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Abstract 20 
The combined use of multiple omics methods to answer complex system biology questions 21 
is growing in biological and medical sciences, as the importance of studying interrelated 22 
biological processes in their entirety is increasingly recognized. We applied a combination of 23 
metabolomics, lipidomics and proteomics to human bone to investigate the potential of this 24 
multi-omics approach to estimate the time elapsed since death (i.e., the postmortem 25 
interval, PMI). This “ForensOMICS” approach has the potential to improve accuracy and 26 
precision of PMI estimation of skeletonized human remains, thereby helping forensic 27 
investigators to establish the timeline of events surrounding death. Anterior midshaft tibial 28 
bone was collected from four female body donors in a fresh stage of decomposition before 29 
placement of the bodies to decompose outdoors at the human taphonomy facility managed 30 
by the Forensic Anthropological Center at Texas State (FACTS). Bone samples were again 31 
collected at selected PMIs (219, 790, 834 and 872 days). Liquid chromatography mass 32 
spectrometry (LC-MS) was used to obtain untargeted metabolomic, lipidomic and proteomic 33 
profiles from the pre- and post-placement bone samples. Univariate and multivariate 34 
analysis were used to investigate the three omics blocks independently and followed by 35 
Data Integration Analysis for Biomarker discovery using Latent variable approaches for 36 
Omics studies (DIABLO), to identify the reduced number of markers that could effectively 37 
describe postmortem changes and discriminate the individuals based on their PMI. The 38 
resulting model showed that pre-placement bone metabolome, lipidome and proteome 39 
profiles were clearly distinguishable from post-placement profiles. Metabolites associated 40 
with the pre-placement samples, suggested an extinction of the energetic metabolism and a 41 
switch towards another source of fuelling (e.g., structural proteins). We were able to 42 
identify certain biomolecules from the three groups that show excellent potential for 43 
estimation of the PMI, predominantly the biomolecules from the metabolomics block. Our 44 
findings suggest that, by targeting a combination of compounds with different postmortem 45 
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stability, in future studies we could be able to estimate both short PMIs, by using 46 
metabolites and lipids, and longer PMIs, by including more stable proteins. 47 
 48 
 49 
Key words: human bone, postmortem interval, decomposition, multi omics, metabolomics, 50 
lipidomics, proteomics  51 
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1 Introduction 52 

The modifications that occur to the human body after death are complex and known to be 53 

affected by a variety of intrinsic and extrinsic factors. The rate of decomposition can vary 54 

significantly depending on the environment and even the manner of death. Nonetheless, 55 

the process of decomposition has been demonstrated to be predictable, providing 56 

opportunities to estimate the time elapsed since death (also known as postmortem interval, 57 

PMI) based on gross morphological and/or microscopic changes to the body. Precise and 58 

accurate estimation of the PMI is crucial to help establish the timeline of events surrounding 59 

death and can help medicolegal investigators with the identification of the deceased and 60 

can corroborate or negate other forensic evidence.  61 

In the first hours after death, the body undergoes several postmortem changes, including 62 

progressive cooling (algor mortis), increased rigidity associated with muscle stiffness (rigor 63 

mortis), and pink-purplish discolouration, in light skinned individuals, caused by the lack of 64 

blood circulation in and settling of blood in the lowest areas (livor mortis)1–3. After these 65 

stages, as the time since death increases, the breaking down and liquefaction of the organs 66 

and other soft tissues will occur: a process referred to as putrefaction. The lack of 67 

oxygenated circulation induces cellular hypoxia, leading to swelling of the cells, and 68 

subsequent rupture of cell membranes and releasing of digestive enzymes. This triggers 69 

autolytic digestion of the soft tissues4. The body becomes fully anaerobic, allowing anoxic 70 

(endogenous) bacteria to proliferate and transmigrate throughout the entire body5,6. The 71 

activity of endogenous bacteria results in the accumulation of gases which cause bloating of 72 

the soft tissues, starting in the abdomen, but al also visible in the face in early 73 

decomposition stages, and progressing towards the rest of the body. Colonisation of the 74 

body by insects and exogenous bacteria, mostly aerobic microorganisms, contributes further 75 

to the changes and reduction of the soft tissues7,8. Besides these, other extrinsic factors 76 

including abiotic environmental conditions (e.g., humidity, temperature, sun exposition, 77 

aeration, burial context) and biotic factors, such as the presence and type of 78 

microorganisms, insects, and scavengers9,10, will affect the rate of decomposition of the soft 79 

tissues. Intrinsic factors known to affect the rate of decomposition include, among others, 80 

body mass index, and antemortem and perimortem pathological conditions11. Completion 81 

of putrefaction and the activity of insects consuming the decomposing soft tissues, will 82 

leave the remains completely, or almost completely, skeletonized, and dry. 83 
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The complex nature and interplay of intrinsic and extrinsic variables involved in the process 84 

of decomposition, means that developing accurate and precise models for PMI estimation is 85 

extremely challenging. Traditional methods of PMI estimation include calculating PMI using 86 

the body temperature and ambient temperature (which relies on the predictability of algor 87 

mortis, and works for short PMIs only), or the visual assessment of gross morphological 88 

changes to the body to estimate a PMI range (short and longer PMIs). Since the rate of gross 89 

morphological changes is variable, methods that rely on visual scoring of decomposition 90 

stages suffer from issues of poor accuracy and precision. An additional problem of such 91 

methods is the effect of interobserver variation on the scoring of decomposition stages. For 92 

all commonly used PMI estimation methods, the accuracy and precision decreases 93 

considerably as decomposition progresses, and is particularly problematic when the remains 94 

are partially or completely skeletonized2,3.  95 

In recent years, the number of studies exploring the use of biomolecular methods of PMI 96 

estimation has risen sharply, due to their potential for providing more accurate and precise 97 

estimation methods based on the rates of decay of different molecules and compounds12–16. 98 

Better understanding of biomolecular decomposition of bone will provide opportunities to 99 

develop biomolecular methods for estimation of longer PMIs (i.e., timeframes in which soft 100 

tissues are unlikely to be preserved). Moreover, through the combined analysis of multiple 101 

different panels of omics, greater precision and accuracy of PMI estimation can potentially 102 

be achieved.  103 

Biomolecular decomposition is caused by both enzymatic and microbial breakdown of large 104 

molecules, resulting in the breakage of proteins into amino acids (AA), of carbohydrates into 105 

more simple monosaccharides, and of lipids into simpler fatty acids chains17,18. In 106 

carbohydrate decomposition, the complex polysaccharides are normally broken down via 107 

microbial activity into smaller units of monosaccharides. This breakdown can be achieved by 108 

oxidation that produces carbon dioxide and water and can partially decompose resulting in 109 

the production of organic acids and alcohols. Alternatively, the monosaccharides can be 110 

degraded by fungal activity into glucuronic, citric, and oxalic acids, or by bacteria into lactic, 111 

butyric, and acetic acids17,19. During decay of lipids, free saturated and unsaturated fatty 112 

acids are released due to hydrolysis mediated by the action of intrinsic lipases released after 113 

death. These can then be converted into hydroxyl fatty acids (the main constituent of 114 

adipocere) by the action of specific bacterial enzymes in humid environments, or can 115 
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associate with potassium and sodium ions, resulting in the formation of salts19. Protein 116 

degradation is primarily an enzyme-driven process, led by the action of proteases, which 117 

occurs at different rates for different proteins and tissues. Proteolytic enzymes induce the 118 

hydrolytic breakdown of proteins and the production respectively of proteoses, peptones, 119 

polypeptides, and finally AA, which can be further modified via deamination (production of 120 

ammonia), decarboxylation (production of cadaverine, putrescine, tyramine, tryptamine, 121 

indole, skatole and carbon dioxide) and desulfhydralation (production of hydro gen 122 

sulphide, pyruvic acid, and thiols)17,19.  123 

The analysis of low molecular weight compounds and decomposition by-products is 124 

becoming more popular in forensic science, particularly for the purpose of estimating the 125 

PMI20. Time since death was recently reported as the main variable driving modifications in 126 

the metabolome occurring after death21 in many soft tissues and fluids, so the metabolomic 127 

approach appears ideal to estimate PMI. However, the potential forensic significance of the 128 

postmortem bone metabolome is as yet underexplored22. Several studies on soft tissues 129 

(vitreous and aqueous humour) have examined metabolomics for the purpose of 130 

determining short PMIs. Examining longer PMIs based on metabolomics analysis of humour 131 

has not been possible due to evaporation and leakage through the corneal surface as time 132 

since death progresses15. Girela et al.23 reported a significant positive correlation between 133 

postmortem interval and taurine, glutamate, and aspartate levels observed in vitreous 134 

humour. These results were partially confirmed by Zelentsova et al.16, who found a 135 

correlation between the levels of hypoxanthine, choline, creatine, betaine, glutamate, and 136 

glycine and PMI. Another approach employing 1H-NMR on aqueous humour from pig heads 137 

reported taurine, choline, and succinate as major metabolites involved in the postmortem 138 

modification15. The same study also showed an orthogonally constrained PLS2 (oCPLS2) 139 

model showing prediction error of 59 min for PMI < 500 min, 104 min for PMI from 500 to 140 

1000 min, and 118 min for PMI > 1000 min. Beside humour, muscle is one of the most 141 

frequently targeted tissues in metabolomics studies focused on short PMI estimation. Pesko 142 

et al.14 recently evaluated rat and human biceps femoris muscles from the same individuals 143 

at different PMIs, demonstrating an increase of the abundance of several metabolites, 144 

including most of those derived from the breakdown of proteins, and in particular 145 

highlighting how threonine, tyrosine, and lysine show the most consistent and predictable 146 

variations in relatively short PMIs. An untargeted metabolomics study on muscle tissue also 147 
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indicated the potential of isolating biomarkers associated with age24, suggesting the 148 

potential applications of metabolomics for both age-at-death (AAD) and PMI estimation.  149 

To date, only three studies have used lipidomics assays for PMI estimation. Two of them 150 

were conducted on muscle tissue and showed, in general, a negative correlation between 151 

most lipid classes and PMI, as well as an increment in free fatty acids25,26. The third study 152 

applied lipidomics to trabecular bone samples from calcanei spanning a PMI of 153 

approximately seven years and highlighted the presence of 76 potential N-acyl AA that 154 

could be employed for PMI estimation, however their correlation with PMI has not yet been 155 

fully elucidated27. 156 

Several studies have tried to quantify the degree of survival of proteins and the 157 

accumulation of post-translational modifications (PTMs) of AA in both animal and human 158 

models10,11,13,28,29 as well as under different conditions (e.g., in aquatic environments, 159 

different types of coffins, buried vs. surface)28–30. The premise of these studies is that the 160 

protective action of the hydroxyapatite is expected to enhance the survival of proteins, 161 

allowing potential estimation of longer PMIs. Results generally showed that blood/plasma 162 

and ubiquitous proteins decrease in their abundance constantly starting from the early 163 

decomposition stages, whereas proteins more strongly connected to the mineral matrix 164 

such as bone-specific proteins are able to survive for longer PMIs and can be useful 165 

indicators for PMI estimation also in skeletonised remains. Similarly, also the accumulation 166 

of specific non-enzymatic PTMs, such as deamidations, can be used as a biomarker for the 167 

evaluation of the PMI in bones. 168 

While many studies have applied different analytical platforms for proteomics, 169 

metabolomics and lipidomics to several different matrices14–16,23,31–35, relatively little is 170 

known about the biomolecular decomposition of bone tissue. Moreover, while clinical 171 

studies have applied multi-omics methods with some frequency, their potential for 172 

development of more precise and accurate biomolecular PMI estimation methods has not 173 

been explored. The present study applies, for the first time, a multi-omics approach (i.e., 174 

combined proteomics, metabolomics and lipidomics, defined here as the “ForensOMICS” 175 

approach) to pre- and post-decomposition tibial cortical bone samples from four human 176 

female body donors, to identify potential multi-omics biomarkers of time since death. The 177 

multi-omics approach uses the natural differences in manner and rate of decomposition 178 

between the different biomolecules (proteins, metabolites, lipids) to expand the potential 179 
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range of PMIs and to cross-correlate results between different sets of biomarkers to narrow 180 

down PMI ranges based on the degradation of multiple biomolecules. The use a of a single 181 

omics technique would not be suitable to investigate a wide range of potential PMIs. 182 

Metabolites and lipids are appropriate for short PMIs while protein have been proved to be 183 

stable across longer ones. Therefore, the combination of the three classes of biomolecules 184 

aims to obtain ideal coverage across a wider range of PMIs. Additional advantages of the 185 

combined application of these methods potentially include greater flexibility in application 186 

across different environments and different postmortem treatments since the use of 187 

multiple types of biomolecules and compounds increases the likelihood of retrieving 188 

suitable markers for PMI estimation. The present study provides proof-of-concept for future 189 

validation of the multi-omics approach on a larger number of individuals.  190 

2 Results 191 

2.1 Single omics profile 192 

The metabolites matrices resulting from the combination of metabolomics ESI+ and ESI- 193 

data were combined in a final matrix with a total of 104 identified compounds after the 194 

removal of non-endogenous compounds following querying in HMDB. Furthermore, after 195 

preliminary inspection via PCA, lipidomics ESI+ results were excluded due to their poor 196 

contribution to a potential discriminant model. Each omics block was then evaluated 197 

individually via univariate (Kruskal-Wallis and Dunn’s pairwise test) and multivariate (PLS-198 

DA) analysis. The overall the Clustered Image Map (CIM) and individual plot obtained with 199 

metabolomics suggested a clear separation between fresh and decomposed samples and 200 

the total variance explained by the model in the first two components taken together was 201 

60% (Figure 1 – figure supplement 1). More interestingly, increasing PMIs were found to 202 

cluster progressively further away from the fresh individuals. By observing the clustering of 203 

the variables in the CIM, it was clear the presence of three major behaviours: (i) reduction in 204 

the intensity of compounds between the pre-deposition samples and the skeletonised ones; 205 

(ii) higher intensity of compounds for the 219, 790, 843 days PMI groups; (iii) presence of 206 

compounds that specifically were more intense in the 872 days PMI. Examples of these 207 

behaviours can be observed in Figure 1 – figure supplement 1. These compounds were 208 

found to be significant for Kruskal-Wallis but were only visually selected (Figure 1 – figure 209 

supplement 1) because of their trend with PMI. However, these results were not fully 210 

supported by statistical testing, as pairwise analysis mainly showed significant differences 211 
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between few PMI groups, specifically between baseline versus more advanced PMIs (Figure 212 

1 – figure supplement 2). It is interesting to note that D2 appeared to have a specific profile 213 

in the pre-deposition state that clearly differed from the other donors, therefore potentially 214 

affecting the overall clustering and partially hiding the effect of PMI. In contrast, D4 after 215 

decomposition showed a distinct profile, likely associated with the prolonged PMI. 216 

Lipidomic profiling (Figure 1 – figure supplement 2) showed that the closer cluster to the 217 

pre-deposition individuals is the 872 days group, followed by 219, 790 and 834 days. This 218 

could be related to the fact that a large number of lipids, not highly abundant in the fresh 219 

portion of the sample, was found to be higher in intensity for early PMIs to then 220 

progressively decrease. However, a large block constituted mostly by ceramides, was here 221 

shown to be highly present in the skeletonised D4 compared to the remaining individuals, 222 

suggesting a relationship with PMI. The same three behaviours extrapolated for metabolite 223 

features were identified for lipids (Figure 1 – figure supplement 2). The model for this block 224 

explains 73% of the variance in the first two components. 225 

Finally, proteins showed an inferior discriminatory power in comparison with the other 226 

classes of molecules according to individual consensus plot (Figure 1 – figure supplement 3). 227 

The variance explained in the model in the first two components was only 35% and, besides 228 

the major separation between pre- and post- decomposition, it was not possible to clearly 229 

discriminate the various PMIs (Figure 1 – figure supplement 3). However, with the 230 

exception of D3 (834 days PMI), it is clear that the skeletonised samples cluster away from 231 

the fresh ones with increasing PMIs. Few proteins evaluated via univariate statistics, 232 

however, showed clear visual and significant negative trends in the overall sample (Kruskal-233 

Wallis), although pairwise comparison could not confirm the statistical significance of the 234 

difference across PMIs (Dunn’s test, Supplementary File 1). These proteins were 235 

ASPN_HUMAN, H4_HUMAN, HBB_HUMAN, OSTP_HUMAN, VIME_HUMAN. Moreover, what 236 

was clear in Figure 1 – figure supplement 3 is the large variation between replicates that 237 

could affect the evaluation of the proteins’ behaviour with PMI. 238 

2.2 Omics integration 239 

All the 24 human bone samples were included in the omics integration model (Figure 1). We 240 

firstly evaluated correlations between the omics block using PLS regression. Results for 241 

component one showed an R value of 0.94 between metabolomics and lipidomics, 0.96 242 

between metabolomics and proteomics and 0.87 between lipidomics and proteomics. 243 
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Feature selection using the DIABLO method aimed to identify highly correlated and 244 

discriminant variables across the three omics. Arrow plot (Figure 1A) showed the overall 245 

separation between fresh and skeletonised samples, which was mainly developed along the 246 

first component. However, it was possible to note that the individual with the longest PMI 247 

(D4, 872 days) also clustered away from the remaining skeletonised samples along the 248 

second component (Figure 1B). The optimal number of components was set at three by 249 

means of 3-fold cross-validation repeated 100 times (Figure 1B). The overall balanced error 250 

remained below 0.4 (Figure 1 – figure supplement 4). After tuning the model by attributing 251 

the same weight to all the omics blocks, the ideal panel of markers selected in the first 252 

component that retained most of the covariance of the system includes 14 metabolites, five 253 

lipids and five proteins (Figure 1C). These loading plots show that a few metabolite markers 254 

have a high loading for different PMIs, whereas both lipid and protein markers have high 255 

values particularly for the fresh samples. Considering the individual -omics consensus plots 256 

in Figure 1 – figure supplement 5, metabolite and lipid blocks showed a better segregation 257 

between the various PMIs in the skeletonised state in comparison with the protein one. 258 

There is, however, overlap in all blocks for these intermediate PMIs. 259 

Multi-omics sample variations between bones from fresh and skeletonised cadavers were 260 

also supported by the clustered image map (Figure 1D), which showed a clear separation 261 

between the two groups. Most of the compounds selected by the model were highly 262 

abundant in the fresh samples and less abundant in the skeletonised ones, although the 263 

lower panel of metabolites (in Figure 1D) showed an opposite trend. In general, it could be 264 

observed that the samples with shorter PMIs (up to 834 days) showed a decline for proteins, 265 

lipids, and for nine of the metabolites selected for the PMI model as well as an increase in 266 

the remaining seven metabolites in comparison with their fresh counterparts. Whereas the 267 

decline in the abundance of proteins and lipids in comparison with the fresh samples was 268 

similar between all the 12 skeletonised samples, the increase or decrease in the abundance 269 

of specific metabolites was more exacerbated in the samples with the longest PMI (872 270 

days) in comparison with the others (Figure 1D). To conclude, the model was first cross 271 

validated resulting in a mean standard error of the classification error of 9.67. Additionally, 272 

after performing permutation test there was still significant difference in the discrimination 273 

between the PMIs (p = 0.001). 274 
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 275 
Figure 1. Results for the tuned model. (A) Arrow plot showing multiblock contexts for the 276 
overall model. (B) optimal number of components to explain model variable calculated via 277 
cross-validation. (C) Loading plot showing how each variable contribute to the covariance of 278 
each group. (D) The CIM shows the selected compounds in the final model. It is possible to 279 
see that most compounds decrease in intensity after decomposition except for few 280 
metabolites and two lipids that specifically increase in certain PMI intervals. 281 
 282 
The following figure supplements are available for figure 1: 283 
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 284 
Figure 1 – figure supplement 1. Clustered image map (cim), sample plot and boxplot for the 285 
metabolomics data. 286 
 287 
Figure 1 – figure supplement 2. Clustered image map (cim) and B) sample plot for the 288 
lipidomics data. 289 
 290 
Figure 1 – figure supplement 3. Clustered image map (cim), sample plot and boxplot for the 291 
proteomics data. 292 
 293 
Figure 1 – figure supplement 4. Balanced error variations across variable selection steps. 294 
 295 
Figure 1 – figure supplement 5. Score plots for PLS-DA results of all the omics blocks 296 
considered. 297 
 298 
 299 

By evaluating individual markers, it was possible to identify compounds that increased or 300 

decreased consistently across the PMI (Figure 2A). More specifically, palmitoyl 301 

ethanolamide, ethyl palmitolate, N,N-diethylethanolamine, sedanolide, 12-302 

aminododecanoic acid and acetamide showed the lowest values for the fresh samples and 303 

increasing values with prolonged decomposition time. The remaining metabolites decreased 304 

consistently with PMI with a considerable drop between the baseline and 219 days. Lipids 305 

and proteins selected for the model, instead, were all characterised by a drastic reduction in 306 

their intensity in the skeletonised samples in comparison with the fresh ones. Proteins 307 

selected here were two histone proteins (histone H2A type 1-H (H2A1H), and histone H4 308 

(H4)), haemoglobin subunit alpha (HBA), vimentin (VIME) and actin (ACTB).  309 



 12 

 310 
Figure 2. (A) Boxplots of the selected variables after tuning that shows variation with PMI. 311 
Variables are expressed in standardised values. (B) Correlation between different omics 312 
blocks highlighting the correlations between different compounds obtained with the three 313 
omics selected in the final discriminant analysis model. 314 
 315 

High significant correlations (r>0.9) were also identified between compounds belonging to 316 

the three distinct omics blocks (Figure 2B). Palmitoyl ethanolamide showed negative 317 

correlation with all lipids selected but PC(16:1e_20:4)+HCOO and with H2A1H_HUMAN and 318 

H4_HUMAN proteins. Creatinine, hypoxanthine and D-Neopterin were positively correlated 319 

with all lipids selected but PC(16:1e_20:4)+HCOO and with H2A1H_HUMAN and 320 

H4_HUMAN proteins, whereas creatine was positively correlated with all lipids selected but 321 

PC(16:1e_20:4)+HCOO and with H2A1H_HUMAN. 322 

 323 
3 Discussion 324 

This study comprises, to the best of our knowledge, the first attempt to apply a panel of 325 

three omics methods to human bones from a controlled decomposition experiment, to 326 

identify potential biomarkers for biomolecular postmortem interval (PMI) estimation. To 327 

develop and validate multi-omics PMI estimation methods for forensic applications, 328 

replication studies in substantial sample sizes of human bones will be necessary. However, 329 

the availability of bone samples both before and after decomposition from the same 330 

individuals is currently very limited. The work presented here represents a proof-of-concept 331 
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study on the potential advantages of combining different omics for PMI estimation. The 332 

small number of individuals included is consistent with numbers generally used in human 333 

decomposition experiments, in which for practical and ethical reasons larger samples, such 334 

as used in clinical studies, are very difficult to obtain. While the sample size used here is not 335 

suitable for validation purposes, it serves to demonstrate the value and potential of the 336 

“ForensOMICS” approach.  337 

 Considering each omics individually, the proteomic profile appears to show quite a 338 

considerable overlap between the individuals from three post-decomposition groups (i.e., 339 

219, 790 and 834 days) suggesting that this method on its own does not provide sufficient 340 

sensitivity to segregate close PMIs (Figure 1 – figure supplement 3). This could be due to the 341 

nature of these biomolecules; proteins, in fact, are highly stable and may be better suitable 342 

for long-term PMI estimation in forensic scenarios12,13 as well as in the investigation of 343 

archaeological remains43,44. Additionally, other analyses such as post-translational protein 344 

modifications may reveal a greater potential for PMI estimation in bones than the 345 

evaluation of the abundance of specific markers on their own12. Employing a system biology 346 

approach for PMI estimation for forensic purposes by combining more than one class of 347 

biomolecules that have different postmortem stability17, provides a biological explanation of 348 

the processes under investigation. This is achieved in this study by combining different 349 

layers of omics (i.e., metabolomics, lipidomics and proteomics) to reconstruct the molecular 350 

profile of the overall system. The DIABLO model simultaneously identifies important 351 

markers to optimise classification of PMIs by combining multiple omics techniques41. This is 352 

normally used to explain the biological mechanisms that determine a disease and its 353 

development, while in our case the main advantage is represented by the potential of 354 

selecting a pool of compounds that effectively explains, and could accurately estimate, PMI 355 

changes over an extended period of time. One interesting aspect of this approach is the 356 

difference in clustering between the metabolite and lipid blocks individually compared to 357 

the integration model. It can be seen in Figure 1 – figure supplement 1 (metabolomics 358 

block) that samples with increasing PMIs seems to cluster further away from the pre-359 

deposition sample in a time dependent manner, with the 219 days PMI being closer to the 360 

fresh donors and the 872 days one being the furthest located. However, as suggested, the 361 

metabolomics profile of D2 seems to be significantly different from the other donors in the 362 

fresh state, and this could suggest that interindividual variation could affect the efficient 363 
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clustering. This has been already highlighted in the proteomics work conducted on the same 364 

samples and was likely caused by the health condition of the donor prior to death11. In 365 

contrast, the positioning of the PMI in the cluster tree behaves in the opposite way for 366 

lipids, where the various profiles seem not to be affected by any apparent interindividual 367 

variation in the fresh nor in the decomposed state (Figure 1 – figure supplement 2). 368 

Considering now the clustering of the integrative model, it provides a clear classification of 369 

the PMIs obtained by the combination of the three single blocks. Since the approach chosen 370 

for this pilot study was discriminant analysis and PMI was provided to the model as a 371 

categorical variable, we believe that treating the response variable (PMI) as an ordinal or 372 

continuous variable on a larger sample size could improve the interpretation of the results 373 

and the forensic applicability of the methodology. Despite acknowledging these limitations, 374 

these preliminary results show the possibility of using multiomics integration to identify 375 

different PMI groups. Furthermore, the results for proteomics, that individually does not 376 

allow discrimination for these specific time intervals, is integrated in the final model by 377 

retaining only the proteins that contribute to PMI identification.  378 

Additionally, the presence of the two main clusters identified (fresh and skeletonised) has 379 

been driven by the greater differences between pre- and post-deposition. Conventionally, 380 

when performing method development for PMI estimation on bone samples collections, the 381 

baseline time is not available. Therefore the differences captured with the analysis would be 382 

obtained on skeletonised samples only. We believe, however, that due to the uniqueness of 383 

the sample it was not ideal to remove the pre-deposition specimens. Despite these issues, 384 

we found moderate to high correlation between the omics blocks that allows their 385 

integration using the sparse algorithm41 for PMI estimation. 386 

Recently, literature has grown on the use of molecular studies via omics platforms, 387 

especially for short-term PMIs. Most of the studies involving metabolomics for PMI 388 

estimation focused on quickly degradable matrices (e.g., muscle, blood, humour) collected 389 

over a short period of time (<1 month)14,15,34,45,46. As previously mentioned, the analysis of 390 

proteins in bone have shown applicability to estimate relatively long PMIs in forensics12,29,47 391 

as well as to address archaeological questions48–52, due to the prolonged survival of this type 392 

of biomolecules. Finally, according to the studies presented so far, it seems that 393 

postmortem changes of lipids could provide PMI estimation across several years, although 394 

there is great need for validation27,53. The combination of these biomolecules’ classes in a 395 
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multi-omics model could therefore be beneficial for estimating PMI across a broader range 396 

of potential PMIs. Metabolites and lipids offer accuracy in the short to medium term while 397 

proteins could be the main markers for longer PMIs due to their greater stability. 398 

Furthermore, variable selection41,42 would offer the advantage of simplifying experimental 399 

procedures and targets those markers that behave consistently with PMI. To limit the 400 

potential effects of interindividual variability, we considered variables that showed no 401 

outliers among the four body donors and created a model that limits as much as possible 402 

the number of predictors without affecting the assessment of the PMI. 403 

Our results for the metabolomics assay display clear differences between the pre- and post-404 

placement bone metabolomic profiles, suggesting the potential to use these profiles to 405 

assess long PMIs. The small sample size in this study does not allow us to make any deep 406 

inferences about the biological significance of the metabolomics profiles of the post-407 

placement samples, as these may have been influenced by exogenous factors. With regards 408 

to the pre-placement samples, the PMIs ranging between 2-10 days at 4°C would have 409 

allowed some minimal postmortem modifications in the metabolome to occur21. The 410 

metabolomic profiles of these samples are characterised by creatine, taurine, hypoxanthine, 411 

3-hydroxybutyrate, creatinine, and phenylaniline. Hypoxanthine is a well-known hallmark of 412 

ATP consumption and, consequently, a sign of exhaustion of normal substrates (i.e., glucose 413 

and pyruvate) of the Tri-Carboxylic Acid (TCA) cycle. In conjunction with the presence of 414 

creatine, taurine, creatinine, phenylalanine, and 3-hydroxybutyrate, we may hypothesise a 415 

switch towards TCA cycle anaplerosis through aminoacidic and ketonic substrates, in pursuit 416 

of a resilient ATP production during the early/mid PMIs. Not only was the proposed 417 

metabolomic approach able to identify the pre- and post-deposition groups according to the 418 

bone metabolome modifications, but it was also sensitive enough to detect at very long 419 

PMIs. The presence of exogenous compounds (i.e., caffeine, ecgonine, dextromethorphan, 420 

tramadol N-oxide, penbutolol, salicylic acid) that could reflect lifestyle habits or 421 

pharmacological therapies, and thus potentially has major implications in forensic toxicology 422 

and personal identification, is consistent with evidence from animal models22. Enrichment 423 

analysis can be found in Figure 3. 424 
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 425 
Figure 3. Metabolite set enrichment analysis based on differentially expressed metabolites 426 
identified in bone. 427 
 428 

Several polar metabolites identified in this study have previously been found in other tissues 429 

to show a consistent decay pattern after death. In fact, most of the compounds of interest 430 

matched here have already been flagged in other tissues as good potential biomarkers of 431 

PMI across shorter timeframes (Figure 2A). Uracil, a pyrimidine base of RNA, was previously 432 

seen to increase over a 14-day PMI in human muscle tissue when analysed by LC-MS14. 433 

Similar results for this compound were found in GC-MS analysis of rat’s blood54. In contrast, 434 

no clear association between this metabolite and PMI was found in aqueous humour15. In 435 

the present study, after a drop in normalised intestines between the baseline and first PMI, 436 

we detected an increase until 834 days, and a drop towards the longest PMI considered. It is 437 
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worth mentioning that most metabolites drop significantly after the baseline (“fresh”) times 438 

(Figure 2A), suggesting that compound decomposition is driving this first part of the PMI 439 

following the stop of human metabolism. It is interesting that with the increase in PMI there 440 

is also an increment in several compounds that could be associated with the breakdown of 441 

larger biomolecules (e.g., proteins) or with the presence of microbial communities that 442 

leave their own metabolic profile on bone surface. Another common marker of interest is 443 

hypoxanthine for its association with hypoxia15,16,55–57, that seems to drastically drop 444 

between the baseline times and the first PMI timepoint, as well as in the last time interval, 445 

showing a good consistency with PMI. In contrast, hypoxanthine was seen to increase until 446 

48 hours and then to decrease at 72 hours in rat blood58. Zelentsova et al.16 showed a 447 

positive relation between hypoxanthine and PMI in human serum, aqueous and vitreous 448 

humour. To fully understand the behaviour of this compound in bone tissue, a longitudinal 449 

study should be performed also including short PMIs. Leucine has also been reported in 450 

short time scale to increase in human muscle tissue14 and this agrees with our results 451 

where, after the initial drop, we noticed a consistent increase from the first PMI onwards. 452 

What can be clearly seen in Figure 2A is that D2 affects the linearity of the trend, suggesting 453 

that there might be some degree of interindividual variability. This is the case for several 454 

compounds; this limitation could be mitigated by increasing the number of individuals per 455 

timepoint in future studies. Creatinine has previously been reported to be a good marker in 456 

both muscle tissue14. Although it has not been mentioned in literature previously, we also 457 

found that neopterin, a biomarker for immune system activation commonly profiled in 458 

blood, serum, and urine59,60, has a strong negative correlation with PMI. Taurine, also in 459 

accordance with studies on vitreous humour15, showed a predictable positive behaviour 460 

with PMI. Acetamide is a nitrogen-based compound associated with active and advanced 461 

decay61 that, not surprisingly, showed the best positive association with PMI, resulting in 462 

being the most reliable biomarker within the entire panel considered. 463 

Palmitoylethanolamide is a carboximidic acid that was shown to accumulate in relation with 464 

cellular stress in pig brains postmortem62. These findings agree with our study, which 465 

revealed a clear increase of this metabolite with increasing PMIs. N,N-diethylethanolamine, 466 

belonging to the class of organic compounds known as 1,2-aminoalcohols, has not yet been 467 

highlighted for its potential in PMI estimation. In the current study, there is a clear increase 468 

of this molecule in the decomposed samples, although no clear trends were observed across 469 
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the various PMIs. A proposed mechanism for its accumulation is the partial oxidation driven 470 

by bacterial decomposition of monosaccharides into organic alcohols17,18. 471 

12−aminododecanoic acid and 12-hydroxydodecanoic acid are instead medium-chain fatty 472 

acids that show a positive relationship with PMI. Previous studies based on skeletal muscle 473 

tissue reported a decline in very-long-chain fatty acids25,26 in very short PMIs. It is not 474 

possible to exclude that the cleavage of longer chains by the action of lipases or 475 

microorganic activity17,19. The last compound selected in the final model is methylmalonic 476 

acid, a carboxylic acid which is an intermediate in the metabolism of fat and proteins. It has 477 

been shown that abnormally high levels of organic acids in blood (organic acidaemia), urine 478 

(organic aciduria), brain, and other tissues lead to general metabolic acidosis63. In this study, 479 

even with a postmortem increase in its concentration, it is not possible to identify a clear 480 

trend across the decomposed samples; this may be related to inter-individual biological 481 

differences of the donors involved in this study (e.g., age and health condition). 482 

From the lipidomic assay, only five markers were selected in the final model. These are 483 

three lysophosphatidylcholines (LPCs), one phosphatidylcholine (PC) and one 484 

phosphatidylinositol (PI), all showing decreasing intensities in the decomposed samples in 485 

comparison with the “fresh” ones. PCs are generally the most abundant neutral 486 

phospholipids and represent the main constituent in cellular membranes. LPCs are derived 487 

from the hydrolysis of dietary and biliary phosphatidylcholines and are absorbed as such in 488 

the intestines, but they become re-esterified before being exported in the lymph64. They are 489 

present in cell membranes and in blood. Their half-life in vivo is limited because of the quick 490 

metabolic reaction that involves lysophospholipases and LPC-acyltransferases65. In contrast, 491 

PLS are amphiphilic molecules that are also minorly present in cell membranes, whose role 492 

is to modulate the membrane curvature and to have other bioactive functions such as 493 

interacting with peripheral proteins66 and inhibiting osteoclast formation67. After death, 494 

these compounds can be converted into fatty acids via hydrolysis to then hydrogenise or 495 

oxidase to form saturated and unsaturated fatty acids17. This process is driven by intrinsic 496 

tissues lipases17. A very limited number of studies have applied lipidomics for PMI 497 

estimation. Langley et al.25 evaluated human skeletal muscle tissue from 31 donors over a 498 

PMI of 2,000 accumulated degree days showing consistent extraction of 499 

phosphatidylglycerol (PG) 34:0 and phosphatidylethanolamine (PtdE) 36:4, which showed 500 

good correlation with PMI. Wood and Shirley26 investigated the lipidome of human anterior 501 
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quadriceps muscle from one donor at 1-, 9-, and 24-day PMIs showing the decline of sterol 502 

sulphates, choline plasmalogens, ethanolamine plasmalogens, and phosphatidylglycerols 503 

and the increase of free fatty acids. Our results lend support to these earlier findings and 504 

further confirm the potential of lipidomics for PMI estimation. Nonetheless, direct 505 

comparison with these studies is not possible as they considered different tissues for much 506 

shorter PMIs. Additionally, lipids profiled from the muscle tissue after decomposition are 507 

suggested to derive from cell membrane breakdown25,26. We suggest that, in bone material, 508 

the lipidome under investigation accounts not only for cell membrane decomposition of 509 

embedded osteocytes but also for the marrow and fluids embedded in the bone pores. 510 

The proteomics results revealed that two ubiquitous proteins (histones), haemoglobin, actin 511 

and vimentin are the best candidates within this multi-omics PMI model. These five proteins 512 

selected by the model represent those which were best able to discriminate between the 513 

“fresh” bones and the “skeletonised” bones but are therefore not necessarily the best 514 

biomarkers to differentiate between the four post-decomposition PMIs. For insights on the 515 

most suitable protein biomarkers for differentiating between the longer PMIs, identified by 516 

excluding the “fresh” samples, see Mickleburgh et al.11 It is not surprising to see that the 517 

proteins highlighted in the model are either ubiquitous proteins or blood or muscle tissue 518 

proteins, as their abundance would naturally be higher in “fresh” bone than in 519 

“skeletonised” bones. The haemoglobin subunit alpha (HBA) is found in red blood cells but is 520 

often also identified in bone samples with long PMIs from archaeological contexts68, and its 521 

consistent time-dependent degradation has been previously highlighted in skeletal remains 522 

using several platforms69,70. Furthermore, it has already been reported in skeletal tissue 523 

from controlled decomposition studies of animals, and already highlighted as a potential 524 

biomarker for PMI estimation12. Vimentin (VIME) was also previously reported by Procopio 525 

et al.12 to be associated with PMI. It is a filament protein abundant in muscle tissue, and 526 

therefore its association with bone, particularly with the “fresh” samples, is not unexpected. 527 

However, we emphasize that this could also be due to interindividual variability, and that 528 

further investigation may clarify the usefulness of VIME to estimate PMI. Actin (ACTB), 529 

similar to vimentin, is a structural protein that forms cross-linked networks in the 530 

cytoplasmatic compartments and that is strongly connected with the presence of muscle 531 

tissue residues. A previous study showed the decrease in myosin contents with increasing 532 

PMIs, similarly to what we observed here for ACTB. The remaining two proteins are both 533 
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components of the nucleosomes, in our study were shown to be drastically reduced in bone 534 

tissue also at the first the baseline PMI taken into consideration. In sum, these results 535 

allowed the identification of five protein biomarkers which make good candidates for 536 

estimation of short PMIs (<900 days) (e.g., considering time points limited to months 537 

postmortem) and not for years after death for which structural and functional proteins in 538 

bone have been shown better targets to employ for PMI estimation11,13.  539 

Based on the findings of this exploratory study, we argue that the multi-omic method we 540 

adopted here shows considerable potential for the future development of an accurate and 541 

precise PMI estimation method for human bone. Further research should focus on 542 

increasing the sample size, to ultimately validate the method for application in forensic 543 

investigation of skeletonized human remains. Beyond the findings discussed at length 544 

above, we emphasize that it is of paramount importance to establish which biomolecules 545 

identified here are associated with the human metabolism and degradation, and which are 546 

produced by the decomposers’ microbial activity. Controlled taphonomic experiments on 547 

human decomposition at human taphonomy facilities provide the opportunity to elucidate 548 

biomolecular decomposition of human bone. A comprehensive understanding of the origin 549 

of different compounds is key to provide a detailed explanation of the postmortem changes 550 

that affect bone and other tissues, ultimately helping to shed a light on biomolecular PMI 551 

investigations and on the real potential that multi-omics analyses can have in this direction.  552 

4 Materials and Methods 553 

4.1 Body Donors 554 

Bone samples were collected from four female human body donors, aged between 61 and 555 

91 years (mean 74±11.6 SD), at the Forensic Anthropology Center at Texas State University 556 

(FACTS). FACTS receives whole body donations for scientific research under the Texas 557 

revised Uniform Anatomical Gift Act36. Body donations are made directly to FACTS and are 558 

exclusively acquired through the expressed and documented will of the donors and/or their 559 

legal next of kin. Demographic, health, and other information are obtained through a 560 

questionnaire completed by the donor or next of kin. The data are securely curated by 561 

FACTS, and the body donation program complies with all legal and ethical standards 562 

associated with the use of human remains for scientific research in the United States. The 563 

number of individuals (n=4) used in this preliminary study is consistent with other 564 

taphonomic studies conducted on human remains for proof-of-concept purposes. Larger 565 



 21 

sample sizes may be used to validate preliminary results, such as those proposed by this 566 

study, at a later stage.   567 

The bodies were stored in a cooler at 4°C prior to sampling. After collection of the initial 568 

(pre-placement) bone samples, the bodies were placed outdoors to decompose at the 569 

Forensic Anthropology Research Facility (FARF), the human taphonomy facility managed by 570 

FACTS, between April 2015 and March 2018. Two of the four body donors (D1 and D4, see 571 

Table 1), were placed in shallow hand-dug pits which were left open throughout the 572 

duration of the decomposition experiment. The pits were covered with metal cages to 573 

prevent disturbance by large scavengers. Donors D2 and D3 were deposited in similarly 574 

sized hand-dug pits and were immediately buried with soil. Environmental data for the 575 

duration of the project are available as Supplementary File 2. 576 

 577 

Sample 
ID Sex Age 

(years) PMI  Deposition 
context 

Pre-deposition samples 
D1_TF_A Female 91 10 days  Open pit 
D1_TF_B Female 91 10 days  Open pit 
D1_TF_C Female 91 10 days  Open pit 
D2_TF_A Female 67 2 days  Burial 
D2_TF_B Female 67 2 days  Burial 
D2_TF_C Female 67 2 days  Burial 
D3_TF_A Female 61 3 days  Burial 
D3_TF_B Female 61 3 days  Burial 
D3_TF_C Female 61 3 days  Burial 
D4_TF_A Female 77 10 days  Open pit 
D4_TF_B Female 77 10 days  Open pit 
D4_TF_C Female 77 10 days  Open pit 

Post-deposition samples 
D1_TS_A Female 91 219 days  Open pit 
D1_TS_B Female 91 219 days  Open pit 
D1_TS_C Female 91 219 days  Open pit 
D2_TS_A Female 67 834 days  Burial 
D2_TS_B Female 67 834 days  Burial 
D2_TS_C Female 67 834 days  Burial 
D3_TS_A Female 61 790 days  Burial 
D3_TS_B Female 61 790 days  Burial 
D3_TS_C Female 61 790 days  Burial 
D4_TS_A Female 77 872 days  Open pit 
D4_TS_B Female 77 872 days  Open pit 
D4_TS_C Female 77 872 days  Open pit 

 578 
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Table 1. Sample composition, demographics, deposition context, and PMI. The Sample ID 579 
column reports the biological replicates used. Additional information on the body donors and 580 
observations made during collection of bone samples (e.g., medical treatments, bone colour 581 
and density) can be found in the supplementary information in Mickleburgh et al.11. 582 
 583 

4.2 Sampling  584 

Bone samples (ca. 1 cm3) of the anterior midshaft tibia were collected prior to placement of 585 

the body outdoors, and again upon retrieval of the completely skeletonized remains as can 586 

be seen in Figure 4. Each body was in “fresh” stage of decomposition when pre-placement 587 

samples were taken, and in “skeletonization” stage when post-placement samples were 588 

collected, based on scoring of the gross morphological changes37. The duration of each 589 

placement and the deposition context are reported in Table 1. The soft tissue was incised 590 

with a disposable scalpel, and a 12 V Dremel cordless lithium-ion drill with a diamond wheel 591 

drill bit was used at max. 5000 revolutions to collect ~1 cm3 of bone. Sampling instruments 592 

were cleaned with bleach and deionised water between each individual sample collection.  593 

A total of eight samples were collected in Ziploc bags, transferred immediately to a -80°C 594 

freezer, and subsequently shipped overnight on dry ice to the Forensic Science Unit at 595 

Northumbria University, U.K. The samples were then transferred to a lockable freezer at -596 

20°C as per UK Human Tissue Act regulations (licence number 12495). Part of the analyses 597 

were conducted by the “ForensOMICS” team (N.P. and A.B.) at Northumbria University prior 598 

to their transfer to the University of Central Lancashire. Specifically, the bone samples were 599 

defrosted, and fine powder was obtained with a Dremel drill equipped with diamond-tipped 600 

drill bits operated at speed 5000 rpms, to avoid heat damage caused by the friction with the 601 

bone. The collected powder was homogenised and stored in 2 mL protein LoBind tubes 602 

(Eppendorf UK Limited, Stevenage, UK) at -80°C until extraction and testing. The powder 603 

sample was later divided into 25 mg aliquots. Three biological replicates (e.g., three aliquots 604 

of bone sample per specimen) were extracted and analysed for each specimen. The 605 

research and bone sample analyses were reviewed and approved by the Ethics committee 606 

at Northumbria University (ref. 11623).  607 
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 608 
 609 
Figure 4. Positioning of the bodies in the single graves (left) pre-decomposition and (right) 610 
after complete skeletonization. 611 
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The following figure supplements are available for figure 1: 612 
 613 
Figure 4 – figure supplement 1. Flow chart of the experimental design of the study. 614 
 615 
4.3 Biphasic extraction, adapted Folch protocol 616 

Chloroform (Chl), AnalaR NORMAPUR® ACS was purchased from VWR Chemicals 617 

(Lutterworth, UK). Water Optima™ LC/MS Grade, Methanol (MeOH) Optima™ LC/MS Grade, 618 

Pierce™ Acetonitrile (ACN), LC-MS Grade and Isopropanol (IPA), Optima™LC/MS Grade were 619 

purchased from Thermo Scientific (Hemel Hempstead, United Kingdom). In total three 620 

biological replicates for each of the eight specimens were extracted according to a modified 621 

Folch et al.38 as follow: 25mg of bone powder was placed in tube A and 750μL of 2:1 (v/v) 622 

Chl:MeOH were added, vortexed for 30s and sonicated in ice for additional 20 min. 300μL of 623 

LC-MS grade water was added to induce phase separation and sonicate for another 15 mins. 624 

The sample were then centrifuged at 10°C for 5mins at 2000RPM. The respective upper and 625 

lower fractions were collected and transferred to fresh Eppendorf tubes and the samples 626 

were re-extracted with a second time using 750μL of 2:1 (v/v) Chl:MeOH. The two 627 

respective fractions were combined and concentrated. The organic lipid fraction was 628 

preconcentrated using a vacuum concentrator at 55oC for 2.5 hours or until all organic 629 

solvents has been removed. The aqueous metabolite fractions were flash frozen in liquid 630 

nitrogen and preconcentrated using a lyophilizer cold trap -65°C to remove all water 631 

content. The respective dry fractions were then stored at -80 until analysis. The metabolite 632 

fraction was resuspended in 100μL in 95:5 ACN/water (% v/v) and sonicated for 15 mins and 633 

centrifuged for 15 min at 15K RPM at 4°C and supernatant was then transferred to 1.5mL 634 

autosampler vials with 200μL microinsert and caped. 20μL of each sample were collected 635 

and pooled to create the pooled QC. The lipid extracts were resuspended in 100μL of 1:1:2 636 

(v/v) water:ACN:IPA and sonicated for sonicated for 15 min and centrifuged for 15 min at 637 

15K RPM at 10oC and supernatant was then transferred to 1.5mL autosampler vials with 638 

200μL microinsert and caped. 20μL of each sample were collected and pooled to create the 639 

pooled QC. The sample set was then submitted for analysis. 640 

4.4 LC-MS analysis 641 

Metabolite and lipid characterization of the bone samples was performed on a Thermo 642 

Scientific (Hemel Hempstead, United Kingdom) Vanquish Liquid Chromatography (LC) Front 643 
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end connected to IDX High Resolution Mass Spectrometer (MS) system. Full details for both 644 

metabolomics and lipidomics runs are reported below. 645 

4.4.1 Metabolomics 646 

Hydrophilic Liquid Interaction Chromatography (HILIC) was used for the chromatographic 647 

separation for metabolites. The separation was achieved using a Waters Acquity UPLC BEH 648 

amide column (2.1 x 150mm with particle size of 1.7μm, part no. 186004802), operating at 649 

45°C with a flow rate of 200μL/min. The LC gradient consists of a binary buffer system, 650 

namely buffer “A” (LC/MS grade water) and buffer “B” (LC/MS grade ACN) both containing 651 

10 mM ammonium formate. Independent buffer systems were used for positive and 652 

negative electrospray ionisation (ESI) acquisition respectively, for ESI+ the pH of buffers was 653 

adjusted using 0.1% formic acid and for negative using 0.1% ammonia solution. The LC 654 

gradient was the same for both polarities, namely 95% “B” at T0 hold for 1.5min and a linear 655 

decrease to 50% “B” at 11min, followed by hold for 4mins, return to starting condition and 656 

hold for further 4.5 mins (column stabilization). The voltage applied for ESI+ and ESI- was 657 

3.5kV and 2.5kV respectively. Injection volumes used were 5μL for ESI+ and 10μL for ESI-. 658 

4.4.2 Lipidomics 659 

Standard reverse phase chromatography was used for the chromatographic separation of 660 

lipids. The separation was achieved using a Waters Acquity UPLC CSH C18 column (2.1 x 661 

150mm with particle size of 1.7μm, part no. 186005298), operating at 55°C with a flow rate 662 

of 200μL/min. The LC gradient consists of a binary buffer system, namely buffer “A” (LC/MS 663 

grade water:ACN, 40:60 % v/v) and buffer “B” (IPA:ACN, 90:10 % v/v) both containing 10mM 664 

ammonium formate. Independent buffers systems were used for positive and negative ESI 665 

modes respectively, for ESI+ the pH of buffers was adjusted using 0.1% formic acid and for 666 

negative using 0.1% ammonia solution. The LC gradient was the same for both polarities, 667 

namely 60% “B” at T0 hold for 1.5min, linear increase to 85% “B” at 7min, increase to 95% 668 

“B” at 12.5min and hold for 4.5min before returning to starting conditions and holding for 669 

further 4.5min (column stabilization). The voltage applied for ESI+ and ESI- was 3.5kV and 670 

2.5kV respectively. Injection volumes used were 3μL for ESI+ and 5μL for ESI-.  671 

The HESI conditions for 200μL were as follows: sheath gas 35, auxiliary gas 7 and sweep gas 672 

of 0. Ion Transfer tube temperature was set at 300°C and vaporizer temperature at 275°C. 673 

These HESI conditions were applied to both metabolomics and lipidomics and lipidomics 674 

assays.     675 
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4.4.3 Mass spectrometry acquisition 676 

Mass spectrometry (MS) data were acquired using the AcquieX acquisition workflow (data 677 

dependent analysis). The MS operating parameters were as follows: MS1 mass resolution 678 

60K, for MS2 30K, stepped energy (HCD) 20, 25, 50, scan range 100-1000, RF len (%) 35, AGC 679 

gain, intensity threshold 24, 25% custom injection mode with an injection time of 54 ms. An 680 

extraction blank was used to create a background exclusion list and a pooled QC was used 681 

to create the inclusion list. 682 

4.4.4 Data processing  683 

The metabolomic positive and negative data sets were processed via Compound 684 

DiscovererTM (version 3.2) using the untargeted metabolomic workflow with precursor mass 685 

tolerance 10 ppm, maximum shift 0.3min, alignment model adaptive curve, minimum 686 

intensity 16, S/N threshold 3, compound consolidation, mass tolerance 10 ppm, RT tolerance 687 

0.3 min. Database matching were performed at MS2 level using Thermo Scientific mzCloud 688 

mass spectral database with a similarity index of 50% or higher.   689 

The lipidomic positive and negative data sets were processed via Thermo Scientific 690 

LipidSearchTM (version 4) using the following workflow: HCD (high energy collision 691 

database), retention time 0.1min, parent ion mass tolerance 5 ppm, product ion mass 692 

tolerance 10ppm. Alignment method (max), top rank off, minimum m-score 5.0, all isomer 693 

peaks, ID quality filter A and B only. Lipid IDs were matched using LipidSearchTM in silico 694 

library at MS2 level. Corresponding metabolomics and lipidomics pooled QCs samples were 695 

used to assess for instrumental drifts; the relative standard deviation (RSD) variation across 696 

the QCs for metabolomics and lipidomics were less than 15%. Any metabolite/lipid feature 697 

with an RSD of 25% or less within the QCs was retained. 698 

4.5 Proteomics 699 

Proteomics results from a pilot study conducted on the same samples used in this study 700 

were previously published and discussed in Mickleburgh et al.11. Analyses were conducted 701 

following an adapted protocol developed by Procopio and Buckley39 for protein extraction 702 

and LC-MSMS analysis. MS data for proteomic analysis were made available via 703 

ProteomeXchange Consortium via the PRIDE40 partner repository with the data set identifier 704 

PXD019693 and 10.6019/PXD019693. 705 

4.6 Statistical analysis 706 
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An overview of the Forens-OMICS pipeline can be found in Figure 4 – figure supplement 1. 707 

Metabolomics and lipidomics data were normalised by mean values, cube transformed, and 708 

Pareto scaling was applied. Proteomics data were normalised using log2 transformation. For 709 

preliminary data evaluation, Principal Component Analysis (PCA) was applied to the profiles 710 

obtained by each single chromatography to exclude datasets with poor discriminatory 711 

power. At first, univariate analysis was performed by Kruskal-Wallis. Despite the small 712 

sample size per PMI, pairwise Dunn’s test with Holm’s corrected p-value was applied to the 713 

set to have an overview of the differences between different PMIs. Partial Least Square 714 

Discriminant Analysis (PLS-DA) was first employed to analyse each block in a multivariate 715 

manner. Correlation between blocks was then investigated with pairwise PLS regression 716 

prior to Data Integration Analysis for Biomarker discovery using Latent variable approaches 717 

for Omics studies (DIABLO)41 based on multiblock sPLS-DA analysis using the ‘mixOmics’ 718 

package in R (version 4.1.2)42. The initial model was tuned using a 3-fold/100 repeats cross-719 

validation to perform variable selection and produce a final model that maintains the 720 

maximum covariance reducing the number of the compounds used for the classification. 721 

Classification error rate was further cross-validated (3-fold, 100 repeats) and significance of 722 

the classification was tested via permutation test (k=3 and 999 permutation) implemented 723 

in the ‘RVAideMemoire’ package71. All cross-validation in this study was performed 724 

considering explicitly the biological replicates. Enrichment analysis was carried out 725 

considering pre- and post-placement samples combined. 726 

5 Conclusions 727 

In conclusion, our results support the potential for developing an accurate and precise 728 

multi-omics PMI estimation method for human bone for application in forensic contexts to 729 

aid criminal investigation and assist with identification of the deceased. Despite the small 730 

sample size used here, this study demonstrates how the approach can discriminate between 731 

short- and long PMIs. This method can produce classification models including different 732 

markers (e.g., protein, metabolites, and lipids) to assess both short- and long-term PMIs, 733 

with a high level of accuracy, as the compounds under investigation have complementary 734 

decay rates. The use of different biochemical markers that have different postmortem 735 

stability offers the advantage of covering both short-term PMIs, by including metabolites 736 

and lipids, and long-term PMIs, by implementing in the model more stable proteins that 737 

consistently degrade after death. This could not be fully proven based on our results, as the 738 
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PMI taken into exam is not sufficiently spread along the timeline and more individuals per 739 

timepoint are necessary. However, the possibility of selecting only discriminating variables 740 

allows the combination of omics that in isolation could not discriminate in a satisfactory way 741 

the PMI. In the present study, proteomics did represent the less ideal omics for the 742 

estimation of the time elapsed since death, however few protein variables were successfully 743 

included in the model. Furthermore, in the present study the order between the various 744 

PMIs was voluntarily not considered in data analysis in order to avoid biases in the 745 

generation of the discriminant model. We expect that the PMI estimation over extended 746 

time periods will be unlikely achieved by employing any of these three omics individually. 747 

Furthermore, treating PMI as a continuous variable could be key in providing an optimal 748 

approach for the estimation of PMI. Furthermore, this methodology provides new insights 749 

on the biological processes that occur after death and will help establishing whether the 750 

presence of certain molecules is the result of their molecular degradation or if it is mostly 751 

associated with the bacterial metabolism, a central question in forensic science. The 752 

proposed “ForensOMICS” approach must be validated by the analysis of substantial sample 753 

sizes in future controlled taphonomic experiments conducted in multiple different 754 

environments, as this represents the main source of variation in human decomposition, as 755 

well as by evaluating a broader postmortem interval with a more comprehensive coverage 756 

of data points in the time period taken into consideration. 757 
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