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ABSTRACT

This paper studies a Deep Q-Learning (DQL) method for transaction sequencing problems in an
automated warehousing system, Shuttle-based Storage and Retrieval System (SBSRS), in which shut-
tles can move between tiers flexibly. Here, the system is referred to as tier-to-tier SBSRS (t-SBSRS),
developed as an alternative design to tier-captive SBSRS (c-SBSRS). By the flexible travel of shuttles
between tiers in t-SBSRS, the number of shuttles in the system may be reduced compared to its sim-
ulant c-SBSRS design. The flexible travel of shuttles makes the operation decisions more complex in
that system, motivating us to explore whether integration of a machine learning approach would
help to improve the system performance. We apply the DQL method for the transaction selection of
shuttles in the system to attain process time advantage. The outcomes of the DQN are confronted
with the well-applied heuristic approaches: first-come-first-serve (FIFO) and shortest process time
(SPT) rules under different racking and numbers of shuttles scenarios. The results show that DQL
outperforms the FIFO and SPT rules promising for the future of smart industry applications. Espe-
cially, compared to the well-applied SPT rule in industries, DQL improves the average cycle time per
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transaction by roughly 43% on average.

1. Introduction

The recent COVID-19 outbreak has led to the growth
of e-commerce and the acceleration of digital transfor-
mation in industries (Unctad 2021). For instance, since
lockdowns have pushed businesses and consumers to go
digital, it has paved the way for increased online purchas-
ing. Increase in e-commerce has also led to increased cus-
tomer expectations towards faster and cheaper delivery
requests resulting in increased material handling equip-
ment sales. Warehouse automation statistics indicate that
the automation investment in warehouses and distribu-
tion centres have been increasing continuously (Statista
2021).

Automated storage and retrieval system (AS/RS) is a
robotic technology for automated warehouses designed
for buffering, storing, and retrieving products (Romaine
2020). They are commonly utilised in large ware-
houses and distribution centres. The essential advantage
of AS/RS technology is reduced labour in the sys-
tem. Hence, it provides a reduced number of human-
based errors and injuries, increased accuracy, efficiency,
productivity, etc. According to Allied Market Research
(2020), mini-load AS/RS takes a significant place in the
overall AS/RS market. c-SBSRS is a widely applied SBSRS

technology in warehouses, which is mostly utilised
for mini-load transaction processing and in micro-
fulfilment centres (Scriven 2021). In that technology, the
loads are stored and retrieved by tier-captive shuttles that
can move horizontally through a dedicated aisle of a tier
providing ultra-high transaction process capacity (Carlo
and Vis 2012; Lerher 2015; Lerher et al. 2016; Lerher
etal. 2015a, 2015b). The retrieval process in SBSRS starts
with a shuttle movement, where it first picks up the load
from a storage location and drops it off at the buffer area
to be picked up by the lifting mechanism installed at
each cross-aisle connected with that buffer area. Then,
the lift carries the load at the input/output location. In
a storage process, the process usually starts with a lift-
ing operation. The lifting mechanism brings the load at
the destination tier to be picked up by the shuttle at that
tier. Later, the shuttle stores the load at the regarding stor-
age address. Since there is a dedicated shuttle in each
tier of an aisle, typically the average utilisation of those
shuttles is very low compared to the average utilisation
of lifts.

Recently, an alternative SBSRS design, t-SBSRS, was
studied to alter the handicap of that low shuttle utilisa-
tion case in ¢c-SBSRS (Ha and Chae 2018a, 2018b; Jerman
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a) Back view of the system

h) Side view of the system
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Figure 2. A t-SBSRS design.

et al. 2021; Kugtikyasar, Ekren, and Lerher 2021; Lerher,
Ficko, and Paldi¢ 2021; Zhao et al. 2019). With the ¢-
SBSRS design, one of the aims is to balance the average
utilisation of shuttles and lifts. By allowing shuttles to
travel between tiers flexibly, the total number of shuttles
may be decreased in the system which would also con-
tribute in reduction in the initial investment cost of the
system. Figures 1 and 2 show the ¢-SBSRS and #-SBSRS
designs for a single aisle, respectively. In Figure 1, while
there are as many shuttles as tiers in an aisle, in Figure 2
there are fewer shuttles than the ones in Figure 1. Note
that, in Figure 2, Liftl is installed at each cross-aisle to
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Figure 1. A ¢-SBSRS design. (a) Back view of the system. (b) Side view of the system.
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transfer the loads between tiers, and, Lift2 is mounted at
the other side of each aisle to transfer the shuttles between
tiers within that aisle.

The applicability of the travel of autonomous vehicles
(i.e. shuttles) between tiers has also been studied well by
Ekren (2020b), Ekren et al. (2010), Ekren and Heragu
(2010), Ekren and Heragu (2011), Ekren et al. (2013),
Ekren et al. (2014) where the system is referred to be
autonomous vehicle-based storage and retrieval system
(AVSRS). Differently, in t-SBSRS, the system is mainly
designed for lightweight mini-loads processing, where
loads are usually carried in totes.



In the ¢-SBSRS design, shuttles may tend to have
longer travel than the c-SBSRS design, due to their
travels between tiers. Once again, while the disadvan-
tage of this novel design would be the increased travel
time of shuttles, the advantage would be the possible
decreased number of shuttles in the system. In ¢-SBSRS,
since there are three different service providers, as two
separate lifting mechanisms and shuttles that might be
utilised synchronously, this situation may cause increase
in the system’s operation complexity when deciding
which transactions to process first. To alter those handi-
caps, with the help of recent technological and informa-
tion technology developments providing fast processing
solutions, we study an intelligent modelling approach (i.e.
a machine learning (ML) algorithm) that can take into
consideration real-time data and information tracking
from the current environment as well as future possi-
ble states while making a smart decision. Specifically, we
apply a dynamic selection rule by DQL, for intelligent
transaction selection of shuttles to decrease the average
process time of a transaction in the system.

With recent technological developments, the com-
putational power of computers has increased, and ML
algorithms gained popularity. Hence, it might be viable
to embed those complex control algorithms in smart
machines so that practically it would be possible to apply
the developed theoretical algorithms. In most fields, the
development of mathematical models may take longer
times for optimal search of stochastic environments.
Hence, we prefer studying a deep reinforcement learning
(DRL) approach developed on a model-free Q-Learning
approach. The algorithm predicts the optimal policy by
the environment dynamics (i.e. transition and reward
functions). DRL is an appropriate approach where there
is no prior or historical data as in our case (Tong et al.
2020; 2019). Besides, for a sequential decision problem
(e.g. when a shuttle becomes available it selects a proper
transaction to process), DRL is applied well on such prob-
lems which can also take into consideration the future
possible states (Tong et al. 2020; Takahashi and Tomah
2020). The main research question of this paper is: How
does a Deep Q-Learning method in transaction selection
provide a travel time advantage for shuttles compared to
the static (i.e. heuristic) selection methods in the proposed
novel t-SBSRS?

Note that the DQL solution procedure applied in this
paper can also be utilised for any job selection prob-
lem in such queuing systems. It is known that the SPT
selection rule is applied well for job selection problems
from queues in industry problems. This rule provides
good performance metrics, especially from the average
cycle time per job result. The contribution of this work is
also by the comparison of the performance of the applied
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Table 1. Abbreviations used in Table 2.

Abbreviation Definition Abbreviation Definition

DaL Deep Q-Learning BE

Bellman Equation

SBSRS Shuttle-based storage ~ RELU Rectified Linear Unit
and retrieval system

AS/RS Automated storage DQN Deep Q Network
and retrieval system

c Tier-captive SBSRS FQN Fork-join queueing

network

t Tier-to-tier SBSRS SIM Simulation

OQN Open queueing HEU Heuristic
network

ML Machine learning ANA Analytical

AVSRS Autonomous vehicle-  IP Integer programming
based storage and
retrieval system

DRL Deep reinforcement FB Free-balancing
learning

SPT Shortest process time  RL Reinforcement

learning

FIFO First-come-first-out PA Performance analysis
(serve)

PR Performance oP Optimisation
prediction

DQL method with a well-known SPT selection method
under different warehouse designs.

The proposed operational approaches in this paper
are simulated to test the hypothesis of whether they pro-
duce better performance results than mainly the SPT
rule. The benefit of the implementation of DQL method
for operation efficiency in -SBS/RS would also provide
significant benefits for warehouse managers from both
operational and cost perspectives. Besides, not only ware-
house managers, but also technology solution providers
marketing those technologies could also benefit from the
proposed applications effectively. Table 1 summarises the
abbreviations used throughout the paper.

In Section 2, a literature survey summarising c-SBSRS,
t-SBSRS, and ML related works on task scheduling is pre-
sented. In Section 3, we explain the ML methodology. In
Section 4, we show the application of the method on the
studied #-SBSRS. Section 5 summarises the results and
comments. Section 6 provides a conclusion part.

2. Literature review

The reviewed literature works are summarised in Table 2
by categorising the SBSRS works based on the studied
shuttle types, applied methods, and objectives. The sign
X’ shows where the regarding literature paper is placed in
terms of system type, method, and objective. Each work
is detailed in the following sub-section.

2.1. AVSRS literature

The current literature papers mostly focus on AVSRS
and ¢-SBSRS. Marchet et al. (2011) study an AVSRS
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Table 2. Literature studies on SBSRS.

Shuttle type

Method Objective

Literature FQN

SIM HEU ANA IP FB RL

=

PR opP

Marchet et al. (2011)
Marchet et al. (2013)

Carlo and Vis (2012)

Lerher (2015)

Lerher (2018)

Lerher et al. (2015a)

Lerher et al. (2015b)

Lerher et al. (2016)

Ekren, Sari, and Lerher (2015)
Wang, Mou, and Wu (2015)
Tappia et al. (2017)

Zou et al. (2016)

Ekren (2017)

Ekren et al. (2018)

Eder (2019)

Ekren (2020a)

Ekren (2020b) X
Ekren and Akpunar (2021)
Ha and Chae (2018a)

Ha and Chae (2018b)
Zhao et al. (2019)
Kiictikyasar, Ekren, and Lerher (2021) X
Lerher, Ficko, and Pal¢i¢ (2021)

Jerman et al. (2021)

Marolt, Kosani¢, and Lerher (2022) X
The current Paper X

XXXXXXXXXXXXXXXX|n

>
>

X X X X X

>
X X X X X
XX X X X X X X X

> > >
> X< >
X< X X X

>
X X X X X X X

>

and present an analytical model to predict some crit-
ical performance metrics from the system. They pro-
pose an open queueing network model for the solu-
tion process. Marchet et al. (2013) compare two con-
figurations’ performances: AVSRS and t-AVSRS using
simulation modelling. Ekren (2020b) studies the design
of AVSRS from a multi-objective optimisation proce-
dure. In that study, the conflicting objectives are Cyyyg
and energy consumption per transaction outputs. Marolt,
Kosani¢, and Lerher (2022) study multiple-deep c-
AVSRS. They propose to increase the depth of each tier
in the warehouse simultaneously to increase the aver-
age shuttle utilisation and decrease lift utilisation. They
perform performance analysis on various pre-defined
policies.

2.2. ¢-SBSRS literature

Carlo and Vis (2012) study a new variant of ¢-SBSRS,
which includes two non-passing lifting mechanisms as a
vertical travel provider. The performance of that system is
compared with a traditional single lifting system design.
In an effort to decrease space utilisation, Lerher (2015)
studies a ¢-SBSRS with double-deep storage compart-
ments. Lerher et al. (2015a) compare the system perfor-
mance of c-SBSRS under alternative warehouse designs
and, they show the benefits of utilisation of SBSRS. The
results indicate that the proposed system reduces the
average cycle time and increases throughput capacity.

Lerher et al. (2015b) and (2016) develop analytical travel
time models to calculate the performance of tier-captive
SBSRS in their later work. They include velocity and
acceleration scenarios for shuttles and lifts in the model
and validate them by the simulation results. Ekren, Sari,
and Lerher (2015) study the advantages of applying a
class-based storage policy in c-SBSRS. They compare the
class-based storage policy results with a random storage
one. Wang, Mou, and Wu (2015) study a ¢c-SBSRS design
by proposing an analytical model for the job selection
problem. They propose a sorting genetic algorithm for
the solution of the proposed multi-objective optimisa-
tion problem. Tappia et al. (2017) study a ¢-SBSRS, and
they present queueing network models predicting several
performance metrics from the system. Zou et al. (2016)
propose a fork-join queueing network model to predict
some outputs from a c-SBSRS. A study by Ekren (2017)
shows warehouse design trade-offs for c-SBSRSs. Ekren
et al. (2018) develop an SBSBRS performance calculator
estimating travel time, variance, and energy consumption
outputs from a pre-defined ¢-SBSRS design. That ini-
tial work’s outputs are utilised in their later works. Eder
(2019) proposes an open queueing network (OQN) to
solve a limited capacity problem. That paper estimates
several performance outputs from the studied ¢-SBSRS.
Ekren (2020a) shows a design of experiment work by
the simulation to identify statistically significant effec-
tive factors on -SBSRS. Later, Ekren and Akpunar (2021)
propose another comprehensive tool developed by an



OQN to estimate several performance outputs from a
pre-defined c-SBSRS warehouse design.

2.3. t-SBSRS literature

t-SBSRS design is first studied by Ha and Chae (2018a).
There is a single lifting device in their system that trans-
fers both shuttles and loads between tiers. They compare
this system’s performance with a traditional design one.
The results indicate that fewer shuttles can also produce
the target throughput rate than a tier-captive one. In
their later work, Ha and Chae (2018b) propose a deci-
sion support system computing the required number of
shuttles in a t-SBSRS. Zhao et al. (2019) propose an inte-
ger mathematical modelling by sequencing transactions
in a t-SBSRS, minimising the idle times in the system.
Lerher (2018) studies aisle changing shuttles rather than
a tier changing one in automated warehousing. A recent
study by Kiigiikyasar, Ekren, and Lerher (2021) compares
traditional c-SBSRS and #-SBSRS designs under several
performance metrics, including their initial investment
costs. The results indicate that well-designed ¢-SBSRSs
could decrease the investment costs and increase the
performance of the system compared to a ¢-SBSRS. In
a recent study, Lerher, Ficko, and Pal¢i¢ (2021) pro-
pose a novel AVSRS design with multiple-tier shuttles.
They present analytical models for computing perfor-
mance metrics such as cycle time and throughput rate
from the system. Jerman et al. (2021) propose a novel
storage and retrieval system. They analyse the through-
put rate output based on different warehouse designs by
using simulation modelling. Liu et al. (2021) develop
an energy consumption model that estimates maximum
throughput and travel time performance metrics for a c-
SBSRS that operates on a dual-command cycle. Li et al.
(2022) develop a mixed integer programming model to
jointly optimise multi-item order batching and retrieving
problems.

2.4. Machine learning applications

In this section, we also provide the ML applications for
warehouse automation problems. Watanabe et al. (2001)
apply a Q-Learning method to avoid collision and to
track navigation of AGVs. Dou, Chen, and Yang (2015)
propose a genetic algorithm approach developed on an
RL approach for task scheduling in an automated ware-
house system. Xue, Zeng, and Yu (2018) present the flow-
shop scheduling problem in a multi-AGV system by RL
approach. The results indicate that the RL agent can find
a near-optimal result from its past experience, and it per-
forms better than a multi-agent model. Malus, Kozjek,
and Vrabi¢ (2020) apply the multi-agent RL method for
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autonomous mobile robots to solve an order dispatching
problem.

Differently, Mao et al. (2016) apply a DRL for a
resource management problem for computer network
systems. The research shows that DRL is applicable for
large-scale systems. Tong et al. (2020) implement DQL
for dynamic job sorting problems in cloud comput-
ing. The paper shows that DQL outperforms standard
algorithms. Gazori, Rahbari, and Nickray (2020) stud-
ied job scheduling problems for IoT implementations.
That study aims to minimise computational costs and
service delays in the system by implementing Double
Deep Q-Learning. Takahashi and Tomah (2020) pro-
pose DRL to develop control algorithms in a multi-AGV
system. The results show that the algorithm finds near-
optimal solutions, and it works very well in dynamic
environments. Hao et al. (2020) study a deep reinforce-
ment learning based real-time scheduling model with a
mixed rule for AGVs. Yin, Liu, and Wang (2022) present
a decentralised framework of multi-task allocation with
attention in DRL combining the task assignment bal-
ance and path planning for the distribution process.
The results show that the proposed approach has fea-
sibility and effectiveness in multi-AGV's task allocation
applications.

To the best of our knowledge, there is no ML-based
application for job selection and sequencing problems
in automated storage and retrieval systems in the litera-
ture. Mainly, the applied approaches are typically static
job selection methods such as FIFO or SPT for those
systems. The novelty of this study is that we show the
applicability of ML algorithms for job selection prob-
lems in a complex queuing system (i.e. £-SBSRS), includ-
ing three different service providers (i.e. Liftl-2 and
shuttles) which are working in conjunction with each
other. To test the performance of the applied method,
we compare the results of the dynamic approach with
the well-applied static job selection algorithms, FIFO and
SPT.

3. Methodology

In this section, we show the theoretical background of the
utilised methodology.

3.1. Reinforcement learning

RLis an ML method that is developed to define how intel-
ligent agents should take actions in a system based on
interaction with the environment. Here, intelligent agents
can be trained by trial and error by utilising the informa-
tion from the taken actions and experiences. Hence, it is
based on neither supervised learning nor unsupervised
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learning. Here, agents learn to react to an environment
based-on their experience.

Any RL problem includes the following contents (Sut-
ton and Barto 2015):

(i) Agent: an autonomous object (e.g. a robot) con-
trolling the target of concern.

(ii) Environment: it defines everything that agents
interact with. It is built for the agent to make it visi-
ble like a real-world case. States are representations
of that current world or environment.

(iii) Rewards: it is a score of how the algorithm per-
forms with respect to the environment. The cumu-
lative reward is the goal of the agent to be max-
imised in an RL problem. The reward is obtained
by mapping each state-action pair of the environ-
ment to a single value.

(iv) Policy: it is the algorithm used by the agent to
decide its actions. This part can be model-based
or model-free. A model-based algorithm applies
the transition and the reward functions to predict
the optimal policy. A model-free algorithm pre-
dicts the optimal policy without the environment’s
dynamics, such as transition probabilities. It pre-
dicts the ‘value function’ from experience without
a transition or reward. Here, the value function is
a function evaluating action taken in a state for all
states. The policy can be obtained from that value
function.

In this work, since we do not know the transition prob-
abilities and rewards based on state-action relationships
in advance, to estimate those, we follow a model-free
approach developed on a Q-Learning method by sim-
ulating the system. We consider the update rule by the
Bellman Equation (BE) defined by (1):

Qs ar) < (1 — a)Q(sp, ar) + afry + ymax,Q(se+1, a)]
(1)
By the BE, we update our Q-table after each action is
taken. According to the BE, it is aimed to update the cur-
rent perceived value with the predicted optimal future
reward. By that, it is assumed that the agent takes the best-
known action in the next step. While taking an action
decision, the agent searches all the Q-values of the possi-
ble actions of the current state and selects the action with
the largest Q-value one. In Equation (1), o represents the
learning rate, r; is the current reward gained at time ¢, y
is the discount factor causing rewards to lose their value
over time. Hence, y max,Q(s+1, a) calculates the maxi-
mum reward for the next state to be obtained weighted
by the discount factor y.

Usually, the Q-table is initialised by a zero matrix,
meaning that the agent has no information about its state-
action relation. The learning process continues until
all the Q-table values become stable. For the learning
process, the epsilon-greedy approach is utilised. In this
approach, the computer creates a random number (i.e.
0-1). If that number is smaller than the epsilon value, ¢,
the agent takes a random action. This process is called
‘exploration’ and is performed during the learning period.
Otherwise, it proceeds with the action having the highest
Q-value one. To increase the exploration possibility, the
epsilon value, ¢, is started from 1, and it is decreased over
time.

The size of the Q-table can be calculated by the
total number of states (IN) x the total number of actions
(M). Since the matrix’s size would significantly affect
the agent’s training time, large numbers of states and
actions may cause the learning problem to become infea-
sible. To deal with that handicap, we estimate the Q-
value function by Deep Neural Networks (DNN), known
by their efficiency in approximating functions. Integra-
tion of DNNs into the Q-Learning process is known as
Deep Q-Learning or Deep Q-Network (DQN) (Mnih
et al. 2015). The details of applied DQN are explained in
Section 3.2.

3.2. DQL

DQN is a Deep RL method that utilises neural networks
to approximate Q-values. Here, a neural network receives
states from the environment as inputs. Then, it approxi-
mates the Q-values for each action. The Deep RL process
is shown in Figure 3.

DNN considers the states as inputs, and it outputs the
Q-values of all possible actions for those inputs. The size
of the input layers of the DNN is equal to the size of the
states. Besides, the size of the output layer is equal to the
number of actions.

During the training process, a loss function, the
Temporal Difference error function (TD function), the
difference between the Q-value of a state-action pair and

l Reward r l

DNN policy

Agent

state

Environment

Take action a

Parameter 6

Observe state s

Figure 3. Agent behaviour in DQN (adopted from Mao et al.
2016).
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its Q-Target value is utilised. Compared to the other DL
methods, Q-Target is not stable, which makes the training
challenging. To obtain more stable training, we utilise two
neural networks. One network represents the Q-Target,
and the other represents the prediction. The two net-
works have the same architecture. For every C iteration,
the estimated network parameters are copied at the tar-
get network. This method helps the training to be more
stable (Choudhary 2019). A visual explanation of the
procedure is shown in Figure 4.

After an action is completed, state, action, reward, and
next state information are kept in memory. In DQN, as
opposed to Q-Learning, the Q-table is not updated at
each step. Instead, state, action, reward, and next state
information are kept and fed into the network after reach-
ing a pre-defined size. This method, named as experience
replay, is utilised in our study (Mnih et al. 2015). The
pseudocode of this algorithm is given in Figure 5. First,
the agent observes the state. Then, it selects and exe-
cutes action according to an epsilon-greedy approach.
State, action, reward, next state tuple are kept in memory
in each step. After reaching a certain point, we sample
from the transition tuples. These tuples are fed into the
network and perform gradient descent on the target net-
work. The epsilon is decreased at each iteration and in
every C step, the prediction network is cloned to the
target network. We show the applied procedure for the
algorithm in Section 4.

4. Deep Q-Learning implementation for SBSRS

We simulate the system to observe the performance of
the DQL. The simulation model details are given in
Section 4.1.
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Algorithm 1 Deep Q-Learning Algorithm

Initialize: Action-value and target action-value functions Q and Q with
random weights ¢

Initialize: Batch size n, learning rate a, discount rate =, epsilon &, epsilon
decay rate ¢9e¢, epsilon minimum value €yin

1: for episode = 1, M do

2 Observe state s,

R2 With probability ¢, select random action a,, otherwise select @, =
argmax Q(s, a)

4 Execute action a;, observe reward r,

5 Store transition (s;, @y, 7y, S41)

6: Sample random tuple from transition tuples

..

Set rj, if episode terminates at step j+1
ety; = "
g rj +mazQ(s',a’), otherwise
9
Perform gradient descent step on (y; — Q(s,a))”
Update € as € = € x edee jf e > €min, otherwise €.,
10: Every C steps, Q = Q

e >

Figure 5. Deep Q-Learning with experience replay algorithm.

Table 3. Notations utilised in the model

Notation Unit Definition

Cavg S Average cycle time of a transaction

Favg s The average flow time of a transaction
Wavg s Average waiting time of a transaction

T s The mean inter-arrival time of transactions
Vs m/s The maximum speed that a shuttle can reach
Vi m/s The maximum speed that Lift1 can reach
Vsl m/s The maximum speed that Lift2 can reach
As m/s? Acceleration for shuttle velocity

Al m/s? Acceleration for Lift1 velocity

Asl m/s? Acceleration for Lift2 velocity

Ds m/s? Deceleration for shuttle velocity

DI m/s2 Deceleration for Lift1 velocity

Dsl m/s? Deceleration for Lift2 velocity

USavg % Average utilisation of a shuttle

ULavg % Average utilisation of Lift1

USLavg % Average utilisation of Lift2

w m Two bays’ distance

H m Two tiers’ distance

T Number of tiers in an aisle

B Number of bays on either side of a tier

S Total number of shuttles

4.1. Simulation model assumptions

The simulation model is completed in Python program-
ming, by using the SimPy library. In Table 3, the utilised
notations and their units are provided.

In the simulation model, whenever a shuttle becomes
available, it checks the status of the waiting transactions
in its queue. If there is more than one transaction in its
queue, it picks the transaction based on the pre-defined
selection approach (SPT, FIFO, or DQN). After the shut-
tle picks a transaction, the transaction request entity is
cloned, and it immediately enters the queue of Liftl. If
the process is storage, then, Liftl moves to the I/O point
to receive the tote. Later, it moves to the storage tier with
the tote. Meanwhile, if the seized shuttle is located at a
tier different from the storage address, it requests Lift2
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Figure 6. Flow chart of the agent-based simulation model.

and travels to the storage tier with Lift2. After the shut-
tle arrives at the storage tier, it moves to the buffer area
to pick up the storage tote. Shuttle and tote travel to the
bay address together and, the shuttle discharges the load
at the bay address.

In the case that the selected transaction is a retrieval
transaction, Liftl is requested immediately. Then, it
moves to the destination retrieval tier. After the shut-
tle drops the load at the buffer area, Liftl receives the
load and carries it to the I/O point. Note that Liftl is
never utilised for both transaction types if the tier of
the transaction is first tier. Again, Lift2 is never utilised
if the tier of the address and the seized shuttle’s tier
are same. After the shuttle arrives at the retrieval tier,
it brings the load at the buffer area for Liftl’s pick up.
The scheduling rules of Liftl and Lift2 are always FIFO
not to ruin the transaction processing order of shuttles
(note that first, a shuttle is seized then, lifts). The SPT and
DQN policies are applied for the transaction selection of
shuttles. The simulation model’s detailed flow is given in
Figure 6.

The considered assumptions in the simulation model
are summarised below (Lerher 2015; Lerher et al. 2015a,
2015b; Kucukyasar, Ekren, and Lerher 2021):

address

Lift 1 picks up the tote
and drops off it at the
first tier

Lift 1is
released

Shuttle is released

e The mean inter-arrival rates follow Poisson distri-
bution and, they are equal for storage and retrieval
transactions (Ag = AR).

We consider a random storage policy.

Storage transactions arrive at, and retrieval
transactions leave from, the I/O point in the
warehouse.

e There is a single shuttle queue, where storage and
retrieval transaction requests arrive.

e We ignore the loading/unloading times of transac-
tions.

e Liftl and Lift2 process the waiting transactions in the
FIFO order.

e There are two lifting tables in Liftl, and they work
independently. Namely, the capacity of that lifting
mechanism is two totes.

e The last completion location point is the dwell point
of lifts/shuttles.

o Vs=Vl=Vs=2m/s.

e As= Al = Asl = Ds = DI = Dsl = 2m/s>.

e W= 05m H=0.35m.

e The number of replications is calculated by consider-

ing a desired half-width value and, it is set to minimum
of three independent replications.



We debug the codes and apply degenerative changes
on the input variables to observe whether we obtain the
expected outputs to verify the simulation model. Since
there is no real t-SBSRS, we validate the simulation model
by involving experts in the modelling as well as by com-
paring the estimated Fayy from the current literature
works. In the following section, we explain the applied
DQL approach.

4.2. Deep Q-Learning implementation

In this approach, we perform a non-episodic task where
the task has no clear ending point, and the shuttle agent
is kept trained until the system stops. How we define
the main DQN elements is summarised in below subsec-
tions.

4.2.1. Agents

The agents are the shuttles in the system. The primary
role of shuttle agents is to apply an intelligent transac-
tion selection policy considering possible future states to
result in total maximum reward in the long run. Remem-
ber that each shuttle agent picks an action (i.e. a trans-
action) based on the estimated Q-value and keeps that
information to train itself according to the gained reward.

4.2.2. Statespace

The state space is what the agent feeds into the network
from environment information. In the studied problem,
the state space is defined as:

S(k) = (Current tier of the shuttle k, current bay of
the shuttle k, current tier of the first lifting table of Lift1,
availability of the first lifting table of Lift1, current tier of
the second lifting table of Lift1, availability of the second
lifting table of Lift1, current tier of Lift2).

Here, k represents the shuttle that is available and will
pick a transaction from its queue. The tier values are inte-
gers between 1 and T, and the bay values are integers
between 1 and B, availability is either ‘0’ or ‘1’ where
‘0’ shows that the lift is currently not available and ‘1’
represents that the lift is currently available.

4.2.3. Action space

The transactions waiting in the queue of shuttles have
several attributes which are considered as actions in the
model. Specifically, the action space is defined as:

A(k) = (the tier address of the transaction, the bay
location of the transaction, transaction type, and table
side of Lift1).

Note that from the action definition, while a shuttle
selects a transaction, at the same time, a proper Liftl
table is also selected. To explain how states are defined:

INTERNATIONAL JOURNAL OF PRODUCTION RESEARCH . 9

we assume that there is a storage transaction in the shut-
tle queue, whose storage address is at the 5th tier and
the 20th bay, then the actions related to this transaction
would be (5, 20, 0, 1) and (5, 20, 0, 2) according to the
action definition above. 0 represents storage transaction
type (i.e.itis 1 for retrieval transactions), and 1 and 2 rep-
resent the lifting table side of the Lift1 mechanism. Note
that actions become active according to the attributes of
the waiting transaction. In addition, a waiting transaction
might be ignored from being an active action for the shut-
tle when there is already a busy shuttle processing at that
transaction’s tier. This would also help for the prevention
of shuttle collisions that could happen at the same tier.

4.2.4. Reward function definition

As mentioned before, the reward is a performance met-
ric from the system. It is the most crucial issue to track
for an agent to make an optimal decision for increasing
cumulative reward in the long run. In the DQN approach,
we aim to minimise the C,yg performance metric. Here,
we define cycle time as the total time spent in the sys-
tem. For that, we subtract the time transaction created
from the time it is disposed. In other words, it includes
all the waiting times of transactions in the system. Fay,g
is the average time a transaction travels in the system,
it ignores the waiting time in the shuttle queue. In the
defined reward function, to reduce the state space, we do
not include the queue related information such as so far
waiting time of transactions, arrival time and queue order
of transactions. Hence, the cycle time reward values do
not correlate with the states. To overcome that issue, the
reward function is normalised by using Equations (2)-(4)
in order:

1

MINFf = —————— 2
t max(flowtime) @
1
MAXF = ———— ®)
min(flowtime)
1
1 _ MINF,
= flowtime(a) x 100 (4)

MAXF; — MINF,

Note that the realised flow time values are stored
in the set of flowtime. In Equation (2), the inverse of
the maximum flowtime returns the minimum value of
1/flow times. In Equation (3), the inverse of the minimum
flowtime returns the maximum value of 1/flow times.
Equations (2) and (3) are utilised for normalising the
reward function. Normalisation is generally formalised
by Xnorm = % (Gazori, Rahbari, and Nickray
2020). Based on this formula, we treat our normalisation
function by Equation (4). In Equation (4), flowtime (a)
represents the current flow time of action a. Since the
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Figure 7. DQN results under three different learning rate scenar-
ios.

normalised values are relatively small, we multiply the
values by 100 to track the improvement conveniently.

4.2.5. DQN results and utilised parameters

The DQN methodology is applied by using the Tensor-
Flow and Keras frameworks in Python Programming.
Here, the DQN model is composed of three dense layers:
input, hidden, and output. Rectified Linear Unit (ReLU)
is utilised for input layer and hidden layer definition as an
activation function. Here, the activation function defines,
how the weighted sum of inputs would be transferred into
the output node. While positive input values exist, ReLU
might be a proper approach to apply. For the optimiser of
the network, ‘Adam’ optimiser is chosen with parameters
o =0.001,y =02, ¢ =1, gg4ec = 0.9999, emin = 0.01,
n = 64. Besides, the Mean Squared Error (MSE) loss
function is considered.

The average cycle time performance metric results
from the DQN application for the warehouse design with
T = 5,B = 25, S = 2 are given in Figure 7 for three dif-
ferent learning rates, « values: 0.01, 0.001 and 0.0001
separately. To observe how long it takes to train an agent,
we provide average cycle time versus simulation run-
time graph. It is observed that the fast-training time is
obtained when o = 0.001. This is mainly because the
system is highly stochastic, and a small learning rate
might work better. In that figure, it can be assumed that
after 86,405 s (e.g. roughly after one day), the agents are
trained well due to the drastic decrease in the perfor-
mance output.

4.2.6. DQL results comparison with SPT

Since SPT is a well applied selection rule in practice, here
first, we compare the DQN results with static the SPT
selection rules of shuttles. Note that DQN applies ran-
dom transaction selections during its exploration period
to train agents. During the random selection in the train-
ing process, the cycle times of transactions might be high

Method
—e— DQN
—a— SPT

400

3004

200+

Average Cycle Time (sec.)

100{ X

——

04
Day 0 1 2 3 4 5 6 7 8 9
Epsilon 0.96 0.31 0.09 0.03 0.01 0.01 0.01 0.01 0.01 0.01

Figure 8. Average cycle time of each day.

coming with a cost to the company. Namely, some perfor-
mance metric results may be worse during the training
period than the other static algorithms. Figure 8 shows
the average cycle time per transaction versus simula-
tion time under the best « value, 0.001, observed from
Figure 7. In that experiment, the other DQN parameter
values are: y = 0.2, ¢ = 1, €d4ec = 0.9999, &min = 0.01.
Since the applied method is a non-episodic task, we
treat each day as an episode. After each day, the Cyy
output is reset to zero to trace each episode’s average
cycle time output. As observed in Figure 8, the DQL
algorithm outperforms the SPT algorithm after a single
day (on average, 13,091 transactions later). Hence, the
training cost would incur in terms of relatively higher
average process time of a transaction just in the first
day.

Note that the Figure 7 results are for the warehouse
design with T'= 5, B = 25, § = 2. Since the shuttles are
defined as agents, an increased number of shuttles might
resultin decreased training time due to the increased pos-
sibility of facing more state-action cases. Hence, Section
5 provides several warehouse design experiments results
by considering different T, B, and S values.

5. Experimental results

Here, as mentioned previously, the DQL method is com-
pared with both SPT and FIFO rules. Here, in the
FIFO algorithm, shuttles constantly pick the first arriving
transaction in the system. In the SPT rule, the transac-
tions are selected based on the shortest travel distances
through their addresses.

We consider eight warehouse designs under different
scenarios of the number of tiers, T, the number of bays, B,
and the number of shuttles, S, in the system. The exper-
iments are selected by focusing on different number of
shuttles, bays and tiers scenarios. Since the simulation



Table 4. Experimental design and their results.
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Exp T B S Algorithm T Ulayg USLavg USavg Cavg Favg Wavg

1 5 25 2 FIFO 6.6 Burst Burst Burst Burst Burst Burst
5 25 2 SPT 6.6 47% 51% 94% 98.5+6.59 12.94 0,01 85.56
5 25 2 DQN 6.6 37% 44% 85% 41,67 £2.05 1153 £0.13 30.14

2 8 25 3 FIFO 5.2 Burst Burst Burst Burst Burst Burst
8 25 3 SPT 52 69% 74% 90% 61.54 % 4.2 14.69 % 0.02 46.86
8 25 3 DQN 52 55% 66% 81% 36.52£1.56 1296 +0.17 2356

3 10 25 4 FIFO 4.2 Burst Burst Burst Burst Burst Burst
10 25 4 SPT 4.2 86% 86% 90% 89.34+£7.32 15.51£0.06 73.83
10 25 4 DQN 4.2 67% 80% 80% 46.06 + 2.4 13.47 £0.25 32.59

4 13 25 5 FIFO 44 Burst Burst Burst Burst Burst Burst
13 25 5 SPT 44 90% 92% 83% 57.93+£297 18.64 % 0.05 39.29
13 25 5 DQN 44 72% 90% 74% 44131+0.98 16.07 £0.22 28.07

5 5 50 2 FIFO 12 42% 57% 97% 567.39 + 187.65 23.72£224 543.66
5 50 2 SPT 12 41% 52% 94% 13818+ 11.73 22.97 £0.08 115.21
5 50 2 DQON 12 34% 46% 86% 69.81 +4.46 20.83+0.16 48.98

6 8 50 3 FIFO 9.2 64% 79% 94% 257.14438.13 26.64 +0.05 2305
8 50 3 SPT 9.2 62% 74% 92% 11432+ 8.87 25.93£0.06 88.39
8 50 3 DQN 9.2 51% 69% 85% 66.12+3.12 23.740.2 4242

7 10 50 4 FIFO 7.6 Burst Burst Burst Burst Burst Burst
10 50 4 SPT 7.6 77% 87% 91% 147.44£11.51 28.1140.08 119.34
10 50 4 DQN 7.6 63% 83% 84% 79.44+£3.98 25.57£022 53.88

8 13 50 5 FIFO 74 Burst Burst Burst Burst Burst Burst
13 50 5 SPT 7.4 86% 93% 88% 155+8.96 32.73+0.15 122.27
13 50 5 DQN 74 72% 93% 83% 104.35£5.21 30.334+0.35 74.02

run of DQN model is time consuming due to the train- 160

ing period, we complete a single long-run simulation i

by applying batchmg (Law 2015). Table 4 presents Fhe -

conducted experiments. Those designs are also studied 2

s o B 100

well in literature (Kiiglikyasar, Ekren, and Lerher 2021; &

Ha and Chae 2018b). The conducted experiments are: I B

T =5,8,10,13; B = 25,50; S = 2, 3, 4. The simulation g 60

results are also given in Table 4. The mean inter-arrival < 404

times are adjusted so that the average utilisation of the -

bottleneck service provider (i.e. shuttles) is large enough,

. . . 0-
specifically larger than 90%. To make a fair compari- Agoritm

son independent from an effect of a warehouse design,
note that we fix the inter-arrival time within a specific
warehouse design and compare the performance out-
puts under that arrival rate. Namely, the arrival rates for
the first four experiments are same. However, the fol-
lowing four experiments are different from those initial
four experiments. The results are given at 95% confidence
intervals. In Table 4, ‘Burst’ represents that the design
model cannot produce a feasible result due to not hav-
ing a steady-state condition. In other words, the system
explodes due to large number of transactions in the sys-
tem. Since it is time consuming to run the DQN models
due to its training periods, and we are interested in the
performance results after the learning periods.

From Table 4, it is observed that in most cases, the
FIFO schedule rule cannot produce a feasible solution
(e.g. due to a fixed arrival rate). DQN results consistently
outperform both FIFO and SPT rules considering the
Cavg performance metric. When T =5, B =50, S = 2,
the DQN method decreases the Cyyg by 57.7%, and when

Experiment

Figure 9. Comparison of SPT and DQN selection policies for Cyyg.

T =38, B=50,S = 2, the DQN method decreases the
average cycle time by 49.5% when it is compared to the
SPT rule. These results are also summarised in Figure 9.
From that figure, it is observed that DQN mainly pro-
duces highly better results than the SPT results. This is
possibly caused by the effect of the future rewards. SPT
can be considered as if a myopic policy, due to focus-
ing on solely the current minimum flow times. However,
the DQN algorithm also considers the possible future
rewards, and this leads shuttles to travel to tiers/bays so
that that the average flow time of transactions is min-
imised in long term. Therefore, DQN can be considered
as a promising job selection approach for the future of
smart industries.
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6. Conclusion

This paper studies a DQN application for an AS/RS ware-
house for the system’s transaction selection policy of
autonomous vehicles (i.e. shuttles). The studied ware-
house, t-SBSRS, is developed to alter the handicaps of
¢c-SBSRS which are the unbalanced utilisation of shuttles
and lifts. Hence, there is more than the required number
of shuttles in the system. In the proposed novel ¢-SBSRS,
the number of shuttles is reduced by enabling them to
move between tiers. That would benefit in facilitating
the investment decisions of those automated technolo-
gies. To the best of our knowledge there is no limitation
to implement such a new design in SBSRS. However,
from the ML-based perspective, a good connected IoT
environment would be required. There are three sepa-
rate service providers in the new system. These are: the
two lifts for movement of loads and shuttles between
tiers separately, and the shuttles for horizontal travel of
loads. Due to the decreased number of shuttles in the
system, and hence possible increased travel time expec-
tation in the system, we apply an intelligent modelling
approach (i.e. DQL) that can take into consideration real-
time data and information tracking from current envi-
ronment as well as future possible states while making
smart decisions. Due to the complexity of the system in
which those service providers work interactively, we sim-
ulate the system to observe how DQL improves average
cycle time of a transaction time in the system. We model
the systems by using the Python, SimPy library, and the
DQN is applied using the TensorFlow and Keras libraries.
We compare the proposed system’s performance with
SPT and FIFO selection rules under different warehouse
designs. The results show that DQN outperforms FIFO
and SPT rules which is promising for the future of smart
industry applications. Especially, when it is compared
with a well-applied SPT, on average, DQL decreases the
average cycle time output by roughly 43%. Besides, this
paper is a promising work on showing how recent ML-
based algorithms can be applied on automated warehous-
ing systems promising for the future of smart industry
applications.

As the future works, more environmental information,
including attributes of waiting transactions in the queue
could be included in state information by also explor-
ing fast training learning algorithms. Besides, more
experiments can be concluded by also including dif-
ferent velocity profiles of servers and number of tiers
in the system. Additionally, different reward functions
taking into multiple objectives in the system can also
be considered. Last, a performance comparison analy-
sis with a ¢-SBSRS would also be worth studying as a
future work.
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