties of interest.

3.3.3.1 Quantum oracle for classical vs quantum primitives

Let us first recall the standard quantum oracle for classical primitives which we
introduced in Section 2.5.3. The standard oracle is a black-box unitary of a
reversible version of a classical-polynomial-time computable function f , which can
represent a deterministic or randomised primitive, defined as follows:

ROf : ∑
m,y

αm,y |r⟩O |m,y⟩ → ∑
m,y

αm,y |r⟩O |m,y ⊕ f (m; r)⟩ (3.3)

Having access to this quantum operation, a quantum adversary A can get
the outcome of the function f for several classical inputs m in one query, in
a superposition form over the message set of their choice. However since the
primitive can be randomised, the value of the function in each execution can
also depend on the random value. This scenario is modelled via the randomised
version of the oracle or the randomised oracle as shown above. In the case of



84 3. Unclonability, Unforgeability and Learnability

deterministic primitives, the adversary gets full query access to the unitary that
maps all the computational basis to another combination of computational basis
that represents the range of the function. In the randomised case, on the other
hand, the adversary usually gets a more limited access to an extended unitary
transformation over the joint Hilbert space of the function and the randomisation,
or in other words, to the full Hilbert space of all the possible outcomes of all
the functions, parameterised with the random value. In Section 2.5.3 we have
briefly discussed some of the interesting cases and questions that arise regarding
which level of access to the extended unitary can be permitted for the quantum
adversary. Nonetheless, the key point that we want to emphasise is that the
information about the primitives is accessible to the adversary via the quantum
input and outputs of this unitary, which is, initially unknown to the adversary.

For quantum primitives, the modelling of this scenario is even more evident.
Quantum schemes often work with families of quantum states which are usually
unknown (or partially unknown) quantum states from the adversary’s point of
view, or similarly, an unknown quantum operation. In both cases, one can model
the primitive with the evaluation between quantum states and thus can define the
oracle as a general unitary transformation for a deterministic primitive, as follows:

OU :∑
i

αi |bi⟩
U→∑

i

βi |bi⟩ (3.4)

Here {|bi⟩} are a basis (not necessary computational basis) for HD, the Hilbert
space that the unitary operates upon. We note that quantum primitives can
perform an arbitrary rotation of the bases. The analogue of this type of oracles
for classical primitives, are type-2 oracles (also called minimal oracles)[GHS16,
GKS21]. We also note that in the non-randomised case, this oracle generalises
the standard quantum oracle. In other words, the class of all the possible standard
oracles of a certain dimension are a subclass of all the quantum oracles of the form
Eq. (3.4) over the same dimension.

A randomised quantum primitive can also be defined similarly to the classical
case. Here we give an abstract notation of a general randomised quantum primi-
tive, but we further clarify the realisation of such oracles in the upcoming sections.
We denote a general randomised unitary oracle for quantum primitives as follows:

OU :∑
i

αi |r⟩O |mi⟩
U→∑

i

βi(r) |r⟩O |mi⟩ (3.5)

Hence aOU is a unitary over the joint space of the oracle’s randomness register and
the main input state, which consists of a family of smaller unitaries parameterised
by a random internal parameter r .

Now, back to the problem of learning, we can see that in both cases, the
learning data is a set of input and output quantum states {(ρin,ρout)i}qi=1

7 of

7In general, these output states can be entangled across different queries. In some cases, where
the query to the oracle was performed adaptively and sequentially, the number of quantum states
and the mathematical structure of this quantum learning data might be different. However, we
will argue that this generality can still hold. For additional technical discussion, see Section 3.5.1
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an unknown unitary that is provided to the learning algorithm from interacting
q-times with the respective quantum oracle. Let us point out a few aspects of
this analogy between learning and cryptographic problems in the oracle model.

First, depending on whether the access to the oracle is direct or indirect via an-
other agent or honest party, different quantum adversarial models emerge. From
another perspective, the learning data can, in general, be sampled from a dis-
tribution, which can also impose restrictions or relax conditions on the learning
problem. Second, the number of queries q (either in the worst case or average
case) specifies the query complexity of the learning algorithm but also translates
to the power of the quantum adversary in the cryptography language. Third, it
is clear that in both of these models, any such unknown unitaries are eventually
‘learnable’ if the number of queries to the oracle is unbounded. The same situation
in cryptography is commonly known as brute-force attacks. The lower the query
complexity, the higher the efficiency of the algorithm and the more they become
interesting attacks on cryptosystems. Therefore, at the intersection of cryptog-
raphy and learning theory, we are usually interested in learning algorithms with
polynomial 8 query complexity. Many of the learning algorithms, such as process
tomography [DLP01, PR04, Hay05, KJ09, BCD+09, OW16], or certain quantum
machine learning algorithms [BWP+17, WSK+21, AdW17b, PM22b] do not have
such polynomial-size query complexity and thus despite being very useful in other
areas, are not usually compelling toolkits for cryptanalysis. However, in recent
years, there has been significant progress in the development of efficient algorithms
for learning quantum states and quantum processes [ML16, Aar20, HKP20]. We
believe these algorithms are powerful yet fairly unexplored tools while studying
problems in the domain of cryptography. An example of this sort of learning algo-
rithm is a technique called shadow tomography introduced by Aaronson [Aar20],
which has also been studied in the context of quantum money.

In what follows, we study one candidate of such efficient learning algorithms.
The algorithm that we study is an algorithm for quantum emulation which aims
to generate the output of an unknown unitary to an unknown quantum state
from learning samples of that unitary. We have sought to uncover the relevance
of such methods in relation to unclonability and the cryptographic properties of
unclonable objects. From the next section on, we use these two main ingredients
to understand unclonability in a broader context: quantum emulation as a learning
tool and unforgeability as a cryptographic characterisation. In order to make our
intuitive arguments more precise, we will need to have a closer look at both of
them.

3.4 Universal quantum emulator revisited

In the previous section, we discussed different notions of learning and their re-
lation to unclonability, as well as cryptographic concepts like unforgeability. We

8In a given parameter that either quantifies the resource, or the security, or in some cases both.
For instance, the number of input qubits of the algorithm.
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have also seen that emulating an unknown quantum transformation is a way of
learning with close proximity to forging that process. Previously in Section 2.6.2
of Chapter 2, we have seen a quantum algorithm from [ML16] that performs the
task of emulating an unknown quantum unitary on an unknown input quantum
state by having some of the input-output samples of the unitary. We have seen
some properties of the universal quantum emulator algorithm, such as efficiency
and complexity results. Re-purposing the algorithm from its original target in the
context of tomography, here we take a new look at this algorithm, and more gen-
erally emulation, from a cryptanalysis perspective. In other words, since it seems
the objectives of emulation and unforgeability are in the complete opposite direc-
tion of each other, we propose emulation as a general attack model against the
notion of unforgeability in general. To make this statement more formal, we will
first require a formal definition of unforgeability itself, for which we need to wait
until the next section. While in this section, we revisit the quantum emulation
algorithm from an adversarial point of view and as a cryptanalysis toolkit. For
this purpose, we need to provide a new fidelity analysis of the algorithm exploiting
a specific asymmetry in the algorithm that can be used effectively in adversarial
scenarios. We then show a few examples of this new class of quantum attacks,
which we call quantum emulation attacks.

3.4.1 Output fidelity analysis

We are interested in the fidelity of the output state |ψQE⟩ of the algorithm and
the intended output U |ψ⟩ to estimate the success. Here we are more interested
in the explicit form of the output states and the theoretical bounds for the fidelity,
rather than the complexity analysis provided in [ML16]. We note that for our
calculations, all the gates including the controlled-reflection gates are assumed to
be ideal keeping in mind that the implementation is possible with the technique of
quantum principal component analysis developed in [LMR14], as also mentioned
in [ML16]. We recall from Section 2.6.2 that the fidelity of the output is related
to the success probability of the first stage of the algorithm in the following way:

F (ρQE,UρU
†)⩾ F (EU(ρ),UρU†)⩾

√
Psucc−stage1 (3.6)

Also, from the proof of Theorem 11 from [ML16], it can be seen that the
success probability of Stage 1 is calculated as follows:

Psucc−stage1 = | ⟨φr |Tranc(|χf ⟩⟨χf |) |φr ⟩ |2 (3.7)

where |χf ⟩ is the final state of the circuit after Stage 1 and Tranc(·) computes the
reduced density matrix by tracing out the ancillas. The overlap of the resulting
state and the reference state equals the success probability of Stage 1. Now we
only use Eq. (3.7) for our analysis henceforward. For this section, we need a more
precise and concrete expression for the output fidelity.

Here we point an important observation about the algorithm. The fidelity
of the output state of the circuit highly depends on the choice of the reference
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state Eq. (3.7) such that it may increase or decrease the success probability of the
adversary in different security models as we will discuss. We establish the following
recursive relation for the state of the circuit after the i-th block of Stage 1, in
terms of the previous state:

|χi⟩=
1

2
[(I−R(φr )) |χi−1⟩ |0⟩+R(φi)(I+R(φr )) |χi−1⟩ |1⟩]. (3.8)

Now by using this relation, we can prove the following theorem:

Theorem 13. Let |χK⟩ be the output state of K-th block of the circuit
(Fig. 2.8). Let |ψ⟩ be the input state of the circuit, |φr ⟩ the reference state
and |φi⟩ other sample states. We have:

|χK⟩= ⟨φr |ψ⟩ |φr ⟩ |0⟩⊗K+ |ψ⟩ |1⟩⊗K−⟨φr |ψ⟩ |φr ⟩ |1⟩⊗K

+
K

∑
i=1

i

∑
j=0

[fi j2
li j | ⟨φr |ψ⟩|xi j | ⟨φi |ψ⟩|yi j | ⟨φr |φi⟩|zi j ] |φr ⟩ |qanc(i , j)⟩

+
K

∑
i=1

i

∑
j=0

[gi j2
l ′i j | ⟨φr |ψ⟩|x

′
i j | ⟨φi |ψ⟩|y

′
i j | ⟨φr |φi⟩|z

′
i j ] |φi⟩ |q′anc(i , j)⟩

(3.9)

where li j , xi j , yi j , zi j , l ′i j , x
′
i j , y

′
i j and z ′i j are integer values indicating the

power of the terms of the coefficient. Note that fi j and gi j can be 0, 1 or -1
and qanc(i , j) and q′anc(i , j) output a computational basis of K qubits (other
than |0⟩⊗K).

We give an induction proof of this theorem in Appendix A.1.
Having a precise expression for |χf ⟩ from Theorem 13, one can calculate

Psucc−stage1 of Eq. (3.7) by tracing out all the ancillary systems from the density
matrix of |χf ⟩⟨χf |. Also, now it is clear that if |ψ⟩ is orthogonal to Hd , the only
term remaining in Eq. (3.9) is |ψ⟩ |1⟩⊗K. So, the input state remains unchanged
after the first stage and Psucc−step1 = 0. For states projected in the subspace
spanned by Sin, the overall channel describing the quantum emulation algorithm
has always a fixed point inside the subspace [ML16]. Hence, Stage 1 is successful
with probability close to 1 by assuming the gates to be ideal.

Let us see two simple examples of the above theorem, which we will use in the
future. First, assume that we have only two sample states: one reference state
|φr ⟩, and another sample state |φ1⟩, and their respective output states. Trying to
run a quantum emulation algorithm with this database, will lead to an emulation
algorithm that has only one block in the first stage. In this case, the output state
|χ1⟩ of the circuit after the first stage is given as a function of the following
overlaps,

⟨φr |ψ⟩= α, ⟨φ1|ψ⟩= β, ⟨φr |φ1⟩= γ, (3.10)

as follows:

|χ1⟩= α |φr ⟩ |0⟩+ |ψ⟩ |1⟩−α |φr ⟩ |1⟩−2β |φ1⟩ |1⟩+2αγ |φ1⟩ |1⟩ (3.11)
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Expanding this two two-blocks emulation, using the same formula, we have:

|χ2⟩= α |φr ⟩ |00⟩+2γ1(αγ1−β1) |φr ⟩ |01⟩+ |ψ⟩ |11⟩
+(2β1γ1−α−2αγ21) |φr ⟩ |11⟩+2(αγ1−β1) |φ1⟩ |11⟩
+2(αγ2−β2+2β1δ−2αδγ1−2αβ1γ1γ2+2αγ21γ2) |φ2⟩ |11⟩

(3.12)

where the coefficients are given by the following pair overlaps:

⟨φr |ψ⟩= α, ⟨φ1|ψ⟩= β1, ⟨φ2|ψ⟩= β2
⟨φ1|φr ⟩= γ1, ⟨φ2|φr ⟩= γ2, ⟨φ1|φ2⟩= δ.

(3.13)

Although calculating these explicit forms seems repetitive, having them pro-
vides the ability to optimise the output fidelity with respect to the choice of states.
We underline that for the initial purpose of the algorithm, this was not relevant as
the sample states were assumed to be chosen randomly, while in some adversarial
models, specifically when giving oracle access to the unknown target unitary, the
adversary has the advantage of selecting the best possible states. Hence, having
the explicit forms in terms of overlaps is a significant step towards using quantum
emulation as a cryptanalysis toolkit.

3.4.2 Quantum Emulation Attacks

Now, let us see how we can use this algorithm with the new given picture and
results in creative ways. The first quantum emulation attack that we present is
the one that we will use several times in this thesis to show non-trivial impossibility
results and also happens to be the simplest emulation attack. Here we present
the most general format, without explicitly specifying the model or formal game
in which it is used. Later in Section 3.6 and also Chapter 4 we will go back
to this attack and use it in a formal way within game-based security models.
The other two attacks we give in this section, mostly serve as toy examples to
demonstrate the possibility of different attacks one can build given a small-size
quantum emulator.

3.4.2.1 One-block quantum emulation attack

Imagine the scenario where an adversaryA who has access to the following samples
of an unknown unitary U:

{|φ1⟩ , |φr ⟩}, {|φout1 ⟩ , |φoutr ⟩} (3.14)

and tries to closely approximate the output U |ψ⟩ for a target state |ψ⟩. We
assume the adversary A, has the ability to select |φ1⟩ and |φr ⟩ and interact with
the unitary to obtain the respective outcome.

Without loss of generality assume the case that |φ1⟩ is a computational basis
and the target state |ψ⟩ is another computational basis (or more generally any
states such that ⟨ψ|φ1⟩=0). Now the question will be how to choose the best |φr ⟩
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for this emulation. From Theorem 13 and Eq. (2.113) we already know that the
reference state should have some overlap with the target state for the emulation
to be successful in this case. For finding a general result, we parameterise the
choice of the reference state in the amplitudes of the reference state, as follows:

|φr ⟩=
√
1−α2 |φ1⟩+α |ψ⟩ (3.15)

Now A can run a one-block quantum emulation algorithm. We can directly use
Eq. (3.11), noting that ⟨φ1|ψ⟩= 0 and | ⟨ψ|φr ⟩|2 = α2 and | ⟨φ1|φr ⟩|2 = 1−α2

|χ1⟩= α |φr ⟩ |0⟩+ |ψ⟩ |1⟩−α |φr ⟩ |1⟩+2α(
√
1−α2) |φ1⟩ |1⟩ . (3.16)

By calculating |χ1⟩⟨χ1|, tracing out the ancillary systems and using Theorem 11,
we can bound the fidelity of the output state of the emulator, denoted by |ψQE⟩,
and the target which is U |ψ⟩ as follows:

F (|ψQE⟩⟨ψQE | ,U† |ψ⟩⟨ψ|U)⩾ α2[1+4(1−α2)2] (3.17)

We can see that this fidelity, is a considerable value as long as α is not too
small (in a cryptographic sense, the fidelity is a non-negligible function of the
security parameter as long as α is not a negligible function). A trivial case is
where fidelity is 1, for α = 1, which means the reference state and the target
state are the same. But there is also a non-trivial case for the fidelity to become
unity, and that happens for α= 1√

2
. This is when the reference state is a uniform

superposition of the target state and the other sample.
Thus, we can see that this freedom of carefully choosing the sample states of

an unknown unitary, enables an adversary to perform a successful emulation with
high fidelity. This is important in the context of cryptography as the unknown
unitary can be a quantum oracle of a classical primitive, and the output of the
emulation can leak important information about the underlying function. In fact,
as we will see later, this sort of attack directly connects to the unforgeability
property.

3.4.2.2 Quantum emulation attack on the inverse function

Let us see another example. Assume that we have a classical function f that
is efficiently computable but hard or inefficient to invert (for instance a one-way
function). However, we assume that the function is invertible i.e. the f −1 exists.
Our goal is to show some information about the inverse of f that can be extracted,
with only having a standard quantum oracle access to Uf , using a small quantum
emulation attack.

Let the following unitary be the standard quantum oracle for classical function
f :

Uf :∑
x,t

αx,t |x,t⟩ →∑
x,t

αx,t |x, f (x)⊕ t⟩ (3.18)

Since f is easy to compute the unitary Uf is also efficiently implemented since we
have assumed the inefficiency of computing the inverse implies that in general, an
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efficient implementation of Uf −1 does not exists, or in other words, we can assume
that U†f ̸= Uf −1 and having access to Uf and its complex conjugate does not lead
to a trivial implementation of Uf −1. Nonetheless, the standard oracle form of Uf −1
takes the following form:

Uf −1 :∑
y,t

αy,t |y ,t⟩ →∑
y,t

αy,t |y , f −1(y)⊕ t⟩ (3.19)

where y = f (x) and thus |y , f −1(y)⊕ t⟩= |f (x), f −1(f (x)) = x ⊕ t⟩.
We show that an adversary A can emulate Uf −1 and extract information about

f −1 without having any oracle access to Uf −1, and by only querying Uf 9.
First, we show the analysis of the emulation’s output if the sample states from

Uf −1 were available. Then we propose a method to translate the queries of Uf to
the queries of Uf −1 which are required for the emulation attack.

Sample states A needs the following queries from the unknown unitary Uf −1:

{|φ1⟩= |y1,0⟩ , |φr ⟩=
1√
2
(|y1,0⟩+ |yk ,0⟩)} (3.20)

and their respective outputs:

{|φout1 ⟩= |y1, f −1(y1)⟩= |f (x1),x1⟩ ,

|φoutr ⟩=
1√
2
(|y1, f −1(y1)⟩+ |yk , f −1(yk)⟩) =

1√
2
(|f (x1),x1⟩+ |f (xk),xk)⟩}

(3.21)

where y1 = f (x1) and yk = f (xk) are classical outputs of the function f .
Also note that |φ1⟩, as well as |φout1 ⟩, are a computational basis of HD over
which Uf and Uf −1 operate. Thus, this query is equivalent to a classical
query.

Target state Let the target state of emulation, and the expected outcome be
|yk ,0⟩, and |yk ,xk⟩ respectively, where the second register |xk⟩ is the desired
output of Uf −1 (or the pre-image of yk).

Given the one-block emulation attack from the previous section, we know that the
output fidelity for this case (α− 1√

2
) is equal to 1. Therefore A could perfectly

extract the xk with probability one if having access to Uf −1 oracle to be able to
get the above samples. Now let us see how one can obtain the required samples,
by interacting with Uf instead.

Translating queries of Uf to queries of Uf −1:

9We note that this is a forgery attack on such functions, however it clearly does not break the
one-wayness property since to break this property, one needs a pre-image of a random y should
be found.
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Let the following be the sample states of A after querying Uf :

|φu1⟩= |x1,0⟩ , |φu,out1 ⟩= |x1, f (x1)⟩

|φu2⟩=
1√
2
(|x1,0⟩+ |xk ,0⟩), |φu,out2 ⟩=

1√
2
(|x1, f (x1)⟩+ |xk , f (xk)⟩)

(3.22)

Our goal is to make the transformation in a non-destructive way, instead of
simply measuring the states which would lead them to collapse. Obviously, |φ1⟩
can be prepared classically and the output, |φout1 ⟩ can be easily obtained from
|φu,out1 ⟩ by simply performing a SWAP gate between first and second part of
the register i.e. |φout1 ⟩ = SWAP12 |φu,out1 ⟩. Similarly, |φoutr ⟩, can be obtained by
swapping the first and second register of |φu,out2 ⟩, i.e. |φoutr ⟩= SWAP12 |φu,out2 ⟩.

It remains to obtain |φr ⟩ from |φu,out2 ⟩ which is more complicated as there is
an entanglement between the registers that need to be removed. We give a small
sample algorithm, Algorithm 1, to perform this task for the qubit case, although
it is easily generalizable to n-qubits as well.

Algorithm 1 Mini sample converter algorithm
Description: Translating |φu,out2 ⟩ to |φr ⟩: We assume that |x1⟩, |xk⟩ and respec-
tively |y1⟩ and |yk⟩ are qubit. If x1 ̸= xk , then the state |φu,out2 ⟩ is an entangled
state which can be written as: |φu,out2 ⟩ = 1√

2
(|0,y1⟩+ |1,yk⟩). The algorithm

proceeds as follows:

• Add an ancillary qubit |0⟩, and perform a SWAP gate in the first qubit and
the ancillary qubit leading to:

SWAPa1 |0a⟩ |φu,out2 ⟩= SWAP(
1√
2
(|0⟩ |0⟩ |y1⟩)+ |0⟩ |1⟩ |yk⟩))

=
1√
2
(|0⟩ |0⟩ |y1⟩)+ |1⟩ |0⟩ |yk⟩)

• Rewrite the first qubit in |±⟩ basis:

|+⟩(
|0⟩ |y1⟩)+ |0⟩ |yk⟩

2
)+ |−⟩(

|0⟩ |y1⟩)−|0⟩ |yk⟩
2

)

• Measure the first qubit in |±⟩ basis.

• One of the two outcomes |0⟩|y1⟩)+|0⟩|yk ⟩√
2

or |0⟩|y1⟩)−|0⟩|yk ⟩√
2

are outputed with

probability 12 .

• Apply SWAP gate on two registers, leading to the following states:

1√
2
(|y1⟩ |0⟩)+ |yk⟩ |0⟩) or

1√
2
(|y1⟩ |0⟩)−|yk⟩ |0⟩)
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Note that, even though the algorithm’s outcome is probabilistic, both of the
output states have the desired superposition form, albeit with different relative
phases10. This relative phase, will not affect the success probability of the emu-
lation algorithm. In other words, emulation samples can be obtained deterministi-
cally, from the given states. This case is similar to the technique used in [DKK17]
where superposition is created with the desired weight but with different phases.

Examples of this section, although simple, showcase the applicability of quan-
tum algorithms, such as quantum emulation, that exploit the power of quantum
data (quantum queries) as new attacks on cryptosystems. As shown through these
toy examples, many such algorithms, when used in an adversarial scenario, can be
adjusted to perform even stronger attacks, compared to the cases made for their
original purposes, such as tomography or general learning. Hence the study of this
class of algorithms from a cryptanalysis perspective bares outstanding importance
in the field.

3.5 A unified framework for quantum unforgeability

After establishing the intuitive relations between unclonability, unforgeability and
learning, and introducing the emulation cryptanalysis toolkit, now it is time to
formalize those intuitions in the form of a formal framework for unforgeability
as a cryptographic property for quantum and classical primitives. The game-
based security framework is a standard model for formally defining security prop-
erties of cryptographic primitives such as encryption algorithms, digital signa-
ture schemes, physical unclonable functions or quantum money [BZ13a, GHS16,
AMRS20, AMSY16, SJS16, AC12, Aar09]. Classical cryptographic primitives have
also widely been studied in a quantum game-based framework, where parties are
quantum (are able to run quantum circuits) [BZ13a, GHS16, AMRS20, SJS16].
Inspired by these works, we generalise the quantum game-based framework to
formalize quantum unforgeability, in a way that it is compatible with the notion of
learnability and unclonability and is useful for the rest of the thesis. Additionally,
our framework unifies different levels of unforgeability as well as capturing quan-
tum and classical primitives. First, we show the abstract and formal version of
the definition and then we show how it can naturally cater for quantum primitives
and different adversarial levels.

3.5.1 Framework and Formal definitions

Let F = (S,E ,V) be a classical or quantum primitive with S, E , and V being the
setup, evaluation, and verification algorithms respectively. We specify unforge-
ability as a game between a challenger C (that models the honest parties) and
an adversary A (that captures the corrupted parties). The adversary’s goal is

10There is a simple way, however to achieve a deterministic outcome. We can add an additional
step to correct the output conditioned on the measurement outcome, as it is usually done in
MBQC.
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to closely approximate the output of the evaluation algorithm E on a new chal-
lenge such that it passes the verification with high probability. As we work in the
quantum regime, we give adversary full quantum query access to the primitive,
either classical or quantum. For classical primitives, as we assume the adversary
has quantum oracle access to the primitive, we adopt the technique of quan-
tum oracles defined in [BZ13a, BDF+11] for formalizing quantum query-response
interaction between the adversary and the challenger.

The security game considered here consists of several phases. First, C runs the
setup algorithm S to generate the parameters required throughout the game and
instantiates the evaluation oracle OE , the verification oracle OV , and the message
spaceM. The learning phase defines the threat model. For now, we only consider
the quantum equivalent of the chosen-message attack model for coherence and
simplicity. Nevertheless, we show the extension to other attack models and types
of adversaries, such as weak adversaries, in Section 3.5.3. The challenge phase
determines the security notion captured by the game. The formal specification of
our quantum games is presented in Game 1. But let us first go informally over
each phase of the game and clarify the differences between quantum and classical
primitives.

Setup. In the setup phase, C generates the parameters required in subsequent
phases by running the setup algorithm of the primitive F on input λ (the security
parameter), and the oracles are being instantiated accordingly.
Quantum case: For quantum primitives, the evaluation oracle is defined accord-
ing to Eq. (3.5) for deterministic and randomised primitives respectively and
the verification oracle implements a quantum test algorithm as defined in Defi-
nition 12.

Learning phase. In the learning phase, the adversary interacts with the evalu-
ation oracle. For now, we only focus on chosen-message attack (cma) security.
A requires the oracle evaluation on any input state ρini . The oracle evaluations
are handled by C who issues the requests on ρini to OE and forwards to A the
respectively received outputs ρouti , where i = {1, . . . ,q = poly(λ)}. We also note
that A can have an internal register σ and we allow for creating entanglement
between A’s register and output queries. Specifically for classical primitives, each
ρini = |φini ⟩⟨φini | where |φini ⟩ = ∑mi ,yi |mi ,yi⟩ is usually a pure state with mi be-
ing the message and yi the ancillary system. If the queries are being generated
by A, in most cases it can be assumed that they have the classical informa-
tion underlying them, while output queries need to be considered as unknown
quantum states to the adversary. In Section 3.5.3 we also represent the model
for weak adversary which is the quantum equivalent of random-message attack
(rma) in the classical world, as well as an alternative way of capturing adaptive
adversaries. We also note that this phase for quantum primitives is similar to
the classical ones, where {ρini }

q
i=1 represents input chosen message queries and

{ρouti }
q
i=1 is the respective outputs after the interaction with the oracle sent to

A by the challenger.
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Challenge phase. In this phase, the challenge that the adversary has to respond
to is chosen in three different ways, each corresponding to a specific level of
unforgeability. Similar to classical notions of unforgeability, the strongest notion
is existential unforgeability denoted by qEx in the game, and whereby the adver-
sary picks the message for which it will produce a forgery. On the other hand,
in selective unforgeability, denoted qSel, the adversary picks the challenge but
needs to commit to it before interacting with the oracle. Hence in Game 1 the
selective challenge phase happens before the learning phase. A further way of
weakening the unforgeability notion is when the challenge message is chosen by
the challenger C uniformly at random from the set of all the messages. In any
case, a classical message m ∈M is selected (for classical primitives) where M
is the set of classical messages.
Quantum case: If the primitive is quantum, the main difference is thatM=HD
(or M = S(HD) for density operators) is a Hilbert space and m = |ψm⟩ ∈ HD
(or equivalently, m = ρm ∈ S(HD)) is a quantum challenge in the D-dimensional
Hilbert space. In the qUni challenge phase where the message is chosen by the
challenger C uniformly at random from the set of all the messages, for quantum
primitives it should be selected uniformly according to the Haar measure over
HD. We also need to mention that for qSel challenge phases, A is required to
submit the (efficient) classical description of the quantum state ρm. This is a
technicality related to the verification phase, as it allows the challenger to pre-
pare the required number of copies of the correct output for the most general
form of verification.

We impose different conditions on the challenge phases which will be formal-
ized later in the guessing phase. These conditions prevent the adversary from
mounting trivial attacks.

Guess phase. In this phase, the adversary submits their forgery t for the chal-
lenge m. They win the game if the output pair (m,t) passes the verification
algorithm with high probability. In addition, for qSel, the message m should be
the same as the message submitted in the challenge phase. Here the condi-
tion in the challenge phase that we have mentioned is formally checked. The
quantum challenge phase needs to be carefully specified to avoid capturing trivial
attacks such as sending one of the previously learnt states as the challenge of
the adversary. As a result, we have introduced the notation m ̸∈µ ρin denoting
µ-distinguishability from all the input learning phase states. When m is a classical
bit-string the same condition should hold for the quantum encoding of m into a
computational basis i.e. |m⟩ (or |m,0⟩). Note that the case µ = 1 implies the
challenge quantum state has no overlap with any of the quantum states queried
in the learning phase.

Important note: We emphasise, that we do not specify how the challenger could
check whether the adversary meets the condition or not. Implementing this
check is not crucial for our security analysis, where we only need to be able
to characterise the instances that might present a security violation. The key
point to note is that this can effectively be checked given a run against a given



3.5. A unified framework for quantum unforgeability 95

adversary. Indeed, then ρini and ρouti can be characterised by the probability
analysis allowing proofs of security or exhibition of attacks.11

Regarding the verification oracle, for classical primitives the forgery pair (m,t) is
classical and the verification oracle OVf runs the classical verification algorithm
V = Ver(k,m,t, r). Here r is the randomness if the primitive is randomised.

Quantum case: This phase is similar to the classical case. Here, it can be seen
that this is the most natural way of characterising a forgery for quantum prim-
itives since the difference between quantum states is usually measured by their
indistinguishability and with quantum distance measures. The main difference
in this phase is the difference between the classical and quantum verification
procedures. The verification is fairly straightforward for classical primitives since
the equality test can be easily performed whereas for quantum primitives, both
message and forgery are quantum states, and the verification oracle OVU should
call a quantum test algorithm T that checks the equality of quantum states as
in Definition 12. Note that the challenger can prepare copies of correct outputs
locally.

11This argument is a matter of debate in different areas of cryptography. Some researchers
believe imposing any condition within the formal game needs to be done via an efficient and
specified process while others, including the author, believe that the conditions only need to
specify instances with calculatable probability for the purpose of the proofs. A similar case has been
discussed in [CGK+16] (Section VI) regarding the definitions of verifiability in e-voting protocols,
where some very widely-accepted definitions such as the one proposed in [KZZ15a, KZZ15b]
have verifying subroutines that do not necessarily run in polynomial time. However, we note
that imposing such conditions in the definition leads to the fact that extra care is needed when
definitions such as this one are used to prove security. Since some reductions may not carry over
if the conditions are not being executed, the security proofs can be more complicated. As we will
see in what follows, this has been taken into account in our security proofs.



96 3. Unclonability, Unforgeability and Learnability

Formal definition of Generalised Quanutm Unforgeability (qGU)

Game 1. Formal definition of the quantum games GFq,c,µ(λ,A) where
λ is the security parameter, q the number of queries issued to the
evaluation oracle in the learning phase, µ the overlap allowed be-
tween the challenge and previously queries messages, and c the level of
unforgeability.The game GFq,c,µ(λ,A)a

Setup phase:
• param←S(λ)
• The oracles OE and OV and the message space M are instantiated

given param.

Selective challenge phase:
• if c = qSel: A picks m ∈M and sends it to C.

First learning phase:
• A (adaptively) issues queries ρin1 , . . . ,ρ

in
q (where q = poly(λ)) to C.

To each query ρini the challenger C queries OE on ρini , and forwards
the received respective output ρouti to A. The adversary can also have
an internal register σ which may be entangled with the output queries.

Challenge phase:
• if c = qEx: A picks m ∈M and sends it to C.

• if c = qUni: C picks m $←M uniformly at random and sends m to A

Second learning phase: As the first learning phase
Guess phase:

• if c = qEx OR c = qSel: continue if m ̸∈µ ρinb, else aborts.

• A generates the forgery t, and outputs to C the pair:
(m,t)←A({ρini ,ρouti }

q
i=1,σ)

• C queries the verification oracle: b←OV(m,t)
• C outputs b

ac ∈ {qEx,qSel,qUni}; 0< µ≤ 1.
b ̸∈µ ρin denotes at least µ-distinguishability from all the ρini . For the classical mes-

sage m ∈ {0,1}n, the condition should hold for |m⟩, i.e. the quantum encoding of m in
computational basis.

We omit the parameter q when we consider arbitrarily polynomially many
queries to the evaluation oracle issued by A. We can now formally define Ex-
istential, Selective and Universal Unforgeability of primitives as instances of our
game as follows.
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Definition 30 (µ-qGEU). A cryptographic primitive F provides µ-quantum
existential unforgeability if the probability of any QPT adversary A of win-
ning the game GFqEx,µ(λ,A) is at most negligible in the security parameter,

P r [1←GFqEx,µ(λ,A)]⩽ negl(λ). (3.23)

We also define a stronger security notion for existential unforgeability which
considers any overlap µ.

Definition 31 (qGEU). A cryptographic primitive F provides quantum ex-
istential unforgeability if it provides µ-quantum existential unforgeability for
all non-negligible µ.

Definition 32 (µ-qGSU). A cryptographic primitive F provides µ-quantum
selective unforgeability if for any q the advantage of any QPT adversary A
of winning the game GFq,qSel,µ(λ,A) over Pov (q,µ) is at most negligible in
the security parameter,

P r [1←GFq,qSel,µ(λ,A)]⩽ Pov (q,µ)+negl(λ). (3.24)

We call Pov (q,µ) the “overlap probability" describing the probability for
trivial attacks via the overlap allowed by the parameter µ.a

aNote that by definition A can always achieve Pov (q,µ), hence A’s winning probability
is always lower-bounded by this value.

The need for allowing an adversary to win with probability Pov (q,µ) is similar
to the classical definitions where the adversary is required to boost the success
probability from some trivial value such as a random guess. Here, by allowing the
adversary to create an overlap between the learning phase space and challenge,
some unavoidable attacks exist which are independent of the actual primitive at
hand, and as such needs to be extracted to characterise the gap between trivial and
effective adversaries and hence precisely define a proper distance-based definition.

Definition 33 (Pov for classical primitives). For all q and for all µ, for a
classical primitive where the evaluation oracle is a standard oracle OEf , the
overlap probability for q-query games is equal to Pov (q,µ) = 1−µq.

The expression Pov (q,µ) = 1−µq that is chosen in the above definition for
the overlap probability for classical primitives, is the probability of a trivial attack
performed via simply measuring the superposition queries. A straightforward cal-
culation of this measurement probability for q queries with the same degree of
overlap leads to the expression 1−µq.

A similar notion can be defined for quantum primitives. In this case, it is clear



98 3. Unclonability, Unforgeability and Learnability

that the adversary’s success probability in finding the output by measurement
strategy is almost zero and hence defining the Pov as defined by Definition 33
leads to zero overlap probability. However, in this case, as well, there is another
scenario that may lead to trivial attacks, which is due to the error produced by
the quantum test algorithm in distinguishing the states with certain overlap. An
example of this is the SWAP test which has a one-sided error of 12 even for perfectly
distinguishable states. This is a fundamental difference between the quantum
world and classical primitives where equality can be checked deterministically. To
have a general characterisation of Pov for quantum primitives, this probability
needs to be defined with respect to the test algorithm as follows.

Definition 34 (Pov for quantum primitives). Let ρmax be the input learning
phase query with the maximum overlap with the challenge state |ψ⟩, allowed
by the µ-distinguishability condition. Let the OEU be the unitary oracle for
the quantum primitive applying UE to the quantum inputs and let OV imple-
ment a quantum test algorithm T . Then ρoutmax = UEρmaxUE

† is the output
of the query from the oracle and ρout = |ψout⟩⟨ψout |=UE |ψ⟩⟨ψ|UE† is the
correct output of the challenge |ψ⟩. We define the Pov as the error proba-
bility of the test algorithm T on distinguishing ρoutmax and ρout as follows:

Pov = P r [1←T ((ρoutmax)
⊗κ,(ρout)⊗κ)] (3.25)

This definition also implies an intuitive and practical approach to determine
the desired µ < 1 for quantum primitives, as it states that for any specific quan-
tum primitive or the protocols based on that primitive, the µ should not allow
for the above overlap attacks with a probability larger than the required security
threshold. Nevertheless, if one assumes a reasonably good quantum test algo-
rithm, this probability for quantum primitives is usually less than the classical ones
due to quantum state distinguishability and lack of adversary’s knowledge over the
transformation of the output bases.

When selective unforgeability holds for any overlap µ we say that the primitive is
quantum selective unforgeable.

Definition 35 (qGSU). A cryptographic primitive F provides quantum se-
lective unforgeability if it provides µ-quantum selective unforgeability for all
non-negligible µ.

Now we give yet a weaker definition, namely Universal Unforgeability. Note
that the µ-distinguishability condition is not necessary for universal unforgeability,
as the challenge is chosen by the challenger, independently of the adversary’s
queries and the probability is taken over all the choices of the challenge state
hence it is no longer meaningful to count for possible overlaps as trivial attacks.
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Definition 36 (qGUU). A cryptographic primitive F is quantum universally
unforgeable if the probability of any QPT adversary A of winning the game
GFqUni(λ,A) is negligible in the security parameter λ,

P r [1←GFqUni(λ,A)]⩽ negl(λ). (3.26)

3.5.2 Hierarchy and relationship to other definitions

In this section, we formally establish the hierarchy between the different levels
of Generalised Unforgeability captured by our framework. Furthermore, for com-
pleteness, we also investigate how our definitions formally relate to the previously
proposed ones for classical primitives. In particular, we show this relationship be-
tween 1-qGEU and the definitions of BZ and BU introduced in Section 2.5.6.2 in
the preliminaries. In Fig. 3.2, we map out the results presented in this section.

……

……

Figure 3.2: Relationship between different definitions of Generalised Quantum Unforgeability, BU
and BZ. From down to up and left to right the definitions become stronger. ε= ε(λ) is a negligible
function in the security parameter and µmin = non-negl(λ) is the smallest valid degree for µ. It
is unknown whether µ-qGSU with smaller µ, implies µ-qGEU with bigger µ.

First, we establish the relationship between different instances of our game-
based definition. We show that as expected for both existential and selective
unforgeability, the definitions become stronger when decreasing the µ parameter
from 1 and hence µ-qGEU implies 1-qGEU.

Theorem 14. If µ1 ⩽ µ2 then µ1-qGEU (resp. µ1-qGSU) implies µ2-qGEU
(resp. µ2-qGSU)
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Proof. The proof is straightforward for qGEU. Let A win against µ2-qGEU, Let
A′ be the adversary who wants to attack µ1-qGEU. A′ queries the same learning
phase queries as A and then calls A. Since µ1 ⩽ µ2 any two states that are
µ2-distinguishable are also µ1-distinguishable, then the challenge of A will nec-
essarily satisfy the condition for µ1-qGEU. Then A′ can also win the game with
non-negligible probability. For µ-qGSU the distinguishability argument is similar,
although there is also the Pov probability that is a function of µ. Thus we need
to show the following:

P r [1←GFqSel,µ2(λ,A)]−Pov (µ2)⩾ P r [1←G
F
qSel,µ1

(λ,A)]−Pov (µ1)

Which is also equivalent to showing the following statement:

P r [1←GFqSel,µ2(λ,A)]−P r [1←G
F
qSel,µ1

(λ,A)]⩾ Pov (µ2)−Pov (µ1)

The LHS of the inequality is always positive due to the above distinguishability
argument, and the Pov is always a non-increasing function of µ for both types of
primitives (also the negligible factor is omitted from both sides). Take the Pov for
the classical primitives for instance, which is equal to 1−µq. Therefore, the RHS
of the inequality will be equal to µq1−µ

q
2 which is always a non-positive value as

µ1 ⩽ µ2. Then the above inequality holds and the theorem has been proved.

Furthermore, it is easy to observe that for any given µ, µ-qGEU implies
µ-qGSU. This is due to the fact that if the adversary wins the game by com-
mitting to their favourite message before the learning phase, they will necessarily
win when picking the message after the learning phase.

Universal unforgeability is also intuitively weaker than existential unforgeability
similarly to their classical counterpart. The same thing holds despite the winning
condition for these two instances being very different. In universal unforgeability,
the adversary wins only if they win the game on average over all the randomly
picked messages. In our case, we are only interested in QPT adversaries, and
as the universal definition is not parameterised by µ, it is not evident whether
qGUU is weaker than µ-qGSU. The following theorem formally establishes the
implication. We prove the theorem for 1-qGSU which, in turn, implies µ-qGSU
for any µ.

Theorem 15. µ-qGSU implies qGUU.

Proof Sketch. The full proof can be found in the Appendix A.2. Here we present
the key ideas of the proof. We show if there exists an adversary A that wins the
qGUU game then 1-qGEU (1-qGSU) also breaks and the implication to µ-qGEU
(µ-qGSU) is straightforward. First, we show that the distinguishability condition
for µ = 1 can be satisfied. Thus we write the winning probability of A as the
combination of probabilities of winning for the selected message being orthogonal
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to the learning phase or not:

P r
x∈M
[1←A(x)] = P r

x∈M′
[1←A(x)]P r [x ∈M′]+ P r

x ̸∈M′
[1←A(x)]P r [x ̸∈M′]

= non-negl(λ)
(3.27)

where M′ is the set of all the challenges with no overlap with the learning-phase
states. By calculating this probability we show that P r

x∈M′
[1←A(x)] is also non-

negligible. In the second part of the proof we show that as long as the previous
average probability holds, we can always construct an efficient adversary A′ that
uses A to win the selective unforgeability game. We prove this by partitioning the
space of M′ into equal polynomial-size subspaces and show that if the average
probability over M′ is non-negligible, then A′ can always win the 1-qGEU game
by randomly picking one of the subsets to pick the message from, as there will
exist at least one message that allows A to win the game with non-negligible
probability. As a result, A′ wins the game with non-negligible probability.

Now, we show an equivalence between an instance of our existential unforge-
ability definition and BU. Since this result is mainly for the sake of completeness
and will not be directly related to the rest of the thesis, again we give a proof
sketch here, and we give the full proof in the Appendix A.3.

Theorem 16. 1-qGEU is equivalent to BU.

Proof Sketch. We show that 1-qGEU implies BU and vice versa. First, we show
that if a scheme is not BU unforgeable against a QPT adversary then it is not
1-qGEU unforgeable either. Let A be a QPT adversary who forges a scheme
F = (S,E ,V) with message set M = {0,1}n in the BU definition. Following
the definition of BU, if A can win against the BU game, there exists a non-
empty set Bε for which A interacts with the blinded oracle associated with it and
outputs a pair (m∗, t∗) where t∗ = f (m∗) (where f is the classical function of the
evaluation E) such that V = V erk(m∗, t∗) = acc , and also the m∗ ∈ Bε with non-
negligible probability in λ = poly(n). By rewriting a general query state to the
blinding oracle in orthogonal and non-orthogonal sub-spaces to the main forgery
state, we can show that there exists a unitary non-blinding oracle that generates
equivalent queries for this scenario. We then show that this new unitary oracle
can be queried equivalently by an adversary who satisfies all the conditions of
1-qGEUand therefore can also generate a forgery that passes the test algorithm
with also non-negligible probability. Hence we have shown that 1-qGEU implies
BU.

For the other way of implication, we show that a QPT adversary A who
wins the 1-qGEU, has also a non-empty support, supp(A)∩R = ∅, for some
R ̸= ∅, and can output a valid pair (m∗, f (m∗)) with m∗ ∈ R with non-negligible
probability. Intuitively, this is due to the orthogonality condition that is required
to be satisfied in the 1-qGEU game between the learning subspace and the forgery
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state. According to the Theorem 10 in Chapter 2, this implies that the primitives
against such an adversary are not BU-secure. This concludes the proof.

From the above theorem and the equivalence of BU and BZ against classical
adversaries, we derive the following corollary.

Corollary 1. 1-qGEU ≡ BU ≡ BZ against classical adversaries.

3.5.3 Unforgeability against weak vs adaptive adversaries

Another variant of the unforgeability definition appears when we weaken the ad-
versary in choosing the queries in the learning phase freely and adaptively. One
way of imposing such limitations on the adversary is to assume that the adver-
sary has no direct oracle access and instead has only access to a random set of
queries (random input-output samples from the oracle) being selected at random
from a specific distribution by the honest party. This attack model is commonly
called the random message attack model in classical cryptography. Moreover, in
the practical sense, this type of limited adversary represents network adversarial
model, i.e., when the adversary has only access to the communication channel.
Network adversaries can get the input and output samples of a primitive, only
by intercepting the messages that are exchanged between the two honest parties
during a protocol.

The adversary we have considered so far, which we refer to as adaptive ad-
versary, can query the evaluation function of the primitive through oracle access
adaptively, in the sense that not only the queries have been chosen by the ad-
versary, but they can depend on the previously received responses in general. We
also introduce an alternative way of capturing full adaptive quantum adversaries
in the Appendix A.4. On the other hand, a weak non-adaptive adversary, cannot
choose the queries and instead receives q queries (where q = poly(λ)) of E , in
the form of input and output pair. Most commonly, the queries are being picked
at random from a uniform distribution by an honest party, but more generally, one
can consider the case where queries are being selected from a distribution δD over
the message space.

In what follows, we restate a new instance of our Game 1, which captures
weak adversaries as well as adaptive ones. We also note that weak adversaries
are mostly of interest regarding universal unforgeability, thus we only restate the
game for universal unforgeability.



3.5. A unified framework for quantum unforgeability 103

Universal Unforgeability with weak and adaptive adversaries

Game 2. Formal definition of the quantum games GFq (λ,A) where λ is the
security parameter, q the number of queries issued to the evaluation oracle
in the learning phase.

Setup phase:
• same as Game 1

Learning phase:
• If the adversary is adaptive, A=Aad (same as Game 1):

– Aad selects any desired query ci ∈M, and issues to C (up to q
queries).

– C queries OE on ci , and sends the respective output ri back to
Aad .

• If the adversary is weak (non-adaptive), A=Aweak :

– C selects a challenge ci ∈M uniformly at random from M and
independent of i .

– C queries the OE on ci and produces the response ri = E(ci).
– C issues to Aweak the set of random challenges and their respec-

tive responses {(ci , ri)}qi=1.

Challenge phase:
• same as Game 1 for universal challenge phase (qUni)

Guess phase:
• same as Game 1

Note that in the above game all the queries ci and the responses ri have been
abstracted for simplicity, but can capture both quantum and classical queries.
We will widely use this variant on the unforgeability game later in Chapter 6,
Section 6.4.
Let us define universal unforgeability with weak adversaries as follows:

Definition 37 (Universal Unforgeability against weak Adversary). A cryp-
tographic primitive F is quantum universally unforgeable against a ‘weak
(non-adaptive) adversary’ if the success probability of any weak QPT ad-
versary Aweak in winning the game GF(Aweak ,λ) is at most a negligible
function, ε(λ), in the security parameter.

P r [1←GF(Aweak ,λ)]⩽ ε(λ) (3.28)



104 3. Unclonability, Unforgeability and Learnability

3.5.3.1 A note on weak vs strong unforgeability

We also note that there is another way of characterising the strength of the un-
forgeability definition in the literature. We have formally defined our different
instances of unforgeability as a quantum analogue of weak unforgeability. How-
ever, the same definition albeit with a small modification can be applied to cap-
ture strong unforgeability. First, we note that the difference between strong and
weak unforgeability is only relevant to randomised primitives. For non-randomised
primitives, these definitions are equivalent. In the classical world, for strong un-
forgeability, it is sufficient for the adversary to output a new pair to win the game
and hence the adversary is allowed to pick one of the learning phase messages as
the challenge and produce a new output with fresh randomness. In our definition,
it is sufficient to expand the µ-distinguishability condition to the overall input of
the oracle including the randomness, i.e. adversary’s challenge state |r∗⟩⟨r∗|⊗ρm
needs to be µ-distinguishable from all the learning phase states with their ran-
domness registers which can be written as |ri⟩⟨ri | ⊗ ρini . Once again for µ = 1,
this will capture the same definition as is expected.

3.6 Applications of qGU: possibility and impossibil-
ity results

In this section, we study the unforgeability of general classical and quantum primi-
tives under the lens of our generalised unforgeability framework. We start with the
strongest level of unforgeability in our framework, i.e. existential unforgeability,
and we try to give examples for both classical and quantum primitives, all the way
to the weakest unforgeability notion. We will see how this framework allows us
to establish general possibility and impossibility results on different levels. It will
also help us design non-trivial cryptographic primitives that satisfy a high level of
quantum unforgeability against any quantum adversaries.

3.6.1 Generalised existentially unforgeable schemes

In this section, we turn our attention to 1-qGEU. First, we show a general and
intuitive, yet important no-go result for µ-qGEU that is, no classical primitive
(deterministic or randomized) can satisfy this level of unforgeability for any µ ̸= 1.
This result states that 1-qGEU, (which is also equivalent to BU according to
Theorem 16), is the strongest notion of existential unforgeability that any classical
primitive can possibly achieve.
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Theorem 17 (No classical primitive F is µ-qGEU secure). For any classical
primitive F and for any µ such that µ ⩽ 1− 1D , where D is the dimension
of the Hilbert space on which the evaluation oracle operates, there exists a
QPT adversary A such that

P r [1←GFqEx,µ(λ,A)] = non-negl(λ). (3.29)

Proof. There exists a simple superposition attack that breaks µ-qGEU. LetA issue
only one query which is the uniform superposition of all the inputs, which leads
to an output of the form 1√

2n
∑m |r⟩O |m,f (m; r)⟩, where we have taken D = 2n.

Then by measuring the first part of the register in the computational basis, the
state will collapse to one of the basis and the adversary is able to produce a valid
message-tag pair for a classical message with a negligible overlap with the learning
phase. Hence A can always win the game for any µ⩽ 1− 1

2n .

Nevertheless, it is still possible to have schemes that are 1-qGEU secure
through the following positive result:

Theorem 18. qPRF s are 1-qGEU (1-qGSU) unforgeable.

Proof. This is a straightforward result via equivalence of 1-qGEU to BU and a
corollary from [AMRS20], where it is shown that qPRF s are BU secure.

Although the general no-go result for classical primitives does not directly apply
to quantum primitives, in Chapter 4, we show that most quantum primitives that
we are interested in do not satisfy this definition either. However, it will not be
surprising given the general no-go result we provide for selective unforgeability.

Another interesting positive result that we can demonstrate, is the peer of The-
orem 18 for quantum primitives. We show that pseudorandom unitaries (PRU),
which are the quantum counterpart of pseudorandom functions in the quantum
world, can also satisfy 1-qGEU (and 1-qGSU).

Theorem 19. PRU quantum primitives are 1-qGSU (1-qGEU) secure.

Proof. We prove this by contradiction. Let A be an adversary who wins the
1-qGSU game with non-negligible probability (Note that here Pov = 0). A selects
a message m before (or after) the learning phase and then outputs the respective
t such that it passes the verification test with non-negligible probability. Also by
definition of 1-qGSU, m ̸∈µ ρin for µ= 1 and hence the message ρm is completely
orthogonal to all ρini . Now we construct an adversary A′ who is playing the PRU
game. Let A′ first query all the learning phase states of A and then also issue
one more query which is ρm. Then A′ calls A and receives the input-output pair
of (m,t) such that ρt is non-negligible close to the actual output, i.e.

F (ρt ,UEρmUE
†) = non-negl(λ) (3.30)



106 3. Unclonability, Unforgeability and Learnability

NowA′ can use this last query as a distinguisher between PRU and a unitary picked
from the Haar measure sinceA′ can estimate the output with non-negligible fidelity
if the Uk had been picked from the family. Let A′ runs a quantum equality test
as described in Definition 12 on the Uk |ψ⟩ obtained in the learning phase and
ρt . Also note that if U is picked from the Haar measure family, the probability
of producing the output is negligible by definition. Thus whenever the test shows
equality, A′ can conclude that the unitary has been picked from PRU. Thus for
A′, we have:

P r
U←Uk

[A′U(1λ) = 1]− P r
Uµ←µ

[A′Uµ(1λ) = 1] = non-negl(λ) (3.31)

Which is a contradiction and the proof is complete.

3.6.2 Generalised selectively unforgeable schemes

In this section, we establish results for µ-qGSU which restricts the adversary in
two ways. First, by requiring the adversary to commit to the challenge before the
learning phase, we prevent the adversary from picking any post-measurement state
as their forgery challenge. Second, by subtracting the probability of any potential
trivial attack, especially for classical primitives, from the winning probability of
the game, we make the probability bounds tighter for the adversary. We also
discuss why defining unforgeability in such a way leads to non-trivial results and
establishes a separation between randomised and non-randomised constructions,
therefore motivating the usefulness of the given definition.

3.6.2.1 Non-randomised schemes

Let us start with non-randomised schemes. To establish our result, we now take
advantage of our proposed cryptanalysis toolkit, namely the quantum emulation
attack (QEA), which we introduced earlier on in Section 3.4. Here we only show
this no-go result for classical non-randomised primitives to avoid repetitions, but
the same result holds for quantum constructions.

Theorem 20 (No classical (or quantum) non-randomised primitive F is
µ-qGSU secure). For any classical/quantum deterministic primitive F and
for any µ, in the range 14+non-negl(λ)⩽µ⩽ 1−non-negl(λ), there exists
an effective QPT adversary A such that

P r [1←GFq(λ),qSel,µ(λ,A)]−Pov (q(λ),µ) = non-negl(λ). (3.32)

Proof. We show the proof for classical primitives but the same attack and results
also holds for quantum primitives. We show that there exists a QPT adversary
A who can win the game with non-negligible probability for any µ except when
it is negligibly close to 0 or 1. The attack is the one-block emulation attack
from Section 3.4.2.1 with the following setting. First A picks any two messages
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m,m′ ∈M and sets m as the challenge. Then A queries the states |φ1⟩= |m′,0⟩
and |φr ⟩ =

√
1−γ2 |m′,0⟩+ γ |m,0⟩ by interacting with OEf , where γ is a real

value such that 0 ⩽ γ ⩽
√
1−µ and such that the distinguishability condition

of the µ-qGSU game is satisfied. After the learning phase, A’s output state
can be written as σout = |φout1 ⟩ ⊗ |φoutr ⟩ where |φout1 ⟩ = UE |φ1⟩ and |φoutr ⟩ =
UE |φr ⟩. Followed by the fidelity analysis given in Section 3.4.2.1, we show that
the success probability of A in producing the output of m i.e. f (m) is bounded
by γ2(1+4(1−γ2)2). This is because we have: ⟨φ1|ψ⟩ = 0 and | ⟨ψ|φr ⟩|2 = γ2
and | ⟨φ1|φr ⟩|2 = 1−γ2, which gives us the following bound on the fidelity:

F (|ω⟩⟨ω| ,UE† |ψ⟩⟨ψ|UE)⩾ γ2(1+4(1−γ2)2) (3.33)

In general, γ2 which is the overlap between the challenge state and the learning
phase state can be as large as 1−µ allowed by the definition, thus we set the
maximum allowed value of overlap which is γ = γmax =

√
1−µ. Now we need

to also determine Pov and to show whether the adversary can boost the success
probability by a non-negligible value. Here one of the queries is orthogonal to
the challenge and there is only one query (|φr ⟩) with overlap, thus according to
Theorem 33 we have Pov (2,µ) = 1−µ2. As a result

P r [1←GFqSel,µ(λ,A)]−Pov (2,µ) = (1−µ)[1+4(1− (1−µ))2]− (1−µ2)
= µ(1−µ)(4µ−1)

(3.34)

Since 14+non-negl(λ)⩽µ⩽ 1−non-negl(λ), then all the terms are non-negligible
in the security parameter and this concludes the proof.

The above theorem has a direct consequence which we represent as the fol-
lowing corollary:

Corollary 2. No deterministic classical or quantum primitive F is qGSU
(Definition 35) secure.

Let us now discuss the intuitive meaning of it. First, we note that despite the
above no-go theorem, qPRFs still provide 1-qGSU security (Theorem 18). How-
ever, this no-go result shows a fundamental vulnerability of any non-randomised
classical primitive against forgeries, since the only way to ensure the security
of primitives against such effective attacks is to guarantee that the adversary’s
forgery message is orthogonal to their learning subspace. Practically this guaran-
tee can only be given by relying on the device implementation, which is arguably
in contradiction with the whole motivation of obtaining security against more
powerful quantum adversaries, to begin with [BZ13a]. Let us consider a non-
randomised MAC scheme such as HMAC and NMAC. According to Theorem 20,
these schemes do not satisfy existential nor selective unforgeability except for
µ= 1 and hence are always vulnerable against more powerful quantum adversaries
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implementing superposition attacks. Nevertheless, one might argue that such def-
initions might be too strong, and the proposed attack might not demonstrate an
intuitive forgery. To better demonstrate this potential vulnerability, let us show
a slightly different example from what is used in the proof of the above theorem
to argue there are instances of the game and attacks that can demonstrate an
intuitive forgery situation.

Example 1. Let A’s state after the learning phase be σin = |φin1 ⟩⊗ |φinr ⟩
⊗2

and
σout = |φout1 ⟩⊗ |φoutr ⟩

⊗2 where the query states have been chosen as follows:

|φ1⟩= |m1,0⟩ |φr ⟩= δ |m1,0⟩+γ |m2,0⟩+γ |m3,0⟩ (3.35)

Where due to normalisation |δ|2+2|γ|2 = 1, although we pick the δ =
√
1−2γ2

and γ to be real values for simplicity, thus γ2 ⩽ 12 . Also note that A has two
identical copies of |φoutr ⟩. The attack consists of running two separate emulations
for |m2,0⟩ and |m3,0⟩.

Let |φr ⟩ be the reference state for the emulation, and the target state to be
|ψ⟩= |m2,0⟩ or |ψ⟩ = |m3,0⟩. Note that as |φ1⟩ = |m1,0⟩ is orthogonal to both
states and the reference state is symmetric with respect to them, the emulation’s
fidelity will be the same for both these states. Relying on Theorem 13, the output
state of the QE algorithm with only one block will be:

|χf ⟩=⟨φr |ψ⟩ |φr ⟩ |0⟩+ |ψ⟩ |1⟩−⟨φr |ψ⟩ |φr ⟩ |1⟩−2⟨φ1|ψ⟩ |φ1⟩ |1⟩
+2⟨φr |ψ⟩⟨φr |φ1⟩ |φ1⟩ |1⟩ .

(3.36)

Note that | ⟨φ1|ψ⟩| = 0 and | ⟨ψ|φr ⟩|2 = γ2 and | ⟨φ1|φr ⟩|2 = 1−2γ2. Then ac-
cording to Theorem 11, the fidelity of the emulation for both states is:

F (|ω⟩⟨ω| ,UE |ψ⟩⟨ψ|UE†)⩾ γ2(1+4(1−2γ2)2) (3.37)

Now we need to compare this probability with the Pov probability which is
Pov (3,µ) = 1−µ3 since the size of the learning phase includes 3 queries. We
write the effective success probability of the adversary as:

P rf orge [A(m2)] = P rf orge [A(m3)] = P r [1←GF3,qSel,µ(λ,A)]−Pov (3,µ)
= γ4(1+4(1−2γ2)2)2− (1−µ3)

(3.38)

Finally, we do a functional analysis of the above probability to see in which
cases it becomes non-negligible. First, we note that the success probability of
the emulation attack is not greater than the trivial success probability for all the
values of µ which shows that if we allow for too much overlap, the trivial attack
already has a very high probability which is higher than the emulation’s fidelity in
this case. Next, since the highest allowed overlap is achieved when 1−µ= γ2, we
substitute the variable µ with 1−γ2 to find the degrees of µ for which an effective
adversary exists. Hence we rewrite the winning probability of the Eq. (3.38) as
follows:

P rf orge [A(m2∨m3)] = γ2(1+4(1−2γ2)2)− (1− (1−γ2)3))
= γ2(2−5γ2+3γ4)

(3.39)
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Figure 3.3: The winning probability of A to forge
classical messages {m2,m3} with the emulation
attack. γ represents the overlap between the
learning phase query and the target message.

Noting that the valid range for γ is 0⩽ γ ⩽
√
2
2 , we plot the above function as it

is shown in Fig. 3.3 and we can see that there is exist a valid range for µ such
that the above forgery attack happens with non-negligible probability.

But more importantly, now having access to two copies of the reference state,
the adversary can actually run the emulation attack twice, and produce the out-
puts of both m2 and m3 at the same time, with non-negligible probability. Thus
for these values of µ, we have presented an adversary who can produce effective
forgery for three classical messages m1, m2 and m3 (Note that the first learn-
ing phase query is |m1,0⟩ which is basically a classical query and as a result, A
will always have the output for m1) from a classical query, and two copies of
the same quantum state which shows an intuitive forgery, especially that the pre-
sented attack is independent of the size of the messages and the dimensionality
of the Hilbert space of the oracle. This sort of attack cannot be captured in
the definitions of unforgeability that count the queries, such as BZ. Nevertheless,
our approach to defining the notion of unforgeability is capable of showing such
vulnerabilities against strong quantum adversaries.

3.6.2.2 Randomised schemes:

We have seen so far that by letting quantum adversaries exploit the power of
superposition queries, they can mount effective attacks to break selective un-
forgeability in almost all the cases (most valid ranges of µ). A relevant question
here would be whether there exists any scheme that can satisfy this quite strong
level of unforgeability. Since it is an impossibility for non-randomised primitives,
the only possible road ahead would be to employ randomisation of the primitive. In
this section, we explore how to defend against general superposition adversaries.
We show that this task is possible via randomisation. Concretely, we present ran-
domised constructions for both classical and quantum cases, which satisfy qGSU,
i.e. µ-qGSU for any µ. The key ingredient that allows this construction to be
secure is that the randomisation has been used in an effective way such that the
adversary is prevented from creating a known subspace for a specific unitary, even
though they can query the challenge message in superposition. First, we start
with classical primitives.

Let us first define the desired characteristic for the family of the classical
functions used in our construction.
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Definition 38 (Inter-function independent family:). Let Fk :K×X →Y be
a keyed family of functions with domain X and range Y, where X = {0,1}n
and Y = {0,1}m. We say Fk is an inter-function (pairwise) independent
family if for any efficient PPT adversary A and any two functions F (k, .)
and F (k ′, .) picked uniformly at random from Fk , the probability of A finding
an x ∈X such that F (k,x)=F (k ′,x), is negligible in the security parameter,
i.e. the following condition should hold:

P r
k,k ′←K

[x ←A(1λ)∧F (k,x) = F (k ′,x)] = negl(λ) (3.40)

The next step, is to show that a PRF family satisfies the above condition.

Lemma 2. A PRF is an inter-function independent family.

Proof. We want to show that any two randomly selected functions from a PRF
family, satisfy the required pairwise-independency property of Definition 38. Let
Fk :K×X →Y be a PRF family of functions where |X |= 2n and |Y|= 2m. We
want to show that there is no efficient adversary that can find an x such that
F (k,x) = F (k ′,x) for any two different, randomly picked keys k,k ′. We prove by
contradiction. We assume that Fk is a PRF but there exist an efficient adversary
A that can find at least one x ∈X such that for any two randomly picked functions
from Fk we have:

P r
k,k ′←K

[x ←A(1λ)∧F (k,x) = F (k ′,x)] = non-negl(λ). (3.41)

Now we construct a new family of functions from Fk which is a PRF. Let
F ′k,k ′ :K

2×X →Y be constructed as follows:

F ′((k,k ′),x) = F (k,x)⊕F (k ′,x) (3.42)

It is a well-known example in the literature that if Fk is a PRF, then F ′k,k ′ is also a
PRF. Now we show that if the Eq. (3.41) holds, then there also exist an adversary
who can distinguish F ′((k,k ′),x) form truly random function. Let A′ query the
same x ′ that has been found by A. If A′ queries F ′((k,k ′),x), since F (k,x ′) =
F (k ′,x ′) with non-negligible probability, then the queries to F ′((k,k ′),x) on x ′

should return 0m. On the other hand the queries to the truly random function
will return random bit-strings. As a results, A′ can distinguish F ′((k,k ′),x) from
a truly random function which is a contradiction and hence we have proved that
PRF satisfies the Definition 38.

We can now give our construction based on PRFs or more generally, based on
any family of classical functions satisfying the Definition 38.
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Construction 1. Let F :K×X →Y be a PRF (or any other family satisfying
Definition 38). Let R=K= {0,1}l be the randomness space. And let λ be
the security parameter and l be polynomial in λ. The construction is defined
by the following key generation algorithm, keyed evaluation algorithm, and
keyed verification algorithm:

• Key generation: The secret key is picked uniformly at random from

K: k $←−K

• Evaluation: The evaluation under key k on input m picks random-
ness r and applies F (k ⊕ r, ·) to m. Note that when responding to a
quantum query, the same randomness is used for all the states of the
superposition.

– On input m ∈ X :

– r
$←−R

– Return F (k⊕ r,m)||r

• Verification: The verification under key k of a pair (m,(t, r)), runs
the evaluation algorithm on m under k with randomness r , and checks
equality with t.

– On input (m,(t, r)) ∈ X × (Y ×R):
– If F (k⊕ r,m) = t return ⊤, otherwise return ⊥

We show that this construction satisfies µ-qGSU security.

Theorem 21. Construction 1 is qGSU secure.

Proof. We prove by contraposition. Let us assume there exists a QPT adversaryA
who plays the µ-qGSU game where the evaluation is according to Construction 1
and wins with non-negligible probability in the security parameter i.e. A wins the
game by producing a valid tag t∗ for their selected message m∗ and randomness
r∗ with the following probability:

P r [1←GFq,qSel,µ(λ,A)]−Pov (qr ,µ) = non-negl(λ) (3.43)

Where the verification algorithm checks if F (k ⊕ r∗,m∗) = t∗. We introduce the
following games:

• Game 0. This game is the µ-qGSU for Construction 1, where F (k⊕ r, .) is
picked from F .

• Game 1. This game is similar to Game 0, except that A needs to produce
forgery for a r∗ which is one of the previously received random values of
{ri}qi=1 in the learning phase.
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First, it is straightforward that the probability of the adversary winning µ-qGSU
in Game 0, is at most negligibly higher than winning Game 1. Since ri in both cases
have been picked independently and uniformly at random and the probability of
producing a forgery for a specific function with no query is negligible. Thus Game
0 and Game 1 are indistinguishable.

Now we recall the quantum oracle for this randomised construction. Let ROEc
be the random oracle for both games:

ROEc : ∑
m,y

αm,y |r⟩O |m,y⟩ → ∑
m,y

αm,y |r⟩O |m,y ⊕ (F (k⊕ r,m)||r)⟩ (3.44)

Note that in each query a new function has been picked from F , but it is the
same for all the messages in the superposition for that query.

Now we use the inter-function (pairwise) independent property of the family
F . The construction requires the F to be a PRF family which is inter-function
independent according to Definition 38, for two randomly selected keys. Now we
need to also show that F (k⊕ r, .) is a PRF as well, with a key k and any randomly
selected randomness r , and as a result, we can use the inter-function independent
property. This is clearly the case as the key k and any randomness r have been
picked independently at random and if there exists a non-negligible advantage
for the adversary to distinguish a F (k ⊕ r, .) from a truly random function for a
value of r , there also exists an equivalent non-negligible advantage to distinguish
a F (k ′, .) where k ′ = k⊕ r is a key selected uniformly at random. This is still the
case even if the value r becomes public after the experiment. This is in contrast
with the assumption that the family is PRF, hence we conclude that F (k ⊕ r, .)
is a PRF. Now we can rely on the Lemma 2 that F (k ⊕ r, .) also satisfies the
inter-function independent property and the following holds for each of the two
functions drawn in any of the two queries:

P r
i ,j(i ̸=j)

[x ←A(1λ)∧F (k⊕ ri ,x) = F (k⊕ rj ,x)] = negl(λ) (3.45)

As a result, we show that the adversary can at most span a one-dimensional
subspace of each Uk⊕r . To show this we will calculate the probability of A in
spanning at least a 2-dimensional common subspace from two different queries.
This means that A needs to find at least two bases mapping to the same 2-
dimensional subspace in the output Hilbert space. Moreover, we exclude that part
of A’s register that contains the classical value of the randomness to only capture
the Hilbert space of each Uk⊕r . Thus let the input bases be denoted by |b⟩= |m,z⟩
where z is a subset of y excluding the space for the randomness, for a specific
m. Let |ei⟩=Uk⊕ri |b⟩= |z ⊕F (k⊕ ri ,m)⟩ and |ej⟩=Uk⊕ri |b⟩= |z ⊕F (k⊕ rj ,m)⟩
be the output states from two different queries. For these output bases to have
some overlap, the two functions F (k⊕ri , .) and F (k⊕rj , .) need to return the same
classical output with high probability. Although from Eq. (3.45), we have that
the probability of finding such inputs that leads to a common basis is negligible:
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P r
i ,j(i ̸=j)

[{|ei⟩ , |ej⟩} ←A(1λ)∧⟨ei |ej⟩ ̸= 0]

= P r
i ,j(i ̸=j)

[|b⟩ ←A(1λ)∧⟨b|U†k⊕riUk⊕rj |b⟩ ̸= 0]

= P r
i ,j(i ̸=j)

[|b⟩ ←A(1λ)∧⟨z ⊕F (k⊕ ri ,m)|z ⊕F (k⊕ rj ,m)⟩ ̸= 0]

= P r
i ,j(i ̸=j)

[m←A(1λ)∧F (k⊕ ri ,m) = F (k⊕ rj ,m)] = negl(λ)

(3.46)

This means that finding an even 2-dimensional common subspace between the
different unitaries of the set is computationally hard for A. Also since unitaries
are distance preserving operators, this property holds for any sets of orthonor-
mal basis, not necessarily the computational basis. As a result, by selecting a
uniformly random function for each query, we have shown that no more than a
one-dimensional subspace can be spanned for each specific unitary.

Now we calculate the upper-bound of A’s probability from a single query to a
fixed unitary Uk⊕r∗ which we denote by U∗ for simplicity. We recall that this query
should be µ-distinguishable with the quantum encoding of m∗. Without loss of
generality, let us write A’s selected query for r∗ as follows:

|φr∗⟩= α |m∗,z ,0⟩+β |Ω⟩ |0⟩ ,
|φoutr∗ ⟩= (α |m∗,z ⊕F (k⊕ r∗,m∗)⟩+βU∗ |Ω⟩) |r∗⟩

(3.47)

where |Ω⟩ is a normalised state that includes a superposition of a set of messages
m ̸= m∗ and as a result, ⟨m∗,z |Ω⟩ = 0 and A sets the second part of the reg-
ister to 0, such that the output randomness is a separable state and it can be
excluded in the rest of the proof. Due to the fact that U∗ is unitary, we know
that ⟨m∗,z ⊕F (k⊕ r∗,m∗)|U∗ |Ω⟩ = 0 and hence the probability of outputting
F (k ⊕ r∗,m∗)||r∗ from |φoutr∗ ⟩ is at most the probability of measuring it in the
computation basis which is |α|2. This probability is maximum when |α|= |αmax |
which is when A uses the maximum allowed overlap of size

√
1−µ. Hence we

have:
P r [1←GFqr ,qSel,µ(λ,A)]⩽ 1−µ (3.48)

But on the other hand we have Pov (1,µ) = 1−µ, which is the lower bound for
Pov (q,µ), and also since there is only one query to each function selected by each
r , and Eq. (3.43) states that this probability is negligibly higher than 1−µ. Thus
we have reached a contradiction that concludes our proof.

We point out that for this construction to be secure, we did not need to use
quantum secure PRFs (qPRF) as an assumption, and the PRF assumption plus the
randomisation would bring the quantum security as a byproduct. This is in contrast
with most quantum-secure unforgeable schemes in the quantum world [BZ13a,
Zha15, AMRS20]. Nevertheless, qPRFs can also be used in Construction 1.

Now, we shall study the same problem for quantum primitives. Similar to the
classical constructions, for quantum primitives too, we can use randomisation to
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effectively secure them. The main idea is to select a new unitary transformation
for each query using a classical randomness register. In this case, we need to
clarify how such randomised quantum oracles can be implemented in a way that
the overall transformation remains a specific unitary.

By recalling the abstract representation of the randomised quantum oracle
that we gave in Section 3.3.3, the input state |ψb⟩ = ∑i αi |bi⟩ (where {|bi⟩} is
a set of orthonormal bases) is mapped to a state U(r) |ψb⟩ = ∑i βi(r) |bi⟩ where
U(r) depends on the randomness and is different for each query i.e. the oracle
uses its internal register |r⟩O to activate different U(r) unitaries. However, for
many constructions this randomness value r or a function of it like g(r), will be
necessary for verification and hence need to also be outputted. On the other
hand, the register |r⟩O is the internal register of the oracle re-initiated for each
query and some problems may arise if the adversary gets access to this register
(see 3.3.3), thus in order to be able to output this value we expand the query
space and we allow the input queries to be |0⟩⊗|ψb⟩. We formulate the oracle as
follows:

ROEU : |r⟩O⊗|0⟩⊗ |ψb⟩ → [I ⊗I ⊗U(r)] |r⟩O |r⟩ |ψb⟩ (3.49)

Note that for the purpose of our construction, in what follows, we assume that
the ancillary state is initiated as a separable state |0⟩ for simplicity, although if the
adversary’s ancillary register has not been initiated to zero, the randomness can be
XORed to that value. The above oracle can be realised in several different ways
but for a better demonstration, we give an explicit example in the circuit model,
shown in Fig. 3.4. The input to the unitary evaluation of the oracle consists of two
parts; one part includes the query and the second part is the internal randomness
register which is initiated to a new value or equivalently to a new basis, for each
query. This part in general acts as control qubits for the gates in the other part of
the register that leads to applying a new overall unitary on the main query state.
We note that the randomness register itself will remain untouched throughout
the evaluation and finally its value is recorded in the |0⟩ part of the input query.
Here, |r⟩O is always on the computational basis. We also emphasize that for our
construction we do not use, nor need to use, any explicit construction for the
randomised oracle and we only rely on the specified assumption.

As follows from the above discussion, in quantum primitives with such ran-
domised oracles, the security lies in the assumptions we consider on the family
of U(r)s generated for each r . For instance, it is intuitive that a primitive where
U(r) are Haar random unitaries can be secure since the overall adversary’s state
after issuing polynomial queries to the oracle is almost indistinguishable from a
totally mixed state. However, this assumption might be too strong. Hence we
give a construction based on PRUs which is also the quantum analogue of PRFs
that we used in our previous classical construction.
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Construction 2. Let F = (S,E ,V) be a quantum primitive with the evalu-
ation unitary UE :HR⊗HD→HR⊗HD where D is the overall dimension
of the query and HR is a 2l dimensional Hilbert space for the randomness.
And let λ be the security parameter and l and log(D) be polynomial in λ.
Also, let UPRU = {Ur}Lr=0 be a PRU family with a cardinality L to be at
least 2l . The construction is defined as follows:

• Setup: The required parameters param is generated to instantiate
the oracles.

• Evaluation: The evaluation picks randomness r $←−R uniformly, ini-
tialises the randomness register to |r⟩O and applies the following uni-
tary, on each input query |ψb⟩ = ∑i αi |bi⟩ where each U(r) = Ur ∈
UPRU

ROEU : |r⟩O |0⟩ |ψb⟩
UE→ [I ⊗I ⊗U(r)] |r⟩O |r⟩ |ψb⟩ (3.50)

• Verification: The verification oracle calls a quantum test algorithm
T as defined in Definition 12 on U(r) |ψb⟩⟨ψb|U(r)† and the tag state
ρt :

– If F (ρt ,U(r) |ψb⟩⟨ψb|U(r)†) = 1−negl(λ) return ⊤ with a prob-
ability 1−negl(λ)

– and P r [1←T [(UEρδUE†)⊗κ1,(UEρmUE†)⊗κ2]] = negl(λ) for any
state ρδ with δ2-indistinguishable from ρm.

Now let us prove the selective unforgeability of the above construction.

Theorem 22. Construction 2 is µ-qGSU secure for any µ⩾ 1− δ2.

Proof. We prove by contraposition. Let A be a QPT adversary who plays the
µ-qGSU game where the evaluation oracle is as shown in the Eq. (3.50), and
wins with non-negligible probability in the security parameter i.e. A, wins the
game by producing a valid tag ρt for their selected message ρm and randomness
r∗ with the following probability, after interacting with the oracle in the learning
phase:

P r [1←GFqSel,µ(λ,A)]−Pov = non-negl(λ) (3.51)

Where the Pov = P r [1←T (ρoutmax)
⊗κ1,(UEρmUE

†)⊗κ2] according to Definition 34,
and ρoutmax is query with maximum allowed overlap from µ-distinguishability condi-
tion. Since the construction implies that Pov = negl(λ), this means:

P r [1←GFqSel,µ(λ,A)] = non-negl(λ) (3.52)

Consequently, A can produce an output ρt with non-negligible fidelity with the
actual output U(r∗)ρmU(r∗)†, for a Ur∗ ∈ UPRU . Now we consider two cases.
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Figure 3.4: A sample circuit for randomised quantum oracle for quantum primitives. On each
input query |0⟩ |ψm⟩, a new randomness is initialised and the random unitary U(r) acts on |ψm⟩.
The random unitary U(r) consists of single and 2-qubit unitary gates selected at random in the
setup phase, from a gate set required to construct any unitary U(r) in the family U specified
by the construction. These single and two-qubit gates are controlled by the randomness values
|r⟩ = |r1, r2, r3⟩. In the last step, the classical value of randomness is recorded in the ancillary
qubits of the query to be returned for verification.

Either r∗ is one of the randomnesses that A has received during the learning
phase, which means A can closely approximate the output of a random unitary
U(r∗) from a single query, or r∗ is a new randomness value, for a new random
unitary U(r∗) where A has no query on it. We will show that each case leads to
a contradiction.

First, we show that A’s output state after the learning phase, i.e. σout cannot
include more than a one-dimensional subspace of each of the U(r) unitaries. To
cover a subspace with a dimension of at least two, A needs to find a common
output basis from two different queries. On the other hand, we note that as
shown in [JLS18], any PRUs are generators of PRS that are a family of quan-
tum states computationally indistinguishable from Haar measure. Hence the joint
output states σout is also indistinguishable from Haar random states for A who is
a QPT adversary. Now if A can find a common output subspace, it means that
there are at least two states, corresponding to the bases of the 2-dimensional sub-
space, that are indistinguishable (or 0-distinguishable according to Definition 10),
and hence A can use those queries to distinguish the distribution of states σout
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and a Haar random distribution which contradicts the fact that the oracle will
generate a PRS set of states after q queries. Now we show that each case will
lead to a contradiction. We start with the second case where if A produces an
indistinguishable (concerning T ) output for a random unitary with no query, then
A can perform the learning phase locally without any interaction with the oracle
and hence produce the output of any unitary picked from a family indistinguishable
to Haar measure, which is a clear contradiction. For the first case, relying on the
previous argument, we rewrite the learning phase states of the A after q queries,
as follows:

σin = |φr∗⟩⟨φr∗|⊗σq−1in , σout = Ur∗ |φr∗⟩⟨φr∗|U†r∗⊗σ
q−1
out (3.53)

where |φr∗⟩ is the query associated to Ur∗ for which A produces a forgery and σq−1in

and σq−1out are the input and output states of the remaining q−1 query respectively.
We note that σq−1out consists of q− 1 quantum states with a distribution δ over
a D′-dimensional Hilbert space s.t. δ is Haar-indistinguishable. Furthermore, the
ancillary register where the r is encoded consists of q independent random values.
Now let us construct an adversary A′ who is a PRU distinguisher. Let A′ interact
with a unitary U either selected from UPRU or from Haar measure, and query
a state |φr∗⟩ as described above, and returns U |φr∗⟩ together with an ancillary
register |r⟩ where r picked uniformly at random. Then A′ also locally creates
q−1 Haar-random states and returns to A as the σq−1out . Then A′ also queries ρm
from the oracle. Now A′ uses the same test algorithm T to check the output of
A i.e. ρt with the the oracle’s output for the last query which is UρmU†. From
Eq. (3.52), we know that this probability is non-negligible, while as for a Haar
random unitary the probability is negligible, thus can conclude that

| P r
r←R
[A′Ur (1λ) = 1]− P r

U←Haar
[A′U(1λ) = 1]|= non-negl(λ). (3.54)

which is a contradiction and the theorem has been proved.

We conclude that even though generalised quantum selective unforgeability
is too strong to be attained by deterministic schemes, one can come up with
randomised constructions that satisfy even this strong level of unforgeability in
the quantum world.

3.6.3 Generalised universally unforgeable schemes

We now draw our attention to the weakest notion of unforgeability in the hierarchy
of our definitions and provide results for the universal unforgeability of different
schemes. We recall that here the adversary receives a challenge picked by the
challenger uniformly at random from the full message space. We need to em-
phasise that universal unforgeability is the most useful notion of unforgeability for
our purpose, despite being the weakest. From now on and throughout the thesis
we will mainly use this definition and explore its close relation to unclonability in
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the same context as we have discussed in this chapter. We will also study the
universal unforgeability of different primitives and protocols in future chapters.

But for now, for the sake of completeness and to complete the investigation
of unforgeable schemes in our framework, we give two straightforward results for
classical and quantum primitives.

Corollary 3. qPRFs are qGUU secure.

Proof. This is a direct implication of Theorem 18 where we have proved that
qPRFs are 1-qGSU secure and Theorem 15 showing that 1-qGSU implies qGUU.

We can also show that quantum PRU primitives are generally qGUU secure.

Corollary 4. Deterministic quantum primitives based on PRU are qGUU
secure.

Proof. From Theorem 18 we know that PRU primitives are 1-qGSU secure. Also
from Theorem 15, we have shown that qGUU is weaker than 1-qGSU. Thus any
PRU primitive is qGUU secure.

In Game 1, we have also introduced a second learning phase, after the chal-
lenge phase to capture universal unforgeability against stronger adaptive attack
models. Here we also give a general no-go result for qGUU security of quantum
primitives against such adversaries. This attack model is stronger than the usual
chosen-message attack considered for universal unforgeability and is particularly
interesting for quantum primitives. This is because for a quantum primitive, the
adversary receives an unknown quantum state from the challenger and enabling
the second learning phase does not lead to a trivial attack. We call this attack
model, an adaptive-universal attack (aua). Nevertheless, we can show that a
quantum adversary who can use entanglement can break the qGUU security of
any deterministic primitive if the second learning phase is allowed. We show this
specific instance of the game as GFqUni−aua,µ(λ,A) and we note that again this
instance should be parameterised with µ since a trivial attack can be mount if A
tries to query the challenge phase again in the second learning phase. We present
the result in the following theorem. However, we leave the proof for Appendix A.5.

Theorem 23 (No quantum non-randomised primitive F is aua-qGUU se-
cure). For any deterministic quantum primitive F and for any µ such that
0⩽ µ⩽ 1−non-negl(λ)), there exists a QPT adversary A such that

P r [1←GFqUni−aua,µ(λ,A)] = non-negl(λ). (3.55)
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3.6.3.1 Relationship between universal unforgeability and learnability

Finally, we show a connection between universal unforgeability and the notion
of function learnability, which we discussed in sections 2.6.3 and 3.3.1. More
precisely, we show that universal unforgeability implies unlearnability in the PAC-
learning setting. To do so, first, we need to clarify some technical remarks con-
cerning the universal unforgeability to be able to link it with PAC-learnability.

First, we note that in Game 1 the learning phase is characterised by interaction
with a general oracle OE , which is included in the primitive F . Here, to establish
our result we assume that the oracle for the primitives of interest is a quantum
example oracle (QPEX) as defined in Eq. (2.119). However, unlike Definition 27,
in order to capture the chosen-message attack model that we consider in Game 1,
we assume that the adversary gets to choose the distribution D (but not the
selected function f from the concept class C). We argue that since the QPEX
returns a quantum state of the superposition of all the inputs m with uniform
weight over the distribution D, for this type of oracles, choosing the distribution
will be the equivalent of choosing the input quantum state (or its efficient classical
description) of the oracle and receiving the respective quantum output. Therefore,
we do not need to make a significant change in the learning phase of our game
in order to capture this scenario. Also, in the qUni challenge phase, the message
is not chosen uniformly, but from the distribution D. We refer to this variant of
universal unforgeability as universal unforgeability under distribution D. Now, we
can establish the following theorem:

Theorem 24. Any family of universally unforgeable functions C, over dis-
tribution D, is not PAC-learnable over D.

Proof. Let f ∈ C be the evaluation function of a primitive F that is universally
unforgeable under distribution D, then by the definition of universal unforgeability,
for any QPT adversary A who can make up to polynomial copy to the oracle, we
have:

P r
m∈D
[1←GFqUni(λ,A)]⩽ negl(λ). (3.56)

Let the verification algorithm check the equality of adversary’s forgery, i.e. t =
h(m) with precision ε, that is the verification algorithm will pass the forgery if the
following holds:

P r
m∈D
[h(m) ̸= f (m)]⩽ ε. (3.57)

Thus we can rewrite the universal unforgeability of f as follows:

P r
m∈D
[ E
m∈D
[h(m) ̸= f (m)]⩽ ε]⩽ negl(λ). (3.58)

Now we assume a learner Ap. We note that according to the definition of PAC-
learnability with a QPEX oracle, the adversary gets samples from an unknown
distribution D. While as in the universal unforgeability, the adversary gets to
choose a new desired distribution Di for every query, where i denotes the index
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number of the query. We note that for each selected function f ∈ C, the learner
Ap, is weaker than A. We denote the hypothesis of Ap as hp, we then have:

P r
m∈D
[ E
m∈D
[h(m) ̸= f (m)]⩽ ε]⩽ P r

m∈D
[ E
m∈D
[hp(m) ̸= f (m)] (3.59)

From Eq. (3.58) we have that the success probability A is bounded by a negligible
value, thus, the probability of learner Ap, in successfully outputting a hypothesis
hp(m) such that P r

m∈D
[hp(m) ̸= f (m)] ⩽ ε is also negl(λ). For C to be PAC-

learnable, this probability needs to be 1−δ for every function f ∈ C, while here the
δ can only be negligibly close to 1. This concludes that C is not PAC-learnable.

We have shown a link between PAC-learning (with QPEX oracle) and quantum
universal unforgeability. One can see from the above result that even if one of the
functions in the family (concept class) is universally unforgeable, it is enough to
show that the family is not PAC-learnable since PAC-learning requires the learner
to learn all the functions in the concept class with the specified conditions.

3.7 Discussion and conclusions

We have seen in this chapter, how unclonability and especially the unclonability of
quantum operations is related to the lack of information, which we characterise
with the notion of unknownness. Looking at unclonability from this angle allowed
us to expand our horizons into the realm of quantum randomness, cryptography
and learning theory. We have discussed the connection between unclonability and
unforgeability and between unforgeability and different other notions of learning.
We have also talked about emulation as a learning mechanism that can be used
as a new class of attacks. On the same note, we have studied a quantum emula-
tion algorithm and developed some simple attacks based on the freshly provided
analysis of the algorithm. More importantly, we have developed a universal and
generalised framework for unforgeability in the quantum world. Unforgeability will
become one of the principal components of this thesis and we will use the defi-
nitions and results of our framework in all the remaining chapters (except Chap-
ter 7). Additionally, our case studies on different quantum and classical primitives
in this chapter have shown that the generalised quantum unforgeability has shown
the applicability of our framework and has also led us to propose both quantum
and classical primitives that are secure against powerful quantum adversaries in
a strong quantum security model. The first interesting future direction to this
work would be to construct efficient and practical constructions for selective and
universal unforgeability. These constructions can serve as quantum-secure MACs.
Also, building efficient randomised oracles for quantum primitives using random
quantum circuits or t-designs is an interesting future research direction.

We have also discussed the close relation between unforgeability and unclon-
ability in the context of quantum money. A potentially attractive application of
our framework would be for quantum money schemes. A question that can be of
interest is whether one can design quantum money schemes with different levels
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of unforgeability, as captured in our framework, and to what extent they can be
practical?

As our final contributions, we have formalised our intuitive arguments about the
correspondence between unforgeability and learning theory by showing a connec-
tion between PAC-learning with a quantum example oracle and a slightly different
variant of universal unforgeability. Since in some cases proving universal unforge-
ability might be easier than PAC-learnability, this result can potentially give some
criteria or cryptographic measures for checking the learnability of concept classes.
Moreover, we conjecture that a similar result can potentially be obtained for quan-
tum primitives, using the definitions of fully quantum PAC-learnability that exist in
the literature, such as [HPS21, PM22b]. Nonetheless, we leave the investigation
of this problem as future work.

Lastly, the link between cryptography and learning theory, especially in the
quantum world and in the presence of fascinating phenomena such as unclonability,
is an appealing and, in some ways fundamental area of research that we could
only slightly touch upon in this chapter. Exploiting more novel quantum learning
techniques such as shadow tomography and classical shadow [Aar20, HKP20] for
cryptanalysis would be the next step in this line of research.





4

Quantum Physical Unclonable
Functions

“In everything truth surpasses the imitation and copy.”
– Marcus Tullius Cicero

4.1 Introduction

In the previous chapter we discussed cryptographic properties that are related to
unclonability and we defined a new security framework, as well as attack tools
to expand the study of unclonability of quantum processes from a cryptographic
point of view. In this chapter, we introduce a different form of unclonability which
is, neither restricted to quantum systems nor originated from quantum mechanics.
Yet, this notion of unclonability is also a natural property of certain physical sys-
tems which emerges from uncontrollable imperfections, randomness and physical
disorders. We refer to this type of unclonability as Physical Unclonability adopted
from the term Physical Unclonable Function (PUF) originally introduced in hard-
ware security. We bring the physical unclonability to the quantum world, and we
study it as an abstract mathematical notion concerning the previously introduced
concepts in cryptography and quantum information.

But first, let us intuitively describe physical unclonability. Imagine a factory
that produces crystals for optical laboratories. The manufacturer intends to pro-
duce many copies of the same crystal over and over, with common specific optical
properties such as scattering factors. Nevertheless, often no matter how good the
product line is and how accurate the devices are, no two crystals produced by this
factory are exact clones of each other. This is due to the fact that many un-
controllable parameters and physical randomnesses are involved in the process
of crystal formation. Hence on some small scale, the internal structures of two
crystals, even though sharing the same large-scale properties, are very different
(Fig. 4.1), which makes each crystal unique at that level. Now, if such unique
features can be somehow detected (for instance, by shining light on the crystal,
which results in producing a unique scattering pattern), one can use each of such
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crystals as a physical key. This key has a notable feature that not even the key-
maker can have a copy of. Our example crystal or any similar physical device for
that matter is called a physical(ly) unclonable function or a physical unclonable
key.

Figure 4.1: Illustration of the concept of a physical unclonable function showing that the underlying
microscopic structure and the randomness appearing in the manufacturing process make each PUF
device a unique one.

Thus PUFs are hardware structures designed to utilize this random and un-
controllable physical disorder that appears in any physical device during the man-
ufacturing process. The behaviour of a PUF is usually equivalent to a set of
Challenge-Response Pairs (CRPs) which are extracted through physically query-
ing the PUF and measuring its responses (In our previous example, the optical
parameters of the light are the challenge and the scattering pattern produced by
the crystal is the response). The PUF’s responses depend on its physical features
and are assumed to be fundamentally unpredictable, i.e. even the manufacturer of
the PUF, with access to many CRPs, cannot easily predict the response to a new
challenge [RH14]. This property makes PUFs different from other hardware to-
kens in the sense that the manufacturer of a hardware token is usually completely
aware of the behaviour of the token they have built [BFSK11].

In classical cryptography, physical unclonability is often considered as a hard-
ware assumption. Considering hardware assumptions in cryptography, originated
from an impossibility result by Canetti and Fischlin [CF01] on the impossibility
of achieving secure cryptographic protocols without any setup assumptions. This
result has motivated a rich line of research investigating the advantages of mak-
ing hardware assumptions in protocol design. The idea was first introduced by
Katz in [Kat07] and attracted the attention of researchers and developers as it
adopts physical assumptions and eliminates the need to trust a designated party
or to rely on computational assumptions. Among different hardware assumptions,
PUFs have hugely impacted the field [BKOV17].

So far, the cryptographic literature has mainly considered what we will call
classical PUFs (or cPUFs/CPUF). This includes, on an abstract level, the physi-
cal systems modelled by a classical function and restricted to classical CRPs. Most
common cPUFs are electronic devices such as Arbiter PUFs [GCvDD02], Ring-
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Oscillator based PUFs [SD07, DMM16] and SRAM PUFs [GKST07]. Optical
PUFs were also introduced as cPUFs by Pappu et al. [PRTG02]. For a comprehen-
sive overview of existing PUF structures, we refer the reader to [Mae13, Hal18].
Even though cPUF as an unclonable token is highly appealing and of interest for
several real-world applications [CZZ17, HYKD14, DMAM17, ADM19, MBM+18,
LZZ+19, Muk16], most cPUFs suffer from two major problems. First, most
cPUFs generate only a finite and usually very limited number of completely inde-
pendent CRPs [CZZ17] which is not ideal for many of the mentioned applications.
Second, most of them are vulnerable against different attacks like side-channel
[TPI19, CZZ17] and machine-learning [GTFS16, RH14, RSS+10, KG19]. In other
words, they are not as unpredictable and unclonable as they were initially assumed
to be. The aforementioned shortcomings of classical PUFs, on one hand, and
their importance as a hardware security primitive in practice, on the other hand,
call for investigating other potential physical unclonability in other areas of physics
and cryptography. The quantum realm specifically, is one of the best areas to look
for such phenomena for several reasons. First, the fundamental unclonability of
quantum systems brings forward a potential advantage for achieving a stronger
notion of physical unclonability. Second, from the point of view of physics, usu-
ally many random disorders that lead to physical unclonability, happen on the
atomic and subatomic scale, ruled by the laws of quantum mechanics. Thus hav-
ing a framework for the study of PUFs as a quantum objects seems to be much
more informative. Third, quantum operations can usually generalise classical op-
erations, and if defined carefully, the quantum analogue can encompass classical
PUFs, leading to a better understanding of physical unclonability in general. And
finally, from a cryptanalysis point, the recent advances in quantum technologies
give rise to the question that whether quantum technologies can boost the secu-
rity of cPUFs or if they, on the contrary, threaten their security. As we will argue
later, some more promising classical PUFs such as optical PUFs, are quantum
devices and can be attacked by a quantum adversary who exploits the power of
quantum states and quantum algorithms. Hence to achieve any PUF-based appli-
cation in the quantum era, the security needs to be properly analysed in a setting
that includes quantum adversaries. To conclude, this is one of the few areas of
research that lies in the intersection of fundamental physics and cryptography, and
human curiosity calls for its theoretical exploration.

In the current chapter, we address the general and formal treatment of PUFs in
the quantum world by defining quantum PUFs (qPUFs) as a quantum token/pro-
cess that can be challenged with quantum states and output quantum states as a
response. Our mathematical framework for qPUFs as a new quantum primitive is
inspired by the theoretical literature of classical PUF, while we take into account
the full capabilities of a quantum adversary. Similar to cPUF, not any function
and process can be considered as a PUF and several requirements need to be
satisfied. We identify the requirements a qPUF needs to meet to provide the
main security property required for most of the qPUF-based applications, that is
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unforgeability1. One of the main breakthroughs here is to show that the require-
ments of qPUFs are more restricted than their classical counterparts to achieve
the same functionality promises, i.e. for qPUFs, the unpredictability is satisfied
on a more fundamental level and under fewer assumptions. However, it is worth
mentioning that in this chapter we do not focus on the practical constructions for
qPUF as designing and implementing concrete qPUFs that satisfy our proposed
level of security, remains a challenging task that we will slightly touch upon in the
last chapter.

4.1.1 Structure of the chapter

We begin by giving a short background on classical PUF, in Section 4.2. Then in
Section 4.3 we define qPUFs as general quantum channels and formalize the stan-
dard requirements of robustness, uniqueness and collision-resistance for qPUFs
guided by their classical counterparts. We will show that given all the require-
ments, black-box unitary transformations are perfect candidates for qPUFs. We
then formally define the notion of Unitary Quantum PUF (UqPUF). We also dis-
cuss the importance of the notion of unknownness, as defined in Definition 29 in
Chapter 3, as the minimal assumption that leads to the unclonability of qPUFs.

In Section 4.4, we use our unforgeability game-based framework to study the
security or unforgeability of general qPUFs. Also using the quantum emulation at-
tacks and techniques that we have introduced in the previous chapter, we demon-
strate successful attacks on qPUFs for some security levels. This leads to a
general impossibility result for qPUFs. In doing so we establish several possibility
and impossibility results. On the other hand, we formally prove that any qPUF
provides quantum universal unforgeability, i.e. no QPT adversary can, on aver-
age, generate the response of a qPUF to random challenges. This is the main
possibility result of this chapter, which shows a promising direction for research
on quantum PUFs.

We conclude the chapter with a discussion and conclusion in Section 4.5. More
specifically, we discuss the relevance of our definitions and security framework for
other related types of PUF, including classical PUFs. We will argue how our
proposed attacks can threaten the security of some of the existing PUF proposals
and, we suggest a solution for making them secure by employing our framework
and results.

4.1.2 Related works

The concept of Physical Unclonable Functions was first introduced by Pappu et
al. [PRTG02] in 2001, devising the first implementation of an Optical PUF.
Optical PUFs were subsequently improved to generate an independent number of
CRPs [MAK+18].

1Unpredictability and unclonability are other equivalent terms for this notion used often in the
literature.
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More recently, the concept of quantum read-out of PUF (QR-PUF) was in-
troduced in [Sko10] to exploit the no-cloning feature of quantum states to solve
the spoofing problem in remote device identification protocols. The QR-PUF-
based identification protocol has been implemented in [GHM+14]. In addition to
the security analysis of this protocol against intercept-resend attack in [Sko10],
its security has also been analysed against other special types of attacks target-
ing extracting information from an unknown challenge state [SMP13, YGLZ16].
In another work, [ND17], the continuous variable encoding is exploited to im-
plement another practical QR-PUF based identification protocol. The security
of this protocol has also been analysed only against prepare-and-resend attacks
[Nik18, FNAF19]. Moreover, some other applications of QR-PUFs have been in-
troduced in [SPM17] and [UWG+19]. However, all these prior similar works can
be considered special cases of qPUFs and in a restricted security setting. (for
more discussion, see Section 4.5)

In another independent and parallel recent work, Gianfelici et al. have pre-
sented a common theoretical framework for both cPUFs and QR-PUFs [GKB20].
They quantitatively characterise the PUF properties, particularly robustness and
unclonability. They also introduce a generic PUF-based identification scheme and
parameterise its security based on the experimental implementation of PUF.

4.2 Background on classical Physical Unclonable Func-
tions

In this section, we briefly present the formal definition of PUFs as found in the
classical literature [AMSY16, RS14, BFSK11]. Let a D-family be a set of physical
devices generated through the same manufacturing process. Due to unavoidable
variations during manufacturing, each device has some unique features that are
not easily clonable. A PUF is an operation making these features observable and
measurable by the holder of the device.

As in [AMSY16, BFSK11], we formalize the manufacturing process of a PUF
by defining the Gen algorithm that takes the security parameter λ as input and
generates a PUF with an identifier id. Note that each time the Gen algorithm is
run, a new PUF with new id is built. So, we have:

id← Gen(λ). (4.1)

Also, we define the Eval algorithm that takes a challenge x and a PUF id as inputs
and generates the corresponding response yid as output:

yid← Eval(id,x). (4.2)

Due to variations in the environmental conditions, for any given PUF with the
identifier id (Let us call it PUFid from now on for a more intuitive notation), the
Eval algorithm may generate a different response to the same challenge x . It is
required that this noise be bounded as follows; if Eval(id,x) is run several times,
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the maximum distance between the corresponding responses should at most be
δr . This requirement is termed the robustness requirement.

Consider a family of PUF generated by the same Gen algorithm, and assume
the algorithm Eval is run on all of them with a single challenge x . To be able
to distinguish each PUFid, it is required that the minimum distance between the
corresponding responses be at least δu. This requirement is termed the uniqueness
requirement.

The other requirement considered in [AMSY16] is collision-resistance. This
imposes that whenever the Eval algorithm is run on PUFid with different chal-
lenges, the minimum distance between the different responses must be at least
δc . The parameters δr , δu, δc are determined by the security parameter λ. Ro-
bustness, uniqueness and collision-resistance are crucial for correctness of crypto-
graphic schemes built on top of PUFs. The conditions δr ≤ δu and δr ≤ δc must
be satisfied to allow for distinguishing different challenges and PUFs [AMSY16].

According to the above, a (λ,δr ,δu,δc)-PUF is defined as a pair of algorithms:
Gen and Eval that provides the robustness, uniqueness and collision-resistance
requirements. We call a (λ,δr ,δu,δc)-PUF a Classical PUF (cPUF), if the Eval
algorithm runs on classical information such as bit strings. We also recall that a
cPUF’s Eval as a classical function f : {0,1}n→{0,1}m, can be represented as a
unitary transformation as follows (see Section 2.5.3 in the preliminaries):

∀x ∈ {0,1}n,∀y ∈ {0,1}m : Uf |x,y⟩ := |x, f (x)⊕ y⟩ (4.3)

and thus if physically possible, a quantum adversary can query Uf on any desired
quantum states such as the superposition of all the classical inputs.

4.3 Quantum Physical Unclonable Functions

In this section, we define a general notion for quantum PUFs. We consider a
set of quantum devices that have been created through the same manufacturing
process. These devices produce a general quantum state when challenged with a
quantum state. Similar to the previously presented classical setting, we formalize
the manufacturing process of qPUFs by defining a QGen algorithm:

id←QGen(λ) (4.4)

where id is the identifier of qPUFid and λ the security parameter.
We also need to define the QEval algorithm mapping any input quantum state

ρin ∈ S(Hdin) to an output quantum state ρout ∈ S(Hdout ) where Hdin and Hdout
are the domain and range Hilbert spaces of qPUFid, denoted as:

ρout ←QEval(qPUFid,ρin). (4.5)

For now, we allow QEval to be a general trace-preserving quantum map. We
have:

ρout = Λid(ρin) (4.6)
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Apart from these common algorithms that are analogue to the classical setting,
we also require qPUFs as a primitive, to include an efficient test algorithm T as
we have formally define in Definition 12 to test the equality between two unknown
quantum states. We will also need the concept of quantum state distinguishability,
which can be defined with different quantum distance measures such as trace
distance or fidelity. Here we use the fidelity-based definitions of Definition 10
and Definition 11. We can now define a Quantum Physical Unclonable Function
(qPUF) as follows.

Definition 39 (Quantum Physical Unclonable Function). Let λ be the secu-
rity parameter, and δr ,δu,δc ∈ [0,1] the robustness, uniqueness and collision
resistance thresholds. A (λ,δr ,δu,δc)-qPUF includes the algorithms: QGen,
QEval and T satisfying Requirements 1, 2, and 3a.

aIn Requirements 1 and 3 the probabilities have been taken over the states of the domain
Hilbert space, picked from any arbitrary distribution. In Requirement 2 the probability is
over the family of CPTP maps between same input and output Hilbert spaces picked from
an arbitrary distribution.

Requirement 1 (δr -Robustness). 2 For any qPUFid generated through QGen(λ)
and evaluated using QEval on any two input states ρin and σin that are δr -
indistinguishable, the corresponding output quantum states ρout and σout are
also δr -indistinguishable with overwhelming probability,

Pr[δr ≤ F (ρout ,σout)≤ 1] = 1−negl(λ). (4.7)

Requirement 2 (δu-Uniqueness). For any two qPUFs generated by the QGen
algorithm, i.e. qPUFidi and qPUFidj , the corresponding CPTP map models, i.e.
Λi and Λj are δu-distinguishable with overwhelming probability,

Pr[ ∥ (Λi −Λj)i ̸=j ∥⋄≥ δu ] = 1−negl(λ). (4.8)

Requirement 3 (δc-Collision-Resistance (Strong)). For any qPUFid generated
by QGen(λ) and evaluated by QEval on any two input states ρin and σin that
are δc -distinguishable, the corresponding output states ρout and σout are also

2We should note that this requirement is satisfied for any qPUF, by definition, due to the
contractivity of quantum channels, as we have defined the evolution algorithm as a CPTP map.
However, since this is a crucial requirement for classical PUFs and an important property required
for PUFs in general, we have decided to include it as a requirement for the completeness of
the framework and for comparison’s sake. Also, one might use a framework similar to the one
presented in this chapter but with a PUF that is not necessarily a CPTP map, in which case the
requirement is not always satisfied and needs to be checked.
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δc -distinguishable with overwhelming probability,3

Pr[0≤ F (ρout ,σout)≤ 1− δc ] = 1−negl(λ). (4.9)

In many PUF-based applications such as authentication and identification, it is
necessary that there be a clear distinction between different qPUF instances gen-
erated by the same QGen algorithm running on the same parameters λ [AMSY16].
To this end, the following conditions need to be satisfied: δc ⩽ 1− δr and δu ⩽
1− δr . We also note that Requirements 1 and 3 impose conditions on the eval-
uation algorithm of each of the qPUFs in the family while Requirement 2 is a
property of the family of physical unclonable functions. In the majority of this
chapter, we are interested in the security properties of each one of such functions
in the family thus our results mostly concern the QEval algorithm.

We note that if qPUF is a general noisy quantum channel, the δc parameter
can allow for some specific noise models. More specifically, the weak-collision
resistance parameter i.e. the ratio of δoc /δ

i
c is directly related to the channel

parameters of the qPUF evaluation. Since we are interested in the cryptographic
properties of qPUFs, and the collision-resistance is an important requirement for
security, we choose the strong collision-resistance as the main requirement for
quantum PUFs. We specify that the strong collision-resistance parameter can
allow for noisy PUF evaluation under the coherent noise models. Such noise
models preserve distances between the input and output states of the qPUF and
this property makes them suitable candidates for quantum PUF. Also, it has been
shown in [GD18] that a general noise can be modelled as a combination of coherent
and incoherent noises. In other words, only the class of noise model with a close
to zero incoherent factor can be considered to satisfy the δc (strong) collision
resistance. Hence for the rest of this work, aiming to formalise the first general
security framework, we consider this restricted noise setting that allows for an
ideal qPUF and we leave further investigation that would depend on particular
constructions for future works.

We have initially allowed for any CPTP map as QEval algorithm. Now, we let
the QEval algorithm be a channel with the same dimension of domain and range
Hilbert space, i.e. din = dout . We show that under this assumption, only unitary
transformations and CPTP maps that are highly close to unitary class, can simul-
taneously provide the (strong)collision-resistance and robustness requirements of
qPUFs.

3A weaker variant of Collision-Resistance, with separate input/output bound can be also defined
in a similar fashion where the responses generated by QEval on any two δic -distinguishable input
states ρin and σin, should be at least δoc -distinguishable. In fact, if δic = δ

o
c = δc we call the

requirement a strong collision-resistance. Note that this equality holds up to a negligible value in
the security parameter, i.e. if δic = δ

o
c ±negl(λ), the strong collision-resistance requirement has

still been satisfied. If δoc < δ
i
c (the difference is non-negligible) then this is referred to as weak

collision-resistance.
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Theorem 25. Let E(ρ) be a completely positive and trace-preserving map
described as follows:

E(ρ) = (1−ε)UρU†+εẼ(ρ) (4.10)

where U is a unitary transformation, Ẽ is an arbitrary (non-negligibly) con-
tractive channel and 0 ⩽ ε ⩽ 1. Then E(ρ) is a valid qPUF’s evaluation
algorithm (with equal domain and range dimensionality) for any λ and δc
(up to a negligible factor), if and only if ε= negl(λ).

Proof. First, we recall the contractive property of trace-preserving operations
[NC10], the robustness is trivially satisfied. Hence the robustness is generally
satisfied. As a result, the proof of the theorem reduces to proving for collision-
resistance. Let ρ and δ be two δc -distinguishable challenge with fidelity F (ρ,σ)⩽
1− δc . Again with the above argument the fidelity of the outputs cannot be
smaller than F (ρ,σ). Thus the δc requirement is satisfied if the fidelity of the
response density matrices are equal up to a negligible value.

Now let ρ1 = UρU†, σ1 = UσU†, ρ2 = Ẽ(ρ), and σ2 = Ẽ(σ). We use the joint
concavity of the fidelity [NC10] to obtain the following relation for the channel’s
output fidelity:

F (E(ρ),E(σ)) = F ((1−ε)ρ1+ερ2,(1−ε)σ1+εσ2)
⩾ (1−ε)F (ρ1,σ1)+εF (ρ2,σ2)

(4.11)

Since the first part of the channel is unitary which is distance preserving, we have
F (ρ1,σ1) = F (ρ,σ). Also due to contractivity we know that F (ρ2,σ2)⩾ F (ρ,σ).
We then have:

F (E(ρ),E(σ))−F (ρ,σ)⩾ ε(F (ρ2,σ2)−F (ρ,σ)) (4.12)

Now since the channel Ẽ is non-negligibly contractive, the value F (ρ2,σ2)−F (ρ,σ)
is not necessarily negligible and in order for the LHS of Eq. (4.11) to be always
negligible, ε has to be negligible. So we have proved that CPTP maps of the
form Eq. (4.10) can be δc collision resistance qPUFs only if ε= negl(λ).

Now we show that all channels of the form of Eq. (4.10) where ε is negligible
satisfy the strong collision resistance property up to a negligible value. To show
that we recall the relation between fidelity and trace distance, that is dTr(ρ,σ)⩽√
1−F (ρ,σ). We use this inequality to relate the distance between the states
E(ρ) and E(σ) and the original distance between ρ and σ. By subtracting both
sides, we get the following inequality:

F (E(ρ),E(σ))−F (ρ,σ)⩽ d2Tr(ρ,σ)−d2Tr(E(ρ),E(σ))
⩽ (dTr(ρ,σ)−dTr(E(ρ),E(σ)))(dTr(ρ,σ)+dTr(E(ρ),E(σ)))
⩽ 2(dTr(ρ,σ)−dTr(E(ρ),E(σ)))

(4.13)
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Next, we show the following inequality stating that the difference between the
trace distance of the input and output for channels described as Eq. (4.10), is
bounded by εdTr(ρ,σ),

dTr(ρ,σ)−dTr(E(ρ),E(σ))⩽ εdTr(ρ,σ) (4.14)

First, we note that the first part of the channel E , which outputs density matrix
UρU† with probability (1−ε)2, is a unitary and preserves the distance. As a result,
for a fixed value of ε and any fixed arbitrary states ρ and σ, the difference between
the trace distances of the output of E and the input states increases as Ẽ becomes
more contractive. As the maximum contractivity of Ẽ occurs when Ẽ = I

d , then
the maximum difference between the output and input trace distances is satisfied
for this instance of the channel. Let E ′(ρ) = (1−ε)UρU†+ε Id . Then for a fixed
ε we will have:

dTr(ρ,σ)−dTr(E(ρ),E(σ))⩽ dTr(ρ,σ)−dTr(E ′(ρ),E ′(σ)) (4.15)

Now we calculate dTr(E ′(ρ),E ′(σ)) using the definition of the trace distance:

dTr(E ′(ρ),E ′(σ)) =
1

2
Tr[|E ′(ρ),E ′(σ)|]

=
1

2
Tr[|(1−ε)UρU†+ε

I

d
− (1−ε)UσU†−ε

I

d
|]

= (1−ε)(
1

2
Tr[|UρU†−UσU†|])

= (1−ε)dTr(UρU
†,UσU†)

= (1−ε)dTr(ρ,σ)

(4.16)

Substituting this back to Eq. (4.15), we get

dTr(ρ,σ)−dTr(E(ρ),E(σ))⩽ dTr(ρ,σ)− (1−ε)dTr(ρ,σ) = εdTr(ρ,σ) (4.17)

Thus we have:
F (E(ρ),E(σ))−F (ρ,σ)⩽ 2εdTr(ρ,σ) (4.18)

Now if and only if ε = negl(λ) and since 0 ⩽ dTr(ρ,σ) ⩽ 1, we conclude that
the difference between the fidelity is also negligible and hence the δc collision-
resistance is satisfied up to a negligible value, and the proof is complete.

The above theorem shows that only unitary or more generally, ε-disturbed
unitary maps where ε is small, are suitable candidates for qPUFs, especially when
strong collision resistance is required. In the rest of the chapter, we choose the
QEval algorithm to be a unitary map. We call this type of qPUFs, Unitary qPUFs
(or simply UqPUFs) and formally define them in Definition 40. Nevertheless, we
believe studying more general non-unitary qPUFs will be interesting future research
directions in this field (see Section 4.5).

So far, we concluded that in terms of the mathematical model, unitary quan-
tum transformations are best suited to describe qPUFs. Now it is time to formalize
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Figure 4.2: Illustration of qPUF as a unitary operation with input and output quantum states in
Hd . The blue and green boxes are single-qubit gates, and the red boxes demonstrate two-qubit
and entangling gates. These are the abstract building blocks for the d-dimensional UqPUF, while
to a QPT adversary, the unitary and the inherent structure is initially unknown.

the main hardware assumption of our qPUFs. We recall that in the classical set-
ting it is assumed that the PUF behaviour is unknown even to the manufacturer.
We also require UqPUF transformations to be initially unknown or in other words,
behave as a unitary black-box of it which is exponentially hard to recover the full
description. In the previous chapter, we have discussed the notion of unknownness
and its relation to the unclonability and learnability of quantum processes. Now
we invoke the same definition to formalize the hardware assumption of physical
unclonability by requiring the unitary matrix of a qPUF to satisfy unknownness
according to Definition 29 from Chapter 3, which formalises single-shot indistin-
guishability of the unitary from the family of Haar-random unitaries. An illustra-
tion of a unitary qPUF is given in Fig. 4.2. Let us formally define Unitary qPUFs
(UqPUFs).

Definition 40 (Unitary qPUF (UqPUF)). A Unitary qPUF ((λ,δr ) −
UqPUF) is a (λ,δr )−qPUF where the QEval algorithm is modelled by an
unknown unitary transformation Uid over a D-dimensional Hilbert space,
HD according to Definition 29, such that for any quantum challenge ρin
the respective response ρout is given as follows,

ρout =QEval(UqPUFid,ρin) = UidρinU
†
id. (4.19)

For simplicity and practical reasons, usually, the challenge is a pure quantum
state denoted as |ψin⟩, and the response of a UqPUF is simply given by |ψout⟩=
Uid |ψin⟩. Also, due to the distance-preserving property of UqPUFs, we drop δr
from the notation and simply characterise UqPUF as λ-UqPUFs.

There are a couple of notes that are worth mentioning concerning this require-
ment. First, from the theoretical point of view, this requirement is a minimal and
pre-challenge assumption, and considerably weaker than the assumptions needed
for classical PUFs. A common requirement needed for classical PUF is min-entropy
that informally captures the minimum extractable information about a cPUF from
subsets of CRPs [AMSY16]. This requirement is morally closely related to the un-
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predictability, or unforgeability of PUFs. Nevertheless, in the quantum setting, we
aim to characterize the unpredictability as a byproduct of rather simpler hardware
assumptions. Our proposed requirement intuitively requires the information of a
UqPUF to be obtained only through querying it. One straightforward construc-
tion for UqPUF is to sample a unitary from a Haar-random Unitary family, but we
believe there are more efficient ways to do this sampling [DCEL09, AE07] (see
also Section 4.5, for more discussion about subsequent works and constructions
of quantum PUF).

From a construction point of view, this condition may not seem easily achiev-
able, but again practically, it is a reasonable assumption considering limited fabri-
cation capabilities or the fact that simulating an arbitrary unitary on a quantum
computer is not technologically easy due to noise and accumulated errors in each
gate, even when the structure of the unitary is known. Moreover, there are promis-
ing constructions such as the family of optical schemes implemented using crystals
or optical scattering media [ND17], where usually even the manufacturer does not
know the underlying unitary unless querying it. On the other hand, in gate-based
construction, one cannot avoid the fact that the manufacturer knows the under-
lying unitary. Hence this type of construction cannot provide security against an
adversarial manufacturer. Nevertheless, if predicting the evolution of a quantum
state is difficult this is enough for security under the usual PUF assumptions. As
a result, such devices are still useful and practical for many applications as they
can still provide security against any malicious adversary other than the manufac-
turer. The security framework that we will propose, on the other hand, covers
both adversarial models where the manufacturer could be trusted or not.

The final deserving remark, before we move to the cryptanalysis of UqPUFs is
that they also satisfy another natural notion of unclonability, known as no-cloning
of unitary transformation [CDP08], discussed in Section 3.2.1. We recall that
under this notion, two black-box unitary transformations O1 and O2 cannot be
perfectly cloned by a single use, apart from the trivial cases of perfect distinguisha-
bility or whenO1=O2. Thus, two UqPUFs, as long as they correspond to different
black-box unitaries, satisfied by the uniqueness requirement and our proposed as-
sumption, are unclonable by quantum mechanics via a single use. Specifically, in
the following section, we show how this unclonability property, can be expanded
to the multiple-shot case by introducing the formal notion of unforgeability for
quantum PUFs.

4.4 Cryptanalysis of Quantum Physical Unclonable
Functions

Using the tools and framework that we have established in the previous chapter,
for the study of unclonability and unpredictability via the cryptographic notion of
unforgeability, we can now formally define this security notion for quantum PUFs
and study the extent to which this property is satisfied for general UqPUFs as
we have defined them. Other than the fundamental relationship that we aim
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to establish between unclonability and unforgeability, in terms of cryptographic
applications, the security of most PUF-based protocols relies on the unforgeability
of PUFs [AMSY16]. In the context of PUF, unforgeability informally means that
given a subset of challenge-response pairs of the target PUF, the probability of
correctly guessing a new challenge-response pair shall be considerably small.

In the literature of classical cryptography and hardware security, the unforge-
ability of PUFs as classical functions is often studied in a game-based frame-
work [AMSY16, BZ13b, DMAM17]. However, there have been studies of PUFs
in the UC framework as well [BFSK11, OSVW13].

We recall the definition of unforgeability from the unified framework that we
have defined in Chapter 3 and Game 1. Since the framework is defined to capture
both quantum and classical primitives, we can easily adapt it for qPUFs. Here we
only elaborate on what each of the stages means in the context of qPUFs.

In the setup phase, the necessary public and private parameters and functions
are shared between the adversary and the challenger and the qPUF is generated.

The learning phase models the knowledge that the adversary can gain over
a qPUF through queries. We consider chosen-input attacks model where the
quantum adversary can choose any arbitrary (and potentially adaptive) query from
the domain Hilbert space. Due to the quantum nature of queries, and to be able
to fully characterize adversary’s database, they have to prepare two copies of
each challenge query, keep one in their database, and send the other one to the
challenger.

The challenge phase captures the intended security notion. For qPUFs, we
consider two types of challenge phase: existential and universal4 as defined before.
In the universal case, since we are in the regime of quantum unforgeability for
quantum schemes, the uniform selection of the challenge is equivalent to choosing
the challenge uniformly at random according to the Haar measure.

Finally, in the guess phase, the adversary outputs his guess of the response
corresponding to the challenge chosen in the challenge phase. The equality of the
adversary’s response to the correct response is being tested by a quantum test
algorithm as we have abstracted in Definition 12. The adversary wins the game
if the output of the test algorithm is 1. Game 3 is adapted directly from Game 1
and formalises the unforgeability of qPUFs.

4This level of security is usually known as ‘selective unforgeability’ in the context of PUFs.
Nevertheless, to avoid confusions, with the similar term used in Chapter 3 and for consistency,
here we keep the term of universal unforgeability
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Formal game-based unforgeability of qPUF

Game 3. Let qPUF = (QGen,QEval,T ) and T be defined as Defini-
tion 39 and Definition 12, respectively. We define the following game
GqPUFcµ(A,λ) running between an adversary A and a challenger C:

Setup. The challenger C runs QGen(λ) to build an instance of the qPUF
family, qPUFid. Then, C reveals to the adversary A, the domain and
range Hilbert space of qPUFid respectively denoted by Hin and Hout as
well as the identifier of qPUFid, id. The challenger initialises two empty
databases, Sin and Sout and shares them with A.

Learning. For i = 1 : k

– A prepares two copies of a quantum state ρi ∈ S(Hin), appends one
to Sin and sends the other to C;

– C runs QEval(qPUFid,ρi) and sends ρouti , to A;

– A appends ρouti to Sout .

Challenge.

– If c = qEx: A picks a quantum state ρ∗ ∈ S(Hin) at least µ-
distinguishable from all the states in Sin and sends it to C;

– If c = qUni: C chooses a quantum state ρ∗ uniformly at random from
the Haar-measure over the Hilbert space Hin. The challenger keeps
copies of ρ∗ if necessary and sends one copy of ρ∗ to A.

Guess.

– A sends his guess ρ′ to C;
– C runs QEval(qPUFid,ρ∗), and gets ρout ;

– C runs the test algorithm b←T (ρout ,ρ′) where b ∈ {0,1} and out-
puts b. The adversary wins the game if b = 1.a

aNote that the learning phase queries include any general separable or entangled state.

We follow the same definitions of quantum existential unforgeability defined
in Definition 30 and quantum universal unforgeability in Definition 36 for qPUFs
based on the above game. Nevertheless, for the sake of completeness in the study
of physical unclonability, we add here another level of security, which is against
an exponential (or computationally unbounded) adversary instead of the usual
QPT adversary considered in the unforgeability framework. We call this quantum
exponential unforgeability, quantum existential unforgeability, and we define it as
follows:
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Definition 41 (Quantum Exponential Unforgeability). A qPUF provides
quantum exponential unforgeability if the success probability of any expo-
nential adversary A in winning the game GqPUFqExµ(A,λ) or GqPUFqUni (A,λ)
is negligible in λ

P r [1←GqPUFqEx/qUni(A,λ)] = negl(λ) (4.20)

4.4.1 Impossibility of exponential unforgeability for UqPUFs

After formalizing all the security games and definitions, it is time to derive gen-
eral possibility and impossibility results regarding the quantum unforgeability of
UqPUFs.

We start with the most powerful setting which is against the exponential quan-
tum adversary. In the classical setting, cPUFs can be fully described by the finite
set of CRPs, and this suffices for breaking unforgeability. More precisely, an un-
bounded or exponential adversary can extract the entire set of CRPs by querying
the target cPUF with all possible challenges [CZZ17]. If the challenges are n-bit
strings, the number of possible challenges is 2n. However, in the quantum setting,
a UqPUF can generate an infinite number of quantum challenge-response pairs
such that extracting all of them is hard, even for exponential adversaries. This
point, combined with limitations such as no-cloning and the limits on state esti-
mation [BEM98], raise the question whether UqPUFs could satisfy unforgeability
against exponential adversaries. Nevertheless, we answer this question negatively
by proving that no UqPUF provides quantum exponential unforgeability as defined
in Definition 41.

Theorem 26. (No UqPUF provides quantum exponential unforgeabil-
ity) For any λ-UqPUF, there exists an exponential quantum adversary A
such that

P r [1←GUqPUFqEx/qUni(λ,A)] = non-negl(λ) (4.21)

Proof. The key idea of the proof is based on complexity analysis of unitary tomog-
raphy and implementation of a general unitary by single and double qubit gates,
since for an exponential quantum adversary, it will be feasible to extract the uni-
tary matrix by tomography and then build the extracted unitary by general gate
decomposition method. By using the Solovay-Kitaev theorem [NC10], we then
show that the adversary can build the unitary matrix of the UqPUF performing on
n-qubits, within an arbitrarily small distance ε using O(n24n logc(n24n)) gates and
hence win the game with any test algorithm T . Let UqPUFid operate on n-qubit
input-output pairs where n = log(D). In the learning phase, A selects a complete
set of orthonormal basis of HD denoted as {|bi⟩}2

n

i=1 and queries UqPUFid with
each base 2n times. So, the total number of queries in the learning phase is
k1 = 2

2n.
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Then, A runs a unitary tomography algorithm to extract the mathematical
description of the unknown unitary transformation corresponding to the UqPUFid,
say Uid. It has been shown [NC10] that the complexity of this algorithm is O(22n)
for n-qubit input-output pairs. This is feasible for an exponential adversary. It is
clear that once the mathematical description of the unitary is extracted, A can
simply calculate the response of the unitary to any known quantum challenge.
Nonetheless, we want to show the exponential adversary wins the weaker notion
of the security, i.e. quantum universal unforgeability, where they have only one
copy of the challenge state.

To win the game with the universal challenge phase, the adversary needs to
implement the unitary. It is known that any unitary transformation over H2n

requires O(22n) two-level unitary operations or O(n222n) single qubit and CNOT
gates [NC10] to be implemented. However, according to Solovay-Kitaev theorem
[NC10], to implement a unitary with an accuracy ε using any circuit consisting of
m single qubit and CNOT gates, O(m logc(m/c)) gates from the discrete set are
required where c is a constant approximately equal to 2. Thus, an arbitrary unitary
performing on n-qubit can be approximately implemented within an arbitrarily small
distance ε using O(n24n logc(n24n)) gates.

Finally, A implements the unitary U′id with error ε. Let A get the chal-
lenge state |ψ⟩ in the qUni Challenge phase. The adversary queries U′id with
|ψ⟩ and gets |ω⟩ = U′id |ψ⟩ as output. Since the ε can be arbitrary small, then
F (Uid |ψ⟩ ,U′id |ψ⟩) ≥ 1−negl(λ). So, A’s output |ω⟩ passes any test algorithm
T (|ψout⟩⊗κ1 , |ω⟩⊗κ2) with probability close to 1. Again, an unbounded adversary
wins the game GUqPUFqUni (λ,A) with probability 1. Also, since the existential chal-

lenge phase is a stronger definition, if A wins in game GUqPUFqUni (λ,A) they will also
when GUqPUFqExµ(λ,A) as well. Therefore we have:

P r [1←GUqPUFqEx/qUni(λ,A)] = 1. (4.22)

that concludes the proof.

We note that this result is expected as any qPUF (same as a classical PUF)
can, in principle, be simulated with enough computational resources. Therefore
no physical unclonability exists against an adversary with an unbounded quantum
power since there is no level of unknownness, as in an exponentially powerful set-
ting. We point out that similar relation exists in the relation between asymptotic
state estimation and approximate quantum cloning (see Section 2.3 and Sec-
tion 3.2). That is why the reasonable and achievable security model is usually
against a qPUF in the hands of the adversary for a limited time or limited query
such as QPT adversaries. It is also worth mentioning that from an engineering
point of view, limiting the adversary to a certain number of queries on a hardware
level can depend on the construction and, it might be possible in some qPUF
implementations, while might not be feasible with some others. While this is
an interesting problem to consider in qPUF implementations, from a cryptanal-
ysis point, our given security analysis against a quantum adversary who is given
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polynomial time in the security parameter of the qPUF is independent of the
construction.

4.4.2 Impossibility of existential unforgeability for UqPUFs

Exploiting the quantum emulation tools introduced in Chapter 3 for cryptanalysis,
we now turn to quantum existential unforgeability and show that no UqPUF pro-
vides quantum existential unforgeability for any µ ̸= 1 as defined in Definition 30.
Note that the case µ= 1 corresponds to the existential challenge state being or-
thogonal to all the queried states in the learning phase. With µ= 1, the adversary
is prevented from taking advantage of its quantum access to the qPUF to win the
game.

Theorem 27. (No UqPUF provides quantum existential unforgeabil-
ity) For any λ-UqPUF, and 0 ⩽ µ ⩽ 1− non-negl(λ), there exits a QPT
adversary A such that

P r [1←GUqPUFqExµ(λ,A)] = non-negl(λ). (4.23)

Proof. We show there is a QPT adversaryA who wins the game GUqPUFqExµ(λ,A)
with non-negligible probability in λ. We use a similar emulation attack presented
in Section 3.4.2.1, which uses only one block of emulation algorithm. The learning
phase queries are as follows where |φ1⟩ can be any quantum state in HD, and |φ3⟩
is any orthogonal state to |φ1⟩ in the domain Hilbert space:

|φ2⟩=

{
1√
2
(|φ1⟩+ |φ3⟩) i f 0⩽ µ⩽ 12√
µ |φ1⟩+

√
1−µ |φ3⟩ i f 12 < µ⩽ 1−non-negl(λ)

(4.24)

Then, A sets |φ3⟩ as his chosen challenge in the existential challenge phase. Note
that |φ3⟩ satisfies the µ-distinguishability condition with both |φ1⟩ and |φ2⟩. In
the guess phase, to estimate the output of UqPUF to |φ3⟩, the adversary A runs
the QE with the reference state |φr ⟩= |φ2⟩.

Relying on Theorem 13, the output state of Stage 1 of the QE algorithm is:

|χf ⟩= ⟨φ2|φ3⟩ |φ2⟩ |0⟩+ |φ3⟩ |1⟩−⟨φ2|φ3⟩ |φ2⟩ |1⟩
−2⟨φ1|φ3⟩ |φ1⟩ |1⟩+2⟨φ2|φ3⟩⟨φ2|φ1⟩ |φ1⟩ |1⟩ .

(4.25)

Having ⟨φ1|φ3⟩= 0 and we setting ⟨φ2|φ3⟩= α and ⟨φ2|φ1⟩= β, the final fidelity
in terms of the success probability of Stage 1 is given as follows according to Eq.
(3.17)

Psucc−stage1 = |α2(1+4α2β2)|2. (4.26)

We have different choices for the reference state depending on the distinguishabil-
ity parameter µ. For cases where the adversary is allowed to produce a new state
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with at least overlap half with all the states in the learning phase, by choosing the
uniform superposition of the states where α= β = 1√

2
, the output fidelity will be:

F (|φout
′

3 ⟩⟨φout
′

3 | , |φout3 ⟩⟨φout3 |)⩾
√
Psucc−stage1 = 1. (4.27)

where |φout ′3 ⟩ and |φout3 ⟩ are the output of the QE algorithm and UqPUF to |φ3⟩,
respectively. According to the calculated fidelity, these two states are completely
indistinguishable So, the success probability of A for any test according to Defi-
nition 12 is:

P r [1←GUqPUFqExµ(λ,A)] = P r [1←T (|ψout⟩ , |ω⟩)] = 1 (4.28)

which is the optimal choice of the reference. On the other hand, for the cases
where the adversary is restricted to produce a challenge more than half distinguish-
able, we can still create a superposed state with α=

√
1−µ and β =

√
µ and end

up with the following fidelity of the emulation by setting µ= 1−non-negl(λ)

F (|φout
′

3 ⟩⟨φout
′

3 | , |φout3 ⟩⟨φout3 |)⩾ |α2(1+4α2β2)|
= |(1−µ)(1+4µ(1−µ))|
= non-negl(λ).

(4.29)

Thus for any 12 < µ⩽ 1−non-negl(λ):

P r [1←GUqPUFqExµ(λ,A)] = P r [1←T (|φout3 ⟩ , |φout
′

3 ⟩)] = non-negl(λ) (4.30)

And the proof is complete.

This theorem implies that the adversary can always generate the correct re-
sponse to his chosen challenge provided that he can query it in superposition with
other quantum states during the learning phase in terms of the parameter µ. Note
that since output quantum states in the learning phase are unknown to the adver-
sary, the more straightforward strategy of superposing the learnt output quantum
states cannot be efficiently performed. More precisely, the adversary cannot pre-
pare the precise target superposition of the output states that are completely
unknown [OGHW16, DKK17]. Therefore, the proposed attack in the above proof
is general yet non-trivial.

4.4.3 Universal unforgeability of UqPUFs

We now show a positive result for the security of UqPUFs in general by further
relaxing the level of security and considering quantum universal unforgeability. We
will show that any UqPUF can provide this notion. This result also establishes the
relationship between unforgeability, unknownness and physical unclonability in the
quantum regime. Furthermore, note that in most PUF-based applications, the
universal unforgeability is sufficient. We will discuss this further in Chapter 6.

We start by proving the following lemma which is a crucial step towards our
proof. The lemma establishes the average probability of any state in HD to be
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projected in a subspace Hd where d ⩽ D. Based on this lemma, we calculate
the probability of a state chosen uniformly at random from HD (according to
Haar-measure) to belong in the orthogonal subspace to the adversary’s subspace.
We recall that since quantum emulation is successful with a high probability when
the target state has enough overlap with the sample subspace, the idea is to
exploit the randomness involved in selecting the target state to prevent quantum
emulation or similar attacks.

Lemma 3. Let HD be a D-dimensional Hilbert space and Hd a subspace of
HD with dimension d . Also, let Πd be a projector, projecting any quantum
state in HD into Hd . The average probability that any state, chosen uni-
formly at random from HD from a Haar distribution, to be projected into
Hd is equal to d

D

P r
|ψ⟩,Πd

[| ⟨ψ|Πd |ψ⟩ |= 1] =
d

D
(4.31)

Proof. The proof is mainly based on the symmetry of the Hilbert space and the
fact that the probability of falling into each subspace is equal for any state uni-
formly picked at random.

Note that any state |ψ⟩ ∈ HD can be written in terms of the orthonormal
bases of HD denoted by |bi⟩, as follows:

|ψ⟩=
D−1

∑
i=0

αi |bi⟩ with
D−1

∑
i=0

|αi |2 = 1 (4.32)

where αi are complex coefficients. A projection into a smaller subspace consists
of choosing d bases of HD in the form of ∑

d−1
j=0 |bj⟩⟨bj |. Without loss of generality,

we can assume D =md where m is an integer. This assumption is always correct
for qubit spaces. This means that the larger Hilbert space can be divided into m
smaller subspaces each with dimension d . Let {|ei⟩}d−1i=0 be a subset of HD which
makes a complete set of bases for one of the d-dimensional subspaces. A projector
projects |ψ⟩ into one of the subspaces. As |ψ⟩ has been picked at random and the
subspaces are symmetric, the probability of falling into each subspace is the same
and equal to 1m which is d

D . Otherwise either the sum of all probabilities would not
be 1 or the |ψ⟩ has not been picked uniformly at random from HD. This shows
that on average the probability of projecting a state ψ is d

D . This can also be seen
by the fact that the sum of all projectors in a complete set of projectors is equal
to one. In this case, we have

D−1

∑
i=0

Πi = I (4.33)

By sandwiching |ψ⟩ on both sides we have:

D−1

∑
i=0

⟨ψ|Πi |ψ⟩= 1. (4.34)
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Each ⟨ψ|Πi |ψ⟩ is itself equal to ∑
d−1
j=0 | ⟨ψ|di j⟩|2 where |di j⟩s are the bases associ-

ated to the subspace that the projector Πi projects into. This corresponds to all
the permutations of d number of the coefficient |αi |2 which will be 1d on average.

Since we have ∑
D−1
i=0

P rΠi
d = 1, we can conclude that the average probability for all

the projectors will be d
D .

We need another small technical toolkit which allows us to derive our next
result. We define another abstraction of the test algorithm of Definition 12 in
direct relation to fidelity. We formalize the ideal test T idealδ as follows:

Definition 42 (T idealδ Test Algorithm). We call a test algorithm according
to Definition 12, a T idealδ Test Algorithm when for any two state |ψ⟩ and
|φ⟩ the test responds as follows:

T idealδ =

{
1 F (|ψ⟩ , |φ⟩)⩾ δ
0 otherwise

(4.35)

To establish our positive result, we first present a preliminary theorem which
demonstrates the unforgeability of the UqPUF considering an ideal test algorithm
which asymptotically satisfies the fidelity as defined in Definition 42.

Theorem 28. For any unitary qPUF characterised by UqPUF =

(QGen,QEval,T idealδ ), with dimension D, and any non-zero δ, the success
probability of any QPT adversary A in the game GUqPUFqUni (λ,A) is bounded
as follows:

P r [1←GUqPUFqUni (λ,A)]⩽
d +1

D
(4.36)

where 0 ⩽ d ⩽ D−1 is the dimension of the largest subspace of HD that
can be spanned by A’s sample database, during learning phase.

Proof. Let A be a QPT adversary playing the game GUqPUFqUni (λ,A) where UqPUF
is defined over HD. Let Sin and Sout be the input and output database of the
adversary after the learning phase respectively, both with size k . Also, Let Hd be
the d-dimensional Hilbert space spanned by elements of Sin where d ⩽ k and Hdout
be the Hilbert space spanned by elements of Sout with the same dimension. A
receives an unknown pure quantum state |ψ⟩ as a challenge in the qUni challenge
phase and tries to output a state ρω as close as possible to |ψout⟩. For the
simplicity in the proof, we assume the adversary’s forgery state is either a pure
state or has a purification in the form of |ω⟩. We are interested in calculating the
average probability for the fidelity of A’s output state |ω⟩ and |ψout⟩ be larger or
equal to δ. We calculate this probability on average over all the possible states
chosen uniformly at random according to the Haar measure over HD.

P r [1←GUqPUFqUni (λ,A)] = P r
|ψ⟩∈HD

[F (|ω⟩ , |ψout⟩)⩾ δ] (4.37)



4.4. Cryptanalysis of Quantum Physical Unclonable Functions 143

We aim to show, that for any δ ̸= 0, the success probability of A is negligible in
λ.

Following the game definition, as the adversary selects states of the learning
phase, the classical description of these states is usually known for them while the
corresponding responses are unknown quantum states. Let A′ be an adversary
who also receives the classical description of the outputs or the complete set of
bases of Hd and Hdout . Thus A′ has a complete description of the map in the
subspace; and as a result, has necessarily a greater success probability than A.

P r [1←GUqPUFqUni (λ,A)]⩽ P r [1←G
UqPUF
qUni (λ,A

′)] (4.38)

Therefore from now on throughout the proof, we calculate the success probability
ofA′ who has full knowledge of the subspace, and we bound the success probability
of A via A′. We also note that the adversary cannot enhance their knowledge
of the subspace by entangling their local system to the challenges of the learning
phase since the reduced density matrix of the challenge/response entangled state
lies in the same subspace Hd and Hdout . Hereby, upper-bounding the success
probability of A with the success probability of A′ who has the full knowledge of
the subspace we have also included the possible entangled queries.

Now, we partition the set of all the challenges into two parts: the challenges
that are completely orthogonal to the Hd subspace, and the rest of the challenges
that have non-zero overlap with Hd . We denote the subspace of all the states
orthogonal to Hd as Hd⊥. We analyse the average success probability of A′ in
terms of the following partial probabilities:

P r
|ψ⟩∈Hd⊥

[F (|ω⟩ , |ψout⟩)⩾ δ] and P r
|ψ⟩̸∈Hd⊥

[F (|ω⟩ , |ψout⟩)⩾ δ]. (4.39)

We denote F (|ω⟩ , |ψout⟩) as Fω for simplicity. Since the probability of |ψ⟩ be-
longing to any particular subset is independent of the adversary’s learnt queries,
the success probability of A′ can be written as:

P r [1←GUqPUFqUni (λ,A
′)] = P r

|ψ⟩∈Hd⊥
[Fω ⩾ δ]×P r [|ψ⟩ ∈ Hd

⊥
]

+ P r
|ψ⟩̸∈Hd⊥

[Fω ⩾ δ]×P r [|ψ⟩ ̸∈ Hd
⊥
]

(4.40)

where P r [|ψ⟩ ∈Hd⊥] = 1−P r [|ψ⟩ ̸∈Hd⊥] denotes the probability of the randomly
selected |ψ⟩ being projected into the subspace of Hd⊥ or in other words, have zero
support in Hd . From Lemma 3, we know that this probability for any subspace, is
equal to the ratio of the dimensions. Here Hd⊥ is a D−d dimensional subspace,
thus P r [|ψ⟩ ∈ Hd⊥] = D−d

D and respectively P r [|ψ⟩ ̸∈ Hd⊥] = d
D . Also the proba-

bility is upper-bounded by the cases that the adversary can always win the game
for |ψ⟩ ̸∈ Hd⊥5. So, we have,

P r [1←GUqPUFqUni (λ,A
′)]⩽ P r

|ψ⟩∈Hd⊥
[Fω ⩾ δ]× (

D−d
D
)+

d

D
(4.41)

5This is one of the main reasons that our obtained upper-bound for the universal unforgeability
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Finally, the only remaining term to be calculated is P r
|ψ⟩∈Hd⊥

[Fω ⩾ δ].

We write the expansion of |ψ⟩ ∈ HD in an orthonormal basis for HD as |ψ⟩ =
∑
D
i=1 ci |ei⟩. For any |ψ⟩ ∈ Hd⊥, the set of {|ei⟩}Di=1 can be the a union of the

bases of Hd , i.e. {|e ini ⟩}di=1 and the bases of Hd⊥, i.e. {|e ′i ⟩}Di=d+1. Note that

any state in Hd⊥ is orthogonal to all the |e ini ⟩ states. Thus, we can rewrite as
follows

|ψ⟩=
d

∑
i=1

c ini |e ini ⟩+
D

∑
i=d+1

c ′i |e ′i ⟩ (4.42)

Recall the case of interest is when |ψ⟩ ∈ Hd⊥, and , ⟨ψ|e ini ⟩ = 0. As a result,
c ini = 0 and we have,

|ψ⟩=
D

∑
i=d+1

c ′i |e ′i ⟩ (4.43)

Similarly for the output state |ψout⟩=∑
d
i=1 c

out
i |eouti ⟩+∑

D
i=d+1αi |bi⟩, as the uni-

tary preserves the inner product, couti = ⟨eouti |ψout⟩= ⟨e ini |U†U |ψ⟩= ⟨e ini |ψ⟩=0,
and the correct output state can be written as

|ψout⟩=
D

∑
i=d+1

αi |bi⟩ (4.44)

where {|bi⟩}D−di=1 are a set of bases for Hd⊥out .
Finally, the adversary A′ can produce a forgery written as follows

|ω⟩=
d

∑
i=1

βi |eouti ⟩+
D

∑
i=d+1

γi |qi⟩ (4.45)

where the first part is spanned by the basis of learnt output subspace and the
second part has been produced in Hd⊥out with {|qi⟩}D−di=1 being a set of bases for

Hd⊥out . Based on unitarity argued above, the first part of the state |ω⟩ always gives
a 0 fidelity, and for A′ to optimise the probability all βi should be zero. WHich
makes ∑

D−d
i=1 γi |qi⟩ ∈ Hd

⊥
out where the normalization condition is ∑

D−d
i=1 |γi |2 = 1.

Since |ψ⟩ is an unknown state selected uniformly at random and independent of
the adversary, there are infinite choices for a set of bases orthogonal to {|eouti ⟩}di=1,
there is no unique way for A′ choose or obtain the rest of the bases to complete
the set. As a result, the choice of the |qi⟩ bases are also independent of |e ′i ⟩ or |bi⟩.
In other words, knowing a matching pair of (|qi⟩ , |bi⟩) increases the dimension of
the known subspace by one meaning the adversary has more information than it
is assumed to have.

So, for each new challenge, A′ produces a state |ω⟩=∑
D−d
i=1 γi |qi⟩ with a totally

independent choice of bases. Without loss of generality we can fix the bases |qi⟩

is not tight, as this assumes the cases where adversary always wins with probability 1 if the state has
any non-zero overlap with the sample subspace. Nevertheless, this upper-bound is enough for our
purpose to show the unforgeability. Yet, obtaining tight upper-bounds for universal unforgeability
is an interesting open question.
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for different |ω⟩. To calculate the success probability of A′, we calculate the
fidelity averaging over all the possible choices of |ψ⟩. The unitary transformation
also preserves the distribution, in this case Haar distribution. This leads to a
uniform distribution of all the possible |ψout⟩. As a result, the average probability
taken over all possible |ψ⟩ is equal to the average probability over all possible
|ψout⟩,

P r
|ψ⟩∈Hd⊥

[Fω ⩾ δ] = P r
|ψout⟩∈Hd⊥out

[Fω ⩾ δ]. (4.46)

We now show that A′ also needs to output |ω⟩ according to the uniform Haar
distribution to win the game in the average case with the highest probability. Let
A′ output the states according to a probability distribution D which is not uni-
form. Then, by repeating the experiment asymptotically many times, the correct
response |ψout⟩ covers the whole Hd⊥out while |ω⟩ covers a subspace of Hd⊥out . This
decreases the average success probability of A′. So, the best strategy for A′ is
to generate the states |ω⟩ such that they span the whole Hd⊥out , i.e. generating
them according to the symmetric Haar uniform distribution.

Based on the above argument, and the fact that all the |ω⟩s are produced
independently, we show that the average fidelity over all the |ψout⟩ is equivalent
to the average fidelity over all the |ω⟩. There are different methods for calculating
the average fidelity over Hilbert spaces [ZS05], a common approach is to integrate
over the symmetric measure such as Haar. In our case, the average fidelity can
be formulated as

∫
|ψout⟩∈Hd⊥out

| ⟨ω|ψoutx ⟩|2dµx where dµ is the Haar measure based

on which the reference state has been parameterized. Note that |ω⟩ can be
different for any new challenge. Now we rewrite the above average with the new
parameters:∫

|ψout⟩∈Hd⊥out

F (|ω⟩ , |ψoutx ⟩)dµx =
∫

|ψout⟩∈Hd⊥out

| ⟨ω|ψoutx ⟩|2dµx

=

∫
|ψout⟩∈Hd⊥out

|
D−d

∑
i=1

γi ⟨qi |ψoutx ⟩|2dµx

=

∫
|ψout⟩∈Hd⊥out

|
D−d

∑
i=1

γix ⟨qi |ψout⟩|2dµx

=

∫
|ω⟩∈Hd⊥out

| ⟨ωx |ψout⟩|2dµx

=

∫
|ω⟩∈Hd⊥out

F (|ωx⟩ , |ψout⟩)dµx

(4.47)

We used the fact that fidelity is a symmetric function of two states and the
measure of integral is the same for both cases where either of |ψout⟩ or |ω⟩ are
smoothly parametrized according to the symmetric measure. We use this equality
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for averaging all the possible outputs for one |ψout⟩. We wanted to calculate
the probability of this average fidelity being greater than δ. To this end, we first
calculate more generally, the probability that the average fidelity is non-zero. since
we have P r

|ω⟩∈Hd⊥out
[Fω ̸=0]+ P r

|ω⟩∈Hd⊥out
[Fω =0] = 1, we calculate the probability of the

zero fidelity as follows,

P r
|ω⟩∈Hd⊥out

[Fω = 0] = P r
|ω⟩∈Hd⊥out

[| ⟨ω|ψout⟩|2 = 0]

= P r [

∫
|
D−d

∑
i=1

γix ⟨qi |ψout⟩|2dµx = 0]

= P r
x
[(
D−d

∑
i ,j=1

γixαj ⟨qix |bj⟩)2 = 0]

(4.48)

Based on the Cauchy–Schwarz inequality we obtain the following inequality:

[
D−d

∑
i ,j=1

γixαj ⟨qi |bj⟩]2 ⩾
D−d

∑
i ,j=1

|γixαj |2| ⟨qi |bj⟩|2 (4.49)

where,

D−d

∑
i ,j=1

|γixαj |2| ⟨qi |bj⟩|2 =
D−d

∑
i ,j=1

|γixαj |2| ⟨qi |bj⟩⟨bj |qi⟩|=
D−d

∑
i ,j=1

|γixαj |2| ⟨qi |Πj |qi⟩ |

(4.50)

Overall, we have,

P r
|ω⟩∈Hd⊥out

[Fω = 0]⩾ P r
x
[
D−d

∑
i ,j=1

|γixαj |2| ⟨qi |Πj |qi⟩ |= 0] (4.51)

While the RHS is the probability of |ω⟩ being projected into the orthogonal
subspace of a space that only includes |ψout⟩ averaging over all the projectors.
We use again Lemma 3. Here the dimension of the orthogonal subspace is equal
to D−d−1, since the target subspace is one-dimensional and thus dimension of
the orthogonal subspace needs to be subtracted by 1. We then have,

P r
|ω⟩∈Hd⊥out

[Fω = 0]⩾ P r
x
[(
D−d

∑
i ,j=1

|γixαj |2| ⟨qi |Πj |qi⟩ |) = 0]

⩾
D−d −1
D−d

(4.52)

And as a result,

P r
|ψout⟩∈Hd⊥out

[Fω ̸= 0] = P r
|ψout⟩∈Hd⊥out

[| ⟨ω|ψout⟩|2 ̸= 0]⩽
1

D−d (4.53)
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Which holds for any non-zero δ as well. By substituting back into Eq. (4.41), we
conclude that the success probability of A′ is

P r [1←GUqPUFqUni (λ,A
′)] =

1

D−d × (
D−d
D
)+

d

D
=
d +1

D
(4.54)

And the success probability of A is also bounded by the same bound,

P r [1←GUqPUFqUni (λ,A)]⩽
d +1

D
(4.55)

which completes the proof.

Using this theorem that establishes a bound on the success probability of a
QPT adversary in terms of fidelity, we can now prove a similar result for a general
test algorithm.

Theorem 29. (Any UqPUF provides quantum universal unforgeabil-
ity) Let the test algorithm T be defined according to Definition 12 and
satisfy the condition Err(κ1,κ2) = negl(κ1,κ2). Then any UqPUF =
(QGen,QEval,T ) satisfies quantum universal unforgeability as for any QPT
adversary, the following holds,

P r [1←GUqPUFqUni (λ,A)] = negl(λ). (4.56)

Proof. Let |ψ⟩ be the challenge chosen in the universal challenge phase. Also,
let |ψout⟩ and |ω⟩ be the correct output of the UqPUF and the forgery state
of adversary A, respectively. Also, we assume there exists one copy of |ω⟩, thus
κ1 =1, but the challenger may have κ2 copies stored for verification. The success
probability of A in the game GUqPUFqUni (λ,A) is equal to the probability of the test
algorithm in outputting 1:

P r [1←GUqPUFqUni (λ,A)] = P r [1←T (|ψ
out⟩⊗κ1 , |ω⟩⊗κ2)] (4.57)

We simplify the notation of P r [1← T (|ω⟩⊗κ1 , |ψout⟩⊗κ2)] by substituting with
P r [1← T ]. We also note that all the probabilities are being taken on average
over the uniform choice of the challenge, though we omit the notation. To cal-
culate this probability, we consider two independent cases that leads to output
1. We introduce the parameter δ as the threshold for F (|ω⟩ , |ψout⟩) which helps
us to write the P r [1← T ] as sum of two terms, i.e. the probability of T out-
putting 1 while F (|ω⟩ , |ψout⟩) ≥ δ and the probability of T outputting 1 while
F (|ω⟩ , |ψout⟩)< δ:

P r [1←T ] = P r [1←T ,F (|ω⟩ , |ψout⟩)⩾ δ]+P r [1←T ,F (|ω⟩ , |ψout⟩)< δ]
(4.58)

Let δ = negl(λ). We have,

P r [1←T ] = P r [1←T |F (|ω⟩ , |ψout⟩)⩾ negl(λ)]P r [F (|ω⟩ , |ψout⟩)⩾ negl(λ)]
+P r [1←T |F (|ω⟩ , |ψout⟩)< negl(λ)]P r [F (|ω⟩ , |ψout⟩)< negl(λ)]

(4.59)
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From Theorem 28, we concluded that

P r [F (|ω⟩ , |ψout⟩)⩾ negl(λ)]⩽
d +1

D
(4.60)

where d is the dimension of the subspace spanned by the learnt queries and D=2n

is the dimension of the domain and range Hilbert spaces and n is the number
of qubits in each input/output state. Since the adversary is QPT, the number
of learnt queries and as a result the value of d should be polynomial in n, i.e.
d = poly(n). Also, according to Definition 12, we have,

P r [1←T |F (|ω⟩ , |ψout⟩)< negl(λ)] = Err(κ1,κ2) (4.61)

And,
P r [1←T |F (|ω⟩ , |ψout⟩)⩾ negl(λ)]⩽ F (|ω⟩ , |ψout⟩) (4.62)

Considering the equality cases and due to the fact that P r [F (|ω⟩ , |ψout⟩) <
negl(λ)] = 1−P r [F (|ω⟩ , |ψout⟩)⩾ negl(λ)], the following equation is obtained

P r [1←T ] = Err(κ1,κ2)(1−
d +1

D
)+negl(λ)

d +1

D
(4.63)

Recall that Err(κ1,κ2) = negl(κ1,κ2), d = poly(n) and D=2n and hence d+1
D =

negl(n) and the probability that the test algorithm outputs 1 is computed as

P r [1←T ] = negl(κ1,κ2)(1−negl(n))+negl(λ)negl(n)
= negl(κ1,κ2)+negl(λ)negl(n)

(4.64)

Let λ= f (κ1,κ2,n), therefore we have

P r [1←GUqPUFqUni (λ,A)] = P r [1←T ] = negl(λ) (4.65)

and the proof is complete.

We have shown that general UqPUFs together with a reasonably good quantum
test algorithm, always satisfy universal unforgeability. We note that in deriving this
result, we have mostly used the symmetries and geometry of Hilbert spaces and the
randomness of the selected challenge according to the Haar measure, emphasising
that in the quantum case, unlike the classical regime, the unpredictability of the
qPUF can be proven given its unknownness or single-shot indistinguishability as
a hardware assumption. One can also intuitively infer that any initially unknown
unitary is hard to learn on average, given efficient-size oracle access.

4.4.4 A note on the unforgeability of quantum PUFs with pub-
lic database

As we discussed in the previous section, the randomness of the challenge state,
and the fact that an unknown single copy of it is available for the adversary, plays
an important role in the unforgeability property of qPUFs. We specifically point
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out the close relation to the fundamental limitation of the adversary in copying
a single unknown quantum state with high fidelity. It might appear that using
the no-cloning property of the challenge state, is enough to provide universal un-
forgeability, and one might even be able to achieve unforgeability if the unitary
transformation is fully or partially public. In fact, this was one of the core ideas
in early proposals for using quantum transformation as physical unclonable func-
tions [Sko10, ND17]. In these works, it has been conjectured that an efficient
adversary (QPT) is still incapable of providing a good estimation or guess for the
response state, even if the unitary, or essentially the classical description of all
the potential challenges are known to such adversaries. The given argument is
simply the consequence of the challenge state being unknown and provided as a
single copy, which presumably makes it hard for the adversary to determine the
correct response. In this case, the best strategy would be to measure and esti-
mate the challenge state, which will lead to a small success probability, and as a
result, guessing the response state based on such measurements has accordingly
low success probability. Making a PUF’s database public is motivated since it can
clear the need for securely storing big classical or quantum data.

Nevertheless, in the light of our new cryptanalysis tool, namely the QE, we
note that such observations and conjectures are not in general correct and only
apply to specific attack models such as cases where the adversary is restricted to
only prepare and measure single-qubit quantum states. Against a general QPT
adversary, we show that no unitary qPUF with a public or partially public database
can provide universal unforgeability. This new result is a direct byproduct of
our cryptanalysis of quantum emulation in Chapter 3, thus we present it as the
following corollary.

Corollary 5. Let UqPUF = (QGen,QEval,T idealδ ), be a unitary qPUF with
unitary U of dimension D. Let A be a QPT adversary and let S =(Sin,Sout)
be an efficient-size (poly log(D)) sample set of UqPUF including challenge
and response pairs respectively, known to A. Let Hd be the subspace fully
spanned by S. For any challenge state |ψ⟩ selected from any arbitrary
distribution over Hd , A can produce a state |ω⟩, with a very high fidelity
compared to U |ψ⟩. Therefore UqPUFs in this setting do not provide uni-
versal unforgeability.a

aWe note that the use of the term universal unforgeability here is slightly informal
and different from the universal unforgeability as formally defined in Game 3 since here
the challenge is selected from an arbitrary distribution over a subspace rather than being
selected from Haar measure over the full space. However, we deliberately use the same
expression, as it captures the same notion as the universal unforgeability where the challenge
is being selected by the challenger and not the adversary. Only here, the selection of the
challenge state is from a different space and distribution.

Proof. Let the database include q quantum input-output query pairs. Let A run
a q-block QE using S. Since, |ψ⟩ is fully spanned by S or alternatively by the full
basis of Hd , then the quantum emulation algorithm can emulate the output of
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|ψ⟩, i.e. UqPUF |ψ⟩ with an almost 1 fidelity according to Theorem 11. Thus this
output passes any test algorithm with an overwhelming probability.

As a result of the above corollary, it is fairly obvious that an efficient adversary
can always successfully emulate the response of the UqPUF if the database is
publicly known since they can locally build the set S, from which the challenge
state is selected, and win the universal unforgeability game with probability almost
close to 1. Note that a universal quantum emulator is an efficient quantum
algorithm, hence can be run by a QPT adversary. More importantly, the above
result states that, in all cases where the adversary has a considerable amount
of knowledge over an efficient subspace from which the challenge is selected, the
quantum emulation attack can be performed on the unknown challenge, leading to
a high fidelity forgery state and breaking unforgeability, even though the challenge
state is unclonable.

4.5 Discussion and conclusions

We have formally defined quantum physical unclonable functions, as a new notion
of unclonability. We established the minimum requirements and conditions to be
satisfied at a hardware level such that a unitary transformation qualifies as a qPUF.
In doing so, we have also studied the connection between unknownness, physical
unclonability and no-cloning of unitary transformations. We have then analysed
the unforgeability of qPUFs as their property of interest, both for understanding
them as cryptographic primitives and from the application point of view. We
proved that even though no qPUF can be exponentially or existentially unforgeable,
our proposed general notion of unitary qPUF, provided the unknownness, always
satisfies universal unforgeability that has a close connection with the unlearnability
of these primitives efficiently. We now briefly discuss the relationship between our
proposal and other types of PUFs, as well as the open questions and direction for
future works.

First, we briefly discuss the relevance of our framework and result for cPUFs.
As mentioned before, input-output pairs of a cPUF are bit-strings. Most of the
available cPUF structures use digital encoding as their inputs and outputs. As
a result, they can easily be integrated with other functionalities in Integrated
Circuits (ICs). Considering encoding of such bit strings in the computational
basis of a Hilbert space, the cPUFs can be considered as special types of UqPUFs.
Given a quantum oracle access to such PUFs, they can be studied under the
quantum security model as discussed in Chapter 3, queried with quantum states.
In this model, our no-go result stating that no UqPUF provides quantum existential
unforgeability can be extended to cPUFs, showing that they are also unable to
provide this level of unforgeability for µ ̸= 1.

Another interesting point of comparison is to compare the assumptions that
lead to unforgeability for qPUFs and cPUFs. According to [AMSY16], the min-
entropy requirement (which imposes that the cPUF responses are linearly indepen-
dent) is the main requirement of a cPUF which leads to existential unforgeability
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[AMSY16] against classical adversaries with no quantum access to the cPUF.
However, this requirement cannot be achieved with most of the common cPUF
structures as shown in [GTFS16, RS14, RSS+10, KG19]. On the other hand,
qPUFs only need the basic assumption on PUFs that let the behaviour of PUF
be unknown to anyone [RH14]; and under that assumption, they can achieve a
slightly weaker notion of unforgeability, yet against much stronger adversaries with
quantum capabilities.

It is worth mentioning that in theory, UqPUFs (and as a result, cPUFs in
the quantum security model) can still achieve existential unforgeability for µ= 1.
Nevertheless, finding physical structures and systems that provide this level of
unforgeability is still an open question. To the best of our knowledge, there is
no study on the quantum security of cPUFs in the literature. We emphasise that
given the speedy progress in quantum technology the investigation of the security
of cPUFs against quantum adversaries is crucial. The security of silicon cPUFs
and the other types of cPUFs that cannot be queried by quantum states can be
explored in the post-quantum (or standard) security model where the quantum
adversary has only classical interaction with the primitive while they are equipped
with a quantum computer. However, for the other types of cPUF structures like
optical PUFs that can naturally be queried with quantum states, the security of
cPUFs needs to be analysed in the quantum security model with quantum access
to the cPUF oracle.

Another main category of PUFs is Quantum Read-out PUFs (QR-PUFs).
Since they are also modelled via unitary transformations, they can be naturally
compared to UqPUFs. The original definition of QR-PUFs considered quantumly-
encoded challenge-response pairs. [Sko10, Sko12]. The security of QR-PUF-
based identification protocols has been investigated in specific and limited se-
curity models, such as prepare-and-resend adversaries in [Sko10, Sko12, ND17,
GHM+14, SMP13, Nik18, FNAF19] where either the full unitary transformation
or equivalently the classical description of QR-PUF responses for any known chal-
lenge, is assumed to be public knowledge. The security of such PUF-based pro-
tocols relies on the bounds for estimating an unknown quantum challenge sent by
the verifier.

Although our current framework as it is, will not be directly applicable to all
sorts of protocols and scenarios in which QR-PUFs are defined and used due
to specific sets of assumptions and adversarial models considered in these sce-
narios, we believe that QR-PUFs as a stand-alone primitive can be studied in
our proposed framework. Following section 4.4.4, we discuss an extended class
of such qPUFs which we call Public-Database PUFs (or PDB-PUFs). They in-
clude any PUF that can be queried with quantum (or quantumly encoded) chal-
lenges, producing quantum responses and are modelled by a publicly known unitary
transformation or a public database equivalently. Our framework provides secu-
rity notions against general and quantum adversaries in the standard game-based
model. Hence we can also investigate the security of PDB-PUFs, by relaxing
the unknownness condition for this class. Corollary 5 shows that no PUF in
this class can provide universal unforgeability (and existential unforgeability). Yet
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interestingly, the constructions proposed for such PUFs can be potential can-
didates for secure qPUFs (such as the optical qPUF presented in [ND17]), by
removing the assumption of the public database while ensuring that the challenge
subspace is unknown to the adversary. It is worth mentioning that the feasi-
bility of other quantum attacks with current technologies has been discussed in
[Sko10, Sko12, GHM+14, SMP13, Nik18, FNAF19]. However, it remains an in-
teresting inquiry whether the quantum emulator attack can also be demonstrated
on NISQ quantum devices.

Furthermore, we note that given that our bounds for universal unforgeability
are not tight, it leaves a space for exploring the possibility of universal unforgeabil-
ity under more efficient challenge sets. We will show an example of this in the next
chapter. Finding tight bounds for the unforgeability of qPUFs and more generally,
quantum primitives is yet another attractive and challenging open problem. Later
on, in Chapter 6, we will see that toolkits from quantum information theory such
as entropic uncertainty relations and data processing inequalities are useful and
powerful tools to prove similar results for specific constructions and we, therefore,
suggest that the proposed problem and supervised learning can be both attacked
using similar tools. Information-theoretic bounds for quantum vs classical machine
learning has been also studied in [HKP21]. Considering the close relationship be-
tween unforgeability and learning problems, we believe this work can assist uncover
tighter universal forgery bounds for qPUF and other general quantum primitives.

An important complementary question that we left open is the design of con-
crete qPUF constructions based on the proposed formal framework. Developing
sufficiently secure constructions for quantum PUF would be much more compli-
cated than their classical counterparts as one needs to deal with many complica-
tions of the quantum world such as noise and decoherence. One of the impor-
tant steps in this route is to study non-unitary qPUFs while relaxing the strong
collision-resistance requirement to a weaker version. Such qPUFs will allow for
more general noise models, and if proven to be secure, they will push the practical
construction of qPUFs one step further towards experimental realisation. Another
challenge in the way of industrialising qPUFs is the need for quantum memory for
some of the qPUF-based protocols. It is an interesting question to what degree
this resource can be reduced or even removed in different protocols. We will try
to address this question to some extent in Chapter 6.

Finally, certification of qPUFs brings up compelling questions that are both of
theoretical and practical interest. One example is to develop new efficient tech-
niques for certifying the effective dimensionality of quantum black-box primitives
such as UqPUFs. These techniques will not only be beneficial certification tools
for qPUFs in practice but can also be new toolkits for certification more generally.

4.5.1 Subsequent works

To round off this chapter, let us briefly mention a few related works which ap-
peared after the completion of the work presented in this chapter. Firstly, in
[KMK21] a circuit-based construction has been proposed for qPUFs. The con-
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struction uses t-designs to accomplish the functionality of UqPUFs as well as
showing the requirements of qPUFs are satisfied. Although this specific construc-
tion does not provide physical unclonability against the manufacturer due to the
gate-based construction, it can be used against third-party adversaries (and not
the manufacturer).

Another proposal for achieving physical unclonability via quantum devices is
given in [PSA+21]. In this work, the concept of a Classical-Readout QPUF (CR-
QPUF) has been introduced where a quantum device is queried classically. Such
PUFs aimed to utilize the noisy behaviour of quantum devices as the main source
of physical unclonability and to remove the requirement for a quantum memory
in the qPUF-based authentication protocols. In the proposed protocol, the chal-
lenge is a classical description of a parameterized unitary, which runs on a quantum
computer. Then, the mean value of the measurement outcome over the qubits
in the computational basis has been taken to be the response. In the proposed
protocols both challenges and responses are communicated over a classical chan-
nel. Even though this construction seems practically feasible and interesting, one
can debate that considering the mean-value as the response, will most probably
substantially reduce the security as a consequence of shrinking the response space
to a high degree. Later in [PPS21], the authors will show that this observation is
correct and such PUFs can be efficiently learned using machine learning methods.
Another appealing aspect of the work in [PPS21] is that it formalises the class of
Classical Readout Quantum PUFs (CR-QPUFs) using the statistical query (SQ)
model that seems another promising approach to studying non-unitary PUFs with
underlying quantum properties. The modelling attack proposed in this work explic-
itly shows the insufficiency of this class by successfully implementing the attack
on the QCIBM quantum machine.

The research on authentication protocols using optical PUFs also continued in
the two following works [WCL+21, Nik21] demonstrating experimental realisation
of photonic PUFs in specific authentication protocols.





5

Connection Between Quantum
Pseudorandomness and Quantum

Hardware Assumptions

“Unforeseen surprises are the rule in science, not the exception. Re-
member: Stuff happens.”

– Leonard Susskind

5.1 Introduction

In the previous chapter, we have thoroughly studied the concept of physical unclon-
ability, and quantum physical unclonable functions as hardware assumptions. We
have also proved several results about their main cryptographic properties. Fur-
thermore, in the course of the last two chapters, we have attempted to disclose the
fundamental connection between the notions of unclonability and randomness. In
this chapter, we turn into another stimulating key concept in cryptography, namely
pseudorandomness, and we show the relationship between this notion and physical
unclonability, or even more generally, hardware assumptions.

Pseudorandomness is one of the most fundamental concepts in cryptogra-
phy and complexity theory. In contrast to true randomness, it captures the no-
tion of primitives that behave randomly to the computationally-bounded observers
[Yao82, Sha83, BM84]. Pseudorandom objects like pseudorandom number gen-
erators (PRGs) and pseudorandom functions (PRFs) play a crucial role in design-
ing classical symmetric key cryptographic protocols for secure communications
[GGM86, HILL99, LR88, Rom90]. These pseudorandom objects can be designed
by exploiting the algebraic properties of families of keyed functions like keyed
hash functions. Nevertheless, constructing these pseudorandom objects is chal-
lenging and usually relies on some computational assumptions. Recently Ji, Liu,
and Song [JLS18] introduced the concept of quantum pseudorandomness as a
quantum analogue of this concept by introducing pseudorandom quantum states
(PRS, Definition 19) and pseudorandom unitaries (PRU, Definition 20). These are
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families of states or unitary transformations indistinguishable from Haar measure
(true random measure) to any quantum computationally-bounded observer. Even
though quantum pseudorandomness is a very new field of research, it has already
found many applications in cryptography [JLS18, AMR20, BS20, MY21, AQY22],
complexity theory [Kre21, BCHJ+21], learning theory [HBC+21], and high energy
physics [BFV19, KTP20]. The existing PRS schemes are constructed under com-
putational assumptions such as quantum-secure PRFs or quantum secure one-way
functions [BS20, JLS18]. An interesting question arises here: Whether quan-
tum pseudorandomness can be achieved under different sets of assumptions, for
instance, hardware assumptions? In this chapter, we mainly try to address this
question. Given our specific interest in qPUFs, as a well-defined hardware assump-
tion, we mostly focus on them and for the first time, we show the construction
of quantum pseudorandom unitaries from quantum PUFs and vice-versa. We also
point out that in the classical world, the relationship between PUFs and pseudo-
randomness has also been studied [RSS09] and it would be interesting to see if
such a relationship also exists in the quantum setting.

Understanding this connection not only provides a deeper understanding of
quantum pseudorandomness itself but also can substantially improve the con-
struction of qPUFs and qPUF-based applications as well. Let us give an example.
In the previous chapter, we have seen that a Haar-random family of unitaries can,
by definition, be a family of secure qPUFs. Nonetheless, sampling Haar-random
unitaries and states requires exponential resources [Kni95, NZO+21] and hence
is experimentally challenging [CHS+15]. Moreover, the challenge distribution for
universal unforgeability is required to also be Haar. If PRSs, can be used within the
framework of universal unforgeability as a challenge set, a considerable improve-
ment will occur in the practicality of any universally unforgeable scheme, including
quantum PUFs.

In this work, we make substantial progress in the challenges mentioned above.
Firstly, we show that PRS can replace the Haar-random assumption in the chal-
lenge state’s selection for universal unforgeability. We further show that PRUs
can be used as a viable candidate for qPUFs. This result provides yet another
novel and efficient technique for constructing qPUFs.

Concerning our first question about alternative ways of constructing quantum
pseudorandomness, we show that a qPUFs family can also be a family of PRUs.
This, in turn, makes them special physical generators of pseudorandom quantum
states.

Later, we give a novel construction of PRUs by exploring yet another hardware
requirement, i.e. the uniqueness property. This result is shown generally for any
family of unitary matrices with a certain specified degree of uniqueness, not only
qPUFs. And as long as the uniqueness property can be assumed at a hardware
level, it relates a hardware assumption to quantum pseudorandomness. Informally,
we prove that any family of unitary transformations over d-dimensional Hilbert
space satisfying almost-maximal uniqueness in the diamond norm is also a PRU
family for sufficiently large d . Hence any PUF family satisfying this degree of
uniqueness, is also a PRU.
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Figure 5.1: Pictorial summary of the results: The left-hand figure demonstrates Theorem 30
stating that universal unforgeability of unknown unitaries can be achieved efficiently using PRSs.
The right figure depicts the relationship between unknown unitaries (UUs), quantum physical
unclonable functions (qPUFs), pseudorandom unitaries (PRUs) and families of almost maximally-
distanced unitaries ({Uk}maxd) proved in Theorem 31, Theorem 32, Theorem 33, and Theorem 34.
It also shows that they can be used as generators for PRSs.

Our investigation in this chapter helps establish a close connection between
these two new fields and gives us novel insights into both physical unclonability
and quantum pseudorandomness. A summary of our results is shown in Fig. 5.1.
We are optimistic that the connections we foster here will enrich both fields.

5.1.1 Structure of the chapter

We begin the chapter with a question: Is it possible to have universal unforgeabil-
ity with a PRS challenges set instead of a Haar-random state without losing any
security guarantee? In Section 5.2, we give a positive answer to this question with
a formal security proof. In section 5.3, we show that one can construct a family
of unknown unitaries from PRUs, which gives a potentially efficient proposal for
constructing a family of qPUFs. Finally, in section 5.4, we show that given hard-
ware assumptions such as uniqueness and unknownness, one can achieve quantum
pseudorandomness, which completes our picture.

5.2 Efficient unforgeability with PRSs

In this section, we investigate the problem of universal unforgeability with effi-
ciently producible pseudorandom quantum states. As specified in the universal
unforgeability framework in Chapter 3, the challenge states should be picked at
random from Haar measure by the challenger. This is an important condition
for the unforgeability of unknown unitary transformations. Since producing Haar
random state is a challenging and resource-intensive task, to take the first step
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towards the realization of universally unforgeable schemes, we attempt to replace
this condition with its computational equivalent, i.e. the notion of PRS, intro-
duced in Chapter 2 (Section 2.5.5). We first relax this condition by defining a
variant of the universal unforgeability game, namely quantum Efficient Universal
Unforgeability (qEUU) where the challenger picks the challenge states from a
pseudorandom family of quantum states. Then we formally prove that unknown
unitaries satisfy this notion of unforgeability. Furthermore, we briefly discuss how
such pseudorandom quantum states can be efficiently generated using classical
pseudorandom functions.

We define efficient universal unforgeability as follows:

Definition 43 (quantum Efficient Universal Unforgeability (qEUU)). Let
Game Gef fqUni be the same as Game 3, except that in the challenge phase,
the challenge states are being picked from the PRS family of states with
a generation algorithm G(k) with a key k ∈ K, run in the setup phase. A
primitive provides efficient quantum universal unforgeability if the success
probability of any QPT adversary A in winning the game Gef fqUni is negligible
in the security parameter λ,

P r [1←Gef fqUni(λ,A)] = negl(λ) (5.1)

For the purpose of our proof, we also rewrite the pseudorandomness property of
the PRS as a game which we formalized in the following:

PRS distinguishability game

Game 4. LetH be a Hilbert space and K the key space. The dimension ofH
and size of K depend on the security parameter λ. Let {|φk⟩ ∈ S(H)}k∈K
be a keyed family of quantum states with efficient generation algorithm
G(k) = |φk⟩ on input k . We define the following distinguishability game
between an adversary A and a challenger C:

Setup phase. The challenger C selects k $← K and b
$← {0,1} at

random.

Challenge phase.

– If b = 0 (PRS world): C prepares m copies of |φ0⟩ = |φk⟩ by
running G(k).

– If b= 1 (Random world): C prepares m copies of a Haar-random
state |φ1⟩= |ψ⟩.

– C sends |φb⟩⊗m to A.

Guess phase. A guesses b.

We now establish our main result regarding efficient unforgeability of unknown
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unitary primitives.

Theorem 30. Any unitary transformation U selected from a family of
unknown unitaries satisfies quantum efficient universal unforgeability
against any QPT adversary.

Proof. We prove this theorem by contraposition in a game-based setting. We
want to show that starting from the assumption of pseudorandomness of PRS in
the efficient universal unforgeability game, if there exists a QPT adversary who
succeeds to win this game, with non-negligible probability, there will also exist an
adversary who can efficiently distinguish between PRS and Haar random states,
which is in contrast with the initial assumption and as a result show a contradiction.
First, we need to specify the following games:

• Game 1: This is the universal unforgeability game as specified in Game 1,
with the only difference that the challenge state ρ∗ = |φk∗⟩⟨φk∗ | is chosen
from a PRS family.

• Game 2: This is the PRS distinguishability game as specified in Game 4.1

• Game 3: This is a variation of Game 4 where C in addition to initial resources,
has also access to a publicly known and implementable unitary U. In the
challenge phase, C does the following: Generates m copies of |φ0⟩ = |φk⟩
using G(k), or m copies of Haar random states |φ1⟩= |ψ⟩ depending of b,
then on each copies applies the public unitary U and sends (U |φb⟩)⊗m to A.
The rest of the game is similar to Game 2.

• Game 4: This game is similar to Game 3, except that C publicly chooses an
l and l ′ such that l+ l ′ =m and sends l copies of the generated state and l ′

copies of the state after applying the unitary U, i.e. sends |φb⟩⊗l⊗(U |φb⟩)⊗l ′

to A.

• Game 5: This game is similar to Game 4 except the public unitary has been
replaced by an unknown unitary Ũ of the same dimension. Hence in this
game, similar to Game 1, we also assume a learning phase for A before the
challenge phase. The learning phase is as follows: A issues q = poly(λ)
queries {ρi}qi=1 to C, on each query C generates ρouti = Ũρi Ũ

† by applying
the unitary on the query state and sends ρouti to A. Then the rest of the
game is similar to Game 4 and at the end of the challenge phase A receives
|φb⟩⊗l ⊗ (Ũ |φb⟩)⊗l ′

1One small remark is that in PRS game, the unitary is picked inside the game, while the universal
unforgeability game takes the unitary as part of the primitive and hence applies to any selected
unitary. However, since we will show that our result applies to all unknown unitary matrices, it will
also hold in the average case. Thus we drop this distinction in the course of the proof to avoid
confusion.
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Universal Unforgeability

(with Haar-random challenge) 

Game 2

PRS distinguishability

Game 3
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Game 3 + 
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⨂෩𝑈| ൿ𝜙𝑏 ⨂𝑙′

Game 1

Efficient Universal Unforgeability

(with PRS challenge)

Figure 5.2: Proof sketch of Theorem 30 with the intermediate games.

Figure 5.2 illustrates the sketch of the proof. We first show that Game 2, Game
3 and Game 4 are equivalent. We note that unitary transformations are distance
invariant and hence they also preserve the distribution of states, as a result applying
a unitary to the state will not affect the distribution and the distinguishability of the
quantum states, and as a result Game 2 and Game 3 are equivalent. Furthermore,
in Game 4, since the unitary is public, A can either apply U on the first l copies
|φb⟩⊗l and end up with m copies of (U |φb⟩)⊗m or alternatively apply U† on the
next l ′ copies (U |φb⟩)⊗l ′ and get m copies of |φb⟩⊗m, and hence be reduced to
either Game 2 or Game 3. As a result, we have

Game 2≡ Game 3≡ Game 4 (5.2)

Now we show that Game 4 implies Game 5 i.e. if an adversary wins distinguisha-
bility in Game 5 with probability p, they will also win in Game 4 with the same
probability.

The proof is straightforward as highlighted here. Let A be an adversary who
wins Game 5, which means after the learning phase leading to a polynomial-
size database of input-outputs of the unknown unitary Ũ, and receiving |φb⟩⊗l ⊗
(Ũ |φb⟩)⊗l ′, they can guess b with non-negligible probability better than random
guess:

P r
|φb⟩
[b←A(|φb⟩⊗l ⊗ (Ũ |φb⟩)⊗l

′
)] =

1

2
+non-negl(λ). (5.3)

Now let’s assume an adversaryA′ who plays Game 4 and has to guess b by receiving
the state |φb⟩⊗l ⊗ (U |φb⟩)⊗l ′ can guess b with same l and l ′ where U is a public
unitary. Now A′ can run A as a subroutine and A′ sends to A the response to
the same learning phase states from U. Since U is public A′ can run it locally and
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produce the required queries. Then A′ also sends the state |φb⟩⊗l⊗(U |φb⟩)⊗l ′ to
A and since A guesses the b with a probability non-negligibly better than half, so
does A′. As a result, we have shown that:

Game 4⇒ Game 5 (5.4)

Finally, we show that Game 5 implies Game 1. By contradiction, we assume there
exist an adversary A who wins the unforgeability game with non-negligible prob-
ability. Let Ũ be the unknown unitary and A’s forgery state be |ω⟩ and let the
challenge state of Game 1 be a PRS state |φk⟩. We have:

P r [1←Gef fqUni(λ,A)] = P r
k
[1←T (|ω⟩ ,(Ũ |φk⟩)⊗κ)]

= P r
k
[F (|ω⟩ , Ũ |φk⟩) = non-negl(λ)]

= non-negl(λ).

(5.5)

Now we construct an adversary A′ playing an instance of Game 5 where l = 1 and
l ′ =m−1. In the learning phase A interacts with the unknown unitary Ũ with the
same learning phase states required for A and sends the query states {ρouti }

q
i=1

together with the challenge state |φb⟩ to A. Then A produces the forgery |ω⟩ as
his guess for Ũ |φb⟩. Now A′ verifies |ω⟩ with the same test algorithm T where
κ =m−1, since A′ has m−1 copies of Ũ |φb⟩ to check with. Then A′ outputs
the same b as outputted by the T . The success probability of A′ is as follows.
If b = 0, the state is a PRS and the contradiction assumption is satisfied. Hence
A’s forgery state will pass the test algorithm with high probability. On the other
hand if b = 1, the state has been picked from Haar measure and as a result of
Theorem 29, the success probability of A winning the forgery game and producing
a state to pass the test is negligible. Since guessing b in Game 5 with probability
better than random guess is equivalent to the difference between the success
probability of A′ in winning the game in the two different scenarios, we have:

| P r
k←K
[A′(|φk⟩⊗ (Ũ |φk⟩)⊗m−1) = 1]− P r

|ψ⟩←µ
[A′(|ψ⟩⊗ (Ũ |ψ⟩)⊗m−1) = 1]|

= | P r
k←K
[A(|φk⟩) = 1]− P r

|ψ⟩←µ
[A(|ψ⟩) = 1]|

= non-negl(λ)−negl(λ) = non-negl(λ)

(5.6)

Here, as a concrete example, we can consider the GSWAP to be the equality
test and, we show how this check can efficiently be performed to show the gap
and hence the implication of the two later games. Let us denote the adversary’s
purified forgery state as |ωb⟩. According to Eq. (2.67), the probability of the
GSWAP accepting this state given m−1 copies of reference state Ũ |φb⟩, has the
following relation with the fidelity of the forgery state:

Pr[GSWAP accept] =
1

m
+
m−1
m

F (Ũ |φb⟩ , |ωb⟩)2 (5.7)

Assuming A wins the unforgeability game for PRS state with non-negligible prob-
ability implies that this fidelity is a non-negligible value in the security parameter,



162 5. Connection Between Quantum Pseudorandomness and Quantum Hardware Assumptions

hence F (Ũ |φ0⟩ , |ω0⟩) = δ = non-negl(λ). On the other hand, for Haar-random
state this fidelity is always a negligible value and we have that F (Ũ |φ1⟩ , |ω1⟩) =
negl(λ). As a result the difference between A’s success probability in the two
cases is as follows:

| P r
k←K
[A′(|φk⟩⊗ (Ũ |φk⟩)⊗m−1) = 1]− P r

|ψ⟩←µ
[A′(|ψ⟩⊗ (Ũ |ψ⟩)⊗m−1) = 1]|

=
1

m
+
m−1
m

F (Ũ |φ0⟩ , |ω0⟩)−
1

m
+
m−1
m

F (Ũ |φ1⟩ , |ω1⟩)

=
m−1
m
(δ−negl(λ))≈

m−1
m

δ = non-negl(λ)

(5.8)

As a result, we have shown that there exist a non-negligible gap and hence A′
can also win the Game 5. In conclusion, we have shown the following relation:

Game 2≡ Game 3≡ Game 4⇒ Game 5⇒ Game 1 (5.9)

This means that an adversary winning the unforgeability game, with the challenge
being picked from a PRS family, can also distinguish PRS states from Haar random
states which is a contradiction and concludes the proof.

We have formally shown that PRS states are enough to achieve quantum uni-
versal unforgeability. For completeness let us briefly discuss the construction of
these states with the existing proposals. Ji, Liu, and Song [JLS18] propose several
constructions for generating a PRS family using classical quantum-secure PRFs.
Hence, they show that PRS can be constructed under the assumption that a
quantum-secure one-way function exists. Another similar notion called Asymptot-
ically Random State (ARS) has also been introduced in [BS19]. In both works,
first, oracle access to a classical random function is given to efficiently construct a
PRS, indistinguishable from Haar random states even for exponential adversaries.
Then by relying on the existence of quantum-secure one-way functions, they re-
place the truly random function, with a post-quantum secure PRF to achieve
security against polynomial adversaries. With this approach, one can construct
computationally secure n-qubit PRS, which is also desired for the unforgeability
security property. However, as discussed in [BS20], these methods are not scal-
able and an n-qubit PRS generator cannot necessarily be employed to produce a
random state for k-qubit where k < n. For these reasons, in [BS20] the authors
introduce a scalable construction for PRSs which, unlike prior works, relies on
randomising the amplitudes of the states instead of the phase. The authors use
Gaussian sampling methods to efficiently achieve PRSs.

5.3 From pseudorandom unitaries to UU and UqPUFs

We prove that a family of unitaries satisfying the computational assumption of
PRU is also a family of unknown unitary transformations. As a result of this impli-
cation, efficient constructions such as PRU or t-design can also satisfy the notion
of universal unforgeability. Moreover, this result establishes for the first time, a
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link between a computational assumption of PRU with a hardware assumption
such as unknownness.

Theorem 31. A family of PRUs, U = {Uk}k∈K is also a family of unknown
unitary (UU).

Proof. We prove this by contradiction. Let U be a family of PRUs but not a family
of UU which means that there is a quantum polynomial-time (QPT) adversary A
who can estimate the output of a randomly picked U ← U where U is a family
of UU, on a state |ψ⟩, non-negligible better than the output of a U ← µ picked
from a Haar-random unitary µ over a d-dimensional Hilbert space. Thus for A
the following holds:

| P r
U←U
[F (A(|ψ⟩),U |ψ⟩)⩾ non-negl(λ)]− P r

Uµ←µ
[F (A(|ψ⟩),Uµ |ψ⟩)⩾ non-negl(λ)]|

= non-negl(λ).
(5.10)

Let A’ be a QPT adversary who aims to break the pseudorandomness property of
U using A, and works as follows:
A’ picks |ψ⟩ as one of her chosen inputs in the learning phase of the pseudoran-
domness game. Then A’ also runs A internally on |ψ⟩.
From the previous equation, we know that A can estimate the output of U |ψ⟩
better than Uµ |ψ⟩ where Uµ is a Haar random unitary, by a non-negligible value.
Also by definition, we know that the probability that any QPT algorithm estimates
the output of any Haar randomly given unitary, is negligible, as the response
maps to any random state in the Hilbert space Hd with exponential distribu-
tion [DCEL09, NC10]. Thus the equation implies that:

| P r
U←U
[F (A(|ψ⟩),U |ψ⟩)⩾ non-negl(λ)]|= non-negl(λ). (5.11)

Meaning that A can estimate the output with non-negligible fidelity if U had been
picked from the family. Now A’ runs a quantum equality test on U |ψ⟩ obtained
in the learning phase and A(|ψ⟩). In the case where U is picked from the PRU
family, the estimated output and the real output have non-negligible fidelity, and
the test returns equality with a non-negligible probability. Otherwise, the test
shows they are not equal, and A’ can conclude that the unitary has been picked
from Haar unitaries. Thus for A’, we have:

P r
U←U
[A′U(1λ) = 1]− P r

Uµ←µ
[A′Uµ(1λ) = 1] = non-negl(λ) (5.12)

Therefore we conclude the contradiction.

We have shown that PRUs imply unknown unitaries, and combined with the
results from the previous chapter, we conclude that PRUs make a set of universally
unforgeable unitaries. Now we show that PRU can also be considered a qPUF
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family. To do this, we need to show that the PUF requirements given in Defi-
nition 39 are satisfied. Since the δr -Robustness and δc -Collision Resistance are
trivially satisfied by the unitarity, we only need to argue about the δu-Uniqueness
requirement.

Theorem 32. Let U = {Uk}k∈K be a family of PRUs, where each Ui is a uni-
tary matrix over a d-dimensional Hilbert space and is universally-unforgeable.
Then there exist a δu = non-negl(λ) = non-negl(poly log(d)) such that U
satisfies δu-uniqueness.

Proof. We prove by contraposition and we assume that there exists no non-
negligible δu to satisfy δu-uniqueness. This means that for any two unitary
Ui and Uj picked uniformly at random from U , the two unitary are ζ-close in
the diamond norm with a high probability. Otherwise if there exist a minimum
ζmin = non-negl(λ) distance in diamond norm between any two unitaries we have
already shown the δu exists. Hence we assume that we have the following condi-
tion:

P r [∥ (Ui −Uj)i ̸=j ∥⋄⩽ ζ]⩾ 1−ε(λ) (5.13)

where both ζ and ε(λ) are negligible functions in the security parameter. Now
we assume an adversary A wants to distinguish between U and the set of Haar-
random unitaries. By assumption, we have that all the unitaries in U are universally
unforgeable. So now we let A play the PRU game2 while running the universal
unforgeability game as a distinguishing subroutine. Let C be the honest party
picking at random a bit b ∈ {0,1} where if b = 0, a unitary U is picked at random
from U and we are in the PRU world and otherwise U is picked from µ that denotes
the set of Haar-random unitary matrices. Then A gets polynomial oracle access
to the U and after the interaction, needs to guess b. Now, since there exists
an efficient public generation algorithm Q for the PRU set, we let the adversary
sample another unitary U ′ from Q locally and uniformly at random. According to
the contraposition assumption give in Eq. (5.13), if b = 0, with high probability
these two unitaries are ζ-close in the diamond norm, i.e. ∥ (U−U ′) ∥⋄⩽ ζ. Given
this promise, the adversary performs the following strategy: A locally plays the
universal unforgeability game on U, by picking a state |ψ⟩ uniformly at random
from Haar measure and querying it to C as part of the polynomial oracle interaction
with U. A will receive U |ψ⟩ and can ask for multiple copies of it so long as the
total number of queries to the oracle remains polynomial. Now we also rely on
the fact that since PRU has the efficient computation property, meaning that A
can locally compute U ′ |ψ⟩ to get multiple copies. Now A’s strategy to win the
unforgeability game is to output U ′ |ψ⟩ as the forgery for |ψ⟩.

Again in the case of b = 0, since the two unitaries are negligibly close in the
diamond norm with a high probability we have the following:

P r [∥ (U−U ′) ∥⋄⩽ ζ]⩾ 1−ε⇒ P r [F (U |ψ⟩ ,U ′ |ψ⟩)⩾ 1−ζ]⩾ 1−ε (5.14)
2Which is the indistinguishability game version of the pseudorandomness property, similar to

Game 4
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This holds since the diamond norm is defined as a maximum over all density
matrices. Therefore, if the two unitaries are very close in the diamond norm, their
output over a random state is also very close on average. Thus, the adversary can
run a local efficient verification test (for instance, a GSWAP test) between U ′ |ψ⟩
and U |ψ⟩ and use the output of the test as a distinguisher between pseudorandom
and Haar-random world. If b = 0, we have:

P r [F (U |ψ⟩ ,U ′ |ψ⟩)⩾ 1−ζ]⩾ 1−ε⇒ P r [1←GU
′

qUni(λ,A)] = non-negl(λ)
(5.15)

Hence A will win the game with a high probability. However, in the case of b = 1
where U is a Haar-random unitary, we can use a lemma in [Kre21], that states for
a fixed state |φ⟩ ∈ Hd and a Haar-random state |ψ⟩ ← µ, and any ε > 0 we have:

P r
|ψ⟩←µ

[| ⟨φ|ψ⟩|2 ⩾ ε]⩽ e−εd (5.16)

This implies we can take U ′ |ψ⟩ = |φ⟩ to be the fixed state. Since U is a Haar-
random unitary then U |ψ⟩ is also a Haar-random state and hence the proba-
bility that the fidelity F (U |ψ⟩ ,U ′ |ψ⟩) is a non-negligible value (with respect to
poly log(d)) such as 1− ζ, is exponentially low. Hence in case b = 1, the proba-
bility that the adversary’s state passes the verification is exponentially low. Hence
using this strategy, there will always be a distinguisher that can distinguish between
U and Haar-random unitaries i.e.:

P r
U←U
[A′U(1λ) = 1]− P r

Uµ←µ
[A′Uµ(1λ) = 1] = non-negl(λ) (5.17)

But this is in contrast with the assumption that U is a PRU. Hence we have
reached a contradiction, and the proof is complete.

5.4 Pseudorandom unitaries and states from hard-
ware assumptions

As discussed earlier pseudorandom quantum states can be constructed under the
assumption of qPRF or quantum one-way functions. Given the relationship that
we have explored in the previous section between the unforgeability of qPUF and
quantum pseudorandomness, here we ask whether it is possible to construct pseu-
dorandom quantum states under a different set of assumptions? In this section,
we discuss how one can achieve PRUs and PRSs under hardware assumptions on
a family of unitary transformations. These hardware assumptions are generally
discussed in the context of quantum PUFs, nevertheless, our results can be in
general applied to any sets of unitaries with the given properties.

Let U = {Ui}Ki=1 be a family of unitaries, where each Ui is a unitary matrix
over a d-dimensional Hilbert space. Let us bring a specific assumption offered by
the physical nature of such unitaries. We want to use the above family as a PRU
family or generators for PRS. As shown in [JLS18], if U is a PRU then it is also a
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generators for PRS states i.e. G(k) = Uk |0⟩= |φk⟩. To this end, we investigate
the properties of a qPUF family that can be used to achieve pseudorandomness. In
the last section, we have shown that PRU implies the notion of unknown unitary
assumption, or in other words, single-shot unknownness. Now we explore the
relation of PRUs and another notion of unknownness called practical unknownness
by Kumar et al. [KMK21]. This definition is better suited for t-design unitary sets
constructions and is defined as follows:

Definition 44 (ε,t,d− Practical unkownnness [KMK21]). We say a unitary
transformations U, from a set U ⊆ U(d)a is (ε,t,d)- practically unknown
if provided a bounded number t ⩽ poly(log2d) of queries UρU†, for any
ρ ∈ Hd , the probability that any poly(log2d)-time adversary can perfectly
distinguish U from a Haar distributed unitary is upper bounded by 1/2(1+
0.5ε). Here 0< ε < 1, t are functions of log2d , and limlog2(d)→∞ ε= 0.

awhere U(d) denotes the set of all unitary matrices over d-dimensional Hilbert space

For the sake of our proof, we need a variation of this definition which is for
any polynomial number of queries in the security parameter. Hence, we define the
following:

Definition 45 (ε,d− Practical unkownnness). We say a unitary transforma-
tions U, from a set U ⊆ U(d) is (ε,d)- practically unknown if it is (ε,t,d)-
practically unknown for any t = poly(λ) = poly(logd).

Now we first show that the assumption of ε,d− Practical unkownness implies
PRU.

Theorem 33. A family of (ε,d)- practically unknown unitaries where ε =
negl(λ) is a PRU family.

Proof. We prove this by contraposition. Let U = {Uk}Ki=1 ⊆ U(d) be a (ε,d)-
practically unknown family, that is not a PRU. This means that there exists a
QPT adversary A for which we have the following after some q = poly(λ) =
poly(log(d)) queries to the unitary oracle:

| P r
k←K
[AUk (1λ) = 1]− P r

U←µ
[AU(1λ) = 1]|= δ = non-negl(λ). (5.18)

Equivalently, we can say that if a unitary is randomly picked from either of the set
U or a set of Haar-random distributed unitaries with a random bit b, the advantage
of the adversary in guessing bit b is a non-negligible function δ greater than 12 .
If such an adversary exists, there also exists an adversary A′ that querying the
same q states, can distinguish the Uk ∈ U from a Haar-random unitary with the
following probability:

P r [distinguish Uk ]⩾
1

2
+ δ (5.19)
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On the other hand, if U is (ε,d)-practically unknown this probability is equal to
1
2(1+0.5ε) where ε

4 is a negligible function while as δ is non-negligible. Hence we
reach a contradiction and the proof is complete.

We have shown that given the hardware assumption of practical unknownness,
over a set of unitary transformations such as unitary qPUFs, one can get PRU
and as a result generate PRSs by applying random elements of the set on the
computational basis state. However, practical unknownnes is a stronger assump-
tion than UU, and it is not surprising that it will lead to PRU. Now, we look at
other properties of a qPUF family and see whether there exists a more interesting
assumption under which pseudorandomness can be achieved.

One of the main requirements on a qPUF family is the uniqueness property
(Requirement 2, Definition 39) that ensures any two qPUFs in the family are suf-
ficiently distinguishable in the diamond norm. In what follows we show a family of
unknown and (almost) maximally distinguishable unitary matrices, such as unitary
qPUFs, also form a family of PRUs and are a generator for PRSs.

Theorem 34. Let UK = {Uk}Kk=1 ⊆ U(d) be a family of unitary transforma-
tion selected at random from a distribution χU such that they satisfy almost
maximal uniqueness i.e. for any randomly picked pairs of unitary matrices
from UK, we have ∥ (Ui −Uj)i ̸=j ∥⋄= 2− ε where ε = negl(λ), then for a
sufficiently large K and d , the UK is also a PRU.

Proof. We first show that if the maximum uniqueness is on average satisfied
for any pairs of unitary matrices of UK, then the distribution χU converges to
Haar measure in the limits of large d . We attempt to prove this convergence
for a specific degree of uniqueness which is 2− ε where the maximum of the
diamond norm is 2. The general proof idea is to show that the distribution of
the eigenvalues of 2−ε-distinguishable unitary matrices looks like the eigenvalue
distribution of a Haar-random matrix. We use the toolkit from the random matrix
theory introduced in Chapter 2 (Section 2.4) to show this statement. First, note
that we have,

∥ (Ui −Uj)i ̸=j ∥⋄= 2−ε= 2
√
1− δ(U†i Uj)2 (5.20)

Where the δ(M) = min
|φ⟩
| ⟨φ|M |φ⟩ | is the minimum of absolute value over the

numerical range of the operator M. From the above equation we have:

δ(U
†
i Uj)

2 = ε−
ε2

4
≈ 0 (5.21)

Since the diamond norm is unitary invariant, we can multiply all the unitaries of
the family by a fixed unitary matrix which results in the set including the identity
matrix I, hence the above equation can be rewritten as:

δ(U ′k)
2 = ε−

ε2

4
(5.22)
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where the set of unitary matrices U ′ is equivalent to the initial set up to a unitary
transformation. Now let {e iθ1, . . . ,e iθd} be the eigenvalues of U ′k . The eigenvalues
of a unitary matrix lie on a unit circle S1 ⊂C. As shown in [KMK21], the following
relation exists between the distribution of the eigenvalues of a general unitary
matrix in an arc of size θ, and the function δ(U):

δ(U ′k)
2 =
1

2
+
1

2
cosθ (5.23)

Where θ = θj − θk for pairs of eigenvalues {e iθj ,e iθk}. From the above equation
we have:

θ = θj − θk = arccos(−1+2ε−
ε2

2
)≈ π−

√
ε+ . . . (5.24)

Now we can use Theorem 9. Let Nθ be a random variable that represents the
number of eigenvalues in an arc of size θ. Then we have the expectation value
of this random variable for the given distribution where the θ = π− ε′, and ε′ =
negl(λ), to be

Ed [Nθ] =
d × θ
2π
=
d

2
−
ε′d

2π
(5.25)

which is close to half of the total number of eigenvalues since the second term is
always smaller than 1. This means that in the limit of large d , every diameter of
the unit circle divide the circle into two areas that each on average includes half
of the eigenvalues. Also the variance of the random variable Nθ will be:

V ar(Nθ) =
1

π2
(log(d)+1+γ+log |2sin(

π−ε′

2
)|)+o(1)≈

log(d)

π2
+c ′+o(1)

(5.26)
where γ ≈ 0.577 and c ′ < 1. Next, we calculate the probability that for our given
distribution, there are more than half of the eigenvalues in each half of the circle
denoted by an arc or size π−ε′. Using the Chernoff bound we have:

P r [Nπ−ε′−Ed [Nπ−ε′]|> xEd [Nπ−ε′]]⩽ e−
x2

2+x Ed [Nπ−ε′ ] (5.27)

Here we want the xEd [Nπ−ε′] to be equal to d
2 , so we have x = d/2

d/2−dε′/2π =
1

1−ε′/π
and since the x is a small value the above inequality can be used. Substituting
this into the above equation we will have:

P r [Nπ−ε′−Ed [Nπ−ε′]|>
d

2
]⩽ e

−
( 1
1−ε′/π )

2

2+ 1
1−ε′/π

×(d/2−ε′d/2π)
≈ e−d/6 (5.28)

since ε′ is negligible. This shows that with a very high probability, on every half
of the unit circle, there exist half of the eigenvalues of the random matrix from
our specified distribution. We conclude eigenvalues of a random unitary from
the distribution χU are uniformly distributed on the unit circle. Let us denote
this uniform distribution on S1 by ν. In order to compare the distribution of
χU with the Haar measure, we use the empirical spectral measure introduces in
Section 2.4. We denote the empirical spectral distance of χU as µ̃χ and for
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Haar measure we denote it as µ̃H. Since we have shown that the eigenvalues of
matrices from χU are distributed uniformly on S1, it is easy to see that E(µ̃χ) = ν
and in the limit of large d we have the convergence in probability µ̃ d→∞−→ ν. Now
we use the Theorem 8 that implies the convergence of the empirical spectral
measure of the set of unitaries picked from Haar measure to ν, in the limit of
large d . Having the these two convergence and the properties of the limit we
can conclude that the empirical spectral measure for χU converges to the one
for Haar measure. Then we look at Kolmogorov distance of the eigenvalues of
these two distributions. We rely on the result given in [Mec19] that shows the
Kolmogorov distance between the distributions of eigenvalues of random unitary
matrices is given by dK(µ,ν) = sup

0⩽θ<2π
|Nθd −

θ
2π | and specifically for Haar measure

it is bounded by

dK(µH,ν)⩽ c
log(d)

d
(5.29)

Where c > 0 is a universal constant. Given the fact that for the specific value of
θ for the distribution of χU the Kolmogorov distance dK(µχ,ν) is of the order 1d
which is negligible and using the triangle inequality for the Kolmogorov distance
we have

dK(µH,µχ)⩽ dK(µH,ν)+dK(ν,µχ)

⩽ c
log(d)

d
+negl(λ)

⩽ negl(λ)

(5.30)

Thus the distribution of the eigenvalues of the random matrices of χU is negligibly
close to the Haar measure. Also for any randomly picked matrix from each of these
distributions, the eigenvalues are fixed. As a result, the convergence between the
distribution of the eigenvalues of matrices leads to the fact that in the limit of
large d , χU converges to the Haar measure on the unitary set.

Finally, we show that a polynomial time quantum adversary given a polyno-
mial query to each unknown unitary Uk cannot distinguish any member of this
family from Haar measure. This is straightforward since the two distributions are
asymptotically close. Thus we have:

| P r
k←K
[AUk (1λ) = 1]− P r

U←µ
[AU(1λ) = 1]|= negl(λ). (5.31)

And we have shown that the set UK is a PRU.

5.5 Discussion and conclusions

We have explored in this chapter, the connection between quantum pseudoran-
domness and quantum hardware assumptions such as quantum physical unclonabil-
ity. As one of the main cryptographic properties of quantum physical unclonable
functions is the notion of universal unforgeability, we have inspected whether quan-
tum pseudorandomness would be enough as a challenge sampling requirement, to
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achieve this level of unforgeability. We have formally proved that the answer to
this question is positive. This result improves the practicality of qPUF-based con-
structions and protocols since it replaces the requirement of Haar-randomness on
the challenge states, which is resourceful and experimentally challenging. We will
articulate this improvement in the next chapter.

We have also established the link between the notions of unknownness of uni-
tary families and PRUs. We proved that any family of PRUs is also a family of
unknown unitaries and, hence they could be a potential candidate for the construc-
tion of qPUF devices. This result complements the result of [KMK21] where they
show t-designs can also satisfy a similar notion, namely practical unknownness,
which leads to an efficient proposal for constructing quantum PUFs.

Then we also looked at the problem of generating pseudorandom quantum
states from hardware assumptions. Our results show that different physical as-
sumptions proposed in the context of PUFs, such as uniqueness or practical un-
knownnes, can also imply quantum pseudorandomness. This result is of theoretical
interest as it shows an alternative way of achieving quantum pseudorandomness
which is different from current approaches based on post-quantum and computa-
tional assumptions. Apart from the cryptography perspective, having a different
set of assumptions for PRSs and PRUs can find potential applications in physics
where PRSs have been shown recently to be relevant in the AdS/CFT correspon-
dence for the study of quantum gravity [BFV19]. Nonetheless, due to arguments
given in [BFV19], the proposed PRS constructions in [JLS18], are not directly
applicable within this framework. Given our results in this chapter, a potential
follow-up question would be whether a PRS state derived from physical unclon-
ability assumptions can be used as an alternative solution. Another interesting
future direction would be to further explore the relationship between unclonabil-
ity and quantum pseudorandomness that has initially been discussed in [JLS18],
relying upon our new results.

The final open problem that we would like to bring forward to conclude the
chapter, is that of establishing concrete bounds on the randomness and pseu-
dorandomness of unitary families, given different degrees of uniqueness or dis-
tinguishability (not negligibly close to perfect distinguishability). We believe this
question has an interesting and non-trivial relationship to the study of t-design
unitaries. A curious inquiry is whether the random matrix theory toolkit and the
potential extension of our last result in the current chapter, regarding the rela-
tionship between distinguishability and pseudorandomness can also lead to novel
constructions for t-designs.



6

Applications of Quantum Physical
Unclonable Functions

“If you wish to make an apple pie from scratch, you must first invent
the universe.”

– Carl Sagan

6.1 Introduction

In the last two chapters, we have studied quantum physical unclonable functions,
both as theoretical objects and provably unforgeable hardware tokens, while also
exploring the connection between physical unclonability and quantum pseudoran-
domness. Moving from foundations to applications, it is now time to introduce
applications of qPUFs in quantum communication and quantum cryptography.
This chapter is dedicated to the design and security analysis of protocols based on
quantum PUFs. In the course of the chapter, we also attempt to move towards
more efficient variants of the proposed protocols and make them more accessible
for implementation.

The recent advances in developing the quantum internet have enabled a broad
range of applications from simple secure communications all the way to dele-
gated quantum computation, with often no counterparts in classical networks
[BS16, WEH18, Fit17, Ver19, PPA+20, Dia19, DWT+19, KDW20, CCB18,
CCT+20, Unr13]. For most of such applications, a key security feature is the
ability of secure authentication which plays a central role in performing secure
communications over untrusted channels [AM17, DGJ+20, BZ13a]. The general
term of authentication encloses different definitions and levels depending on the
strength of the security requirement and the nature of the subject of authen-
tication, for instance, whether it is a message or an entity. Amongst different
types of required security features, including confidentiality and authentication of
data, mutual entity authentication is a crucial, yet sometimes neglected, aspect
[KHH+18, Gol96]. Entity authentication also referred to as Identification, is a

171



172 6. Applications of Quantum Physical Unclonable Functions

method to prove the identity of one party called prover to another party called
verifier.

The focus of this chapter is on secure identification as it is a central application
of quantum communication, as well as a building block for many other applications
of quantum networks. We aim to propose resource-efficient solutions for mutual
entity authentication between two parties who can also be two nodes of a quantum
network. We explore the advantages of quantum communication in achieving
protocols with fewer assumptions or stronger security guarantees compared to
their classical counterparts or existing solutions.

We consider both complementary scenarios where either the trusted verifier or
a potentially malicious prover has limited resources. To better motivate the two
scenarios, consider the quantum cloud service platforms that are commercially
available today [AAB+19, Cro18, Rig, BIS+20, BWM21]. In the first setting, a
client with a low quantum resource (such as the one defined in [BFK09]) wishes
to identify a high-resource quantum centre that they perhaps have had a previous
contract with, before proceeding to access their platform and load its sensitive
data. In the complimentary setting, the quantum cloud provider wishes to verify
the identity of its customer possessing low quantum resources before providing
them with access. This asymmetry between the verifier and the prover calls for
‘party resource-specific’ identification protocols which exploit this asymmetry to
enhance the efficiency. Another potential approach is include the mutual iden-
tification within one protocol which requires symmetrizing the parties as much
as possible. We will explore both of these approaches via our proposals in this
chapter.

Most of the typical classical solutions for authentication and identification rely
on computational assumptions or a perfectly random key being securely shared
between the two parties, or in some cases, both. Throughout this chapter, we
replace these computational assumptions, or secure classical key sharing, with the
hardware assumption of physical unclonability. The protocols have the structure
of a symmetric-key protocol, although the key here is some unclonable hardware.
Another prominent aspect of our proposals is the employment of quantum com-
munication. Similar to most functionalities and protocols, if one wishes for the
security in the quantum era, there are usually two options available: either to
go for the post-quantum alternatives and use assumptions that are believed to be
hard for quantum computers, or to take advantage of the power of quantum infor-
mation and quantum communication to attain quantum security. We focus on the
second option here, for achieving provable security against quantum adversaries
under minimal assumptions. We note that each of these approaches has its pros
and cons, and the comparison between them is not the purpose of this chapter.
We remark that the spirit of the works presented in this thesis is closer to exploit-
ing the physical properties and fundamental limitations of quantum mechanics in
the design of protocols.

First, we propose two entity authentication protocols based on the quantum
PUFs that we have defined in Chapter 4. Our first proposal is a secure qPUF-
based device identification protocol which requires the prover to only have access
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to the valid qPUF device without requiring any quantum memory or quantum
computational resource, while the verifier is required to possess a local quantum
database and the ability to perform quantum operations. This covers the scenario
presented before where a quantum cloud provider wants to identify its customer.

Our second proposal is a qPUF based protocol where the prover has a high
computational resource, while, the verifier runs a purely classical algorithm, hence
does not require performing quantum operations. This protocol can enable an
almost classical client, to identify a quantum server in a quantum network. Con-
struction of this protocol has taken inspiration from the ideas of blind quantum
computing [BFK09] to introduce the idea of randomly placing trap quantum states
in-between the valid states. This, coupled with the unknownness property of the
qPUF device provides provable security against any QPT adversary. We also pro-
vide a comparison between the two protocols on different aspects and resources
to get a better picture of their use-case in different scenarios.

Next, we exploit the result we have established in Chapter 5, to improve the
efficiency of our protocols and make them more amenable to implementation,
while formally proving that this step, on the way to practicality can be made with
no compromise in the security guarantee.

Finally, in attempting to propose a yet more practical solution, we explore a
different construction for PUFs, which although weaker than full qPUFs, can still
enable secure quantum entity authentication while also being implementable with
the technology and infrastructures that are available today. This new construction,
called Hybrid PUF, combines classical PUFs with quantum encoding and using
some additional techniques from the world of classical hardware security, can lead
to quantum-secure mutual identification that does not require quantum database
or preparation of resourcefully complicated quantum states. The latest protocol
we present has some further properties, such as the re-usability of challenge states
during the protocol, which we will investigate in detail.

We believe that all these proposed protocols are just the start of the road
for applications that utilize physical unclonability and quantum information since
identification is essential yet quite a simple functionality. Our studies presented in
this chapter show that there are still many applications to come using this newly
introduced assumption.

6.1.1 Structure of the chapter

In Section 6.2 we present our client-server qPUF-based identification protocols.
The protocol with high-resource verifier has been introduced in Subsection 6.2.2,
and the low-resource verifier protocol in Subsection 6.2.3. A generalisation of
the second protocol is also discussed in Subsection 6.2.4 and the comprehensive
comparison between them is given in Subsection 6.2.5.

In Section 6.3 we use pseudorandom quantum states to reduce the assumptions
and requirements for our proposed protocol and introduce a more efficient version.

Finally, Section 6.4 focuses on presenting the Hybrid PUF construction as well
as the identification protocol that is based on it and its security analysis. In Sub-
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section 6.4.3 the construction is given. In Subsection 6.4.3 an enhanced version
this construction called Hybrid Locked PUF has been introduced which later is
used within the identification protocol presented in Subsection 6.4.4. Subsec-
tion 6.4.5 discussed the security analysis of HPUF, HLPUF and related protocol
and Subsection 6.4.6 investigates the challenge re-usability property.

6.1.2 Related works

The idea of taking advantage of quantum communication between the verifier
and the prover in PUF-based identification protocols was first introduced by
Skoric in [Sko10] with the concept of quantum read-out of PUF (QR-PUF).
The identification protocols based on this construction have been proposed in
[Sko10, Sko12, GKB20, Nik21]. The security of the majority of these proto-
cols has been proved against limited types of attacks including intercept-resend
[Sko10, Sko12], and Quantum Cloning [YGLZ16] attacks. The practical realiza-
tion of this protocol was shown by Goorden et al. [GHM+14, Nik21]. In another
work (also mentioned in Chapter 4), Nikolopoulos and Diamanti introduce a dif-
ferent setup for QR-PUF-based identification protocols in which classical data is
encoded to the continuous quadrature components of the quantized electromag-
netic field of the probe [ND17]. The security of this scheme has also been proved
in [Nik18, FNAF19] against a bounded adversary who can only prepare and mea-
sure the quantum states. The common feature of the mentioned protocols is full
or partial knowledge of the unitary modelling of the QR-PUF. However, as thor-
oughly discussed in 4.4.4, this extra information usually compromises the security
and as a result, such protocols can only be proven secure against specific types of
adversarial attacks. The main advantage of our qPUF-based proposals over the
previous ones is their provable security against the most general form of attacks
considering a QPT adversary.

Related to our Hybrid construction, first we mention some classical construc-
tions for classical PUFs such as [GCvDD02, GKST07, KL18]. The literature of
classical PUFs, specifically regarding the implementation, is very vast and covering
the full references to them is outside the scope of this chapter, but we refer the
reader to [Mae13] for a detailed review of the constructions of classical PUFs.
We have also mentioned that most such classical PUFs are vulnerable to machine
learning attacks. Some of the attacks on classical PUFs have been performed
and studied in [Bec15a, Bec15b, Del19, RSS+10]. Furthermore, we also borrow
an idea from classical hardware security literature, known as the lockdown tech-
nique (or as we call them, locking mechanism), that has been introduced by Yu et
al.[YHD+16] as a proposal to prevent such machine learning attacks on classical
PUFs.
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6.2 Quantum-secure identification protocols using
quantum PUF

In this section, we aim to provide protocols for the task of identification, using
quantum PUF and quantum communication as our main ingredients. Intending to
perform low-cost secure identification of the prover by the verifier using qPUF, we
categorise the resources into three major segments. First is the ‘memory resource’
which quantifies the type and amount of storage resources that a party requires. It
can either be a classical memory that we label as low cost, or a quantum memory
which is high cost since such a memory tends to be highly fragile and dissipative
to the environment [LST09]. Second is the ‘computing ability’ resource which
indicates the kind of operations a given party can perform. We denote a party
with high computing ability as the one that can perform any bounded polynomial
quantum circuit operations [Wat03], and a low ability party as the one that is
restricted to generation and measurement of quantum states on a certain basis.
And the third resource is the type and number of ‘communication rounds’ required
between the parties to establish identification. Often it is not possible to devise
an identification scheme that minimises all the three types of resources for both
the involved parties without compromising the underlying security. Hence, in this
work, we propose two qPUF based identification schemes that achieve similar
security guarantees but are vastly different in terms of the resource requirement
for the involved parties. This allows the flexibility to deploy either of these schemes
specific to each application.

The first protocol allows a low-resource party who has only access to the qPUF,
to prove its identity to a high resource party with more quantum capabilities such
as quantum computing capability and quantum memory. In the second protocol,
we explore the other direction and try to minimize the resources on the verifier’s
side as much as possible. This leads to a novel qPUF-based protocol, which is
different from the usual PUF-based protocols known in the literature. We give
complete formal security proofs for each of the protocols. Then, we also provide
a comprehensive comparison between the two proposed protocols in terms of our
categorised resources.

But before introducing the protocols, let us give a general description of an
identification protocol to provide a better intuition of the functionality we are
trying to achieve.

6.2.1 General description of device-based identification proto-
col

An identification protocol, also called a device-authentication protocol, is run be-
tween a verifier and a prover. A verifier’s task is to check the identity of the
prover by identifying whether the prover is the correct owner of a valid device.
Our setting assumes that the verifier and the prover having a valid device behave
honestly. The security is provided against an adversary with limited access to



176 6. Applications of Quantum Physical Unclonable Functions

the valid device1. The objective of the adversary is to successfully impersonate
themselves as the valid owner of the device. Prior to providing the details of the
construction of device identification protocols using qPUF, we describe a com-
mon structure in these protocols. Any such protocol consists of three sequential
phases: setup phase (or enrollment phase), identification phase and verification
phase [ND17, PRTG02, GKB20].

1. Setup phase: A setup phase is the beginning phase of the protocol. Here the
verifier has the valid device (in this case a PUF/qPUF) and locally prepares
a database consisting of multiple challenge and response pairs of this device.
The challenges and responses, namely Challenge-Response pairs (CRPs) are
stored in the verifier’s local database. We assume that the verifier’s quantum
capabilities are restricted to quantum polynomial time, and a polynomial-
size database. Once the local database is generated, the device is physically
transferred to the prover over a public channel.

2. Identification phase: The setup phase is followed by the identification phase
where the verifier sends one or multiple challenges, usually chosen at random,
to the prover from the CRP database. The challenge(s) is sent over a public
(quantum) channel to the prover. The prover who has the valid device
obtains the responses to the received challenges by querying the device and
obtaining the response. Then the prover sends either the response directly,
or sends some classical or quantum information related to the response to
the verifier. We note that qPUF-based identification protocols would mostly
differ in this phase by varying the number of challenges sent to the prover
and the type of information received by the verifier.

3. Verification phase: In the verification phase, the verifier runs a quantum or
classical verification algorithm on the information received from the prover.
We denote that the verifier correctly identifies the prover if the verification
algorithm outputs 1. Otherwise, it aborts.

The Correctness or Completeness of an identification protocol is defined as
the success probability of an honest prover over multiple rounds of identification,
in the absence of any adversary or noise, should be one. The Soundness of
an identification protocol ensures that the success probability of any adversary
(depending on the adversarial model) in passing the verification phase over the
multiple rounds of identification, should be negligible in the security parameter.

6.2.2 Quantum identification protocol with high-resource ver-
ifier

The identification protocol runs between a verifier and a prover. The verifier is
tasked with correctly identifying the prover who owns the device. Our setting

1This the same QPT adversarial model we have described in the universal unforgeability game
in Chapter 4. This is a primitive-level access, while as in the level of our protocols we (usually) do
not assume any bound on the adversary.
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assumes that the verifier and device owner behave honestly. The security has
been shown against an adversary (computationally bounded in the learning phase)
willing to be identified as the valid device owner. We propose the construction
of two identification protocols using qPUFs which provide exponential security
against any QPT adversary. The qPUF used in this protocol is a UqPUF as
defined in Definition 40.

The first qPUF-based device identification protocol we propose is the quantum
analogue of the standard PUF-based identification scheme between the verifier
(Alice) and the prover (Bob) as shown in Fig. 6.1. Before detailing the protocol,
we list its salient features,

• The prover is not required to have quantum memory, and computing ability
resources2, whereas the verifier is required to have high quantum memory
and high computing ability resources (restricted to polynomial-size memory
and QPT computation).

• The protocol requires a 2-way quantum communication link between the
prover and verifier.

• The protocol has a quantum verification phase i.e. the prover sends infor-
mation in quantum states to the verifier who then performs a verification
test to certify if the device is valid.

• The protocol provides perfect completeness and an exponentially-high secu-
rity guarantee against any adversary with QPT resources.

6.2.2.1 Protocol description

This protocol, referred as hrv-id, is run between the verifier, and the prover and
it is divided into three sequential phases,

Protocol 1 (hrv-id(K,N,M,D)). qPUF-based Identification protocol with high-
resource verifier:3

1. Setup phase:

(a) Verifier has the qPUF device.

(b) Verifier randomly picksK ∈O(poly logD) classical strings φi ∈{0,1}logD.

(c) Verifier selects and applies a Haar-random state generator operation
denoted by the channel Eprep to locally create the corresponding quan-

tum states in HD: φi
Eprep→ |φci ⟩ , ∀i ∈ [K].

2Here we note that the prover applies the qPUF transformation (the unitary) on the challenge
states. Nevertheless, we do not consider this as computing ability of the prover, thus by no
computing ability we refer to the fact that the prover does not need to run any extra quantum
computations other than the physical interaction with the qPUF hardware.

3We drop the parameters (K,N,M,D) from now on for simplicity whenever we refer to this
protocol.



178 6. Applications of Quantum Physical Unclonable Functions

C (classical) R (quantum)

| ۧ𝜙1
𝑐 | ۧ𝜙1

𝑟 ⨂𝑀

| ۧ𝜙2
𝑐 | ۧ𝜙2

𝑟 ⨂𝑀

⋮ ⋮

| ۧ𝜙𝐾
𝑐 | ۧ𝜙𝐾

𝑟 ⨂𝑀

Alice (verifier) Bob (prover)

qPUF

qPUF

𝑖 ՚
$
{1, … ,𝐾} | ۧ𝜙𝑖

𝑐

qPUF
| ൿ𝜓𝑖

𝑝

Setup phase

Identification phase

Verification phase

Verification 
algorithm

(SWAP,GSWAP)

| ۧ𝜙𝑖
𝑟 ⨂𝑀

| ൿ𝜓𝑖
𝑝

0, 1

Eve
(QPT access)

Eve

Figure 6.1: qPUF-based identification protocol with high-resource verification between Alice (ver-
ifier) and Bob (prover) (hrv-id). The protocol is divided into three sequential phases, setup phase,
identification phase, and verification phase. The protocol is analysed in the presence of a QPT
adversary (Eve) which can gain information about the device during the setup phase. In the last
phase, verifier runs a quantum verification algorithm and outputs a classical bit ‘1’ if prover’s
device is correctly identified. Otherwise, verifier outputs ‘0’.

(d) Verifier queries the qPUF individually with each challenge |φci ⟩ a total
of M number of times to obtain M copies of the response state |φri ⟩
and stores them in their local database S ≡ {|φci ⟩ , |φri ⟩

⊗M}Ki=1.
(e) Verifier publicly transfers the qPUF to prover.

To be able to investigate the security in a strong and general setting, we
do not assume the qPUF’s transition to be done securely, in the sense that
any QPT adversary (Eve) is allowed to query the qPUF during transition
an O(poly logD) number of times and thus build its local database. Due to
the conditions on universal unforgeability of the qPUF, it is important that
verifier picks the challenges |φci ⟩ ∈ S at random from a uniform distribution
over the Hilbert space HD. This, in turn, implies that the encoding unitary
operation Eprep is a Haar random unitary. We relax this condition in the
upcoming section of this chapter.

2. Identification phase:

(a) Verifier uniformly selects a challenge labelled (i $←− [K]), and sends the
state |φci ⟩ over a public quantum channel to prover.

(b) Prover generates the output |φpi ⟩ by querying to the qPUF device, the
challenge received from the verifier.

(c) The output state |φpi ⟩ is sent to verifier over a public quantum channel.
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(d) This procedure is repeated with the same or different states a total of
R ⩽K times4.

3. Verification phase:

(a) Verifier runs a quantum equality test algorithm on the received response
from the prover and the M copies of the correct response that exists
in the database. This algorithm is run for all the R total number of
CRP pairs.

(b) Verifier outputs ‘1’ implying successful identification if the test algo-
rithm returns ‘1’ on all CRPs. Otherwise, outputs ‘0’.

Sections 6.2.2.2 and 6.2.2.3 describe the quantum verification algorithm run by
the verifier.

For this protocol, we define the security in terms of completeness and sound-
ness properties. Completeness of hrv-id protocol is the probability that verifier
outputs ‘1’ in the verification phase in absence of an adversary Eve. This implies
that the verification algorithm must output ‘1’ for all the R rounds of the protocol
with a probability that differs negligibly in the security parameter from 1,

Pr[Ver acceptH] = Pr
[ R
∏
i=1

(qVer(|φpi ⟩ , |φ
r
i ⟩) = 1)

]
= 1−negl(λ) (6.1)

where the subscript H denotes the honest device holder.
Soundness of the protocol is defined as the probability that a QPT adversary

(Eve) passes the verification test. We say the hrv-id is sound (or secure) if this
probability is negligible in the security parameter:

Pr[Ver acceptEve] = Pr
[ R
∏
i=1

(qVer(ρi , |φri ⟩) = 1)
]
= negl(λ) (6.2)

where ρi is the state sent by adversary in the i-th round.
Since our protocol is based on UqPUF, the verifier has no knowledge about

the unitary of qPUF except the database S which can be obtained by querying.
Consequently, the responses stored in S are unknown quantum states. This calls
for quantum equality test verification algorithms to enable the verifier to vali-
date the received states. We investigate the optimal one-sided error test, the
SWAP test [BCWdW01] and the GSWAP [CDM+18] as described in Chapter 2,
Section 2.2.1.

6.2.2.2 Verification with SWAP test

The first proposal for verifier’s qVer algorithm is the SWAP test and the identifi-
cation protocol using this test is called hrv-id-swap. Its single run inputs one copy

4R =M×N
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of each received state and verifier’s response state and produces a binary outcome
to determine the equality between two states. A single run, however, does not
provide a low enough test error rate. To obtain an exponentially low rate, the test
is repeated M times for the same challenge state where M is proportional to the
inverse-log of the desired error probability. The error can be further decreased by
choosing N ⩽K distinct challenge states such that the test is run for R =N×M
number of times and the prover is successfully identified, only if he passes all the
runs. In the next two theorems, we show that the SWAP-based test algorithm
provides us with the desired completeness and soundness properties required in
the protocol.

Theorem 35 (Completeness of hrv-id with SWAP ). In absence of an
adversary Eve, the probability that the response state of an honest prover
|φpi ⟩= UqPUF |φ

c
i ⟩, generated from the valid qPUF, passes all the R SWAP

test runs is,

Pr[Ver acceptH] = Pr
[ R
∏
i=1

(SWAP(|φpi ⟩ , |φ
r
i ⟩) = 1)

]
= 1 (6.3)

Proof. When verifier receives prover’s response |φpi ⟩ which is generated from the
valid qPUF device for all the i ∈ [R] copies of the challenge state, then |φpi ⟩= |φ

r
i ⟩.

This implies that F (|φpi ⟩ , |φ
r
i ⟩) = 1 for all i ∈ [R]. From Eq. (2.65), we see that,

Pr
[
(SWAP(|φpi ⟩ , |φ

r
i ⟩) = 1] =

1

2
+
1

2
F (|φpi ⟩ , |φ

r
i ⟩) = 1, ∀i ∈ [R] (6.4)

Since in the honest setting, the states received from prover over R rounds are all
valid qPUF pure states which are unentangled to each other, hence the SWAP
tests for all the R rounds are independent tests. This implies that,

Pr[Ver acceptH] = Pr
[ R
∏
i=1

(SWAP(|φpi ⟩ , |φ
r
i ⟩) = 1)

]
=

R

∏
i=1

Pr
[
SWAP(|φpi ⟩ , |φ

r
i ⟩) = 1

]
= 1

(6.5)

This completes the proof.

To characterise the soundness, we bound Eve’s success probability in passing
the verification test i.e. the probability that the state ρR she sends to verifier
passes all the R runs of the SWAP test. Even though the test runs are indepen-
dent, if a generalised entangled state ρR is sent by Eve, her success probability
across the runs may no longer be the product of success probability of individ-
ual test runs. This implies that Eve’s strategy might result in a higher success
probability in some rounds based on the results of previous rounds. However, we
show that since the N distinct challenges being picked by verifier are all uniformly
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random, Eve does not gain anything by entangling the states across rounds corre-
sponding to different challenges. To this end, we assume Eve can achieve optimal
success probability by sending the state

⊗N
i=1 ρ

M
i , where ρMi is a generalised state

sent to M runs of the SWAP test corresponding to the same challenge |φci ⟩.
Across these j ∈ [M] runs corresponding to |φci ⟩, the state received by verifier
is ρi ,j = Tr{1···M/j}(ρMi ), where ρi ,j is obtained by tracing out the M-1 instances
{1, · · ·M/j}. Let ρmax

i be Eve’s response state corresponding to challenge |φci ⟩,
with the highest fidelity with the correct response, i.e.

∀j ∈M F (ρmax
i , |φri ⟩) = ⟨φri |ρmax

i |φri ⟩⩾ ⟨φri |ρi ,j |φri ⟩ (6.6)

Since the SWAP test success probability is directly proportional to the fidelity
between the two input states, this implies that Eve can maximise her success prob-
ability by sending M unentangled states ρmax

i to verifier instead of the generalised
state ρMi . The above equation Eq. (6.6) can be used to bound Eve’s success
probability in passing verifier’s verification test,

Pr[Ver acceptEve] = Pr
[ R
∏
i=1

(SWAP(ρi , |φri ⟩) = 1)
]

=
N

∏
i=1

Pr
[ M
∏
j=1

(SWAP(ρi ,j , |φri ⟩) = 1)
]

⩽
N

∏
i=1

M

∏
j=1

Pr
[
SWAP(ρmax

i , |φri ⟩) = 1
]

⩽
N

∏
i=1

(1
2
+
1

2
Fi

)M
= ε

(6.7)

where ρi = Tr{1···R/i}(ρR), and Fi = F (ρmax
i , |φri ⟩).

Now using the fact that the qPUF device exhibits universal unforgeability
against any QPT adversary (Theorem 29), we bound the success probability of
Eve using the following theorem.

Theorem 36 (Soundness of hrv-id with SWAP ). Let qPUF be a uni-
versally unforgeable UqPUF over HD. The success probability of any QPT
adversary Eve, to pass the SWAP-test based verification of the hrv-id-swap
protocol is at most ε, given that there are N different CRPs, each with M
copies. The ε is bounded as follows:

Pr[Ver acceptEve]⩽ ε≈O(
1

2NM
) (6.8)

Proof. From Eq. (6.7), we see that the optimal strategy of Eve is to produce the
response states ρmax

i which maximises the fidelity Fi for each CRP (|φci ⟩ , |φri ⟩
⊗M).

We provided an upper bound on the fidelity when Eve has polynomial access to
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the qPUF in Theorem 28 stating that the fidelity Fi is bounded as,

Pr[Fi ⩾ δ]⩽
d +1

D
(6.9)

for any δ > 0. Here d = poly(λ) = poly log(D) is the dimension of subspace
that Eve has learnt from HD. For D = 2d , this implies that the maximum fidelity
state that Eve can create on average is non-orthogonal to the valid response state
|φri ⟩ with a negligible probability ≈O(2−d). Hence Fi = δ→ 0 with overwhelming
probability. This bound holds true for all distinct CRPs labelled by i ∈ [N].

Thus from Eq. (6.7) and Eq. (6.9), the probability that Eve passes verifier’s
SWAP based verification test is,

Pr[Ver acceptEve]⩽
N

∏
i=1

(1
2
+
1

2
Fi

)M
⩽

N

∏
i=1

(1
2
+
1

2
δ
)M

≈O(
1

2NM
) = negl(λ)

(6.10)

Note that here we also take into account the adaptive strategy of the adversary.
That is even by assuming the previous rounds are added as extra states to Eve’s
learning phase, the dimension of the subspace d will remain polynomial in λ. This
completes the proof.

The bound indicated above shows that one can achieve an exponentially secure
qPUF-based identification using SWAP test based verification protocol with just a
single challenge state i.e. N =1 and repeated forM instances. However, non-ideal
cases would make identification with different challenge states necessary. Hence
we provide a general recipe involving multiple distinct challenges each running for
multiple instances. Our protocol requires R = N×M number of rounds and uses
T = 2R number of communicated states.

6.2.2.3 Verification with GSWAP test

The second proposal for verifier’s qVer algorithm is the GSWAP test and the
identification protocol using this test is called hrv-id-gswap. Its single run requires
one copy of the received state and M copies of verifier’s response state and
produces a binary outcome to determine the equality between two states with a
polynomial one-sided error i.e. ∝ 1/M. To boost the security to exponentially
low error with a polynomial number of copies, the verifier first runs the challenge
phase with R = N ⊂ K distinct challenge states, then uses the GSAWP test as
qVer algorithm to test the equality. To this end, she consumes N received response
states and N×M numbers of valid response states in her database. In the next
two theorems, we show that GSWAP based test algorithm provides us with the
desired completeness and soundness properties required in the protocol.
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Theorem 37 (Completeness of hrv-id with GSWAP ). In absence of an
adversary Eve, the probability that the response state of an honest prover,
|φpi ⟩ = UqPUF |φ

c
i ⟩ generated from the valid UqPUF passes all the R = N

test runs is,

Pr[Ver acceptH] = Pr
[ N
∏
i=1

(GSWAP(|φpi ⟩ , |φ
r
i ⟩
⊗M
) = 1)

]
= 1 (6.11)

Proof. When verifier receives prover’s response |φpi ⟩ which is generated from the
valid qPUF device for all the i ∈ [R] copies of the challenge state, then |φpi ⟩= |φ

r
i ⟩.

This implies that F (|φpi ⟩ , |φ
r
i ⟩) = 1 for all i ∈ [R]. From Eq 2.67, we see that,

Pr
[
(GSWAP(|φpi ⟩ , |φ

r
i ⟩
⊗M
) = 1] =

1

M+1
+

M

M+1
F (|φpi ⟩ , |φ

r
i ⟩) = 1, ∀i ∈ [N]

(6.12)
Since in the honest setting, the states received from prover over R rounds are all
valid qPUF pure states which are unentangled to each other, hence the GSWAP
tests for all the R rounds are independent tests. This implies that,

Pr[Ver acceptH] = Pr
[ N
∏
i=1

(GSWAP(|φpi ⟩ , |φ
r
i ⟩) = 1)

]
=

N

∏
i=1

Pr
[
GSWAP(|φpi ⟩ , |φ

r
i ⟩) = 1

]
= 1

(6.13)

This completes the proof.

To characterise the soundness, we bound Eve’s success probability in simul-
taneously passing the N runs of GSWAP test when she sends the generalised
entangled state ρN to verifier. Similar to the argument provided for SWAP test
soundness, Eve does not gain anything by entangling the states across different
test runs. Thus Eve’s probability in passing the verification test by sending the
state

⊗N
i=1 ρi is the same as that for a generalised state ρN , where ρi is the state

sent to the instance of GSWAP test corresponding to the same challenge |φci ⟩.
As a result, Eve’s optimal success probability can be expressed as a product of
individual GSWAP instance success probability,

Pr[Ver acceptEve] = Pr
[ N
∏
i=1

(GSWAP(ρi , |φri ⟩
⊗M
) = 1)

]
=

N

∏
i=1

Pr
[
GSWAP(ρi , |φri ⟩

⊗M
) = 1

]
⩽

N

∏
i=1

( 1

M+1
+

M

M+1
Fi

)
= ε

(6.14)
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where Fi = F (ρi , |φri ⟩) is the fidelity between Eve’s state and the valid qPUF
response state for the i-th round.

Theorem 38 (Soundness of hrv-id with GSWAP ). Let qPUF be a uni-
versally unforgeable UqPUF over HD. The success probability of any QPT
adversary Eve, to pass the GSWAP-test based verification of the hrv-id-
gswap protocol is at most ε, given that there are N different CRPs, each
with M copies. The ε is bounded as follows:

Pr[Ver acceptEve]⩽ ε≈O
( 1

(M+1)N

)
(6.15)

Proof. From Eq. (6.14), we see that the optimal strategy of Eve is to produce the
response states ρi which maximises the fidelity Fi for each CRP (|φci ⟩ , |φri ⟩

⊗M).
We utilise the same universal unforgeability result to bound the fidelity Fi with
which Eve can produce the states ρi ,

Pr[Fi ⩾ δ]⩽
d +1

D
(6.16)

for any δ > 0. Here d = poly(λ) = poly log(D) is the dimension of subspace
that Eve has learnt from HD. For D = 2d , this implies that the maximum fidelity
state that Eve can create on average is non-orthogonal to the valid response state
|φri ⟩ with a negligible probability ≈O(2−d). Hence Fi = δ→ 0 with overwhelming
probability. This bound holds true for all distinct CRPs labelled by i ∈ [N].

Thus from Eq 6.14 and 6.16, the probability that Eve passes verifier’s GSWAP
based verification test is,

Pr[Ver acceptEve]⩽
N

∏
i=1

( 1

M+1
+

M

M+1
Fi

)
⩽

N

∏
i=1

( 1

M+1
+

M

M+1
δ
)
≈O

( 1

(M+1)N

)
= negl(λ)

(6.17)

We have also taken into account the adaptive strategy of Eve since our security
is analysed for the most general attack strategy. This completes the proof.

The last equation shows that to achieve an exponentially secure qPUF based
identification using the GSWAP based verification protocol with only a polynomial
sized register S, the protocol needs to be repeated for multiple N instances.
Our protocol requires R = N number of communication rounds and uses T = 2R
number of communicated states.

6.2.3 Quantum identification protocol with low-resource veri-
fier

Our second protocol enables a weak verifier to identify a quantum server prover
in the network. We achieve this by delegating the equality testing to the prover
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thus effectively removing the quantum computational requirement on the verifier.
While this might look like it could facilitate a malicious Eve to fool the weak
verifier easily, we demonstrate due to the unforgeability of qPUF that the security
is not affected. Before describing the details, we list the salient features of our
protocol,

• The protocol requires the prover to hold quantum computing capability,
whereas the verifier is just required to have quantum memory and no quan-
tum computing resources during the identification and verification phase5

(restricted memory and computation).

• The protocol requires a one-way quantum communication link directed from
the verifier to the prover. The prover to the verifier directed link is a classical
channel.

• The protocol has a classical verification phase i.e. the prover locally performs
the verification test and sends the classical information to the verifier.

• The protocol provides perfect completeness and an exponentially-high secu-
rity guarantee against any adversary with QPT resources.
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| ۧ𝜙1
𝑐 | ۧ𝜙1

𝑟

| ۧ𝜙2
𝑐 | ۧ𝜙2

𝑟

⋮ ⋮

| ۧ𝜙𝐾
𝑐 | ۧ𝜙𝐾

𝑟

Alice (verifier) Bob (prover)

qPUF

qPUF

𝑁 ⊆ 𝐾

| ۧ𝜙𝑖
𝑐

qPUF

Setup phase

Identification phase

Verification phase

SWAP

| ൿ𝜙𝑖
𝑝

| ൿ𝜙𝑖
𝑏

𝑏 = 1 1

𝑁
2 ՚

$
𝑖𝑛𝑑𝑖𝑐𝑒𝑠 𝑜𝑓 𝑁

ቐ
𝑏 = 1 | ൿ𝜙𝑖

𝑏 = | ۧ𝜙𝑖
𝑟

𝑏 = 0 | ൿ𝜙𝑖
𝑏 = | ൿ𝜙𝑖

𝑡𝑟𝑎𝑝

| ൿ𝜙𝑖
𝑡𝑟𝑎𝑝

՚
$
ℋ⊥

{0,1}Classical 
verification

0,1

Eve
(QPT access)

Eve

Figure 6.2: qPUF-based identification protocol with low-resource verification between Alice (veri-
fier) and Bob (prover) (lrv-id). The protocol is divided into three sequential phases, setup phase,
identification phase and verification phase. In the identification phase, Alice randomly picks a
subset N ⊆K of challenges which are sent to Bob. She also employs a trap based scheme where
she sends either the correct response state of the challenges or the trap states which are states
orthogonal to the valid response states. Bob performs the SWAP-test verification and sends the
classical bits back to Alice. Alice finally performs a classical verification to check.

5The state preparation phase happens in the setup phase of the protocol and it is a common
property of all qPUF-based protocols. Here, we are mainly interested in the computing ability in the
verification phase, which is the major difference between such protocols since verifying quantum
states is a challenging task.
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6.2.3.1 Protocol description

This protocol is run between a verifier, a prover in three sequential phases,

Protocol 2 (lrv-id(K,N,D)). qPUF-based identification protocol with low resource
verifier and classical verification algorithm:6

1. Setup phase:

(a) Verifier has the qPUF device.

(b) Verifier randomly picksK ∈O(poly logD) classical strings φi ∈{0,1}logD.

(c) Verifier selects and applies a Haar-random state generator operation
denoted by the channel E to locally create the corresponding quantum
states in HD: φi

E→ |φci ⟩ , ∀i ∈ [K].

(d) Verifier queries the qPUF individually with each quantum challenge |φci ⟩
to obtain the response state |φri ⟩.

(e) Verifier creates states |φ⊥i ⟩ orthogonal to |φci ⟩ and queries the qPUF
device with them to obtain the trap states labelled as |φtrap

i ⟩. The
unitary property of qPUF device ensures that ⟨φtrap

i |φ
r
i ⟩= 0.

(f) Verifier creates a local database S ≡ {|φci ⟩ ,{|φri ⟩ , |φ
trap
i ⟩}} for all i ∈

[K]. Thus the S registers stores the challenge state |φpi ⟩ and the cor-
responding valid response state and the trap state which is orthogonal
to the response state.

(g) Verifier publicly transfers the qPUF to prover.

The transition is non-secure and Eve is allowed O(poly logD) query access
to the qPUF to build her own local database.

2. Identification phase:

(a) Verifier randomly selects a subset N ⊆K different challenges |φci ⟩ and
sends them over a public channel to prover.

(b) Verifier randomly selects N/2 positions, marks them b = 1 and sends
the valid response states |φ1i ⟩= |φri ⟩ to prover. On the remaining N/2
positions, marked as b = 0, the verifier sends the trap states |φ0i ⟩ =
|φtrap
i ⟩.

3. Verification phase:

(a) Prover queries the qPUF device with the challenge states received from
verifier to generate the response states |φpi ⟩ for all i ∈ [N].

6We drop the parameters (K,N,D) from now on for simplicity whenever we refer to this
protocol.
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(b) Prover performs a quantum equality test algorithm by performing a
SWAP test between |φpi ⟩ and the response state |φbi ⟩ received from the
verifier. This algorithm is repeated for all the N distinct challenges.

(c) Prover labels the outcome of N instances of the SWAP test algorithm
by si ∈ {0,1} and sends them over a classical channel to verifier.

(d) Verifier runs a classical verification algorithm cVer(s1, ..., sN) and out-
puts ‘1’ implying that prover’s qPUF device has been successfully iden-
tified, and outputs ‘0’ otherwise.

Fig. 6.2 shows the qPUF based identification protocol with low-resource veri-
fication denoted as lrv-id. For the lrv-id protocol, completeness is the probability
that Verifier’s verification algorithm cVer returns an outcome ‘1’ in absence of
Eve. Ideally we require completeness to differ negligibly from 1,

Pr[Ver acceptH] = Pr
[
cVer(SN) = 1

]
= 1−negl(λ) (6.18)

where λ is the security parameter.
Soundness of the protocol is the probability that cVer returns an outcome ‘1’

in presence of Eve. For security, we require the soundness to be negligible in λ,

Pr[Ver acceptEve] = Pr
[
cVer(SN) = 1

]
= negl(λ) (6.19)

We investigate the security of our protocol when the prover uses the SWAP test
and the verifier uses the classical verification algorithm cVer. We remark that the
prover can alternatively use GSWAP testing to generate the outcomes, however,
this would require the verifier to send multiple copies of the same challenge state
to the prover, thus incurring higher resources on the verifier’s side.

6.2.3.2 cVer algorithm

The main ingredient of verification is the cVer classical test algorithm employed by
the verifier to certify whether the prover’s device has been identified. As described
in Algorithm 2, cVer receives an N-bit binary string SN as input. The algorithm is
divided into two tests. test1 first checks whether in the N/2 positions marked as
b = 1, i.e. the positions where the verifier had sent a valid qPUF response state
to the prover if the corresponding bits in SN are all 0.

If this test succeeds, then the algorithm proceeds to test2 which is a test
on the positions where the verifier had sent the trap states to the prover. If on
these positions, the expected number of bits in SN which are 0 lie between {κN2 −
δer ,κ

N
2 +δer}, then cVer algorithm outputs ‘1’ indicating that the device has been

identified. Here κN2 is the expected number of bits in b=1 positions with outcome
‘0’ that prover would obtain after the equality test algorithm measurement, in
absence of any adversary Eve. In our case when the prover uses the SWAP test,
κ= 0.5. Here, δer accounts for the statistical error in the measurement.



188 6. Applications of Quantum Physical Unclonable Functions

Algorithm 2 cVer algorithm

Description: Let SN = {0,1}N be the input N-bit string. Let P = {ik}
N/2
k=1 be the

set of indices showing the rounds of the protocol where b= 1. Algorithm consists
of two tests, test1 and test2 as follows:
test1:
forall i in P do

if si = 0 then
count← count+1

end
end
if count = N

2 then
return 1

else
return 0

end

test2:
if test1 = 0 then

return 0
else

forall i not in P do
if si = 1 then

count← count+1

end
end
if |count− δN2 |⩽ δer then

return 1
else

return 0
end

end

6.2.3.3 Verification using SWAP test and cVer algorithm

Here we explicitly describe and calculate the completeness and soundness prob-
abilities of the lrv-id protocol which employs the verification algorithm involving
the prover’s SWAP test, followed by the verifier’s cVer algorithm. This allows
the verifier to efficiently identify the valid qPUF device even though the SWAP
test algorithm has been delegated to the prover. A single instance of the prover’s
SWAP test requires a single copy of the response state received from the verifier
(either the valid qPUF response state or the trap state) and the response state
that the prover generates by querying the verifier’s challenge state in his qPUF
device. To obtain a desired low enough error rate in the verification algorithm,
the SWAP test is performed on N distinct instances of the received response state
and response state generated by prover by querying distinct challenges states. The
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responses of the SWAP test instances are classical bits. Thus the N bit binary
classical outcome string is sent to the verifier who employs the algorithm cVer
described in Algorithm 2. An identification protocol performed using N distinct
challenge states consumes a combined total of 2N copies of the received state
and the response state generated by the verifier. In the next two sections, we
show that SWAP based test algorithm provides us with the desired completeness
and soundness properties required in the protocol.

Theorem 39 (cVer Completeness). In absence of an adversary Eve, the
probability that the N-bit string SN = {s1, ..., sN} sent by prover, passes the
cVer(SN) algorithm is,

Pr[Ver acceptH] = Pr
[
cVer(SN) = 1

]
= 1−2e−N/4 (6.20)

Proof. To prove this theorem, we separately analyse the N/2 positions where
verifer sends the valid qPUF response state to prover (marked as b = 1), and the
remaining positions where she sends the trap state (marked as b = 0),

1. b = 1 positions: When prover prepares the response state |φpi ⟩ by querying
her qPUF device with verifer’s challenge state |φci ⟩, then prover’s generated
response state is equal to verifer’s response state sent to prover, i.e. |φri ⟩=
|φpi ⟩. This implies that F (|φpi ⟩ , |φ

r
i ⟩) = 1 for all i ∈ [N] marked b = 1. From

Eq. (2.65), we see that,

Pr
[
SWAP(|φpi ⟩ , |φ

r
i ⟩) = 1] =

1

2
+
1

2
F (|φpi ⟩ , |φ

r
i ⟩) = 1, (6.21)

Note that [SWAP(|φpi ⟩ , |φ
r
i ⟩) = 1] corresponds to the classical outcome 0.

This implies that si =0 for all i ∈ [N]marked b=1 with certainty. Thus when
verifer employs the cVer algorithm, prover always achieves a count = N/2
in the test1 and thus passes it with certainty,

Pr[test1 pass] = 1 (6.22)

2. b=0 positions: These positions correspond to verifer sending the trap states
|φtrap
i ⟩ to prover such that prover’s generated response state |φpi ⟩ is orthog-

onal to the trap state. In other words, F (|φpi ⟩ , |φ
trap
i ⟩) = 0 for all i ∈ [N]

marked b = 0. This implies that,

Pr
[
SWAP(|φpi ⟩ , |φ

trap
i ⟩) = 1] =

1

2
+
1

2
F (|φpi ⟩ , |φ

trap
i ⟩) =

1

2
, (6.23)

Thus, half of the N/2 positions would produce the classical outcome 1 on
average. When verifer employs test2 of the cVer algorithm, E[count] =
N/4. Using the Chernoff-Hoeffding inequality [MU17], for any constant
δer > 0,

Pr[test2 pass] = Pr
[∣∣∣count− N

4

∣∣∣⩽ δer]⩾ 1−2e−Nδ2er (6.24)
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From the above results and using the fact that δer = 0.5 for SWAP test based
algorithm,

Pr[Ver acceptH] = Pr
[
cVer(s1, · · · , sN) = 1

]
= Pr

[
test1 pass∧test2 pass

]
= Pr[test1 pass] ·Pr[test2 pass]

⩾ 1−2e−N/4

(6.25)

This completes the proof.

The next section details the soundness proof of the lrv-id protocol.

6.2.3.4 Soundness of lrv-id protocol

To characterise the soundness, we bound Eve’s success probability in passing the
cVer test. Since the verification test is reduced to a classical test, we consider
the soundness in the presence of two types of Eve. The first is a classical Eve
who does not process any quantum resources. The second is a quantum Eve,
which possesses QPT memory and computing capability. We separately analyse
the security against both types of Eve and prove that quantum Eve gains only
an exponentially-small advantage compared to the classical Eve, thus reducing
the security to analysing only the classical adversary. We show that since the
verification test is classical, the only way for a quantum Eve to succeed better
than a classical Eve is to succeed at guessing the trap positions better than a
random guess of classical Eve. We utilise the unforgeability property of qPUF to
prove that a quantum Eve can have only negligible advantage in guessing the trap
positions compared to a classical Eve, thus enabling the reduction.

(I) Security against classical adversary

Theorem 40 (Soundness against classical Eve). The probability that any
classical PPT adversary (Eve) produces an N-bit string SN = {s1, ..., sN}
which passes the cVer algorithm is bounded as,

Pr[Ver acceptEve] = Pr
[
cVer(SN) = 1

]
⩽O(2−N) (6.26)

Proof. First, we remark that any classical Eve’s strategy to produce a valid N-bit
string SN can be divided into two categories,

1. Independent guessing strategy: Under this strategy, Eve tries to indepen-
dently guess each bit of the string SN that would pass the verifier’s cVer
algorithm. This also relates to the strategy of independently finding valid
responses and trap positions.

2. Global strategy: Here, Eve’s strategy is to output a string SN using the
global properties of the cVer, such that it passes the verification test with
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maximum probability. In contrast to the previous strategy, the probability of
outputting each bit si is not necessarily independent of the global strategy.

We calculate the optimal success probability of Eve in both cases and show
that by optimizing for both the strategies, we obtain a higher success probability
for Eve in the optimal global strategy scenario. Although, the two strategies con-
verge in the limit of large N. Hence we bound Eve’s success probability by the
optimal global strategy.

1. Independent guessing strategy: Under this strategy, Eve independently
guesses each bit with the probability,

P r [si = 0] = α, P r [si = 1] = 1−α (6.27)

where α ∈ [0,1].
We denote the resulting string generated by Eve’s strategy as Sid = {s1, · · · , sN}.

In order for Sid to pass the cVer verification algorithm, it must simultaneously pass
the test1 and test2. Since Eve’s strategy is guessing each bit independently,
hence the probability for her to pass the test1 and test2 are independent. Let
us look at the probability of passing the test1 (which corresponds to checking
the N/2 positions marked b = 1,

Pr[test1 pass] = Pr[sp1 = 0]×·· ·×Pr[spN
2

= 0] = α
N
2 (6.28)

where pi correspond to the b = 1 marked positions.
If Eve’s generated string passes test1, then verifer runs the test2 to check

if count, which is the number of bits that are 1 in the remaining N/2 bits marked
with b = 0, lies within the interval

∣∣count − N
4

∣∣ ⩽ δer . Eve succeeds in passing
this test with the probability,

Pr[test2 pass] =
N/4+δer

∑
x=N/4−δer

(1−α)xα
N
2−x ×

(
N/2

x

)
≈ (2δer +1)(1−α)

N
4 α

N
4 ×

(
N/2

N/4

) (6.29)

where the approximation holds since we assume that δer ≪N. From the above re-
sults, we see that the probability that Eve’s string Sid passes the cVer verification
algorithm is,

Pr[Ver AcceptEve,α] = Pr[test1 passα] ·Pr[test2 passα]

≈ (2δer +1)α
3N
4 (1−α)

N
4 ×

(
N/2

N/4

)
(6.30)

This is Eve’s acceptance probability for a given α. An optimal strategy for Eve
is to find the optimal value of α that maximises the acceptance probability. This
corresponds to,



192 6. Applications of Quantum Physical Unclonable Functions

∂

∂α
Pr[Ver AcceptEve,α]⇒

∂

∂α
(α

3N
4 (1−α)

N
4 ) = 0⇒ α=

3

4
(6.31)

Thus the maximum acceptance probability of Eve using an independent guess-
ing strategy is:

Pr[Ver AcceptEve] = (2δer +1)
3
3N
4

22N
×
(
N/2

N/4

)
≈O(2−N) (6.32)

2. Global strategy: The second category of Eve’s strategy is to guess the N
bit string which passes the cVer test algorithm with maximum probability. Here,
Eve is not restricted to choosing each bit independently. To find the optimal
global strategy we look at the test1 and test2 algorithms and extract essential
properties that can be leveraged by Eve to pass the verification test. We note
that

• Since the good and trap response positions corresponding to b = 0 and 1
are chosen uniformly randomly by verifer, hence verifer does not have any
information on the index set P corresponding to b= 1 (thus no information
on b = 0 positions too).

• Eve knows the statistics of 0’s and 1’s in the desired string to pass the cVer.
For example, a string must have a minimum of ≈ 3N/4 bits which are 0,
otherwise, the string necessarily fails the test1 or test2 or both.

Based on the above facts, any global strategy for Eve should consist of optimizing
the number of 0’s and 1’s to pass both verification tests.

Before considering the optimal global attack strategy, we give an example of
a specific (non-optimal) attack strategy to provide intuition on the kind of strate-
gies that Eve can adopt here.

Example of a global strategy: The first global strategy that one might think of
is to try to guess P , since passing the test1 reduces to finding the strings that
have bits ‘0’ is all the pi positions i.e. positions marked b = 1. If Eve successfully
manages to guess the b = 1 positions, then she has a deterministic strategy of
winning the test2, since she also knows the b = 0 trap positions. Across these
positions she can deterministically assign the bits such that the count of the
number of 1 bits lie within the interval

∣∣count− N
4

∣∣⩽ δer .
We denotes Eve’s generated string with this strategy to be Sg. Hence the

probability of Sg passing test1 is equal to correctly guessing the N
2 positions

marked b = 1,

Pr[test1 passSg ] = Pr[guess b = 1 positions] =
(
N

N/2

)−1
(6.33)
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Once this test passes, then test2 passes with certainty. Now the probability
of passing the cVer verification algorithm is,

Pr[Ver acceptEve,Sg ] = Pr[test1 passSg ∧test2 passSg ]

= Pr[test1 passSg ] ·Pr[test2 passSg |test1 passSg ]

=

(
N

N/2

)−1
·1

⩽ N−
N
2

(6.34)

We show that this global strategy is not optimal and Eve can design an optimal
global strategy by properly utilising the part the second part of the information.

First, we argue that maximising the number of 0’s will necessarily increase the
success probability of passing test1. Let us assume that Eve sends an all ‘0’
string Sg to the verifier. Since test1 checks only if in the b= 1 marked positions
are 0, so Sg will always pass the first test. However, this string necessarily fails
the test2 since the count for this test is N/2 which is much higher than the
tolerated limit.

Thus there always exists a global strategy with an optimal number of bits
(number of 1) in Sg in the case of δer = 0, or more precisely a strategy that
allows the flexibility of having a set of values for the number of ‘1’ bits that the
test2 tolerates in case of δer ̸= 0.

Optimal global strategy: We say that an optimal global strategy Egop is the
one that outputs a string Sgop with c1 number of 1 bits, where c1 ∈ mval id =
{N4 − δer , . . . ,

N
4 + δer}.

Optimality argument: We prove the optimality of our test by the contradiction
argument. Let us assume that there is a strategy Eg different from above which
produces a string Sg that succeeds with the verification acceptance probability
higher than Sgop. Now, either all the strings that Eg outputs have c1 number of 1
bits, where c1 lies within the optimal boundary mval id . In this case Eg falls within
the Egop strategy set. Or, there is at least one string that Eg outputs with c1
number of 1 bits such that c1 ̸∈ mval id . In this case, that string will necessarily
fail test2, even if it passes test1. This is because for the strategy Eg ̸∈ Egop to
pass, the bits in Sg which are 1 must necessarily appear in the positions marked
b = 0 (trap positions). And since the number of 1 bits c1 ̸∈mval id , this implies it
will fail the test2. Thus, Pr[Ver AcceptEve,Eg ̸∈Egop ] = 0.

Note that the condition of c1 ∈mval id is necessary but not a sufficient condition
for passing the verification algorithm cVer i.e. any string with with c1 ̸∈mval id ,
will always fail but not all strings with c1 ∈mval id will always pass the verification.
Thus we can define the largest possible set of potentially valid strings which Eve
needs to choose from to maximise her acceptance probability. As a result, we can
define the optimal strategy Egop’s event space to be

(
N
c1

)
. This is the set of all
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strings with the number of bits c1 ∈mval id . We can now find the optimal global
probability which is the probability that both the tests of cVer pass,

Pr[Ver acceptEve,Sgop ] = Pr[test1 passSgop ∧test2 passSgop ]

= Pr[test1 passSgop ] ·Pr[test2 passSgop |test1 passSgop ]
(6.35)

To calculate Pr[test1 passSgop ], we need to find the number of strings Sgop
from the whole set of strings {0,1}N with c1 ∈mval id bits and which passes the
first test. In other words, the string Sg must have bits 0 in all the b = 1 marked
positions and the bits 1 in the b = 0 marked positions.

Thus there are N/2 positions out N where the bits 1 can be placed without
the test1 getting rejected.

For a specific c1, the total number of such strings is equal to the possible ways
of distributing c1 objects (1’s) in N/2 positions:

#(correct strings)=
(
N/2

c1

)
(6.36)

If one of these ‘correct strings’ is picked, it will necessarily also satisfy the
condition of the second test. Hence the conditional probability is

Pr[test2 passSgop |test1 passSgop ] = 1

. And the probability of passing the first test is,

Pr[test1 passSgop ] =
(
N/2

c1

)/(N
c1

)
(6.37)

The above test1 passing probability is for a single c1 ∈mval id . Summing over
the probabilities of all the accepted c1 ,

Pr[test1 passSgop ] = ∑
c1∈mval id

(N
2
c1

)(
N
c1

) = δer

∑
k=−δer

( N
2

N
4+k

)
( N
N
4+k

) = (N2 )!
N!

δer

∑
k=−δer

(3N4 −k)!
(N4 −k)!

(6.38)
In the limit δer ≪ N, the sum will converge,

Pr[test1 passSgop ] = (2δer +1) ·
(N2 )!(

3N
4 )!

N!(N4 )!
(6.39)

From the above equations, the probability that Eve passes the cVer algorithm
using the global strategy,

Pr[Ver acceptEve,Sgop ] = Pr[test1 passSgop ] ·Pr[test2 passSgop |test1 passSgop ]

= (2δer +1)×
(N2 )!(

3N
4 )!

N!(N4 )!
·1

⩽O(N−N/2)
(6.40)
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3. Probability comparison of Independent guessing strategy and Global strat-
egy: To find the optimal classical attack, we compare the two categories of the
attack strategies of Eve.

We fix the accepted tolerance value δer = 1 for the comparison. The same
result holds for other fixed δer values. Fig. 6.3 shows the behaviour of the accep-
tance probabilities of Eve in the independent guessing strategy and global strategy
as an increasing function of the string length N.

Prind=
33N/4+1 (N/2)!

4N ((N/4)!)2

Prg=
3 (N/2)! (3N/4)!

N! (N/4)!

20 40 60 80 100
N

0.001

0.002

0.003

0.004

0.005

0.006

Pr

Figure 6.3: Comparison of the acceptance probabilities of a classical adversary (Eve) in the inde-
pendent guessing strategy (in blue) and global strategy (in red) as a decreasing function of the
string length N for the tolerance value δer = 1

From the simulation, we infer that the two strategies have an inverse exponen-
tial form as expected. Also, they both converge for large enough N values. This
also confirms the fact that the optimal strategy lies in finding the correct number
of 1’s in the string and the difference comes from our approximation in using
the frequency interpretation of the probabilities in the smaller N. Using Stirling’s
approximation n! ≈

√
2nπ(ne )

n one can check that 1

(
N
N
4
)
≈ ( 4

33/4
)−N which gives

exactly the same bound as the independent guessing strategy. Although, in small
N the global strategy is slightly better. Finally, we use Stirling’s approximation(
2n
n

)
≈ 22n√

πn
to obtain the common factor of both probabilities we can bound the

adversary’s optimal success probability as,

Pr[Ver AcceptEve]≈
33N/4

22N
×
2N/2√
πN
4

=
2√
Nπ
(
26

33
)−N/4≈O(2−N) for large enough N

(6.41)
This completes the proof.

(II) Security against quantum adversary

We now investigate the soundness property of the protocol against QPT Eve by
modelling Eve’s strategy with a completely positive trace preserving (CPTP) map
that takes as input the target challenge |φci ⟩, the unknown state |φbi ⟩, and ancilla
qubits and outputs the classical bits which are sent to verifier for verification. This
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map utilises the database information created by Eve during the qPUF transition.
A QPT Eve’s strategy can be divided into two categories,

1. Collective attack strategy: Eve applies an independent CPTP map on each
of the N rounds.

2. Coherent attack strategy: Eve applies a CPTP map on the combined N
distinct challenge and their corresponding response states that the verifier
sends to the prover.

A collective strategy is a special case of Eve’s coherent strategy. However, we
show that independence in choosing the trap states by verifier reduces the coher-
ent strategy to the collective strategy by Eve. We analyse the collective security
first and then give a reduction of the coherent strategy to the collective strategy.

1. Collective strategy: Under this strategy, Eve optimises over all the CPTP
maps that input verifier’s states |φci ⟩ and |φbi ⟩ and outputs a single bit si to
maximise the acceptance probability. Fig. 6.4 shows Eve performing a general
collective strategy.

Eve local DB

| ۧψ1
𝑐 | ۧψ1

𝑟 ⨂𝑀

| ۧψ2
𝑐 | ۧψ2
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⋮ ⋮

| ۧψ𝑘
𝑐 | ۧψ𝑘

𝑟 ⨂𝑀

Λ𝐸𝑣𝑒

⋮

| ۧ𝜙𝑖
𝑐

| ൿ𝜙𝑖
𝑏

| ۧ𝑎𝑖

𝑎𝑛𝑐𝑖𝑙𝑙𝑎𝑠
𝑠𝑖

⊗𝑁| ۧ𝜙𝑖
𝑐 𝑜𝑢𝑡

| ൿ𝜙𝑖
𝑏 𝑜𝑢𝑡

⋮

Figure 6.4: Quantum collective attack strategy performed by Eve on lrv-id protocol by applying
the same local-database-dependent CPTP map on each round of the challenge and response state
|φci ⟩ and |φbi ⟩ respectively. The output of the single instance of the map is a bit Si .

We denote Eve’s quantum map to be,

ΛEve ≡
N⊗
i=1

Λi . (6.42)

Contrary to the classical Eve who is unable to figure out the trap positions in
any round with a probability higher than half, a QPT Eve, by leveraging her local
database information, could be expected to do better than a random guess. More
formally, we say that the lrv-id protocol is secure against any QPT Eve that
performs a CPTP map Λi on the states |φci ⟩ , |φbi ⟩ for each i ∈ [N] if the resulting
success probability of correctly guessing the bit b for each position differs negligibly
in the security parameter from half.

We need a small toolkit, which is the abstraction of an ideal test in a single
instance case (when one is provided with a single copy of one quantum state
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and multiple copies of the other state), in terms of fidelity. This definition is
very similar to Definition 42 in Chapter 4 where we remove the quantifier δ for
simplicity:

Definition 46 (Single Instance Ideal Test Algorithm). We call a test al-
gorithm according to Definition 12, a Tideal test algorithm when one is
provided a single copy of the state ρ and multiple copies of the state |ψ⟩
(or vice-versa) with fidelity F (ρ, |ψ⟩⟨ψ|) the test responds as follows:

Tideal := Pr[1←Tideal(ρ, |ψ⟩⟨ψ|)] = F (ρ, |ψ⟩⟨ψ|) (6.43)

Now we can show the security of lrv-id against QPT adversaries with collective
attack strategies with the following theorem:

Theorem 41 (Security against collective attack). The success probability
of any QPT adversary Eve, in correctly guessing whether |φbi ⟩= |φri ⟩ for each
i ∈ [N] differs negligibly from half,

Pr[b← Λi(|φci ⟩ , |φbi ⟩)]⩽
1

2
+O(2−d) ∀i ∈ [N] (6.44)

where d =O(poly logD) is the size of Eve’s database and qPUF is in HD.

Proof. First, we use the symmetry of the problem to restrict ourselves to cases
where b = 1. We prove the theorem by contradiction i.e., suppose there exists
an algorithm W that wins the quantum security game for each index i ∈ [N] with
a probability non-negligibly better than a random guess. In other words, W = 1
if the index b is correctly guessed, and W = 0 otherwise. Let f (λ) ⩾ 0 be a
non-negligible function of the security parameter. The joint probabilities for all
collective possible values of b and W can be written as,

Pr[W = 1,b = 1] =
1

4
+ f (λ) Pr[W = 1,b = 0] =

1

4
− f (λ)

Pr[W = 0,b = 0] =
1

4
+ f (λ) Pr[W = 0,b = 1] =

1

4
− f (λ)

(6.45)

where the joint probabilities are higher when W correctly guesses b, and is lower
otherwise. From this, we can define the following conditional probability of winning
for cases where b = 1 as follows:

P r [W = 1|b = 1] =
P r [W = 1,b = 1]

P r [b = 1]
=
1

2
+ f ′(λ)

Where f ′ = 2f is again a non-negligible function in the security parameter λ. This
is the same probability of winning when b = 0 i.e. Pr[W = 0|b = 0].

Now we show that the success probability of Eve in successfully guessing
whether |φbi ⟩= |φri ⟩ reduces to finding a CPTP map Λi which performs an optimal
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quantum test to distinguish the response state |φbi ⟩ with the reference state |φEi ⟩.
As Eve has no access to the actual response |φri ⟩, the reference state |φEi ⟩ should
be generated within the Λi itself. Thus without loss of generality, any attack map
Λi , consists of two parts. The first part uses a generator algorithm gen to gener-
ate a reference state |φEi ⟩, or more generally a mixed state ρe by using the local
database and the input challenge state |φci ⟩, and the second part performs a test
algorithm T on |φbi ⟩ and ρe ,

Λi ≡ T (|φbi ⟩ ,ρe ← gen(DB, |φci ⟩)) (6.46)

where DB is the local database of Eve generated in the setup phase. To
further provide the capability to Eve, we assume that her test T is an optimal test
equality test algorithm also referred to as the ideal test algorithm in Definition 46,
i.e. T = Tideal . Note that Tideal is the optimal test allowed by quantum mechanics
where the probability of succeeding in the equality test is proportional to the
square of the fidelity distance of the two states. Now we state the following
contraposition: Let us assume that there exists a winning algorithm W running
Λ = Tideal(|φbi ⟩ ,ρe) such that,

Pr[1← Λ(|φci ⟩ , |φbi ⟩)|b = 1]⩽
1

2
+non-negl(λ) (6.47)

From Definition 46, we see that Tideal outputs 1 with probability p=F (|φbi ⟩ ,ρe).
In other words,

Pr[1← Λ(|φci ⟩ , |φbi ⟩)|b = 1] = Pr[1←Tideal ] = F (|φbi ⟩ ,ρe)⩽
1

2
+non-negl(λ)

(6.48)
This implies that if an algorithm W exists for Eve, then she is able to generate

the state ρe with non-negligible fidelity with the valid qPUF response (for b=1),
and similarly with trap states (for b = 0). And this would hold for all i ∈ [N]. But
this contrasts with the universal unforgeability of the qPUF which states that the
success probability of any QPT adversary having polynomial-size access to the
qPUF is bounded as de+1

D (Theorem 28) where de = poly(λ) = poly log(D) is the
dimension of subspace that Eve has learnt from HD. Thus such Λ cannot exist
even with the most efficient test Tideal . This concludes the proof.

2. Coherent Strategy: The collective strategy is restricted to Eve applying
individual unentangled maps in each round. A more generalised strategy, the
coherent strategy, involves applying a CPTP map collectively on all the rounds thus
potentially leveraging entanglement capabilities across rounds. Such a strategy
takes as input the N challenge states ⊗Ni=1 |φci ⟩, the N response state ⊗Ni=1 |φbi ⟩
and the ancilla qubits, and outputs a N bit string SN which is sent to verifier for
verification. Fig. 6.5 depicts this strategy. Eve’s objective is to produce the SN
which maximises the cVer passing probability. We denote Eve’s quantum map to
be,

ΛEve ≡ ΛN (6.49)



6.2. Quantum-secure identification protocols using quantum PUF 199
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Figure 6.5: Quantum coherent attack strategy performed by Eve on lrv-id protocol by applying
the general local-database-dependent, CPTP map on the combined N challenges and response
states |φci ⟩ and |φbi ⟩ respectively. The output is the N bit string s : {s1, · · · , sN}.

We say that the lrv-id protocol is secure against any QPT Eve who performs
the map ΛN if the resulting success probability of correctly guessing the b value
for all the N positions is negligibly small in the security parameter.

Theorem 42 (Security against coherent attack). The success probability
of any QPT adversary Eve, in correctly guessing the b values for all the N
positions, denoted by [b1, · · · ,bN ] is,

Pr[b← ΛN(|φc⟩ , |φb⟩)]⩽
(1
2
+O(2−d)

)N
(6.50)

where b : [b1, · · · ,bN ] are the bits corresponding to correct b values,
|φc⟩=⊗Ni=1 |φci ⟩, |φb⟩=⊗Ni=1 |φbi ⟩ and d =O(poly logD) is the size of Eve’s
database.

Proof. To prove this theorem, we notice that Eve applies a generalised map ΛN on
the challenge and the response states of verifer to be able to correctly distinguish
whether the response states are |φbi ⟩= |φri ⟩ for all i ∈ [N]. Thus the probability to
correctly guess b reduces to Eve applying a CPTP map ΛN to perform an optimal
test to distinguish the response state |φb⟩ with her reference state ρNe , where ρNe
is the generalised entangled state. Thus without loss of generality, any attack
map ΛN , consists of two parts. The first part uses a generator algorithm genN to
generate a reference state ρNe by using the local database and the input challenge
state |φc⟩, and the second part performs a test algorithm T on |φb⟩ and ρNe ,

ΛN = T (|φb⟩ ,ρNe ← gen(DB, |φc⟩)) (6.51)

where DB is the local database of Eve generated in the setup phase. Similar to
the collective strategy proof, we assume Eve’s testing algorithm T is the optimal
test equality test algorithm, also referred as ideal test algorithm in Definition 46,
i.e. T = Tideal . Here Tideal again relates to the fidelity distance between the two
states,

Pr[1← ΛN(|φc⟩ , |φb⟩)] = Pr[1←Tideal ] = F (|φb⟩ ,ρNe ) (6.52)
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Since each b across the N positions are chosen independently and randomly, this
implies at entangling the map across different rounds does not help Eve in any
way. Thus to correctly guess the b values for all the N positions, the optimal
attack strategy of Eve is to generate the reference state ρ⊗Nmax , such that,

∀i ∈ [N] F (ρmax, |φri ⟩) = ⟨φbi |ρmax |φbi ⟩⩾ ⟨φbi |ρi |φbi ⟩ (6.53)

where ρi = Tr{1···N/i}(ρNe ), i.e. ρi is obtained by tracing out the N-1 instances
{1, · · ·N/i}.

This further implies that attack map ΛN is reduced to Λ⊗Nind , where the map
Λ⊗Nind involves a generator algorithm that produces the state ρmax which maximises
the average fidelity with verifier’s response state across all the N rounds. This
implies that,

Pr[{b1, · · · ,bN}← ΛN(|φc⟩ , |φb⟩)] =
N

∏
i=1

Pr[bi ← Λind(|φci ⟩ , |φbi ⟩)]

⩽
(1
2
+negl(λ)

)N (6.54)

where we used the result of Theorem 41 after the reduction from coherent to the
collective attack. This completes the proof.

(III) Comparing Classical and Quantum Strategies: Using the above Theo-
rem 41 and Theorem 42 we show that a QPT Eve does not have any non-negligible
advantage in passing the cVer verification test compared to the purely classical
Eve. Thus, we can bound the success probability of a general QPT Eve which the
success probability of the classical Eve from the Theorem 40,

Pr[Ver acceptQPT Eve]⩽ Pr[Ver acceptClassical Eve]+O(2−N)≈O(2−N) (6.55)

6.2.4 Generalisation of low-resource protocol to arbitrary dis-
tribution of traps

In the original lrv-id protocol, verifier randomly picks half of the N/2 positions, and
marks them b= 1. The rest is marked b= 0. Here, even though an adversary Eve
does not know the locations of valid qPUF response states and the trap states, she
knows that half of the positions are traps. In this section, we generalise the lrv-id
protocol, to further hide the number of traps from Eve. This is done with the hope
that hiding the number of trap and good response states could further decrease
the probability of Eve passing the cVer test, especially against a fully classical
Eve who only uses the statistics information to attack the protocol. Here verifier
chooses an arbitrary number of trap positions. In other words, she randomly pics
a value p ∈ [0,1], then randomly picks pN locations out of N and marks them
b = 1 (valid response states). The rest of (1−p)N positions are assigned b = 0
(trap positions). One can observe that the protocol on the prover’s side does not
depend on this value p hence verifier is not required to make the p value public.
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We note that b=1 positions must all have bits valued 0, and b=0 positions must
have half bits valued 0 and the rest are valued 1 (assuming δer = 0 for simplicity)
if the N bits have to pass the classical verification algorithm cVer. Now, upon
running the lrv-id protocol, there are in total N(1+ p)/2 number of 0 bits and
N(1− p)/2 number of ‘1’ bits in the desired bit-string SN which can pass the
verification. Changing the tolerance value δer will not affect the result as we
have seen in the previous section that by having a δer much smaller than N the
probability only multiplies to a constant factor. We follow the same argument
as in the proof of Theorem 40, for finding the optimal success probability of Eve
generating successful bit-strings for the new classical verification. We say that the
optimal strategies are the ones where their string space consists of exactly c1 bits
that are 1, where here c1 =N(1−p)/2. For the specific case of p = 0.5, we have
proven the optimality of such strategies. Hence in this specific case, we can refer
to the same proof. In the generalised setting, the p value is unknown, and as a
result, c1 is unknown to Eve as well. Therefore the overall winning probability of
Eve will depend on first guessing the correct values of c1 and then the probability
of such strings passing both tests. Also, we know that the probability of any
strings with incorrect c1 is necessarily 0, hence we can write the probability that
Eve passes the verification test as follows,

Pr[Ver acceptEve] = Pr[guess c1]×Pr[Ver acceptEve,Sgop |c1 =
N(1−p)
2

]

= Pr[guess c1]×

(N−Np
N−Np
2

)
( N
N−Np
2

) (6.56)

Let us assume that verifer, in order to maximize the randomness over the
correct choice of c1, picks p completely uniformly from [0,1]. In this case, the
number of trap responses can be any number between 0 (for p = 1) and N (for
p = 0). Consequently, c1 ∈ {0,1, . . . , N2 } and if any of these values occur with
equal probability, then Eve can guess c1 with the following probability:

Pr[guess c1] =
1

N
2 +1

Now one can calculate the average wining probability of Eve over p:

Pr[Ver acceptEve]
p

=

∫ 1
0

2

N+2

(N−Np)!(N+Np2 )!
N!(N−Np2 )!

dp (6.57)

Now, we approximate the above integral as follows:
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Theorem 43 (Average success probability convergence with arbitrary distri-
bution of traps). Let p be the probability of choosing correct responses in
lrv-id protocol. Then the average wining probability of Eve over p, approxi-
mately converges as follows:

Pr[Ver acceptEve]
p

≈Prwin=
2

N+2

N

∑
k=0

(N−k)!(N+k2 )!
N!(N−k2 )!

≈
6

N(N+2)
=O(

1

N2
)

(6.58)

Proof. We approximate the following integral for the average probability that Eve
wins the classical verification by performing the optimal classical strategy when p
is chosen to be a uniform distribution.

Pr[Ver acceptEve]
p

=

∫ 1
0

2

N+2

(N−Np)!(N+Np2 )!
N!(N−Np2 )!

dp

We choose NP = k thus we have Ndp = dk and we can rewrite the integral
as:

Pr[Ver acceptEve]
p

=
2

N(N+2)

∫ N

0

(N−k)!(N+k2 )!
N!(N−k2 )!

dk

Now we can approximate the integral for discrete k ∈ {0,1, . . . ,N}. Hence we
have:

Pr[Ver acceptEve]
p

≈ Pr[Ver acceptEve] =
2

N(N+2)

N

∑
k=0

(N−k)!(N+k2 )!
N!(N−k2 )!

The above series can be opened further as:

N

∑
k=0

(N−k)!(N+k2 )!
N!(N−k2 )!

= 1+
(N−1)!
N!

×
(N2 +

1
2)!

(N2 −
1
2)!
+
(N−2)!
N!

×
(N2 +1)!

(N2 −1)!
+ · · ·+1

= 1+
1

N
×
(N2 +

1
2)�����(N2 −

1
2)!

�����(N2 −
1
2)!

+
1

N(N−1) ×
(N2 +1)(

N
2 )�����(N2 −1)!

�����(N2 −1)!
+ · · ·+1

≈
N≫1
2+

N
2

N
+
(N2 )

2

N2
+
(N2 )

3

N3
+ . . .

= 2+
N−1

∑
i=1

(
1

2
)i ≈ 2+(1−21−N)≈ 3

(6.59)

where the sum has been approximated for large N. Thus we can write the
average probability in the limit of large N as follows,

Pr[Ver acceptEve]
p

≈ Pr[Ver acceptEve] =
6

N(N+2)
(6.60)

This concludes the proof.
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This means that by choosing p form a uniform distribution, the average success
probability of the adversary becomes polynomially small in N which reduces the
security of the protocol to polynomial. This may seem a surprising result although
the reason is that the probability function for p = 0 and p = 1 is 1. On the other
hand, from the security result for p = 12 , we know that the probability function’s
behaviour can be inverse exponential. This gives rise to the interesting question
of whether one can find a boundary for p in which Pr[Ver acceptEve] is negligible.
Before addressing this problem, it is worth mentioning that by hiding p, one can
hope the protocol’s security to be boosted by at most a polynomial factor ( 1

O(N))
as Eve’s probability of guessing the correct c1 depends only on the different number
of 1’s in the string that results from different choices of p. Even though for large
N this polynomial factor can be ignored, assuming that the verifier has a good
choice of p which leads to exponential security, in relatively smaller N the hiding
can practically boost the security of the identification.

Now to be able to analyse the Pr[Ver acceptEve], we rewrite the factorials with
Gamma function and we define z = N−Np

2 where z ∈ {0,1, . . . , N2 }. Considering
that Γ(z +1) = zΓ(z), the probability is,

Pr[Ver acceptEve] =
(N−Np)!(N+Np2 )!

N!(N−Np2 )!
=
Γ(2z +1)Γ(N− z +1)

N!Γ(z +1)

=
2

N!
×
Γ(2z)Γ(N− z +1)

Γ(z)

(6.61)

Using properties of Gamma functions we have that Γ(2z)Γ(z) =
22z−1√
π
Γ(z+ 12). Thus

we can simplify the function to be:

Pr[Ver acceptEve] =
2√
π
×
22z−1

N!
Γ(z +

1

2
)Γ(N− z +1)

≈
22z−1

N!
Γ(z +

1

2
)Γ(N− z +1)

(6.62)

For a large enough fixed N, the factor 2
2z−1

N! ≪ 1. However it is an increasing
function in z and Γ(z + 12)Γ(N− z +1) is a large factor which quickly decreases
with z . Also at the beginning and the end of the period where z = 0,z = N

2 , the
probability is 1, and it reduces to a small value for certain z . Thus we deduce that
the function will necessarily have a minimum for any N. The Fig. 6.6, different
Pr[Ver acceptEve] for different N has been shown. We have renormalised the
probabilities as a function of p to be able to compare them. As we can see,
the function for all the different values of N falls exponentially in a minimum
region where there are the desirable values of p. As N grows, the range of
desirable p expands, which can be found in the top right plot where we compare
the probability for N = 16,N = 32 and N = 64. Also by comparing the probability
range for N = 10,N = 100,N = 150 one can see how the exponential security is
achieved for a p which has been chosen in the good region. This specification
of the success probability would be useful for the verifier to be able to optimise
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Figure 6.6: Behaviour of Eve’s success probability Pr[Ver acceptEve] as a function of p (corre-
sponding to number of valid qPUF responses), for different values of N.

the protocol based on her resources. Moreover, the freedom of choosing traps
according to desired distribution, conditioning that it bounds the value of p to the
minimum region, enables the protocol to be useful in other scenarios.

6.2.5 Resource comparison of protocols

The two proposed qPUF-based identification protocols differ a great deal in terms
of the type and amount of resources available to the concerned parties. We
divide the resources into three categories: quantum memory, quantum computing
ability, and the number of communication rounds required to achieve identification.
Here, quantum memory is quantified by the number of quantum states stored in a
register, and the computing ability resource is quantified in terms of the number
of quantum gates required to implement a specific quantum circuit.

Table 6.1 compares the resources of the two protocols that we have introduced.
For a fair comparison between the above protocols, we fix the maximum accep-
tance probability for any QPT adversary, Pr[Ver acceptEve], to be ε, and compute
the number of resources required to achieve that desired acceptance probability.
In all the protocols, we assume that during one identification, N copies of differ-
ent states, each with M identical copies are used. For the specific case of lrv-id
protocol, M = 1. For the hrv-id-swap protocol, where the quantum verification is
via the SWAP test circuit, the adversary’s acceptance probability is ε=O(2−MN).
In this protocol, the verifier requires MN =O(log1/ε) size quantum memory and
computing ability of O(poly logD) quantum gates, where D is the size of qPUF.
The prover, on the other hand, requires no quantum memory and computing
ability. The number of communication rounds required to achieve the desired
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Protocol Security Quantum Memory Verification computing ability Communication round
Verifier Prover Verifier Prover Quantum Classical

hrv-id-swap
ε

= 2−MN log1/ε 0 poly logD 0 log1/ε 0
hrv-id-gswap = (M+1)−N M

logM+1 log1/ε 0 poly logMD 0 1
logM+1 log1/ε 0

lrv-id = 2−N log1/ε 0 0 poly logD log1/ε 1

Table 6.1: Comparison of different qPUF-based identification protocols in terms of
security (Pr[Ver acceptEve] = ε) against any QPT adversary and the three resource
categories of the verifier and the prover: quantum memory, computing ability and
number of communication rounds. Here all the resources are in O(.). All our
proposed protocols exhibit ε exponential security with polynomial sized resource
O(log1/ε) memory/communication and O(poly logD) computing ability in both
the parties. Here D is the size of qPUF.

security is MN =O(log1/ε). The protocol hrv-id-gswap, where the quantum ver-
ification is via the GSWAP test circuit, the adversary’s acceptance probability is
ε=O((M+1)−N). In this protocol, the verifier requires MN =O( M

logM+1 log1/ε)

size quantum memory and a computing ability of O(poly logMD) quantum gates.
Similar to hrv-id-swap, the prover requires no quantum memory and computing
ability. The number of communication rounds required to achieve the desired
security is N = O( 1

logM+1 log1/ε). Thus for large M values, the verifier’s quan-
tum memory requirement is less while using SWAP compared to GSWAP, but the
number of communication rounds is higher using the SWAP test.

Now for the lrv-id protocol, the protocol with the low-resource verifier, the
adversary’s acceptance probability is ε = O(2−N). In this protocol, the verifier
requires N =O(log1/ε) size quantum memory. Since the verifier performs classical
verification, hence she does not require a quantum computing ability. The prover
here requires no quantum memory but since he performs the SWAP test circuit,
his computing ability is required to be O(poly logD). The number of quantum
communication rounds required to achieve the desired security is N =O(log1/ε).
This protocol also requires a single round of classical communication transmitting
N bits.

Fig. 6.7 demonstrates the graphical comparison of different resources among
the three qPUF-based identification protocols. The plots show a tradeoff in re-
sources between different protocols to achieve the desired success probability of
ε. We choose the ε to range from 10−6 to 10−1. Since the computing ability
resource depends on the qPUF size D, we choose D = 1/ε for comparison.

We identify that the difference in resources primarily comes about due to the
different requirements of SWAP and GSWAP tests. To illustrate this graphically,
we provide density plots in Fig. 6.8 to showcase the trade-off between the success
probability ε and the memory and communication round resources required for
different M ad N’s for protocols based on SWAP vs GSWAP tests.
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Figure 6.7: Comparison of the resources required by the prover and verifier in the three qPUF-
based identification protocols (hrv-id-swap, hrv-id-gswap, and lrv-id) for varying security values
ε. We choose the ε to range from 10−6 and 10−2 for the top row and between 10−6 and 10−1

for the bottom row. Plot top left compares the verifier’s quantum memory resource vs ε for the
three protocols. The plot shows that the least memory requirement is minimum in hrv-id-swap
and lrv-id protocols while it increases by increasing the number of local copies M required in the
GSWAP test for hrv-id-gswap protocol. We note that the prover’s memory requirement is 0 in all
three protocols. Plot top right similarly compares the number of quantum communication rounds
in the three protocols. The requirement is minimum in the lrv-id while it increases with M in the
hrv-id-gswap. The communication round in hrv-id is double compared to the lrv-id requirement to
indicate the two-way quantum communication instead of one way in the latter. Plots bottom left
and bottom right compares the computational resource vs ε for the verifier and prover respectively.
Here we have taken D = 1/ε for comparison.

6.3 Towards more efficient qPUF-based identifica-
tion protocols

In this section, we show that using our results form Chapter 5, we can make
the protocols we presented in the previous section yet more efficient. We have
seen how these identification protocols exploit the unforgeability of qPUFs, to
achieve exponential security against QPT adversaries in a polynomial number of
rounds. We have already discussed that these protocols are resource-efficient in
many aspects, but one of the main practical challenges in implementing them
is to sample the challenge states at random from the Haar measure. We have
seen that this requirement is crucial for achieving unforgeability for qPUFs. Nev-
ertheless, Theorem 30 showed that universal unforgeability can still be achieved
with the same security guarantee if the states are sampled from a PRS family
instead of Haar-random states. Here, we show that the qPUF-based identifica-
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Figure 6.8: Comparison of verification based on SWAP and GSWAP for identification protocols.
The top row is associated with SWAP and the button row with GSWAP. The x-axis of the plots are
all M (the number of local copies) and the y-axes are all N (the number of different states) and the
security, quantum memory and quantum communications have been shown with a colour spectrum.
The left column shows the security ε where we have ε = 2−MN for SWAP and ε = (M+1)−N

for GSWAP, in a logarithmic scale for more visibility. The middle column shows the required
communication where we see that for GSWAP the communication rounds are independent of M
and only linearly growing with N while for SWAP the communication rounds grow also linear by
increasing the number of local copies. The right column shows the memory which has been fixed
for both SWAP and GSWAP to M×N. The comparison between security and communication
plots shows a trade-off between SWAP and GSWAP as the quantum verification algorithm.

tion protocols can also achieve exponential security using PRS. This transition
to a more efficient sampling of challenge states brings us one step closer to the
practical implementations of quantum identification protocols with exponential se-
curity against powerful quantum adversaries and leads to promising solutions to
the problem of untrusted manufacturers.

We start with hrv-id, and we introduce a computationally efficient variation of
this protocol which we call Efficient-hrv-id protocol, by replacing the Haar-random
challenges with pseudorandom quantum states in the setup phase as follows:

Protocol 3 (Efficient-hrv-id). Efficient version of hrv-id protocol using pseudo-
random challenges:

1. Setup Phase:

(a) Verifier has the qPUF device with unitary evaluation U.

(b) Verifier has also access to a family of PRS {|φk⟩ ∈ S(Hd)}k∈K and
randomly picks Q ∈ O(poly logd) of them as the challenge states.
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(c) Verifier queries the U individually with each challenge |φk⟩ a total of
M number of times to obtain M copies of the response state |φrk⟩ and
stores them in their local database S.

(d) The verifier transfers the U to Prover.

2. Identification phase: same as hrv-id.

3. Verification phase: same as hrv-id.

The following statement which is a corollary of the previous results shows that
the Efficient-hrv-id protocol is also exponentially secure against QPT adversaries
with the same security bounds.

Corollary 6. Let U be a UqPUF over HD. The success probability of any
QPT adversary to pass the SWAP-test or GSWAP-test verification of the
Efficient-hrv-id is at most ε, given that there are N different CRPs, each
with M copies. The ε is bounded as follows for each verification:

Pr[Ver acceptA]⩽ ε εSWAP ≈O(
1

2NM
) εGSWAP ≈O

( 1

(M+1)N

)
(6.63)

Proof. First, Theorem 30 that states any unknown unitary satisfies efficient uni-
versal unforgeability where the challenge states are selected from a PRS family.
Then we can directly use the result states in Theorem 36 and Theorem 38 using
the SWAP and GSWAP test which shows the same security bound in the number
of rounds and copies of challenge-response pairs.

Similarly, we can improve the efficiency of the second protocol, namely lrv-id by
substituting the Haar random states with PRS as follows:

Protocol 4 (Efficient-lrv-id). Efficient version of lrv-id protocol using pseudoran-
dom challenges

1. Efficient-lrv-id Setup Phase:

(a) Verifier has the qPUF device with unitary evaluation U.

(b) Verifier has also access to a family of PRS {|φk⟩ ∈ S(Hd)}k∈K and
randomly picks Q ∈ O(poly logd) of them as the challenge states.

(c) Verifier queries the U individually with each challenge |φk⟩ a total of
M number of times to obtain M copies of the response state |φrk⟩ and
stores them in their local database S.

(d) Verifier selects states |φ⊥⟩ orthogonal to the selected challenge’s sub-
space and queries the U with them to obtain the trap states labelled
as |φtrap⟩. The unitary property ensures that ⟨φtrap|φrk⟩= 0.
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(e) The verifier transfers the U to Prover.

2. Identification phase: same as lrv-id.

3. Verification phase: same as lrv-id.

Again using the proof techniques presented in the previous sections, and our
results from Chapter 5, we show that the Efficient lrv-id protocol satisfies ex-
ponential security against QPT adversary both under the coherent and collective
attack models.

Corollary 7. Let U be a UqPUF over HD. The success probability of a
QPT adversary A to pass the verification of the Efficient lrv-id protocol is
at most ε, in N rounds. The ε is bounded as follows:

Pr[Ver acceptA]⩽ ε ε≈O(
1

2N
) (6.64)

Proof. First, we specify that we can directly use the result of Theorem 40 which
bounds the success probability of a classical adversary in passing the classical
verification algorithm. Then the success probability against a quantum adversary
with the collective and coherent attack is defined as the advantage of the quantum
adversary over that classical adversary in guessing the trap states, using all the
side information obtained from the U in the learning phase. We use Theorem 30
that states any unknown unitary satisfy efficient universal unforgeability with PRS
challenge states. Next, the conditions of Theorem 41 and Theorem 42 are satisfied
and we can directly use those results which gives the following bounds.

Pr[b← ΛA]⩽
1

2
+O(2−N) (6.65)

Where ΛA denotes any map that A uses to distinguish the traps states. Finally,
putting all the above results together we have

Pr[Ver acceptA]⩽ ε= Pr[Ver acceptClassical Adv]+O(2−N)≈O(2−N) (6.66)

This concludes the soundness proof of Efficient lrv-id protocol.

6.4 Hybrid PUF: A practical solution

As our last contribution towards the practical realisation of qPUF-based appli-
cations, we propose a more implementation-friendly construction called Hybrid
PUF (HPUF). This new type of PUF, as opposed to quantum PUFs which exploit
quantum randomness, uses a classical PUF as a weak source of randomness and
enhances it using quantum communication, hence the name Hybrid PUF.
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Let us recall the main implementation challenges of qPUF-based identification
protocols and see how our proposal for a hybrid construction can overcome these
challenges. The first challenge is the implementation of the UqPUF itself, which
requires either sampling unitaries from Haar-measure or equivalently a family of
PRU or UU. As mentioned in Chapter 4, one of the promising candidates for qPUFs
is optical devices. Nevertheless, in using them as qPUFs the main challenge will
be to certify the unknownness property and dimension of the unitary since these
parameters are directly related to the security of qPUFs. On the other hand,
the literature on classical PUFs is rich, and there is a multitude of constructions
available based on several different hardware technologies [GCvDD02, GKST07,
KL18, Mae13]. Although all of those constructions can be manufactured quite
easily and they provide unique and inexpensive hardware fingerprints, they all suffer
from the lack of enough randomness and as a result, do not provide satisfactory
unpredictability. Thus, most of the existing CPUF constructions are vulnerable
against the machine learning modeling-based attacks [Bec15a, Bec15b, Del19,
RSS+10]. In these types of attacks, the attacker first collects a sufficient number
of CRPs by adaptively querying the PUF. Then the collected data is used to
derive a numerical model that mimics the behaviour of the PUF, using the tools
and techniques from machine learning. The central idea behind the Hybrid PUF is
to use a classical PUF as an embedded hardware module that is easy to implement
but does not offer suitable security, to construct a secure hardware token that uses
commercially available quantum communication tools and provides sophisticated
security guarantees. At the same time, we aim for a technologically available
construction to overcome the manufacturing obstacle of a secure PUF that uses
quantum CRPs.

The second major challenge regarding qPUF-based identification protocols be-
coming widely available today or in the near term is the fact that the verifier needs
to store the CRP database on a quantum memory. Although there has been sig-
nificant progress in the implementation of quantum memories in the recent years
[LST09, WLZ+19, BRA+19, GI20, LRGR+21, BBFO+19, WMH+20, DKLP02],
storing large quantum states for a considerable time is still infeasible given today’s
technology. The hybrid construction can solve this problem by fully removing
the quantum memory requirement. Since an HPUF encodes classical responses
in separable single-qubit states, verifying the response states can be done more
easily using the underlying classical information from the CPUF, and as we will
show, having a classical database will suffice to verify an HPUF.

Finally, through studying this construction, we will also address a long-standing
open problem in the field of PUF-based identification, which is the re-usability of
challenge-response pairs stored in the database. One significant drawback of
the PUF-based authentication protocols is that the server cannot use the same
challenge multiple times to authenticate a client due to man-in-the-middle attacks.
There is no way to avoid this limitation for classical PUFs. However, in this section,
we show that due to the entropic uncertainty principle of quantum information
theory, with our given construction, the server can reuse a challenge as long as
they have been successfully authenticated by the client using that challenge in
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the previous rounds, overcoming this problem and proving for the first time, the
challenge re-usability of PUF-based application.

In this section, we give a construction for HPUF based on conjugate coding,
which enhances the security of classical PUFs against a weaker class of quantum
adversaries (as opposed to adaptive QPT adversaries that we have been consid-
ering so far). Then by exploiting a technique known as Locking mechanism, we
boost the security of this construction to our usual adaptive QPT adversaries,
therefore presenting the concept of Hybrid Locked PUF (HLPUF) as our candi-
date for a secure and efficiently implementable quantum hardware token. We then
show a secure HLPUF-based identification protocol. Finally, we formally prove the
challenge re-usability property of this protocol.

But first, we introduce the theoretical model that we adopt for the CPUF
which is going to be used as the building block of our construction.

6.4.1 CPUF model

We have introduced classical PUFs in Chapter 4. Here we provide some additional
technical tools and definitions that we need to introduce our Hybrid construction.
Classical PUFs are usually defined with probabilistic functions, due to their inherent
physical randomness. Here we also consider them as probabilistic functions.

A classical PUF can be modelled as a probabilistic function f : R×X → Y
where X is the input space, Y is the output space of f and R is the identifier. As
defined in 4.2, the creation of a classical PUF is formally expressed by invoking a
manufacturing process f ← GenC(λ), where λ is the security parameter. Here f
is the evaluation algorithm of CPUF which needs to satisfy the requirements of
robustness, collision-resistance and uniqueness as defined before [AMSY16]. For
a fixed input x ∈X , and a random coin (or key) R←R, we denote the probability
distribution of the output random variable f (x) := f (R,x) over all y ∈ Y as,

pfx (y) := P r [f (x) = y |x ] = ∑
r :f (r,x)=y

P r [R = r ]. (6.67)

Now, let us define a parameterised randomness definition for the classical PUF
f as follows:

Definition 47 (p-Randomness). We define the p-randomness of a classical
PUF f :R×X →Y as

p := max
x∈X
y∈Y

pfx (y) = max
x∈X
y∈Y

P r
R
[f (R,x) = y ]. (6.68)

We use this definition to characterize the quality of a CPUF with a quantitative
measure of its randomness. This parameter has some relation to a property of
min-entropy for classical PUFs but is formally defined differently. Nevertheless,
for technical purposes, we choose to use this definition.
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6.4.2 Construction for Hybrid PUF

For our construction, we start with a classical PUF with a certain amount of
randomness characterized by the p-randomness value we defined in Definition 47.
We construct a new PUF that is the combination of a classical PUF, and a
quantum encoder, which encodes the output of the CPUF into non-orthogonal
quantum states. The output qubits are the response of the PUF and will be sent
through the quantum communication channel. We refer to the entire system, i.e.
the combination of CPUF and the quantum encoding, as Hybrid PUF (HPUF).
A HPUF receives a classical challenge and produces a quantum response. In
Construction 3 we give a simple design of a HPUF based on conjugate coding
[Wie83].

Construction 3 (Hybrid PUF). Suppose f : {0,1}n→{0,1}4m be a classical
PUF, that maps an n-bit string xi ∈ {0,1}n to an 4m-bit string output
yi ∈ {0,1}4m. We denote the j-th bit of yi as yi ,j ∈ {0,1}. From the 4m-
bit string, we prepare the set of 2m-tuples {(yi ,(2j−1),yi ,2j)}1⩽j⩽2m. The
hybrid PUF encodes each of the tuples (yi ,(2j−1),yi ,2j) into a single qubit
BB84 states, |ψi ,j⟩. The exact expression of the encoding is defined in the
following way,

|ψi ,jout⟩⟨ψ
i ,j
out | :=


|0⟩⟨0| (yi ,(2j−1),yi ,2j) = (0,0)

|1⟩⟨1| (yi ,(2j−1),yi ,2j) = (1,0)

|+⟩⟨+| (yi ,(2j−1),yi ,2j) = (0,1)

|−⟩⟨−| (yi ,(2j−1),yi ,2j) = (1,1)

(6.69)

For any xi ∈ {0,1}n, the mapping of the HPUF Ef : {0,1}n → (H2)⊗2m is
defined as follows.

xi → |ψiout⟩⟨ψiout | (or |ψf (xi )⟩⟨ψf (xi )|) (6.70)

where |ψiout⟩⟨ψiout |=
⊗2m
j=1 |ψ

i ,j
out⟩⟨ψ

i ,j
out |.

Intuitively, if the adversary wants to extract the information about the i ,2j-
th bit out of the classical PUF corresponding to a challenge xi , they need to
guess whether the state is prepared in Z = {|0⟩ , |1⟩} basis or in X = {|+⟩ , |−⟩}
basis, then knowing the encoded bit. In Section 6.4.5, we estimate the success
probability of a (weak) adversary in winning the universal unforgeability game for
the HPUF as a function of the number of required queries.

Another remark here is that HPUF can be considered and studied within the
quantum PUF framework that we have defined in Chapter 4. However, one should
consider it as a non-unitary qPUF since it includes a classical pre-processing and
state preparation which can be described by CPTP maps but is not necessarily a
unitary. Nevertheless, we treat the HPUF as a new type of PUF and prove its
unforgeability in a stand-alone manner. Moreover, we require that the CPUF inside
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the construction satisfies the robustness and collision resistance requirements, as
have also been defined for the qPUFs. If these requirements are satisfied by the
CPUF, the HPUF will also deliver them (to the same degree) since the encoding
part of the construction is fully deterministic. Finally, we do not investigate the
uniqueness property of the HPUF here as we use it as a single device within
the other construction and protocol that we will present, which only assume the
robustness, collision resistance and p-randomness from the classical PUF.

6.4.3 Hybrid Locked PUF

As discussed before, most classical PUFs are vulnerable to machine learning at-
tacks. To perform such attacks, the adversary needs to get access to many CRPs
of the PUF to use this data for training and obtaining a model for CPUF. One
common scenario that makes such attacks viable is when an adversary intercepts
the communication channel between the verifier and prover during an identifica-
tion protocol and pretends to be the verifier. Then the adversary can send their
favourite queries as challenges to the prover, who will provide the adversary with
the correct response. In this way, an adversary can build a local database, even
during the identification phase. To address this issue, a technique has been in-
troduced in the literature of classical PUFs known as Lockdown technique (or
locking mechanism) [YHD+16] that upper-bounds adversary’s capability in query-
ing CRPs by converting the adaptive adversary into a weak one. We recall from
Section 3.5.3 that a weak adversary, in contrast to an adaptive adversary who
queries the oracle or device with their chosen and potentially adaptive queries, has
only access to a random set of challenges and responses (or input-output queries)
that are selected at random by an honest party. we recall that this is equivalent
to the random-message attack model as we have also discussed in Section 2.5.2.

The central idea of the locking mechanism is that the prover (client) can also
identify the verifier (server) during the identification. This mutual identification
prevents an adversary from querying the PUF arbitrarily. One method is that the
verifier sends part of the response along with the challenge so that the prover
having access to the PUF device can check if the challenge has really come from
the server or from an adversary who is trying to increase their information on
the PUF device. We adopt the idea of the locking mechanism and we apply it
on a HPUF that leads to our next construction, namely Construction 4. We
refer to this construction as Hybrid Locked PUFs (HLPUFs). First, we devide
the output of the HPUF Ef : {0,1}n→ (H2)⊗2m corresponding to a classical PUF
f : {0,1}n → {0,1}4m into two separate parts. The first part contains the first
m qubits, and the second half contains the last m qubits of the outcome of
HPUF. Note that, the first m qubits of the HPUF’s outcome is generated from
the first 2m bits outcome of the corresponding classical PUF f . For any challenge
x ∈ {0,1}n we can write the outcome of the classical PUF as f (x) = f1(x)||f2(x),
where the mapping f1 : {0,1}n → {0,1}2m denotes the first 2m bits of f and
f2 : {0,1}n → {0,1}2m denotes the last 2m bits of f . Similarly, we can rewrite
the HPUF Ef as a tensor product of two mappings Ef1 : {0,1}n → (H2)⊗m, and
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Ef2 : {0,1}n → (H2)⊗m, where for any challenge x ∈ {0,1}n, Ef1(x) denotes the
first m qubits of Ef (x), and Ef2(x) denotes the last m qubits of Ef (x).

The hybrid locked PUF, takes the classical input xi and a quantum state ρ̃1
and produces the second half of the response of the hybrid PUF, |ψf2(xi )⟩⟨ψf2(xi )|,
as an output if ρ̃1 is equal to the first half of the output of the hybrid PUF
|ψf1(xi )⟩⟨ψf1(xi )|. The construction is shown in Fig. 6.9. We formalise it as follows.

Construction 4 (HLPUF). Suppose we have a hybrid PUF Ef where
f : {0,1}n → {0,1}4m is a CPUF. The mapping of the HLPUF ELf :
din ×Hdout1 → Hdout2 ⊗H⊥ corresponding to a hybrid PUF E is defined
as follows:

(xi , ρ̃1)→

{
|ψf2(xi )⟩⟨ψf2(xi )| if Ver(|ψf1(xi )⟩⟨ψf1(xi )| , ρ̃1) = 1
⊥ otherwise.

(6.71)

where Ver(., .) is verification algorithm that checks the equality of the first
half of the response based on the classical response y1i .

More precisely, Ver(., .) is specified by measuring each qubit of the incoming
quantum state with corresponding basis according to {yi ,2j}1⩽j⩽2m of response yi
and check the equality Equal(yi ,2j , ỹi ,2j)1⩽j⩽2m in our construction.

HPUF Ef

Ver(|ψf1(xi )⟩⟨ψf1(xi )| , ρ̃1)

Outputxi |ψf1(xi )⟩⟨ψf1(xi )|1

ρ̃1

|ψf2(xi )⟩⟨ψf2(xi )|2 /⊥

b

Figure 6.9: Hybrid Locked PUF (HLPUF) ELf with Construction 4

In [CDM+21] the possibility of exploiting the lockdown technique for quantum
PUFs has also been investigated where we have developed the mathematical model
for it. First of all, it is interesting to see whether the lockdown technique can
enable to reduce the adversarial power in the quantum case as well. Moreover,
this applicated is well-motivated, especially for the weaker types of qPUF that we
have mentioned before, such as QR-PUFs, since arbitrarily querying the PUF with
multiple copies allows for quantum emulation attacks (discussed in Chapter 4).
One possible way to protect the PUF from such sophisticated attacks is to use the
locking technique. However, similar to the HPUF setting, a central component
of the locking mechanism is the verification subroutine. In the quantum case,
this verification consists of testing the equality of unknown quantum states. We
show a no-go result stating that due to the entanglement that can be generated
by the unknown unitary over the subsystems of the response, the verification of
such subsystems in a way that can be used for a locking mechanism is impossible,
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unless in very limited cases. Nevertheless, we avoid presenting the details of this
result here, and we conclude with this brief mention not to make the section
unnecessarily long. We refer the reader to the main paper for more information.

6.4.4 Quantum identification protocol using Hybrid Locked
PUF

After introducing the HLPUF construction, we describe an identification protocol
based on it. The description of the protocol is given in Protocol 5. Note that
we use ρ̃1 and ρ̃2 to denote the quantum state received by the prover/verifier
respectively.

Protocol 5. [HLPUF-based Authentication] An authentication protocol based on
HLPUF construction.

1. Set-up:

(a) The Prover P equips a Hybrid Locked PUF: ELf with HPUF Ef : {0,1}n→
(H2)⊗2m constructed upon a classical PUF f :X →Y. Here, the clas-
sical PUF f maps an n-bit string xi ∈ {0,1}n to an 4m-bit string output
yi ∈ {0,1}4m.

(b) The Verifier V has a classical database D := {(xi ,yi)}di=1 with all d
CRPs of f , as well as the necessary quantum devices for preparing and
measuring quantum states.

2. Authentication:

(a) V randomly chooses a CRP (xi ,yi) and splits the response equally into
two partitions yi = f1(xi)||f2(xi) = y1i ||y2i with length 2m.

(b) V then encodes the first partition of response into |ψf1(xi )⟩⟨ψf1(xi )| :=⊗m
j=1 |ψ

i ,j
f1(xi )
⟩⟨ψi ,j

f1(xi )
| and issues the joint state (xi , |ψf1(xi )⟩⟨ψf1(xi )|) to

the client.

(c) P receives the joint state (xi , ρ̃1) and queries Hybrid Locked PUF ELf . If
the verification algorithm Ver(|ψf1(xi )⟩⟨ψf1(xi )| , ρ̃1)⩾ 1−ε(λ) with neg-
ligible ε(λ), P obtains |ψf2(xi )⟩⟨ψf2(xi )| :=

⊗m
j=1 |ψ

i ,j
f2(xi )
⟩⟨ψi ,j

f2(xi )
| from

ELf and sends back to V. Otherwise, the authentication aborts.

(d) V receives the quantum state ρ̃2 and performs the the verification algo-
rithm Ver(., .). If the verification Ver(|ψf2(xi )⟩⟨ψf2(xi )| , ρ̃2) ⩾ 1− ε(λ)
with negligible ε(λ), the authentication passes. Otherwise it aborts.

We note that this protocol requires only a classical database, but two-way
quantum communication. Nevertheless, the quantum states used in this protocol
are easy to prepare and measure given the infrastructures that already exist for
QKD and the current stage of a quantum internet [WEH18].
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6.4.5 Security analysis

Now, we give a comprehensive security analysis of the proposed protocol. We will
prove the security step-by-step. First, we show that using hybrid construction will
exponentially improve security compared to CPUF. More precisely, it will exponen-
tially decrease the success probability of a weak quantum adversary in the universal
unforgeability game, compared to a classical PUF with the same number queries
in the learning phase. For this part, we will use the weak quantum adversarial
model and the respective variant of the universal unforgeability game as defined in
Section 3.5.3. This result shows how much quantum communication can improve
the security of a weaker classical PUF against quantum adversaries. Using this
improvement, we propose an efficient and secure construction using existing clas-
sical PUFs. Then, we analyse the completeness and security of the HLPUF-based
device authentication protocol and show that given that the intrinsic classical PUF
is not fully broken against a weak quantum adversary, the HLPUF-based protocol
will be secure against a QPT adaptive adversary. The HLPUF-based protocol, in
fact, provides mutual authentication of both prover/client and verifier/server due
to the specific construction of the quantum lock. However, in our security anal-
ysis, we only formally prove the authentication of the prover to the verifier, and
the lock has only been shown to reduce the adversary’s capability. Nevertheless,
since the verification mechanism is similar on both sides, the alternative side of
authentication can be proven similarly. Let us first formalise our assumption on
the underlying CPUF:

Assumptions on the CPUFs
For the security analysis of our constructions we consider the following assump-
tions of the CPUFs f : {0,1}n→{0,1}4m.

1. For any input x ∈ {0,1}n the probability distributions of the 4m output bits
f (x)1, . . . , f (x)4m are independent and identically distributed (i.i.d)7.

2. The output distributions {pfx (y)}y∈{0,1}4m for all the inputs x are indepen-
dent and identically distributed (i.i.d).

6.4.5.1 Universal Unforgeability of HPUF

Intuitively the security of our HPUF comes from the indistinguishability property
of the non-orthogonal quantum states. First we show that the HPUFs are at least
as secure as the underlying CPUFs.

7This assumption is not strictly required in practice, for the HLPUF construction to be secure,
as our simulation results show in [CDM+21]. It is mostly required for our theoretical bounds and
even so, we parameterised the deviation from perfect randomness or identical distribution with the
randomness parameter of CPUF, although we require that the encoded qubits are independent.
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Theorem 44. Let f : {0,1}n→ {0,1}2m be a classical PUF. If there is no
QPT weak adversary who can win the universal unforgeability game for
CPUF with a non-negligible probability in the security parameter, then the
HPUF constructed from f according to Construction 4, is also universally
unforgeable.

Proof. We show the contrapositive statement that if you can break HPUF you
can also break underlying CPUF. Here we give the proof for m = 1, and it can
easily be generalised for any arbitrary integer m> 0. Suppose for the HPUF, a q-
query weak-adversary win the unforgeability game with a non-negligible probability
P (m = 1,p,q). This implies, given a database of q random challenge response
from the HPUF, the adversary can produce |ψf (x∗)⟩ corresponding to a random
challenge x∗ ∈ {0,1}n with a non-negligible probability P (m = 1,p,q). Note that,
for the deterministic adversarial strategy, the adversary can produce multiple copies
of the forged state |ψf̃ (x∗)⟩ for a random challenge x∗. For the random adversaries
we can produce the multiple copies of the same forged state |ψf̃ (x∗)⟩ just by fixing
the internal randomness parameter of the adversarial strategy. Hence, both the
random and deterministic adversary can produce multiple copies of the forged
state |ψf̃ (x∗)⟩ for a random challenge x∗. From the multiple (say K) such copies

of |ψf̃ (x∗)⟩, the adversary will extract f̃ (x∗) using the following strategy.

Algorithm 3 Algorithm to Forge CPUF from HPUF

Require: K ⩾ 2-copies of the forged state |ψf̃ (x∗)⟩
- Measure the 1-st copy of the state |ψf̃ (x∗)⟩ in {|0⟩ , |1⟩}-basis.
- Let z1 ∈ {0,1} be the measurement outcome.
for i = 2; i ⩽ (K−1); i ++ do
Measure the i-th copy of the state |ψf̃ (x∗)⟩ in {|0⟩ , |1⟩}-basis.
Let zi ∈ {0,1} be the measurement outcome.
if zi ̸= zi−1 then

break ▷ Implies |ψf̃ (x∗)⟩ ∈ {|+⟩ , |−⟩}.

if i =K then
Return f̃ (x∗) = (0,zi)

else
Measure the i +1-th copy in {|+⟩ , |−⟩}-basis.
Let zi+1 be the measurement outcome.
Return f̃ (x∗) = (1,zi+1).

If |ψf (x∗)⟩ = |ψf̃ (x∗)⟩ ∈ {|0⟩ , |1⟩} then in Algorithm 3 all the measurement

outcomes zi (for 1 ⩽ i ⩽ K) would be the same, and f̃ (x∗) = f (x∗). However,
if |ψf (x∗)⟩ = |ψf̃ (x∗)⟩ ∈ {|+⟩ , |−⟩} then we f̃ (x∗) ̸= f (x∗) if and only if all the
measurement outcomes zi are equal (1 ⩽ i ⩽ K). This happens with probability
1
2K

. Therefore, we get



218 6. Applications of Quantum Physical Unclonable Functions

Pr
x∗
[f̃ (x∗) = f (x∗)||ψf (x∗)⟩= |ψf̃ (x∗)⟩]⩾ 1−

1

2K
. (6.72)

If the adversary successfully forges the HPUF with a non-negligible probability
P (m = 1,p,q) then from Eq. (6.72) we get that the adversary manages the
CPUF with probability at least P (m = 1,p,q) = 1− 1

2K
, that is an overwhelming

probability. Therefore, if an adversary successfully wins the unforgeability game for
the HPUF with a non-negligible probability, then using the same forging strategy
it can also win the unforgeability game for the corresponding CPUF with a non-
negligible probability. This implies, that if no QPT weak adversary can win the
universal unforgeability game with a non-negligible probability for the CPUF then
no QPT adversary can win the universal unforgeability game with a non-negligible
probability for the corresponding HPUF. This concludes the proof.

The above theorem is an intuitive result that shows HPUF is stronger or at least
as strong as the underlying CPUF. Although we want to prove a more powerful
and explicit statement regarding HPUFs by quantifying how much the hybrid con-
struction will boost the security. In fact, we want to show that one can construct
a secure unforgeable HPUF against a quantum adversary even if the underlying
CPUF is breakable (with a certain probability) against the classical forger. To this
end, we compare the success probability of a QPT adversary in breaking the HPUF
in the universal unforgeability game, with the success probability of the adversary
who breaks the CPUF with a certain non-negligible probability, in a fixed query
setting. This, allows us to show that some of the weak and considerably bro-
ken CPUFs can still be used to construct an asymptotically secure HPUF against
stronger quantum adversaries since the quantum encoding drastically decreases
the success probability. Before giving our main theorem, we need to prove two
lemmas. In the first one, we give an upper bound on the adversary’s guessing
probability of the response f (xi) corresponding to a challenge xi and a single copy
of the quantum response state |ψf (xi )⟩.
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Lemma 4. Let f : {0,1}n→{0,1}4m be a CPUF with the following property,

∀ xi ∈ {0,1}n,∀ 1⩽ j ⩽ 4m, pfxi (yi ,j = 0) =
1

2
+ δr , (6.73)

with a biased distribution p = 12 + δr where 0⩽ δr ⩽ 12 , and Ef be a HPUF
corresponding to f that we construct using Construction 3. Let a quantum
adversary A extract the value yi ,(2j−1) out of (yi ,(2j−1),yi ,2j) from quantum
state |ψi ,jout⟩⟨ψ

i ,j
out | corresponding to a random challenge xi . If all the output

bits of the CPUF are independent and identically distributed, then for any
quantum adversary A, and ∀ xi ∈ {0,1}n then,

pguess := Pr[A(xi , |ψi ,jout⟩⟨ψ
i ,j
out |) = yi ,(2j−1)]

⩽ p(1+
√
p2+(1−p)2)

⩽ p(1+
√
2p) (6.74)

Proof. According to Construction 4, for a given xi , we use the 2j-th bit yi ,2j ∈
{0,1} of the outcome of the CPUF to choose the basis (either {|0⟩ , |1⟩}-basis
or {|+⟩ , |−⟩}-basis) of the j-th qubit output of the HPUF. Further we use the
yi ,(2j−1) ∈ {0,1} to choose a state from the chosen basis. Here, if yi ,(2j−1) = 0
then from an adversarial point of view, the output state is ρ0 = (12 + δr ) |0⟩⟨0|+
(12 − δr ) |+⟩⟨+|. Similarly, if yi ,(2j−1) = 1 then from an adversarial point of view,
the output state is ρ1 = (12 + δr ) |1⟩⟨1|+(

1
2 − δr ) |−⟩⟨−|. For the adversary, the

probability of correctly guessing yi ,(2j−1) is the same as distinguishing the two
states ρ0,ρ1. Here P r [A(xi , |ψi ,jout⟩⟨ψ

i ,j
out |) = yi ,(2j−1)] denotes the optimal prob-

ability of guessing the basis correctly. From the Holevo-Helstorm bound [Hol73]
(see Section 2.2) we get,

Pr[A(xi , |ψi ,jout⟩⟨ψ
i ,j
out |) = yi ,(2j−1)]⩽ p[1+max

E
Tr[E(ρ0−ρ1)]]

= p[1+
1

2
||ρ0−ρ1||1].

= p(1+
√
p2+(1−p)2)

⩽ p(1+
√
2p) (6.75)

This concludes the proof.

The next lemma shows that the adversary needs to extract the classical infor-
mation f (x) that is encoded in the quantum state |ψf (x)⟩ for the forgery of the
HPUFs. This will be a key step in our proof, since using this lemma we can put
bounds on the maximum amount of information the adversary can extract from
the overall response state using quantum information tools we have presented in
the preliminaries, in Section 2.1.5.



220 6. Applications of Quantum Physical Unclonable Functions

Lemma 5. Let |Dq⟩ =
⊗q
i=1

(
|xi⟩C⊗|ψf (xi )⟩R

)
denotes the adversary’s

database of q random CRPs that are generated from a HPUF Ef : {0,1}n→
(H2)⊗m. Let E(Dq) denote the optimal measurement strategy for forging
the HPUF with probability pforge using the database Dq, then the following
measure-then-forge strategy can optimally forge the HPUF with the same
probability pforge.

• Adversary extracts the classical encoding {f (xi)}1⩽i⩽q from |Dq⟩. Let
{f̃ (xi)}1⩽i⩽q denotes the extracted classical string.

• The QPT adversary applies a forging strategy using the extracted data
set {f̃ (xi)}1⩽i⩽q.

Proof. For a successful forgery, the adversary needs to win the universal unforge-
ability game that we define in Game 2 in Chapter 3. This implies, using the
measurement strategy E(Dq) the adversary needs to produce a quantum state
|ψf (x∗)⟩ corresponding to a challenge x∗ ∈R {0,1}n that is chosen uniformly at
random. Without loss of generality we can write the measurement strategy
as a POVM with two outcomes E(Dq) = {Eforge(Dq,x

∗),Efail(Dq,x
∗)}, where

Eforge(Dq,x
∗),Efail(Dq,x

∗) denote the measurement operators corresponding to
the successful forgery and the failure forgery respectively. Therefore, we can write
the successful forging probability pforge as follows.

pforge = Tr[Eforge(Dq,x
∗)ρx

∗

Dq ], (6.76)

where ρx
∗

Dq
:= |Dq⟩⟨Dq|⊗|x∗⟩⟨x∗|⊗|0m⟩out ⟨0m|. Here the out register would con-

tain the forged state. If we write Eforge(Dq,x
∗) =M†forge(Dq,x

∗)Mforge(Dq,x
∗),

then we can rewrite the post-measurement state corresponding to the successful
forgery as follows:

Mforge(Dq,x
∗) |Dq⟩⊗ |x∗⟩⊗ |0m

′⟩out√
pforge

=
|D̃q⟩R⊗|x∗⟩⊗ |ψf (x∗)⟩out ⊗|ã⟩out√

pforge
,

(6.77)
where |D̃q⟩R denotes the post-measurement database state, and |ã⟩out is the
post-measurement state of the ancillary system which is a (m′−m) dimensional
state while as |ψf (x∗)⟩out is m dimensional. As

⊗q
i=1 |xi⟩C is a classical state, in

the rest of the proof we don’t write them in the expressions.
Using the Neimark’s theorem8 we can replace the POVM measurement strat-

egy E(Dq) with the combination of a unitary acting on an extended system in-
cluding an ancilla |anc⟩A, followed by a projective measurement. Let us denote
the unitary as Ux

∗

Dq
which couples the input state |Dq⟩⊗|0m

′⟩out with the ancillary
system |anc⟩A, and let {|v⟩} be the basis on which the projective measurement is

8The version of Neimark’s theorem, is similar but more genral than the one we introduced in
Section 2.2.



6.4. Hybrid PUF: A practical solution 221

applied to the ancilla. We first rewrite the impact of the unitary Ux
∗

Dq
on the input

state:

Ux
∗

Dq

(
q⊗
i=1

|ψf (xi )⟩R⊗|0⟩out ⊗|anc⟩A

)
= Ux

∗

Dq

(
|Ψqf ⟩R⊗|0⟩out ⊗|anc⟩A

)
=∑

v

√
pv |Ψqv ⟩R⊗|ψ̃v ⟩out ⊗|v⟩A . (6.78)

where in the second line we have rewritten everything after applying the unitary
in the {|v⟩}-basis. Now, the adversary performs a projective measurement on
the state Eq. (6.78) in this basis. Suppose for the correct forgery, the ancilla
is projected into the |vforge⟩A state. Therefore we can rewrite the expression of
pforge as follows:

pforge = ∑
v :v=vforge

pv | ⟨vforge|v⟩|2. (6.79)

Overall, following this strategy, the purification of the adversary’s post-measurement
state with an optimal POVM measurement, can be written as the following:

|D̃q⟩R⊗|x∗⟩⊗ |ψf (x∗)⟩out ⊗|vforge⟩A√
pforge

, (6.80)

where |D̃q⟩ denotes the post-measurement database state. Note that, due to
Neimark’s theorem the post-measurement database states in Equation Eq. (6.77),
and Eq. (6.80) are the same, if the same ancillary systems has been assumed after
the purification and POVM, i.e. if |vforge⟩A = |ã⟩out .

Now, let us use the unitary Ux
∗

Dq
and the measurement basis {|v⟩} to construct

a measure-then-forge strategy. As the unitary Ux
∗

Dq
only depends on the input x∗

and Dq, we can rewrite it in the basis that is diagonalised with respect to the states
{|Ψqv ,v⟩}v . For the post-measurement state |vforge⟩, of the ancilla, the adversary
applies Ux,x

∗

Dq ,Ψ
q
forge,vforge

on the |0⟩out register. Note that, the adversary doesn’t have

any information about the {f (xi)}1⩽i⩽q before measuring the ancillary sub-system
in the {|v⟩}-basis. Hence, the measurement basis {|v⟩} choice only depends
on the classical challenges xi ’s and x∗. Therefore, the adversary can use the
same information to find the {|v⟩}-basis, and first performs the measurement on
the RA register in {|Ψqv ,v⟩}-basis, and obtains the state |Ψqforge,vforge⟩ with the
same probability pforge. After the measurement, the adversary applies the unitary
Ux
∗

Dq ,Ψ
q
forge,vforge

on |0⟩out , and get the forged state |ψf (x∗)⟩. Therefore, with this

strategy the adversary also win the unforgeability game with the probability pforge.
Note that, there always exists a unitary U such that U(

⊗q
i=1 |f̃ (xi)⟩)⊗|anc⟩=

|Ψqforge,vforge⟩, where f̃ (xi) denotes the extracted information about f (xi)’s from
the encoded database |Dq⟩. Therefore, from any generalised measurement strat-
egy E(Dq) we can construct a strategy for the measure-then-forge protocol that
can win the universal unforgeability game with the same probability pforge. This
concludes the proof.
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Lemma 5 suggests that an optimal strategy of the adversary including general
POVM strategies, is equivalent to optimally extracting the classical information
from the database (state |Dq⟩) and then performing the most optimal forgery
strategy on the measurement results. In general, if the extracted classical infor-
mation {f̃ (xi)}1⩽i⩽q from the database state |Dq⟩ is very far from the original
encoded string {f (xi)}1⩽i⩽q then the forgery will not perform well and the overall
forgery attack will have a low probability. Based on this, we now bound the overall
amount of information that can be extracted from the outputs of HPUF, using
the information quantities such as min-entropy and we will show how much the
quantum encoding will contribute to reducing the success probability.

Theorem 45. Let f : {0,1}n → {0,1}4m be a classical PUF with p-
randomness, where p = 1

2 + δr . Let pclassic
forge (m,p,q) denote the optimal

success probability of any q-query weak quantum adversary to wins the
universal unforgeability game for the CPUF f . Then a q-query weak quan-
tum adversary can win the universal unforgeability game for the HPUF Ef
at most the following probability

pquant
forge (m,p,q) = p

classic
forge (m,p,q)× (p(1+

√
2p))2mq (6.81)

Proof. We want to quantify the success probability of the QPT adversary in at-
tacking HPUF, in comparison with the QPT adversary who attacks the classical
PUF with a fixed number of queries. Let Ac be the QPT adversary attempting to
forge CPUF, where they produce a classical forgery f (x∗) for a randomly selected
challenge x∗, from a classical database consisting of q pairs of {(xi , f (xi))}qi=1
input-outputs of CPUF with probability pclassic

forge (m,p,q). Note that in general the
success probability, is a function of the CPUF’s randomness parameter p, the
output size m and the number of queries q. Let Ah be a quantum adversary who
plays the unforgeability game against the HPUF. Ah has access to q queries of
HPUF included in the database state |Dq⟩. The goal of Ah is to produce a valid
forgery |ψf (x∗)⟩ for a random challenge x∗. Let pquant

forge be the optimal success
probability of any adversary in successfully doing so.

Now, for the purpose of the proof, we introduce another intermediate quan-
tum adversary B who plays the same version of the unforgeability game as Ah,
although has access to a combined database of Ah and Ac i.e. the triplet
{(xi , f (xi), |ψf (xi )⟩)}

q
i=1, and will output a valid forgery of the form |ψf (x∗)⟩ for

a random challenge x∗. We show that the adversaries Ac and B are equiva-
lent in the success probability up to a negligible factor. First, note that B is
obviously at least as strong as Ac since has an extended database, and can sim-
ply ignore the quantum encoded detest and run Ac as a subroutine so we have
pB(m,p,q) ⩾ pclassic

forge (m,p,q). But on the other hand, Ac can also locally con-
struct the third column of the database |ψf (xi )⟩ easily and run B as a subroutine.
Then Ac can use this to produce polynomial many copies of |ψf (x∗)⟩ and mea-
sure them with the optimal POVM measurement and get f (x∗) with very high
probability (See the proof of Theorem 44). Also note that by definition of the
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unforgeability game, B produces the forgery with non-negligible success probabil-
ity, meaning that the |ψf (x∗)⟩ is close to the actual BB84 encoding of f (x∗) (in
terms of fidelity). Thus B has at most a negligible advantage over Ac and we can
conclude: pB(m,p,q)≈ pclassic

forge (m,p,q).
Now we have two adversaries who produce quantum state as a forgery and we

can compare the success probability of Ah with B, which are both QPT adver-
saries producing the same quantum forgery while having access to different input
databases since B has the underlying classical information f (xi) for each encoded
quantum query, while Ah has only access to the encoded states in the form of
|ψf (xi )⟩. We compare the success probability of these two adversaries by compar-
ing the accessible amount of information via entropy inequalities. First we note
that according to Lemma 5, the optimal forgery for a quantum adversary includes
optimally extracting the classical information then applying the forgery (which is
equivalent to the classical forgery on the classical database). This exactly quanti-
fies the relation between the success probabilities of Ah with B which will give us
the reduction to the problem of extracting information from the quantum-classical
database of Ah.

To do so, we reformulate the forging probability (the success probability of
the adversary in the unforgeability game) in terms of quantum processing. We
consider B as a CPTP map over a database of size N, denoted as ρB

N
, where each

input ρBi = |xi⟩⟨xi |⊗ |f (xi)⟩⟨f (xi)|⊗ |ψf (xi )⟩⟨ψf (xi )| is a classical-quantum state.
Adversary Ah can be defined directly from B through another CPTP map which
we denote by Λh. For each record we have ρAhi = Λh(ρ

B
i ). Assuming the queries

to be i.i.d and the way we have defined these two adversaries, The overall action
of the CPTP map Ah is captured by the density matrix ρA

N
h = Λ⊗Nh (ρ

BN ). Also,
let F represent the random variable of getting the correct output of the PUF,
over the uniform choice of the input x∗, by processing the given input database.

We now use the inequality for conditional min-entropy to relate the above suc-
cess probability. Using Lemma 5 stating that the optimal strategy is equivalent
to extracting the underlying classical information (optimal state discrimination)
and then run an optimal forgery algorithm that depends on the extracted informa-
tion. Thus we can write the success probability of Ah in terms of the extraction
probability as follows:

pquant
forge (m,p,q) = pextract×pB(m,p,q) = 2−Hmin(F |C

N) (6.82)

where CN denotes ρA
N
h as the full quantum system of Ah and also let C de-

notes ρAh which is the single-qubit database of Ah. We can rewrite the success
probability of forgery for adversary B, in terms of the min-entropy as follows:

pB(m,p,q) = p
B
forge = 2

−Hmin(F |BN) (6.83)

Where BN represent the full system of BN i.e. ρB
N

for short. Now for the single-
qubit database, the following relation holds:

Hmin(F |C)⩾Hmin(Ỹ |C)+Hmin(F |Ỹ ) (6.84)
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Where Ỹ denotes the random variable of the estimated output Y = f (X) which
is the 2-bit fraction of the output of CPUF. We also note that Hmin(F |Ỹ ) ⩾
Hmin(F |B), and the equality is when the Ỹ is arbitrarily close to Y . As a result
we have9:

Hmin(F |C)⩾Hmin(Ỹ |C)+Hmin(F |B) (6.85)

Extending to N-fold database we have:

Hmin(F |CN)⩾Hmin(Ỹ N |CN)+Hmin(F |BN) (6.86)

Next, we need to relate the first term of the right-hand side, which denoted the
min-entropy of extracting information from all N given qubits to the min-entropy
quantity Hmin(Ỹ |C). For that, we use the quantum-classical AEP that we have
introduced in Theorem 4 as follows:

Hεmin(Ỹ
N |CN)⩾ N(H(ρỸ C)−H(ρC))−Nη (6.87)

where η := (2Hmax(ρF )+3)
√
log( 1ε )
N +1, is a function of the smoothing parameter

ε and N. Here we select the smoothing parameter ε such that Nη becomes a
negligible function in the security parameter. Given that H(Ỹ |C) = H(ρỸ C)−
H(ρC) and the fact that Hmin(Ỹ |C)⩽H(Ỹ |C), we have:

Hεmin(Ỹ |CN)⩾ NHmin(Ỹ |C) (6.88)

By substituting the above inequality back into 6.86, we can conclude the following:

Hmin(F |CN)⩾ NHmin(Ỹ |C)+Hmin(F |BN) (6.89)

The final step is to determine N. We note that there exist q number of i.i.d queries
in each database, but each query itself consists of a 2m number of qubits in tensor
product form. Although the effective size or the amount of information included
in these 2m qubits depends on the bias of the PUF. In general, using quantum
data compression inequality, the effective size of such 2m tensor product states
is given by 2mS(ρf ), where S(ρf ) is the von-Neumann entropy of each encoded
state ρf given as follows concerning the HPUF construction and the PUF bias:

ρf = (
1

2
+ δr )

2 |0⟩⟨0|+(
1

4
− δ2r )(|1⟩⟨1|+ |+⟩⟨+|)+(

1

2
− δr )2 |−⟩⟨−| (6.90)

We can then calculate S(ρf ) which gives the following result while we are discard-
ing O(δ3) and higher:

S(ρf ) = 1− (
1

2
− δr ) log(1−2δr )− (

1

2
+ δr ) log(1+2δr ) (6.91)

9This inequality in fact gives and improvement to the data processing inequality (introduced
in Section 2.1.5) for our specific case. Since according to the data-processing inequality we have
that the entropy min-entropy increases via any CPTP channel acting on the joint state of the
system, which results in Hmin(F |B) ⩽ Hmin(F |C) which denotes that the success probability of
adversary B who has access to additional classical output is higher than Ah. The new inequality
quantifies the bound on the difference.
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Let us call g(δr ) = (12 −δr ) log(1−2δr )+(
1
2 +δr ) log(1+2δr ) Thus we have N ≈

2mq− 2mqg(δr ). Also, for small enough values of δr , we have g(δr ) ≈ 0. Let
us also denote Hmin(Ỹ |C) = − log(p1extract). Where p1extract is the probability of
extracting the classical information from a single qubit. We can then conclude
the following relations between the success probabilities:

pquant
forge (m,p,q)⩽ pB(m,p,q)× (p

1
extract)

2mq−2mqg(δr ) (6.92)

For our given construction p1extract = pguess = p(1+
√
2p) according to the optimal

discrimination probability given in Lemma 4. Thus we can rewrite the above
equation as:

pquant
forge (m,p,q)⩽ p

classic
forge (m,p,q)× (p(1+

√
2p))2mq−2mqg(δr )

≈ pclassic
forge (m,p,q)× (p(1+

√
2p))2mq

(6.93)

which is the bound we wanted to prove, and we have also used that pclassic
forge (m,p,q)≈

pB(m,p,q). As a final remark, we note that the optimal probability is a function
of the number of queries, thus we can show that the optimal overall probability is
achieved given the adversary optimises on the number of queries used for extract-
ing the information for the forgery. Analysing the upper bound of the probability
as a function of q, one can see that the first term is a non-decreasing function
of q while the second term is always strictly decreasing with q. As a result, the
combined function has necessary an extremum over q, which we denote by qopt .
Assuming the two cases where the given number of queries is smaller or larger
than qopt , we have the following bounds:

pquant
forge ⩽ p

classic
forge (m,p,q)× (pguess)

2mq(1−g(δr )) q < qopt

pquant
forge ⩽ p

classic
forge (m,p,qopt)× (pguess)

2mqopt(1−g(δr )) q ⩾ qopt
(6.94)

Summarizing the above cased and given that g(δr ) is small we have:

pquant
forge ⩽ sup

q
[pclassic

forge (m,p,q)× (pguess)
2mq] (6.95)

which concludes the proof.10

Finally, let us present the following corollary that ensures the universal un-
forgeability of an HPUF constructed from a CPUF that does not provide suitable
security, yet is not totally broken with overwhelming probability.

10In the latest version of the paper [CDM+21], we have given an alternative version of this proof
which does not use the AEP, and instead relies on giving the bound on the forgery probability over
a noisy database where the bound is slightly different although very similar. The exponential decay
in the probability happens in both cases. In that proof, one no longer needs to give an optimality
argument over the number of queries. However, since proving the result, in this way seemed more
intuitive and used a rather nice quantum information tools, we have decided to present this proof
in the thesis. The reader can refer to the paper for the other result.
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Corollary 8. Let the success probability of any QPT weak-adversary in
the universal unforgeability game with a CPUF f : {0,1}n→ {0,1}4m with
p-randomness, be at most pclassic

forge , where 0 ⩽ pclassic
forge ⩽ 1− non-negl(2m).

Then, the success probability of any QPT adversary in the universal un-
forgeability game for the HPUF Ef , is at most ε(2m), which is a negligible
function in the security parameter. Hence such HPUFs are universally un-
forgeable.

Proof. This directly follows from Theorem 45 where pclassic
forge = p

classic
forge (m,p,q) for

any q = poly(m) is a value between 0 and 1, and not negligibly close to 1. As
shown in the proof of Theorem 45 the second term of the probability, becomes
negligibly small (in 2m) and hence the overall probability becomes a negligible
function ε(2m).

6.4.5.2 Universal Unforgeability of HLPUF

So far, we have analysed the security of the HPUFs only against weak adver-
saries. In the next theorem, we show that if the HPUF is secure against weak
adversaries, then using the locking mechanism, we can make the HLPUF secure
against adaptive adversaries.

Theorem 46. Let Ef : {0,1}n → (H2)⊗m⊗ (H2)⊗m be a hybrid PUF that
we construct from a classical PUF f : {0,1}n→{0,1}2m×{0,1}2m and let
ELf : {0,1}n × (H2)⊗m → (H2)⊗m denotes the HLPUF that we construct
from Ef using the Construction 4. If Ef = Ef1⊗Ef2 and if each of the map-
pings Ef1,Ef2 has (ε,m)-universal unforgeability against the q-query weak
adversaries, then the corresponding HLPUF ELf is (ε,m)-secure against the
q-query adaptive adversaries.

Proof. At the i-th round, the HLPUF ELf receives the queries of the form (xi , ρ̃1),
where the classical string xi ∈ {0,1}n, and ρ̃1 ∈ (H2)⊗m. The HLPUF returns
Ef2(xi) if Ver(ρ̃ii ,Ef1(xi)) = 1, otherwise it returns an abort state |⊥⟩⟨⊥| corre-
sponding to ⊥. Hence, to avoid getting state |⊥⟩ from the HLPUF, the adaptive
adversaries Aad need to produce a query of the form (xi ,Ef1(xi)). As the adver-
sary doesn’t have any direct access to the mapping Ef1, the only way it can get
any information about Ef1(xi) by intercepting the challenges that are sent by the
server to the client. Suppose that the adaptive adversary has access to a set of q
queries X[q] := {Xi}1⩽i⩽q and the corresponding responses Ψ[q] := {Ef1(xi)}1⩽i⩽q.
Here each Xi follows a uniform distribution over the challenge set {0,1}n. Hence,
for the mapping Ef1 the power of the adaptive adversary reduces to the power
of a weak adversary. As Ef1 has the universal unforgeability property against any
q-query weak adversary, hence we get, for any random challenge X ̸∈X[q],
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Pr
X,X[q]

[1←GEf1 (Aad ,m,X,X[q])] = Pr
X,X[q]

[1←GEf1 (Aweak ,m,X,X[q])]⩽ ε(m).

(6.96)
This implies, that using the set of challenges X[q] and responses Ψ[q] the adver-

sary cannot produce the response corresponding to a random challenge X ̸∈X[q].
Suppose from the query set X[q] and the responses, the adaptive adversary suc-
cessfully generates a set X ′[q′] of q′ adaptive queries, and corresponding responses

Ψ[q′] for the HLPUF ELf . Without any loss of generality we assume that for all
of the queries X ′i ∈ X ′[q′] the HLPUF returns a non-abort state. We assume that
the adaptive adversary wins the universal unforgeability game using the query set
Xad =X[q]∩X ′[q′]. This implies,

Pr
X,X

EL
[q]ad

[1←GE
L
f (Aad ,m,X,Xad)]⩾ non-negl(m). (6.97)

From the HLPUF Construction 4, we get that winning the universal unforgeability
game with the HLPUF ELf implies winning the universal unforgeability with Ef2.
Hence, we can rewrite Eq. (6.97) in the following way,

Pr
X,Xad

[1←GEf2 (Aad ,m,X,Xad)]⩾ non-negl(m). (6.98)

Note that, if the adaptive adversary manages to get non-abort outcomes from
the HLPUF corresponding to all X ′i ∈ Xad then from the Construction 4 we get,
1←GEf1 (Aad ,m,X ′i ,Xad). Due to the unforgeability assumption of Equation Eq.
(6.96) we have,

Pr
X,X[q]

[1←GEf1 (Aweak ,m,X,X[q])] = Pr
X,Xad

[1←GEf1 (Aad ,m,X,Xad)]⩽ ε(m).

(6.99)
Note that, the main difference between adaptive and weak adversaries lies in

the choice of the query set. If we fix the query set Xad, then both adaptiveAad and
a weak adversary can extract the same amount of information from the responses
corresponding to the query set Xad. Therefore, their winning probability of the
universal unforgeability game becomes equivalent. This implies, we can rewrite
Equation Eq. (6.99) in the following way,

Pr
X,Xad

[1←GEf1 (Aad ,m,X,Xad)] = Pr
X,Xad

[1←GEf1 (Aweak ,m,X,Xad)]⩽ ε(m).

(6.100)
By combining Equation Eq. (6.99) and Equation Eq. (6.100) we get, both the

random variables X[q] and Xad are equivalent. From the universal unforgeability
property of the PUF Ef2 against any q-query weak adversary, we get

Pr
X,X[q]

[1←GEf2 (Aweak ,m,X,X[q])]⩽ ε(m). (6.101)
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As both of the random variables X[q] and Xad are equivalent, so we get,

Pr
X,X[q]

[1←GEf2 (Aweak ,m,X,X[q])]

= Pr
X,Xad

[1←GEf2 (Aweak ,m,X,Xad)]

= Pr
X,Xad

[1←GEf2 (Aad ,m,X,Xad)]⩽ ε(m).

(6.102)

The second equality follows from the fact that for a fixed query set Xad the
adaptive adversary Aad and weak adversary Aweak becomes equivalent. Note
that, only one of Eq. (6.98) and Eq. (6.102) is true. The Eq. (6.102) is true
because of the unforgeability of Ef2. Hence, our assumption of Eq. (6.98) is
wrong. Therefore, Eq. (6.97) is also not true. Hence, with conclude our proof
by contradiction.

Apart from the theoretical results provided in this section, we have also simu-
lated the design of HPUF constructions with underlying silicon CPUFs instantiated
by pypuf [Wis21] which is a python-based emulator that features different exist-
ing CPUFs. Furthermore, we simulate the situation where an adversary acquires
classical challenges and quantum-encoded responses from HPUF and converts the
response into classical bit string by measurement behaviour. The adversary then
performs some machine learning-based attacks with CRPs to reproduce a model
that accurately predicts enough the behaviours of underlying CPUF. Such an ad-
versary possibly forges the HPUF given (exponentially in the security parameter)
many CRPs. Our simulation results assist to demonstrate the exponential gap
in the security between CPUF and HPUF in a regime outside the polynomial-
size database and for classical PUFs that are commercially available. Since the
simulations have not been done by the author, we have excluded them from this
chapter. However, we refer the reader to [CDM+21] for the full work, including
the simulation results.

6.4.5.3 Security of the HLPUF-based authentication protocol:

We now have all the elements to be able to prove the completeness and security
(or soundness) of our HLPUF-based authentication protocol. Firstly, we define
the completeness and security property for Protocol 5. Then, in Theorem 47 we
will prove that they are satisfied. We start with the completeness:
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Definition 48 (Completeness of HLPUF-based Authentication Protocol 5).
We say the HLPUF-based authentication Protocol 5 satisfies completeness
if in the absence of any adversary, an honest verifier and prover generating
|ψf1(xi )⟩⟨ψf1(xi )| and |ψf2(xi )⟩⟨ψf2(xi )| with a valid HLPUF for any selected
challenge xi , can pass the verification algorithms with overwhelming proba-
bility:

P r [Ver(|ψf1(xi )⟩⟨ψf1(xi )| , ρ̃1) = Ver(|ψf2(xi )⟩⟨ψf2(xi )| , ρ̃2) = 1]⩾ 1−ε(λ)
(6.103)

We also define the security of the protocol, in relation to the universal un-
forgeability game as follows:

Definition 49 (Security of the HLPUF-based Authentication Protocol 5).
We say the HLPUF-based authentication Protocol 5 is secure if the success
probability of any QPT adaptive adversary Aad in winning the universal un-
forgeability game to forge an output of HLPUF according to Construction 4,
for any randomly selected challenge of the form c̃ = (x, |ψf1(x)⟩⟨ψf1(x)|) is
at most negligible in the security parameter:

P r [1←GHLPUF (Aad ,λ)]⩽ ε(λ) (6.104)

where the verification algorithm of the universal unforgeability game checks
the adversary’s output σ2, with the output of the HLPUF, |ψf2(x)⟩⟨ψf2(x)|.

Through the following theorem, we can see that Protocol 5 satisfies both
completeness and security according to the above definitions.

Theorem 47. If the HLPUF ELf is constructed from a hybrid PUF Ef using
Construction 4, then the HLPUF-based authentication Protocol 5 satisfies
both the completeness and security conditions.

Proof. In Protocol 5 with hybrid PUF Ef = Ef1⊗Ef2, the verifier(server) chooses
the classical input xi ∈X , encodes the quantum state corresponding to 2m bits of
f1(xi) and issues the joint state to the prover(client). If there is no adversary, the
prover receives the joint state and queries Ef with xi and ρ̃1, where ρ̃1 = Ef1(xi) =
|ψf1(xi )⟩⟨ψf1(xi )| for the first m qubits of Ef (xi). Hence we have:

P r
[
Ver(|ψf1(xi )⟩⟨ψf1(xi )| , ρ̃1) = 1

]
= 1 (6.105)

On the prover’s side, since the verification algorithm of HLPUF ELf always
passes with Ver(|ψf1(xi )⟩⟨ψf1(xi )| , ρ̃1) = 1, and they return the quantum state
Ef2(xi) = |ψf2(xi )⟩⟨ψf2(xi )| corresponding to 2m bits of f2(xi) to the verifier. With-
out the presence of adversary, the verifier always receives the state with ρ̃2 =

|ψf2(xi )⟩⟨ψf2(xi )|, and we obtain the equation similarly to Eq. (6.105). Therefore,
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we can say the HLPUF-based authentication protocol satisfies the completeness
condition with

Pr
[
Ver(|ψf1(xi )⟩⟨ψf1(xi )| , ρ̃1) = Ver(|ψf2(xi )⟩⟨ψf2(xi )| , ρ̃2) = 1

]
= 1 (6.106)

On the other hand, for the security property, we rely on Theorem 46 that
the HLPUF ELf is (ε,m)-secure against any QPT adaptive adversary (a q-query
adaptive adversary for any q polynomial in the security parameter). For both Ef1
and Ef2 of HPUF Ef , we show that the power of an adaptive adversary can be
reduced to the power of a weak adversary, due to the locking mechanism. Also
since Ef1 has the universal unforgeability against a weak adversary by definition,
for any adaptive query of the form (xi ,σ1) that an adaptive adversary issues to
the HLPUF, the following applies:

Pr
[
Ver(|ψf1(xi )⟩⟨ψf1(xi )| ,σ1) = 1

]
⩽ ε(m) (6.107)

Where |ψf1(xi )⟩⟨ψf1(xi )| is the correct response constructed from CPUF according
to HPUF construction. Thus the power of the adaptive adversary reduces to the
power of weak adversary and we have:

P r [1←GHLPUF (Aad ,m)]≈ P r [1←GHLPUF (Aweak ,m)] (6.108)

Now given the fact that the adaptive adversary cannot boost from the weak-
learning phase to the HPUF, producing a forgery σ2 for the HLPUF that passes
the verification Ver(|ψf2(xi )⟩⟨ψf2(xi )| ,σ2), reduces to forging the HPUF Ef2. Again
by assumption, Ef2 has the universal unforgeability against weak adversary, hence
we have:

P r [1←GHLPUF (Aad ,m)] = P r [1←GHPUF (Aweak ,m)]⩽ ε(m) (6.109)

This concludes the proof.

Therefore, we have shown that Protocol 5, under certain reasonable assump-
tions on the underlying classical PUF, is correct and achieves suitable security
against QPT adversaries.

6.4.6 Challenge re-usability

In any PUF-based protocol relying on the classical communication of challenges
and responses of the PUF, each challenge can only be used once as the adversary
can simply copy and record the challenges and responses and have a perfect copy
of the challenger’s database which later they can use to falsely identify themselves.
This is an important limitation of the classical PUFs [SD07, HYKD14]. Quantum
communication can solve this issue due to the unclonability of quantum states. In
this section, we discuss how our hybrid construction can allow for challenge states
to be used several times during the authentication, under the circumstances of
previous successful authentication rounds. This property will resolve an important
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practical issue as the challenger can avoid storing a big database or renewing the
database of challenge responses frequently.

First, we need to clarify the conditions under which the challenge can be reused.
We assume the challenger’s database to only include q number of challenge-
response pairs such that q is polynomial in the security parameter. We also need to
recall that in our hybrid construction, the challenges are still being sent as classical
bit-strings over the public channel, hence the adversary, after polynomial rounds of
communication, can have the same challenge set as the server’s database. Due to
this fact, we should emphasize that the adversary does not get any physical access
to the internal classical PUF in the HLPUF construction during the authentication
and no query can be directly issued to the CPUF by the adversary. This condition
is satisfied using our locking mechanism. Thus, the adversary has access to the
following information: a pre-learnt polynomial-size local database of challenge-
responses of the CPUF, a set of classical challenges used during the protocol,
and the set of quantum states that encode either the first or second half of the
response, in the BB84 states.

It is a straightforward observation that the challenges for which the verification
test has failed should never be used again. A trivial attack, in this case, would be
that the adversary intercepts the communication and stores the response state,
and later when the same challenge has been queried again, will re-send the stored
correct response state to pass the verification. As a result, all the challenges in
the failed rounds should be discarded.

Nonetheless, we argue that in the events of successful authentication, the
challenges can be re-used. Here, by successful identification, we mean that the
received response state passes the verification on the client and server sides and
the prover identifies an honest party. Even though the events of false identification
of an adversary, is still possible (for example, if the challenge is the same as one
of the challenges that previously exists in the adversary’s local database), the
unforgeability of PUF and our security proof for the hybrid construction, ensures
that these events occur only with negligible probability.

We are thus interested in the eavesdropping attacks by the adversary on the
first and second half of the response states that are of the form |ψf1(xi )⟩⟨ψf1(xi )|=⊗m
j=1 |ψ

i ,j
f1(xi )
⟩⟨ψi ,j

f1(xi )
| and |ψf2(xi )⟩⟨ψf2(xi )|=

⊗m
j=1 |ψ

i ,j
f2(xi )
⟩⟨ψi ,j

f2(xi )
| Note that eaves-

dropping on the states which encode the first part of the response will lead to
breaking the locking mechanism while eavesdropping on the second half will lead
to an attack on the identification. Without loss of generality, we only consider one
of the cases where the adversary wants to eavesdrop on the first (or second) half
to break the protocol in the upcoming rounds where the challenge is re-used. The
arguments will hold equivalently for both cases since the states and verification
are symmetric.

Given all these considerations, the challenge re-usability problem will reduce to
the optimal probability of the eavesdropping attack on state |ψf1(xi )⟩⟨ψf1(xi )| which
is in fact m qubit states encoded in conjugate basis same as BB84 states. In the
most general case, the adversary can perform any arbitrary quantum operation on
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the state
⊗m
j=1 |ψ

i ,j
f1(xi )
⟩⟨ψi ,j

f1(xi )
| or separately on each qubit state |ψi ,j

f1(xi )
⟩, together

with a local ancillary system and sends a partial state of this larger state to the
verifier to pass the verification test, and keep the local state to extract the encoded
response bits. Let ρSEC be the joint state of the server, the eavesdropper and the
client. Since the states used in the protocol are from Mutually Unbiased Basis
(MUB) states i.e. from either Z = {|0⟩ , |1⟩} or X = {|+⟩ , |−⟩}, in order to show
the optimal attack, we can rely on the entropy uncertainty relations that have
been used for the security proof of QKD. The measurements for verification are
also performed in the {Z,X} bases accordingly. We use the entropy uncertainty
relations from [CBTW17] where the security criteria for QKD have been given in
terms of the conditional entropy for MUBs measurements. Using these results we
show that the entropy of Eve in guessing the correct classical bits for the response
is very high if the state sent to the verification algorithm passes the verification
with a high probability. Intuitively this is due to the uncertainty that exists related
to the commutation relation between X and Z operators in quantum mechanics.
Hence we conclude that the success probability of Eve in extracting information
from the encoded halves of the response is relatively low. Also, we show that this
uncertainty increases linearly with m similar to the number of rounds for QKD.
This argument results in the following theorem. In proving this theorem, we have
used the entropic uncertainty relation introduced in Chapter 2, Section 2.1.5.

Theorem 48. In Protocol 5, let x be a challenge and (y1, . . . ,y2m) be the
response of a classical PUF used within the HPUF construction, with ran-
domness bias p = (12 + δr )

2m over the classical responses. If the verifica-
tion algorithm for a state ρ̃ passes with probability 1− ε(m), then Eve’s
conditional min-entropy HEvemin in terms of von Neumann entropy over the
verifier/prover’s (server/client) classical response, satisfies the following in-
equality:

HEvemin =Hmin(S
m|ERm)⩾m−ε(m) (6.110)

Proof. We prove this theorem based on the first half of the state used in Proto-
col 5, i.e. the state |ψf1(xi )⟩⟨ψf1(xi )|=

⊗m
j=1 |ψ

i ,j
f1(xi )
⟩⟨ψi ,j

f1(xi )
| that is being sent by

the verifier/server denoted by (S) and received and measured by the prover/client
denoted by (C). Nevertheless, we note that the same proof applies for the second
state due to the symmetry of the states and the protocol.

Let Rm = (R1, . . . ,Rm) be the randomness bitstring showing the choice of the
basis encoding of the response, Sm = (S1, . . . ,Sm) be the server’s bit encoded in
the Rm bases. Note that both Rm and Sm are produced according to the bitstring
(y1, . . . ,y2m) which is the first half of the response of CPUF to a given challenge
x . Also, let Cm = (C1, . . . ,Cm) be the client’s correct bit string. We denote the
arbitrary joint state of three systems by ρSmECm where E denotes any arbitrary
quantum system held by the eavesdropper. Now, let the the Client’s measurement
outcomes, after the verification be Ỹ m = (Ỹ1, . . . , Ỹm) which shows the estimated
bits by the Client. Now we can write the tripartite uncertainty principle, in terms
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of the von Neumann entropy, for MUB measurements and MUB states as follows:

H(X1X2Z3X4 . . .Xm−1Zm|E)+H(Z1Z2X3Z4 . . .Zm−1Xm|C)⩾ log2(
1

c
)m

(6.111)
where c = maxx,z cxz and cxz =∥

√
Mx
√
Nz ∥2 for an arbitrary POVM sets M =

{Mx}x and N = {Nz}z . We note that if the CPUF creates perfect random bit-
string for Rm then states are perfect MUB states and c = 12 . Nonetheless we
consider a weaker CPUF with a biased distribution of p = (12 + δr )

2m in creating
0s and 1s in the response. Hence, we can translate this imperfectness into a
disturbance in the measurement bases. Let M0 = |0⟩⟨0| and M1 = |1⟩⟨1| be the
usual measurement in the computational basis but let the N measurements be a
slightly shifted version of the measurements in the X basis. Consider the following
states:

|ψN⟩=
√
1

2
+ δr |0⟩+

√
1

2
− δr |1⟩

|ψ⊥N ⟩=
√
1

2
− δr |0⟩−

√
1

2
+ δr |1⟩

(6.112)

We define the new N projective operators according to the following states as
N0 = |ψN⟩⟨ψN | and N1 = |ψ⊥N ⟩⟨ψ⊥N |. Now we calculate the operator norm for all
the pairs of measurements and we have:

∥
√
M0
√
N0 ∥2=

1

2
+ δr , ∥

√
M0
√
N1 ∥2=

1

2
− δr

∥
√
M1
√
N0 ∥2=

1

2
− δr , ∥

√
M1
√
N1 ∥2=

1

2
+ δr

(6.113)

Thus we conclude that c = 12+δr and the Equation Eq. (6.111) can be re-written
as follows:

H(X1X2Z3X4 . . .Xm−1Zm|E)+H(Z1Z2X3Z4 . . .Zm−1Xm|C)⩾m−m log2(1+2δr )
(6.114)

Now, we use the data processing inequality [CBTW17], we have got the follow-
ing security criteria that show Eve’s uncertainty (in terms of the von Neumann
entropy) of the actual response bits Sm:

H(Sm|ERm)+H(Sm|Ỹ m)⩾m−m log2(1+2δr ) (6.115)

We can get the same inequality in terms of smooth min and max entropy
[CBTW17, TR11] (see Section 2.1.5), which is more appropriate for ensuring the
security in the finite size, for min and max entropy we equivalently have:

Hεmin(S
m|ERm)⩾m−Hεmax(Sm|Ỹ m)−m log2(1+2δr ) (6.116)

To calculate the above bound we need to find the bound on the second term of
the right-hand side, i.e. Hεmax(S

m|Ỹ m). Here we use another result from [TR11]
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where it states that for any bitstring X of n bit and the respective measure-
ment outcome X ′, which at most a fraction ζ of them disagree according to the
performed statistical test, then the smooth max entropy is bounded as follows:

Hεmax(X|X ′)⩽ nh(ζ) (6.117)

where h(.) denotes the classical binary Shannon entropy. Now we can use this
result and our assumption of successful verification together. Given the assump-
tion that the verification is passed with a probability 1−ε(m), and the verification
algorithm consists of measuring the states in the Z and X bases, we can conclude
that the final bits differ in at most a fraction ζ = ε(m) where ε(m) is a negligible
function. As a result, we have:

Hεmax(S
m|Ỹ m)⩽mh(ζ)≈mε(m) (6.118)

Putting Equations Eq. (6.116) and Eq. (6.118) together, we have:

Hεmin(S
m|ERm)⩾m−mε(m)−m log2(1+2δr ) (6.119)

On the right-hand side of the above inequality, the second term is still a negligible
function and the third term depends on the CPUF bias probability distribution.
We assume the CPUF satisfies p-randomness, as defined in the Definition 47,
thus the δr is a small value and hence the term (1+2δr ) is negligibly close to 1,
which means that the third term, is negligibly close to 0 in the security parameter
which is m. Finally, we conclude that:

HEvemin =H
ε
min(S

m|ERm)⩾m−ε′(m) (6.120)

where ε′(m) is a negligible function and the proof is complete.

Let us see how the abouve information-theoretic bound can be used to prove
the challenge-reusability of the Protocol 5. First, define the re-usability in relation
with the unforgeability game and then using Theorem 48, we prove the challenge
re-usability of our protocol.

Definition 50 (Challenge (k-)re-usability in the universal unforgeability
game). Let Gre(λ,A,xk+1) be a special instance of the universal unforge-
ability game, where a challenge x , picked uniformly at random by the chal-
lenger, has been previously used k times. We are interested in the events
where the same challenge is used in the (k+1)-th round, which we denote
by xk+1. We say the challenge x is (k-)re-usable if the success probability
of any QPT adversary in winning Gre(λ,A,xk+1), i.e, in forging message
xk+1, is negligible in the security parameter:

pf orge(A,xk+1) = P r [1←Gre(λ,A,xk+1)]⩽ ε(λ) (6.121)
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Theorem 49 (Challenge re-usability of HLPUF-based Authentication Pro-
tocol 5). A challenge x can be reused k times during the Protocol 5 as long
as the received respective response σ for each round passes the (client’s or
server’s) verification with overwhelming probability. In other words, given
the successful verification, the success probability of any quantum adver-
sary in passing the (k +1)-th round with the same challenge x is bounded
as follows:

pf orge(A,xk+1)⩽ k2−m ≈ ε(m). (6.122)

Proof. To prove this theorem, we use Theorem 48 directly. First, we assume
that x has been used one time before in a previous round. Given the assumption
that the verification is passed with probability 1− ε(m), and this theorem, we
conclude that the uncertainty of the adversary in guessing the encoded response
of the HLPUF is larger than m− ε(m). In our case, the joint quantum state
between the server and the adversary is a classical-quantum state (server has the
classical description of f (x), and the adversary has the quantum state |ψf (x)⟩).
For such states, Eve’s uncertainty, HEvemin is same as − logpEveguess , where pEveguess

is Eve’s guessing probability of the classical information encoded in the quantum
state [KRS09]. Therefore,

pEveguess = 2
−HEvemin

⩽ 2−m+ε(m)
(6.123)

This probability is negligible in the security parameter, which means that after
performing any arbitrary quantum operations, the adversary’s local state includes
at most, a negligible amount of information on the response of x , each round that
the state x is reused. Now, we can use the union bound (See Preliminaries, ??)
to show that this success probability only linearly scales with k :

pEve,kguess = P r(
k⋃
i=1

E iguess)⩽
k

∑
i=1

p(E iguess)≈ k2−m (6.124)

where E iguess are the events where Eve correctly guesses the response and where
p(E iguess)= (p

Eve
guess)

i is the success probability of Eve in guessing in the i-th round.
Finally, let the success probability of an adversary in the universal unforgeability
game for the HLPUF be upper-bounded by ε1(m) which is a negligible function
in the security parameter since we assume that the HLPUF satisfies the universal
unforgeability. This is the same as the success probability of the adversary in
passing the verification for a new challenge, chosen at random from the database.
Now in the (k+1)-th round, where the same x is reused, the success probability is
at most boosted by the guessing probability over the previous k-th rounds, hence
we will have:

pf orge(A,xk+1)⩽ ε1(m)+k2−m = ε(m) (6.125)

As long as k is polynomial in the security parameter, the second term is also a
negligible function and since the sum of two negligible probabilities will be also
negligible. This concludes the proof.
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6.5 Discussion and conclusions

We have proposed three different identification protocols based on quantum PUFs
and Hybrid classical-quantum PUFs which provide exponential (or relatively expo-
nential) security against any QPT adversary by exploiting physical unclonability
(both in the quantum and classical sense) as a hardware assumption instead of
the usual cryptographic assumptions. The first two protocols use full quantum
PUFs and the last one combines a classical PUF with quantum encoding to give
rise to our hybrid construction. Our primary classification in the first two proto-
cols has come about from the practical scenarios in a network, i.e. parties with
varying capabilities should be able to run a secure identification protocol. The first
protocol, hrv-id, is proposed to be suited more in the mobile-like device settings
i.e. provers having low resources would want their device to be correctly identified
by a high resource verifier. This protocol can be used as a subroutine for many
other applications, specifically in a quantum internet or a quantum network with
star-like architecture [CHZ+09, PB16, LMR+17], where a server (central node)
can use this protocol to identify each of the clients. Also, since the identification
protocol requires multi-round communication between the prover and the verifier,
we have proposed efficient quantum equality-testing verification to reduce the
communication overhead requirement.

Our second protocol, lrv-id, is suited to the quantum verification setting i.e. a
low-resource and classical-like verifier would want to verify the identity of a high
resource quantum device, like a quantum cloud server. The advantage of this
protocol is that a purely classical verification algorithm is sufficient to verify the
prover’s device with provable security. lrv-id is based on the idea of trapification,
where the verifier inserts random trap states in between the communication rounds
which facilitates a secure delegation of the quantum testing to the prover. This
allows the verifier to simply run a classical algorithm on the quantum test out-
comes to perform successful identification. We have also shown an extension of
the lrv-id protocol that generalises it to an arbitrary distribution of traps instead
of randomly inserting them in half of the positions as proposed in the current
version of the protocol. With this generalisation on hiding the trap distribution,
one hopes for further enhancement in security against a QPT adversary. We draw
non-trivial conclusions from this generalisation, including the worsening of security
to polynomial in the number of communication rounds (instead of exponential as
our current protocol) when the number of trap positions is chosen uniformly over
the total positions. We also remark that some distributions provide a polynomial
enhancement over the current exponential security bound, thus justifying the need
for hiding the number of trap positions. We also believe that this generalisation
provides a potential use case of a similar protocol for a certain degree of verifi-
cation and certification of quantum devices using embedded quantum PUFs. We
see this direction as an engaging future subject of study since qPUFs provide nat-
ural and physical randomness, which combined with more enhanced trapification
techniques, can potentially lead to a new class quantum verification/certification
protocols.
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An important future direction regarding the practicality of the presented pro-
tocols is to study the effect of noise and robustness of the protocols under honest
noise. So far, the protocols have been studied in the noiseless setting, and the
requirements of verification are strictly rigid (for instance, all rounds of verifica-
tion have to be successfully passed), however, both protocols can be made more
robust by relaxing some of these requirements and allowing for a tolerance param-
eter while remaining secure. We leave the study of the robustness and security
properties of the protocol in the noisy setting for future work.

Then, we have used our result regarding efficient universal unforgeability, to
reduce the Haar-random sampling of our proposed protocols to pseudorandom
quantum states that are efficient to generate, as a result, introducing a more
implementation-friendly version of our qPUF-based protocols. Quantum pseudo-
randomness is yet a very young field of research, and we believe the advancement
in this field can assist the qPUF constructions and the protocols based on them
to become more and more practical.

Finally, in our latest proposal, we have exploited one of the main sources of se-
curity in the quantum information world, namely the concept of conjugate coding
[BS16], to propose a new construction that uses an internal (and almost weak)
classical PUF and enhances its unpredictability to a high degree using this quantum
encoding. Nonetheless, this enhancement is only against non-adaptive adversaries.
For security against our usual QPT adversary that is in general adaptive, we use
an additional technique, namely the locking mechanism that provides us with our
HLPUF construction used in our proposed authentication protocol. An important
property of the new construction is the combination of classical challenges and
quantum responses, which harnesses the power of quantum information over an
untrusted quantum channel while the verifier does not need to store the responses
quantumly, which fully removes the quantum-memory requirement. As a result,
the implementation of hybrid PUF is practical nowadays with quantum communi-
cation technology. Another advantage of the HLPUF-based protocol is that each
challenge-response pair used for a successful authentication round can be used
several times for authentication due to the unclonability and other fundamental
quantum mechanical properties of the response quantum states. Therefore, with
our solution, a server can continue the client authentication protocol for a longer
period without exhausting its CRP database. This result overcomes the funda-
mental drawbacks of the existing classical PUF-based authentication protocols
and offers a novel use case, not only for our construction but also for quantum
communication in general.

However, there are several thought-provoking questions, yet to be explored.
In bounding the success probability of a QPT adversary against HPUF in Theo-
rem 45, we have established a connection between unforgeability and the learn-
ability of a classical function (in our case CPUF’s evaluation function) from a
quantumly encoded random set of data, using quantum informatics approaches.
Despite the current proof being specific to our construction, we believe that most
of the techniques we have used are fairly general and can be used to formally
establish a link between cryptographic properties and learning problems, using
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quantum information theory. Furthermore, if the same result can be generalised
to bound the success probability of a QPT adversary respective to a classical PPT
adversary, for learning a classical function from a general quantum encoding, then
one can relate the problem to the open question of the advantage of supervised
learning with quantum models [SSM21, SG04]. The use of quantum informa-
tion theory in learning theory has recently led to influential results regarding the
comparison between classical and quantum machine learning [HKP21]. There-
fore, we conjecture that further expanding this connection to cryptography and
quantum-information-based cryptography can provide new insights into these very
challenging and exciting problems.

We finally discuss the experimental requirement of our HLPUF-based proposal.
We note that by selecting the quantum encoding to be BB84 states, the protocol
can be implemented with resources similar to quantum key distribution. QKD
technology is one of the most mature quantum technologies. The long-distance
QKD networks are already implemented and used in many different countries like
the USA, UK, China, EU, Japan, [SFI+11, SLB+11, PPM08, WCY+14, Cou16]
etc. Many commercially available QKD infrastructures provide almost 300kb/s
secret key rate over optical fibre links of length 120km [FLD+17]. Moreover, the
availability of the mature QKD on-chip technology [SEG+17, SSH+20, BLL+18]
makes all the proposed constructions in this work implementable inside the IoT
devices. Given all these available technologies, our proposal can solve almost
all of the shortcomings of the device authentication problem. To further study
the feasibility and practicality of hybrid PUF constructions, an important future
direction would be toward the experimental implementation of our proposal and
the HLPUF-based authentication protocol. Furthermore, we believe that due to
the matching of required resources and the strong security guarantee of our pro-
tocol, it can be easily incorporated with the QKD itself as a promising solution
for providing the authenticated channel that is required for QKD [SBPC+09].
Hence an immediate and important future research direction would be the usage
of the protocol for the task of message authentication and the composition of
this protocol with QKD. Furthermore, since QKD has been proven composable
secure [BOHL+05, Ren08, TL17, Lev15], an important future direction would
be to study the security of the proposed protocol within the existing compos-
able frameworks such as universal composability framework [Can01] or abstract
cryptography framework [Mau05, Mau12].
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Variational Quantum Cloning: A
New Cryptanalysis Toolkit

“Everything in this world is magic, except to the magician.”
– Robert Ford, Westworld (S1.Ep2: Chestnut)

7.1 Introduction

We have set out on a long journey to understand new aspects of ‘Unclonability’,
from a foundational point of view in discovering its relationship to randomness and
learnability, all the way to introducing new applications in quantum cryptography.
The three past chapters navigate around the concept of physical unclonability. In
this chapter, we come back to the more familiar notion of quantum unclonability,
that is, the no-cloning theorem and unclonability of quantum states.

In Chapter 2 (Section 2.3), we have covered the no-cloning theorem and the
concept of approximate cloning. We have seen that it is both possible to create
imperfect copies of unknown quantum states (approximate cloning) or to have
a quantum operation that only sometimes gives you two perfectly similar copies
of general quantum states (probabilistic cloning). Among these two categories,
approximate cloning is particularly interesting for us since it somehow matches the
idea that we have pursued in this thesis in understanding the fundamental relation
between unclonability, learnability and the level of unknownness. Intuitively we
focus on the amount of information that exists prior to performing the cloning
mechanism, about the entity that one aims to clone. As we have seen in Sec-
tion 3.2 and Section 3.3.1. This specific prior information leads to different classes
of cloners with the ability to clone the particular family of states corresponding to
that information, where the quality (or more technically, fidelity) of these clones is
higher than the universal cloner. To roughly summarise this argument, the more
you know (or learn) about the states you want to copy, the better you can copy
them. Having this inherent relation in mind, now we move to the field of quantum
cryptography, where no-cloning is at the heart of the security of many quantum
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protocols (QKD, coin-flipping, verifiable blind quantum computing, etc.). Here,
the following question arises:

‘In what ways the ability to clone a specific family of states with partial prior
information can affect the security of quantum protocols?’

Despite the fact that the study of approximate cloning was born many years
ago with the remarkable discovery of Buzeh and Hillery [BBHB97], and despite
the existence of a rich literature on the subject, there are still very limited classes
of states that are known how to be cloned approximately with optimal fidelity
[SIGA05, FWJ+14]. More importantly, even for some of these known classes
of cloning, the unitary circuits (or circuit decompositions) of these cloners are
not known. Having these circuits and unitaries explicitly is not only important
for practical applications of quantum cloning machines, but also a very relevant
problem to quantum compilation. Notably, in touching on quantum cryptanalysis,
this ‘prior information’ becomes much more general and can include cases where
our knowledge about the cloning machines (for the specific problem of interest) is
narrow. Moreover, if cloning based on a specific family of the state is to be used
as an attack model, the complexity of the circuit and technological feasibility of
performing those cloners will be considerable factors, which once again calls for
being able to have an explicit form of the cloning machines.

Quantum cloning has been previously considered as an attack model for some
quantum protocols such as QKD. It turns out that in some cases, these types of
attacks are in fact, optimal [SIGA05]. In cases where they are not, cloning provides
a means to determine lower bounds on the strategies of an adversary [XSW+12].
However, implementing such cloning-based attacks might be non-trivial in practice
due to the difficulties mentioned above. Also, the effect of decoherence and
errors in NISQ devices makes the production of high-quality clones out of reach
for the adversary, which limits the power of practical quantum cryptanalysis in
the NISQ era. On the other hand, there has been much interest in implementing
quantum cloning and cryptographic attacks on protocols via specific and tailored
experiments (for example [LLSHB02, Fiu03, CZSD07, BL13, B+17]), but these
may not be easily reconfigurable or generalizable to other scenarios. In summary,
finding and constructing quantum cloning circuits for preparing high fidelity clones
on NISQ hardware is challenging.

All the arguments given above, motivate us to seek a new approach to effi-
ciently produce optimal cloning machines and their circuits for specific classes of
states. We are in particular interested in the ones that are implementable effi-
ciently on NISQ devices. We also note that existing approaches in the literature
are by no means optimal if one wants to generalise this question in order to target
applications, especially targeting applications in cryptanalysis given the everyday-
expanding variety of quantum protocols. The known analytical approaches proceed
as follows: Firstly, the most general unitary for the cloning machine has been con-
sidered. Secondly, by imposing the symmetries and conditions on the specified
family of states, the output fidelity of the machine has been optimised, irrespec-
tive of the characterisation of the unitary. Thirdly, one should try to find a unitary
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matrix that achieves that maximum fidelity, which is often a non-trivial and chal-
lenging task. Some inspiring alternative approaches have also been given for the
case of equatorial states1 [CIVA02], which exploit the symmetries in a much more
intriguing way than the previous formalism for cloning. However, these approaches
do not seem generalisable to other classes of cloning.

The approach we propose here takes a very different path. We start with
the idea of letting a quantum machine learn how to clone a specific given family
of quantum states. We give a novel algorithm: ‘Variational Quantum Cloning’
(VarQlone) which uses quantum machine learning (QML) [WHT15, BWP+17,
Kop18, SP18a, SP18b] techniques to learn how to clone quantum states in an
end-to-end manner. VarQlone is made possible by recent advances and tech-
niques in the field of variational quantum algorithms (VQAs) [MRBAG16, Bia21,
ECBY21, WHT15, CAB+21]. VQAs are intentionally tailored to be useful on
NISQ devices, which are limited in scale and noisy to implement ‘coherent’ algo-
rithms with speedups, such as factoring large prime numbers [Sho94]. However,
such devices are capable of performing tasks which cannot be simulated by any
classical device in reasonable time [AAB+19, ZWD+20, CKDK21]. This moti-
vates the search for dedicated applications for a topic of likely practical relevance.

Variational quantum algorithms have been proposed and used for various ap-
plications, including quantum chemistry [PMS+14] and combinatorial optimiza-
tion [FGG14]. The core quantum component is typically a parameterised quantum
circuit (PQC) [DHLT20] (as mentioned in Section 2.6.4.1). When VQAs are ap-
plied to machine-learning problems, they have come to be seen as quantum neural
networks (QNNs) [BLSF19, KBA+19]. This is because they can achieve many of
the same tasks as classical neural networks, [MNKF18, GBC+18] and can outper-
form them in certain cases [WM20, CMDK20, CCL19]. Furthermore, machine
learning techniques, both quantum [MTB18, KLP+19, JB22, HSNF18, BPLC+20,
XSE+21, HBR21] and classical [KMF+16, MPNK+18, ONK19, NMR+19, WMDB20]
have proven to be useful in discovering and providing insights into quantum al-
gorithms and subroutines. This line of study even extends to the foundations of
quantum mechanics. We refer the reader to this paper [ACS+19] about variational
consistent histories.

VarQlone is different from other variational algorithms in that it can be viewed
as the first step into a new area of applications, variational quantum cryptanal-
ysis. Specifically, by using QML techniques to learn to clone quantum states,
VarQlone can discover unique ways to attack quantum protocols, in particular
those whose underlying security can be reduced to quantum cloning. Furthermore,
in developing such techniques more generally, we can determine the relationship
between classical machine learning and deep learning, with classical cryptogra-
phy [AMS+15, MPP16, PMSW16, Ala19].

We believe this new approach for approximate cloning is reasonably general and
can be used to deepen and widen our understanding of approximate cloning. How-
ever, as a concrete case study and proof of concept of our new approach to crypt-

1We recall that we have defined these states in Chapter 2, Section 2.3.1.2
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analysis, we map two well-known families of approximate cloning machines, i.e.
phase-covariant cloning [BCMDM00] and fixed-overlap state-dependent cloning
[BDE+98, BM99] to two well-known families of quantum protocols, namely quan-
tum key distribution and quantum coin flipping respectively [MSCK18, ATSVY00].
The latter is probably more exciting since, to the best of our knowledge, this is
the first time such a connection has been revealed in the case of state-dependent
cloning. One can also see this work as an attempt to uncover the core ingredient
of security of different quantum protocols from the perspective of the family of
states they rely on.

As part of our research in developing this algorithm, we define suitable cost
functions which depend on the symmetries used in the cloning problem, and we
use them to prove theoretical guarantees for them (including notions of faithful-
ness [KLP+19]). As we have discussed in Section 2.6.4.1 since VQAs are heuristic
techniques, usually being able to provide such theoretical guarantees is rare in the
field (also one of the reasons we have started the chapter with ’everything in
this world is magic, except to the magician’ !) and this work is one of the few
exceptions.

Finally, to underline the practical potential of our approach we implemented
it on the Rigetti Aspen quantum computer and show how VarQlone can learn to
clone states with a higher fidelity on this device than previously known ‘analytic’
quantum circuits, highlighting the flexibility of our approach. Furthermore, the
nature of VarQlone allows us to improve cloning fidelities generically, on quan-
tum computers available through the cloud [LaR19], without requiring significant
tweaking and custom-built experimental hardware.

7.1.1 Structure of the chapter

First, in Section 7.2 we introduce how different classes of cloning can be used as
a cryptanalysis toolkit to attack protocols that benefit from using certain classes
of states. For our case study we introduce cloning attacks on the BB84 pro-
tocol in 7.2.1 in relation to phase covariant cloning, and two different quantum
coin-flipping protocols in Section 7.2.2 in connection to state-dependent cloning.
We present our cloning-based attacks based on an optimal cloner which we then
replace with the cloning machines learned through our variational algorithm. In
Section 7.3 we introduce some theoretical aspects and specifications of VarQlone
such as cost functions (Section 7.3.1), gradient of the proposed cost functions
(Section 7.3.2) and more importantly, theoretical guarantees for our algorithm
based on the proposed cost function (Section 7.3.3). Finally, in Section 7.4 we
present both simulation and experimental results based on VarQlone, including the
circuits found for our specified problems and the probability analysis of the attacks
based on them.
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7.2 Quantum cryptanalysis based on different classes
of cloning

In the first part of this chapter, and before introducing our machine learning
algorithm, we want to establish the theoretical ground for our cryptanalysis based
on different types of cloning with partial prior information about the states. Here,
we only look at cryptanalysis using approximate quantum cloning, and we do
not study the use-cases and relevance of probabilistic cloners. Using cloning as
an attack strategy has been considered previously only in limited settings, for
instance, regarding the QKD protocol, where it has been shown that there exists
an optimal cloning-based attack on the BB84 protocol [SIGA05]. Nevertheless,
here we take a more methodologic approach. Keeping in mind that approximate
cloning is categorised into different classes characterised by specific families of
states, we look for quantum protocols that use the same state families for which
we have a cloning machine.

Among different types of cloning, universal cloning does not seem very thrilling
for this purpose, as it is state-agnostic. Moreover, as we have seen, restricting
the class of states that one wants to clone,i.e. having prior information about the
states leads to higher fidelity clones. In cryptanalysis, we ever optimise over all the
adversarial strategies, which in this case includes using the best cloning strategy
given the protocol’s characteristics.

We choose two main families of approximate cloning for our purpose, namely
phase-covariant cloning (see Section 2.3.1.2) and fixed-overlap state-dependent
cloning (see Section 2.3.1.3). For the former, our target example protocol is QKD,
where we will explain the optimal cloning-based attack. This analysis serves as an
important tool as we use the calculations later for our variational cloning attacks.
The latter class of approximate cloning, on the other hand, has never been used
before for the purpose of cryptanalysis to the best of our knowledge. We notice
that the specific family of states used in this type of cloning matches the class
of states used in quantum coin-flipping. Hence, we introduce, for the first time,
cloning-based attacks on two different quantum coin-flipping protocols.

Finally, we emphasise that the purpose of this study is mostly the illustrations of
applications of variational cloning based techniques, for practical cryptanalysis.2

Nonetheless, the attacks we present in this section either saturate the optimal
bounds, where there exists a rigorous security proof or even lead to a complete
novel security attack, in the absence of such strong proof.

2To clarify, let us take QKD as an example. This protocol has been proven information-
theoretic secure, so we do not intend to break it using variational attacks as it seems pointless.
But rather QKD will serve as an example of phase-covariant cloning attacks in general. Moreover,
as we will see it is not the case for all the coin-flipping protocols we study in this chapter.
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7.2.1 Cryptanalysis based on phase-covariant cloning

Let us begin with phase-covariant cloning and the quantum key distribution proto-
cols by focusing on the BB84 protocol [BB84, BB14]. In this protocol, one honest
party, Alice, sends single-qubit states in two orthogonal bases (for instance, the
eigenstates of the Pauli X and Pauli Y matrices, |±⟩ and |±i⟩) to a second honest
party, Bob, via a quantum channel that is susceptible to an eavesdropping ad-
versary, Eve. Eve’s goal is to extract the secret information exchanged between
Alice and Bob, encoded in the states. It turns out that the optimal ‘individual’ (or
incoherent) Eve’s attack [SIGA05] on this protocol is given by cloning so-called
phase-covariant [BCMDM00] states of the form:

|ψxy (η)⟩=
1√
2

(
|0⟩+e iη |1⟩

)
(7.1)

For these states, some analytic circuits are given in [BBHB97, FMWW01, FWJ+14].
For this family of states, Eve can construct a cloning machine with fidelity FPC,E

L,opt ≈
0.85.

There are different families of attacks considered on such protocols. The
simplest attack by Eve is a so-called ‘incoherent’ or individual attack, where Eve
attacks each quantum state individually before the reconciliation phase of the
protocol. The security of this protocol relies on the information-theoretic bounds
on the information shared between Alice and Bob as compared to the information
that Eve was able to extract from the key. In the incoherent attacks, the security
condition states that a secret key can only be extracted as long as the amount of
Eve’s information is less than what Bob has received. Thus, one key parameter
in the protocol is what is called the critical error rate, Dcrit, which defines the
threshold above which Alice and Bob abort the protocol and conclude that the
channel is insecure.

For incoherent attacks, the optimal error rate for the ideal incoherent attack
is Dincoh

crit = 1−F
PC,E
L,opt ≈ 14.6% [SIGA05].

However, as discussed in [SIGA05], this is not the best way of analysing the
cloning-based attacks against this protocol, since it does not allow for a compari-
son between a cloning machine that uses the ancilla, and one that does not. The
importance of this comparison is that the cloning machine with ancillary inputs
may provide Eve with extra information about both parties. A more appropriate
way of calculating the key rate which generalises the strategies is via the Holevo
quantity, denoted as χ which is defined as follows from von Neumann entropy:

χ(Q : E) := S(ρE)−
1

2
S(ρ0E)−

1

2
S(ρ1E) (7.2)

In Eq. (7.2), ρE denotes the mixed state of Eve over all of the combinations of
Alice’s choice of input, and ρ0E and ρ1E denote the states of Eve for the random
variables that encode 0 and 1 in the protocol respectively.

Combining mutual information with Holevo quantity gives a concrete and sim-
ple method for calculating the key rate in QKD protocols. The key rate for QKD
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can be defined as follows:

R = I(A : B)−min{χ(A : EQ),χ(B : EQ)} (7.3)

where I(A : B) denotes the mutual information between Alice and Bob and the
index Q denotes that Eve may employ general quantum strategies. Intuitively,
Eq. (7.3) states that no key can be extracted at R = 0 which is when Alice and
Bob’s mutual information is the minimum value between Alice and Eve and Bob
and Eve. At any point after that, Eve has increased the correlation to the key, to
the point that the key is compromised.

For calculating the quantity Dcrit, one needs to calculate the Holevo quantity
for Eve, set R = 0, compute the mutual information, I(A : B) = 1−H(Dcrit) and
finally solve the resulting equation for Dcrit. For the ideal incoherent attack, this
value is again proven to be Dincoh

crit ≈ 14.6%. We go back to this calculation in
Section 7.4.1 where we will show that the cloning transformations we learn using
our variational cloning algorithm give an approximately close critical error rate
while being experimentally superior to the ideal proposed circuits.

7.2.2 Cryptanalysis based on state-dependent cloning

Now, let us examine the class of states used in state-dependent cloning, which
are states with fixed and known overlap. Non-orthogonal quantum states are
among the elements that are often present in quantum cryptography since they can
encode information that is not easily decodable for an adversary who does not know
the basis. The most famous example is, of course, conjugate coding [Wie83]. But
despite the generality of the state-dependent cloning framework, it is surprising
that this type of cloning machine has not been studied as a concrete attack model,
and to the best of our knowledge, this is the first time we use state-dependent
cloning as a cryptanalysis tool. A concrete example of the protocols that exploit
such states is the family of quantum coin-flipping protocols. Coin-flipping is a
cryptographic task where two mutually distrustful parties, who are usually spatially
separated and want to agree on a common random bit (see Section 2.5.7 for
more details about coin-flipping). Classical and quantum coin-flipping have a vast
literature, but here for our case study, we focus on two specific strong quantum
coin-flipping protocols. The two protocols we consider are that of Mayers et
al. [MSCK99], and that of Aharonov et al. [ATSVY00]. First, let us introduce the
common aspect of these protocols as well as the states used in the protocols.

7.2.2.1 Quantum coin flipping states

Let us first introduce quantum coin flipping in more detail. The task of the
quantum coin flipping is similar to the classical one, only the parties can have
quantum capabilities. We say the coin is ‘biased’ when one outcome is more likely
to occur than the other, for example, with the following probabilities:

Pr(y = 0) = 1/2+ε

Pr(y = 1) = 1/2−ε
(7.4)
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Figure 7.1: States used for quantum coin-flipping. The first bit represents the basis, while the
other represents one of the two orthogonal states.

where y is the output bit. The above coin is an ε-biased coin with a bias towards
the outcome 0. In contrast, a fair coin would correspond to ε= 0.

We recall from Section 2.5.7 that it is impossible in an information-theoretic
manner, to achieve a perfectly secure (with zero bias ε = 0) strong coin-flipping
protocol in both the classical and quantum setting [Blu83, LC98, MSCK99]. Sev-
eral protocols have been proposed for ε-biased strong coin flipping [MSCK99,
ATSVY00, BB14, BBBG09], the states used by these protocols share a common
structure. Here we introduce a more general form of these states, which will be
useful for our purpose. The following set of states (illustrated in Fig. 7.1) have
been used in the protocols that we will investigate:

|φx,a⟩=

{
|φx,0⟩= cosφ |0⟩+(−1)x sinφ |1⟩
|φx,1⟩= sinφ |0⟩+(−1)x⊕1 cosφ |1⟩

(7.5)

where x ∈ {0,1}, and the angle φ determines the overlap between the pairs of
states.

Additionally, these protocols share the following shared structure: One of the
parties, or sometimes both, will encode some random classical bits into the above
states and then exchange some classical/quantum information as part of the pro-
tocol. The attack of the malicious party who is trying to bias the coin is then,
reduced to the ability to learn the encoded classical bit, from the state (or in
some cases, to prepare states deviating from the perfect ones). To see why
this is the case, we need to look at the impossibility of the classical coin-flipping
task [Blu83]. The intuitive reason behind this impossibility lies in the order or
asymmetry between the two parties. In other words, since the outcome has to
be determined after a certain number of communication rounds in the protocol
consisting of sending some messages, one can always find a message such that,
before the message is sent, the outcome is not yet determined, but once the
message has been sent it becomes determined. This means that the party who
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receives this ‘extra’ information first can always bias the protocol. This limitation
cannot be overcome in the classical world. Therefore, there is no value of ε < 0.5
for which, the protocol can be secure. However, using non-orthogonal quantum
states gives the parties the ability to ‘hide’ their choice of the random bit before
the other party also flips a coin. Therefore the existence of quantum coin-flipping
protocols with a certain degree of bias is closely related to the fact that an ad-
versary, is fundamentally bounded by quantum mechanics, in performing the task
of distinguishing non-orthogonal quantum states.

Now, going back to our selected protocols, we have the two following cases:

1. The protocol of Mayers et. al. [MSCK99] (denoted by P1) in which the
states, {|φ0,0⟩ , |φ1,0⟩} are used (which have a fixed overlap s = cos(2φ)).

2. The protocol of Aharonov et. al. [ATSVY00] (denoted by P2), which uses
the full set of states, i.e. {|φx,a⟩}.

This set of states is conveniently related through a reparameterisation of the
angle φ [BM06], which makes them easier to deal with mathematically.

In general for the security analysis of strong quantum coin-flipping protocols,
one considers both cases where Alice or Bob are being dishonest. Here, for sim-
plicity of comparison and since our goal is to demonstrate cloning-based attacks,
we only focus on a dishonest Bob who tries to bias the bit by cloning the non-
orthogonal states sent by Alice.

In the following two subsections, the biases are computed assuming access
to the ideal cloning machine (i.e. the one which clones the input states with
the optimal, analytical fidelities). Later, we compare these ideal biases with those
achievable using the quantum cloning machines learned by our variational quantum
cloner.

7.2.2.2 Cloning attack on 2-state quantum coin flipping protocol

The Mayers’ protocol was incidentally one of the first protocols proposed for
strong quantum coin-flipping. Here, Alice utilizes the states3 |φ0⟩ := |φ0,0⟩ and
|φ1⟩ := |φ1,0⟩ such that the angle between them is φ := π

18 =⇒ s := cos(π9 ). In
the following, we describe the general version of the protocol with k rounds (of
quantum communication). We also discuss the proposed attack in more detail and
prove the relevant theorems for fixed-overlap state-dependent cloning attacks.

Protocol 6 (P1 with k rounds). During the protocol, each party sends multiple
copies of either |φ0⟩⊗ |φ1⟩ or |φ1⟩⊗ |φ0⟩

1. Alice and Bob now choose k random bits, {a1, . . . ,ak} and {b1, . . . ,bk}
respectively. The final bit is now equal to the XOR of input bits over all k

3Since the value of the overlap is the only relevant quantity, the different parameterisation of
these states compared to the ones in Eq. (7.5) does not make a difference for our purposes.
However, we note that explicit cloning unitary would be different in both cases.
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rounds i.e.,
x =

⊕
j

aj ⊕
⊕
j

bj (7.6)

2. Each round has n steps identified by i : In each round j = 1, . . . ,k of the
protocol, and for every step i = 1, . . . ,n within each round, Alice uniformly
picks a random bit ci ,j and sends the state |φi ,jc ⟩ := |φci ,j ⟩⊗ |φci ,j )⟩ to Bob
(where ci ,j denotes the complement of ci ,j).

3. Bob uniformly picks a random bit di ,j and sends the state |φi ,jd ⟩ := |φdi ,j ⟩⊗
|φdi ,j ⟩ to Alice.4

4. For each j and i , Alice announces the value aj ⊕ci ,j .

5. If aj ⊕ci ,j = 0, Bob returns the second state of the pair (i , j) back to Alice,
and sends the first state otherwise.

6. Bob announces bj ⊕di ,j .

7. Alice returns one of the states back to Bob accordingly (similar to step 5).

8. a and b are announced by both sides.

9. Alice measures the remaining states with the projectors, (Eb,E⊥b ) and the
returned states by Bob with (Ea,E⊥a ) (Eq. (7.7)). She aborts the protocol
if the measurement result corresponds to ⊥, and declares Bob as being
dishonest5.

Considering steps (5) to (7) of the protocol, we argue that it is sufficient to
only consider a single round in the protocol from the point of view of a cloning
attack. This is because a dishonest Bob can bias the protocol if he learns about
Alice’s bit aj (for any choice of j), which he can do by guessing ci ,j with probability
better than 1/2. With this knowledge, Bob only needs to announce a single false
bj⊕di ,j to cheat, and so this strategy can be deferred to the final round [MSCK99].
Hence a single round of the protocol is sufficient for analysis, and we herein drop
the j index.

In the last phase of the protocol, after a and b are announced by both sides (so
x can be computed by both sides), Alice performs the measurements (Eb,E⊥b ) and
(Ea,E

⊥
a ) on the remaining states. (as defined in Eq. (7.7)) for checking whether

Bob has cheated or not. In this sense, the use of quantum states in this protocol
is purely for cheat-detection.

El = |φl⟩⟨φl |⊗n (7.7)

E⊥l = 1−|φl⟩⟨φl |⊗n , l ∈ {0,1} (7.8)

4Note that if ci ,j and di ,j are chosen independently of aj and bj , no information about the
primary bits has been transferred.

5The similar verification measurement is performed by Bob to verify Alice, however here we
skip that part since we are only interested in half of the protocol, i.e. dishonest Bob
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A Cloning Attack on P1: Next, we present the explicit attack and calculation
that can be implemented by Bob on P1. Without loss of generality, we assume
that Bob wishes to bias the bit towards x = 0. For clarity, we give the attack for
when Alice only sends one copy of the state (n = 1), but we discuss the general
case later:

Attack 1 (Cloning Attack on P1 with k = 1). The goal is to bias the bit towards
0, i.e. p(x = 0)> 1/2

Inputs. Random bit for Alice (a $← {0,1}) and Bob (b $← {0,1}). Bob receives a
state |φic⟩ from Alice.
The attack:

1. for i = 1, . . . ,n:

(a) Step 1: Alice announces a⊕ ci . If a⊕ ci = 0, Bob sends the second
qubit of |φic⟩ to Alice, otherwise he sends the first qubit.

(b) Step 2: Bob runs a 1→ 2 state-dependent cloner on the qubit he has
to return to Alice, producing 2 approximate clones. He sends her one
clone and keeps the other.

(c) Step 3: Bob runs an optimal state discrimination on the remaining
qubit (and any other auxiliary output of the cloner, if exists), and finds
c1 with a maximum success probability P optdisc,P1. He then guesses a bit

a′ such that Psucc,P1(a
′ = a) := P optdisc,P1.

(d) Step 4: If a′⊕b= 0 he continues the protocol honestly and announces
b⊕d1, otherwise he announces a′⊕d1. The remaining qubit on Alice’s
side is |φia⟩.

Now, we find the success probability of the above attack:

Theorem 50. [Bias of ideal cloning attack on P1] Bob can achieve a bias
of ε ≈ 0.27 using an ideal state-dependent cloning attack on the protocol
P1 using a single copy of Alice’s state.

Proof. As mentioned in the previous section, the final measurements performed
by Alice on her remaining n states, plus the n states returned to her by Bob
allow her to detect his nefarious behaviour. If he performed a cloning attack,
the ⊥ outcomes would be detected by Alice with some probability. We must
compute both probabilities: the probability of guessing the value of Alice’s bit a
(by guessing the value of the bit c1), and the probability of being detected by Alice.
This would provide us with Bob’s final success probability in cheating, hence the
bias probability.

At the start of the attack, Bob has a product state of either |φ0⟩⊗ |φ1⟩ or
|φ1⟩⊗ |φ0⟩ (but he does not know which). After the announcement stage, de-
pending on Alice’s announced bit, Bob proceeds to clone one of the qubits, sends
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one copy to Alice and keeps the other to himself. Without loss of generality, we
assume that Alice’s announced bit is 0. In this case, at this point of the attack,
he has one of the following pairs: |φ0⟩⟨φ0| ⊗ ρ1c or |φ1⟩⟨φ1| ⊗ ρ0c , where ρ1c and
ρ0c are leftover clones (the second state of the cloner together with any existing
ancillary systems) for |φ1⟩ and |φ0⟩ respectively.

Bob must now discriminate between the following density matrices:

ρ1 = |φ0⟩⟨φ0|⊗ |φ1⟩⟨φ1| (7.9)

and ρ2 = |φ1⟩⟨φ1|⊗ρ0c (7.10)

Alternatively, if Alice announced a⊕ci = 1, he would have:

ρ1 = |φ1⟩⟨φ1|⊗ |φ0⟩⟨φ0| , (7.11)

and ρ2 = |φ0⟩⟨φ0|⊗ρ1c (7.12)

In either case, we have that the minimum discrimination error for two density ma-
trices is given by the Holevo-Helstrom bound [Hol73, Hel69] (also see Section 2.2
for more information) bound as follows6:

P optdisc =
1

2
+
1

4
||ρ1−ρ2||Tr =

1

2
+
1

2
dTr(ρ1,ρ2) (7.13)

The ideal symmetric cloning machine for these states will have an output of the
form:

ρc = α |φ0⟩⟨φ0|+β |φ1⟩⟨φ1|+γ(|φ0⟩⟨φ1|+ |φ1⟩⟨φ0|) (7.14)

where α,β and γ are functions of the overlap s = ⟨φ0|φ1⟩ = cos π9 . Now, using
Eq. (7.9), ρ2 can be written as follows:

ρ2 =α |φ1⟩⟨φ1|⊗ |φ0⟩⟨φ0|+β |φ1⟩⟨φ1|⊗ |φ1⟩⟨φ1|
+γ(|φ1⟩⟨φ1|⊗ |φ0⟩⟨φ1|+ |φ1⟩⟨φ1|⊗ |φ1⟩⟨φ0|)

(7.15)

Finally, by plugging in the values of the coefficients in Eq. (7.14) for the optimal
local cloning machine [BDE+98] and finding the eigenvalues of σ := (ρ1−ρ2), we
can calculate the corresponding value for Eq. (7.13), and recover the following
minimum error probability:

Pfail,P1 = P
er
disc,P1 = 1−P

opt
disc,P1 ≈ 0.214 (7.16)

This means that Bob can successfully guess c1 with P 1succ,P1 = 78.5% probability.
Now we look at the probability of a cheating Bob being detected by Alice.

We note that whenever Bob guesses a successfully, the measurements (Eb,E⊥b )
will be passed with probability 1, hence we use (Ea,E⊥a ) where the states sent
by Bob will be measured. Using Eq. (2.82) (in Section 2.3.1.3) with the value
of overlap s = cos(π/9), the optimal fidelity is FL ≈ 0.997 and so the probability

6This also is because we assume a symmetric cloning machine for both |φ0⟩ and |φ1⟩. If this
is not the case, the guessing probability is instead the average of the discrimination probabilities
of both cases.
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of Bob getting caught is at most 1%. Putting this together with Bob’s guessing
probability for a gives his overall success probability of 77.5%.

This implies that Bob is able to successfully create a bias of ε≈ 0.775−0.5 =
0.275.

We also have the following corollary, for a general number n of exchanged
states, which shows the protocol can be completely broken and Bob can enforce
an arbitrary bias:

Corollary 9. The probability of Bob successfully guessing Alice’s bit a, over
n rounds and from all n copies of the received stated, has the property:

lim
n→∞

P nsucc,P1 = 1 (7.17)

Proof. If Bob repeats the above Attack 1 over all n copies, he will guess n different
bits {a′i}ni=1. He can then take a majority vote and announce b such that a∗⊕b=0,
where we denote a∗ as the bit he guesses in at least n

2 +1 of the rounds.
If n is even, he may have guessed a′ to be 0 and 1 an equal number of times.

In this case, the attack becomes indecisive and Bob is forced to guess at random.
Hence we separate the success probability for even and odd n as follows:

P nsucc,P1 =


n

∑

k= n+12

(
n
k

)
(1−Pfail)kP n−kfail n odd,

n

∑
k= n2+1

(
n
k

)
(1−Pfail)kP n−kfail +

1
2

(
n
n/2

)
(1−Pfail)

n
2P

n
2
fail n even

(7.18)

By substituting the value of Pfail one can see that the function is uniformly in-
creasing with n so lim

n→∞
P nsucc,P1 = 1

7. This concludes the proof.

7.2.2.3 Cloning attack on 4-state quantum coin flipping protocol

Another class of coin-flipping protocols are those which require all the four states
in Eq. (7.5). One such protocol was proposed by Aharonov et al. [ATSVY00],
where the optimal φ is set as π

8 i.e. resulting in the following states:

|φx,a⟩=

{
|π8 x,0⟩= cos

(
π
8

)
|0⟩+(−1)x sin

(
π
8

)
|1⟩

|π8 x,1⟩= sin
(
π
8

)
|0⟩+(−1)x⊕1 cos

(
π
8

)
|1⟩

(7.19)

In protocols of this form, Alice encodes her bit as ‘basis information’ of the fam-
ily of states. More specifically, her random bit is encoded in the state |φx,a⟩. For
instance, we can take {|φ0,0⟩ , |φ1,0⟩} to encode the bit a= 0; and {|φ0,1⟩ , |φ1,1⟩}
to encode a = 1. The goal again is to produce a final ‘coin flip’ y = a⊕b, while

7Although, as Bob’s success probability in guessing correctly increases with n, the probability
of his cheating strategy getting detected by Alice will also increase, yet does not converge to 1 as
fast. We also note that this strategy is independent of k , the number of different bits used during
the protocol.
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ensuring that no party has biased the bit y . A similar protocol has also been
proposed using BB84 states [BB14] where |φ0,0⟩ := |0⟩ , |φ0,1⟩ := |1⟩ , |φ1,0⟩ := |+⟩
and |φ1,1⟩ := |−⟩. In this case, the states (as well as some protocol steps) are
different but the angle between them is the same as with the states in P2. A
fault-tolerant version of P2 has also been proposed in Ref. [BBBG09], which uses
a generalized angle as in Eq. (7.5).

Protocol 7 (P2 (Aharonov’s coin flipping)). The protocol uses all four possible
states from Eq. (7.109).

1. Alice selects two random bits a $←{0,1} and x $←{0,1}.

2. Alice sends one of the states, |φx,a⟩ to Bob.

3. Bob selects his random bit b $←{0,1} and sends to Alice.

4. One of two following things happens:

(a) (either) Alice will send the bits x and a to Bob, who measures the qubit
on a suitable basis to check if Alice was honest.

(b) (or) Bob is asked to return the qubit |φx,a⟩ to Alice, who measures it
and verifies if it is correct.

5. If no party declares cheating, the final output bit, will be c = a⊕b.

Now, we can discuss the cheating strategies of each of the players. Examples
of the cheating strategies for Alice include incorrect preparation of |φx,a⟩ and
giving Bob the wrong information about (x,a), or Bob trying to determine the
bits x,a from |φx,a⟩ before Alice has revealed them classically. We again focus only
on Bob’s strategies here to use cloning arguments. We note that the information-
theoretic achievable bias of ε = 0.42 proven in Ref. [ATSVY00] applies only to
Alice’s strategy since she has greater control of the protocol (she prepares the
original state). In general, with a cloning based attack strategy, Bob will be able
to achieve a lower bias, as we show next. As mentioned above, Bob randomly
selects his own bit b and sends it to Alice. He then builds a QCM to clone all 4
states in Eq. (7.109).

We next sketch the two cloning attacks on Bob’s side of P2. Again, as with
the protocol, P1, Bob can cheat using as much information as he can gain about
a and again, once Bob has performed the cloning, his strategy boils down to the
problem of state discrimination. In both attacks, Bob will use a state-dependent
cloning machine.

In the first attack model (which we denote I - see Fig. 7.6(a) in Section 7.4.2.2
where we introduce the variational cloning version of the attack) Bob measures
all the qubits outputted from the cloner to guess (x,a). As such, it is the global
fidelity that will be the relevant quantity. This strategy would be useful in the
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first possible challenge in the protocol, where Bob is not required to send any-
thing back to Alice. We will discuss how using cloning in this type of attack
can also reduce practical resources for Bob from a general POVM to projective
measurements, which may be of independent interest. The main attack here
boils down to Bob measuring the global output state from his QCM using the
projectors {|v⟩⟨v | , |v⊥⟩⟨v⊥|}, and from this measurement, determines a. These
projectors are constructed explicitly relative to the input states using the Neumark
theorem [BK15] (see Section 2.2).

The second attack model (which we denote II - see Fig. 7.6(a) in Sec-
tion 7.4.2.2) is instead a local attack and as such will depend on the optimal
local fidelity. It may also be more relevant in the scenario where Bob is required
to return a quantum state to Alice. We note that Bob could also apply a global
attack in this scenario but we do not consider this possibility here to give more
interesting and distinct examples. In what follows we explain the attacks in detail.
For simplicity, we compute a bias assuming he does not return a state to Alice
thus the bias will be equivalent to his discrimination probability. The analysis could
be tweaked to take a detection probability for Alice into account as well. In this
scenario, Bob again applies the QCM, but now he only uses one of the clones to
perform state discrimination (given by the Discriminator in Fig. 7.6(a)).

Attack I on P2:
We note that attack I, is a 4 state global attack on P2 and that this attack model
(i.e. based on cloning) can be considered a constructive way of implementing the
optimal discrimination strategy of the states Alice is to send. To bias the bit,
Bob needs to discriminate between the four pure states in Eq. (7.5) or equiv-
alently between the ensembles of states encoding a = {0,1}, where the optimal
discrimination is done via a set of POVM measurements.

However, by implementing a cloning based attack, we can simplify the imple-
mentation of optimal discrimination strategies. This is because the symmetric
state-dependent cloner (which is a unitary) has the interesting feature that for ei-
ther case (a=0 or a=1), the cloner’s output is a pure state in the 2-qubit Hilbert
space. As such, the states (after going through the QCM) can be optimally dis-
criminated via a set of projective measurements {Pv ,Pv⊥}, rather than general
POVMs. This may not seem very important at this stage, but later we will see
that it will relate a theoretical bound to an implementational attack strategy. Es-
pecially when we introduce the variational cloner that can learn to optimally clone
these states efficiently, which, in turn, will assist the benchmarking of existing
protocols. Let us now establish this bound and prove it.

Theorem 51. [Ideal Cloning Attack (I) Bias on P2] Using a cloning attack
on the protocol, P2, (in attack model I) Bob can achieve a bias:

εIP2,ideal ≈ 0.35 (7.20)

Proof. The attack involves the global output state of the cloning machine. For
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this attack we can use the fixed overlap 1→ 2 cloner with the global fidelity given
by Eq. (2.80):

F
FO,opt
G (1,2) =

1

2

(
1+ s3+

√
1− s2

√
1− s4

)
≈ 0.983 (7.21)

where s = sin(2φ) = cos(π4 ) for P2. Also alternatively we can use the 4-state
cloner which clones the two states with a fixed overlap plus their orthogonal set.
For both of these cloners, we are interested in the global state of the cloner which
we denote as |ψ1→2x,a ⟩ for an input state |φx,a⟩.

In order for Bob to guess a he must discriminate between |φ0,0⟩ (encoding
a=0) and |φ1,1⟩ (encoding a=1) or alternatively the pair of states {|φ0,1⟩ , |φ1,0⟩}.
This is due to the pairs {|φ0,0⟩ , |φ0,1⟩} being orthogonal and {|φ1,0⟩ , |φ1,1⟩} both
encode a= 0, so the only choice is to discriminate between |φ0,0⟩ and |φ1,1⟩. Due
to the symmetry and without an ancilla, the cloner preserves the overlap between
each pairs i.e. ⟨ψ1→20,0 |ψ1→21,1 ⟩= ⟨φ0,0|φ1,1⟩= s (we also have ⟨ψ1→20,1 |ψ1→21,0 ⟩= s).

Now we select the projective measurements Pv = |v⟩⟨v | and Pv⊥ = |v⊥⟩⟨v⊥|
such that ⟨v |v⊥⟩= 0. One can show that the discrimination probability is optimal
when |v⟩ and |v⊥⟩ are symmetric with respect to the target states according to
the Neumark theorem. We have that ⟨v |v⊥⟩ = 0 so 2θ+2φ = π

2 ⇒ θ = π
4 −φ.

Finally, writing the cloner’s states for {|ψ1→20,0 ⟩ , |ψ1→21,1 ⟩} in the basis {|v⟩ , |v⊥⟩}
gives:

|ψ1→20,0 ⟩= cos
(π
4
−φ
)
|v⟩+sin

(π
4
−φ
)
|v⊥⟩ ,

|ψ1→21,1 ⟩= cos
(π
4
−φ
)
|v⟩− sin

(π
4
−φ
)
|v⊥⟩

(7.22)

where it can be checked that ⟨ψ1→20,0 |ψ1→21,1 ⟩= cos
(
π
2 −2φ

)
= sin(2φ) = s. Hence

|v⟩ and |v⊥⟩ can be explicitly derived. Note that these bases are also symmetric
with respect to the other pair i.e {|ψ1→20,1 ⟩ , |ψ1→21,0 ⟩}. Finally, the success probability
of this measurement is then given by:

P opt,Idisc,P2 =
1

2
+
1

2
⟨ψ1→20,0 |ψ1→21,1 ⟩=

1

2
+
1

2
sin2φ= 0.853 (7.23)

which is the maximum cheating probability for Bob. From this, we derive the bias
as:

εIP2,ideal = P
opt,I
disc,P2−

1

2
= 0.353 (7.24)

which completes the proof.

Attack II on P2:

Finally, we consider a second attack model (attack II) on the protocol, P2, which
is in the form of a ‘local’ attack. Here, we further consider two scenarios:

1. A cloning machine which is able to clone all 4 states |φ0,0⟩ , |φ1,1⟩ and
|φ0,1⟩ , |φ1,0⟩,
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2. A cloning machine tailored for only the two states, |φ0,0⟩ and |φ1,1⟩ (which
Bob needs to discriminate between).

We focus on the former scenario since it connects in a more clear way to the
VarQlone clone fidelities, while the second scenario enables a stronger attack (in
the ideal scenario).

Scenario 1:

In this case, we can compute an exact discrimination probability, but it will result
in a non-optimal attack (smaller success probability compared to the second one).

Theorem 52. [Ideal Cloning Attack (II) Bias on P2 in Scenario 1.] Using a
cloning attack on the protocol P2, (in attack model II with 4-states) Bob
can achieve the following bias:

εIIP2,ideal = 0.25 (7.25)

Proof. Considering the 4 states to be in the X−Z plane of the Bloch sphere, the
density matrices of each state can be represented as:

ρi j =
1

2
(1+mxi jσx +m

z
i jσz) (7.26)

where σx and σz are Pauli matrices and mxi j and mzi j are 3 dimensional vectors
given by:

m00 := [sin(2φ),0,cos(2φ)]

m01 := [−sin(2φ),0,−cos(2φ)]
m10 := [−sin(2φ),0,cos(2φ)]
m11 := [sin(2φ),0,−cos(2φ)]

(7.27)

After the cloning (in the ideal case), the density matrix of each clone will become:

ρci j =
1

2
(1+ηxm

x
i jσx +ηzm

z
i jσz) (7.28)

where ηx and ηz are the shrinking factors in each direction given as follows:

ηx = sin
2(2φ)

√
1

sin4(2φ)+cos4(2φ)
, ηz = cos

2(2φ)

√
1

sin4(2φ)+cos4(2φ)

(7.29)
For the states used in P2, we have φ = π

8 and hence ηx = ηz := η = 1√
2
.

Again, we can reduce the problem to the discrimination probability between the
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two ensembles encoding a = 0 and a = 1 in Eq. (7.32). Let us define ρc to be
the output clone that Bob chooses to use (c ∈ {1,2}). We have:

P opt,IIdisc,P2 =
1

2
+
1

4

∣∣∣∣ρ(a=0)−ρ(a=1)∣∣∣∣Tr
=
1

2
+
1

4

∣∣∣∣∣∣∣∣12 [(ρc00−ρc11)+(ρc10−ρc01]
∣∣∣∣∣∣∣∣
Tr

=
1

2
+
1

4

∣∣∣∣∣∣η
4
((mx00−mx11+mx10−mx01)σx +(mz00−mz11+mz10−mz01)σz

∣∣∣∣∣∣
Tr

=
1

2
+
η cos(2φ)

4
||σz ||Tr

=
1

2
+
η cos(2φ)

2
=
3

4
(7.30)

Computing the bias in the same way as above completes the proof.

Scenario 2:

Here, we give a bound on the success probabilities of Bob in terms of the local
fidelities of the QCM where the cloning machine is only tailored to clone two
fixed-overlap states. We rely on the fact that Bob can discriminate between the
two ensembles of states (for a = 0, a = 1) with equal probabilities.

Theorem 53. The optimal discrimination probability for a cloning attack
on the protocol P2, (in attack model II, with 2 states) is:

0.619⩽ P opt,IIdisc,P2 ⩽ 0.823 (7.31)

Proof. For each of the input states, |φi ,j⟩ in Eq. (7.109), we denote ρci j to be a
clone outputted from the QCM. Due to symmetry, we only need to consider one
of the two output clones. We can now write the effective states for each encoding
(a = 0,a = 1) as:

ρ(a=0) :=
1

2
(ρc00+ρ

c
10), ρ(a=1) :=

1

2
(ρc01+ρ

c
11) (7.32)

Dealing with these two states is sufficient since it can be shown that discriminating
between these two density matrices, is equivalent to discriminating between the
entire set of 4 states in Eq. (7.5).

Again, we use the discrimination probability from the Holevo-Helstrom bound:

P opt,IIdisc,P2 := P
opt
disc(ρ(a=0),ρ(a=1)) :=

1

2
+
1

2
dTr(ρ(a=0),ρ(a=1)) (7.33)
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Now, we have:

dTr(ρ(a=0),ρ(a=1)) =
1

2

∣∣∣∣ρ(a=0)−ρ(a=1)∣∣∣∣Tr
=
1

2

∣∣∣∣∣∣∣∣12(ρc00−ρc11)+ 12(ρc10−ρc01)
∣∣∣∣∣∣∣∣
Tr

⩽
1

4
||(ρc00−ρc11)||Tr+ ||(ρ

c
10−ρc01)||Tr

⩽
1

2
[dTr(ρ

c
00,ρ

c
11)+dTr(ρ

c
01,ρ

c
10)]

=⇒ P optdisc(ρ(a=0),ρ(a=1))⩽
1

2
(P optdisc(ρ

c
00,ρ

c
11)+P

opt
disc(ρ

c
01,ρ

c
10))

= P optdisc(ρ
c
00,ρ

c
11)

(7.34)

The last equality follows since for both ensembles, {|φ0,0⟩ , |φ1,1⟩} and {|φ0,1⟩ , |φ1,0⟩},
we have that their output clones having equal discrimination probability:

P optdisc(ρ
c
00,ρ

c
11) = P

opt
disc(ρ

c
01,ρ

c
10) (7.35)

This is because the QCM is symmetric, and depends only on the overlap of the
states (we have in both cases ⟨φ00|φ11⟩= ⟨φ01|φ10⟩= sin(2φ)).

Furthermore, since the cloning machine can only lower the discrimination prob-
ability between two states, we have:

P optdisc(ρ
c
00,ρ

c
11)⩽ P

opt
disc(ρ

c
00, |φ1,1⟩⟨φ1,1|) =: P

opt
disc (7.36)

Now, using the relationship between fidelity and the trace distance (Eq. (??)),
we have the following bounds:
1

2
+
1

2

(
1−
√
⟨φ1,1|ρc00 |φ1,1⟩

)
≤ P optdisc ≤

1

2
+
1

2

√
1−⟨φ1,1|ρc00 |φ1,1⟩ (7.37)

By plugging this inequality in the observed density matrix for the output clone, we
can find this discrimination probability.

As in the previous section, the output density matrix from the QCM for an
output clone can be written as Eq. (7.14):

ρc00 = α |φ0,0⟩⟨φ0,0|+β |φ1,1⟩⟨φ1,1|+γ(|φ0,0⟩⟨φ1,1|+ |φ1,1⟩⟨φ0,0|) (7.38)

Hence the output state has a local fidelity, FL= ⟨φ0,0|ρc00 |φ0,0⟩=α+s2β+sγ.
On the other hand, we have F (ρc00, |φ1,1⟩⟨φ1,1|) = ⟨φ1,1|ρc00 |φ1,1⟩= s2α+β+sγ.
Combining these two, we then have:

F (ρc00, |φ1,1⟩⟨φ1,1|) = FL+(s
2−1)(α−β) (7.39)

Plugging in FL from Eq. (2.82), and α− β =
√
1−s2
1−s4 (for an optimal state-

dependent cloner), we get:

1

2
+
1

2

1−
√√√√
FL+(s2−1)

√
1− s2
1− s4

⩽P opt,IIdisc,P2 ⩽
1

2
+
1

2

√√√√
1−FL− (s2−1)

√
1− s2
1− s4

(7.40)
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To complete the proof, we use FL≈ 0.989 and s =1/
√
2 which gives the numerical

discrimination probabilities above.

7.3 Variational Quantum Cloner: specifications of
the algorithm

Now we introduce our machine learning algorithm Variational Quantum Cloner or
VarQlone that given a specific family of states, learns the circuit that optimally
clones that family. We recall that our motivation is to find short-depth circuits to
clone a given family of states, and also use this toolkit to investigate the family
of states where the optimal figure of merit is unknown.

VarQlone is a variational quantum algorithm with similar core parts to other
VQAs. We have given an overview of such techniques in the preliminaries (Section
2.6.4.1). In particular, this variational method uses a parameterised state, denoted
by ρθ, typically prepared by some short-depth parameterised unitary on some initial
state ρθ := U(θ) |0⟩⟨0|U†(θ). The parameters are then optimized by minimizing
(or maximizing) a cost function, typically a function of k observable measurements
on ρθ, Ok . This resembles a classical neural network, and indeed, techniques and
ideas from classical machine learning can be borrowed and adapted to our setting.
Nevertheless, we need to develop the core ingredients such as differentiable cost
functions for gradient-descent based optimisation and theoretical guarantees on
these cost functions specific to our problem. Additionally, for all the results we give
here we use the gradient-descent-based optimizer (as discussed in Section 2.6.4.4)
[KB17] with our cost functions.

We also note that other than the core theoretical subjects discussed in this
section, the machine learning algorithm itself as well as the codes and simulations
have not been developed and run by the author and therefore have been excluded
from this thesis. In this section, we only present theoretical results where the
author has contributed, such as defining suitable cost functions for the cloning
problem and providing theoretical guarantees on them. For more details on the
algorithm and related information, we refer the reader to the paper [CDKK22].

7.3.1 Cost functions

In this section, we propose several cost functions for our problems and discuss
their advantages and differences. Primarily, we propose the so-called ‘local’ cost
functions of the following functional form:

CM→Nloc (θ) := E
|ψ⟩∈S

f (OψL ,ρθ,M,N) (7.41)

Where |ψ⟩ denotes target state of the cloning machine, S denotes the set of
states to be cloned, and M and N are the number of copies for the input states
and output clones respectively. Choosing f , or fsq (denoting the squared cost
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function) as follows:

fsq :=
N

∑
i=1

(1−F iL(θ))2+
N

∑
i<j

(F iL(θ)−F
j
L(θ))

2 (7.42)

results in what for brevity we refer to as the squared cost function, a generalization
of the cost also proposed in [JJB+19]. Here F jL(θ) := FL(|ψ⟩⟨ψ| ,ρjθ) is the local
fidelity of the parameterized state relative to output clone j . This is generated
using the observable Oψsq = |ψ⟩⟨ψ| for the specific instance of state to be cloned
from the set, |ψ⟩ ∈ S. As such, we define CM→Nsq (θ) := E|ψ⟩∈S [fsq].

Let us now elaborate a bit on the alternative choices of cost functions. The
second local cost, which we call the linear local cost or ‘local cost’ again for
brevity, is given by:

CM→NL (θ) := E
|ψ⟩∈S

[
CψL (θ)

]
:= E
|ψ⟩∈S

[
Tr(OψL ρθ)

]
, OψL := 1−

1

N

N

∑
j=1

|ψ⟩⟨ψ|j ⊗1j̄

(7.43)
where |ψ⟩ ∈ S is state to be cloned.
These first two cost functions, are related only in that they are both functions of
local observables, or in other words, the local fidelities. The third cost, on the
other hand, is fundamentally different compared to the other two proposals, since
it captures the global fidelity i.e. uses global observables, and as such, we refer
to it as the ‘global cost’:

CM→NG (θ) := E
|ψ⟩∈S

[
Tr(OψGρθ)

]
, OψG := 1−|ψ⟩⟨ψ|⊗N (7.44)

The second local cost, and our global cost functions are adapted from the lit-
erature on variational algorithms [LTOJ+19, CSV+21, KLP+19, SKCC20]. For
compactness, we will drop the superscript M→N when the meaning is clear from
context.

Now, we motivate our choices for the above cost functions. For Eq. (7.41),
if we restrict to the special case of 1→ 2 cloning (i.e. we have only two output
parties, j ∈ {B,E}), and remove the expectation value over states, we recover
the cost function used in Ref. [JJB+19]. A useful feature of this cost is that
symmetry is explicitly enforced by the difference term (Fi(θ)−Fj(θ))2.

In contrast, the local and global cost functions are inspired by other varia-
tional algorithm in the literature [LTOJ+19, CSV+21, KLP+19, SKCC20] where
their properties have been extensively studied, particularly in relation to the phe-
nomenon of ‘barren plateaus’ [MBS+18, CSV+21]. Since we have not covered
the topic of barren plateaus in Chapter 2, we will give a brief description here.
Barren plateaus is a phenomenon where the gredient-based optimisation in the
quantum landscape ends up with no interesting search directions to go. It has
been demonstrated that hardware efficient Ansätze are untrainable using a global
cost function similar to the one given in Eq. (7.44), since they have exponentially
vanishing gradients [SBG+19], often leading to a barren plateau . In contrast,



260 7. Variational Quantum Cloning: A New Cryptanalysis Toolkit

local cost functions (Eq. (7.43), Eq. (7.41)) are shown to be efficiently trainable
with O(logN) depth hardware efficient Ansätze [CSV+21] (see Section 2.6.4.3
for more details about different types of Ansätze).

We also remark that typically global cost functions are usually more favourable
from the point of view of operational meaning. For example in variational compila-
tion [KLP+19], this cost function compares the closeness of two global unitaries.
In this respect, local cost functions are usually used as a proxy to optimize a global
cost function.

In our case, the nature of quantum cloning allows VarQlone local cost functions
to have immediate operational meaning, illustrated through the following example
(using the local cost, Eq. (7.43)) for 1→ 2 cloning:

CψL (θ) = Tr

[(
1−
1

2

2

∑
j=1

|ψ⟩⟨ψ|j ⊗1j̄

)
ρθ

]

=⇒ CL(θ) = 1−
1

2
E
[
FL
(
|ψ⟩⟨ψ| ,ρ1θ

)
+FL

(
|ψ⟩⟨ψ| ,ρ2θ

)]
where E[FL] is the average fidelity [SIGA05] over the possible input states. The
final expression of CL(θ) in the above equation follows from the expression of
fidelity when one of the states is pure. Similarly, the global cost function relates
to the global fidelity of the output state concerning the input state(s).

7.3.2 Cost function gradients

In the gradient-descent-based optimization approach which we use for developing
our algorithm, we require efficient computation of the gradients. Here, we derive
the analytic gradients for our cost functions. We use the local cost function,
Eq. (7.41) as an explicit example and the derivations for the other cost functions
follow straightforwardly. As a reminder, the squared cost is given by:

CM→Nsq (θ) := E
|ψ⟩∈S

[
N

∑
i=1

(1−F iL(θ))2 +
N

∑
i<j

(F iL(θ)−F
j
L(θ))

2

]
(7.45)

where the expectation is taken over the set of states with uniform distribution.
For example, in the phase-covariant cloner of the states Eq. (7.1), the parameter
η is sampled uniformly from the interval [0,2π).

Now, the derivative of Eq. (7.45), with respect to a single parameter, θl is
given by:

∂Csq(θ)

∂θl
= 2 E

|ψ⟩∈S

[
N

∑
i=1

(1−F iL(θ))
[
−
∂F iL(θ)

∂θl

]
+

N

∑
i<j

(F iL(θ)−F
j
L(θ))

[
∂F iL(θ)

∂θl
−
∂F jL(θ)

∂θl

]]
(7.46)

We can rewrite the expression for the fidelity of the j th clone as:

F jL(θ) = ⟨ψ|ρj(θ) |ψ⟩= Tr
[
|ψ⟩⟨ψ|ρj

]
= Tr

[
|ψ⟩⟨ψ|Tr̄j

(
U(θ)ρinitU(θ)

†
)]

(7.47)
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Using the linearity of the trace, the derivative of the fidelities with respect to
the parameters, θl , can be computed as:

∂F jL(θ)

∂θl
= Tr

[
|ψ⟩⟨ψ|Tr̄j

(
∂U(θ)ρinitU(θ)

†

∂θl

)]
(7.48)

Using the parameter shift rule (Theorem 12 from Section 2.6.4.4) technique the
explicit expression of the cost function’s gradients can be calculated. The calcu-
lation has been given in Appendix A.6.

7.3.3 Cost function guarantees

One of the interesting problems in the area of theoretical machine learning is
showing theoretical guarantees for the cost function, i.e. achieving the cost min-
imum indicates a solution to the problem in question [KLP+19, BPLC+20]. This
property is known as faithfulness.

For our approximate quantum cloning problem, due to the information-theoretic
limits, the above costs cannot have a minimum at 0, but instead at some finite
positive value (say Copt

L for the local cost).

Despite this, we can still derive certain theoretical guarantees about them.
Specifically, we consider notions of strong and weak faithfulness, relative to the
learner’s error in our solution. Our goal is to provide statements about the gen-
eralization performance of the cost functions, by considering how close are the
states we output by our cloning machine, to those which would be outputted
from the ‘optimal ’ cloner, relative to some metrics. In the following, we denote
ρψ,jopt (ρψ,jθ ) to be the optimal (VarQlone learned) reduced state for qubit j , for a
particular input state |ψ⟩. If the superscript j is not present, we mean the global
state of all clones. Let us give the definitions of faithfulness.

Definition 51 (Strong Faithfulness). A cloning cost function, C, is strongly
faithful if for all |ψ⟩ ∈ S, optimising the closeness in cost function implies
the the optimally close states i.e.:

C(θ) = Copt =⇒ ρψθ = ρ
ψ
opt ∀|ψ⟩ ∈ S (7.49)

where Copt is the minimum value achievable (allowed by quantum mechan-
ics) for the cost C, and S is the given set of states to be cloned.
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Definition 52 (ε-Weak Local Faithfulness). A local cloning cost function,
CL, is ε-weakly faithful if for all |ψ⟩ ∈ S and for all the local clones, the
closeness of local cost function to its optimal value implies the closeness of
local clone states i.e.:

|CL(θ)−CoptL |⩽ ε =⇒ D(ρψ,jθ ,ρψ,jopt)⩽ f (ε), ∀|ψ⟩ ∈ S,∀j (7.50)

where D(·, ·) is a chosen metric in the Hilbert space between the two states
and f is a polynomial function of ε.

Definition 53 (ε-Weak Global Faithfulness). A global cloning cost function,
CG, is ε-weakly faithful if for all |ψ⟩ ∈S the closeness of global cost function
to its optimal value implies the closeness of global optimal state i.e.:

|CG(θ)−CoptG |⩽ ε =⇒ D(ρψθ ,ρ
ψ
opt)⩽ f (ε) ∀|ψ⟩ ∈ S (7.51)

One could also define local and global versions of the strong faithfulness, but
this is less attractive as it is included in the other case. Thus we do not focus on
it here. Let us begin by examining the squared local cost function. For this case,
we will provide the most extensive analysis, and faithfulness proofs for the other
cost functions can be derived using similar methods.

Squared Cost Function

First, we start with the squared cost function which we rewrite as:

CM→Nsq (θ) =
1

N

∫
S

[
N

∑
j=1

(1−Fi(θ))2+
N

∑
i<j

(Fi(θ)−Fj(θ))2
]
dψ (7.52)

where the expectation of a fidelity Fi over the states in distribution S is defined
as E[Fi ] = 1

N
∫
S Fi · dψ, with the normalisation condition being N =

∫
S dψ. For

qubit states, if the normalisation is over the entire Bloch sphere in SU(2), then
N = 4π. For notation simplicity, we herein denote the CM→Nsq (θ) as Csq(θ). We
begin with a proof of the fact that the cost function is strongly faithful.

Theorem 54. [Strong faithfulness of the squared cost function] The squared
local cost function is locally strongly faithful, i.e.:

Csq(θ) = Coptsq =⇒ ρψ,jθ = ρ
ψ,j
opt ∀|ψ⟩ ∈ S,∀j ∈ [N] (7.53)

Proof. The cost function Csq(θ) achieves a minimum at the joint maximum of
E[Fi(θ)] for all i ∈ [N]. In symmetric M→N cloning, the expectation value of all
the N output fidelities peak at Fi = Fopt for all input states |ψ⟩. This corresponds
to a unique optimal joint state ρψ,jopt = Uopt |ψ⊗M ,0⊗N−M⟩⟨ψ⊗M ,0⊗N−M |U

†
opt for
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each |ψ⟩ ∈ S and for any j ∈ [N], where Uopt is the unitary producing the the
optimal state. Since the joint optimal state and the corresponding fidelities are
unique for all input states in the distribution, we conclude that the cost function
achieves a minimum under precisely the unique condition i.e. E[Fj(θ)] = Fopt for
all j ∈ [N]. This condition implies that,

ρψ,jθ = ρ
ψ,j
opt, ∀|ψ⟩ ∈ S,∀j ∈ [N] (7.54)

We note that since Fopt is the same for all the reduced states j ∈ [N], this implies
that the optimal reduced states are all the same for a given |ψ⟩ ∈ S. Thus Eq.
(7.54) provides the necessary guarantee that minimizing the cost function over
the parameter space, results in the corresponding circuit’s output, being equal to
the optimal cloned state for all the inputs.

Now, we take the weaker notion of faithfulness into account. Computing the exact
fidelities of the output states requires an infinite number of copies. In reality, we
run the iteration only a finite number of times and thus, our cost function can only
reach the optimal cost up to some precision. This is also relevant when running
the circuit on devices in the NISQ era which would inherently introduce noise in
the system. Thus, we can only hope to minimise the cost function up to some
precision of the optimal cost. This statement can be formalised via the following
lemma:

Lemma 6. Suppose the cost function is ε-close to the optimal cost in
symmetric cloning

Csq(θ)−Coptsq ⩽ ε (7.55)

Then we have,

Tr
[
(ρψ,jopt−ρ

ψ,j
θ ) |ψ⟩⟨ψ|

]
⩽

N ε
2(1−Fopt)

, ∀|ψ⟩ ∈ S,∀j ∈ [N] (7.56)

Proof. In M→ N symmetric cloning, the optimal cost function value is achieved
when each output clone achieves the fidelity Fopt. Thus, using Eq. (7.41) (or Eq.
(7.45)), the optimal cost function value is given by,

Coptsq = N · (1−Fopt)2 (7.57)

The optimal cost function is achieved when all output clones have the same fidelity.
Therefore, as we begin to minimize the cost Csq(θ), all the output clones start to
produce states with approximately the same fidelity. This is explicitly enforced by
taking the limit ε→ 0, in which case the difference terms of Eq. (7.45) vanish.
Thus, the cost function explicitly enforces the symmetry property. Let us assume
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ε→ 0, and consider the quantity Csq(θ)−Coptsq :

Csq(θ)−Coptsq =
1

N

∫
S

[
N

∑
i

(1−Fi(θ))2+
N

∑
i<j

(Fi(θ)−Fj(θ))2
]
dψ−N · (1−Fopt)2

≈
ε→0

1

N

∫
S

[
N

∑
j

(1−Fj(θ))2−N · (1−Fopt)2
]
dψ

≈
1

N

∫
S

[
N

∑
j

(Fopt−Fj(θ))(2−Fopt−Fj(θ))

]
dψ

⩾
2(1−Fopt)
N

∫
S

[
N

∑
j

(Fopt−Fj(θ))

]
dψ

=
2(1−Fopt)
N

[
N

∑
j

∫
S

Tr[(ρψ,jopt−ρ
ψ,j
θ ) |ψ⟩⟨ψ|]dψ

]
(7.58)

The second line follows since Fopt is the same for each input state |ψ⟩. Utilizing
the inequality in Eq. (7.55) and Eq. (7.58), we obtain,

N

∑
j

∫
S

Tr
[
(ρψ,jopt−ρ

ψ,j
θ ) |ψ⟩⟨ψ|

]
dψ ⩽

N ε
2(1−Fopt)

=⇒ Tr
[
(ρψ,jopt−ρ

ψ,j
θ ) |ψ⟩⟨ψ|

]
⩽

N ε
2(1−Fopt)

, ∀|ψ⟩ ∈ S,∀j ∈ [N]
(7.59)

This concludes the proof.

The above inequality allows us to quantify the closeness of the state produced
by VarQlone and the unique optimal clone for any |ψ⟩ ∈ S. We quantify this
closeness of the states in a popular distance measure in quantum information,
namely the Fubini-Study (or Bures angle) distance between two quantum states
(introduced in Section 2.1.4). Using the above lemma, we can prove the following
two theorems for the squared local cost function:
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Theorem 55. [Weak faithfulness of the local squared const function] The
squared cost function as defined in Eq. (7.41), is ε-weakly faithful with
respect to the Bures angle ΘBA (or alternatively Fubini-distance measure
dFS). In other words, if the squared cost function is ε-close to its minimum,
i.e.:

Csq(θ)−Coptsq ⩽ ε (7.60)

where Coptsq := min
θ

N

∑
i
(1−Fi(θ))2+

N

∑
i<j
(Fi(θ)−Fj(θ))2 = N(1−Fopt)2 is the

optimal theoretical cost using fidelities produced by the ideal symmetric
cloning machine, then the following holds:

ΘBA(ρ
ψ,j
θ ,ρψ,jopt)⩽

N
2(1−Fopt)sin(Fopt)

·ε := f1(ε), ∀|ψ⟩ ∈ S,∀j ∈ [N]

(7.61)

Proof. To prove this theorem, we revisit and rewrite the Bures angle from Eq.
(2.23) (see Section 2.1.4):

ΘBA(ρ,σ) = arccos
√
F (ρ,σ) = arccos ⟨φ|τ⟩ (7.62)

where |φ⟩ and |τ⟩ are the purifications of ρ and σ respectively which maximize
the overlap. We note that ΘBA(ρ,σ) lies in the interval [0,π/2], with the value
π/2 corresponding to the unique solution ρ = σ. Since this distance is a metric,
it obeys the triangle’s inequality, i.e., for any three states ρ,σ and δ,

ΘBA(ρ,σ)⩽ΘBA(ρ,δ)+ΘBA(σ,δ) (7.63)

Rewriting the result of Lemma 6 in terms of fidelity for each |ψ⟩ ∈ S and
correspondingly in terms of Bures distance using Eq. (7.62) is,

F (ρψ,jopt, |ψ⟩)−F (ρ
ψ,j
θ , |ψ⟩)⩽ ε′

=⇒ cos2(ΘBA(ρ
ψ,j
opt, |ψ⟩))−cos

2(ΘBA(ρ
ψ,j
θ , |ψ⟩))⩽ ε′

(7.64)

where ε′ =N ε/2(1−Fopt). Let us denote Dψ± =ΘBA(ρ
ψ,j
opt, |ψ⟩)±ΘBA(ρ

ψ,j
θ , |ψ⟩)

This inequality in Eq. (7.64) can be further rewritten as,

cos(ΘBA(ρ
ψ,j
opt, |ψ⟩))−cos(ΘBA(ρ

ψ,j
θ , |ψ⟩))⩽

ε′

cos(ΘBA(ρ
ψ,j
opt, |ψ⟩))+cos(ΘBA(ρ

ψ,j
θ , |ψ⟩))

cos(ΘBA(ρ
ψ,j
opt, |ψ⟩))−cos(ΘBA(ρ

ψ,j
θ , |ψ⟩))⪅

ε′

2cos(ΘBA(ρ
ψ,j
opt, |ψ⟩))

2sin

(
Dψ+
2

)
sin

(
Dψ−
2

)
⩽

ε′

2cos(ΘBA(ρ
ψ,j
opt, |ψ⟩))

=⇒ Dψ− ⩽
ε′

sin(ΘBA(ρ
ψ,j
opt, |ψ⟩))

=
N ε

2(1−Fopt)sin(Fopt)
(7.65)
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where we have used the approximations that in the limit ε→ 0, ΘBA(ρ
ψ,j
opt, |ψ⟩)≈

ΘBA(ρ
ψ,j
θ , |ψ⟩) and the trigonometric identities cos(x − y) = 2sin

(
x+y
2

)
sin
(
x−y
2

)
,

and sin2x = 2sinx cosx .
Further, using the Fubini-Study metric triangle’s inequality on the set of states

{ρψ,jopt,ρ
ψ,j
θ , |ψ⟩} results in,

ΘBA(ρ
ψ,j
θ , |ψ⟩)⩽ΘBA(ρ

ψ,j
opt, |ψ⟩)+ΘBA(ρ

ψ,j
θ ,ρψ,jopt) (7.66)

Combining the above inequality and Eq. (7.65) results in,

ΘBA(ρ
ψ,j
θ ,ρψ,jopt)⩽

N
2(1−Fopt)sin(Fopt)

·ε, ∀|ψ⟩ ∈ S (7.67)

This bounds the closeness of the trained output state and the optimal output
state as a function of ε.

A similar result can be derived relative to trace distance instead of the Bures/Fubini-
Study distance. However, we avoid presenting the result here, since it is very
similar in nature. Instead, we refer the reader to [CDKK22] for the faithfulness
result using the trace distance.

Local Cost Function

Next, we prove analogous results for the local cost function, defined for M → N

cloning. We rewrite the cost function with an average integral form over the set
S:

CL(θ) := E

[
1−
1

N

(
N

∑
j=1

Fj(θ)

)]
= 1−

1

NN

∫
S

N

∑
j=1

Fj(θ)dψ (7.68)

where N =
∫
S dψ is the normalisation condition. As above, we can show this cost

function also exhibits strong faithfulness:

Theorem 56 (Strong faithfulness of the local cost function). The local
squared cost function is locally strongly faithful:

CL(θ) = CoptL =⇒ ρψ,jθ = ρ
ψ,j
opt ∀|ψ⟩ ∈ S,∀j ∈ [N] (7.69)

Proof. Similar to the faithfulness arguments of the squared cost function, one
can immediately see that the cost function CL(θ) achieves a unique minimum
at the joint maximum of E[Fj(θ)] for all j ∈ [N]. Thus, the minimum of CL(θ)

corresponds to the unique optimal joint state with its unique local reduced states
ρψ,jopt for each j ∈ [N], and for each input state |ψ⟩ ∈ S. Thus the cost function
achieves a minimum under precisely the unique condition i.e. the output state is
equal to the optimal clone state.

Now, we can also prove analogous versions of weak faithfulness. Many of the
steps in the proof follow similarly to the squared cost derivations above, so we
omit them for brevity where possible. As above, we first have the following lemma:
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Lemma 7. Suppose the cost function is ε-close to the optimal cost in
symmetric cloning

CL(θ)−CoptL ⩽ ε (7.70)

where we assume limε→0 |E[Fi(θ)] − E[Fj(θ)]| → 0,∀i , j , and therefore
Copt := 1−Fopt. Then,

Tr[(ρψ,jopt−ρ
ψ,j
θ ) |ψ⟩⟨ψ|]⩽N ε, ∀|ψ⟩ ∈ S,∀j ∈ [N] (7.71)

The proof of Lemma 7 follows almost identically to Lemma 6, but with the
exception that we can write CL(θ)−CoptL =E(Fopt−F (θ)) in the symmetric case,
assuming Fi(θ) ≈ Fj(θ), ∀i ̸= j ∈ [N]. Thus we skip the proof and we show the
weak faithfulness in the following theorem:

Theorem 57. The local cost function, Eq. (7.43), is ε-weakly faithful with
respect to ΘBA

CL(θ)−CoptL ⩽ ε (7.72)

Then the following holds:

ΘBA(ρ
ψ,j
θ ,ρψ,jopt)⩽

N ε
sin(Fopt)

=: f2(ε), ∀|ψ⟩ ∈ S,∀j ∈ [N] (7.73)

where CoptL := 1−Fopt

Proof. We rewrite the Eq. (7.71) in terms of the Bures angle,

F (ρψ,jopt, |ψ⟩)−F (ρ
ψ,j
θ , |ψ⟩)⩽N ε

=⇒ cos2(ΘBA(ρ
ψ,j
opt, |ψ⟩))−cos

2(ΘBA(ρ
ψ,j
θ , |ψ⟩))⩽N ε

(7.74)

Following the derivation in the squared cost function section, we obtain the Bures
angle/Fubini-Study closeness as,

ΘBA(ρ
ψ,j
θ ,ρψ,jopt)⩽

N ε
sin(Fopt)

, ∀|ψ⟩ ∈ S,∀j ∈ [N] (7.75)

This concludes the proof.

Global Cost Function

Finally, we show in the next theorems that the global cost function exhibits similar
notions of faithfulness:
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Theorem 58. [Strong faithfulness of the global cost function] The global
cost function is globally strongly faithful, meaning the following implication
holds for all the states |ψ⟩ ∈ S:

CG(θ) = CoptG =⇒ ρψθ = ρ
ψ
opt ∀|ψ⟩ ∈ S (7.76)

Proof. The global cost function CG(θ) achieves the minimum value CoptG at a
unique point corresponding to E[FG(θ)] = F

opt
G , where F optG corresponds to the

fidelity term for CoptG . This corresponds to the unique global clone state ρψopt.
Thus the cost function, achieves a unique minimum under precisely the unique
condition i.e. the output global state is equal to the optimal clone state for all
inputs in the distribution.

Now, we provide a statement of weak faithfulness that is much more relevant
in the practical implementation of the cloning scheme using global optimization.

Lemma 8. Suppose the cost function is ε-close to the optimal cost in
symmetric cloning

CG(θ)−CoptG ⩽ ε (7.77)

where CoptG := 1−F optG . Then,

Tr
[
(ρψopt−ρ

ψ
θ ) |ψ⟩

⊗2 ⟨ψ|⊗2
]
⩽N ε, ∀|ψ⟩ ∈ S (7.78)

Proof. The proof follows identically to Lemma 7 but with the exception that
CG(θ)−CoptG = E[F optG −FG(θ)].

Finally, we have the following theorem regarding the weak faithfulness of the
global cost function:

Theorem 59. [Weak faithfulness of the global cost function] Suppose the
cost function is ε-close to the optimal cost in symmetric cloning

CG(θ)−CoptG ⩽ ε (7.79)

where CoptG := 1−F optG . Then,

ΘBA(ρ
ψ
θ ,ρ

ψ
opt)⩽

N ε
sin(F optG )

=: f3(ε), ∀|ψ⟩ ∈ S (7.80)

Proof. The proof follows along the same lines as the proof of closeness of the
Bures angl/Fubini-Study distance for local cost function provided in Theorem 57.
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7.3.3.1 Global versus Local Faithfulness

This section explores the relationship between local and global cost function opti-
mization for different cloners (universal, phase-covariant, etc.). In particular, we
address the question of whether optimizing a cloner with a local or a global cost
function also achieves an optimal solution relative to the other cost (operational
meaning). If the answer is affirmative, we can use whichever cost exhibits the
most desirable qualities and be confident they will achieve the same results. If
not, we must be more careful as the choice may not lead to the optimal behaviour
we desire and so will be application dependent.

We note that this relationship only manifests in symmetric cloning since there
is no possibility to enforce asymmetry in the global cost function. The tradeoff
between local and global faithfulness turns out to be subtle when dealing with
cloning problems and is in contrast to similar studies in analogous variational
algorithm literature [KKR06, CSV+21]. To begin, we have the following theorem:

Theorem 60. For the general case of M → N cloning, the global cost
function CG(θ) and the local cost function CL(θ) satisfy the inequality,

CL(θ)⩽ CG(θ)⩽ N ·CL(θ) (7.81)

Proof. We first prove the first part of the inequality,

CG(θ)−CL(θ) =
1

N

∫
S

Tr((OψG−OψL )ρ
ψ
θ )dψ

=
1

NN

∫
S

Tr

((
N

∑
j=1

(
|ψ⟩⟨ψ|j ⊗1j̄ −|ψ⟩⟨ψ|1⊗·· · |ψ⟩⟨ψ|N

))
ρψθ

)
⩾ 0

=⇒ CG(θ)⩾ CL(θ)

(7.82)

where OψL is defined in Eq. (7.43), and the inequality in the second line holds due
to the following

N

∑
j=1

(
|ψ⟩⟨ψ|j ⊗1j̄ −|ψ⟩⟨ψ|1⊗·· · |ψ⟩⟨ψ|N

)
=

N

∑
j=1

|ψ⟩⟨ψ|j⊗(1j̄−|ψ⟩⟨ψ|̄j)⩾ 0, ∀|ψ⟩ ∈S

(7.83)
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For the second part of the inequality, we consider the operator NOψL −OψG,

NOψL −OψG = (N−1)1−
N

∑
j=1

(
|ψ⟩⟨ψ|j ⊗1j̄

)
+ |ψ⟩⟨ψ|1⊗·· · |ψ⟩⟨ψ|N

=
N−1

∑
j=1

(
1j ⊗1j̄ −|ψ⟩⟨ψ|j ⊗1j̄

)
−|ψ⟩⟨ψ|N⊗1N̄+ |ψ⟩⟨ψ|1⊗·· · |ψ⟩⟨ψ|N

=
N−1

∑
j=1

(
(1−|ψ⟩⟨ψ|)j)⊗1j̄

)
−
N−1⊗
j=1

(1−|ψ⟩⟨ψ|)j)⊗|ψ⟩⟨ψ|N

= (1−|ψ⟩⟨ψ|)1⊗

(
11̄−

N−1⊗
j=2

(1−|ψ⟩⟨ψ|j)⊗|ψ⟩⟨ψ|N

)

+
N−1

∑
j=2

(
(1−|ψ⟩⟨ψ|)j)⊗1j̄

)
⩾ 0

(7.84)

where the second last line is positive because each individual operator is positive
for all |ψ⟩ ∈ S.

A similar inequality was proven in the work of [BPLC+20]. But interestingly,
the inequality proven in Theorem 60 (unlike in [BPLC+20]) does not allow us
make statements about the similarity of individual clones from the closeness of
the global cost function and vice versa. This can be seen as follows:

CG(θ)−CoptG ⩽ ε =⇒ CL(θ)−CoptL ⩽ ε− (CG(θ)−CL(θ))+(C
opt
L −CoptG )

=⇒ CL(θ)−CoptL ⩽ ε+(CoptL −CoptG )

⇏ CL(θ)−CoptL ⩽ ε
(7.85)

Here we have used the result of Theorem 60 that CG(θ) ⩾ CL(θ) and we note
that CoptL −CoptG ̸= 0 for all the M → N cloning. In particular, for 1→ 2 cloning,
CoptL = 5/6, while CoptG = 2/3. This is due to the non-vanishing property of these
cost functions, and highlights the subtlety of the case in hand.

While we are unable to leverage generic inequalities for our purpose, based on
the cost functions, we can make statements in specific cases. In other words, by
restricting the cloning problem to a specific input set of states, we can guarantee
that optimizing globally will be sufficient to also optimize local figures of merit.

In particular, in the following, we establish these strong and weak faithful-
ness guarantees for the special cases of universal and phase-covariant cloning by
analyzing problem-specific features.
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Theorem 61. The global cost function is locally strongly faithful for a
universal symmetric cloner, i.e,:

CG(θ) = CoptG ⇐⇒ ρψ,jθ = ρ
ψ,j
opt ∀|ψ⟩ ∈ H,∀j ∈ {1, . . . ,N} (7.86)

Proof. In the symmetric universal case, CoptL has a unique minimum when, each
local fidelity saturates:

F optL =
M(N+2)+N−M

N(M+2)
(7.87)

achieved by local reduced states {ρψ,jopt}Nj=1. Now, it has been shown that the
optimal global fidelity FG that can be reached [BBHB97, SIGA05] is,

F optG =
N!(M+1)!

M!(N+1)!
(7.88)

which also is the corresponding unique minimum value for CoptG , achieved by some
global state ρψopt.

Finally, it was proven in [Wer98, KW99] that the cloner which achieves one of
these bounds is unique and also saturates the other bound, and therefore must
also achieve the unique minimum of both global and local cost functions, CoptG and
CoptL . Hence, the local states which optimize CoptL must be the reduced density
matrices of the global state which optimizes CoptG and so:

ρψ,jopt := Tr̄j(ρ
ψ
opt), ∀j (7.89)

Thus for a universal cloner, the cost function with respect to both local and global
fidelities will converge to the same minimum.

Now, before proving an analogous statement in the case of phase-covariant
cloning, we first need the following lemma (we return to the notation of B,E and
E∗ for clarity):

Lemma 9. For any 1→ 2 phase-covariant cloning machine which takes
states |0⟩B ⊗ |ψ⟩E and an ancillary qubit |A⟩E∗ as input, where |ψ⟩ :=
1√
2
(|0⟩+e iθ |1⟩), and outputs a 3-qubit state |ΨBEE∗⟩ in the following form:

|ΨBEE∗⟩=
1

2
[|0,0⟩+e iφ(sinη |0,1⟩+cosη |1,0⟩)) |0⟩E∗

+e iφ |1,1⟩+(cosη |0,1⟩+sinη |1,0⟩) |1⟩E∗]
(7.90)

the global and local fidelities are simultaneously maximized at η = π
4 where

0⩽ η ⩽ π
2 is the ‘shrinking factor’.



272 7. Variational Quantum Cloning: A New Cryptanalysis Toolkit

Proof. To prove this, we follow the formalism that was adopted by Cerf et.
al.[CIVA02]. This uses the fact that a symmetric phase-covariant cloner induces
a mapping of the following form [SIGA05]:

|0⟩ |0⟩ |0⟩ → |0⟩ |0⟩ |0⟩
|1⟩ |0⟩ |0⟩ → (sinη |0⟩ |1⟩+cosη |1⟩ |0⟩) |0⟩
|0⟩ |1⟩ |1⟩ → (cosη |0⟩ |1⟩+sinη |1⟩ |0⟩) |1⟩
|1⟩ |1⟩ |1⟩ → |1⟩ |1⟩ |1⟩

(7.91)

Next, we calculate the global state by tracing out the ancillary state to get ρoptG :

ρoptG = TrE∗(|ΨBEE∗⟩⟨ΨBEE∗|) = |Φ1⟩⟨Φ1|+ |Φ2⟩⟨Φ2| (7.92)

where,

|Φ1⟩ :=
1

2

[
|0,0⟩+e iφ(sinη |0,1⟩+cosη |1,0⟩)

]
, (7.93)

|Φ2⟩ :=
1

2

[
e iφ |1,1⟩+(cosη |0,1⟩+sinη |1,0⟩)

]
(7.94)

Hence the global fidelity can be computed as:

F optG = Tr(|ψ⟩⟨ψ|⊗2 ρoptG ) = | ⟨ψ
⊗2⟩Φ1|2+ | ⟨ψ⊗2⟩Φ2|2 =

1

8
(1+sinη+cosη)2

(7.95)

Now, optimising F optG with respect to η, we see that F optG has only one extremum
value between [0, π2 ] specifically at η = π

4 . We can also see that the local fidelity
is also achieved for the same η and is equal to:

F optL =
1

2

(
1+

√
2

2

)
(7.96)

which is the upper bound for local fidelity of the phase-covariant cloner.

With Lemma 9 established, we can next prove:

Theorem 62. The global cost function is locally strongly faithful for phase-
covariant symmetric cloner, i.e.:

CG(θ) = CoptG ⇐⇒ ρψ,jθ = ρ
ψ,j
opt ∀|ψ⟩ ∈ S,∀j ∈ {B,E} (7.97)

where S is the distribution corresponding to phase-covariant cloning.

Proof. We have shown in Lemma 9 that the global and local fidelities of a phase-
covariant cloner are both achieved with a cloning transformation of the form in
Eq. (7.91). Applying this transformation unitary to |ψ⟩ |Φ+⟩BE (where |Φ+⟩BE is
a Bell state) leads to Cerf’s formalism for cloning. Furthermore, we can observe
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that due to the symmetry of the problem, this transformation is unique (up to
global phases) and so any optimal cloner must achieve it.

Furthermore, one can check that the ideal circuit in Fig. 7.3(b) does indeed
produce an output in the form of Eq. (7.90) once the preparation angles have been
set for phase-covariant cloning. By a similar argument to the above, we can see
that a variational cloning machine which achieves an optimal cost function value,
i.e. CG(θ) = CoptG much also saturate the optimal cloning fidelities. Furthermore,
by the uniqueness of the above transformation (Eq. (7.91)) we also have that
the local states of VarQlone are the same as the optimal transformation, which
completes the proof.

7.3.4 Summary of other specifications

In this section for completeness , we give an overview of some of the other spec-
ifications of the algorithm. We will not go in-depth to prove them as they are
neither the author’s contribution nor directly relevant to the main topic of this
thesis. Nevertheless, it will contribute to understanding the algorithm for potential
future applications.

First, we start with the choice of Ansatz (see Section 2.6.4.3). A key element
in variational algorithms is the choice of Ansatz that is used in parameterized
quantum circuits. The primary Ansatz we choose is one with a variable structure.
This allows us to learn cloning circuits in an end-to-end manner. The idea is to
optimize over both the continuous parameters of a quantum circuit, but also over
the gates within the circuit itself, which come from a discrete set. The goal is to
solve the following optimization problem [LFC+20]:

(θ∗,g∗) = argmin
θ,g∈G

C(θ,g) (7.98)

where G denotes the gate set. Such variable-structure Ansätze approaches can
be broadly dubbed as the Quantum Architecture Search (QAS) [ZHZY21] similar
to Neural Architecture Search (NAS) in classical ML [YWC+19, LSY18]. Ap-
proaches to QAS have appeared in many forms [CSSC18, GEBM19, OGB21,
CSU+20, LFC+20, PT21]. In this work, G is a gateset pool, from which a par-
ticular sequence g is chosen. As a summary, to solve this problem, we iterate
over g, swap out gates, and re-optimize the parameters θ, until a minimum of
the cost, C(θ∗,g∗) is found. This is a combination of a discrete and continuous
optimization problem, where the discrete parameters are the indices of the gates
in g (i.e., the circuit structure), and the continuous parameters are represented
by θ. Each time the circuit structure is changed (a subset of gates are altered),
the continuous parameters are re-optimized, as in [CSSC18]. Variations of this
approach have been proposed in [DHY+20, LFC+20] which could be easily incor-
porated, and we leave such investigation to future work. For the results shown for
1→ 2 cloning phase-covariant states, we use the following three qubit gate pool:
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GPC := { R2z(θ),R3z(θ),R4z(θ),R2x(θ),R3x(θ),R4x(θ),
R2y (θ),R

3
y (θ),R

4
y (θ),CZ2,3,CZ3,4,CZ2,4 } (7.99)

In order to attack protocol P1 using 1→ 2 state dependent cloning, we use
the following pool:

GP1→21
:=
{
Rij(θ),CZ2,3,CZ3,4

}
∀i ∈ {2,3,4},∀j ∈ {x,y ,z} (7.100)

where Rij indicates the j th Pauli rotation with angle θ acting on the i th qubit
and CZ is the controlled-Z gate. In both cases, we use the qubits indexed 2,3
and 4 in an Aspen-8 sublattice. Note that in the latter case, we allow only a
linear, nearest-neighbour (NN) connectivity, which removes the need for inserting
SWAP gates by the quantum compiler. For more detailed specifications about the
algorithm via supplementary numerical results, we refer to [CDKK22].

Next, we talk about the sample complexity of VarQlone. We discussed that
VarQlone requires classical minimisation of one of the cost functions C(θ) :=
{Csq(θ),CL(θ),CG(θ)} to achieve the optimal cost value. To do so, we must be
able to efficiently evaluate the cost function of choice. In our case, this can be
achieved via a method that allows the computation of the fidelity between quantum
states. This estimation can be done either via SWAP test, which is a powerful
toolkit that we have used many times so far in this thesis; or via computing an
estimator for the true cost C(θ) =E|ψ⟩∈S[Cψ(θ)] using K different states sampled
from S. Estimating the overlap in the mentioned way is sufficient for our purposes
since this coincides with the fidelity when at least one of the states is a pure state:

F (|ψ⟩⟨ψ| ,ρ) = ⟨ψ|ρ |ψ⟩= Tr(|ψ⟩⟨ψ|ρ) (7.101)

Since VQAs are heuristic algorithms, there are no guarantees on the number of
training iterations over θ to converge to Copt. However, one can at least provide
guarantees on the number of samples required to estimate the cost, for a particular
instance of the parameters. Since this is a necessary subroutine in the algorithm,
it must be efficient. It can be shown that the number of samples L×K, where
K is the number of distinct states |ψ⟩ sampled uniformly at random from the
distribution S, and L is the number of copies of each input state, required to
estimate the cost function C(θ) up to ε′-additive error with a success probability
δ is,

L×K =O
(
1

ε′2
log
2

δ

)
(7.102)

We refer to [CDKK22] for the proof.
Finally, we can examine VarQlone for the existence of barren plateaus. We

prove in [CDKK22], that the local cost function that we have presented does not
exhibit barren plateaus for a sufficiently shallow alternating layered Ansatz, i.e.
U(θ) contains blocks W , acting on alternating pairs of qubits [CSV+21].
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7.4 Practical cryptanalysis based on the numerical
results of VarQlone

At last, we present the numerical and experimental results of VarQlone for the
cryptographic problems that we have introduced in Section 7.2. Let us start with
the phase covariant case study.

7.4.1 Variational phase-covariant cloning

We start with the attack we have presented in Section 7.2.1 to attack the BB84
protocol, while here we replace the theoretical cloner with VarQlone. Fig. 7.2
demonstrates at a high level, how VarQlone is inserted into an attack (on QKD
or similar protocols).

Figure 7.2: Cartoon overview of VarQlone in a cryptographic attack. Here an adversary Eve, E,
implements a 1→ 2 cloning attack on states used in a quantum protocol (for example QKD)
between Alice and Bob. Eve intercepts the states sent by Alice |ψ⟩A and may interact with an
ancillary ‘environment’, E∗. This interaction is trained (an optimal parameter setting θ is found)
by Eve to optimally produce clones, ρBθ ,ρ

E
θ . In order to attack the protocol, Eve will return ρBθ to

Bob and use the rest (her clone, ρEθ plus the remaining environment state, ρE
∗
θ ) to cheat. The

training procedure consists of using a classical computer to optimize the quantum parameters, via
a cost function. The cost is a function of k observables, Ok , measured from the output states,
which are designed to extract fidelities of the states to compare against the ideal state.

Here VarQlone has K layers in the ansatz, in each layer there is a fixed struc-
ture. For simplicity, we choose each layer to have parameterised single-qubit
rotations, Ry (θ), and nearest neighbour CZ gates. Our primary target is 1← 2
cloning, so we use 3 qubits and therefore we have 2 CZ gates per layer. Not
surprisingly, in the experiment, we observe convergence to the minimum as the
number of layers increases, saturating at K = 3.

Now we show a proof of principle implementation of our methods for phase-
covariant cloner. The results of this can be seen in Fig. 7.3.

Let us begin by describing some problem parameters. Firstly, we allow 3 qubits
(2 output clones plus 1 ancilla) in the circuit. Next, we give the VarQlone the fully
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Figure 7.3: Variational Quantum Cloning implemented on phase-covariant states using three qubits
of the Rigetti Aspen-8 chip (QPU), plus simulated results (QVM). Violin plots in (a) show the
cloning fidelities, for Bob and Eve, found using each of the circuits shown in (b)–(d) respectively.
Shown in red is the maximal possible fidelity for this problem. (b) is the ideal circuit with clones
appearing in registers 2 and 3. (c) shows the structure-learned circuit for the same scenario, using
one less entangling gate. (d) demonstrates the effect of allowing clones to appear in registers 1
and 2. In the latter case, only four (nearest-neighbour) entangling gates are used, demonstrating
a significant boost in performance on the QPU.

connected (FC) gateset pools introduced in Eq. (7.99). Let us now analyse the
two candidate resulting circuits of VarQlone in Fig. 7.3(c,d) in comparison with
the optimal ‘analytic’ circuit Fig. 7.3(b) introduced in [BBHB97, FWJ+14].

Firstly, we note that all three circuits approximately saturate the optimal bound
for phase-covariant cloning (FL = 0.85) when simulated (i.e. without quantum
noise). But we notice that the ideal circuit in Fig. 7.3(b) suffers degradation in
performance when implemented on the QPU since it requires 6 entangling gates as
it is attempting to transfer the information across the circuit. Furthermore, since
the Aspen-8 chip does not have any 3 qubit loops in its topology, it is necessary
for the compiler to insert SWAP gates.

Next, we compare the ideal circuit to two examples learned by VarQlone.
Firstly, we force the qubit clones to appear in registers 2 and 3, (demonstrated
in Fig. 7.3(c)) exactly as in Fig. 7.3(b). Secondly, we allow the clones to appear
instead in registers 1 and 2 (demonstrated in Fig. 7.3(d) - The circuit labeled
‘Rev.’ (‘Reverse’).) The ability to make such a subtle change demonstrates
clearly the advantage of our flexible approach. We notice that the restriction
imposed in Fig. 7.3(c) results in only slightly improved performance over the ideal.
However, by allowing the clones to appear in registers 1 and 2, VarQlone can find
much more conservative circuits, having fewer entangling gates, and are directly
implementable on a linear topology. This gives a significant improvement in the
cloning fidelities, of about 15% when the circuit is run on the QPU, as observed
in Fig. 7.3(a). For all results shown using a variable structure ansatz, we use the
forest-benchmarking library [CGH+19] to reconstruct the output density matrix
in order to mitigate the effect of quantum noise.

Finally, we can calculate the success probability of a real implementable attack
on BB84 using today’s quantum hardware as a result of VarQlone. We specifically
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analyse the performance of one of these VarQlone-learned circuits (Circuit(c)) in
such an attack. The reason for this choice is that while the circuit in Fig. 7.3(d)
achieves higher fidelities on the Aspen hardware, it does not actually make use of
the ancillary qubit (one can observe that the sequence of gates acting on it, is
approximately an identity gate). We will do so by computing the corresponding
critical error rate, Dcrit, using Eq. (??) as discussed in Section 7.2.1. for the
BB84 protocol run in X− Y Pauli basis. First, we compute the resulting mixed
states outputted over all input states of the cloning machine, for each basis state:
{|+⟩ , |−⟩ , |+i⟩ , |−i⟩} so ρE is given by:

ρE :=
1

4
(ρ+E +ρ

−
E +ρ

+i
E +ρ

−i
E ) (7.103)

Similarly, ρ0E,ρ
1
E in Eq. (??) are the mixed states encoding the random bit 0

(corresponding to {|+⟩ , |+i⟩}) and bit 1 (corresponding to {|−⟩ , |−i⟩}), so are
given by:

ρ0E :=
1

2
(ρ+E +ρ

+i
E ), ρ1E :=

1

2
(ρ−E +ρ

−i
E ) (7.104)

Calculating the minimum Holevo quantity χmin for the above density matrices
outputted by the circuit in Fig. 7.3(c) gives the following:

1−H(Dcrit)−χmin = 0
=⇒ 1−χmin+(Dcrit log2(Dcrit)+(1−Dcrit) log2(1−Dcrit))) = 0

=⇒ Dcrit = 15.8%.

(7.105)

Recalling the optimal bound for the individual attack, one can see that the
Dcrit obtained by the result of VarQlone is very close to that bound. Nevertheless,
as pointed out in [SIGA05, FL12], the same bound can be reached by a collective
attack (where Eve defers all the measurements until the end of the reconciliation
phase and applies a general strategy to all collected states) so long as the individual
quantum operations are still given by the optimal phase-covariant cloner. Thus,
the VarQlone learned circuits can be used to perform collective attacks and almost
saturate the optimal collective bound.

Finally, one may observe that Circuit (d) in Fig. 7.3 achieves an even higher
fidelity on the actual hardware, but it does so without using the ancilla to reduce
the circuit depth. Therefore, it is a more suited and non-trivial circuit for purely
performing phase covariant cloning.

7.4.2 Variational state-dependent cloning

In this section, we present the results of VarQlone when learning to clone the
states used in the two coin-flipping protocols described in Section 7.2.2.2 and
Section 7.2.2.3. Firstly, we focus on the states used in the original protocol, P1
for 1→ 2 cloning, and then move to the 4 state protocol, P2. In the latter we also
extend from 1→ 2 cloning to 1→ 3 and 2→ 4. These extensions will allow us
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to probe certain features of VarQlone, in particular explicit symmetry in the cost
functions. In all cases, we use the variable structure Ansatz, and once a suitable
candidate has been found, the solution is manually further optimised. The learned
circuits that are used to produce the figures and results in this section, are given
in Fig. 7.5 and Fig. 7.8.

7.4.2.1 Variational cloning attack on 2-state quantum coin-flipping

As a reminder, the two states used in this protocol are:

|φ0⟩ := |φ0,0⟩= cos
( π
18

)
|0⟩+sin

( π
18

)
|1⟩ (7.106)

|φ1⟩ := |φ0,1⟩= cos
( π
18

)
|0⟩− sin

( π
18

)
|1⟩ (7.107)

The cloning-based attacks and the obtained fidelities achieved by the VarQlone
learned circuit can be seen in Fig. 7.4 where we use the gate pool Eq. (7.100)
which allows a linear entangling connectivity.

Figure 7.4: Overview of cloning-based attack on the protocol of Mayers et. al. [MSCK99], plus
corresponding numerical results for VarQlone. (a) Cartoon of coin flipping protocols, Alice and
Bob send quantum (q) and/or classical (c) information to agree on a final ‘coin flip’ bit, y . (b)
The relevant part of the protocol of Mayers et. al., P1, plus a cloning based attack on Bob’s
side. He builds a cloning machine using VarQlone to produce two clones of Alice’s sent states,
one of which he returns, and the other is used to guess Alice’s input bit, a. (c) Fidelities of each
output clone, ρjθ achieved using VarQlone when (1→ 2) cloning the family of states used in, P1.
In the left (right) panel, |φ0⟩ (|φ1⟩) is. Figure shows both simulated (QVM - purple circles) and
on Rigetti hardware (QPU - blue crosses). For the QVM (QPU) results, 256 (5) samples of each
state are used to generate statistics. Violin plots show complete distribution of outcomes and
error bars show the means and standard deviations. Inset (i) shows the two qubits of the Aspen-8
chip which were used, with the allowed connectivity of a CZ between them. Note an ancilla was
also allowed, but VarQlone chose not to use it in this example.

In the above figure, a deviation from the optimal fidelity can be seen, even
in the simulated case. We believe this is mostly due to tomographic errors in
reconstructing the cloned states. Before analysing the results for our given attack,
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Figure 7.5: Circuit learned by VarQlone in to clone states, |φ0⟩ , |φ1⟩, with an overlap s =cos(π/9)
in the protocol P1. For example, ρA is the clone sent back to Alice, while ρB is kept by Bob.

let us also have a look at the circuits learned by VarQlone for the task of state-
dependent cloning with fixed-overlap.

Fig. 7.5 shows the circuit used to achieve the fidelities in the attack on P1. In
training, we still allowed an ancilla to aid the cloning, but the example in Fig. 7.5
did not make use of it (in other words, VarQlone only applied gates which were
equivalent to applying identity on the ancilla), so we remove it to improve hardware
performance. This repeats the behaviour seen for the circuits learned in phase-
covariant cloning. We mention again, that some of the learned circuits did make
use of the ancilla with similar performance. This mimics the behaviour seen in
the previous example of phase-covariant cloning. As such, we only use the two
qubits shown in the inset (i) of the figure when running on the QPU to improve
performance.

Now, we proceed with calculating the success probability of the attack on P1
given the above experimental results. For illustration, let us return to the example
in Eq. (7.9), where instead the cloned state is now produced from our VarQlone
circuit, ρ0c → ρ0VarQlone.

Theorem 63. [VarQlone Attack Bias on P1] Bob can achieve a bias of
ε≈ 0.29 using a state-dependent VarQlone attack on the protocol P1, with
a single copy of Alice’s state.

Proof. For the proof, we compute the success probability in the same way as in
Theorem 50, as follows:

PVarQlone
succ,P1 =

1

2
+
1

4
Tr|ρ1−|φ1⟩⟨φ1|⊗ρ0VarQlone| ≈ 0.804 (7.108)

Here ρ1 = |φ0⟩⟨φ0|⊗ |φ1⟩⟨φ1| (similar to the case in Eq. (7.9)). Here, we have
a higher probability for Bob to correctly guess Alice’s bit a, but correspondingly,
the detection (by Alice) probability is higher than in the ideal case, due to a lower
local fidelity of FVarQlone

L = 0.985.

7.4.2.2 Variational cloning attack on 4-state quantum coin-flipping

For the attacks on P2 using VarQlone, again we recall the family of states:

|φx,a⟩=

{
|π8 x,0⟩= cos

(
π
8

)
|0⟩+(−1)x sin

(
π
8

)
|1⟩

|π8 x,1⟩= sin
(
π
8

)
|0⟩+(−1)x⊕1 cos

(
π
8

)
|1⟩

(7.109)
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Here first we mention the attack that uses 1→ 2 cloning similar to the ones
discussed in Section 7.2.2.3. But then we generalise the result to 1→ 3 and 2→ 4
cloning as well. One interesting aspect of the result given here is that there is
no explicit analytical circuit known so far prior to our results, for these types of
state-dependent cloning.

1→ 2 Cloning.

Firstly, we use the same gate set and subset of the Aspen-8 lattice (GP1→22
=

GP1→21
). We use the local cost, Eq. (7.43), to train the model, with a sequence

length of 35 gates. The attack model and the numerical results are shown in
Fig. 7.6. Specifically, in part (b) the results for both QVM (simulation) and QPU
(experiment) are given. We note that the solution exhibits some small degree
of asymmetry in the output states, due to the form of the local cost function.
This asymmetry is particularly pronounced as we scale the problem size and aim
to produce N output clones, which we further discuss in the next section.

Figure 7.6: Cloning attacks and numerical results for the protocol, P2.(a) The two cloning based
attacks we consider. In attack model I (left), Bob measures both output states with a set of
fixed projective measurements, defined relative to the cloner output states, |ψ1→2⟩a,x and guesses
Alice’s bit, a. In attack model II, Bob keeps one clone for either testing Alice later or to send
back the deposit qubit requested by Alice. He uses then the other local clone to discriminate and
guess a. (b) The fidelities achieved cloning the each state, {|φx,a⟩} used in P2 with VarQlone.
These numerics relate to scenario 1 from attack model II. Each panel (1-4) shows both simulated
(QVM - red circles) and on Rigetti hardware (QPU - orange crosses). We indicate the fidelities
of each clone received by Alice and Bob. For the QVM (QPU) results, 256 (3) samples of each
state are used to generate statistics. Violin plots show the complete distribution of outcomes and
error bars show the means and standard deviations. Inset (i) shows the connectivity we allow in
VarQlone for this example.

Now, we can relate the performance of the VarQlone cloner to the attacks
discussed in Section 7.2.2.3. We do this by explicitly analyzing the output states
produced in the circuits used to achieve fidelities shown in Fig. 7.6(b) and following
the derivation in Section 7.2.2.3, we show in Theorem 64 and Theorem 65:
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Theorem 64. [VarQlone Cloning Attack (I) Bias on P2] Using a cloning
attack on the protocol P2, (in attack model I) Bob can achieve a bias:

εIP2,VarQlone ≈ 0.345 (7.110)

Similarly, we have the bias which can be achieved with attack II:

Theorem 65. [VarQlone Cloning Attack (II) Bias on P2] Using a cloning
attack on the protocol P2, (in attack model II) Bob can achieve a bias:

εIIP2,VarQlone = 0.241 (7.111)

The small variation between these results and the ideal biases proved in Theo-
rem 51 and Theorem 52 is primarily due to the small degree of asymmetry induced
by the heuristics of VarQlone. However, we emphasize that these biases can now
be achieved via constructive attacks on the hardware.

1→ 3 and 2→ 4 Cloning.

Finally, we extend the above analysis to the more general scenario of M → N

cloning, taking M = 1,2 and N = 3,4. The result for 1→ 3 and 2→ 4 are illus-
trated in Fig. 7.7.

These examples are illustrative since they demonstrate the strengths of the
squared local cost function in Eq. (7.41) over the local cost function in Eq.
(7.43). In particular, we find that the local cost function does not enforce sym-
metry strongly enough in the output clones and using only the local cost function,
suboptimal solutions are found. We particularly observed this in the example of
2→ 4 cloning, where VarQlone tended to take a shortcut by allowing one of the
input states to fly through the circuit (resulting in nearly 100% fidelity for that
clone). It then attempts to perform 1→ 3 cloning with the remaining input state.
By strongly enforcing symmetry in the output clones using the squared cost, this
can be avoided.

We also test two connectivities in these examples, a fully connected (FC) and
the nearest neighbour (NN) architecture as allowed by the following gate sets:

GNN
P1→32

= {Riz(θ),Rix(θ),Riy (θ),CZ2,3,CZ3,4,CZ4,5} ∀i ∈ {2,3,4,5} (7.112)

and

GFC
P1→32

= {Riz(θ),Rix(θ),Riy (θ),CZ2,3,CZ2,4,CZ2,5,CZ3,4,CZ3,5,CZ4,5}

∀i ∈ {2,3,4,5}
(7.113)

Note, that for 1→ 3 (2→ 4) cloning, we actually use 4 (5) qubits, with one
being an ancilla. The results of these experiments are also given in Fig. 7.7.

Finally, we give the the circuits learned by VarQlone and approximately clone
all four states in Eq. (7.109) in the protocol, P2, for 1→ 2,1→ 3 and 2→ 4
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Figure 7.7: Clone fidelities for optimal circuits learned by VarQlone for (a) 1→ 3 and (b) 2→ 4
cloning of the states used in the coin-flipping protocol of [ATSVY00] et. al.. Mean and standard
deviations of 256 samples are shown (violin plots show the full distribution of fidelities), where the
fidelities are computed using tomography only on the Rigetti QVM. In both cases, VarQlone is able
to achieve average fidelities > 80%. (c-d) shows the mean and standard deviation of the optimal
fidelities found by VarQlone over 15 independent runs (15 random initial structures, g) for the
nearest neighbour (NN - purple) versus (d) fully connected (FC - pink) entanglement connectivity
allowed in the variable structure Ansatz for 1→ 3 and 2→ 4 cloning of P2 states. Insets of (c-d)
shown corresponding allowed CZ gates in each example.
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Figure 7.8: Circuits learned by VarQlone to clone states from the protocol, P2 for (a) 1→ 2,
(b) 1→ 3 and (c) 2→ 4 cloning. These specific circuits produce the fidelities in Fig. 7.6(b) for
1→ 2, (using the local cost function), and in Fig. 7.7 for 1→ 3 and 2→ 4 (using the squared
cost function). We allow an ancilla for all circuits, and ρk indicates the qubit which will be the kth

output clone.

cloning in Fig. 7.8. These are the specific circuits used to produce the fidelities in
Fig. 7.6(b) and Fig. 7.7.

7.5 Discussion and conclusions

We have shown, throughout this chapter, yet another face of unclonability, not
only as a core ingredient for quantum cryptanalysis but also with roots in founda-
tional questions of quantum mechanics. Our attempts in this chapter have given
partial answers to the following fundamental question: ‘How do we construct ef-
ficient, flexible, and noise-tolerant circuits to perform approximate cloning? and
‘How this ability will impact the security of real-life quantum protocols?’ This
latter question is especially pertinent in the current NISQ era, where the search
for beneficial applications on small-scale noisy quantum devices remains at the
forefront. On the other hand, this is an important and relevant question from
a quantum communication perspective, given the existing gaps between the real
implementations of quantum protocols and the proven theoretical results. In this
work, exploring the exciting era between cryptanalysis and quantum machine learn-
ing, we have proposed our variational quantum cloner (VarQlone), a cloning device
that utilizes the capability of short-depth quantum circuits and the power of clas-
sical computation to learn the ability to clone specific set of states. This brings



284 7. Variational Quantum Cloning: A New Cryptanalysis Toolkit

into view a whole new domain of performing realistic implementation of attacks
on quantum cryptographic systems. We note, however, that in order to fully
implement realistic and practical attacks, one must consider all aspects of the
protocol environment, including, for example, the input and output mechanisms
to the quantum cloner. Incorporating VarQlone into the full analysis of the exper-
imental implementation of quantum protocols, for example as in [BL13, B+17],
is a fruitful avenue for future work.

We remark that our work opens new frontiers for analyzing quantum crypto-
graphic schemes using quantum machine learning. In particular, this is applicable
to secure quantum communication schemes which are becoming increasingly rel-
evant in the quantum internet era.

We also note that one of the applications of our work is to find new cloning
circuits that perform better on specific hardware. We specify that even though
the states used in our examples and experiments are of low dimensions, in which
case the emulator or the state vector machines will also provide the required result
for cryptanalysis, using the VQA in VarQlone provides a circuit with better fidelity
than the optimal theoretical (or emulated) circuits when run on real hardware, as
we have seen in Fig. 7.3. This point establishes a unique use-case of quantum
machine learning techniques for a problem which is quantum in nature.

We also believe that the tools we have developed in this study can be used
to clone a new family of states with partial prior information, which leads to
expanding our fundamental understanding of approximate cloning and unclonability
in general. Therefore we conclude that finding new classes of cloners and their
circuits is a potential use-case of our work and a new appealing future research
direction.
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Conclusion

“Imagination is the only weapon in the war with reality.”
– Cheshire Cat - Alice in Wonderland

This thesis started with questions about unclonability in quantum mechanics and
its role in quantum cryptanalysis. We were also seeking to grasp a deeper insight
into the capacities of a quantum entity whose purpose is to attack the quantum
and classical cryptosystems, specifically given the recent advancement in theoreti-
cal and experimental verges of the research on quantum technologies. In doing so,
we have joined paths with various concepts such as unforgeability, unknownness,
pseudorandomness, learnability, physical unclonability and variational algorithms,
each of which has helped us to uncover a new connection to unclonability and let
us to this point to conclude the thesis with a brief summary of this tortuous road.
Hoping that the reader is not too weary by now, we will also discuss a general
outlook and future direction.

In Chapter 3 we studied a more general notion of unclonability with a new
perspective that related the unknownness of quantum states and processes to their
unclonability. Following this direction, we correspondingly discussed the relation
to learnability and eventually to a related cryptographic notion: unforgeability. We
then devised a framework in which the quantum unforgeability of cryptographic
primitives can be studied, regardless of being classical or quantum. This game-
based security framework has been our cryptographic handbook in the majority of
our security proofs throughout the thesis.

In Chapter 4, we met a new kind of unclonability, the physical unclonability,
which we have formally defined as a mathematical concept in the quantum world.
We managed to thoroughly study the unpredictability of some physical devices
with the physical unclonability properties in terms of their unforgeability. Thus
the notion of quantum physical unclonable functions has helped us to formalise
some of our intuitions about unforgeability, unclonability and learnability, which
we have put forward earlier. We have shown that the unforgeability of quantum
PUFs is a provable consequence of their unknownness as hardware assumptions,
which is unlike classical PUFs as they usually require assuming requirements that
are morally equivalent to their unpredictability. Another point worth mentioning
is the midst of proving the unforgeability of the unitary qPUF family, we appre-
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hended the crucial role of quantum randomness. We have followed this thread
in Chapter 5 where we studied the computational or cryptographic counterpart
of quantum randomness, i.e., quantum pseudorandomness. The investigation of
quantum pseudorandomness concerning physical unclonability has uncovered in-
teresting facts, some of which we conjecture and hope to be of interest in different
areas of physics and cryptography.

As the thesis title includes “...: from foundations to applications”, one would
expect that this road reaches ‘Applications’ at some point! That point was Chap-
ter 6, where we search for applications of quantum physical unclonable function.
We provide several proposals that demonstrate the applicability and relevance of
this notion in designing a new genre of quantum protocols: secure quantum pro-
tocols based on hardware assumptions. Even though our proposed protocols aim
for rather non-complex functionality, they are significant as a building block for
other more complicated protocols and functionalities. This factor is particularly
relevant if one takes a modular and composable view over quantum protocols,
which we believe should be the next era in quantum protocol design and security
analysis.1

Finally, we aimed to utilise recent developments in quantum computing for the
purpose of cryptanalysis. One of the most recent tools and topics of research in
this area is quantum machine learning and variational quantum algorithms. As a
result, in the last chapter (Chapter 7), we turned to another type of application:
practical cryptanalysis using variational algorithms. However, since we could not
resist a gaze into foundations, this chapter also includes questions and contribu-
tions regarding foundations and, more specifically, approximate quantum cloning.
Our attempts led to the design of VarQlone, our variational quantum cloner, using
which we have performed a cloning-based security analysis on different quantum
protocols. Although we have demonstrated specific case studies, we argue that
the foremost importance of this contribution is not the particular examples we
have investigated, but rather the new method and mentality that it uses for crypt-
analysis. We believe this method can be used in a handful of scenarios, and most
importantly, for protocols and cryptosystems for which we do not have full se-
curity proof while having such a tool can provide valuable insight. Yet another
significance of this work is its compatibility with NISQ devices since it would al-
low hardware-efficient and high-quality cloning circuits according to the available
hardware.

At the end of each chapter, we have discussed the potential future direction,
and remaining questions in each of the topics, which we do not intend to repeat

1Historically, quantum protocols have not been designed with this mindset. One reason per-
haps, is that they have been developed separately and by very different communities (physics,
cryptography, math). However, we have adopted this kind of modular view in the development of
quantum protocol zoo [Ver19] where we have gathered and studied different quantum protocols
and showed their composition into simpler subroutines and building blocks. This composition and
modularity are beneficial in designing advanced functionalities, as well as security proofs (Especially
in composable frameworks such as universal composability or abstract cryptography). We have
excluded our contributions on this topic from the thesis to keep it more coherent, though we
believed it would be worth a short remark, in the conclusion.
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here. Instead, we discuss a broader outlook and prospective research direction in
this field.

I believe one of the most exciting realms to step into, as also probably men-
tioned several times in the thesis, is the relationship between cryptography and
learning theory in the quantum world. One evident reason is that learning theory
offers powerful tools, both concretely theoretical and heuristic, which is maybe
unconventional (compared to the approaches used in what I call ‘hard-core cryp-
tography’) but exciting approaches towards cryptanalysis. Although the two fields
have quite different languages, it appears to me that in many cases, they talk
about closely related concepts, maybe from different perspectives. Thus, an idea
that hopefully, this thesis has managed to convey to some extent is that there
might be some level of correspondence between the two fields that could be cap-
turable inside a new framework (maybe too naively and ambitiously). This sort
of generalisation is, in my humble opinion, more feasible with quantum systems
since; first, its mathematical framework is enough to include classical cases, and
second, it inherently encompasses physics or the actual systems into the picture,
while it is often neglected in cryptography or classical learning theory. Additionally,
the recent works regarding learning different properties of the quantum states, or
the relationship between quantum information and quantum machine learning, are
an indication of this potential. An example of a concrete question I can propose
here is proving tight bounds for quantum unforgeability using these tools, which
would be in turn of interest in terms of learnability.

Next, let me go back to my other favourite research areas: physics and foun-
dations. The history of quantum cryptography shows how physics can influence
(and has influenced) cryptography. But can cryptography do the same? Can pow-
erful mathematical techniques and frameworks of cryptography help us to better
understand nature? Especially the cryptography that has been already armed with
physical phenomena such as unclonability and entanglement. To this end, a deep
understanding of concepts such as unclonability would become handy since it is
both central to physics and cryptography. Yet another concept that we have
discussed in this thesis and can be considered in this regime is quantum pseudo-
randomness. Computational randomness is a cryptographic concept, however, as
we have discussed in Chapter 5, pseudorandom quantum states have already been
of interest for fundamental physics and quantum gravity. One cannot help oneself
to wonder if perhaps there is a deeper level to this “rabbit hole” (which would be
a very convenient term if we were to study black holes, for instance). Maybe this
is motivating enough for ‘Alice’s in the future to continue the study of quantum
pseudorandomness and quantum physical unclonability in this context.

And finally, applications! Quantum hardware security (or quantum hardware
cryptography) is a very young2, yet promising field in terms of application. In this
field, the ultimate goal is to exploit the unique properties of quantum hardware
to reduce or remove computational assumptions or resource-intensive machinery

2I believe it did not really exist as a concrete field of research when I started my PhD, despite
the fact that there have been several works in this area.
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and achieve secure and efficient quantum protocols on this ground. This goal,
however exciting, and despite our attempts in this area, is admittedly still not too
close to reality. Regarding qPUFs, many open questions and potential extensions
exist, among which I can mention the realisation of efficient and secure quantum
PUFs, and certifying existing hardware to satisfy the criteria of qPUF as the most
influential ones. Both are challenging and potentially intriguing problems that
can help close the gap between the theoretical security analysis and the hardware
implementation of a quantum PUF. Even considering our proposed hybrid PUF
construction, which gives a significant practicality improvement, analysis of noise
and several experimental aspects has remained untouched. A more general remark
on the field is that PUF is not the only potential subject in hardware security, and
the discovery and study of other existing hardware assumptions in the quantum
setting can be remarkably fruitful.

I conclude this chapter and this thesis with a slightly less scientific and more
personal point, as I let my doubtful inner scientist elaborate. Despite the consid-
erable recent progress in building quantum computers, it is still a possibility that
either the noisy nature of these systems or our technological limitations in other
ways will defeat us in the conquest to achieve large scale and fault-tolerant quan-
tum computers (in which case there will be no need to protect ourselves against
them). Also, despite the strong complexity theory evidence, it is still a possibil-
ity for quantum computation to be proven to have no advantages over classical.
Even more drastically, we might find ourselves in a situation where quantum me-
chanics turns out to be insufficiently correct or severely incomplete (which is a
possibility every scientist concerning any scientific theory should be prepared for,
even if one develops affection for the beauty of a theory like quantum mechanics).
In the unlikely event of any of these happening in the future, I am aware that
it will hugely affect the validity and relevance of this thesis. Yet this thesis and
my works during the period of my PhD have still been a (hopefully meaningful)
attempt toward understanding, and if any piece of this attempt will ever create
any tiny bit of imagination, curiosity or excitement in anyone, I can hope that all
this effort has not been in vain, as “Imagination is the only weapon in the war with
reality.”



Appendix A

Additional proofs and derivations

A.1 Proof of Theorem 13 in Chapter 3

Here we give the full proof of Theorem 13 as follows:

Proof. We prove the theorem by induction. For the first block (K = 1), according
to Eq. (3.8) and letting |χ0⟩= |ψ⟩ we have:

|χ1⟩=
1

2
[(I−R(φr )) |ψ⟩ |0⟩+R(φi)(I+R(φr )) |ψ⟩ |1⟩] (A.1)

where the term I−R(φr ) = 2 |φr ⟩⟨φr | projects the previous state to |φr ⟩ with the
coefficient ⟨φr |ψ⟩ and the term R(φi)(I+R(φr )) is equal to:

R(φi)(I+R(φr )) = 2[I−|φr ⟩⟨φr |−2 |φi⟩⟨φi |+2⟨φi |φr ⟩ |φi⟩⟨φr |]. (A.2)

Thus, the final relation between all the parameters in the first block is as follows.

|χ1⟩= ⟨φr |ψ⟩ |φr ⟩ |0⟩+ |ψ⟩ |1⟩−⟨φr |ψ⟩ |φr ⟩ |1⟩
−2⟨φ1|ψ⟩ |φ1⟩ |1⟩+2⟨φr |ψ⟩⟨φr |φ1⟩ |φ1⟩ |1⟩

(A.3)

As can be seen, it satisfies the form of Eq. (3.9) where the first sum is zero
and in the second sum g10 = −1,g11 = +1, l ′10 = l ′11 = 1, x ′10 = z ′10 = 0,y ′10 = 1,
x ′11 = z

′
11 = 1 and y ′11 = 0.

Now we write |χK⟩ according to recursive relation of Eq. (3.8). We assume
|χK−1⟩ is written in form of Eq. (3.9) and show |χK⟩ also satisfies this equation.

|χK⟩=⟨φr |χK−1⟩ |φr ⟩ |0⟩+ |χK−1⟩ |1⟩−⟨φr |χK−1⟩ |φr ⟩ |1⟩−2⟨φK |χK−1⟩ |φK⟩ |1⟩
+2⟨φr |χK−1⟩⟨φr |φK⟩ |φK⟩ |1⟩

(A.4)

By substituting |χK−1⟩ with its equivalent based on Eq. (3.9), we calculate each
term in the above formula. Note that the coefficient in the third term is the same
as the first one with a minus sign, and the ancillary state for the first term is |0⟩
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while for the third term is |1⟩. Thus, we only show the details of the calculation
for the first term:

⟨φr |⟩χK−1 |φr ⟩ |0⟩=

⟨φr |ψ⟩ |φr ⟩ |0⟩⊗K+ ⟨φr |ψ⟩ |φr ⟩ |1⟩⊗K−1 |0⟩−⟨φr |ψ⟩ |φr ⟩ |1⟩⊗K−1 |0⟩+

+
K−1

∑
i=1

i

∑
j=0

[fi j2
li j | ⟨φr |ψ⟩|xi j | ⟨φi |ψ⟩|yi j | ⟨φr |φi⟩|zi j ] |φr ⟩ |qanc(i , j)⟩ |0⟩

+
K−1

∑
i=1

i

∑
j=0

[gi j2
l ′i j | ⟨φr |ψ⟩|x

′
i j | ⟨φi |ψ⟩|y

′
i j | ⟨φr |φi⟩|z

′
i j+1] |φi⟩ |q′anc(i , j)⟩ |0⟩ .

(A.5)

The second term is calculated as follows:

|χK−1⟩ |1⟩= ⟨φr |ψ⟩ |0⟩⊗K−1 |1⟩+ |ψ⟩ |1⟩⊗K−⟨φr |ψ⟩ |φr ⟩ |1⟩⊗K+

+
K−1

∑
i=1

i

∑
j=0

[fi j2
li j | ⟨φr |ψ⟩|xi j | ⟨φi |ψ⟩|yi j | ⟨φr |φi⟩|zi j ] |φr ⟩ |qanc(i , j)⟩ |1⟩

+
K−1

∑
i=1

i

∑
j=0

[gi j2
l ′i j | ⟨φr |ψ⟩|x

′
i j | ⟨φi |ψ⟩|y

′
i j | ⟨φr |φi⟩|z

′
i j ] |φi⟩ |q′anc(i , j)⟩ |1⟩ .

(A.6)

The forth term −2⟨φK |χK−1⟩ |φK⟩ |1⟩ has the coefficient −2⟨φK |χK−1⟩, which
produces the same sigma terms while only l ′i ,j ,x

′
i ,j ,y

′
i ,j and z ′i ,j are increased by one.

The fifth term 2⟨φr |χK−1⟩⟨φr |φK⟩ |φK⟩ |1⟩ has the coefficient 2⟨φr |χK−1⟩⟨φr |φK⟩
and similarly produces the same sigma terms where li ,j , xi ,j , yi ,j and zi ,j are in-
creased by one (Note that the ⟨φr |φK⟩ is itself one of the terms of the sigma).
Finally by putting all these terms together, Eq. (3.9) is obtained which completes
the proof.

A.2 Proof of Theorem 15 in Chapter 3

Proof. To show this implication we will show that if a QPT adversary A can win
in qGUU, then A can also win against µ-qGSU. Although for simplicity we restrict
the proof for the case of µ= 1 and the generalisation to any µ is straightforward
from the hierarchy of the definition for different µ shown in Theorem 14. Also, we
recall that 1-qGSU and 1-qGEU are equivalent. Let A play the game GFqUni(λ,A)
by picking a set of learning phase state {|φi⟩}Ki=1. Let the dimension of the unitary
oracle OE be D = 2n and let the subspace of σin be of dimension d = poly(n).
If A wins the game, then the average probability of A generating an acceptable
output for any x ∈M picked uniformly at random by C is non-negligible:

P r [1←GFqUni(λ,A)] = P r
x∈M
[1←A(x)] = non-negl(λ). (A.7)

where P r
x∈M
[1←A(x)] denotes the success probability of the adversary winning

the game for input x . Now to be able to translate this game to the 1-qGSU game,
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first, we need to make sure that the set of states that A picks the challenge from
them, satisfies the distinguishability condition for µ = 1 i.e. they are orthogonal
to all the learning phase states. Let M′ be the set of all the challenges with no
overlap with any of the learning phase states ρini . Then we can rewrite the average
success probability as follows:

P r
x∈M
[1←A(x)] = P r

x∈M′
[1←A(x)]P r [x ∈M′]+ P r

x ̸∈M′
[1←A(x)]P r [x ̸∈M′]

= non-negl(λ).
(A.8)

since the dimension of the subspace that σin spans is d and it is polynomial with
respect to the size ofM then |M

′|
|M| ≈ 1. Hence P r [x ∈M′]≈ 1 but P r [x ̸∈M′] =

1−P r [x ∈M′] = negl(λ). As a result the second term will be negligible and for
the whole expression to become non-negligible, the following should hold:

P r
x∈M′

[1←A(x)] = non-negl(λ). (A.9)

Now let A′ be an adversary who wants to win the game GFqSel,µ(λ,A′) by using
A. As A′ picks the challenge of their choice, we will show that there is a strategy
for A′ to win the game relying on the average success probability of A being
non-negligible overM′. But also as A′ is a QPT, we will show there exist a poly
size subspace of M′ in which A′ will win with non-negligible probability. First we
assume that M′ is partitioned into K different subsets (or subspaces) Si with
equal size (or dimension in the quantum case) |S1| = · · · = |SK | = l = poly(λ).
Note that this partitioning is only for simplicity and any random partitioning of
M′ into the equal size subspace will be enough for our purpose. Now let A′ pick
one of the subsets of message space which consists of picking one of the Si with
probability 1K . We want to show that if A′ picks the Si at random and calls A on
that Si the probability that in the picked subspace the following condition holds
is non-negligible:

P r
x∈Si
[1←A(x)] = non-negl(λ) (A.10)

If this is the case, then by the definition of the average probability there exists at
least one x∗ for which the P r [1←A(x∗)] = non-negl(λ) and hence the A′ has
won the game with a non-negligible probability. Thus we need to find the number
of the success probability of A′ picking a desirable subset. This probability is given
by:

P rsucc =

#(Si : P r
x∈Si
[1←A(x)] = non-negl(λ))

K
=
Q

K
(A.11)

where Q denotes the number of subsets Si which satisfy the condition and K =
O(|M′|). We then only need to show that Q

K is non-negligible in the security
parameter. For simplicity let us replace average probability of A in wining the
game over M′, with the expected value of wining probability of A over all the
different elements ofM′ i.e.

P r
x∈M′

[1←A(x)] = non-negl(λ)⇒ E
M′
[A(x)] = non-negl(λ) (A.12)
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Then we rewrite the expectation value in terms of all the subsets of M′. As
M′ = S1∪S2∪·· ·∪SK, we have:

E
M′
[A(x)] =

1

K

K

∑
i=1

Ei = non-negl(λ) (A.13)

where Ei = E
Si
[A(x)]. We then rearrange all the Ei descending such that the Qth

term shows the last smallest Ei for which the condition is satisfied. Hence we
have:

E
M′
[A(x)] =

1

K

Q

∑
i=1

Ei +
1

K

K

∑
i=Q+1

Ei = non-negl(λ) (A.14)

The above equality holds if at least one of the two sums is non-negligible. If the
first sum is non-negligible we have:

1

K

Q

∑
i=1

Ei ⩾
QEQ
K

(A.15)

As Eis have been ordered and EQ is the smallest one which is still non-negligible.
Then we can conclude that:

Q

K
= non-negl(λ) (A.16)

which is what we wanted to show. The second case is when the first sum is
negligible and the second sum needs to be non-negligible for the equality to hold.
Similar to the previous case due to the descending ordering, we have:

1

K

K

∑
i=Q+1

Ei ⩽
(K−Q)EQ+1

K
(A.17)

But followed by our assumption the EQ+1 is itself negligible and 0 < K−Q
K < 1,

thus this sum can never converge to a non-negligible function of λ. Hence we
conclude that necessarily the first sum, and as a result, QK is non-negligible. Thus
we have shown the equation A.10, and there exists a strategy for A′ to win the
game by calling A. This concludes that 1-qGSU(µ-qGSU) implies qGUU and the
proof is complete.

A.3 Proof of Theorem 16 in Chapter 3

Proof. We show that 1-qGEU implies BU and vice versa. First, we show that if
a scheme is not BU unforgeable against a QPT adversary then it is not 1-qGEU
unforgeable either. Let A be a QPT adversary who forges a scheme F = (S,E ,V)
with message setM= {0,1}n in the BU definition. Following the formal definition
of BU provided in Definition 23, A selects an ε for which the blinded region Bε is
created by selecting each m ∈M at random with an ε-related probability. Then
there exists a non-empty set Bε for which A interacts with the blinded oracle
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associated with it and outputs a pair (m∗, t∗) where t∗ = f (m∗) (where f is
the classical function of the evaluation E , for instance a MAC(.)) such that
V = V erk(m∗, t∗) = acc , and also the m∗ ∈ Bε with non-negligible probability in
λ= poly(n). By the definition of the blinding oracle, A receives a |⊥⟩ for any of
the computational basis that is in the blinded region. As a result, we can write
A’s input and output queries as follows:

|φi⟩= ∑
mi ̸∈Bε

αi |mi ,yi⟩+ ∑
mj∈Bε

βj |mj ,yj⟩

|φouti ⟩= ∑
mi ̸∈Bε

αi |mi ,yi ⊕ f (mi)⟩+ ∑
mj∈Bε

βj |mj ,yj⊕⊥⟩
(A.18)

Now assuming the quantum encoding of the challenge m∗ ∈ Bε to be |m∗,0⟩ and
the tag/output to be |m∗, t∗⟩ = |m∗, f (m∗)⟩, we can see that ⟨m∗, t∗|φouti ⟩ = 0
since m∗ will have no overlap with the first part of the superposition, and also to
the second part due to the blinding. Now, we show that there exists a unitary non-
blinding oracle that generates equivalent queries for this scenario. Let UE be the
unitary evaluation oracle such that |m∗, t∗⟩ = UE |m∗,0⟩, and similarly for all the
queries. Due to the unitarity, we have that ⟨m∗, t∗|φouti ⟩= ⟨m∗,0|UE

†UE |φi⟩= 0.
Thus there will also exist an adversary A′ with equivalent queries except that the
target forgery will be always orthogonal to the selected challenge. Hence for this
adversary, the condition of 1-qGEU is satisfied. Then by calling A, the adversary
A′ can generate an output state |m∗, t∗⟩ that passes the test algorithm with also
non-negligible probability. Hence we have shown that 1-qGEU implies BU.

To prove the other way of implication we need to show whenever there is an
attack on 1-qGEU, then there will also be an attack on BU definition and hence the
scheme is also BU insecure. This time we consider A to be a QPT adversary who
wins 1-qGEU by selecting a challenge state |m∗,y⟩ where the m∗ is the classical
challenge and y is the ancillary register, and querying a set of states {|φi⟩}qi=1
s.t. ∀|φi⟩ : ⟨m∗|φi⟩ = 0 and q = poly(n). Then by definition, A can output a
|m∗, t∗⟩=UE |m∗,y⟩ that passes the test algorithm with non-negligible probability.
Now an adversary A′ calls A to win the BU with non-negligible probability.

At this stage we recall the Theorem 10 and we show that an A′ satisfies
the conditions of this theorem. Let us write the learning phase queries in the
computational basis as follows:

|φouti ⟩=
d

∑
j=1

αi ,j |bj⟩ (A.19)

where {|bj⟩}dj=1 is the set of computational bases spanning the effective learning
phase subspace. Now we create a non-empty set R by selecting each x ∈M as
follows

R = {x ∈M : |x⟩ ̸= |bj⟩X} (A.20)

Where |bj⟩X denotes the input register of the full basis. Note that R will always
be non-empty as the basis set will only cover a polynomial-size subspace of the
whole Hilbert space of messages. Moreover, since A′ includes A and m∗ has no
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overlap with any of the input queries, it will also have no overlap with the input
register of the output queries. As a result, R has at least one element. Hence
the set of all input elements that have non-zero overlap with the queries and the
elements included in R have no intersection. This shows that supp(A)∩R = ∅
if the support is defined for the oracle Of for a fixed randomly picked classical
function f (or key k) during the game. Thus we also have supp(A′)∩R = ∅ and
m∗ ∈ R. Nevertheless, in [AMRS20] it has been mentioned that the support is
taken to be the union of the support of all the queries over the choice of the
function. In this case, we can also redefine our set and the queries of A′ such
that it satisfies the condition of the theorem respectively. We take the set R′ to
only include one element which is the forgery message m∗. As in the 1-qGEU
the function (or the key for the keyed functions) is selected at random in the
setup phase, the success probability of A is inherently taken over the choice of
the function. Then A′ queries all the queries of A for any randomly selected f
during the experiment. For any other functions, excludes any queries for which
the support will include m∗. Now we can see that A′ can output a valid pair
(m∗, t∗) by measuring |m∗, t∗⟩ in the computational basis with probability 1 while
supp(A′)∩R′ = ∅ and m∗ ∈ R′. Hence A′ breaks the BU unforgeability and we
have shown that BU implies 1-qGEU. This mutual implication shows that these
definitions are equivalent and the proof is complete.

A.4 Alternative model for an adaptive quantum ad-
versary

In this appendix, we introduce an alternative way for capturing full quantum adap-
tive adversaries. Here we also consider QPT adversaries who have q-query access
to the evaluation function of a primitive F , namely E where q is polynomial in
the security parameter. An adaptive adversary can choose and issue any arbitrary
query which could also depend on the previous responses received from the black-
box oracle. An adaptive quantum adversary is likely to consume the quantum state
of the response to be able to pick the next query adaptively. Hence modeling the
post-query database of an adaptive quantum adversary is more challenging. In
what follows we give a q-query mathematical model for adaptive adversaries.

Definition 54. Let q be a positive integer, and E : Hdin → Hdout be a
quantum evaluation. We model a probabilistic adversary as a CPTP
map A : R× (Hdin)⊗q ⊗ (Hdout)⊗q → (Hdin). Such an adversary is called
an adaptive adversary Aad if for all random coin r ∈ R and for any⊗q
i=1 ρ

in
i ∈ (Hdin)⊗q and for

⊗q
i=1 ρ

out
i ∈ (Hdout)⊗q (where ρouti := E(ρini )),

the mapping
⊗q
i=1(ρ

in
i ⊗ρouti )→Arad(

⊗q
i=1(ρ

in
i ⊗ρouti )) is dependent on the

ρin1 ⊗ρout1 , . . . ,ρinq ⊗ρoutq ;

Intuitively, an adaptive adversary A :R× (Hdin)⊗q⊗ (Hdout)⊗q → (Hdin) cap-
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tures the strategy to choose the query input ρinq+1 ∈ Hdin to E . The adversary
can use these query response pairs to predict the output of E . We call the pair
(
⊗q
i=1 ρ

in
i ,

⊗q
i=1 ρ

out
i ) that is generated after the q-round of interaction between

an adversary A and E , as a transcript. Note, that the transcripts depend on the
choice of the random coins of A.

However, since this model is more complicated to work with, we use our usual
notation used in Chapter 3.

A.5 Proof of Theorem 23 in Chapter 3

Proof. Let A be the QPT adversary playing the game GFqGUU−aua,µ(λ,A) and
running the algorithm described in Algorithm 4.

Algorithm 4 aua attack on qGUU
• First learning phase: null

• Challenge phase:

– prepare qubit |0⟩a
– receive |ψm⟩ as a challenge

• Second learning phase:

– |Ψ⟩ca = CNOTc,a(|ψm⟩ |0⟩)1

– query register c (A sends the challenge part of the entangled system,
ρc as a query.)

– receive UEρcUE
† or (UE ⊗I) |Ψ⟩ca

• Guess phase:

– |ψoutm ⟩⊗ |±⟩←Measure(|Ψ⟩ca ,{|±⟩})
– if |±⟩= |+⟩

– output: |t⟩= |ψoutm ⟩
– else

– output: |t⟩= CZ⊗n−1(|ψoutm ⟩)
– Measure(|Ψ⟩ca ,{|±⟩} outputs the result of the measurement.

A does not issue any query during the first learning phase. Then A receives an
unknown challenge state |ψm⟩= ∑

D
i=1αi |bi⟩ where {|bi⟩}Di=1 is a set of complete

orthonormal bases for HD. Now, A prepares state |0⟩ and performs a CNOT gate
on the first qubit of the unknown challenge state and the ancillary qubit (|0⟩) with
the control qubit on the challenge state. We can assume the order of the bases
is such that in the first half, the first qubit is |0⟩ and in the second half the first
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qubit is |1⟩. Then the output entangled state is

|Ψ⟩ca =
D/2

∑
i=1

αi |bi⟩c ⊗|0⟩a+
D

∑
i=D2 +1

αi |bi⟩c ⊗|1⟩a

Now we can compute the final state of the two systems after the second learning
phase which is:

|Ψout⟩ca =
D/2

∑
i=1

αi(UE ⊗ I)(|bi⟩c ⊗|0⟩a)+
D

∑
i=D2 +1

αi(UE ⊗ I)(|bi⟩c ⊗|1⟩a).

By rewriting the first qubit in the |+⟩ basis we have

|ψoutm ⟩= [UE(
D

∑
i=1

αi |bi⟩c)]
|+⟩√
2
+[UE(

D/2

∑
i=1

αi |bi⟩c −
D

∑
i=D2 +1

αi |bi⟩c)]
|−⟩√
2
.

Then, the adversary measures his local qubit in the {|+⟩ , |−⟩} bases. If he obtains
|+⟩, the state collapses to UE(∑

D
i=1αi |bi⟩c) = UE |ψm⟩ that is the desired state

with fidelity 1. If the output of the measurement is |−⟩, half of the terms have a
minus sign. In this case, A applies a controlled-Z gate on the second half of the
state to obtain again UE |ψm⟩. As a result, for any κ1 and κ2, we have:

P r [1←GFqUni−aua,µ(λ,A)] = P r [1←T ((UE |ψm⟩)⊗κ1, |t⟩
⊗κ2)] = 1.

Now to complete the proof, we show that the µ-distinguishability is satisfied
on average. We need to calculate the reduced density matrix of this state and
compare it with the density matrix ρψ = |ψ⟩⟨ψ| in terms of the Uhlmann’s fidelity.
The reduced density matrix of the challenge state can be calculated as follows:

ρc = T ra[|ψ⟩⟨ψ|ca] =
D

∑
i=1

|αi |2 |bi⟩⟨bi |+
D
2

∑
i=j=1

D

∑
j ̸=i ,j=D2 +1

αiαj |bi⟩⟨bj |+

D

∑
i=D2 +1

D
2

∑
j ̸=i ,j=1

αiαj |bi⟩⟨bj |

where T ra denoted the partial trace taken over the adversary’s sub-system. And
the first sum shows the diagonal terms of the density matrix. As it can be seen
these density matrices are different in half of the non-diagonal terms with the ρψ.
According to the Uhlmann’s fidelity definition in the preliminary, and the fact that
|ψ⟩ is a pure state the fidelity reduce to:

F (ρψ,ρc) = [T r(
√√

ρψρc
√
ρψ)]

2 = ⟨ψ|ρc |ψ⟩=
D

∑
i=1

|αi |2 ⟨bi |ρc |bi⟩ .

By substituting the ρc from above, the result will be as follows:

F (ρψ,ρc) =
D

∑
i=1

|αi |4+
D
2

∑
i=1

D

∑
j=D2 +1

2|αiαj |2 = 1−
D(D−1)
4

∑
i=1

2|γi |2
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where |γi |2 denoted the square of a quarter of the non-diagonal elements of ρψ.
This is a positive value and on average over all the state |ψ⟩, non-negligible
compared to the dimensionality of the state. Hence:

F (ρψ,ρc)⩽ 1−non-negl(λ)

and the distinguishability condition is satisfied and the proof is complete.

A.6 Calculation of the cost function’s gradient for
VarQlone

In this appendix we calculate the gradient of the cost functions we have introduced
in Section 7.3.2 of Chapter 7, using the techniques introduced in Section 2.6.4.4.

We remind the squared cost:

CM→Nsq (θ) := E
|ψ⟩∈S

[
N

∑
i=1

(1−F iL(θ))2 +
N

∑
i<j

(F iL(θ)−F
j
L(θ))

2

]
(A.21)

and its partial derivative from Eq. (7.46)

∂Csq(θ)

∂θl
= 2 E

|ψ⟩∈S

[
N

∑
i=1

(1−F iL(θ))
[
−
∂F iL(θ)

∂θl

]
+

N

∑
i<j

(F iL(θ)−F
j
L(θ))

[
∂F iL(θ)

∂θl
−
∂F jL(θ)

∂θl

]]
(A.22)

Now we assume that each U(θ) := U(θd)U(θd−1) . . .U(θ1) is composed of unitary
gates of the form: U(θl) = exp(−iθlΣl), where Σ2l = 1 (for example, a tensor
product of Pauli operators). We can use the parameter shift rule from Theo-
rem 12, we get:

∂U(θ)ρinitU(θ)
†

∂θl
= U l+

π
2 (θ)ρinit(U(θ)

l+π2 )†−U l−
π
2 (θ)ρinit(U(θ)

l−π2 )† (A.23)

Where the notation, U l±
π
2 , indicates the l th parameter has been shifted by ±π2 ,

i.e. U l±
π
2 := U(θd)U(θd−1) . . .U(θl ±π/2) . . .U(θ1). We get:

∂F jL(θ)

∂θl
= Tr

[
|ψ⟩⟨ψ|Tr̄j

(
U l+

π
2 (θ)ρinit(U(θ)

l+π2 )†
)]

−Tr
[
|ψ⟩⟨ψ|Tr̄j

(
U l−

π
2 (θ)ρinit(U(θ)

l−π2 )†
)]

=⇒
∂F jL(θ)

∂θl
= Tr

[
|ψ⟩⟨ψ|ρl+

π
2

j (θ)
]
−Tr

[
|ψ⟩⟨ψ|ρl−

π
2

j (θ)
]

= F
(j,l+π2 )

L (θ)−F (j,l−
π
2 )

L (θ)

(A.24)

where we define F
(l±π2 )
j (θ) := ⟨ψ|ρl±

π
2

j (θ) |ψ⟩ the fidelity of the j th clone, when
prepared using a unitary whose l th parameter is shifted by ±π2 , with respect to a
target input state, |ψ⟩.
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Plugging this into Eq. (A.22), we get:

∂Csq(θ)

∂θl
= 2E
|ψ⟩∈S

[
N

∑
i<j

(F iL−F
j
L)
[
F
(i ,l+π2 )

L −F (i ,l−
π
2 )

L −F (j,l+
π
2 )

L +F
(j,l−π2 )
L

]
(A.25)

−
N

∑
i=1

(1−F iL)
[
F
(i ,l+π2 )

L −F (i ,l−
π
2 )

L

]]
(A.26)

Using the same method, we can also derive the gradient of the local cost, Eq.
(7.43) with N output clones as:

∂CL(θ)

∂θl
= E

(
N

∑
i=1

[
F
i ,l−π/2
L −F i ,l+π/2L

])
(A.27)

Finally, similar techniques result in the analytical expression of the gradient of the
global cost function:

∂CG(θ)

∂θl
= E

(
F
l−π/2
G −F l+π/2G

)
(A.28)

where FG := F (|ψ⟩⟨ψ|⊗N ,ρθ) is the global fidelity between the parameterised
output state and an N-fold tensor product of input states to be cloned.
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