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Abstract

Safety is a critical consideration during the design of an aircraft, as it constrains

how primary functions of the system can be achieved. It is essential to include

safety considerations from early design stages to avoid low-performance solu-

tions or high costs associated with the substantial redesign that is commonly

required when the system is found not to be safe at late stages of the design. Ad-

ditionally, safety is a crucial element in the certification process of aircraft, which

requires compliance with safety requirements to be demonstrated.

Existing methods for safety assessment are limited in their ability to inform ar-

chitectural decisions from early design stages. Current techniques often require

large amounts of manual work and are not well integrated with other system en-

gineering tools, which translates into increased time to synthesise and analyse

architectures, thus reducing the number of alternative architectures that can be

studied. This lack of timely safety assessment also results in a situation where

safety models evolve at a different pace and become outdated with respect to the

architecture definition, which limits their ability to provide valuable feedback.

Within this context, the aim is to improve the efficiency and effectiveness of

design for safety as an integral part of the systems architecting process. Three

objectives are proposed to achieve the stated aim: automate and integrate the

hazard assessment process with the systems architecting process; facilitate the

interactive introduction of safety principles; and enable a faster assessment of

safety and performance of architectures. The scope is restricted to the earlier

(conceptual) design stages, the use of model-based systems engineering for sys-
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tems architecting (RFLP paradigm) and steady-state models for rapid analysis.

Regarding the first objective, an enabler to support the generation of safety

requirements through hazard assessment was created. The enabler integrates

the RFLP architecting process with the System-Theoretic Process Analysis to

ensure consistency of the safety assessment and derived safety requirements

more efficiently.

Concerning the second objective, interactive enablers were developed to sup-

port the designer when synthesizing architectures featuring a combination of

safety principles such as physical redundancy, functional redundancy, and con-

tainment. To ensure consistency and reduce the required amount of work for

adding safety, these methods leverage the ability to trace dependencies within

the logical view and between the RFLP domains of the architecture.

As required by the third objective, methods were developed to automate sub-

stantial parts of the creation process of analysis models. In particular, the meth-

ods enable rapid obtention of models for Fault Tree Analysis and subsystem sizing

considering advanced contextual information such as mission, environment, and

system configurations.

To evaluate this research, the methods were implemented into AirCADia Ar-

chitect, an object-oriented architecting tool. The methods were verified and eval-

uated through their applications to two aircraft-related use cases. The first use

case involves the wheel brake systems and the second one involves several sub-

systems. The results of this study were presented to a group of design specialists

from a major airframe manufacturer for evaluation. The experts concluded that

the proposed framework allows architects to define and analyse safe architec-

tures faster, thus enabling a more effective and efficient design space exploration

during conceptual design.

Keywords: Design for Safety; Aircraft Conceptual Design; Model-Based Systems
Engineering; Systems-Theoretic Process Analysis (STPA); Safety Principles; Fault
Tree Analysis (FTA); Aircraft Systems Sizing.
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Chapter 1

Introduction

1.1 The Importance of Safety at Conceptual Design

Design can be defined as the set of activities that ‘develop a product from a need,

product idea or technology to the full documentation needed to realise the product

and to fulfil the perceived needs of the user and other stakeholders’ [1]. One

particularly important kind of need is safety, which aims to limit the undesired

behaviours of the system that can result in catastrophic effects such as injuries,

loss of life and environmental damage, provided that there is no ill intent from

the users of the product. Safety limits the way products can be designed, as it

excludes those designs that might result in any catastrophic effects but that might

be otherwise successful in fulfilling the rests of the need.

Aircraft are a representative example of potentially unsafe products. Due to

the physical characteristics of aircraft and their operation, which involves flying at

great speed and altitude, accidents that cause many fatalities are unfortunately

still possible. Thus, aircraft design must improve the ability to transport passen-

gers and cargo more economically while doing so in a safe manner. Regulatory

agencies such as the Federal Aviation Administration in the United States and the

European Aviation Safety Agency in the European Union establish the minimum
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safety requirements aircraft must meet to obtain a certificate of airworthiness.

Safety efforts have succeeded in reducing the number of fatalities involving pas-

senger and cargo operations of large aeroplanes worldwide from a yearly average

of 1500 fatalities in the 1970s to a yearly average below 500 fatalities in the last

decade [2] — while the number of revenue passenger kilometres* increased ten-

fold in the same period [3]. However, there is still room for improvement. The use

of innovative solutions such as novel configurations and increasingly more electric

aircraft introduce new challenges. This is because much of the past experience

regarding safety might not be applicable to the new designs.

Regarding aircraft design, the conceptual stage is considered a critical design

phase as decisions in this phase can have a great impact in later design stages.

Product cost is, to a great extent, ‘committed early in the design process and

spent late in the process’ [4, p. 5]. For example, unsound decisions regarding

safety might be discovered at later design stages where lack of design freedom

might require that safety is achieved at the expense of performance, or to require

substantial redesign, with its associated high costs. Furthermore, safety prob-

lems might remain undetected until aircraft enter into service and be discovered

later when accidents happen. This is the case of the Boeing 737 MAX airliners [5]

that were grounded worldwide for over a year due to problems with their Maneuv-

ering Characteristics Augmentation system, which resulted in 346 fatalities in the

crashes of Lion Air Flight 610 in October 2018 [6] and Ethiopian Airlines Flight 302

in March 2019 [7]. To avoid these kinds of undesired situations, it is fundamental

to have the best possible support for architecting safety along with the remaining

aspects of the aircraft as early as possible in the design.

*A revenue passenger kilometre is a measure of airline traffic; it is calculated as the number of
revenue passengers multiplied by the number of kilometres flown.
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1.2 Motivation

The research presented in this thesis is motivated by the limitations of existing

support methods for safety architecting, which affect their ability to inform ar-

chitectural decisions from the early design stages. These limitations, which are

presented in more detail next, are used to formulate the aim and objectives of the

research in Section 1.3.

1.2.1 Limited Support for Hazard Assessment and Safety

Analysis

Hazard assessment and safety analysis techniques generally require specific

models, which highlight particular aspects of the system, to be created. These

models are subsequently analysed using different techniques, obtaining the de-

sired safety information as a result. For instance, fault tree analysis requires mod-

elling a specific fault of the system via a fault tree, which can be analysed qualitat-

ively and quantitatively to obtain safety and reliability metrics. Current support for

hazard assessment and safety analysis techniques often require large amounts

of manual work to create the necessary models. Safety experts are also generally

required during the model creation process. Even in the cases where significant

parts of the creation process are automated, both the information required to cre-

ate the models and the resulting models themselves are not well integrated with

the rest of the system engineering tools.

The lack of adequate support translates into increased time to analyse archi-

tectures and obtain their relevant safety characteristics, which limits the number

of architectures that can be studied in a given period of time, and potentially re-

duces the quality of the design space exploration. Long analysis times also affect

other kinds of studies, such as determining the impact on safety that a modifica-

tion of a baseline design has. The necessity of expert cooperation together with
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the lack of integration with system engineering tools and the difficulty of obtaining

timely safety assessment increase the likelihood of safety models evolving at a

different pace than the rest of architecting activities. This way, safety considera-

tions can become outdated with respect to the architecture definition, which limits

their ability to inform the design.

1.2.2 Lack of Support for Safety Architecting

Once safety requirements are established (e.g. from hazard assessment results

or imposed by a certification authority), new architectures need to be proposed or

the existing ones need to be modified to comply with such requirements. There

exist several design patterns, referred to as safety principles, that can be applied

to architectures to improve their safety characteristics and therefore comply with

the stated safety requirements. However, no support methods for architecting

safety principles that are relevant within the scope of this research were found.

This lack of support increases the necessary time to generate candidate archi-

tectures or modify existing designs, leading to problems such as those stated in

Section 1.2.1, which limit the ability to explore the design space.

1.3 Aims and Objectives

Taking into account the discussion and motivation provided in this chapter, the

proposed aim of this research is:

To improve the efficiency and effectiveness of design for safety as

an integral part of the systems architecting process.

In order to achieve the stated aim, the following objectives are proposed:

1. Automate and integrate the hazard assessment process with the systems

architecting process to allow a seamless definition of safety requirements.
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2. Develop interactive methods to support the introduction of safety principles

during architecture definition.

3. Automate the creation of system safety and performance models, enabling

swift assessment of the candidate architectures.

The first and third objectives are proposed to overcome the limitations con-

cerning the inadequate support for hazard assessment and safety analysis above.

The lack of support for safety architecting motivates the third objective of this re-

search.

1.4 Scope

Civil aircraft system architectures are a central element of this research. How-

ever, the proposed methods are not limited to this particular kind of system, which

broadens the scope of the research. The focus on civil aircraft system architec-

tures guided the literature review. It also determined which kind of systems were

utilised in the use cases developed to evaluate the research. At the same time,

great care was taken not to limit unnecessarily the scope of applicability of the

proposed methods. The methods are expected to be applicable or easily adapt-

able to other types of aircraft (such as general aviation or military aeroplanes) and

complex systems other than aircraft — as long as the systems can be modelled

according to or be converted to the RFLP framework used to model architectures

in this research, which assumes that systems architecting is distributed over the

requirement, functional and logical domains (see Chapter 4 for more details).

The scope is restricted to the earlier (conceptual) design stages because it

is fundamental to consider safety as early as possible in the design process.

Better safety-related decisions at early stages are expected to improve system

safety and mitigate the negative impact on the rest of aircraft properties, such as

performance. In consonance with early design stages, the systems engineering
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approach employed combines a model-based approach (see Section 2.2.1) with

the RFLP paradigm (see Section 2.2.2). Only steady-state models for rapid ana-

lysis were considered for sizing and determining the performance of the systems.

Better safety-related decisions at early stages are expected to improve system

safety and mitigate the negative impact that safety might have on other aircraft

properties such as performance.

Finally, it must be noted that the research presented in this thesis is not a

study to assess the safety of a particular architecture or determine which safety

strategies are better. Rather, it is intended to provide the tools to enable de-

signers to answer these questions. Therefore, the data and models used for the

demonstration of the methods are meant to be realistic and of appropriate fidelity

for industrial evaluation, but are not necessarily real.

1.5 Research Methodology

Blessing and Chakrabarti [1] propose a design research methodology (DRM) that

aims to make design research more effective and efficient through more concrete

objectives such as providing a framework for design research, helping to identify

promising research areas and adequate methods, improving the rigour of the re-

search and providing a more solid line of argumentation. As shown in Figure 1.1

DRM consists of four stages: Research Clarification, Descriptive Study I, Pre-

scriptive Study and Descriptive Study II.

1.5.1 Research Clarification

The Research Clarification stage should provide an initial picture of the existing

situation and the situation to be achieved at the end of the research. The aim

and objectives of the research, its scope, questions, hypotheses and areas to be

reviewed need to be identified. The outcomes from this stage are the existing
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Figure 1.1: Overview of the research methodology (From [1])

situation, which corresponds to the motivation of the research, the aim and ob-

jectives provided in this chapter, and some of the ideas present at the beginning

of Chapter 3.

1.5.2 Descriptive Study I

The Descriptive Study I stage consists of reviewing the literature, undertaking

empirical research or applying reasoning to increase the understanding of design

and how to achieve the stated aim. Literature review (see Chapter 3) constitutes

the main activity performed during this stage of the research. The review resul-

ted in a deeper understanding of the safety assessment process and its relation

with the rest of the system development activities. Current methods for hazard

assessment, safety architecting and safety and performance assessment were

reviewed, and their limitations were identified.
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1.5.3 Prescriptive Study

The Prescriptive Study develops the intended support, which is expected to ad-

dress the limitations identified during the Descriptive Study I and help to achieve

the desired situation as stated in the Research Clarification. Additionally, the sup-

port should be implemented to a level of detail that is sufficient to evaluate the pro-

posed approach. In this research, methods for automating and integrating activ-

ities of the hazard assessment, safety architecting and safety and performance

assessment processes are developed (see Chapter 5). The methods require

the architectures to be modelled according to the RFLP framework presented

in Chapter 4. The RFLP framework and methods are implemented in AirCADia

Architect, a prototype software tool that is presented in Section 6.2.

1.5.4 Descriptive Study II

The Descriptive Study II stage focuses on the evaluation of support. According

to the DRM, there are three types of evaluation.

• Support Evaluation: verifies that the developed support fulfils its require-

ments.

• Application Evaluation: determines the usability of the support (regarding

its intended task) and whether it impacts in the desired way those factors of

the situation that can be influenced.

• Success Evaluation: identify whether the support is useful to achieve the

desired situation, considering possible side effects.

Two use cases are developed for evaluation purposes in this thesis. The meth-

ods are tested by applying them to the use cases and observing their ability to

influence satisfactorily the targeted factors. One of the use cases was presented

8



1.6. Thesis structure

to a group of experts who provided feedback regarding the industrial usefulness

of the methods.

1.5.5 Classification of this Work

Depending on the level of detail in which the stages are undertaken, design re-

search can be classified into seven possible types. Studies are said to be review-

based when they consist only of the review of the literature. By contrast, compre-

hensive studies include additional results produced by the researcher. All DRM

stages can be review-based except the Descriptive Study II, which always in-

cludes original results by the researcher. The stages of Prescriptive Study and

Descriptive Study II can also be categorised as initial if these studies only involve

the first few steps to show the consequences of the results.

RESEARCH

CLARIFICATION

DESCRIPTIVE

STUDY I
PRESCRIPTIVE

STUDY I
DESCRIPTIVE

STUDY II

Review-Based Review-Based Comprehensive Initial

Figure 1.2: Stages of the presented research

In this research, only the Prescriptive Study I is conducted at a comprehensive

level of detail, as shown in Figure 1.2. This situation corresponds to a ‘Type 3’

study according to DRM terminology.

1.6 Thesis structure

Figure 1.3 shows the main chapters of the thesis and, when applicable, relates

their content to the research methodology steps discussed in the previous sec-

tion.
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1. Introduction

2. Background

3. Literature Review

4. Methodology I

5. Methodology II

6. Evaluation

7. Conclusions

Research
Clarification

Descriptive
Study I

Prescriptive
Study I

Descriptive
Study II

Figure 1.3: Structure of the thesis

This chapter introduces the general area and the motivation of the research,

provides the aim and objectives and introduces the research methodology. Then,

Chapter 2 presents an overview of background concepts such as systems en-

gineering and functional modelling. Chapter 3 Literature Review discusses the

concepts of safety, reliability and resilience and how they are interrelated, states

the current approaches for safety assessment and identifies research gaps in

the topics of hazard assessment, safety architecting and safety and performance

analysis. The chapter also reviews the most relevant methods in the literature

regarding such topics and identifies their limitations. The literature review corres-

ponds to the Descriptive Study I and Research Clarification stages of the DRM.

Chapter 4 Methodology I proposes an RFLP framework that is used to model

architectures and enables the application of the methods developed in this re-

search. Chapter 5 Methodology II proposes the methods that automate and fa-

cilitate the integration of the safety assessment and system development pro-

cesses. A method to automate the creation of models used by a hazard assess-
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ment technique called STPA is presented, as well as a method that automates

the creation of fault trees. Support for the architecting of three safety design

principles is also developed. The last contribution of the methodology chapter

is a method that speeds up the sizing process considering the aircraft mission

and failure conditions. Chapters 4 and 5 correspond to the Prescriptive Study.

This stage also includes the development of AirCADia Architect, the software tool

used to demonstrate the proposed support, which is presented at the beginning

of Chapter 6.

The remainder of Chapter 6 demonstrates the application of the developed

methods by applying them to two uses cases. Additionally, one of the uses cases

was presented to a group of experts who provided feedback regarding the poten-

tial benefits that would be obtained by the application of the methods in current

industrial practice. This chapter corresponds to the Descriptive Study II.

Finally, the conclusions of the thesis are presented in Chapter 7, which begins

with a summary of the research. The contributions of the research and possibil-

ities for future research are discussed next. The conclusions chapter is followed

by Appendices A to D, which support and supplement the information provided in

the main body of the thesis. Appendix E lists the publications that have resulted

from this research.
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Chapter 2

Background

2.1 Introduction

This chapter begins with a brief overview of the topics of systems engineering

and, in particular, model-based systems engineering and the RFLP paradigm.

These elements represent the foundation of the RFLP framework developed in

Section 4. Then, the concept of functional basis, on which the functional model-

ling in this research is based, is presented in Section 2.3. Section 2.4 introduces

the fundamental concepts of graph theory. This section also presents graph tra-

versals in more detail, which are fundamental for the developed methods, and the

minimum cut set problem, which is used for the containment enabler developed

in Section 5.3.3. Section 2.5 introduces fault trees, which are created automatic-

ally by the methods presented in Section 5.4.1. Finally, Section 2.6 describes the

characteristics of computational workflows such as the ones created by the sizing

method proposed in Section 5.5.
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2.2 Systems Engineering

Systems engineering is defined by the International Council on Systems Engin-

eering as:

‘A transdisciplinary and integrative approach to enable the suc-

cessful realization, use, and retirement of engineered systems, us-

ing systems principles and concepts, and scientific, technological, and

management methods [8]’

Engineered systems are designed to interact with an anticipated operational

environment to achieve their intended purposes while complying with applicable

constraints [8]. Systems engineering is transdisciplinary and integrative as it re-

quires the knowledge and methods of various disciplines to work together towards

a common end (e.g. the design of the system). Defining required functionality,

starting early in the development cycle, and generating and evaluating alternat-

ive solution concepts and architectures are the most relevant aspects of systems

engineering within this research.

2.2.1 Model-Based Systems Engineering

Model-Based Systems Engineering consists in the formalized application of mod-

elling to support system engineering activities; it begins in the conceptual design

phase and continues throughout the rest of the design phases [9]. This model-

centric approach is expected to replace the traditional document-centric approach,

as it is thought to enhance productivity and quality, reduce risk, and improve com-

munications among development teams. Modelling languages such as SysML [10]

and Modelica [11], and modelling paradigms such as RFLP provide a foundation

to fully specify and analyze systems.
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2.2.2 RFLP Paradigm

The RFLP paradigm assumes that systems architecting is distributed over four

notional domains: Requirements, Functional, Logical and Physical [12]. RFLP,

which stands for Requirements engineering, Functional design, Logical design,

and Physical design, is based on the German guideline VDI 2206 [13]. According

to the RFLP framework proposed by Guenov et al. [14], which is the one used in

this research, each one of the views of the architecture serves a different purpose:

• Requirements View: displays all the architecture requirements, which are

initially gathered from the stakeholder needs via requirements elicitation.

Two types of requirements, functional and performance, are considered in

References [15] and [14]. Requirements can be decomposed hierarchically

and mapped to the functions of the system that are proposed to satisfy the

requirements.

• Functional View: contains all the architecture functions, defined as what

the system (or parts of the system) must do to meet the requirements. Like

requirements, functions can also be decomposed hierarchically. Functions

can be linked to requirements and components in the logical view. Two kinds

of relations, function satisfaction and function derivation, exist between func-

tions and solutions.

• Logical View: contains the components of the architecture, which repres-

ent the solutions selected to implement the functions. Components can

also be structured hierarchically and interconnected through ports, which

represent the exchange of energy, material and signal flows [14].

• Physical View: represents the geometry of the system, including the size

and layout of the subsystems. Logical components have their corresponding

physical representation in this view.
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Figure 2.1: RFL and computational domains

The works by Bile [16] and Bile et al. [15] extend the RFLP paradigm with a

computational domain. In these works, steady-state computational models are

associated with logical components. The computational domain automates many

of the processes required to orchestrate the models into computational sizing

workflows. Traceability between the RFLP and computational domains is pro-

posed by Guenov et al. [14], which facilitates a more effective and interactive

design process. An overview of the RFLP and computational domains is presen-

ted in Figure 2.1, the physical view is not considered in the figure.

2.2.3 The Unified Modeling Language UML

The Unified Modeling Language [17] is a language whose purpose is to specify,

visualize, and document models of software systems, including their structure

and design, in a way that the system requirements can be met. UML models

architectures by using thirteen types of diagrams, divided into three categories:

1. Structure Diagrams comprise six diagrams that represent the static applic-

ation structure.

2. Behaviour Diagrams consist of three diagrams that represent general types
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of behaviour.

3. Interaction Diagrams include four diagrams that represent different as-

pects of interactions.

The relevance of UML in this thesis is twofold. First, it serves as the foundation

for SysML, a modelling language used for systems engineering and employed by

some of the methods reviewed during the literature survey. Second, UML is used

to describe the object model that serves as the foundation for the RFLP frame-

work used in this research. In particular, this thesis employs a kind of structure

diagram called Class Diagram.

Class Diagrams

Class diagrams describe the structure of a system with the core elements class,

attribute, method, association, and composition [18]. These main elements are

defined as follows:

1. Classes are collections of attributes and methods that determine the state

and the behaviour of its instances. Classes are connected to each other by

associations and inheritance. Classes are identified by their name [18].

2. Attributes define the stare of a class instance. Attributes are described by

their name and type [18].

3. Methods store the functionality of a class. A method consists of a signature

and a body (implementation) [18].

4. Association are binary relation between classes that provide structural in-

formation [18].

5. Aggregation is a form of association that indicates that one class owns

an object of another class that can exist independently of the owner. It is

indicated by an empty diamond at the owner end of the association.
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6. Composition is a form of association that indicates that one class owns an

object of another class that cannot exist independently of the owner. It is

indicated by a filled diamond at the owner end of the association.

7. inheritance is a mechanism that allows the creation of more specialised

sub-classes from an existing class. It is indicated by an empty arrow pointing

at the less specialised class.

Subfigure 2.2a shows an example of the notation used to define a class in a

class diagram, including its attributes and methods. Subfigures 2.2b, 2.2c and

2.2d present the notation of composition, aggregation and inheritance relations

respectively.

2.3 Functional Modelling

Functional modelling is the process of creating the functional model of a system.

The functional model is a description of the system in terms of the elementary

functions that are required to achieve its overall function or purpose [19].

2.3.1 Functional Basis

The functional basis is a formal function representation developed to support

functional modelling [20]. The functional basis is the result of reconciling and

extending the previous efforts to create such a basis, namely Little, Wood and

McAdams [21], Szykman, Racz and Sriram [22], and Stone and Wood [19]. The

basis is expected to describe the electro-mechanical design space completely;

it does so by proposing two vocabularies that can be combined to describe a

function:

• Flow vocabulary: represents the quantities that are the inputs and outputs

of functions [19]. The most common flow quantities are energy, matter and
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(a) Class notation example

MyClass

+attribute1 : int
-attribute2 : float
#attribute3 : Circle
+op1(p1 : bool, p2 : int) : String
-op2(p3 : int) : float
#op3(p4: bool) : Circle

(b) Composition example

Person

HandHead Leg

(c) Aggregation example

Car

Engine Wheel

(d) Inheritance example

Bank Account

Current
Account

Savings
Account

Figure 2.2: UML class diagram examples
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information (signal) [23].

• Function vocabulary: describes the operations on a particular set of flows

to be performed by a device or artefact [19]. Branch, channel, connect,

control, convert and provision are some examples of terms in the function

vocabulary.

Flow and function vocabularies are generally employed to respectively fill the verb

and object parts of the standard verb-object function format proposed by Pahl

et al. [23]. However, the basis is not necessarily restricted to the verb-object

formulation and can be used with other function formats.

The terms from both vocabularies are organised hierarchically in three levels

of increasing specificity. The top level is the class or primary level, which is fol-

lowed by the secondary and tertiary levels [20]. The part of the flow hierarchy

under the Energy class flow is supplemented with information about power con-

jugate complements, which are part of bond graphs [19].

Bond graphs a system modelling technique that considers systems as collec-

tions of subsystems. Subsystems can be interconnected through ports, which

are the places at which power can flow between subsystems [24]. A bond graph

consists of subsystems linked together by lines representing power bonds, which

determine that the value of the power conjugates at both ends of the bond must

be equal. Power conjugates consist of pairs of variables, effort and flow, whose

product equals to the instantaneous power transmitted by the flow. Force-Velocity

and Torque-Angular Velocity are examples of power conjugate complements.

Functional modelling in this research is done via the functional basis. Func-

tional modelling is required to model the functions in the architecture, and there-

fore is fundamental for those methods that work with the functional view of the

architecture. The functional basis is also employed to model the exchange of en-

ergy, material and signal flow among solutions. In particular, power conjugates
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are fundamental to model the energy flow exchanges and create the computa-

tional workflows (see Section 2.6) that model the architected systems.

2.4 Graph Theory

Graph theory is a central aspect of the methods developed in this research. First,

this section introduces the concept of a graph. Then, graph traversals are presen-

ted and finally, the minimum cut problem is introduced.

2.4.1 Graphs

A graph G is a pair (V,E), where V is a finite set and E is a binary relation on

V [25, p. 1168]. The set V contains the vertices of G and the set E contains the

edges of G. A vertex v is said to be adjacent to a vertex u if the edge (u,v) belongs

to G = (V,E). When this relation is symmetrical, i.e. the existence of edge (u,v)

implies the existence of (v,u), a graph is undirected, otherwise, a graph is said to

be directed. A directed graph is shown in figure 2.3, where the circles represent

the vertices of the graph and the arrows connecting the circles correspond to the

edges.

1 2 3

4 5 6

Figure 2.3: Example of a directed graph

Graphs can be used to model certain aspects of the architecture. For example,

the exchange of flow among components might be modelled with a graph where
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vertices represent the components and edges represent the exchange of flow

between two components. Furthermore, the direction of the exchange might be

indicated by using a directed graph.

2.4.2 Graph Traversals

Graph traversals are the most common operations done with graphs in the current

research. Different graphs model different relations among elements, either within

the same view of the architecture or across views. A graph is traversed each time

a method needs to know which elements are related to another one.

Given a graph G = (V,E) and a source vertex s, a traversal algorithm system-

atically explores the edges of G to discover every vertex that is reachable from

s [25, p. 594]. The order in which the vertices are explored varies depending

on the algorithm. The two simplest ways to traverse a graph are Breadth-First

Search (BFS) and Depth-First Search (DFS). The differences between them are:

• Breadth-First Search: expands the frontier between discovered and un-

discovered vertices uniformly across the breadth of the frontier [25, p. 594].

The algorithm discovers all vertices at distance k from s before discovering

any vertices at distance k+ 1. A BFS from vertex 1 in the graph from Fig-

ure 2.3 would discover vertices 2 and 4 first as they are at distance one from

vertex 1. The traversal would discovered vertices 3 and 5 later as they are

at distance two from vertex 1. Finally, vertex 6, which is at distance 3, would

be discovered.

• Depth-First Search: explores edges leaving the most recently discovered

vertex v [25, p. 603]. Once all of v’s edges have been explored, the algorithm

proceeds to explore edges out of the vertex from which v was discovered. A

DFS from vertex 1 in the graph from Figure 2.3, unlike a BFS, might discover

vertices 2, 3, 5 and 6 before vertex 4, and vertices 3 and 6 before 5.
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Mathematical proofs, pseudocode, and information regarding the applications of

BFS and DFS can be found in Reference [25]. The results of the traversal depend

on which elements of the architecture are added to the traversed graph and how

the elements are connected. The order of the results depends on the traversal

algorithm. If a particular order is required by any of the developed methods,

the order is explicitly indicated. In other cases, either traversal algorithm can be

employed.

2.4.3 Minimum Cut Problem

The understanding of the minimum cut problem is necessary for the method de-

veloped in Section 5.3.3. The concepts of flow in directed graphs and cuts of

a graph are presented before introducing the problem and an algorithm for its

resolution.

Flows in Directed Graphs

Given a directed graph G = (V,E), each edge (u,v) can be associated with a non-

negative real number c(u,v), which represents the capacity of the edge [26]. In

flow problems, the capacity represents the maximal amount per unit time of some

quantity that can flow from u to v. A further requirement is that if E contains an

edge (u,v) then there should not exist an edge (v,u) in the reverse direction [25,

p. 709].

Flow graphs are modelled with the help of two special vertices: the source s

and the sink t [25, p. 709]. All the flow is generated at s and eventually reaches

t. If the system to be modelled has multiples sources or sinks, a dummy source

connected to all sources or a dummy sink connected to all sinks is added to

the graph. The flow through an edge (u,v) is represented by the flow function

f : V ×V → R. As explained in Reference [25, p. 709], this function satisfies the
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capacity constraint for all pair of vertices u,v ∈V .

0≤ f (u,v)≤ c(u,v)

and the flow conservation condition for all vertices u ∈V \ s, t

∑
v∈V

f (v,u) = ∑
v∈V

f (u,v)

Figure 2.4 shows a flow graph where each edge is labelled with the actual flow

f (u,v) divided by the capacity c(u,v).

Maximum Flow

Flow graphs are commonly employed in maximum-flow problems. Given a flow

graph G with source s and sink t, a maximum-flow problem intends to find a flow of

maximum value [25, p. 710]. The maximum flow, which originates at s and finishes

at t, must satisfy the capacity constraints and respect the flow conservation rule.

Minimum Cut

A cut is a subset of edges that, if removed, separates G into two disjoint sets as

one set of vertices cannot be reached from the other [26]. The cuts of interest in

flow graphs, such as the one displayed in Figure 2.4, are those that partition V

into S and T =V \S such that s ∈ S and t ∈ T [25, p. 720].

A minimum cut is a cut whose capacity is minimum over all cuts of the net-

work [25, p. 721]. The capacity c is defined as the sum of the capacities from all

edges that cross from S to T :

c(S,T ) = ∑
u∈S

∑
v∈T

c(u,v)
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Figure 2.4: Example of a flow graph and a cut (From [25, p. 721])

The minimum cut is not necessarily unique. The minimum cut problem con-

sists in finding a minimum cut.

Algorithms for Solving the Minimum Cut

A common approach for solving the minimum cut problem is to use algorithms to

obtain the maximum flow and identify the minimum cut in a subsequent step. This

is possible thanks to the max-flow min-cut theorem, which states that the value of

a maximum flow is equal to the capacity of a minimum cut [25, p. 723]. A proof

of the theorem can be found in Reference [25, pp. 723–724]. Given a maximum

flow, the edges that belong to the minimum cut are those whose flow equal to

their capacity.

The selected algorithm for computing the maximum flow in this research is the

Edmonds–Karp algorithm [27]. This algorithm is simple to implement and runs

with an asymptotic complexity of O(|V ||E|2).
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2.5 Fault Tree Analysis

Fault Tree Analysis FTA, as described in the NUREG-0492 [28], is an inductive

safety analysis technique that explains a particular system failure mode, called

the top event, in terms of lower-level events. These lower-level events are com-

bined using logical gates. Logical gates indicate how the lower-level events (in-

puts to the gate) produce the higher-level event (output of the gate). According to

Ruijters and Stoelinga [29], the most common types of logical gates are:

• AND: the output event occurs when all input events happen.

• OR: the output event when any of the input events occur.

• K out of N: any combination that includes k of the N input events makes

the output event happen.

Dynamic fault trees, which account for the temporal sequence of failures, add

three new kinds of gates:

• PAND: stands for priority AND. This kind of gate is like an AND gate but

required the input events to occur in a specified order.

• FDEP: emits a dummy output that never happens. However, when the first

input of the gate occurs, it triggers the failure of the rest of the inputs.

• SPARE: represents a component that is substituted by any of the available

spares when it fails. The spares are inactive until needed.

Qualitative analysis of fault trees often focuses on obtaining the minimal sets

of components that can together cause the system to fail, known as minimal cut

sets [29]. The minimal cut set can be used to obtain the probability of failure of

the top event of the tree, which can be expressed as a function of the probability

of failure of the individual components. The probability of failure of a basic event

is generally modelled with an inverse exponential distribution [29]
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Pf(t) = 1− exp(−λ t)

which depends on the constant failure rate λ . Importance measures, which

indicate what parts of a system are the biggest contributors to the failures, are

another fundamental aspect of quantitative analysis. Dutuit and Rauzy [30] ana-

lyze the mathematical formulation and physical interpretation of six importance

measure. The most significant two are presented next:

• Fussell-Vesley importance factor: measures the fraction of the system

unavailability that involves the occurrence of basic event A.

FV =
Pf(top |A = 1)

Pf(top)

where Pf(top|A = 1) is the probability of the top event given that event A

does occur (Pf(A) = 1).

• Birnbaum importance factor: indicates the conditional probability of the

top event not happening given that the failure of A is fixed.

Birnbaum = Pf(top |A = 1)−Pf(top |A = 0)

2.6 Computational Workflows

This section briefly introduces computational workflow, as understood within the

context of this research. Workflows are the central element of the RFLP compu-

tational domain proposed in references [15, 16]. A computational workflow is an

ordered set of computational models [31]. The models are executed according

to their order, which is obtained so that every model only depends on the out-
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puts of previous models. Figure 2.5 displays the graphical representation of a

computational workflow.

Figure 2.5: Example of a workflow (From [16])

Computational models are executable pieces of computer code that describes

part of the physical behaviour and other relevant characteristics (e.g. weight or

cost) of a solution in the architecture [31]. A logical component can have more

than one model associated with it. Models relate input variables with outputs

variables, which are updated when the model is executed according to the value

of the inputs.
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Models have a default direction of execution, which determines the default in-

puts and outputs of a model. For instance, a computational model that calculates

a force using the following equation F = ma has m and a as default inputs and F

as default output. If any other combination of variables were known (e.g. m and

F), the model could still be used to compute the remaining variable (a). However,

since models are treated as black boxes, this would require the use of numer-

ical methods to guess the value of the unknown default input (a) that provides

the known original output (F) after the model is executed. A model is said to be

reversed when the set of actual inputs is different from the set of default inputs.

Workflow models are scheduled according to the method proposed by Bile [16,

pp. 98–130]. This method tries to match models with their inputs, which are the

variable whose value is known or computed by previous models in the workflow.

The method tries to assign the right number of inputs to each model and minimise

the number of reversed models. A model is said to be overdetermined when it

has too many inputs. In the general case of overdetermined models, the values

of their inputs are in conflict and a solution cannot be found. A model is under-

determined when the number of known inputs is too low and some other inputs

need to be estimated to obtain output values.
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Chapter 3

Literature Review

3.1 Introduction

The research presented in this thesis involves concepts from various academic

fields. The most relevant fields included safety, reliability and resilience, aircraft

conceptual design and systems engineering, and graph theory, amongst others.

This literature review intends both to introduce the reader to the concepts involved

and to highlight the limitations and research gaps in the existing approaches to

design for safety.

The review starts with a discussion of the concept of safety in Section 3.2,

which is compared to the often associated concept of reliability, and the increas-

ingly popular concept of resilience. Section 3.3 introduces the safety assessment

process — relating the generic concept of safety to the particular task of air-

craft design — and identifies two main kinds of activities: hazard assessment

and safety analysis. Safety must be explicitly architected to obtain safe designs,

which has an impact on performance that must be taken into account. Section 3.4

covers the accident models that provide the foundation for hazard and safety as-

sessment methods such as those presented in Section 3.5. This is followed by

a review of existing computational support tools for STPA, a hazard assessment
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method, whose limitations are identified in Section 3.6. Section 3.7 discusses

the drawbacks of current methods for automating fault tree analysis, a particular

kind of safety analysis technique. In Section 3.8, the architecting principles that

can be implemented into aircraft designs to improve their safety are discussed.

Finally, Section 3.9 presents the weaknesses of current sizing and performance

methods to support the determination of the impact of safety on performance.

The conclusions from the literature review are summarised in Section 3.10.

3.2 Safety, Reliability and Resilience

Safety is the central topic of this research. In practice, safety is often associ-

ated with other terms such as reliability, which is perhaps the most commonly

related topic. Another important concept, especially in recent year, is resilience.

This section presents definitions elaborated from those found in the literature (see

Appendix A), ensuring their relevance within the scope of this thesis. The rela-

tionship between each pair of terms is also discussed.

3.2.1 Safety

There are many publications related to safety but not many of them define what

safety is. Five definitions were found in the literature that was reviewed to clarify

safety and related concepts; they are presented in Appendix A.1. Definition 2

can barely be considered a definition as it only says it is a system property and

the rest of the quote describes what safety encompasses but not what safety is.

The remaining definitions present a high degree of agreement on the fact that the

focus of safety is human life and property damage. The proposed definition is as

follows:

Safety: ability of a system not to cause, under given conditions,
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critical or catastrophic events. Catastrophic event are defined as those

that can cause death, injury, occupational illness, damage to or loss

of equipment or property, or damage to the environment

3.2.2 Resilience

Resilience is an increasingly popular term in the literature, the reviews by Hos-

seini, Barker and Ramirez-Marquez [32] and Patriarca et al. [33] clearly show

the growth of the number of publications from 2000 to 2015. Resilience is being

discussed in a variety of domains such as the organizational, social, economic

and engineering domains [32]. There is variability with respect to definitions of

resilience both between domains and within each domain. Henry and Ramirez-

Marquez [34] point out the lack of standardization and rigour when quantitatively

defining resilience. This adds a significant amount of ambiguity to the term and

makes it difficult to understand the term precisely.

The focus of this research is on the engineering domain and, in particular,

on the conceptual design of aircraft system architectures. The goal of the resi-

lience literature review was to obtain a definition of resilience that conforms to

existing publications but that it is also relevant when considering the scope of the

research. The most salient definitions of resilience found in the literature have

been compiled and are presented in Appendix A.2. Table 3.1 shows a summary

of these 27 definitions. The table indicates with a cross ‘X’ whether a particular

definition (or reference from which the definition is quoted) highlights one of seven

selected relevant features. The four first features refer to the phases of resilience:

• Anticipate — Avoid — Plan: this feature refers to the actions that are taken

to avoid a disruption completely before the system encounters it.

• Absorb — Withstand — Survive: once the disruption happens, this fea-

ture refers to the ability to limit its impact on the system.
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• Reconfigure — Adapt — React: this refers to the activities that change

the system after a disruption to facilitate the recovery of its functionality.

• Recover: this feature refers to the partial or complete recovery of the lost

functionality or even to the improvement of its functionality after the disrup-

tion is encountered, the system survives and is reconfigured.

The last three features refer not only to definitions of resilience but also to

metrics or analyses found in the documents containing the definitions:

• Time: it refers to either the necessity of a rapid recovery expressed in defin-

itions or the inclusion of the time dimension in metrics and analyses.

• Cost: similar to time, it implies either the requirement of resilience being

cost-effective in the definitions or the explicit consideration of cost in metrics

and analyses.

• Ilities: this feature relates to the inclusion of other ilities in the literature,

either to define resilience, complement it or compare it to other capabilit-

ies. These capabilities include reliability, robustness, flexibility, adaptability,

reconfigurability, agility and survivability.

The last column of Table 3.1 contains the total amount of times each feature

appears, which provides an idea of how frequent each feature appears in the

literature. This information is also expressed more visual way, a bar chart, in

Figure 3.1.

Based on the reviewed definitions, it is possible to conclude that the two most

relevant phases are survival and recovery. Reconfiguration of the system is the

preferred way to enable recovery after a disruption is encountered and survived;

this feature is present in roughly half of the definitions. The anticipation phase is

not deemed relevant in most of the references. The temporal scale of resilience

is also made evident by its frequency of appearance. Although mentioned fewer

34



3.2. Safety, Reliability and Resilience

Table 3.1: Summary of resilience definitions
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1. Sitterle et al. [35] x x

2. Patriarca et al. [33] x x x x

3. Tierney and Bruneau [36] x x x x

4. Hollnagel [37] x x x

5. Woods [38] x x x x x

6. Westrum [39] x x x

7. Madni and Jackson [40] x x x x x x

8. Francis and Bekera [41] x x x x x x x

9. Enos [42] x x x x

10. Neches and Madni [43] x x x x

11. Neches and Madni [43] x x x

12. Chalupnik, Wynn and Clarkson [44] x x x x

13. Hosseini, Barker and Ramirez-Marquez [32] x x x

14. Henry and Ramirez-Marquez [34] x x x x

15. Tran et al. [45] x x x x x x

16. Uday, Chandrahasa and Marais [46] x x x x x

17. Uday, Chandrahasa and Marais [46] x x x x

18. Farid [47] x x x

19. Ayyub [48] x x x x x x x

20. Jackson and Ferris [49] x x x x x x

21. Uday and Marais [50] x x x x x x

22. Jackson [51] x x x x

23. Martin-Breen and Anderies [52] x x x

24. Whitson and Ramirez-Marquez [53] x x x x

25. Haimes [54] x x x x

26. Jackson [55] x x x x x

27. Burch [56] x x x x

28. Youn, Hu and Wang [57] x x x x x

Total 8 21 16 21 18 15 23
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Figure 3.1: Frequency of resilience features in definitions

times, cost is also considered relevant to resilience but mainly as something that

will require trade-offs in a context of limited resources more than a requirement

of resilience itself. Finally, the most common of the features is the relation of the

term resilience with other ilities, including safety and reliability. With all of the

above considered, the following definition of resilience is proposed

Resilience: ability of a system to maintain its functionality in the

face of disruptive events. It is a dynamic capability, enabled by three

sequential phases:

1. Survival phase: where the system survives the disruption and the

objective is to limit its impact as much as possible.

2. Reconfiguration phase: where the necessary changes, if any,

happen in the system to transition to the last phase.

3. Recovery phase: where functionality is recovered to the highest

possible level.
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3.2.3 Reliability

Like safety, reliability is discussed in many references, but not many of them

define the term. To obtain a good definition, as in the case of resilience, a table

(see Table 3.2) has been elaborated with the most relevant features of the reliab-

ility definitions. These definitions are presented in Appendix A.3. In this case, the

five features characterising the definitions are:

• Low probability of failure: indicates that the document defines reliability

as a probabilistic quantity. The lower the probability of failure the higher the

reliability.

• Ability, not probability: definitions marked with this do not constrain reli-

ability to a probability.

• Expected conditions: this feature indicates that reliability is measured

against disruptions expected during the design of the system.

• Unexpected conditions: implies that a reliable system should cope with

unexpected disruptions.

• Time period: it shows that a definition considered that reliability is meas-

ured with respect to a predefined time period.

In Table 3.2, we can observe a greater agreement. Most authors that provided

a definition, consider reliability as a probabilistic quantity, although two of them do

not restrict reliability in this way. The fact that reliability deals with expected con-

ditions is unanimous amongst the definitions despite one author also considering

unexpected conditions. The fact that reliability is measured with respect to a time

period presents a great consensus as well. Consequently, the proposed reliability

definition is:
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Table 3.2: Summary of reliability definitions
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1. Patriarca et al. [33] x

2. Madni and Jackson [40] x x x

3. Francis and Bekera [41]

4. Enos [42] x x x

5. Chalupnik et al. [44] x x x

6. Hosseini et al. [32]

7. Tran et al. [45]

8. Uday and Marais [50] x x x

9. Ayyub [48]

10. Jackson and Ferris [49]

11. Whitson and Ramirez-Marquez [53] x x x

12. Jackson [55]

13. Burch [56]

14. ARP 4761 [58] x x x

15. Leveson [59] x x x

Total 6 2 7 1 6
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Reliability: ability of the system to perform its required functions

under expected conditions for a specified period of time, generally ex-

pressed as a probability.

3.2.4 Relation amongst Safety, Reliability and Resilience

Safety vs Reliability

According to Leveson [59], safety is often confused with reliability. If safety were

equivalent to reliability, then increasing system or component reliability would ne-

cessarily increase system safety. However, this is not always true as explained

next. Lack of reliability is caused by component failures, and a component is said

to have failed when it is not capable to perform its intended function Leveson [59].

Therefore it is possible to have components with low reliability (e.g. the flight en-

tertainment system in an airliner), but with little or no impact on safety as long

as their failure does not lead to loss of human life, injury, property damage and

so forth. Conversely, increasing the reliability of such component would not have

any significant effect on safety. Systems with human operators that act unreliably

(e.g. not according to procedures) but that are able to prevent accidents due to

their ability to deviate from established procedures are another example of safe

but unreliable systems.

The other possible case where safety and reliability are different is when sys-

tems are reliable; the probability of failure of the components is very low. But the

interaction amongst system component leads to an accident. An example of this

is the Mars Polar Lander accident, which crashed into the surface of Mars as its

software shut down the descent engines because the noise from the landing legs

was misinterpreted as a landing indication [59, 60].

The conclusion, is that reliability and safety are not equivalent nor is one a

subset of the other [61]. This is shown graphically in Figure 3.2.
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Failure scenario
Unsafe scenarioFailure scenario

Safe scenario
No Failure scenario
Unsafe scenario

Figure 3.2: Unsafe vs unreliable scenarios (Adapted from [61])

Hollnagel and Sundström [62] discuss the relationship between safety and

reliability in terms of system complexity. Probabilistic safety assessment is con-

sidered to be reasonable only for technical systems but inappropriate when con-

sidering human performance, such as in the case of systems with human or or-

ganisational functions. Probabilistic safety assessment understands safety as a

probability of failure, equating safety and reliability. It can be concluded that the

overlap of the two circles in Figure 3.2 is expected to be big for simple technical

systems or the technical parts of more complex systems, and become smaller as

more complexity is included in the analysis.

Resilience vs Reliability

The relation between resilience and reliability is established from the definitions

and comments extracted from the references containing the definitions. Both

the comments about the relation and reliability definitions are presented in Ap-

pendix A.3. The four most frequent kinds of relations found in the literature, as

shown in Table 3.3, are:

• Different conditions: the main distinction between reliability and resilience

40



3.2. Safety, Reliability and Resilience

Table 3.3: Summary of reliability vs resilience in the literature
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1. Patriarca et al. [33] x

2. Madni and Jackson [40] x x

3. Francis and Bekera [41] x

4. Enos [42] x

5. Chalupnik et al. [44] x

6. Hosseini et al. [32] x

7. Tran et al. [45] x x

8. Uday and Marais [50] x

9. Ayyub [48] x

10. Jackson and Ferris [49] x x

11. Whitson and Ramirez-Marquez [53] x

12. Jackson [55] x x

13. Burch [56] x

14. ARP 4761 [58]

15. Leveson [59]

Total 7 7 1 2
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is the type of conditions considered, either unexpected or external disrup-

tions.

• Enables resilience: the literature marked with this feature considers reli-

ability as an enabler of resilience or any of its parts or phases.

• Anticipation: indicates that resilience is different from reliability because it

considers an anticipation phase.

• Recovery: specifies that resilience is different from reliability as it considers

a recovery phase.

It seems that the goal of both resilience and reliability is similar: to maintain

functionality in as many situations as possible and as long as possible. In this

respect, resilience can be seen as a more advanced kind of reliability, which

includes more phases (such as anticipation and recovery), considers a wider

spectrum of disruptions and utilises new methods. In line with this view, many

authors consider that reliability is one of the system properties that enables resi-

lience, specifically the survival phase. Uday and Marais [50] bring about a valu-

able discussion of how greater complexities motivated the existence of resilience

as something more and more different to reliability. For them, the main motiva-

tion of resilience is to overcome the limiting hypothesis of classic reliability meth-

ods. Table 3.4 summarises this idea, showing whether classic reliability methods

(column Rel.) are applicable or, on the contrary, more advanced resilience meth-

ods are required (column Res.) depending on the complexity of the system.

Safety vs Resilience

The relation between safety and resilience is determined from the literature. Ap-

pendix A.2 contains definitions of safety and relevant comments from the literat-

ure about how resilience and safety are related. Table 3.5 shows which reference
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Table 3.4: Relation between reliability, resilience and complexity

Level Reliability or resilience Rel. Res.

Parts Classic reliability methods are applicable. x

Components Probability of failure determined by its con-
stituent components.

x

Simple Systems No scope for reconfiguration. x

Complex systems Classic reliability methods are applicable in
some cases.
Greater scope for reconfiguration enables
resilience.

x x

Systems of systems
Human intensive sys-
tems

Classic reliability methods too limited by
their hypothesis.
Resilience is necessary to overcome these
limitations.

x

highlights which aspect of the relationship between both terms. The most com-

mented aspects are as follows:

• Resilience as a new safety paradigm: this safety paradigm focuses on

systems copying with complexity and that need to balance performance with

safety. It is a common view in the reviewed literature.

• Resilience implies safety: every author agrees on the fact that a resili-

ent system can be generally considered safe, except Uday and Marais [50]

who argue that when the focus is solely on performance resilience does not

necessarily guarantee safety.

• Resilience overcoming traditional safety limitations: such as excessive

hindsight and dependency on the calculation of failure probabilities or not

considering the interaction of components.

• Safety does not enable resilience: Francis and Bekera [41] argue that
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safety is not enough to enable resilience as it can be obtained in exchange

for performance, but resilience looks to maintain a high level of performance.

• Safety enables resilience: Uday and Marais [50] argue that safety en-

ables the survivability aspect of resilience, minimizing human loss and this

is enough when the focus is not on performance.

• Unexpected disruptions: resilience is expected by some authors to be

able to cope with unexpected disruptions while safety is not.

• Anticipation and recovery: safety does not traditionally consider anticipa-

tion to threats and recovery mechanism after the effect of disruptions.

Table 3.5: Summary of safety definitions
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1. Patriarca et al. [33] x x

2. Hosseini et al. [32] x x x x x x

3. Uday et al. [46] x x x x x

4. Farid [47] x

5. Whitson et al. [53] x x x

6. Burch [56] x x

7. Richards et al. [63] x x x

Total 3 6 1 1 2 2 4 3

As shown in Table 3.5, resilience is frequently considered as a new safety

paradigm, motivated by the growing complexity of systems and the desire of over-
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coming traditional safety limitations, related to traditional reliability methods. This

is analogous to the view of resilience as a kind of advanced reliability. Resilience

is often considered as implying safety, although Uday and Marais [50] argue that

this is not true when the focus of resilience is solely on performance. The belief

of resilience implying safety seems to be rooted in the confusion between reliab-

ility and safety analysed earlier in this section. Under this view, the concept of

safety itself is flawed and needs to be improved by a new concept called resili-

ence. However, the problem seems to be on the traditional reliability methods,

which are not equivalent to safety.

All things considered and within the scope of this research, it is possible to

conclude that rather than bringing a radically new capability to systems, resilience

is an extension to reliability that incorporates the dynamic nature of systems and

acknowledges their inherent complexity. Resilience can contribute to safety — in

similar ways to reliability and also new dynamic ways involving reconfiguration of

the system — and also to the performance of functions without an effect on safety.

Therefore, resilience methods and design principles (see Section 3.8) have the

potential to contribute to architecting safer systems. However, it is also necessary

to understand that, as in the case of reliability, safety might require other kinds of

considerations that are not necessarily included in resilience.

3.2.5 Discussion

A review of the existing literature has been used to proposed definitions for safety,

reliability and resilience. Whereas the terms of safety and resilience seem to be

well-established with little variability according to their definitions, the situation

regarding resilience is the opposite. The most common aspects of resilience

definitions were extracted and a definition that is relevant for this research was

proposed.

Regarding the relationships between terms, it was observed that there is con-
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fusion between safety and reliability affecting especially the most traditional ap-

proaches. It was shown that, although related, safety and reliability are different

and none of them contains the other. This confusion seems to persist in some

views of resilience, which is sometimes seen as advanced reliability or advanced

safety. In this research, it is proposed to consider resilience as a kind of advanced

reliability that accounts for more complex, dynamic systems. Safety is the main

topic of this research; therefore it is important to understand how reliability and

resilience contribute to it. It is deducted that design principles for reliability and

resilience can contribute to safety when they cover failure scenarios that affect

safety (as they might result in a catastrophic event) but also that there are as-

pects of safety not covered by these principles, such as when unsafe scenarios

arise due to wrong interactions rather than component failure.

3.3 Safety, Systems Design and Certification

After the rather theoretical discussion of safety and related concepts in Sec-

tion 3.2, this section focuses on how safety affects the design process of complex

technical systems in general and aircraft and their certification in particular. The

main safety-related activities are identified as well as the various safety methods

available in the literature.

A central document for designing safe aircraft systems is the ARP 4754A

Guidelines for Development of Civil Aircraft and Systems [64]. The guidelines

provided in the document were developed in the context of the CS-25 [65] (or its

equivalent FAR Part 25 [66]). The document addresses the development cycle

for aircraft and systems that implement aircraft functions. This kind of systems

involves significant interaction with other systems within a larger integrated envir-

onment. A top-down level iterative approach for the development of the systems

is assumed. Other significant parts of the development of safe aircraft, such as

46



3.3. Safety, Systems Design and Certification

safety assessment or software development, revolve around the ARP 4754A but

are covered in detail in other documents. Figure 3.3 displays all the guideline

documents and their interrelations.

Figure 3.3: Guideline documents for the design of safe aircraft (From [64])

The development assurance process is responsible to guarantee the safety

of the system, minimising failure conditions with an appropriate level of rigour. It

includes validation and verification of the system requirements. ARP 4754A sug-

gests using the classification of failure conditions provided by the safety assess-

ment process to determine the development assurance level that corresponds to

the various items and hierarchical levels of the design.

ARP 4754A understands safety requirements as a hierarchical structure de-

rived from either functional requirements at the various hierarchical levels (air-

craft, system or item), the functional decomposition and allocation process, or

47



Chapter 3. Literature Review

common cause analyses. Safety requirements inform the various design stages,

contributing to the implementation of a safe system. Furthermore, compliance

with safety requirements — in particular those directly imposed by the certifica-

tion authority or derived from the authority’s regulations — is a fundamental part

of the certification process.

3.3.1 The Safety Assessment Process

ARP 4754A [64] defines the safety assessment process as the process used by

a company to show compliance with certification requirements (such as the CS

25 [65]). Four primary safety assessment processes, explained in detail in the

ARP 4761 [58], are proposed:

• Functional Hazard Assessment FHA: examines aircraft and system func-

tions to identify potential functional failures and classifies the associated

hazards.

• Preliminary Aircraft Safety Assessment PASA / Preliminary System

Safety Assessment PSSA: establish safety requirements and provide a

preliminary indication of the ability to meet those safety requirements.

• Aircraft Safety Assessment ASA / System Safety Assessment SSA:

verifies that the safety requirements established by the PASA / PSSA are

met.

• Common Cause Analysis CCA: establishes and verifies physical and func-

tional separation, isolation and independence requirements.

Figure 3.4 shows an overview of the safety assessment process and how its

various parts interact with each other and with other system development activit-

ies. Although both safety and development processes are highly interdependent,

as suggested by the many links that exist between them, safety assessment often

48



3.3. Safety, Systems Design and Certification

Figure 3.4: Safety assessment process overview (From [64])
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lags behind other aspects of the design [67], and sometimes takes place later on

in the product development process after the design is finalized [68]. Moreover,

many of the methods are generally performed manually, which brings unneces-

sary subjectivity and lack of consistency to the analyses [69] and increase the

probability of mistakes being committed [70]. Lack of consistency between ana-

lysis at different design stages or different design abstraction levels has also been

found [71].

The above-presented limitations of current safety practice motivate the search

for safety methods to be automated and tightly integrated with the system de-

velopment process. The various safety methods found in the literature can be

classified depending on to which part of the safety assessment process contrib-

ute:

• Hazard Assessment Methods: are those methods that support the haz-

ard assessment process, where the system is examined to identify safety-

related risks [72]. This definition, which corresponds to the FHA, is extended

in this research to include any method that can help to derive safety require-

ments, such as those used during PASA or PSSA. Ericson [73] estimates

that there are over 100 different hazard analysis techniques (some of them

represent only minor variations), and new techniques constantly appear.

• Safety Analysis Methods: are defined as those that can be used to verify

the safety requirements of the system by analysing its architecture. Some-

times, depending on how it is used, a method can be used both for hazard

assessment and safety analysis. For instance, a fault tree analysis (see

Section 3.5.1) can be used to establish reliability requirements for the sys-

tem components or to determine the probability of failure provided the reliab-

ility of the individual components is known. Analysis methods are commonly

employed during ASA, SSA or CCA.
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Table 3.6 shows an overview of the methods that are analysed in more detail in

Section 3.5, classified into hazard assessment and hazard analysis methods.

3.3.2 Accident Causation Models

Accident causation models are a fundamental part of safety assessment, and

more specifically of hazard assessment. Accident causation models are models

that explain how accidents happen and therefore determine how the accidents

are investigated, how the risk associated with existing products is assessed, and

how safer systems are designed [59]. As Leveson [59] discusses, all models

are abstractions that focus on what is considered to be relevant and overlook the

rest. This choice, sometimes arbitrary, is critical in determining the usefulness

and accuracy of the model in predicting future events.

Hollnagel [74] classifies accident causation models in three types according

to their principles:

• Simple linear models are based on direct causality and, therefore, focus

on finding specific causes and cause–effect links. The recommendations

derived from these models are to eliminate causes and cause–effect links.

• Complex linear models explore latent conditions and hidden dependen-

cies and intend to find combinations of unsafe acts and latent conditions.

Their recommendations usually are to strengthen barriers and defences.

• Non-linear, systemic models are based on dynamic couplings and func-

tional resonance (non-linear effects). Analysis derived from this kind of mod-

els consist of finding tight couplings and complex interactions. The recom-

mendations focus on how to monitor and manage the variability in system

performance.

These kinds of models, although not mutually exclusive, differ in terms of the

situations for which they are effective [37]. Simpler models can be applied to
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simple systems, but fail to explain accident where deficiencies in the organization,

management or safety culture play a fundamental role [59]. Another fundamental

difference is the time scale of the processes for which they are suitable. At the

simple end, a of cause-effect links — e.g. from the failure of a component until an

aircraft crashes as a result of that failure — describes events that occur in seconds

or minutes. However, more complex accidents — e.g. one accident involving

an airline’s inadequate maintenance practices due to financial pressure — are

explained by decisions happening during months or years. Table 3.6 relates the

accident models, which are treated in more detail in Section 3.5, with the methods

that they support.
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3.3.3 Discussion

Safety assessment for aircraft systems architectures mostly relies on processes

such as the one presented in the ARP 4754A. Although the interdependency of

the safety assessment and system development processes is considered in the

standard, the current safety practice still presents many integration problems. It

is proposed to automate and integrate safety methods with other development

activities. Two main kinds of methods (reviewed in Section 3.5) are considered:

hazard assessment methods to derive safety requirements and safety analysis

methods to verify such requirements. Accident causation models are fundamental

to understand the validity of the various safety methods. Accident models are

reviewed in Section 3.4.

3.4 Accident Causation Models

3.4.1 Domino models

The Domino Model, published by Heinrich [75] in 1931, is one of the first general

accident models. The original model, as depicted in Figure 3.5, consists of five

pieces so that if one falls it knocks down the following one. It was later extended

to include management factors by Bird and Loftus [76]. Hollnagel [74] argues

that nowadays, the domino pieces do not possess a predefined meaning and just

represents something that can fail. Independently of the precise meaning of each

piece, the representation of accidents as predictable sequences of events is the

common element of all domino models.

3.4.2 Swiss Cheese

Three main ideas influence Reason’s Swiss Cheese Accident Model [78]. The

first idea is the resident pathogens metaphor, which was developed by Reason
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Figure 3.5: Domino accident model (From [59])

and postulates that accidents happen due to a combination of active errors and

latent conditions. The second influence is the idea of defence in depth, which

postulates that any productive organisation is constituted by political decision-

makers, a managerial chain, preconditions (operators, equipment, future plans,

maintenance, etc.), productive activities, and defences. The first two concepts

materialised into the Organisational Accident Model by Reason [77] (published in

1990) shown in Figure 3.6a. Ten years later, Reason [79] adopted the third idea,

the Swiss cheese analogy itself, which changed the way the model is presented,

as shown in Figure 3.6b.

3.4.3 Systems-Theoretic Accident Model and Processes

Leveson’s [80, 81] Systems-Theoretic Accident Model and Processes STAMP

considers that accidents occur when external disturbances, component failures,

or dysfunctional interactions are not adequately handled by the control system.

Therefore, preventing accidents requires designing a control structure capable to

enforce the necessary constraints. STAMP views systems as dynamic processes,
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(a) Organisational accident model (From [77])

(b) Swiss cheese accident model (From [79])

Figure 3.6: Reason’s accident models
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kept in a state of dynamic equilibrium by feedback loops of information and con-

trol. Due to this dynamic nature, safety management cannot be understood only

in terms of preventing component failure but as a continuous control task. The

basic concepts in STAMP are:

• Constraints, which shape the behaviour at each level of a system. Control

laws impose relationships between the values of system variables to enforce

the desired emergent properties such as safety.

• Control loops and process models. Systems are modelled as a hierarchy

of control or adaptive feedback mechanisms, the control loops. Figure 3.7

exemplifies a typical control loop. Loops consist of a controller with a set of

goals (enforce constraints). Controllers can affect the state of the system

(actuators) based on their own model of the system (process model) which

utilises information about the state of the system (sensor).

• Levels of control, which facilitate the modelling of complex organization or

industries. Each level imposes constraints on the level beneath, based on

feedback from lower levels about the effectiveness of imposed constraints.

3.4.4 Rasmussen’s Risk Management Framework

The risk management framework proposed by Rasmussen [82] and Rasmussen

and Svedung [83] understands accidents as a result of the drift of the system to-

wards the boundary of acceptable performance. Once this boundary is crossed,

a normal variation in somebody’s behaviour can release an accident. The gradi-

ent toward least effort (reducing workload) and management pressure towards

efficiency are the main factors that push the system towards the boundary. Fig-

ure 3.8 provides a visualisation of this process.

Within the framework, risk management becomes a control problem focused

on maintaining the process within the boundaries. Systems are analysed in terms

57



Chapter 3. Literature Review

Figure 3.7: Typical STAMP accident model (From [80])

of the relational structure of the workspace, the objectives and constraints of

decision-makers, and the boundaries of acceptable performance [84]. Increasing

the margin from normal operation to the loss-of-control boundary, and increas-

ing the awareness of the boundary are identified as possible means of improving

safety. However, they are considered weaker than the preferred strategy, consist-

ing of making the boundaries explicit and developing coping skills at the boundary.
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Figure 3.8: Visualisation of system drift (From [82])

3.5 Safety Methods

3.5.1 Fault Tree Analysis

Fault Tree Analysis FTA, as described in the NUREG-0492 [28], is an inductive

safety analysis technique that explains a particular system failure mode, called

the top event, in terms of lower-level events. These lower-level events are com-

bined using logical gates. Logical gates indicate how the lower-level events (in-

puts to the gate) produce the higher-level event (output of the gate). For example,

an AND gate requires every one of its input to be failed to produce a failed output,

whereas an OR gate will produce a failed output as long as any of its inputs is

failed. The tree is developed until the failure of a single component or events that

cannot be developed in more detail are reached. Figure 3.9 portrays an example

of a fault tree.

Fault trees can be analysed qualitatively or quantitatively. Qualitative analysis

often focuses on obtaining the minimal sets of components that can together

cause the system to fail, known as minimal cut sets [29]. Quantitative analysis
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Figure 3.9: Example of a fault tree (From [85])

can provide several reliability-related metrics (such as reliability, availability or

mean time to failure), as well as importance measures indicating which parts of a

system are the biggest contributors to the failure. Fault trees have been extended

to include temporal sequence information, as in the case of Dynamic fault trees,

and other considerations such as fuzzy probabilities or repairability. For a more

detailed overview of existing kinds of fault trees, analyses and tools, the reader is

directed to the review paper by Ruijters and Stoelinga [29].

3.5.2 Reliability Block Diagrams

Reliability Block Diagrams RBD, also know as Dependence Diagrams (e.g in ARP

4761 [58]), are networks that describe the function of the system in terms of the lo-

gical connections of the functioning components needed to fulfil the function [86].

When every component in a set of components is required for the system to be
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functioning, the components in the set are connected in series. A set of com-

ponents are connected in parallel when any of them suffices for the system to

functioning. An example of RBD is shown in Figure 3.10.

Figure 3.10: Example of a reliability block diagram (From [86])

RBD are analogous to fault trees only containing AND gates (parallel connec-

tions) and OR gates (series connections), with the exception that RBD omit the

intermediate events that describe the output of the fault tree’s logical gates. Due

to this analogy, the kind of qualitatively or quantitatively information obtained from

analysis RBDs is similar to that obtained by FTA, being considered alternative

methods in ARP 4761 [58].

As with FTA, more complex extensions of RBD have been developed. This

is the case of Dynamic Reliability Block Diagrams [87, 88], which uses a states-

events machine to model the dynamics state of components and their interde-

pendencies (e.g. an event in one component disable or enables another one).

These additional capabilities allow in turn the modelling of more complex redund-

ancy and load sharing schemes.

3.5.3 Markov Analysis

Markov analysis models systems via Markov chains, which describe the systems

in terms of several states and transitions between states [86]. Transitions from

one state to another occur according to know probabilities. The Markov technique

is proposed by ARP 4761 [58] as an alternate technique to FTA and RBDs, and it
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is claimed to be most appropriate for fault-tolerant systems, with monitoring and

reconfiguration capabilities.

An example of a Markov model of a repairable series system is presented in

Figure 3.11. There are four possible states, which are represented by the nodes

in the figure. The states represent all possible combinations of components A

and B being ‘OK’ or ‘Failed’. The edges between state nodes model transition

between nodes. The solid links correspond to the failure of components and the

dashed links to the repair of components. The probability of failure events is λA

for A, λB for B, and λC for both. A component is repaired with probability µ; both

of them are repaired with probability µC.

Figure 3.11: Example of a Markov model (From [58])

Markov analysis assumes that the probability of transition from one state to

another does not depend on the global time; it only depends on the interval of

time available for transition [86]. A system of equations describing the probability
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of each state of the system at a point in time can be formulated and solved to

obtain the probability of being in a particular state at a given time and several

reliability metrics such as system availability or mean time between failures.

3.5.4 Event Tree Analysis

Event Tree Analysis ETA is a hazard analysis technique for identifying and eval-

uating the sequence of events in a potential accident scenario [73]. ETA utilizes

a visual logic tree structure known as an event tree. An event tree starts from an

initiating event. Different branches represent the success or failure of the safety

methods established to prevent accidents. This way, different outcomes can be

studied along with their probabilities. Figure 3.12 shows an example of an event

tree.

Figure 3.12: Example of an event tree (Adapted from [73])

3.5.5 Failure Modes and Effects Analysis

Failure Mode and Effects Analysis FMEA is a safety analysis procedure by which

each potential failure mode in a system is analyzed to determine the results on

the system [89]. FMEA is therefore an inductive technique, as the reasoning goes
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from a particular fault to a general effect of the system [28]. FMEAs are usually

performed with the help of worksheets such as the one shown in Figure 3.13.

Results from one or various FMEAs can be grouped according to the effect

that failures produce, which results in a Failure Modes and Effects Summary [58].

It is also possible to complement an FMEA with a criticality analysis, which es-

tablishes the severity classification of each failure mode [89]. This combination is

known as Failure Mode, Effects, and Criticality Analysis FMECA.

3.5.6 Hazard and Operability

A Hazard and Operability HAZOP study aims to identify how a process may de-

viate from its design intent, via the application of a formal, systematic critical

examination of the process and the engineering intentions of facilities [90]. The

method combines guide-words (such as no, more, less) with process parameters

(e.g. temperature, flow, pressure) to determine deviations from normal operation

that could result in a hazard. The possible causes and their consequences of the

deviations are determined along with safeguard or recommendations to prevent

or mitigate the hazardous situation.

The concept of a HAZOP study first appeared related to process in facilities

that manage highly hazardous materials and its purpose was to eliminate sources

leading to major accidents. However, it has been extended to cater for other types

of facilities or systems such as software and programmable systems [91] among

others.

3.5.7 System-Theoretic Process Analysis

Alternative hazard analysis methods such as the System Theoretic Process Ana-

lysis STPA [59] have been proposed. Leveson et al. [61] criticise the traditional

hazard analysis methods described in ARP 4761 as they question their effect-
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Figure 3.13: Example of an FMEA worksheet (From [58])
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iveness on software-intensive systems where accidents may result not only from

component failures but also from unsafe interactions among the components. To

overcome these limitations, STPA is based on systems theory rather than reliab-

ility theory and includes additional causes for accidents such as system design

errors, human error (in more detail than just random failure) and various types of

systemic accident causes.

STPA-based safety assessment [59, 92] consist of four steps:

1. Define the purpose of the analysis: in this step, the losses, system-level

hazards and system-level constraints are identified. Losses refer to anything

of value to stakeholders, such as human life or injury, property damage or

environmental pollution. A hazard is a system state that, under a particular

set of worst-case environmental conditions, will lead to a loss. System-level

constraints specify what the system must do to prevent hazards.

2. Model the control structure: a hierarchical control structure is composed

of feedback control loops including controllers, control actions, feedback sig-

nals, controlled processes and other inputs and outputs. Loops are ordered

by decreasing level of control authority. Figure 3.14 shows a generic simple

hierarchical control structure.

3. Identify unsafe control actions: the control structure is examined to de-

termine the unsafe control actions and controller constraints are defined to

prevent them. A control action is unsafe if, in a particular context and worst-

case environment, will lead to a hazard. Control actions can be unsafe

because they are not provided when needed or provided when not needed,

as well as if their timing (too early or too late or out of order) and duration

(too short or too long) is not right.

4. Identify loss scenarios: a loss scenario describes the causal factors that

can lead to the identified unsafe control actions. Loss scenarios can be
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caused by unsafe controller behaviour or inadequate feedback and other in-

puts to the controller. Safe control actions that are not executed or executed

improperly, due to failures in the control path (actuators) or controlled pro-

cess, also represent loss scenarios.

Figure 3.14: Safety assessment process overview (From [64])

3.5.8 AcciMap

AcciMap [84] provides a graphical representation of accidents that is based on

Rasmussen’s Risk Management Framework (see Section 3.4.4). AcciMap is in-

tended to structure the analysis and to identify the interactions that lead to ac-

cidents in socio-technical systems. AcciMap consists of a graph that represents

a particular accident scenario. It represents the causal flow of events, supple-

mented by a representation of the planning, management, and regulatory bod-

ies. Other graphical representations such as the Generic AcciMap, the ActorMap

or the InfoFlowMap complement AcciMap when analysing risk in socio-technical

systems.

AcciMap and Generic AcciMap are structured in six levels as shown in Fig-

ure 3.15. The bottom represents the context of the accident. The immediate
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Figure 3.15: Example of a Generic AcciMap (From [84])
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higher level represents the accident processes, the causal and functional rela-

tions. The levels above represent all decision-makers that have the potential

to influence the accident. While the recommendations from AcciMap might be

biased toward the particular accident analysed, the Generic AcciMap is better

suited to generate recommendations as it is based on the normal, causal flow of

activities.

3.5.9 Functional Resonance Analysis Method

The Functional Resonance Analysis Method FRAM [74] has been proposed to

overcome the limitations of linear thinking and simple cause-relation analysis.

These limitations may not be significant in technological systems, such as the

ones considered in this research, but are considered to be crucial in socio-tech-

nological systems (including human and organizational factors). FRAM is built

upon four principles:

• Failures and successes have an equivalent origin.

• The everyday performance of socio-technical systems is constantly adjus-

ted to match the conditions.

• Many of the outcomes are emergent, meaning that cannot be explained only

by decomposition and causality.

• Relationships among the functions are situation-specific and potentially non-

linear due to feedback and resonance phenomena.

The application of the method, both when used to explain and accident or

anticipate risks, consist of four steps:

1. Identify the functions that are required for everyday work to succeed, de-

scribing how things are done in detail. The functions constitute the FRAM

model.
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2. Characterise the variability of the functions both in general and under spe-

cific conditions (instantiations of the model).

3. Examine instantiations of the model to understand how function variabilities

may become coupled and lead to unexpected outcomes.

4. Propose ways to manage uncontrolled performance variability. The sug-

gested approach is to monitor the performance and dampen uncontrolled

variability when required.

3.5.10 Discussion

Several safety methods and their underlying accident models are reviewed in

this section and Section 3.4. The most traditional methods such as FTA, FMEA

or Markov analysis are still among the most popular. Whereas these methods

have been successful in improving the safety of technical systems, especially by

improving their reliability, they are limited by the accident models on which they

rely. This makes them inadequate for modelling the safety of certain aspects of

the system such as those involving software or human behaviour or to consider

system failure caused by unsafe interaction of components where none of the

components involved has failed. Novel accident models such as STAMP or FRAM

and safety methods such as STPA or AcciMap have been developed to explain

these more complex accidents and help to develop safer systems.

This research focuses on improving the integration between safety and other

development activities and accelerating the safety assessment process by auto-

mating safety methods. For this purpose, one hazard assessment method and

one safety analysis method are selected as candidates for automation. STPA is

chosen due to its potential to consider more kinds of hazards than traditional

methods, combined with the similarity of STPA control loops and hierarchical

structures with logical models of systems architectures, which is seen as an op-
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portunity to develop novel methods automating parts of STPA analysis.

Regarding safety analysis, FTA is the selected method. The applicability of

FTA is more limited than that of STPA due to its limitations, which are the ones

common to traditional probabilistic safety methods. Despite its more limited ap-

plicability, FTA is still relevant within the scope of this research, which is mainly

related to the most technical parts of aircraft. The apparent availability of the

information required for creating fault trees within logical views of systems archi-

tectures is the main reason why FTA is chosen over similar methods.

3.6 Computation Support for STPA

Section 3.5 discusses several safety methods and selected STPA as the best

candidate among existing hazard assessment methods to which provide compu-

tational support. In this section, existing STPA tools and computational methods

are reviewed, and their limitations are identified.

3.6.1 Existing STPA Tools

XSTAMPP

A-STPA

A-STPA [93] is a computational tool for supporting STPA analysis. The tool was

developed in 2014 to improve the current STPA practice at that time, which relied

on paper, word documents and drawing software. The tool provides a user inter-

face (see 3.16) to edit STPA analysis data, draw the control structure diagram,

edit tables such as the control actions table or the unsafe control action table.

XSTAMPP [94] (eXtensible STAMP Platform) is an open-source platform for

safety engineering developed at the University of Stuttgart. It was designed spe-

cially to encourage the widespread adoption and use of STAMP-based method-
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Figure 3.16: Control loop in A-STPA UI (From [93])

ologies (such as STPA and CAST*) by safety analysts in different applications

areas [95]. XSTAMPP includes seven plug-ins for Eclipse IDE [96] and provides

a user interface (see Figure 3.17) that allows the editing of STPA and CAST pro-

jects. XSTAMPP was developed to overcome the limitations of A-STPA tool.

SAHRA

SAHRA [97, 98] is an integrated software tool for STPA developed by Zurich Uni-

versity of Applied Sciences. It considers the hierarchical control structures as just

‘another view’ of systems, which are described by using different UML/SysML

views within Sparx Systems Enterprise Architect [99]. Instead of using the com-

mon tabular format, SAHRA introduces mind maps (such as the one in Fig-

ure 3.18) as a means of visually representing and editing STPA Step 1. Mind

maps are used to build a directed graph that enables traceability analysis between

*CAST, which is based on STAMP, is a technique to analyze accident causality from a systems
perspective.
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Figure 3.17: XSTAMPP Workbench UI (From [95])

different kind of elements such as losses, hazards and unsafe control actions

among others.

STPA solution in Risk Management Studio

STPA Solution in Risk Management Studio [100, 101] is a tool that allows STPA

hazard analysis. In particular, it supports the graphical modelling of the control

structure, identification of losses hazards and constraints, and determination of

control actions and loss scenarios. Risk Management Studio supports linking

losses, hazard and constraints and facilitates the work of the safety analyst by

using the control structure (see Figure 3.19) to pre-populate the lists of control

actions and loss scenarios to be assessed.

STAMP Workbench

STAMP Workbench [102] support four STPA steps. Step 0 is the preparation

step, which consists of determining the preconditions, identifying accidents, haz-

ards and safety constraints, and drawing the control structure. Step 1 focuses

on extracting unsafe control actions. Hazard Causal Factors (loss scenarios) are
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Figure 3.18: SAHRA UI displaying a mind map (From [97])

determined in Step 2. Finally, Step 3 derives countermeasures from the identified

causal factors.

Astah System Safety

Astah System Safety [103] support STPA tables for preconditions, accidents, haz-

ards, safety constraints, unsafe control actions, loss scenarios and countermeas-

ures. It also allows the construction of hierarchical control structure diagrams

(see Figure 3.20) and more detailed control loop diagrams.

CAIRIS

CAIRIS [104] is an open-source platform for building security and usability into

software. The platform supports STPA by providing automatic traceability between

STPA elements, automatic generation of visual models and documentation, and

reasoning support to help identify and validate casual scenarios. CAIRIS works

by mapping STPA elements to their own types of elements. For instance, losses
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Figure 3.19: STPA control structure in Risk Management Studio (From [100])

are mapped to obstacles, constraints to goals, and the control structure is mod-

elled via a data flow diagram.

An STPA Tool

An STPA tool [105] can automatically generate a context table (used to determine

Unsafe Control Actions), identify conflicts in the table and generate requirements

such as the one in Figure 3.21. The tool is based on the general structure for

Unsafe Control Actions and context modelling via Process Model Variables, which

are presented in detail in Section 3.6.2.

SafetyHAT

The transportation systems Safety Hazard Analysis Tool (SafetyHAT) [106] is

a software tool that facilitates STPA hazard analysis through a wizard like the

one in Figure 3.22. This tool is tailored for transportation systems, including

transportation-oriented guide phrases and causal factors. The most salient claims

of SafetyHAT are its ability to organize and manage a large quantity of data thanks
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Figure 3.20: Astah System Safety UI (From [103])

to using a relational database, to provide traceability from system-level hazards

to component level causal factors and to generate auditable documentation.

Simulink-STPA tool

Abdellatif and Holzapfel [107] propose to use Simulink models to automatically

determine the components of the control hierarchy in STPA analysis, the linkage

of the components remains a manual task. A tool (for which no name is provided)

was developed to provide this capability. The tool provides automatic verification

of some physical aspects of the system. It checks for missing links (control or

feedback) between controllers and controlled processes, and sensor compatibil-

ity, emitting results such as those in Figure 3.23.

3.6.2 Existing STPA Methods

Automated Generation of Formal Model-Based Safety Requirements

Thomas [108] and Thomas and Leveson [109] propose a method to generate

formal model-based safety requirements within STPA hazard assessment. A gen-
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Figure 3.21: Controller requirement in An STPA Tool (From [105])

eral structure for unsafe control actions (designated as hazardous control actions

in the references) is identified. Unsafe control actions are expressed as a com-

bination of four terms

• Controller: part of the system that can issue control actions.

• Type of control action: either Provided or Not Provided.

• Control action: command that is (or is not) output by the controller.

• Context: conditions in the system and environment that make an action (or

inaction) hazardous.

According to this structure, the identification of a hazardous control action

requires the determination of potentially hazardous contexts for the action. A

context is the combination of one or more conditions. A condition is a variable

value pair where:

• Variable: attribute of the system or environment with more than one pos-

sible value.

• Value: particular values adopted for the variable.
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Figure 3.22: SafetyHAT wizard UI (From [106])

A list of potential hazardous control actions can be automatically generated

by combining items from the sets of controllers, types of action, control actions

and contexts. Whether a combination is hazardous needs to be determined for

each combination — which will require more or less manual input depending on

the availability of behavioural models.

Requirements, which are expressed as a formal SpecTRM-RL [110] specifica-

tion such as the one in Figure 3.21, can be automatically generated by computing

Figure 3.23: Design modification suggestion (From [107])
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the combinations of controller, control action and context that prevent hazardous

behaviour. Consistency can also be determined by examining two cases. In the

first case, lack of consistency is found when it is hazardous both to provide and

not provide a particular action within the same context. The second case refers

to actions that need to be provided to fulfil the functions of the system but result

in a hazard.

3.6.3 Discussion

In this section, existing STPA computational support tools and methods have

been presented. All tools, except for An STPA Tool, provide a graphical user

interface to manually edit the various tables and control diagrams that are usu-

ally generated during STPA hazard assessment. The most common automation

feature is to allow the linking of different elements such as losses, hazards and

so on, thus enabling automatic traceability between the elements. SAHRA, Risk

Management Studio and CAIRIS explicitly support this feature.

A greater degree of automation is provided by the method for automated gen-

eration of formal model-based safety requirements [108, 109], which is imple-

mented only in An STPA Tool. The tool linking Simulink to STPA [107] is the only

one to enable automatic determination of the components in the STPA control

hierarchy and partial verification of the design.

In general, the degree of automation provided by the existing tools is low,

which can impact the total time required for STPA analysis and hinder the ability

of the architect to keep it up to date and inform the design. Furthermore, except

in the case where Simulink is used to model the architecture, the consistency

between STPA analysis and other architectural models is entirely dependent on

the ability of the analysts to interpret such architectural models, if existing.
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3.7 Automation of Fault Tree Analysis

Fault tree analysis (see Section 3.5.1) was selected as the best safety analysis

method to be automated from the review of safety methods presented in Sec-

tion 3.5. Fault tree analysis requires creating the fault tree and then analysing

it through various quantitative and qualitative techniques. Creation of the fault

tree is the process that requires the greatest amount of manual work by safety

experts, which motivates this research to focus on the automation of the tree cre-

ation process. Additionally, the need for tighter integration of safety and system

development activities was also identified in Section 3.3. This section introduces

existing methods for automated fault tree creation and identifies their limitations.

3.7.1 Existing Methods

Fault Tree Creation from SysML

Mhenni, Nguyen and Choley [68] propose to use SysML to integrate safety ana-

lysis within a systems engineering approach. Fault trees can be generated from

SysML’s Internal Block Diagrams at any point in the design process maintaining

consistency between the system model and the safety analysis. Internal Block

diagrams are a kind of structural diagram that describes the internal structure of

a system in terms of its parts, ports and connectors [111]. The emphasis of the

diagram is placed on the logical relationships between elements. Internal block

diagrams describe the way that the various parts are connected through ports,

interfaces, and connectors and the items that flow between parts.

The automated generation process consists of traversing the diagram identify-

ing known patterns that can be translated to combinations of fault tree gates and

events. The traversal starts at an external output port, advances through edges

created with direction opposite to the flow declared in the diagram, and stops at

diagram input ports.
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Figure 3.24: IBD Patterns and FTA transformations (Adapted from [68])

As shown in Figure 3.24, four different patterns are considered.

• Entry pattern: the part has at least one input port connected to an external

input. It is transformed into an OR gate with events representing the external

failure, the internal failure of the part and other input flows.

• Exit pattern: the part has at least one output port connected to an external

output. It results in an OR gate whose operands are the failure of part and

other input flows.

• Feedback pattern: occurs when a part that has already been visited is

encountered. This pattern is transformed into various or gates (as in the

example in 3.24) where inputs from already visited components are not de-

veloped further.

• Redundant pattern: consists of a part that receives flow coming from re-

dundant blocks providing the same function. It is translated into an OR gate
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with the part failure and an AND gate representing the redundancy as in-

puts.

Fault Tree Creation from DSMs

The methodology of Structural Complexity Management [112] provides the found-

ation for the automated fault tree creation process developed by Roth, Wolf and

Lindemann [113]. The methodology handles complex system and structural de-

pendencies by combining Design Structure Matrices (DSM) and Domain Mapping

Matrices (DMM). Structural Complexity Management is adapted to the task of cre-

ating fault trees, resulting in a procedure that consists of six steps grouped in four

phases:

• System Definition Phase

1. Setting up the Multiple Domain Matrix (MDM): the MDM includes the

definition of the domains and their relevant relations. In the example

shown in Figure 3.25, the elements correspond to the row and column

headers (function, flow/state, failure and so on) and the relations are

indicated by the elements inside the matrix (fulfils, produces/influences

and so forth).

• Information Acquisition Phase

2. Modelling the System Structure and its Failures: by recording the

elements (function and flow/state in the example) together with their

direct dependencies (DMMs such as FuFl and FlFu in Figure 3.25)

• Deduction of Indirect Dependencies Phase

3. Generating a Failure Network: calculate the DSM modelling depend-

encies between failures (FaFa in Figure 3.25) via matrix multiplication.
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• Structure Analysis Phase

4. Generating Fault Trees: by traversing FaFa from each identified top

event. The proposed approach only generates OR gates. AND gates

modelling redundancy must be included manually.

5. Identifying Minimal Cut Sets: by recursively replacing gates by their

own influences (primary failures or other logic gates).

6. Evaluation and Visualization: estimating the impact of individual fail-

ures and their degree of occurrence.

Figure 3.25: Example of Multiple Domain Matrix (From [113])

Fault Tree Creation from Maude Language and SysML

Xiang et al. [114] propose to first develop a reliability configuration model (RCM)

containing the system configuration information needed for reliability analysis

and then generate static fault trees from the RCM specifications. The models

are specified using an executable algebraic formal specification language called

Maude [115]. Two kinds of dynamic fault tree gates, Functional Dependency

and Priority AND are converted to a combination of static standard AND and

OR gates, enabling the modelling of more complex systems. Extra SysML ste-
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reotypes are defined to enable transformation from SysML to the RCM, which is

capable to produce the desired fault trees.

Hierarchically Performed Hazard Origin and Propagation Studies

Papadopoulos et al. [71] develop a method called Hierarchically Performed Haz-

ard Origin and Propagation Studies (HiP-HOPS), which enables the assessment

of systems from the top functional level to the lower levels of hardware and soft-

ware implementation. The method is founded on well-established techniques

such as FMEA and FTA, which are modified, automated and integrated.

The operation of a system is described at each hierarchical level by flow dia-

grams, where components exchange material, energy or data. A tool named

Safety Argument Manager, shown in Figure 3.26, is created for this purpose.

Fault trees are modelled by applying the following principle: a component’s out-

put failure is the result of either internal component malfunctions or deviations of

the component inputs. Component malfunction or deviation of component inputs

information is generated during an FMEA that must be completed prior to the

FTA. The synthesis algorithm proceeds recursively in two dimensions:

• Vertically: express system failure as a result of component failures.

• Horizontally: translates output failures to a combination of component mal-

functions and input deviations.

Fault Tree Creation from AADL

The Architecture Analysis & Design Language (AADL) is a modelling language

that supports early analyses of a system’s architecture [116]. The language de-

scribes systems architectures in terms of distinct components (such as software,

computational hardware, and system components) and their interactions. The
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Figure 3.26: Safety Argument Manager, a hierarchical modelling tool (From [71])

AADL is claimed to be especially effective to model complex real-time embedded

systems.

The Error-Model Annex of the SAE AADL enables annotation of system and

software architectures (modelled in AADL) with hazard, fault propagation, failure

modes and effects, and compositional fault behaviour information [67]. Delange

and Feiler [67] extend the language with safety semantics and a fault propagation

ontology that supports the modelling of error behaviours.

Fault propagation is modelled via errors that originate at source components

and propagate through path components and connections between components

until a sink component is reached. Errors follow an ontology including omission

and commission, timing, value, replication and concurrency errors. The error

behaviour of components is modelled using state machines (see Figure 3.27),
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where different states determine different error propagation behaviours. Trans-

itions to other states are triggered by either component-specific events or failure

propagation from other components. For composite components, error behaviour

is defined in terms of the behaviour of the subcomponents.

Figure 3.27: Example of AADL error behaviour state machine (From [67])

The information provided by the Error-Model Annex can be utilised to auto-

matically generate various ARP 4761 safety assessment methods [117], for ex-

ample, generating fault trees from AADL models. The method by Feiler and

Delange [118] creates the fault tree starting from a selected failure of interest,

which becomes the top event of the tree. Propagation paths and error flows are

traversed backwards creating OR or AND gates depending on the structure of

the system and provided error model information.

Joshi, Vestal and Binns [69] propose a method that first generates a directed

graph from the supplied AADL error propagation information, and then uses a

recursive algorithm to create the fault tree. The algorithm starts with a top event

corresponding to one of the declared system hazards and then generates and

optimises intermediate gates by removing redundant operators, collapse gates or

sharing subtrees.
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Fault Tree Creation from Altarica

Altarica is a formal language that describes systems as a hierarchy of compon-

ents [119]. The nodes in the hierarchy that contain sub-nodes represent the sys-

tem or subsystems [120]. Leaf nodes, which contain no sub-nodes, represent

components that cannot be decomposed.

Li and Li [120] use Altarica models to automate the generation of fault trees.

Leaf components are defined by the combination of:

1. States, flows and events. States are internal variables, flows correspond

to the inputs and outputs of the system and events represent the trigger of

transitions from one state to another.

2. Transitions: including the initial state and transition guards, the logical con-

ditions for a transition to occur.

3. Assertions: that determine the value of outputs based on component state

and inputs.

Composite components are described in terms of their children.

For leaf components, the top event of the corresponding tree represents an

output variable. The bottom events represent input and state variables and are

linked together with gates whose type is determined by the assertions of the

component. For composite components, the top event of the corresponding tree

represents a subcomponent connected to an output variable. The fault tree for

the subcomponent is generated following the procedure for leaf components. If

a bottom event of this tree corresponds to an output provided by sibling subcom-

ponents, the process is repeated — taking the output as the top event of a subtree

— until all bottom events correspond to input and internal state variables of the

composite component.
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Fault Tree Creation from Simulink

Papadopoulos and Maruhn [91] develop an automatic fault tree creation method

using Simulink [121] models and HAZOP. A computer HAZOP study is used to

determine the specific failure modes of each component’s output (e.g. service

provision, timing and domain-value failures), which input combinations or com-

ponent malfunctions lead to each failure mode, and the associated probability

of failure. The proposed algorithm generates fault trees by traversing the hier-

archical model of the system backwards with respect to the failure propagation

direction. It also considers dependencies between parent/child components.

Latif-Shabgahi and Tajarrod [122] propose a different method to automatically

elaborate fault trees from Simulink [121] models. The first step of the method de-

termines the system topology, considering components with more than one output

as multifunctional components and handling them as N (the number of outputs)

virtual single-function components. The second step consists in creating the ex-

tended model, which classifies the components according to their impact regard-

ing the top event, and identifies groups of components that perform a particular

task and which groups are redundant. Finally, the various groups of components

are translated into fault tree gates and events.

Fault Tree Creation from Modelica

Schallert [123] proposes a method to obtain FTA results, such as minimal cut

or path sets from Modelica models, whose equations need to be extended to

model failure behaviour. The results are obtained by simulation of the system

under each possible failure combinations. As the number of combinations grows

exponentially with the number of component inputs, mitigation strategies are sug-

gested. The Electrical Network Architecture Design Optimisation Tool, a tool that

enables the application of the proposed method to electric systems, is developed.

Tundis et al. [124] develop a method to generate fault trees from Modelica
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models, where the basic events correspond to the probability of a failure of a

component. The information required is extracted from two sources (see Fig-

ure 3.28):

1. Fulfil relationships: an extension of Modelica, normally used for tracing

requirements, which provides information about the structure of the tree.

2. Probability models: list all possible states in which a component can be

and the characteristics associated with each state. They provide probability

values for each state employed in FTA.

Figure 3.28: Example of a fulfil relationship and a probability model (From [124])

3.7.2 Discussion

Several methods for automating the creation of fault trees are reviewed in this

section. Most methods operate similarly, starting from a top event and traversing

the system until all relevant parts are included in the tree. To improve the quality

of the results, the fault tree creation algorithms are supplemented with additional

information such as redundant groups, fault modes and effect, states and trans-

itions and so forth. The method by Schallert [123] is an exception, as it uses

simulation under different failure scenarios to determine FTA results, skipping the

step of creating the fault tree. The most relevant differences between methods

stem from the language or formalism required to express the inputs to the fault
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tree creation algorithms, and the level of detail required — which can be related

to the design phase where the algorithms are expected to be more useful.

The (flow) connections between components at the same level are the most

common source of information to construct the tree and seem to be considered

either explicitly or implicitly in every method. The methods proposed in refer-

ences [67, 71, 91, 120] also include hierarchical information such as expressing

the state of composite components in terms of their children state. Additionally,

more specific safety and reliability information is supplemented to the fault tree

creation process in various formats, namely Maude language [114], AADL Error-

Annex [67, 69, 118], Altarica [120], expert judgement from a HAZOP analysis [91]

or various extensions to Modelica [123, 124]. The level of detail employed by the

methods correlates with the amount of information required, e.g. methods that

require state and transition information are more detailed than methods that re-

quired connectivity only.

The main limitation of the reviewed methods is that they require the archi-

tectural information to be translated to various safety-specific languages or tools

such as Altarica and the Safety Argument Manager. These tools, except for the

AADL, which supports architecture definition, are not capable of providing sup-

port for other system development activities such as architecture definition or

sizing and do not seem to be easy to integrate with other existing support tools

capable of providing it. The methods relying on Simulink or Modelica mitigate the

sizing part of the problem as, although the focus of these languages is simulation

rather than sizing, they can be adapted for this task. The approaches based on

SysML, AADL and DSMs provide better support for architecture definition but lack

support for sizing.
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3.8 Safety Architecting

The degree of safety resulting from an architecture depends on various aspects.

The type of components used, different materials or manufacturing techniques

can lead to different probabilities of failure; the number of components and how

the components are connected, different kinds and degrees of redundancy can

be achieved depending on this factor as well as the possibility of dynamic recon-

figuration of the system; the control algorithms, process models, software and

human-machine interfaces are some of the most relevant elements impacting

safety. Safety and resilience literature contains information about how to make

systems safer acting in one or more of the aspects enumerated above. This

thesis refers to these strategies as safety principles, a term that is defined below.

Safety principle: a general design strategy that is expected to

result in a safer system and that can be applied to the designs of

diverse systems, e.g. it is not tied to a particular project or kind of

system.

This section presents various safety principles from different domains and dis-

cusses their applicability within the scope of the current research, resulting in the

selection of the three most relevant principles.

3.8.1 Review of Safety Principles

Burch [56] proposes to increase the resilience of space systems by means of two

general mechanisms: elemental protection and distribution of system capability.

The former consists of providing the susceptible components with built-in protec-

tion against specific threats such as solar flares or space debris. This mechanism

can be generalized to other kinds of systems by considering the relevant threats

for each context. The second mechanism, distribution of system capability, con-

sist of partitioning the total system capability among several system elements,
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increasing mission capability beyond minimum performance requirements to im-

prove resilience. Burch argues that distribution is an attractive means of increas-

ing resilience as this principle is threat agnostic. Four methods of distributing

system capability are proposed.

• Division: distribution of the total capability, uniformly or not, among several

elements.

• Proliferation: adding one or more elements of the same size to provide

oversupply.

• Disaggregation: separation of functions, reducing the use of multifunc-

tional components allocating functions into discrete sub-elements.

• Fractionation: is defined as the segmentation of system capability by sub-

functions among multiple elements.†

Jackson and Ferris [49] proposed a set of resilience principles and subprin-

ciples applicable to the design of engineered systems. The origin of these prin-

ciples can be traced back to the works of Madni and Jackson [40] and Jack-

son [55, pp. 159–180] where many of them are presented. The principles are

presented in a non-hierarchical manner and, for this research, risk and culture

heuristics have been left out of scope. The applicability of such a set to the com-

mercial aircraft domain is discussed in [51]. Uday and Marais [50] select the most

relevant resilience heuristics within the context of systems of systems and relate

them to resilient attributes such as impact reduction, survivability, recoverability,

and total time to recover. The set is eventually updated in [125], with some prin-

ciples being renamed and the addition of some subprinciples. A comparison of

these works can be found in Table 3.7, together with principles proposed by other

authors that will be introduced later in this section.
†This definition is to some extent is unclear and, unfortunately, Burch [56] does not provide

further information. It is interpreted in this thesis that it implies some kind of functional redundancy.
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The descriptions of the principles followed by the descriptions of their corres-

ponding subprinciples are presented next. The definitions are based on Jackson

and Ferris [125]. The name of the principle (or subprinciple) is shown in bold font.

It is followed by the reference to the original source that inspired the principle.

The text after the colon corresponds to the description of the principle.

• Absorption, Woods [126]: the system shall be capable of withstanding the

design level disruption.

– Margin, Woods [126]: the design level shall be increased to allow for

an increase in the disruption.

– Hardening, Richards [127]: the system shall be resistant to deforma-

tion.

– Context Spanning, Jackson [55]: the system shall be designed for the

maximum and most likely disruption levels.

– Limit Degradation, Jackson and Ferris [49]: the system shall not be

allowed to degrade due to ageing or poor maintenance.

• Restructuring, Woods [126]: the system shall be capable of restructuring

itself.

– Authority escalation, Maxwell and Emerson [128]: authority shall es-

calate in accordance with the severity of the crisis.

– Regroup‡: the system shall restructure itself after an encounter with a

threat.

• Reparability, Richards [127]: the system shall be capable of repairing itself.

Repairability also appears as the ability of a system to being brought up to

partial or full functionality over a specified period of time and in a specified

environment (Jackson and Ferris [49]).
‡Jackson and Ferris [125] claim the source of this principle to be a comment made by A. Raveh

in 2008 during tutorial on resilience in Utrecht, The Netherlands.
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• Drift Correction, Woods [126]: the system shall perform corrective action

when approaching the boundary of resilience.

– Detection, Jackson and Ferris [49]: the system shall be capable of

detecting an approaching threat.

– Corrective Action, Jackson and Ferris [49]: the system shall be cap-

able of performing a corrective action following a detection.

– Independent Review, Haddon-Cave et al. [129]: the system shall be

capable of detecting faults that may result in a disruption at a later time.

• Cross-scale Interaction, Woods [126]: all nodes of a system should be

capable of communicating, cooperating, and collaborating with every other

node.

– Knowledge Between Nodes, Billings [130]: states that all nodes of

a system should be capable of knowing what all the other nodes are

doing.

– Human Monitoring, Billings [130]: automated systems should under-

stand the intent of the human operator.

– Automated System Monitoring, Billings [130]: the human should un-

derstand the intent of the automated system.

– Intent Awareness, Billings [130]: all the nodes of a system should

understand the intent of the other nodes.

– Informed Operator, Billings [130]: the human should be informed as

to all aspects of an automated system.

– Internode Impediment, Jackson [55]: there should be no adminis-

trative or technical obstacle to the interactions among elements of a

system.
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• Functional Redundancy, Leveson [131]: there should be two or more in-

dependent and physically different ways to perform a critical task.

• Physical Redundancy, Leveson [131]: the system should possess two or

more independent and identical legs to perform critical tasks.

• Layered Defence, Reason [132]: the system should have more than one

way to address a vulnerability.

• Neutral State, Madni and Jackson [40]: human agents should delay in tak-

ing action to make a more reasoned judgement. This is enabled by the

ability of the system to be in a neutral state following a disruption (Madni

and Jackson [40]).

• Human in the loop, Madni and Jackson [40]: there should always be hu-

man in the system when there is a need for human cognition.

– Automated function, Billings [130]: humans are preferred to perform

a function rather than automated systems when conditions are accept-

able.

– Reduce Human Error, Billings [130], Reason [77]: standard strategies

should be used to reduce human error.

– Human in Control, Billings [130]: humans should have final decision-

making authority unless conditions preclude it.

• Complexity Avoidance, Neches and Madni [43], Perrow [133]: the system

should not be more complex than necessary.

– Reduce Variability§: the relationship between the elements of the sys-

tem should be as stable as possible.
§The source of this principle is an email communication between J. Marczyk and the authors

Jackson and Ferris [125] in 2012 in Como, Italy.
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• Reduce Hidden Interactions, Leveson [131], Perrow [133]: potentially harm-

ful interactions between elements of the system should be reduced.

• Modularity, Madni and Jackson [40], Perrow [133]: the functionality of a

system should be distributed through various nodes.

• Loose Coupling, Perrow [133]: the system should have the capability of

limiting cascading failures by intentional delays at the nodes.

– Containment, Jackson and Ferris [49]: the system will assure that

failures cannot propagate from node to node.

The work by Madni and Jackson [40] proposes some additional heuristics:

• Human Backup, Madni and Jackson [40]: humans should be able to back

up automation when context changes in a way to which automation is not

sensitive provided there is sufficient time.

• Predictability, Madni and Jackson [40]: automated systems should behave

in predictable ways to assure trust and not evoke frequent human override.

• Graceful degradation, Madni and Jackson [40]: the performance of the

system should degrade gradually when the unexpected occurs.

• Inspectability, Madni and Jackson [40]: the system should allow for human

intervention without making unsubstantiated assumptions.

• Learning – Adaptation, Madni and Jackson [40]: continually acquiring new

knowledge from the environment to reconfigure, reoptimize and grow.

In a different work, Jackson [55] proposes a similar set of principles. In this

case, adaptability is not considered as a heuristic but as an umbrella term en-

compassing the heuristics presented above. This work [55] also includes a new

principle and borrows five more from Richards et al. [63]:
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• Organizational Planning Heuristic, Jackson [55]: signs should be noticed

that call into question organizational models, plans, and routine.

• Mobility: the system should be able to avoid a threat by moving

• Prevention: the system should be able to suppress future potential disrup-

tions.

• Retaliation: the system should be able to retaliate to a threat.

• Concealment: the system should attempt to conceal itself against potential

threats.

• Deterrence: the system should attempt to deter hostile threats from attack-

ing.

Some of these principles imply causes of failure due to active and hostile in-

tent, which are causes that are out of the scope of this research. The principles

are presented here for completeness, but they will be discarded during the dis-

cussion of the most relevant principles (see Section 3.8.2).

Richards et al. [134] extend the set design principles shown above. Although

the authors refer to survivability, the definition of the term used by the authors is

close to the definition of resilience used in this research. Therefore, the principles

are considered relevant for this literature review. Presented below is the complete

list of principles in Reference [134], which includes descriptions only for the items

that have not appeared yet in this section:

• Prevention.

• Mobility.

• Concealment.

• Deterrence.
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• Preemption: suppression of an imminent disturbance.

• Avoidance: manoeuvrability away from an ongoing disturbance.

• Hardness.

• Redundancy.

• Margin.

• Heterogeneity.

• Distribution.

• Failure mode reduction: elimination of system hazards through intrinsic

design.

• Fail-safe: prevention or delay of degradation via physics of incipient failure.

• Evolution: alteration of system elements to reduce disturbance effective-

ness.

• Containment.

• Replacement: substitution of system elements to improve value delivery.

• Repair.

Pumpuni-Lenss, Blackburn and Garstenauer [135] propose a series of attrib-

utes of resilience, classified according to the four components of resilience pro-

posed by the (Department of Defense of the United States of America, 2011).

These attributes are avoidance, robustness, reconstitution and recovery. As shown

in Table 3.7, this work is similar to the work by Richards et al. [134] — at least

at a superficial level, since definitions for the terms are not provided. Ouyang,

Dueñas-Osorio and Min [136] compile a series of strategies to improve infrastruc-

ture system resilience according to three stages of resilience, which are based
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on resistant, absorptive, and restorative capacities. More detailed descriptions of

these strategies are also missing in this case.

Other authors, propose improving system resilience through the implement-

ation of other -ilities rather than by including a particular design principle. For

instance, Enos [42] propose improving adaptability, extensibility, flexibility, repair-

ability and versatility as a means of achieving resilience. This view is in agreement

with that of Uday and Marais [50], who propose the improvement of flexibility, ro-

bustness, and adaptability of the constituent elements of a system of systems.

Yodo and Wang [137] review various resilience metrics and conclude that resili-

ence is achieved via reliability, survivability, and recoverability.
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3.8.2 Discussion of the Most Relevant Principles

The principles presented above are generic in nature and their applicability spans

several kinds of systems and design stages. However, this research is focused on

aircraft system architectures at early design stages such as conceptual design.

Therefore, it is necessary to critically evaluate the appropriateness of each heur-

istic within this context. The criteria to downselect the set of principles is presen-

ted throughout this section.

Figure 3.29: State transition diagram (From [125])

The work by Jackson and Ferris [125] describes the system during operation

by means of a state diagram and matches a set of resilience principles with state

transitions in the diagram. The diagram, shown in Figure 3.29, intends to be gen-

eric and the authors claim that it includes all the states and transitions that could

be meaningful in any system. Whether all states are relevant and what condi-

tions trigger the transition from one state to another need to be determined for a
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particular system, which explains the lack of information regarding transitioning

conditions presented in the diagram.

The possible states of a system range from nominal operation state to decom-

missioned, including several intermediate states. Transitions represent disrup-

tions, repairs and other kinds of events. Some of the states (e.g. non-functional,

diminished and decommissioned states) describe situations that are out of the

scope of this research. Therefore, safety principles that are associated with a

transition from or to the non-relevant states can be excluded.

Jackson [51, pp. 229–242] discusses several design rules within the context

of commercial aviation. The information provided helps to relate the abstract

principles to a more concrete kind of design, commercial aircraft designs. How-

ever, the analysis presented by Jackson includes consideration for later design

or operational phases, which are not the subject of this thesis. Principles such

as Repairability, Drift Correction, Neutral State and Human in the Loop are not

considered further as their correct application requires modelling of human be-

haviour, control strategies, or repair strategies, which is out of the scope of this

research.

Other principles such as Human Backup, Predictability, Inspectability and

Organizational Planning and Learning are discarded because they are strongly

coupled with human behaviour and automation. The principles of Mobility, Pre-

vention, Retaliation, Concealment, Deterrence, Pre-emption, and Countermeas-

ures are most applicable under a military context, where failures are due to active

and hostile intent, and thus also excluded; the focus is on civil aviation. The heur-

istic of Avoidance is mainly related to the manoeuvrability of the aircraft, which is

mostly determined by parts of the design that are out of scope in this research

such as the aerodynamic design and airframe configuration of the aircraft.

Improving the design of individual components or modifying their layout and

interrelations are central to the Fail Safe and Failure Mode Reduction principles.
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The design of individual components is out of scope, which leads to both prin-

ciples being discarded. Evolution, Replacement and Rebuild focus mainly on the

ability of the system to provide desirable attributes (e.g. safety or performance)

as the design evolves over time. However, this research is not focused on the

evolvability of the design.

After applying all the considerations discussed in the paragraphs above, the

following reduced set of safety principles (and subprinciples) is obtained:

• Absorption.

– Margin.

– Hardening.

– Context spanning.

• Physical Redundancy.

• Functional redundancy.

• Loose coupling.

– Containment.

• Complexity avoidance.

– Reduce variability.

• Hidden Interaction Avoidance.

• Layered Defence.

• Graceful Degradation.

• Restructuring.

– Regroup.
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• Modularity

However, there are still too many principles in this list to implement architecting

support for each one of them in the time available for the research. To further

reduce the number of principles, three additional criteria were employed:

1. Interdependence of principles: as noted by Jackson and Ferris [49], not

all principles can be applied independently. The correct application of many

of them requires implementing two or more at the same time. Combining the

interdependency information provided in [49] with the information presented

in this section, the hierarchy presented in Figure 3.30 was elaborated. Leaf

principles (rightmost node at each level) are the most important ones as

they enable the rest of the principles.

2. Existing RFLP architecture representation: the ability to model the relev-

ant details of the system so that support can be provided to the application

of a principle was considered. The RFLP model with computational exten-

sions considered [14, 15] is able to model the principles of Modularity, Con-

tainment, Physical Redundancy, and Functional Redundancy. By creating

computational workflows for the system and varying component paramet-

ers, Margin, Context Spanning, and Hardening can be considered.

3. Existing support: whereas for principles such as Margin, Context Span-

ning, and Hardening or Modularity there is a considerable amount of liter-

ature; no existing methods were found to support architects to implement

Containment, Physical Redundancy, or Functional Redundancy.

With the above criteria in mind, Physical Redundancy, Functional Redundancy

and Containment were selected as the most promising principles. There seem to

be no existing methods to facilitate the inclusion of any of these methods in the

design published in the literature except a publication [138] by the author of this

research.
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Figure 3.30: Interdependency of safety principles

3.9 Sizing and Performance Assessment

Section 3.8 shows how architecting safer systems, particularly by implementing

the three safety principles selected in this thesis, requires substantial changes in

the architecture. New components are added in the process and new connections

are established, which will most likely impact important performance aspects such

as the weight of the aircraft. Additionally, the demand of a component that fulfils a

function might be shared across several components, depending on the possible

failure conditions considered.

Determining the precise impact on performance of these changes requires

sizing the system under different scenarios. The greater the number of safety

options being considered the more frequent the sizing process needs to be ex-

ecuted. Due to this coupling between safety and performance, a fast sizing pro-

cess becomes crucial to study different candidate architectures from both a per-

formance and a safety point of view. This section presents existing methods for

automating part of the sizing and performance assessment processes.
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3.9.1 Existing Methods

Simulation framework by Liscouët-Hanke et al.

Liscouët-Hanke [139] and Liscouët-Hanke, Maré and Pufe [140] propose a meth-

odology where the architecture is composed of power system modules repres-

enting the various aircraft systems. A power system module, as depicted in

Figure 3.31a is influenced by aircraft and system parameters can be run in two

modes (see Figure 3.31b):

• Sizing mode: computes sizing characteristics (e.g. diameters, sizes or

masses) based on one or more sizing scenarios including different phases

and operation modes (normal, degraded or failure mode).

• Performance mode: obtains off-design energy flows and drag values re-

quired for calculating aircraft level performance for the whole mission profile.

The power modules are orchestrated manually depending on whether they are

power consumers, distributors or generators. Each subsystem in the workflow

can be replaced by one that can provide the same function, which allows studying

various technology choices.

Coordinated Optimization Method by de Tenorio et al.

The work by de Tenorio [141] and de Tenorio et al. [142, 143] employs a functional

approach to select subsystem solutions, first from aircraft level requirements and

then from induced requirements derived by the selected solutions. The execu-

tion of subsystem models is scheduled according to the functional flows between

components, for example, if a pump provides energy to an actuator the actuator

is sized first.

The subsystems are then sized to satisfy requirements throughout the mis-

sion, which is divided into several phases with flight conditions (e.g. ISA) and
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(a) General power system module

(b) Framework overview

Figure 3.31: Simulation framework by Liscouët-Hanke et al. (From [140])
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Figure 3.32: Example of sizing optimization problem (Adapted from [143])

architecture configurations associated with each one of them. Subsystems are

sized via optimization, where the objective function equals to the weighted sum

of several subsystem attributes. Varying the values of the weighting factors steer

the development of the subsystem towards different objectives such as lighter

subsystems or more energy-efficient ones. Aircraft level sizes and performance

are computed based on subsystem sizing results. The optimization of aircraft per-

formance consists of obtaining the combination of subsystem weighting factors

that optimizes the utility of the aircraft. These factors, in turn, determine the sub-
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system attributes that lead to an aircraft optimum. The approach is illustrated in

Figure 3.32.

Integrated sizing approach by Chakraborty et al.

The integrated sizing approach presented in Chakraborty [144], Chakraborty et

al. [145] and Chakraborty and Mavris [146] allows exploring the design space

generated by different subsystem choices, such as conventional or more electric

systems. Subsystems are modelled using steady-state equations and empirical

relations such as those captured in data tables, which provide the most relevant

sizing parameter for a particular subsystem. For each candidate subsystems ar-

chitecture, consisting of different choices for each aircraft subsystem, the models

are orchestrated following power flow considerations. Powers consuming sub-

systems are linked to their respective distribution elements, which in turn are

connected to the power generation and distribution devices. Sizes are obtained

by considering a few points of the mission profile, which vary from subsystem to

subsystem. The sizing points are selected a priori, generally based on results

from previous works.

This sizing methodology also includes the aircraft level. As shown in Fig-

ure 3.33 the values obtained in mission analysis influence the sizing of the sub-

systems. In turn, subsystems influence the aircraft level via weight and drag

contributions, and resizing rules applied to keep capabilities such as payload and

range constant. The process needs to be iterated until convergence is achieved.

Automated Aircraft Systems Architecture Analysis by Judt and Lawson

The approach by Judt and Lawson [147, 148] utilizes a methodology that gen-

erates the full enumeration of architectures from a given function tree (see Fig-

ure 3.34). This function tree starts with the aircraft-level functions (boundary func-

tions). From each function, one or more branches appear representing candidate
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Figure 3.33: Overview of the approach (From [146])

solutions to satisfy each function. The candidate solution might in turn induce

more functions, which can be satisfied by various solutions and so forth.

The best architectures according to established criteria can be obtained in

two different ways. The first methods consist in enumerating and sizing all ar-

chitectures and then ranking them according to the criteria. The second method

generates only the architectures required by an ant colony algorithm mixed with

a genetic algorithm; this significantly reduces the number of architectures evalu-

ated, although the obtention of the global optimum is not guaranteed. The order

for subsystem execution depends on the interfaces between subsystems, which

are determined manually and reviewed continuously until a sufficient level of con-

fidence is obtained. Sizing of subsystems is based on a representative mission

plus specific mission failure scenarios that affect the backup components that are

active in such situations.
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Figure 3.34: Example of a function tree (From [148])

RFLP Airframe System Sizing by Bile et al.

Bile [16] and Bile et al. [15] propose a framework for the definition and automated

sizing of airframe systems defined by using the RFLP paradigm. Architecture

definition occurs simultaneously in the functional and logical via functional-logical

zigzagging [12]. This zigzagging happens when a component — included to fulfil

a function — derives a new function to be fulfilled. The new function might be

fulfilled by another component inducing new functions and so on.

Subsystem sizing is computed by a computational workflow that is generated

from the logical view of the architecture, which includes a hierarchy of compon-

ents connected through flow relations. At the bottom of the hierarchy, for each

subsystem, the computational models associated with the subsystem compon-

ents are compiled and connection models are generated according to flow con-

nections. The models are scheduled within a computational workflow (see Fig-

ure 3.35) through a maximum matching algorithm that uses the model’s input-

output relations. Sizing is performed based on a single user-defined sizing point.

At higher levels, the subsystem workflows are scheduled according to source-
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Figure 3.35: Example of a computational workflow (From [16])

sink relations, and value discrepancies at the interface between subsystems are

minimised via optimisation. Magnitudes such as weight, drag or power consump-

tion are aggregated up to aircraft level so that they can be considered for aircraft

sizing.

3.9.2 Discussion

Various automated sizing approaches are reviewed in this section. All of them

require the manual definition of architectures from a functional perspective, which

facilitates the consideration of different options (e.g. regarding the technology for

a particular subsystem). However, the level of detail varies from a set of pre-
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defined functions with various candidate solutions for each one of them in Refer-

ences [139, 140, 144–146] to function trees [141–143, 147, 148] and functional-

logical zigzagging [15, 16]. A limitation of all methods except the one using RFLP

is that alternative solutions are considered at a subsystem level. This limits the

ability to consider changes at a component level, as they require the manual

modification of subsystem models.

The number of sizing points considered ranges from a single point in Ref-

erences [15, 16] to several points in the rest. The method presented in Ref-

erences [144–146] relies primarily on past experience for selecting the points,

whereas the rest of the methods explore various flight phases, flight conditions

and configurations in a more systematic way. However, even the most flexible

methods consider only a small number of scenarios, which might lead to incorrect

sizing when considering novel configuration whose behaviour is not well under-

stood.

3.10 Conclusions

This literature review intended to introduce the reader to the concepts involved in

this research and to highlight the limitations of the existing safety-related methods.

The following conclusions were drawn from the review:

• Reliability is a term often related to and sometimes mistaken with safety.

However, although reliability failures can affect safety, this is not always the

case. Unreliability is not necessarily unsafe, as some component failures do

not have a significant impact on safety. Unsafe scenarios can arise without

unreliability, such as in the accidents that are caused by interactions of com-

ponents where none of them has failed. Resilience, an increasingly popular

concept in literature, does not have a clear unique definition. In general,

resilience is adopted to overcome the limitations of traditional safety ap-
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proaches while considering systems with growing complexity and to study

situations where safety is achieved dynamically (via reconfiguration of the

system) rather than with a static configuration. In the case of aircraft early

design (and systems of similar complexity), the use of the term resilience

is deemed unnecessary. The reason is that the ultimate goal of resilience

is generally the same as that of safety for the kind of systems and design

stages within the scope of this research. However, some findings from resi-

lience literature, such as the architecting principles reviewed in Section 3.8

are still considered to be relevant.

• The study of safety applied to the process of aircraft and system develop-

ment highlighted the importance of the safety assessment process, used to

show compliance with certification requirements. There are two main kinds

of activities in the safety assessment process, namely hazard assessment

(creation and verification of safety requirements) and safety analysis (val-

idation of the system against safety requirements). As a result of safety

assessment, two activities become necessary on the system development

side: architecting of safety in the design and determination of the impact of

safety in performance. Supporting all these activities in an integrated, timely

manner is fundamental to increase the number of alternative architectures

that can be studied, and therefore reduce the risk of redesign due to prob-

lems found in the latter design stages. It is also important to improve the

consistency of the results from safety methods at different design stages

and abstraction levels, which was found to be low due to the prominence of

manual work required for safety-related activities.

• A fundamental part of hazard assessment and safety analysis methods are

the accident models that underpin them. The validity of a method is determ-

ined by the combination of its underlying accident model and the nature of
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the system that is being analysed (e.g. degree of complexity or human in-

volvement). After reviewing the most popular methods, the STPA hazard as-

sessment method and FTA safety analysis method were identified as some

of the most prominent approaches and good candidates to be supported via

computational tools such as the one developed in this research.

• Several computational tools that support STPA were reviewed. Only one of

the tools was found to support the automated creation of hierarchical control

structures from the architecture definition. However, this tool does not sup-

port the creation of more detailed control loops. None of them supports the

automated creation of both kinds of models. Furthermore, none of them was

integrated nor easily integrable with other parts of the architecture definition

such as requirements or functions.

• Various methods for automating the creation of fault trees were found. To

define the inputs of the methods, the approaches require the architectural

information to be translated to various specific languages. None of the lan-

guages was found to be suitable to provide or integrate easily with other

tools that provide sizing and performance information.

• Several safety principles, many of them coming from the related field of re-

silience, were reviewed. Three of them, namely physical redundancy, func-

tional redundancy, and containment were identified as the most applicable

within the scope of this research, as their inclusion within the architecture is

amenable to receive computation support.

• The available methods to support the sizing of complex systems present two

kinds of limitations. Some of the methods require extensive manual setup or

expert knowledge, hindering the ability to provide results swiftly after the ar-

chitecture definition is modified. Others, although more automated, are too

prescriptive in terms of which systems and components can be considered.
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One method free of both limitations was found, however, its application is

limited to a single flight condition, which is not generally enough to determ-

ine the most demanding conditions for a system.

In the next two chapters, it is demonstrated how the limitations presented

above are addressed. Chapter 4 proposes an improved framework for RFLP ar-

chitecture representation. This representation serves as the starting point for the

methods developed by the author, which are introduced in Chapter 5. The meth-

ods cover STPA hazard assessment, FTA safety analysis, architecting of safety

principles and sizing and performance of the resulting designs.

118



Chapter 4

Methodology I — Improved RFLP

Architecture Representation

4.1 Introduction

This chapter is the first one of the two methodology chapters included in this

thesis, which describe a novel architecting framework for designing safe systems.

Chapter 5 presents the methods and algorithms in the framework, which intend to

fulfil the objectives of this research (see Section 1.3). The methods require that

existing RFLP frameworks are enhanced with the appropriate kind of elements

and relationships. This chapter introduces such an improved RFLP representa-

tion. The presented elements and relationships are generic as they are not tied

to any particular implementation. However, this chapter also suggests a concrete

object model with the appropriate classes and associations, which make possible

the realisation of design for safety methods.

The chapter is structured as follows: first, an overview of the framework is

provided in Section 4.2, in which the main elements of the framework and their

relationships are discussed. This is followed by a description of the data-objects

used to represent RFLP definitions of architectures. Section 4.3 presents the
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relations that are common to objects belonging to two or more views of the archi-

tecture. The views and objects that compose them are detailed in Section 4.4.

The relations involving elements from more than one view are presented in Sec-

tion 4.5. Finally, Section 4.6 introduces template libraries, which are proposed to

reduce the redefinition of elements and the reuse of past knowledge.

4.2 Description of the Architecting Framework

As shown in the literature review (see Chapter 3), safety assessment activities are

done in parallel to other system development activities, including the definition of

the architecture itself. There are many kinds of assessment activities required

to successfully develop a system, nevertheless, this research focuses on three

of them: STPA hazard assessment, fault tree analysis, and subsystems sizing.

These activities, which relate to Objective 1 and Objective 3, correspond to the

three boxes at the bottom of Figure 4.1.

As discussed in Section 2.2, the approach for systems engineering employed

in this thesis is model-based. Consequently, a common model for the architec-

ture is used by all the developed methods. As shown at the top of Figure 4.1,

this research uses an RFLP representation of the architecture (the physical view

is omitted as it is out of scope) and focuses on the architecting of safety prin-

ciples, particularly physical redundancy, functional redundancy and containment.

The architecting support for safety principles corresponds to Objective 2 of the

research.

Both sides, architecture definition and analysis, advance iteratively. The archi-

tecture definition is the starting point for hazard assessment and other architec-

ture analyses. In turn, the results from the analyses –– safety requirements in the

case of hazard assessment and various qualitative and quantitative metric in the

case of other analysis –– guide the definition of the architecture.
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Figure 4.1: Overview of architecting activities

4.2.1 Improved RFLP Architecture Representation

The RFLP approach used in this research is based on the one proposed by

Guenov et al. [14], which was developed to support interactive architecting within

RFLP domains, is used as the foundation for the developed methods. However,

the framework as proposed is not able to provide the required information for the

methods proposed in this thesis. Therefore, changes are made to the framework

to overcome this limitation. These changes are described throughout this section.

4.3 Common Relations

The views of the architecture considered in this research are composed of re-

quirements, functions and solutions, which are referred to collectively as ele-

ments. Changes to the original RFLP framework affect the various classes that

are used to represent these kinds of elements. New members are added to ex-
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isting classes to include new pieces of information as required by the novel ar-

chitecting enablers. Existing classes are also specialized to better represent the

diversity of RFLP elements considered by the methods. In this section, the char-

acteristics that are common to all or several elements are discussed first, followed

by the description of the particular elements belonging to each of the RFLP views.

All RFLP elements of the architecture possess some common characteristics

that are featured in the base class ArchitecturalElement. The salient attributes of

this class, omitting implementation details, are presented in table 4.1. Figure 4.2

shows the inheritance hierarchy down to the base classes for requirements, func-

tions and solutions.

Table 4.1: Description of ArchitecturalElement attributes.

Attribute Name Description

Name Word or brief sentence used to refer to a particular element,
e.g. ‘Compress Air’ (function) or ‘Turbine’ (solution).

4.3.1 Hierarchical Relations

Decomposition (excluding iterative function-solution decomposition, also known

as ‘zigzagging’) and aggregation relations [14] are common to requirements, func-

tions and solutions. These relations enable a hierarchical representation of the

views that contain these elements. The hierarchies can be modelled as a tree

— a directed acyclic graph. The class HierarchicalElement is used as a based

class for the architectural elements which form hierarchies as described. In turn,

this class is derived from ArchitecturalElement because it is intended to model

only elements that belong to the architecture. An example of a hierarchical view

(a functional hierarchical view in this case) is presented in Figure 4.3. The par-

ent and children of function Control Mass Flow, which is highlighted in red, are

labelled accordingly
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ArchitecturalElement
+Name : string

HierarchicalElement
+Parent : TElement
+Children : List

FlowElement Requirement

Function Solution

Figure 4.2: Class diagram for fundamental RFLP classes

Table 4.2 introduces the main attributes of HierarchicalElement. All parent and

children elements are of the same kind of hierarchical element, e.g. if the element

is a function, its parent and children will be functions as well. A parent element

can be decomposed into their children and, conversely, all children of an element

can be aggregated into that element.

Table 4.2: Description of HierarchicalElement attributes.

Attribute Name Description

Parent Element immediately higher in the hierarchy formed by de-
composition and aggregation relations.

Children Elements immediately lower in the hierarchy formed by de-
composition and aggregation relations.
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Figure 4.3: Example of a functional hierarchical view (Adapted from [138])

Top Element

Requirements and functional views do not always present a single top-level re-

quirement/function. This means that instead of dealing with a single tree, the

hierarchical relations are represented by a forest. To simplify the development of

algorithms, by avoiding the special case of the forest, an artificial top-level ele-

ment is added for all views. In the case of the logical view, the top element might

be interpreted as the top-level system (e.g. the aircraft) but regarding the rest of

the views, the interpretation is not straightforward beyond conveniently combining

all trees.

4.3.2 Flow Relations

Flow relations arise because functions and logical components of the architecture

exchange flows of energy, material or signal. Flow relations enable a flow repres-

entation of the respective views, which can be modelled as a directed graph (not
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acyclic in this case) [14]. The class FlowElement is used as a base class for archi-

tectural elements that exchange flows as described. In turn, this class is derived

from HierarchicalElement, as in this research, all flow elements were also found

to participate in hierarchies. An example of a logical flow is shown in Figure 4.4.

Figure 4.4: Example of a logical flow view

Table 4.3 introduces the main attributes of FlowElement. More details about

ports, links and rules regarding flow exchange are provided in the sections below.

The ports of the solution ECSPack1, which is a flow element, are circled in red

in Figure 4.4. The links with one of their ends in these ports are highlighted in

green.

Table 4.3: Description of FlowElement attributes.

Attribute Name Description

InputPorts Ports through which an energy, material or signal flow
enters the element.

OutputPorts Ports through which an energy, material or signal flow exit
the element.

Ports Combines input and output ports

125



Chapter 4. Methodology I — Improved RFLP Architecture Representation

Ports

Ports describe the interfaces of an element with other elements through which

flow (energy, material, signal) is exchanged. Ports can be connected to other

ports forming connections and links. The class Port is used to model ports and

its attributes are summarised in Table 4.4. Three basic rules are proposed so that

all port connections must adhere to:

1. An output port must be connected to an input port and vice versa.

2. A port cannot be connected to itself or any other port belonging to its con-

taining element.

3. A port can be connected only to ports with a compatible Flow attribute.

Table 4.4: Description of Port attributes.

Attribute Name Description

Name Word or small set of words used to refer to a particular
port within the element containing such port, e.g. ‘Air
Input’ or ‘Rotational Output’

Parent Element that contains the port

Flow A flow is the object part of a ‘verb-object’ description
of function [20]. It represents the energy, material or
signal receiving the action of the function.

ExternalConnection Object representing the connection that provides flow
to or receives flow from the port.

Links

Links represent any pair of ports that are connected through a series of zero or

more ports. Links represent the exchange of flow between two elements — as

explained in Section 4.3.3. The class Link models links through the attributes

presented in Table 4.5.
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Table 4.5: Description of Link attributes.

Attribute Name Description

FromPort Port from which the flow originates. First port in Path-
Ports

ToPort Port which receives the flow. Last port in PathPorts

PathPorts Series of ports containing FromPort, ToPort and any
intermediate ports in the case of links spanning mul-
tiple connections

Connections

Connections are groups of links that represent the exchange of flow between two

or more elements. A connection with Ni inputs and No outputs can be represented

as NiNo links with only two ports in the path. As a consequence, the input flow is

provided to the connection by one or more input ports, then the connection dis-

tributes the flow to one or more output ports. Figure 4.5 illustrates the difference

between links and connections. Subfigure 4.5a shows a connection composed of

two links, which are shown in Subfigure 4.5b and Subfigure 4.5b respectively.

As a consequence of the connection rules proposed in 4.3.2, all inputs ports

of a connection are outputs ports of an element and vice versa (rule 1), no port

appears more than once in a connection and the set of input elements is disjoint

with respect to the set of output elements (rule 2), and all ports possess compat-

ible flow attributes (rule 3). Connections are represented by the class Connection,

whose attributes are summarised in Table 4.6.

Flows

As explained in the sections above, the concept of flow is fundamental for ports,

connections and links. This concept originates from the functional basis for engin-

eering design proposed by Hirtz et al. [20], which is introduced in Section 2.3.1.

Flows can be represented as a hierarchy with energy, material or signal flows
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(a) Connection with one input o1 and two outputs i1 and i2

Element 1

Element 2

Element 3

o1

i1

i2

(b) First link in the connection o1→ i1

Element 1

Element 2

Element 3

o1

i1

i2

(c) Second link in the connection o1→ i2

Element 1

Element 2

Element 3

o1

i1

i2

Figure 4.5: Equivalent links and connection

Table 4.6: Description of Connection attributes.

Attribute Name Description

Flow Energy, material or signal flowing through the connec-
tion.

InputPorts Ports through which an energy, material or signal flow
enters the element.

OutputPorts Ports through which an energy, material or signal flow
exit the element.

Ports Combines input and output ports
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at the top. These flows are decomposed at lower levels as more specific details

are provided. The class modelling flows is the Flow class.

Table 4.7: Description of Flow attributes.

Attribute Name Description

Type Name of the flow as it appears in the functional basis,
e.g. ‘gas’, ‘hydraulic’

Description Description of the flow as provided in the functional
basis, e.g. ‘Gas: Any collection of molecules charac-
terized by random motion and the absence of bonds
between the molecules’ [20]

Parameters Series of variables used to describe the state of a par-
ticular flow. E.g. ‘pressure’, ‘density’ and ‘temperat-
ure’.

Parent Flow immediately higher in the hierarchy.

Children Flows immediately lower in the hierarchy.

Operations

Operations correspond to the term ‘function’ from the functional basis. In this

thesis, the term operation is preferred as it avoids the confusion originated by the

apparently recursive definition of functions consisting of a combination of flow and

function. Operations can also be represented as a hierarchy with terms that can

be decomposed at lower levels as their specificity increases. The class modelling

flows is the Operation class, its most relevant attributes are described in Table 4.7.

4.3.3 Combined Hierarchical-Flow Relations

More complex flow relations appear when several hierarchical levels are con-

sidered compared to flow relations in a single hierarchical level. In order to handle

flow connections between parents and children, additional rules for establishing
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Table 4.8: Description of Operation attributes.

Attribute Name Description

Type Name of the operation as it appears in the functional
basis, e.g. ‘connect’, ‘increment’

Description Description of the operation as provided in the func-
tional basis, e.g. ‘Increment: To enlarge a flow in a
predetermined and fixed manner’ [20]

Syntax Brief, structured description of the operation. For ex-
ample ‘connect flowA to flowB’ or ‘increment flowA’

Inputs Descriptions of the valid inputs for the operation: min-
imum and maximum number, and type of flows.

Outputs Descriptions of the valid outputs for the operation:
minimum and maximum number, and type of flows.

Constraints Additional constraints imposed on input and output
flows such as being of the same type or possessing
a common parent.

Parent Operation immediately higher in the hierarchy.

Children Operations immediately lower in the hierarchy.

their validity connections are required as well as a more specialized type of ports

referred to as internal ports.

Internal Ports

Internal ports are those ports that can be connected to child elements of the

element containing the port. As a consequence, internal ports only exist in non-

leaf elements — those who have children. Internal ports have two connections,

an external connection like the one in common ports, and an internal connection

to handle links with children of the element. An example of components with

internal ports is presented in Figure 4.6, where both EPS and FCS possess this

kind of ports.

The class InternalPort is used to model internal ports, it extends the class

Port with the attribute presented in Table 4.9. There are three additional rules
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that all port connections must adhere to when considering combined hierarchical

and flow relations:

1. An internal port can be connected internally only to ports belonging to a

child of the element that contains the port.

2. A port (including internal ones) can only be connected externally to another

port that belongs to an element at the same hierarchical level or to the par-

ent of the element that contains the port (following the first set of rules in

any case).

3. Internal connections are always either from an input port to another input

port and from parent to children, or from an output port to another output

port and from children to parent (following basic rules 1 and 2).

Table 4.9: Description of InternalPort attributes.

Attribute Name Description

InternalConnection Object representing the connection that provides flow
to or receives flow from the port. The port at the other
end of the connection belongs to any of the element’s
children.

Links Spanning Multiple Connections

In the case of internal ports, any link with any of its ends in an internal port can be

extended by including links from the other connection (internal or external) of the

internal port. This is the fact motivating the existence of the PathPorts attribute

of class Link, which can be used to trace the flow path from one port to another

through various internal ports. Figure 4.6 shows a link from an output port of

Generator to an input port of Actuator, passing through two additional internal

ports belonging to their respective parents, EPS and FCS.
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EPS (Parent) FCS (Parent)

Generator (Child) Actuator (Child)

1

2

3

Figure 4.6: Example of a link spanning multiple connections

4.4 Views of the architecture

4.4.1 Requirements View

The first view that is analysed in detail is the Requirements View, whose principal

element is the requirement. An example of a requirements view is shown in Fig-

ure 4.7. Three kinds of requirements are considered: functional, performance and

safety requirements. Functional and performance requirements are those directly

transformed from the stakeholders’ needs [14]. Their main difference is that per-

formance requirements need to be satisfied by obtaining a particular parameter

value from the computational analysis within an acceptable range, whereas func-

tional requirements are satisfied by the creation of a function and subsequent

fulfilment of such function by one or more solutions. Safety requirements gen-

erally originate from the fact that the main stakeholders’ needs (e.g. transport

passengers and cargo in the case of aircraft) must be fulfilled safely (as required

by law or regulations).

The base class for all requirements is the Requirement class. Requirements

are represented respectively by classes FunctionalRequirement, Performance-

Requirement and SafetyRequirement. The class diagram for requirements is

presented in Figure 4.8 — it only includes inheritance relations as hierarchical

relations have already been explained in Section 4.3.2. Descriptions of the most
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Figure 4.7: Example of a requirements view (From [138])

relevant attributes are provided in Table 4.10.

Table 4.10: Description of requirement attributes.

Attribute Name Description

Description Description of the requirement, all details of the requirement
can be expressed using natural language. E.g. The system
shall provide conditioned fresh air for passengers.

HazardSeverity Classification of hazard severity according to values
provided in CS-25 [65, p. 2-F-49]

IsQualitative Indicates if the requirement needs to be demonstrated in a
qualitative or quantitative (probability of failure) manner

Functional Requirements

Functional requirements are those directly transformed from the stakeholders’

needs and that can be satisfied by the creation of a function and subsequent

fulfilment of such function by one or more solutions. This leads to the existence

of a one-to-many relationship between a functional requirement and the functions
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HierarchicalElement

Requirement

+Text : string

PerformanceRequirementFunctionalRequirement
SafetyRequirement

+HazardSeverity : Hazard-
Severity
+IsQualitative : bool

Figure 4.8: Class diagram for requirement classes inheritance hierarchy

derived from it. This relation is presented in more detail in Section 4.5.1.

Performance Requirements

Performance requirements are those that determine that to fulfil stakeholders’

needs, the value of a particular parameter from the computational analysis must

lay within an acceptable range. This translates into the one-to-many relationship

between a performance requirement and its respective parameter. This kind of

relation is stated in more detail in Section 4.5.2.

Safety Requirements

Safety requirements originate from the necessity of satisfying stakeholders’ needs

safely (as required by as required by law or regulations). Apart from the inherited

text member, safety attributes also contain information about whether they are

qualitative and their severity, which in the case of quantitative requirements will

determine the target for the probability of failure as specified in CS-25 [65, p.
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2-F-50].

4.4.2 Functional View

The second view to be analysed is the Functional View and its main element is

the function. Figure 4.9 displays an example of a functional view. Functions are

the actions that the system has to perform to meet the stakeholders’ needs [14].

Functions are expressed as a ‘verb-noun’ or similar combination following the

functional basis propose by Hirtz et al. [20]. Leaf functions — those that are not

further decomposed and situated at the bottom of the hierarchy — are created by

instantiation from function templates. The template provides information regard-

ing the operation performed by the function on the flow, and possible constraints

on the input and output flows. Functions complement the template information

with a brief description of the function within its context. Functions that are higher

in the hierarchy are composite functions, which are the result of functional aggreg-

ation. Determining the children of a function is generally done via direct functional

decomposition or iterative function-solution decomposition.

Figure 4.9: Example of a functional hierarchical view (From [138])

The base class for all functions is the Function class. The class diagram

for functions is presented in Figure 4.10 — it includes inheritance relations and

aggregation relations other than hierarchical and flow relations that have already

been explained in Sections 4.3.2 and 4.3.1. Descriptions of the most relevant

attributes are provided in Table 4.11. There are two kinds of functions classes:

Functions

Functions are instantiated from templates created according to functional inform-

ation described in the functional basis terminology [20]. These functions repres-
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FlowElement

Function
+Description : string
+FunctionTemplate : FunctionTemplate

CompositeFunction FunctionTemplate

Operation

+Type : string
+Description : string
+Syntax : string
+Inputs : BoundaryFlowDescription
+Outputs : BoundaryFlowDescription
+Constraints : BoundaryFlowDescription

Figure 4.10: Class diagram for Function class
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ent the leaf elements of the functional hierarchy. The ports of objects of the class

Function only possess external connections.

Composite functions

Composite functions are created by composition of other functions (leaf or com-

posite). This kind of functions are represented by objects of the class Compos-

iteFunction and their ports have both internal and external connections.

Table 4.11: Description of function attributes.

Attribute Name Description

Description Description of the function within its context using natural
language. E.g. ‘Compress ram air for air conditioning pack’

Template Object used as a prototype to instantiate Function objects.
More detailed information is available in Section 4.6.2

4.4.3 Logical View

Since the physical view is out of the scope of this research, the third and last

view presented here is the Logical View. The central element of this view is

the solution. An example of a logical view is shown in Figure 4.11. Solutions

represent the physical elements (such as parts, components or subsystems) that

perform (fulfill) the required functions. [14].

Similar to functions, leaf solutions are created by instantiation from solution

templates. The template provides the information regarding the input and output

flows of the component, computational behavioural models and their parameters

or safety characteristics such as the probability of failure. Solutions complement

the template information with a brief description of the solution within the architec-

ture and are allowed to override the default values for their parameters to adapt to

their context. The rest of the solutions — those that are situated higher in the hier-
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Figure 4.11: Example of a logical flow view (From [138])

archy and generally represent subsystems — are the result of the aggregation of

several solutions. A third, novel kind of solution is proposed: the controller solu-

tion. Controller solutions represent controllers in the sense of STPA and enable

automation of significant parts of the hazard assessment process as explained in

Section 5.2.

The base class for all solutions is the Solution class. The class diagram for

solutions is presented in Figure 4.12 — it only includes inheritance relations and

aggregation relations other than hierarchical and flow relations that have already

been explained in Sections 4.3.2 and 4.3.1. Descriptions of the most relevant

attributes are provided in Table 4.12. There are three kinds of solution classes:

solutions, composite solutions and controller solutions.

Solutions

Solutions are instantiated from templates containing behavioural models and their

respective parameters. These functions represent the leaf elements of the logical

hierarchy. The ports of objects of the class Solution only possess external con-

nections.

138



4.4. Views of the architecture

FlowElement

Solution
+Description : string
+SolutionTemplate : SolutionTemplate
+Description : string
+Models : Model[ ]
+Parameters : Data[ ]
+FailureProbability : double

CompositeSolution

ControllerSolution

SolutionTemplate

+Name : string
+Description : string
+Models : Model[ ]
+Parameters : Data[ ]
+FailureProbability :
double

Figure 4.12: Class diagram for Solution class
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Composite solutions

Composite functions are created by composition of other solution (leaf or compos-

ite). This kind of functions are represented by objects of the class CompositeS-

olution and their ports have both internal and external connections. Composite

solutions have models and parameters representing aggregated magnitudes from

their children solutions.

Controller solutions

Controller solutions are a special kind of solutions that have the role of a controller

according to STPA hazard analysis. The class ControllerSolution is responsible

to represent this kind of solutions.

Table 4.12: Description of solution attributes.

Attribute Name Description

Description Description of the solution within its context using nat-
ural language. E.g. ‘Primary Heat Exchanger in the Air
Condition Pack’

Template Object used as a prototype to instantiate Solution ob-
jects. More detailed information is available in Sec-
tion 4.6.3

Models Models represent the computational code (mathemat-
ical equations) for predicting the solutions’ behaviour
or performance characteristics [14]. Each model calcu-
lates one or more outputs using the given quantities of
one or more inputs — which are given by the paramet-
ers of the solution or quantities describing its flows. For
example, a model for a resistor might employ Ohm’s
law V = IR, which uses parameters V , I and R

Parameters Parameters represent engineering quantities that de-
scribe some characteristics of solutions’ computational
models. In the previous example, R is the component
parameter describing the resistor.

Probability of failure Probability of the component failing during the relevant
timespan used in quantitative fault tree analysis.
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4.5 Relations among Views

This chapter so far has focused on the relations amongst elements of the same

kind and within a particular view. This section describes the relations between

element that belong to different views and the objects required to model such

relations.

4.5.1 Requirement-Function Relations

Function Satisfies Requirement

A relation of the kind ‘Function satisfies requirement’ specifies the mapping from

a functional requirement to be satisfied. For example, the function ‘Provide fresh

air’ could be mapped to the requirement ‘Each passenger compartment must

be supplied with enough fresh air’ as it satisfies such requirement. Unlike other

inter-view relations, no details beyond the requirement and functional involved are

required to describe this relation. As a result, no additional class is proposed to

model this kind of relation.

4.5.2 Requirement-Solution Relations

Solution Satisfies Requirement

A relation of the kind ‘Solution satisfies requirement’ represents the mapping

from a performance requirement to a parameter belonging to a solution or any

of its ports. To satisfy the requirement, the parameter value must lay within pre-

specified bounds. For instance, the parameter ‘Air flow’ of the ECS could be

mapped to the performance requirement ‘Fresh air flow shall be not less than

0.28m3/min’, as that is the parameter that will determine if such requirement is

met. This kind of relation is modelled through the RequirementSolutionRelation

class, whose salient attributes are described in Table 4.13.
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Table 4.13: Description of RequirementSolutionRelation attributes.

Attribute Name Description

Requirement Requirement to be satisfied

Solution Solution providing the performance value to satisfy the re-
quirement

Parameter Parameter belonging to the solution or any of its ports, and
minimum and maximum acceptable values for the require-
ment to be satisfied

4.5.3 Function-Solution Relations

The same classes used for function-solution relations in this thesis are used

to model both the ‘Function-to-solution’ and ‘Solution-to-function’ relations de-

scribed by Guenov et al. [14], as these relations are bidirectional.

Solution fulfils function

This relation and its respective class SolutionFulfillsFunctionRelation cover the

cases when a component or a group of components satisfy a function. For ex-

ample, the solution ‘Ram air inlet’ can be used to satisfy the function ‘Import air’,

which can be reflected by a relation of the kind solution fulfils function. The main

class attributes are presented in Table 4.14

Table 4.14: Description of SolutionFulfillsFunctionRelation attributes.

Attribute Name Description

Function Function to be fulfilled

Solution Solution that provides the function

PortMappings Pairs of solution ports and functional ports (SolutionPort,
FunctionalPort) indicating which port that belongs to the
solution corresponds to a particular port of the function,
which is described as an operation on a flow that enters
and exit through functional ports.
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Solution derives function

Solution derives function relations, which are modelled by the class SolutionDe-

rivesFunctionRelation represent the cases when using a new component res-

ults in a new function becoming necessary to ensure the proper working of the

solution. For example, the solution ‘Electric actuator’ might derive the function

‘Provide electric power’, which can be modelled by a relation of the kind solution

derives function. The attributes of SolutionDerivesFunctionRelation are presen-

ted in Table 4.15

Table 4.15: Description of SolutionDerivesFunctionRelation attributes.

Attribute Name Description

Solution Solution that induces the function

Function Function induced by the solution

PortMappings Pairs of solution ports and functional ports (SolutionPort,
FunctionalPort) indicating which logical flow, needed by the
component through one of its ports, correspond to which
functional flow in the functional description.

Function to solution relations and the classes used to support them provide

the foundation to model the architecting process known as ‘Functional-logical zig-

zagging’ [14].

4.6 Templates Libraries

As seen in Section 4.4, leaf functions and solutions are created with the help of

function and solutions templates. The use of templates helps to maintain con-

sistency in the architecture, as every element of a particular kind is created with

the same attributes. The individual functions and solutions can be adapted to

the particular context in which they are instantiated by providing values for their

additional attributes or overriding template values when appropriate.
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Another benefit of templates is that they encapsulate the functional and lo-

gical information that is common to every element of the same type, and that is

independent of the context of a particular element. This enables the reuse of

this encapsulated knowledge, potentially saving time when creating new archi-

tectures. Templates are stored in libraries where they can be accessed when

needed.

4.6.1 Libraries

Libraries are collections of template or functional basis elements that can be ac-

cessed by using a key. Keys consists of one or more segments joined by a dot

(.). The last segment represents the type of the template element. The rest of

the segments are used for classifying the different items (similar to a folder struc-

ture in a computer’s file system) or differentiating elements of the same type but

implemented differently.

For instance, the key ‘Aircraft.Pneumatic.Compressor’, might be used to store

a compressor template that has been created to be used in aircraft system ar-

chitectures and works with pneumatic flows. It is important to understand that

the keys used to describe an object do not limit the capabilities of the compon-

ents, but their characteristics do. The ability of ‘Aircraft.Pneumatic.Compressor’

to work with pneumatic flows depends on the type of ports used not on its name.

The compressor might also be valid in architectures other than aircraft depending

on the computational models and the assumptions these models employ.

There are four libraries employed in this research:

• Flow Library: which store instances of every flow defined in the functional

basis [20].

• Operation Library: which store instances of every function defined in the

functional basis [20].
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• Function library: which contains every function template available to a par-

ticular architecting project. The templates can be reused in other projects.

• Solution library: which contains every solution template available to a par-

ticular architecting project. As with functions, the templates can be reused

in other projects.

4.6.2 Function Templates

Apart from the key attribute, common to all library elements, function templates

contain information regarding which flow ports required by the function and which

kind of changes, transformations or constraints are imposed on the flows passing

through those ports. The class representing function templates is the class Func-

tionTemplate. Table 4.16 describes its most relevant attributes.

Table 4.16: Description of FunctionTemplate attributes.

Attribute Name Description

Key String formed by one or more segments joined by a dot
(.) that uniquely identifies a template. The last segment
represents the type of the element

Description Description of the function template using natural lan-
guage. E.g. ‘Compress ram air’

InputPorts Ports through which an energy, material or signal flow
enters the template.

OutputPorts Ports through which an energy, material or signal flow
exits the template.

Operation Object representing changes, transformations or con-
straints imposed on the template’s functional flow. See
Section 4.3.2 for more information about operations.
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4.6.3 Solution Templates

Solution templates contain the information required to model the behaviour of

the physical component that the solution represents. This information comprises

input and output solution ports, behavioural computational models and their para-

meters. Additionally, safety-relevant information such as the probability of failure

is provided. The class representing solution templates is the class SolutionTem-

plate, whose salient attributes are presented in Table 4.17.

Table 4.17: Description of SolutionTemplate attributes.

Attribute Name Description

Key String formed by one or more segments joined by a dot
(.) that uniquely identifies a template. The last segment
represents the type of the element

Description Description of the solution template using natural lan-
guage. E.g. ‘Primary Heat Exchanger’

InputPorts Ports through which an energy, material or signal flow
enters the template.

OutputPorts Ports through which an energy, material or signal flow
exits the template.

Models Models represent the computational code (mathemat-
ical equations) for predicting the solutions’ behaviour
or performance characteristics [14]. Each model calcu-
lates one or more outputs using the given quantities of
one or more inputs — which are given by the paramet-
ers of the solution or quantities describing its flows. For
example, a model for a resistor might employ Ohm’s
law V = IR, which uses parameters V , I and R

Parameters Parameters represent engineering quantities that de-
scribe some characteristics of solutions’ computational
models. In the previous example, R is the component
parameter describing the resistor.

Probability of failure Probability of the component failing during the relevant
timespan used in quantitative fault tree analysis.
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4.7 Summary and Conclusions

This chapter introduced the changes made to the RFLP framework proposed by

Guenov et al. [14]. The changes are necessary to support the novel methods

developed in this research. First, the chapter presented the hierarchical and flow

relations, which are the most common relations within the RFLP views. These

relations are used for guiding the various traversals that are employed by the

methods presented in Chapter 5.

Then, the requirements, functional and logical views were presented along

with their main elements. The types of requirements, functions and solutions

utilised in this research were introduced. The objects for modelling inter-view

relations were also discussed. Similarly, this information is also employed by the

novel methods presented in this thesis.

The concept of templates applied to functions and solutions along with tem-

plate libraries were discussed last. Templates are a key mechanism for reusing

knowledge and ensure consistency between elements of the same kind. Tem-

plates are essential for the safety architecting enablers as these enablers create

new solutions.
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Chapter 5

Methodology II — Methods and

Algorithms

5.1 Introduction

In this chapter, presented is a set of enablers developed to overcome the limita-

tions of current methods stated in Chapter 3 and fulfil the objectives of this thesis

(see Section 1.3). The proposed methods use as a starting point the definition

of the architecture described according to the RFLP framework that is described

in Chapter 4. The presented methods make extensive use of graphs and graph

traversals, which are described in more detail in Section 2.4.

The chapter is divided into sections according to the methods. The objectives

and corresponding methods are as follows:

• Objective 1: accelerate hazard analysis and integrate it with system archi-

tecting processes. Methods to automate the creation process of the control

structures required for applying the STPA hazard analysis technique are

developed. The methods are presented in Section 5.2.

• Objective 2: facilitate the interactive introduction of safety principles. In-

teractive enablers to support the implementation of physical redundancy,
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functional redundancy and containment are introduced in Section 5.3.

• Objective 3: enable a faster assessment of the safety and performance

of architectures. Methods are created to automate the creation process of

fault trees and are presented in Section 5.4. Also, methods are developed

to automate substantial parts of the creation process of computational work-

flows used for sizing, which are introduced in Section 5.5.

Finally, the conclusions of this chapter are drawn in Section 5.6.

5.2 Methods to Support Hazard Assessment

This section describes two novel methods developed to support architects in the

architecture hazard assessment process. The aim of the methods is two provide

support for steps 2, 3 and 4 of the STPA hazard assessment process. The reader

is referred to Section 3.5.7 for more details about STPA analysis. The first method

focuses on using the information in the logical view to automatically elaborate

consistent hierarchical control structures, which are used to identify unsafe control

actions. The second method concentrates on the creation of more detailed control

loops to support the identification of loss scenarios.

5.2.1 Hierarchical Control Structure

The hierarchical control structure is a graph formed by controller nodes and a

process node at the bottom of the hierarchy. Each controller solution in the logical

view is mapped to a controller node, the rest of the solutions are lumped into the

process node. Starting from a controller κ the connections between its associated

node and other nodes are determined by applying the following rules:

1. Traverse the logical view of the architecture starting from a port p in control-

ler κ and including every component that can be reached by following flow
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links in the direction of the flow. The traversal through a particular link is

finished when a controller solution is found immediately after including the

controller. This forms the set of components ΣIκ
influenced by κ.

2. The controller solutions in ΣIκ
represent the set of controllers KIκ

influenced

by κ.

3. A link is formed in the hierarchical control structure between the nodes rep-

resenting κ and each controller κi in KIκ
, excluding the initial controller κ.

The type of the link is determined by comparing their position in the logical

hierarchy:

• If κ is higher than κi a link of type ‘ControlAction’ is added.

• If κ is lower than κi a link of type ‘Feedback’ is added.

• Otherwise, the link is of type ‘SameLevelInputOutput’.

The initial port in the traversal p is associated with the link.

4. If ΣIκ
\KIκ

̸= /0, which represent the case where non-controllers solutions are

directly controlled by κ, a link of type ‘ControlAction’ is added between the

node representing κ and the process node.

5. Traverse the logical view starting from p including every component that

can be reached by following flow links in the opposite direction to the flow.

The traversal through a particular link is finished when a controller solution

is found immediately after including the controller. This forms the set of

components ΣI′κ that influence κ.

6. The controller solutions in ΣI′κ represent the set controllers KI′κ that influence

κ.

7. A link is formed in the hierarchical control structure between the nodes rep-

resenting κ and each controller κi in KI′κ . The type of the link is determined
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by comparing their position in the logical hierarchy:

• If κi is higher than κ a link of type ‘ControlAction’ is added.

• If κi is lower than κ a link of type ‘Feedback’ is added.

• Otherwise, the link is of type ‘SameLevelInputOutput’.

The initial port in the traversal p is associated with the link.

8. If ΣI′κ \K′Iκ
̸= /0, then a link of type ‘Feedback’ is added between the node

representing κ and the process node.

9. Repeat steps 1–8 for the rest of the ports in κ.

(a) Logical view

Wheel

Hydraulics

Controller

Crew

Brake
Subsystem

(b) Control Hierarchy

Process

Controller

Crew

Figure 5.1: Example of the creation of a hierarchical control model

Figure 5.1 shows a simple example of a hierarchical control structure that is

automatically created from the logical view of the system. Subfigure 5.1a displays

the logical view of the system, which consist of a wheel brake subsystem. The

hydraulic system that provides the power to the brake can be controlled either

directly by the crew or via a controller. Both the controller and the hydraulics are

152



5.2. Methods to Support Hazard Assessment

defined as children of the brake subsystem composite solution. Subfigure 5.1b

shows the resulting control hierarchy. The hierarchy is composed of the con-

trollers (solutions highlighted in blue) and a process node where the rest of the

solutions are lumped. Since the controller is lower than the crew in the hierarchy

of solution, this node is also situated lower in the control hierarchy.

5.2.2 Detailed Control Loops

Creating a detailed control loop requires identifying four sets of components: a

controller κ, actuators ΣAκ
, sensors ΣSκ

and process solutions ΣPκ
. The developed

method can automatically identify actuators, sensors and process solutions given

a controller. The process, which is somewhat similar to the one in Section 5.2.1,

is as follows:

1. Traverse the logical view starting from controller κ and including every solu-

tion that can be reached by following flow links in the direction of the flow.

This forms the set of components ΣIκ
influenced by κ.

2. The set of solutions in ΣIκ
with a direct flow link from κ corresponds to ΣAκ

.

3. Traverse the logical view starting from controller κ and including every solu-

tion that can be reached by following flow links in the opposite direction to

the flow. This forms the set of components ΣI′κ that influence κ.

4. The set of solutions in ΣI′κ with a direct flow link to κ corresponds to ΣSκ
.

5. Finally, use the following equation to obtain the set of process solutions

ΣPκ
= (ΣIκ

∩ΣI′κ )\ (ΣAκ
∪ΣSκ

∪κ)
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The union of the four sets form the set of components in the loop

ΣLκ
= ΣIκ

∩ΣI′κ = ΣPκ
∪ΣAκ

∪ΣSκ
∪κ

The user can also provide different values for ΣAκ
and ΣSκ

, which will over-

ride the values obtained automatically taking components from ΣPκ
as required.

After the sets are identified, the method will classify the links among the various

items in the control loop according to the generic control loop provided in the

STPA handbook [92]. The criteria employed for this classification is presented in

Table 5.1. The method helps to produce the information required by STPA’s Step

4 Identify Loss Scenarios with little input from the architect (only the controller

κ) and ensuring consistency with the architecture definition (solutions and their

hierarchical and flow relations are described in the logical view).

Figure 5.2 shows a simple example of how a detailed control loop is created

from the logical view of a wheel braking systems. Subfigure 5.2a displays the

logical view of the system. The brake hydraulics are controlled by the control-

ler, which is commanded by the crew and receives feedback from a sensor that

measures the status of the wheel. Subfigure 5.2b presents the resulting STPA

control loop corresponding to the solution labelled as ‘Controller’. All solutions

are classified according to their role in the control loop. ΣIκ
is composed of the

hydraulics, the wheel, the sensor and the controller. ΣAκ
contains the hydraulics

as they are the only component in ΣIκ
with a direct link from κ. ΣI′κ is composed of

the crew, the sensor, the wheel, the hydraulics and the controller. ΣSκ
contains the

sensor as it is the only component in ΣI′κ with a direct link to κ. ΣPκ
corresponds to

the wheel. The crew, which does not belong to the loop, is included in the figure

as a direct influence on the controller.
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(a) Logical view

Wheel Sensor

Hydraulics

Controller

Crew

(b) Detailed Control Loop

Wheel

Hydraulics Sensor

Controller

Crew

PROCESS SOLUTIONS

ACTUATORS SENSORS

CONTROLLER

Figure 5.2: Example of the creation of a detailed control loop

5.3 Architecting Enablers for Safety Principles

This section describes three novel enablers developed to help architects to im-

plement safety principles interactively into architectures. The enablers provide

support to make architectures safer by introducing physical redundancy, func-

tional redundancy and containment. The support is focused on the creation of

new solutions and their connection with other solutions and elements from other

views. Other considerations that might be relevant to the implementation of safety

principles, such as the impact on mass, cost, volume or the probability of failure,

are not considered directly by the enablers. However, these impacts can be de-

termined by using the rest of the enablers presented in this chapter.
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5.3.1 Physical Redundancy Enabler

The architecting enabler for physical redundancy helps the architect to increase

the redundancy of the architecture by duplicating a part of the architecture one or

more times. Figure 5.3 shows a conceptual example of an application of physical

redundancy. Subfigure 5.3a show the original logical view and Subfigure 5.3b

shows the result of duplicating the blue and orange components once.

(a) Before redundancy

(b) After redundancy

Figure 5.3: Example of physical redundancy

The enabler consists of several parts that are executed according to the logic

presented in the flowchart in Figure 5.4. First, the extension of the redundant leg

— which components will be replicated — is calculated by traversing the logical

view of the architecture according to a set of default traversal rules and the user is

facilitated with a preview of the components. Then, the architect can define new

rules or override the default ones to increase or decrease the extension of the

redundancy. After every update to the rules, the extension is recalculated and the

preview is updated. When the architect is finished adding rules, the correctness of

the rules is checked. If results are satisfactory, the desired number of redundant

legs is created. Otherwise, the user is asked to further update the rules until no

problems are detected.
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Figure 5.4: Flowchart for physical redundancy architecting enabler
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Traversal Rules

Traversal rules help to determine the extension of the redundancy and achieve

consistency with existing parts of the architecture. Rules are created both auto-

matically by the enabler and manually by the architect. Rules have options that

modify how the algorithms interpret them. Table 5.2 summarise all available tra-

versal rules and their options. The default behaviour is to include components

that provide flow to those already in the redundant leg and exclude the rest. If

existing redundancy is found, it is up to the architect to decide whether to include

it.

Table 5.2: Traversal rules used by the physical redundancy enabler.

Rule Type Options

ExistingRedundancyRule Include: includes existing redundancy (which be-
comes even more redundant).

Merge: merges with existing redundancy (which
remains as it is).

Undefined: no option has been selected, it re-
quires the architect to decide whether to include
or merge.

BoundaryOutputRule Stop: stop traversal through the port.

Continue: do not stop traversal through the port.

AutoContinue: same as Continue but automatic-
ally determined by the enabler.

UserDefinedStopRule Stop: stop traversal through the port.

AutoStop: same as Stop but automatically de-
termined by the enabler.
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Compute the Extension of the Redundant Leg

The extension of the redundancy is computed by traversing the logical view of

the architecture starting from the initial solution, which is the input to the enabler.

At each step, the traversal focuses on a component σ and determines the set of

logical components to be analysed in subsequent steps. The set includes every

component connected to σ through a valid link. Links from other components to

σ are valid only if the ports at both ends of the link meet the following conditions.

The FromPort in the link is valid if either:

1. Do not have a rule associated with it.

2. The rule is of type ‘ExistingRedundancyRule’ and the architect has selected

the option to include the existing redundancy.

3. Or the rule is of type ‘BoundaryOutputRule’.

The ToPort in the link is valid if either:

1. Do not have a rule associated with it.

2. The rule is of type ‘ExistingRedundancyRule’ and the architect has selected

the option to include the existing redundancy or the option is undefined.

3. Or the rule is of type ‘BoundaryOutputRule’.

Links to other components from σ are valid only if ports at both ends of the

link:

1. Do not have a rule associated with them.

2. The rule is of type ‘ExistingRedundancyRule’ and the architect has selected

the option to include the existing redundancy.

3. The rule is of type ‘BoundaryOutputRule’ and the architect has selected the

option to continue through such port.
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Default rules for including or excluding components are created by visiting in

preorder — before the next elements of the traversal are determined — the logical

components. Rules are created by use of the logic below:

1. For all ports, a rule of type ‘ExistingRedundancyRule’ with option ‘Undefined’

is created if the port’s connection represents existing redundancy.

2. For output ports, where the rule above is not applicable, a ‘BoundaryOutpu-

tRule’ with option ‘Stop’ is created.

A second traversal, following the same rules as the first one is done to identify

the links whose both ends belong to components included in the redundant leg

during the first traversal. If the starting end of the link has a ‘UserDefinedSto-

pRule’ with option ‘Stop’ — created during the first traversal — the option is set to

‘AutoContinue’ as such port does not belong to the boundary between included

components and the rest of the architecture.

Update Rules for Computing the Extension

The user is allowed to modify existing rules: decide whether to include existing

redundancy and to continue through outputs on the boundary. Additionally, archi-

tects can create (and remove) rules of type ‘UserDefinedStopRule’ to exclude (or

stop excluding) components added to the redundant leg by default. ‘UserDefined-

StopRule’ can be applied to solutions, ports and connections. When applied to a

solution or connection, an additional ‘UserDefinedStopRule’ with ‘Stop’ option is

added to each of their ports.

Create Redundant Legs

To create redundant legs, the architect is asked to provide the desired number of

new legs to be created and the creation procedure is repeated once for every leg.

First, for all solution σ in the leg:
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1. A new solution σ ′ of the same kind of σ is created.

2. The hierarchical relations of σ are applied to σ ′

3. The functional-logical relations of σ are applied to σ ′

Then, for every solution σ in the leg:

1. The flow relations between σ and other solutions included in the redundant

leg are applied to σ ′ and the respective solutions in the new leg.

2. The flow relations between σ and other solutions not included in the re-

dundant leg (crossing the boundary) are applied to σ ′ connecting it to the

pre-existing parts of the architecture.

5.3.2 Functional Redundancy Enabler

The architecting enabler for functional redundancy helps the architect to increase

the redundancy of the architecture by adding one or more components that can

perform one of the already fulfilled functions in the architecture in a dissimilar

manner. Figure 5.5 shows a conceptual example of an application of functional

redundancy. Subfigure 5.5a show the original logical view and Subfigure 5.5b

shows the result of fulfilling the function ϕP, provided by the original blue compon-

ent, by adding a different kind of component. The turquoise component although

different from the original one is also able to provide ϕP. In turn, this component

induces function ϕI, which is fulfilled by the orange component. Similarly, this

component derives function ϕ ′I, which is provided by the green component, which

does not require any additional function to be fulfilled.

It consists of a series of processes that are executed repeatedly until all func-

tions — the original function plus any induced by the new components — are

fulfilled as the flowchart in Figure 5.6 illustrates.
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(a) Before redundancy

(b) After redundancy

Figure 5.5: Example of physical redundancy

Figure 5.6: Flowchart for functional redundancy architecting enabler
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First, a function is selected and then, solutions from the architecture and re-

dundant leg, and solution templates from the library are compared and sorted

according to their ability to fulfil the function. The results are displayed as lists to

the users so they can decide which solution or template to use. Upon selection of

the desired element, if not already present, the solution is added to the preview

of the redundant leg. When a solution from the library is added to the leg, any

derived function is added to the set of functions to be fulfilled. When all functions

in the set are fulfilled, the new redundant leg is added to the architecture.

Determine Function-Solution Similarity

The similarity between a function φ to be fulfilled and a solution σ or solution tem-

plate στ is determined by comparing the functional definition of φ with those of the

functions that are fulfilled by σ or that can be potentially fulfilled by instantiating

στ — according to the knowledge from the solution library. The comparison is

done in terms of operation O and flow F (see Section 2.3.1 and Section 4.3.2 for

more details about operations and flows).

The operation Oφ obtained from function φ is compared to another operation

Oσ obtained from a solution σ or solution template στ . The comparison yields

one out of three possible results: both operations are the same, they are related

in the operation hierarchy (ancestor-descendant relation), or they are unrelated.

The flow Fφ is compared to another flow Fσ , and one out of three results is ob-

tained: both flows are the same, they are related in the flow hierarchy (ancestor-

descendant relation), or they are unrelated. The results are combined to provide

the overall metric of Function-SolutionsSimilarity as described in Table 5.3. Based

on these results, three ordered lists are created: one with solutions already ad-

ded to the leg, one with solutions already existing in the architecture and the

other with templates from the solution library. The list groups the solutions by

their comparison result and the groups are ordered as follows:
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1. SameOpSameFlow: solutions with the higher degree of similarity are dis-

played first.

2. SameOpRelatedFlow: presents a high degree of similarity and, despite

flows not being exactly the same, the solution is likely to be able to fulfil

the function.

3. RelatedOpSameFlow: presents a lower degree of similarity and, whilst op-

erations are related, the solution might still be able to fulfil the function.

4. RelatedOpRelatedFlow: the solution presents an even lower degree of sim-

ilarity and therefore a lower probability of being able to fulfil the function.

5. NoOpSameFlow: although the same flow is used, the degree of similarity is

low and the solution is unlikely to be able to fulfil the function.

6. NoOpRelatedFlow: similar to the case before but with a lower similarity

between flows and a lower probability of function fulfilment.

7. Unrelated: the solution cannot provide the function and its excluded from

the list.

The lower levels of the list are unlikely to be able to produce results, but they

might be able to inspire the architect to find new solutions to include in the library

or develop new solutions from the existing solutions that already present some

similarity.

Operation comparison is done in terms of the operation types and their relative

position in the operations hierarchy. Operation is an element-level attribute (there

is only only one per element). Flow comparison is done in term of ports, ports’

flow types and their relative position in the operations hierarchy. Flow is a port-

level attribute (there is only one per port but many per element), which makes the

comparison of flows a more complex process. To evaluate whether a solution can
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Table 5.3: Table Function-Solution Similarity

Fφ and Fσ → Unrelated Related Equal

Oφ and Oσ ↓

Unrelated Unrelated NoOpSameFlow NoOpRelatedFlow

Related Unrelated RelatedOpRelatedFlow RelatedOpSameFlow

Equal Unrelated SameOpRelatedFlow SameOpSameFlow

fulfil a function in terms of flow compatibility, all ports in the function definition must

be matched to a port in the solution. Ports can only be matched to ports with equal

(or related) flow and no port can be matched twice. This represents a maximum

matching problem that can be solved by using the Hopcroft-Karp algorithm [149].

Bipartite graphs are created by adding to one set all function ports and to the

other set all logical ports. Edges from ports from one set to ports from the other

set exist only if their flows are equal (or related). If a maximum matching is found

then Fφ and Fσ are said to be Equal in the case where edges represent equal

flows, Related when edges represent related flows and Unrelated otherwise. The

maximum matching is stored to be reused when the redundant branch is created

during the last process of the enabler.

Function
i1, f

i2, f

o1, f
Solution

i1,s

i2,s

i3,s

o1,s

o2,s

i1, f

i2, f

o1, f

i1,s

i2,s

i3,s

o1,s

o2,s

Figure 5.7: Example of a graph for flow matching

Figure 5.7 illustrate how the flow comparison is converted to a maximum
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matching problem. The function has two inputs i1, f and i2, f and one output o1, f

of the same type (blue). The solution has an input i1,s of a second type (red) and

an output o1,s of a third type (green). The rest of the ports in the solution i2,s, i3,s

and o2,s are of the same type as the functional ports. The bipartite graph contains

the ports from the function in one set and the ports from the solution in the other

set. Links are created only between ports of the same type, or related when an

exact match cannot be found. A possible match is represented in the figure by

highlighting in blue the links that connect the matched ports.

Connect Components using Functional-Logical Relations

When a solution σF is added to the leg — with the purpose of fulfilling function φ —

it is necessary to connect σF to those solutions already present in the redundant

leg. This is done by combining the maximum matching that relates φ and σF with

the SolutionDerivesFunctionRelation object that relates the φ to the solution in the

leg σD that derived function φ . This three-element functional-logical zigzagging

(σD⇒ φ 7→ σF ) is used to map (and therefore connect) ports in σD to ports in σF .

Obtention of Derived Functions

When a solution is selected from the library, the functions it derives need to be

taken into account to complete the redundant leg preview first, and then to create

it in the architecture. The enabler then collects all functions from the derived

function mappings related to the template in the solution library. If any of the input

ports of the new solution is not covered by any of the mappings, a new mapping

is added to the collection. The new mapping relates the input port of the solution

to the output port of a new function of type ‘Import ⟨flow-type⟩’. For example, if an

input port with flow of type ‘air’ is not covered, then a mapping between that port

and the output port of function ‘Import air’ would be created.
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Create Redundant Legs

After every function is fulfilled, the enabler then creates the new redundant leg.

First, all solutions in the preview leg that are not already present in the archi-

tecture are created and added to the logical view. A hierarchical link is created

between these solutions and the parent component σI of the component that

performs the initial function provided to the enabler. Then, functions that were

derived while using the enabler are created and added to the functional view.

Similarly, hierarchical links are created between these functions and the parent of

the first function. Later, functions and solution are linked according to the zigzag-

ging relations (σD⇒ φ 7→ σF ) as explained earlier in this section. Finally, logical

flow links are created between solutions in the leg according to the zigzag, and

between the leg and σI.

5.3.3 Containment Enabler

The architecting enabler for containment helps the architect to study the propaga-

tion of disturbances, which originate from one or more solutions (disturbance

sources), and potentially affect one or more susceptible solutions (disturbance

sinks). Figure 5.8 shows a conceptual example of an application of containment.

Subfigure 5.8a show the original logical view and Subfigure 5.8b shows the result

of adding two barriers (two red lines crossing a link) to protect the component that

needs protection (highlighted in blue) from the disturbances originated from the

component highlighted in red.

The enabler can create and analyze the effects of including barriers — any

solution that can stop the propagation of a disturbance. Examples of barriers are

valves for hydraulic and pneumatic flows and circuit breakers for electrical flows.

The best location for barriers can be determined manually or automatically by us-

ing a min-cut algorithm. After the location of barriers is decided and the resulting
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(a) Before containment

(b) After containment

Figure 5.8: Example of containment

containment is deemed satisfactory, the enabler instantiates the barriers in the

architecture and connects them to other components. This process is presented

in the flowchart in Figure 5.9.

Propagation Algorithm

The propagation algorithm traverses the graph via the flow links defined in the

logical views. The propagation can be done flow-wise to obtain affected compon-

ents from a particular source, or counter flow-wise to obtain components with the

potential to affect a particular flow. Modelling of propagation within components

(from input to output ports) can be done with varying level of detail:

• Every input port propagates to every output port: this is the simplest way

and does not require additional information, although the results might be

conservative as some input-output combination might not propagate dis-
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Figure 5.9: Flowchart for physical redundancy architecting enabler
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turbances.

• Every input propagates only to a subset of or to all output ports: this method

requires such information to be defined (e.g. in the solution template). It

can provide more accurate result but requires more effort. Nonetheless,

propagation information is reusable ant the extra effort is likely to be amort-

ized when the same template is used in several architectures.

Both levels of detail can coexist in a single traversal. Barriers are components

that stop propagation, which is modelled by disabling propagation from some

input to some output ports of the component. Therefore any link with an end in

any of the ports with disabled propagation keeps the traversal from continuing

through that link.

Automatic placement of Barriers. Minimum Cut Algorithm

The automatic placement of barriers is enabled by the automated application of a

minimum cut set algorithm (see Section 2.4.3) to a graph that models the disturb-

ance of propagation according to the rules provided in the section above. The first

step consists in building such a graph. Then, the algorithm is run in the second

step. During a third and final step, the results from the algorithm are analysed to

determine the best location of the barriers.

The propagation flow graph is formed by vertices, which represent logical

ports, and connections, and edges, which represent the links that can propag-

ate disturbances — both between ports and internal to the components. The set

of solutions whose ports will be added to the graph is formed by the disturbance

sources, the susceptible sinks, and any other solution that can be affected by a

disturbance that originates in any of the sources and can also affect at least one

sink.

Edges between those vertices that represent the ports that belong to a partic-
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(a) Logical view of the system
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Figure 5.10: Example of the creation of the propagation flow graph

ular component are created according to the rules provided regarding the level of

detail in the previous section. When a link exists in the logical view between ports

that belong to two different components — excluding barrier ports, an edge is cre-

ated in the graph between the vertices that correspond to the logical ports. Since

the min-cut algorithm requires the graph to have a single source and a single sink,

a dummy source vertex is created and connected to all vertices that represent in-

put ports in source components. Similarly, a dummy sink vertex is created and

connected to vertices that represent output ports in sink components.

Figure 5.10 illustrates the creation of the flow graph required for solving the

minimum cut problem. The graph is automatically created from the logical view of

the architecture. Disturbance sources are highlighted in red, and components that

are susceptible to disturbances are highlighted in green. The vertices whose text

is blue correspond to the ports in the logical view. The vertices whose text is green

represent the connections between components. The vertices s and t are the
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dummy source and dummy sink vertices respectively. The edges between blue

and green vertices are created according to the connection in the logical view.

The edges between blue vertices represent the links internal to the components

that can propagate disturbances. The rest of the edges are located between the

dummy source and the output ports of disturbance sources, or the input ports

of susceptible components and the dummy sink. Edges between blue vertices

or involving any of the dummy vertices are given an infinite weight to avoid that

the algorithm includes them in the minimal cut. The rest of the edges are given

a weight wi whose default value is one and that can be customised to express

preference on the placement of the barriers.

The algorithm will find the set of edges whose removal causes the sink to

become disconnected from the source and whose value is the minimum possible.

The value is calculated by summing the values given to any edge in the set. The

solution is not necessarily unique. To avoid spurious results, an infinite value is

automatically given to edges that do not represent a valid flow link where a barrier

can be placed. In particular, this includes links that are internal to the components

and links that involve dummy vertices. The rest of the edges are given by default

a value of one. This value can be overridden to simulate more expensive barrier

additions.

After running the algorithm the results are mapped back from the propagation

graph to the flow view and barriers are added to the preview in the locations

computed by the algorithm.

5.4 Fault Tree Analysis Support

This section describes a novel method developed to support the architect while

performing fault tree analyses (see Section 2.5 for more details). The method

enables the automatic creation of fault trees. The support is composed of two
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parts: a novel algorithm to create fault trees from the architecture definition, and

a way to analyse fault trees to obtain quantitative and qualitative results.

5.4.1 Fault Tree Creation Algorithm

The algorithm for creating the fault tree from the logical view presented here is

based on work already published by the author [138]. The version presented here

includes more detail about how subtrees are reused to avoid visiting components

more than once. Additionally, the notation has been updated to be consistent with

the object model presented in Chapter 4

The algorithm is based on two mutually recursive functions — the first function

calls the second function, which in turn calls the first one until either of them

reaches the base case when no call is made to the other function. The starting

point of the algorithm is the function CREATE-FAULT-TREE (Algorithm 1), which

is used to initialize the tree and the auxiliary data structures, namely the set of

parent components in the recursion tree and the set of visited components. After

initialisation, the function CREATE-TREE-RECURSIVE-COMPONENT is called with

the top event provided to the algorithm (an output of the component whose fault

is being analysed).

Function CREATE-TREE-RECURSIVE-COMPONENT (Algorithm 2) the first of the

two mutually recursive functions, creates the logical gate that models the failure

of a component (parent of the function’s input argument ‘output-port’). The gate

created is an OR gate whose inputs are the failure of the component itself and the

failures of each of the components inputs. Input failures are modelled by calling

CREATE-TREE-RECURSIVE-COMPONENT with each port as an input parameter.

Lines 2 to 4 of the function check whether the port has already been visited, and

returns the previously created subtree if that is the case. Line 5 obtains the parent

component of the port, and line 6 adds the component to the set of parents. Lines

7 to 11 get the gate inputs, which correspond to the solution’s input ports. Line
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Algorithm 1: Fault Tree creation
1 Function CREATE-FAULT-TREE(top-event)

Inputs : An output logical port representing the top event of the tree
(top-event).

Output: The fault tree corresponding to top-event

2 tree← ⟨ /0, /0⟩ // A fault tree is described by the tuple

T = ⟨E,G⟩, where E is the set of events (basic and

intermediate) and G is the set of gates

3 parents← /0 // Set of parent nodes in the tree, used to avoid

loops in the tree

4 visited← /0 // Set of nodes visited so far by the algorithm,

used to avoid visiting a node more than once

5 return CREATE-TREE-RECURSIVE-COMPONENT(top-event, tree, parents,
visited)

6 end

12 removes the component from the set of parents, and line 13 adds the port to

the set of visited elements so lines 2 to 5 will work as intended in future calls to

the functions. Finally, line 15 calls ADD-GATE and returns the fault (sub) tree.

Function CREATE-TREE-RECURSIVE-CONNECTION (Algorithm 3) the second of

the two mutually recursive functions, creates the logical gate that models the fail-

ure of a connection (the one connected to the function’s input argument ‘input-

port’). The type of gate created depends on the kind of redundancy that the

connection represents. If the connection represents redundant components, the

gate will be an AND gate, otherwise an OR gate. More complex gates (such

as k/N for voting systems where k correct inputs out of N are needed or SPARE

gates for modelling dynamic redundancy) could be considered if the necessary

information was included in the connections. Connection’s input failures are mod-

elled by calling CREATE-TREE-RECURSIVE-SOLUTION with each port as an input

parameter. As in the first function, lines 2 to 4 of the function check whether the

port has already been visited, and returns the previously created subtree if that is

the case. Line 5 gets the external connection of the port, and line 6 gets the type

of gate as described above. Lines 7 to 11 get the gate inputs that correspond
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Algorithm 2: Fault Tree creation recursive, component part
1 Function CREATE-TREE-RECURSIVE-COMPONENT(output-port, tree, parents,

visited)
Inputs : An output logical port representing the top event of the

sub-tree being created (output-port).
The fault tree being created (tree).
The set of parents in the tree (parents).
The set of nodes visited by the algorithm so far (visited).

Output: The fault tree corresponding to output-port

2 if output-port ∈ visited then
3 return GET-GATE(output-port);
4 end

5 component← output-port.parent
6 parents← parents ∪ component // The component will be a

parent in the subsequent recursive calls

7 gate-inputs← /0
8 for each input ∈ component.input-ports
9 gate-input← CREATE-TREE-RECURSIVE-CONNECTION(input, tree,

parents, visited)
10 gate-inputs← gate-inputs ∪ gate-input
11 end

12 parents← parents \ component // Recursive calls are finished,

so the component is not a parent anymore

13 visited← visited ∪ output-port // Mark as visited so it is not

visited again

14 return ADD-GATE(tree, output-port, component ∪ gate-inputs, OR))
// OR gate representing the failure of the component or any

of its inputs

15 end
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to the connection’s input ports. Only input ports whose parent does not belong

to the set of visited parents are considered in the loop. Also similar to the first

function line 13 adds the port to the set of visited elements so lines 2 to 5 can

work as intended. Finally, line 15 calls ADD-GATE and returns the fault (sub)

tree.

Algorithm 3: Fault Tree creation recursive, connection part
1 Function CREATE-TREE-RECURSIVE-CONNECTION(input-port, tree, parents,

visited)
Inputs : An input logical port representing the top event of the

sub-tree being created (input-port).
The fault tree being created (tree).
The set of parents in the tree (parents).
The set of nodes visited by the algorithm so far (visited).

Output: The fault tree corresponding to input-port

2 if input-port ∈ visited then
3 return GET-GATE(input-port);
4 end

5 connection← input-port.connection
6 gate-type← GET-GATE-TYPE(connection)

7 gate-inputs← /0
8 for each input ∈ GET-INPUTS(connection)
9 gate-input← CREATE-TREE-RECURSIVE-COMPONENT(input, tree,

parents, visited)
10 gate-inputs← gate-inputs ∪ gate-input
11 end

12 visited← visited ∪ input-port // Mark as visited so it is not

visited again

13 return ADD-GATE(tree, input-port, gate-inputs, gate-type)) // OR gate

representing the failure of the component or any of its

inputs

14 end

The actual creation of gates, which puts together the desired inputs, happens

during calls to function ADD-GATE (4). If there is only one input (lines 2 and 3),

the gate does not provide any additional information and therefore is skipped

to provide a more compact, easier to visualize view of the tree. Otherwise, the

algorithm will create the desired gate (lines 5 to 8) and append the gate to the tree
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(lines 9 to 11). Additionally, the gate is stored associated with the port (function’s

argument with name output) that is provided as input to either of the recursive

functions. This allows the reuse of the subtree that originates from the newly

created gate when the algorithm tries to revisit the port, which results in fewer

computations required and more compact trees.

Algorithm 4: Add gate to the Fault Tree
1 Function ADD-GATE(tree, output, inputs, type)

Inputs : The fault tree being created (tree).
A logical port representing the output of the gate (output).
The set of gate inputs (inputs).
The type of gate to be created (type).

Output: A gate with the specified type and inputs

2 if |inputs|= 1 then // Skip the current gate by returning its

only input

3 return inputs;
4 else
5 gate←{}
6 gate.type← type
7 gate.inputs← inputs
8 gate.output← output
9 ⟨E,G⟩ ← tree

10 E← E∪ output ∪ inputs
11 G← G∪ gate; tree← ⟨E,G⟩
12 SET-GATE(output, gate) // Map output to the newly created

gate so it can be recovered later by calling GET-GATE

using output as key

13 return output;
14 end
15 end

5.4.2 Fault Tree Qualitative and Quantitative Analysis

The algorithm for the qualitative evaluation of fault trees is based on the MOCUS

algorithm [150], which has been adapted to the data structures used in this re-

search. Qualitative evaluation provides the Minimal Cut Sets and Minimal Path

Sets of the tree. Quantitative evaluation of the fault tree is based on the inclusion-
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exclusion principle. The equations labelled as 11.1 in the Reliability Engineering

Handbook by Kececioglu [151, p. 236] are implemented to obtained quantitative

results. The combined analyses allow to obtain the probability of failure of the

top event, the relative importance of the various cut sets, and to rank the failures

of solutions according to their contribution to the overall fault condition according

to several importance measures such as Fussell-Vesley or Birnbaum importance

measures.

Figure 5.11 shows a simple example of the creation of a fault tree. The logical

view of the system is displayed in Subfigure 5.11a. Solution σ1 requires the inputs

from solutions σ2 and σ3. In turn, solution σ2 requires the input from either σ4 or

σ5, as these solutions are redundant. The resulting fault tree is presented in

Subfigure 5.11b. Failure of σ1 to receive adequate input is represented by the

node labelled ‘Failure σ1’. This failure is either provoked by the failure of σ3 or the

failure of σ2 to provide a valid output, which is modelled by the second ‘OR’ gate.

This output failure is the result of σ2 or both of the redundant solutions σ4 or σ5,

which is modelled by the ‘AND’ gate.
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(a) Logical view

Solution σ5

Solution σ4

Solution σ3

Solution σ2

Solution σ1

(b) Fault tree

Failure σ1
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OR Failure σ3

Failure σ2AND

Failure σ5Failure σ4

Figure 5.11: Example of the creation of a fault tree
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5.5 Architecture Sizing And Performance Support

This section describes a novel method developed to support architects while siz-

ing architectures and determining their performance. The method is built upon the

state-of-the-art RFLP sizing enablers developed by Bile [16] and Bile et al. [15].

The enabler creates a computational workflow (see Section 2.6) for each subsys-

tem. The workflow is then executed to determine the size of the system. However,

the existing enabler only considers one environmental condition to size the sys-

tem. In this thesis, this limitation is overcome by enabling the consideration of

more detailed information about the system context as well as various system

configurations.

The enhanced sizing process is described by the flowchart in Figure 5.12. The

grey part of the flowchart compiles all architecture configurations to be used to

created computational sizing workflows. Configurations can be motivated by the

use of safety principles such as redundancy, which leads to Failure Configurations

or by other design considerations, such as trying to optimise the system to varying

environmental conditions. Failure Configurations are those that consider that a

part of the system has failed, but thanks to existing redundancy the rest of the

system can provide its intended functions. This kind of configuration will ensure

that components are sized to account for the additional demand imposed on them

in such failure situations. An example of failure configuration is the one engine

failure scenario. Results from STPA hazard assessment or FTA (red part of the

flowchart) can help to establish relevant configurations. An example of design

configuration is the use of different air sources for avionics ventilation depending

on the flight phase and environmental conditions.

The next part of the process is to call the workflow creation method by Bile [16]

for each system and configuration. For a total number of subsystems NSS and

configurations NC, a naive approach to the problem yields a total number of calls
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Figure 5.12: Flowchart for the process of sizing architectures and obtaining their
performance
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NWC = NSS ·NC

to the workflow scheduling algorithm. This algorithm is one of the most ex-

pensive parts of the process, both in computational time and manual setup, so

minimising the number of calls is of great importance. A more careful observation

of the problem shows that, for a particular subsystem, only scenarios that affect

the subsystem in a different way lead to different workflows. This way, the number

of calls can be reduced to

N′WC =
NSS

∑
s=1

NCs

where NCs is the number of distinct configurations from the perspective of sub-

system s. The number N′WC can be considerably smaller than NWC when each

configuration s affect only a small number of subsystems and therefore NCs is

small compared to NC.

Figure 5.13 shows an example of a system with two subsystems and two dif-

ferent configurations. All components are active in the first configuration, which is

shown in Subfigure 5.13a. By contrast, the second configuration contains a failed

component in ‘Subsystem 1’, as displayed in Subfigure 5.13b. The naive ap-

proach would require computing NC = 4 workflows, two workflows per scenarios.

But using the proposed approach, it is identified that ‘Subsystem 2’ has the same

state in both configurations, which saves one workflow computation. Therefore,

the number of required workflows becomes NC = 3.

The next step in the workflow is to use mission information (blue part of the

flowchart) to determine the possible environmental conditions that the system

might encounter. After the sizing problem is formulated — inputs and outputs

of the workflow are determined as well as any attribute of the subsystem to be
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(a) Normal configuration

Subsystem 1

Subsystem 2

(b) Failure configuration

Subsystem 1

Subsystem 2

Figure 5.13: Scenarios and workflow creation

optimized — the workflow is executed with different values for the environmental

variables. The results from this process are then used to establish the most de-

manding condition and size the system accordingly. Finally, the results from each

sized subsystem can be aggregated up to the system level to obtain system-level

performance. The procedure can be repeated until the results are satisfactory.

5.5.1 Modelling of Contextual Information

The concept of Environment is proposed to model contextual information regard-

ing the different values that environmental variables adopt throughout the sys-

tem’s mission. The environment is composed of a computational workflow and a

default Environment Region that can be further divided into smaller regions. The

workflow is used to compute all dependent environment variables from a set of

independent variables provided by the regions. The regions can be linked to one

or more scenarios.
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And environment region is composed of a collection of environment variables

(such as altitude, temperature, velocity or pressure) and their upper and lower

bounds. Only values inside the bounds belong to the region. The shape of the

region can be refined further by using inequality constraints, which are computa-

tional models created from equations relating two or more environment variables.

The default region is the one with the largest extension and any other region

must be contained within it. Regions can override the default bounds to make

them smaller and provide alternative constraint models. Dividing the default en-

vironment into smaller regions not only makes it easier to define each region but

also allows the modelling of configurations that only apply to specific parts of the

mission (and therefore only to certain regions of the environment).

When sizing a subsystem, as explained in the section above, a workflow will

be created for each of the unique scenarios mapped to such subsystem. When

finding the maximum demanding condition, the value of the environment variables

required by the scenario’s workflow will be determined by running the environment

workflow. The input values to the environment’s workflow are drawn from the

environment regions that are linked to that scenarios.

5.5.2 Omnidirectional Connection Models

One of the most common problems that were encountered when applying the

workflow scheduling methods [16] was the existence of overdetermined connec-

tion models. This situation arises when the value of the various flow attributes at

both ends of the connection are provided by the component models correspond-

ing to models at both ends of the connection. To mitigate this problem, omni-

directional models are proposed, which introduce extra variables so the model

can be used in any direction. The benefits of this kind of models are twofold. Om-

nidirectional models allow architects to create workflows first and diagnose con-

flicts later when more information and better visualization techniques are avail-
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able. Second, they defer the creation of the actual connection model until all

inputs and outputs are determined, which makes it possible to discard any un-

used additional variable and formulate the model’s equations in the right direction

(avoiding the computational cost of solving the reversed model),

5.6 Summary and Conclusions

This chapter introduced a set of methods that were developed to overcome the

limitations of current methods found during the Descriptive Study I stage of the

research, which corresponds to the literature review presented in Chapter 3. The

limitations of the methods were determined with respect to their ability to fulfil the

objectives of this thesis. Consequently, the methods that support hazard assess-

ment (Objective 1) were discussed first. A method that automates the creation

of STPA hierarchical controls structures was presented. This was followed by

the introduction of a method for automatically creating detailed STPA control loop

models. Both methods utilise the hierarchical and flow relations within the logical

view to create the desired models.

Architecting enablers for the introduction of safety principles, as required by

Objective 2, were presented next. In particular, these enablers use the inform-

ation contained in the functional and logical views of the architecture together

with template libraries to support the architecting of physical and functional re-

dundancy and containment. Graph theory is used to automate several parts of

the process. Graph traversals determine the extension of redundancy and the

propagation of disturbances. Maximum matching problems are solved to determ-

ine the similarity between functions to be fulfilled and candidate solutions to fulfil

them. The minimum cut problem is solved to determine the optimal location of

barriers.

The last two methods discussed in this chapter correspond to Objective 3
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and aim to enable a faster assessment of the safety and performance of archi-

tectures. A method to automate the creation of fault trees was presented. The

method uses the flow relations in the logical view and the functional-logical rela-

tions, which indicate the presence or lack of redundancy, to automatically create

fault trees. Finally, a state-of-the-art sizing method was extended to consider vari-

ous scenarios and environmental conditions. The creation of connection models

was improved to reduce the amount of manual work required and increase the

flexibility of the automated workflow creation process.
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Chapter 6

Evaluation

6.1 Introduction

Several studies were performed to test and evaluate the novel methods and ena-

blers developed during the course of this research. In this chapter, the methods

employed, the results, and the conclusions from these studies are provided.

As stated in Section 1.5, the work presented in this thesis corresponds to pre-

scriptive engineering design research and could be classified as a ‘Type 3’ study,

according to the classification by Blessing and Chakrabarti [1]. A Type 3 study is

where the majority of the effort is spent in producing a ‘design support tool’. In

this research, the design support tool consists of the different methods developed

and presented in Chapter 5. Additionally, the methods were implemented within

a prototype object-oriented software, ‘Aircadia Architect’, to facilitate their evalu-

ation.

Three types of evaluations are usually performed for this type of research:

• Support evaluation checks the consistency and correct functioning of the

developed tool. This kind of assessment is also referred to as ‘verification’.

In this research, the support evaluation was conducted by applying the pro-

posed techniques to two case studies (see Section 6.3) and comparing the
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results with those provided by manual application of the methods or by other

authors and tools.

• Application evaluation investigates whether the application of the methods

impacts the design process as expected. In this case, this implies assess-

ing that the objectives are achieved and as a result so is the aim of the

research. As stated in Section 1.3, the aim is to improve the efficiency and

effectiveness of design for safety as an integral part of the systems archi-

tecting process.

• Success evaluation intends to determine whether the developed methods

can provide value and be useful in practice. As it was not possible to test the

performance of the methods on real industrial projects, the evaluation con-

sisted in the obtention of feedback from a panel of specialists from Airbus

and Cranfield University, to whom the work was presented.

The rest of this chapter is organised as follows. Section 6.2 introduces the

prototype software tool that implements the proposed techniques and was used

to evaluate the research. Section 6.3 describes the two use cases that were de-

veloped to evaluate the tools and present the results to experts from industry.

The results from the support evaluation are presented and discussed in Sec-

tion 6.4. The industrial success evaluation and its results are presented in 6.5.

Both sections contain information relevant to the application evaluation. Finally,

conclusions are drawn in Section 6.6.

6.2 Software Prototype

AirCADia Architect is a prototype software tool that was developed for demon-

strating the RFLP representation proposed by Guenov et al. [14]. The software

used the object model formalised by Guenov et al. [14] as a foundation. In this
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thesis, the RFLP framework is extended as explained in Chapter 4. Consequently,

the extended object model proposed in this research has been used to extend the

prototype tool adding new capabilities for architecting of safety principles, STPA

hazard assessment, FTA and sizing and performance analysis. AirCADia Archi-

tect is not publicly available outside Cranfield University, but it can be obtained by

contacting Advanced Engineering Design Group.

AirCADia Architect has been used to implement and help to evaluate the vari-

ous use cases proposed in this chapter. Beyond the capabilities described by the

methods in Chapter 4, AirCADia Architect provides a high degree of interactivity

to the users to facilitate the understanding of the architecture definition and the

meaning of the analysis results. A more detailed description of the interactive

support provided by the various enablers is presented below.

6.2.1 Interactive Support

AirCADia Architect supports several kinds of user interactions that intend to make

the use of the tool easier and contribute to a higher understanding of the ar-

chitecture and the application of the methods. AirCADia Architect is capable of

providing an interactive visualization of results so architects can understand the

rationale behind them. The tool also traces information within and across views

so the designers can understand the impacts of changes in the whole system.

STPA Hierarchical Control Structure

Once the hierarchical control structure is created, it can be interactively explored.

When a node is clicked, all links related to that node are highlighted and the

flow variables transmitted through the links are presenter to the user. By clicking

on links, it is possible to create STPA’s unsafe control actions associated with

the control action that is related to the link. Interaction with links also allows
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overriding the default hierarchical order (see Section 5.2.1), changing links of

type ‘SameLevelInputOutput’ to ‘ControlAction’ or ‘Feedback’ and vice versa.

STPA Detailed Control Loops

After a detailed control loop is created, it can be interactively explored in AirCADia

Architect. When a component node is clicked, all links related to that node and

the nodes at the opposite end of the links are highlighted. This way, it becomes

evident which components are related to which, and what position in the control

loop occupy (see Section 5.2.2). Additionally, the corresponding component in

the logical view of the architecture are highlighted so they can be seen in their

original context. The elements from other views related to that component are

highlighted as well.

Physical Redundancy Enabler

This enabler interacts with the architect by presenting a preview of the redund-

ant leg, computed as explained in Section 5.3.1, showing included components

and those with links crossing the boundary. It also displays a list of rules (see

Section 5.3.1), which the user can add, select, delete or modify. When a rule

is selected the corresponding element is selected and scrolled to (displayed on

the centre) in the preview. The architect can add ‘UserDefinedStopRule’ rules

by clicking the components with which the rule will be associated. The compon-

ent also highlights the extension of the redundant leg in the architecture’s logical

view, using blue for the included components and connections, and red for those

components that require a further decision from the architect.

Functional Redundancy Enabler

The functional redundancy enabler interacts with the architect by presenting a

preview of the redundant leg, and a list of functions yet to be fulfilled. When the
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user clicks on a function three lists are populated with the results obtained from

applying the comparison algorithm (see 5.3.2). These three lists correspond to

solutions from the leg, solutions from the architecture and solution templates from

the library. When the architect selects an item from any of the lists, the preview

and list of functions are updated accordingly.

Containment Enabler

The enabler interacts with the architect by presenting a preview of all solutions

located between the disturbance sources and sinks. It also displays any barrier

that has been added to the preview — manually or by the algorithm for automatic

placement detailed in Section 5.3.3. Clicking on a component computes the set

A of solutions affected by a perturbation originating from that component and the

set B of solutions from which a disturbance could reach the clicked component.

Solutions are coloured differently depending on the set to which they belong,

namely A \B (can be affected but cannot affect), B \A (can affect but cannot be

affected) or A∩B (both).

Fault Tree Analysis Support

To help architects to understand the results provided by the algorithm and the

meaning of the different gates in the fault tree, the support for fault tree analysis

displays the tree itself and a list with the results, which can be interactively ex-

plored. Clicking on the fault tree highlights the parts of the logical view that were

considered when creating a particular gate or basic event. Clicking on a minimal

cut or path set highlights both their constitutive elements in the logical view and

also their respective basic events in the fault tree.
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Architecture Sizing and Performance Support

Regarding sizing and performance support, AirCADia Architect allows user to in-

teractively explore the various workflows suggested by the algorithm. It shows

which models are over-constrained and which variables can be traced to the

model to help architects to remove the excessive constraints. Interactive trace-

ability is also provided, allowing users to gain insight into the relations among

variables. Once a workflow is executed the results can be explored by hovering

the mouse on top of the components and ports in the logical view, which display

the values of their respective parameters.

6.3 Case Studies

To be able to evaluate the methods and demonstrated how they can be applied

in a realistic scenario, two case studies were developed. The first use case is

inspired by the systems architecture of an Airbus A320 and it was used to perform

the success evaluation of all methods by presenting it to industry experts and

obtaining feedback from them. It was also employed for the application evaluation

of several methods as indicated in Table 6.1. Another case study was developed

for the application evaluation of the methods related to STPA hazard assessment.

This use case is inspired by the Wheel Brake System Example from the ARP

4761 [58], also used by Leveson et al. [61] to evaluate STPA against existing

techniques.

6.3.1 A320 Inspired System Architecture Use Case

This use case starts with the creation of a baseline systems architecture of an air-

craft similar to an Airbus A320. However, in this architecture, all the parts whose

purpose is improving the safety of the architecture, such as redundant compon-

196



6.3. Case Studies

Table 6.1: Evaluation types and use cases employed

Method Support
Evaluation

Application
Evaluation

Success
Evaluation

STPA Hierarchical WBS WBS Industrial Evaluation

STPA Detailed WBS WBS Industrial Evaluation

Physical Redundancy A320 A320 Industrial Evaluation

Functional Redundancy A320 A320 Industrial Evaluation

Containment A320 A320 Industrial Evaluation

Fault Tree Analysis A320 A320 Industrial Evaluation

Sizing And Performance A320 A320 Industrial Evaluation

ents or containment mechanisms, were disregarded. The proposed architecture

could be interpreted as the outcome of a design process where only functional

and performance requirements were considered. The architecture provides a

realistic starting point for the processing of architecting safety into the architec-

ture.

The architecture includes only a subset of the systems that can be found in a

real aircraft. In particular, it includes the Cabin (CAB), the Environmental Control

System (ECS), the Flight Control System (FCS), the Hydraulic System (HYD), the

Pneumatic System (PNE) and the Engine (ENG). It also contains various relevant

controllers and means of controlling the subsystems above, which are included

to model the interaction between the crew and the aircraft, which is relevant for

hazard assessment. Figure 6.1 shows the logical view of the architecture as

displayed in AirCADia Architect, except for the labels, which have been magnified.

More details about the ENG, PNE and HYD subsystems are provided in Fig-

ure 6.2. In this figure, the constituents components of those three subsystems

and their interconnections are shown, superimposed to the top-level view of the

architecture. Figures 6.4 and 6.3 show the ECS and FCS in detail respectively.

The use case continues by improving the safety of the architecture, which
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Figure 6.1: Initial systems architecture
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Figure 6.2: Detail view of ENG, PNE and HYD subsystems
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Figure 6.3: Detail view of ENG, PNE and HYD subsystems
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Figure 6.4: Detail view of the ECS subsystems

allows demonstration of the enablers developed in this research. First, the safety

of architecture is assessed through STPA analysis, using the proposed methods

when appropriate. The results from this process allow the definition of safety

requirements. Then, the enablers for architecting safety principles are used to

introduce redundant component and containment mechanisms where they are

needed to comply with the new requirements. Finally, the architecture is analysed

by using the FTA and sizing supports so the effects of the architecture changes

can be assessed not only in terms of safety but also on performance.

6.3.2 ARP4761 Wheel Brake System Use Case

The second use case consists in the application of the STPA enablers to the

Wheel Brake System (WBS) example proposed in the ARP 4761 [58]. The

results from this use case are to be compared to those obtained by Leveson

et al. [61]. To facilitate comparison, the architecture includes the assumptions

made by Leveson et al., which can be found in the Appendix of the original doc-
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ument [61, pp. 68–72]. In particular, the diagram and textual description of the

WBS found in the appendix of [61] was used to populate the logical view of the ar-

chitecture in AirCADia Architect. The original diagram is reproduced in Figure 6.5

for convenience.

Figure 6.5: WBS systems architecture (From [61])

As shown in the diagram the system has two hydraulic channels (green and

blue) capable of applying pressure on the brakes of the aircraft wheels. The hy-

draulic part of the system is controlled by the Brake System Control Unit (BSCU)

and by the pedal’s mechanical input. The controller uses the manual brake com-

mands from the pedals as well as inputs from the rest of the aircraft such as

wheel speed or auto-brake mode. Apart from outputting control commands for

various hydraulic valves, it also communicates its status to the Brake System An-

nunciation. The annunciation informs the crew about the state of the system so

they can make the necessary decision to control the WBS through manual brake
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(using pedals) or automatic brake commands. More details about the system can

be found in the original report [61];

Figure 6.6 portrays the system as implemented in AirCADia Architect. Some

connections and components, which were implicit in the original diagram, but

provided in the system’s description, have been made explicit in this implement-

ation. This is because to work properly, the tool and the methods require links to

be included explicitly.

6.4 Support and Application Evaluation

The main focus of the section is the support evaluation of the research, which

verifies the consistency and correct functioning of the support tool. The results

presented in this section are also relevant to prove that the aim and objectives of

the research are achieved, thus contributing to the application evaluation.

6.4.1 STPA Support

The support for performing hazard assessment using STPA methodology is evalu-

ated by applying it to the WBS use case and then comparing the results obtained

by Leveson et al. [61], who applied STPA manually to a very similar use case.

The WBS architecture in this thesis was obtained by interpreting the text and dia-

grams in the appendix of the original report comparing STPA and ARP 4761 [61].

However, the appendix was found to be ambiguous to some extent and to omit in-

formation that is used later by the authors to perform STPA analysis. This resulted

in the author of this research implementing a system in AirCADia Architect that is

different to some extent from the system analysed by the authors of the original

reference. More detail regarding what are the differences and their impact on the

results are presented in the sections below.

Most of the discrepancies between the system implemented in this research
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Figure 6.6: WBS systems architecture in AirCADia Architect

204



6.4. Support and Application Evaluation

and the original one could be corrected after having compared the results in detail

and having gained more insight into the system that Leveson et al. [61] had in

mind. This information would make possible to model in AirCADia Architect a

system that produces result even closer to the original ones. However, the author

believes that a comparison using only the appendix is fairer as this is likely what

the original analyst used for their STPA analysis. As a result, the system as

interpreted from the appendix is used for evaluation.

STPA Hierarchical Control Structure

The first part of the STPA support evaluation focuses on the ability of the STPA

support to automatically model the control hierarchies used for STPA analysis.

The control hierarchy obtained by the authors of the original report [61] is shown

in Figure 6.7. Figure 6.8 shows the control hierarchy as automatically modelled

by AirCADia Architect. Regarding the included components and their position

in the hierarchy, the similarity is high. The crew is situated at the top of the

hierarchy. At an intermediate level, we can find the brake system control unit’s

(BSCU) controllers. Finally, the WBS hydraulics and wheel are located at the

bottom of the hierarchy.

There are some differences though. The algorithm that creates the hierarchy

(See 5.2.2), lumps by default all process components in one single node called

‘Process Node’. But in the original report, the WBS hydraulics and the wheel

appear as two separate entities. It would not be difficult to override the default

grouping to obtain even more similar results. Another difference is the fact the

original hierarchy has merged the two redundant control channels of the BSCU,

whereas the automated method considers them individually. There is also a small

difference in the order of controllers within the BSCU. The original report situates

the autobrake at a higher level than other BSCU controllers, but it appears at the

same level in Figure 6.8. This is due to the fact, that the autobrake was not even
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Figure 6.7: Control hierarchy obtained by Leveson et al. [61]. (From [61])
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included in the original diagram (Figure 6.5), so it was situated at the same level

as the other controllers when implementing the system in AirCADia Architect.

The default order can be easily overridden by changing the type of the two links

between the autobrake and each of the CMDs, obtaining identical ordering.

Figure 6.8: Control hierarchy obtained by AirCADia Architect

Regarding the description of the signals carried by each of the links, AirCADia

Architect does not show all of them simultaneously as it results in clutter but dis-

plays the relevant information when a controller is clicked. Figure 6.9 shows the

descriptions of the links associated with the CMD controller after such component

is clicked. Tables 6.2 and 6.3 display the comparison between the original results

and those in this research.
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Figure 6.9: Control and feedback signals from CMD
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The comparison results regarding control commands in the control hierarchy

are shown in Table 6.2. Control command are those links from controllers situated

at one level in the hierarchy to other controllers or process solutions situated at

lower levels. Links at the same level originating from the BSCU CMD unit in

this thesis have also been included in the table. Although the wording used to

designate the commands in the original document and this research differ, which

may seem to indicate that the results are different, their meaning is equivalent.

Therefore, once the different terminology is taken into account, the results show

a considerable degree of similarity. For simplicity, all signal descriptions shown

next to each other in the tables throughout this section are equivalent unless

explicitly stated. The differences are stated explicitly and explained in detail.

Table 6.2: Control commands in control hierarchy

From To Original Signals Signals

Crew BSCU Power on/off –

Crew Autobrake Arm and Set Autobrake

Disarm Autobrake

Crew Hydraulic Controller Brake (pedal) Manual brake 1 & 2 (x2)

Crew WBS Hydraulics Brake (pedal) Manual brake 1 & 2

Autobrake Hydraulic Controller Brake command Control command (x2)

Process – Control command

Hydraulic Controller WBS Hydraulics Open/Close green valve Brake command

Green position command –

Open/Close blue valve Anti-skid command

Hydraulic Controller Hydraulic Controller – Wheel speed (x2)

– Fault signal (x2)

WBS Hydraulics Wheels Braking Force –

Aircraft Autobrake Touchdown –

Rejected take-off –

The power on/off command to the BSCU discovered in the original system

was not discovered by the STPA support as it was not included in the architec-

ture. This is because that command is not explicit in the diagram from Figure 6.7
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and was not considered relevant when interpreting the textual description of the

system. The same reasoning applies to the command from the crew to the auto-

brake, which explains why the original analysis considers two different commands

(‘Arm and Set’ and ‘Disarm’) and the analyses in this document only discovered

one command (‘Autobrake’). There are also some differences regarding what is

considered as the process in the original analysis (hydraulics and wheels separ-

ately) and what was identified as a process by the algorithm (everything solution

that is not a controller). This fact explains why the analysis in this thesis identified

an additional command from the autobrake to the process (corresponding to the

flow link between the autobrake and the 2 MONs), and why the commands from

the hydraulic controller to the hydraulics are different — it seems like the original

report included more component inside ‘Hydraulic controller’ as opposed to only

including the CMD. It also explains why the original analysis included ‘Braking

force’ as a command.

The fact that the STPA support considers the two CMD individually lead to

the identification of two additional commands between CMDs (‘Wheel speed’ and

‘Fault signal’) not considered in the original analysis. It is important to note at this

point, that the algorithm finds links between components through any existing flow

path as long as any of the ports in such path belongs to a controller. Although the

link between one CMD and the other is not apparent, that link exists by traversing

the hydraulics up to the wheel and coming back via the wheel speed feedback sig-

nal, and it does not cross any controller. The independently considered CMD also

lead to the discovery of many of the command and feedback links twice, which

has been indicated as (x2) in both Table 6.2 and Table 6.3. The last discrepancy

regarding control command is the fact that in Figure 6.7, ‘Touchdown’ and ‘Re-

jected take-off’ have been drawn as downward links, whereas in this research

these links come from the process node and are therefore upward feedback links,

shown in their corresponding table.
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Table 6.3: Feedback signals in control hierarchy

From To Original Signals Signals

Autobrake Crew Activated status Fault signal

Armed status –

Programmed deceleration –

Hydraulic Controller Crew Fault detected Fault signal

WBS Hydraulics Crew Braking mode –

Process Crew – Fault signal

Hydraulic Controller Autobrake Manual braking status –

Wheel speed –

Wheels Hydraulic Controller Wheel speed –

Process Hydraulic Controller – Manual Brake (x2)

– Wheel speed (x2)

– Fault signal (x2)

– Electrical power (x2)

Table 6.3 presents the feedback signals in the control hierarchy. Feedback

signals are those links from process solutions or controller situated at one level

in the hierarchy to other controllers or process solutions situated at higher levels.

The explanations for discrepancies in the case of control commands are also

applicable to feedback signals. The difficulty of interpretation of the autobrake’s

textual description led to the consideration of a different set of signals: ‘Activated

status’, ‘Armed status’ and ‘Programmed deceleration’ in the original report, and

‘Fault signal’ in this thesis. It has also caused the signals between the hydraulic

controller and the autobrake ‘Manual braking status’ and ‘Wheel speed’ not to be

included in the architecture.

The fact the original diagram (see Figure 6.7) does not include a ‘Fault detec-

ted’ link between the hydraulics and the crew, explains why it was not included in

the architecture implemented in AirCADia Architect and therefore not discovered

by the method. However, an additional feedback signal was discovered between

the process and the crew; this is because the validity monitor is included in the
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process in the architecture used in this research. The partition of the set of pro-

cess solutions in the original document explains why the reported link between

the wheels and the hydraulic controller was not discovered. However, this link is

discovered between the process and the CMD controller, as well as the electrical

power, fault signal and manual brake links from other process solutions.

STPA Detailed Control Loops

The second part of the STPA support evaluation focuses on the ability of the

STPA support to automatically model detailed control loops for STPA analysis.

Figure 6.10 shows a control loop from the original report [61]. Figure 6.11 shows

the control loop as automatically created by AirCADia Architect. There is a high

similarity between both loops regarding the components that belong to the various

parts of the loop, namely controller, actuators, sensors and controlled process.

The crew was the chosen controller for this loop, the brake pedals were identified

as the actuators and the annunciation system is the ‘sensor’ providing feedback

to the crew. The controller process is the wheel brake system, including the

hydraulic controller and the hydraulics.

Regarding the description of the links with origin or destination in any of the

parts of the control loop, AirCADia Architect shows them only after links are

clicked by the user, as otherwise the view is easily cluttered. The implemen-

ted STPA support also can export a summary of the results with the constituent

components and links in a textual format. Table 6.4 presents the comparison of

links obtained by both the original manual analysis and the automated analysis

by the methods proposed in this research.

The original loop is less detailed than the one provided in this research be-

cause of two reasons. The first one is because it did not provide any description

for the links starting from or ending in the WBS. The second reason is that it

does not distinguish between any of the two pedals or redundancies in the WBS.
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Figure 6.10: Crew control loop obtained by Leveson et al. [61]. (From [61])
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Figure 6.11: Crew control loop obtained by AirCADia Architect
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Because of this lack of detail, Table 6.4 shows a great number of links that are

not included in the original analysis. These links include all links categorised as

‘Process Inputs From Actuators’, ‘Process Inputs From Other Process Solutions’,

‘Process Outputs To Sensors’, and the second link in ‘Controller Outputs To Ac-

tuators’. There are however a few links that appear in the original loop but have

not been identified by the algorithm used in this research (see Section 5.2.2).

These links are in categories ‘Controller Inputs From Sensors’ and ‘Controller

Inputs From Other Process Solutions’ and were not included in the architecture

implemented in AirCADia Architect because they were not explicit in the drawing

and either missing or not inferred from the interpretation of the textual description

of the system.

The other two detailed control loops obtained in the original have also been

created in AirCADia Architect. The obtained results compared to the manual

analysis in a similar way to the first loop, presented in detail above.

Discussion of Results

Although it was not possible to recreate the exact system the original analysts had

in mind from the drawings and textual description provided in their report [61], the

results obtained by the methods developed in this thesis presented a consider-

able degree of similarity. The main sources of discrepancy were the different

terminology and the different interpretation of the system. Whereas part of the

difference could be due to an erroneous interpretation of the original document,

it is also true that Leveson et al. use links for STPA analysis that are not present

in their drawings and that the description of the system is ambiguous to some

extent. Furthermore, the comparison presented in Reference [61] also had to in-

terpret and make assumptions the original ARP 4761 WBS example which they

use to compare STPA with other methods. The need for interpretation and its

possible impact on results highlight the importance of having a common unam-
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Table 6.4: Signals in the crew control loop

From To Original Signals Signals

Controller Inputs From Sensors

Annunciation Crew Fault Detected FaultSignalOutput

Braking mode –

Autobrake activated –

Autobrake armed –

Autobrake deccel. rate –

Controller Inputs From Other Process Solutions

Unspecified Crew Various signals –

Controller Outputs To Actuators

Crew Pedals Left Seat Manual Braking Manual Brake

Crew Pedals Right Seat Manual Braking Manual Brake

Process Inputs From Actuators

Pedals Left Seat Blue Meter Valve – Mechanical Position

Pedals Right Seat Blue Meter Valve – Mechanical Position

Pedals Left Seat CMD1 – Brake Command

Pedals Right Seat CMD1 – Brake Command

Pedals Left Seat MON1 – Brake Command

Pedals Right Seat MON1 – Brake Command

Pedals Left Seat CMD2 – Brake Command

Pedals Right Seat CMD2 – Brake Command

Pedals Left Seat MON2 – Brake Command

Pedals Right Seat MON2 – Brake Command

Process Inputs From Other Process Solutions

PSU CMD1 – ElectricalOutput

PSU MON1 – ElectricalOutput

PSU CMD2 – ElectricalOutput

PSU MON2 – ElectricalOutput

PSU Validity Monitor – ElectricalOutput

PSU Validity Monitor – ElectricalOutput

Aircraft AutoBrake – TouchDownSignalOutput

Aircraft AutoBrake – RejectedTakeOffSignalOutput

Process Outputs To Sensors

Validity Monitor Annunciation – Fault Signal
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biguous description of the system, to which various analysts or experts can refer.

The developed methods work by using an RFLP model that is common to all ana-

lyses and whose elements are clearly defined, which mitigates interpretation and

communication issues and ensures everybody works with the same system.

The ability to partition the set of process solutions exhibited by the manual

approach, in contrast with the single-node approach employed by the algorithm

used for creating the hierarchical structure (see Section 5.2.1) also lead to some

differences. It could be interesting to remove this limitation, allowing the algorithm

to consider different groups of process solutions, to be able to match the original

results even closer and offer more flexibility in future analyses.

6.4.2 Safety Principles Enablers

Physical Redundancy Enabler

The enabler for architecting physical redundancy is applied to the A320 inspired

use case. It is utilised to transform the initial architecture into one more similar

to the one in the actual aircraft in terms of safety features. Physical redundancy

is a commonly employed principle in aircraft systems architectures, so there are

plenty of situations where the enabler can be tested. Table 6.5 displays all the

test cases grouped by the subsystem to which the original components belong.

Column ‘Component’ indicates the first element added to the new redundant legs,

used as a starting point for the algorithm that calculates the extension of the leg.

Column ‘User Defined Rules’ displays how many rules were input to the algorithm

to obtain the desired result. Finally, column ‘Nlegs’ indicates how many redundant

legs were created. Therefore, Nlegs +1 is the total number of components of each

type after redundancy is applied.

Redundancy was applied to the engine to model the fact that the aircraft

posses two engines. Since detailed modelling of the engine is out of scope,
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Table 6.5: Physical redundancy cases

Subsystem Component User Defined Rules Nlegs

ENG

Shaft Power No rules 1

Fan Inlet No rules 1

High Pressure Inlet No rules 1

Intermediate Pressure Inlet No rules 1

HYD Accumulator 1 Stop rule, and 2 Merge with existing
rules

1

PNE Precooler 2 Merge with existing rules, and 1
Continue through output rule

1

ECS Compressor 1 Merge with existing rule, and 2 Con-
tinue through output rules

1

FCS

Elevator Actuator 2 Merge with existing rules 1

Elevator 1 Include existing redundancy rule, 2
Merge with existing rule, 2 Stop rules

1

Rudder Actuator 1 Stop rule, and 1 Merge with existing
rule

2

Flaps Actuator 2 Stop rules 1

Slats Actuator 2 Stop rules 1

Right Aileron 2 Stop rules 1

Left Aileron 2 Stop rules 1

Right Spoiler 2 Stop rules 4

Left Spoiler 2 Stop rules 4
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the engine consists of three air inlets (fan, intermediate and high pressure) and

a component representing the extracted shaft power. Due to this modelling, the

redundancy required four simple operations where no additional rules were re-

quired. Figure 6.12 reflects the four stages of the process.

Figure 6.12: Application of physical redundancy to the engine

Regarding the hydraulic subsystem, the physical redundancy enabler was ap-

plied to create an additional redundant circuit. The application was more complex

this time. It required the definition of a Stop rule at the reservoir pneumatic input

and merging the new leg with existing redundancy at two points. The first point
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is the reservoir’s hydraulic input, which receives hydraulic flow from many actuat-

ors. The second one is the pump’s shaft power input receiving at this point power

from both engines. The redundant leg included eventually all components in the

hydraulic subsystem.

At the pneumatic system, the enabler was used to created one redundant leg.

Starting from the precooler, the process required to define two rules to merge with

existing redundancy at the pressure regulator valve’s and precooler’s inputs. This

redundancy is due to the existence of the two engines. A third and final rule was

required to include the air outlet connected to the precooler, as by default, the

algorithm does not include components by following output connections. The re-

dundant leg consisted of all components in the pneumatic subsystem. Figure 6.13

show the resulting architecture.

Figure 6.13: Application of physical redundancy PNE and HYD systems

The application of physical redundancy to the environmental control system

started from the air pack’s compressor. It required to merge with the existing PNE
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redundancy at the flow control valve’s pneumatic input. It was also necessary

to include the air outlet connected to the primary heat exchanger for reasons

identical to those given for the PNE subsystem. In this case, the redundant leg

included every component in the air conditioning pack, which was duplicated as

a whole, plus the flow control valve and zone and pack controllers.

Finally, in the case of the flight control system, physical redundancy was ap-

plied to most control surfaces and actuators. The elevator was converted from a

single-surface single-actuator system to a double-surface system with two actu-

ators per surface. This was done in two steps. The first step added the redundant

actuator and required two rules to mere with the existing hydraulic and control

redundancies respectively. Then, in a second step, the enabler was applied to

the elevator surface, in this case including the existing redundant actuators to ob-

tain the desired configuration. It also required two additional merge rules, one for

each actuator’s control input; and two stop rules, one for each actuator’s hydraulic

input. Unlike in the first step, there was not hydraulic redundancy at the actuator,

as only one of the hydraulic circuits was connected to each one of the actuators.

The rudder was left unchanged, but a triple-redundant actuator system was

implemented. The algorithm required the creation of a ‘Merge with existing re-

dundancy’ rule at the actuator’s control input, and a stop at the actuator’s hy-

draulic input, similar to the elevator case. For the rest of the control surfaces —

flaps, slats, right and left ailerons, and right and left spoilers — the process of

obtaining the desired redundancy required the addition of two stop rules, one for

each input port of the corresponding actuators. The number of new legs created

for each control surfaces is indicated in Table 6.5. Figure 6.14 shows the res-

ulting FCS architecture. The blue actuators are the original ones, whereas the

green ones represent the ones added for redundancy purposes; a lighter shade

of green represents the third rudder actuator.
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Figure 6.14: Application of physical redundancy to the FCS
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Functional Redundancy Enabler

Using the architecture resulting from the inclusion of physical redundancy as a

starting point, the enabler for architecting functional redundancy is applied to the

use case. This enabler is also used to bring the architecture closer to a real one

in terms of safety features. Although less abundant than physical redundancy —

at least in the parts of the architecture that are considered, there are still many ex-

amples of functional redundancy in aircraft architectures. The test cases for the

functional redundancy enabler are summarised in Table 6.6. Column ‘Function

(Component)’ indicates the function given as input to the enabler and the com-

ponent that originally provides such function enclosed in parenthesis. Column

‘Added Components’ reflect the components that form the new redundant leg, in

order of addition.

Table 6.6: Functional redundancy cases

Subsystem Function (Component) Added Components

HYD
Stabilise Pressure (Accumulator) Accumulator, Ram Air Turbine, Reser-

voir, Slats Actuator (from architecture)

Supply Hydraulic (Electric Pump) Electric Pump, Electric Generator

PNE Supply Air (Precooler) APU, Ram Air Inlet

ECS Supply Fresh Air (Mixer Unit) Ram Air inlet (from architecture)

FCS

Control Pitch (ELAC) Elevator Trim Wheel (already imple-
mented)

Control Pitch (ELAC) SEC (already implemented)

Control Rudder (FAC) Pedals (already implemented)

Functional redundancy was applied to the hydraulic system to create a new

circuit. Furthermore, this third circuit is dissimilar to the already existing ones.

For this purpose, the function ‘Stabilise Pressure’ from the hydraulic accumulator

is selected as the starting point of the enabler for architecting functional redund-

ancy. At this point, the algorithm for determining function-solution similarity (See
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Section 5.3.2) is applied by the enabler. The library component that scores the

highest is unsurprisingly the accumulator template (matches operation and flow),

followed by other hydraulic components (match flow). Elements from the archi-

tecture are ranked analogously.

A new accumulator is instantiated from the library, the information contained

in the template results in the derivation of function ‘Supply Hydraulic’, awaiting to

be fulfilled. In this case, the highest template matches are the hydraulic, electric

and ram air turbine pumps, followed by other hydraulic components. Since the

goal is to make a dissimilar leg, the ram air turbine is selected, which derives

the function ‘Supply Hydraulic’ once more. This time, the reservoir template is

selected instead, which results in two additional derived functions, one per input

port.

The pneumatic input induced the ‘Import Pneumatic’, which is fulfilled by one

of the precoolers already present in the architecture’s pneumatic system. This

component was amongst the highest-ranked in the list of solutions in architec-

ture, and since it is already in the architecture does not induce additional func-

tions. Finally, ‘Import Hydraulic’, which is the second function induced by the

reservoir — as it has a hydraulic input port that requires hydraulic fluid — is ful-

filled by selecting the slats actuator from the architecture to close the hydraulic

circuit. This component also scored high in the ranking of solution similar to the

function. Since the component comes from the architecture, no more functions

are induced and consequently, all functions are fulfilled. The new leg is added to

the architecture resulting in a hydraulic system as shown in Figure 6.15 — minus

the electric pump and electric generator to be added next.

Functional redundancy was applied to the hydraulic system a second time. In

this case, to provide an alternative way of fulfilling the function provided by the

ram air turbine pump. The first solution added to the new leg is an electric pump

instantiated using the electric pump template from the library. Analogously to the
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Figure 6.15: Application of functional redundancy to the HYD

first application of the functional redundancy enabler, the pump introduced two

derived functions, one per input port. The electric input induced the ‘Import Elec-

tric’, which is fulfilled by adding the highest ranked solution from the library, an

electric generator. This generator represents the electric system of the aircraft,

which is out of scope in this use case and not modelled in detail. In a more com-

prehensive study, the corresponding component from the electrical system would

be chosen instead. The electric generator did not induce additional functions,

consequently, the only function left to be fulfilled is ‘Import Hydraulic’, induced by

the pump’s hydraulic port. In this case, the function is fulfilled by the hydraulic

reservoir belonging to the third circuit. Since no more functions require fulfilment,

the leg is added to the architecture. The final hydraulic system is presented in

Figure 6.15.

The function ‘Supply Air’, provided by the pneumatic system’s precoolers was

used to start the functional redundancy workflow. In this case, amongst the

highest ranked templated from the library, the auxiliary power unit APU was se-
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lected. This induced the function ‘Import Air’, whose fulfilment lead to selecting an

additional ram air inlet from the library. The process resulted in the system shown

in Figure 6.16. This ram air inlet was reused to provide the function Supply Fresh

Air (fulfilled by the air ECS’ mixer unit) in a redundant manner.

Figure 6.16: Application of functional redundancy to the PNE

The remaining identified cases of functional redundancy, as stated in Table 6.6,

belong to the flight control system. And were already implemented in the initial

architecture, as it was considered relevant for demonstrating the STPA support to

the industrial evaluators. The algorithm for function-solution similarity was used

in these test cases to check its consistency. As expected, the controllers in the

architecture and library obtained the highest similarity values.

Containment Enabler

The final step regarding the architecting of safety principles consisted in using

the containment enabler to support the addition of barrier components to protect

those components that are susceptible to disturbances. The opportunities to ap-

ply this safety principle were more limited than those of the other two enablers.

The main reason behind this limitation is not the low number of barriers in actual
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architecture, which is high, but the fact that many of them had already been added

for demonstration or functional purposes other than safety. Table 6.7 summar-

ises the application of the containment enabler to the architecture’s subsystems.

Column ‘Sources’ indicates the components that can generate the disturbances

to be contained. Column ‘Susceptible’ display the components to be protected.

The elements in both columns need to be selected manually. Column ‘Nbarriers’

indicates the number of barriers that were required to provide the desired con-

tainment characteristics.

Table 6.7: Containment cases

Case Sources Susceptible Nbarriers

Case 1 Engine components and APU FCS actuators 6

Case 2 Engine components and APU Precooler and ECS components 2

The containment enabler facilitates the exploration of the propagation of dis-

turbances between their sources and the components to be protected. Fig-

ure 6.17a displays the propagation of a disturbance originating from the engine’s

intermediate pressure inlet when there is no barrier. It shows how the disturbance

can propagate through the PNE, reaching the ECS components. Figure 6.17b

present the same situation but with a barrier next to the source this time, which

contains the disturbance protecting ECS components from it.
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Apart from manual exploration, the enabler can also use a minimum cut al-

gorithm (see Section 5.3.3) to determine automatically the minimum number of

barriers required to isolate all sources and suggest locations for the barriers.

The results provided by the algorithm for both cases are presented in Tables 6.8

and 6.9. The number of barriers suggested by the algorithm matches that of the

actual system used for reference, except in the case of the two barriers between

the engine shaft power and the HYD pumps, which are not specified in the ori-

ginal reference. But on the contrary, the suggested locations for the barriers differ.

This does not indicate that the results from the algorithm are incorrect, as there

might be several minimum cuts of identic value and the algorithm only selects

one. However, it indicates that the usefulness of the algorithm could be improved

either by providing more detailed information expressing the preference of some

locations over the others (assigning different costs to the edges) or by modifying

it to compute more than one result when possible.

Table 6.8: Min-cut algorithm results for Case 1

Connection Kind

Original shaft power→ Original HYD pump Rotational

Redundant shaft power→ Redundant HYD pump Rotational

Original hydraulic system leg→ Original FCS actuators Hydraulic

Redundant hydraulic system→ Redundant FCS actuators Hydraulic

Original HYD pump→ Original Accumulator Hydraulic

Redundant HYD pump→ Redundant Accumulator2 Hydraulic

Discussion

The enablers were able to reproduce most of the safety features from the ar-

chitecture of a real aircraft at the level of detail employed in this research. They

made it possible to transform the initial architecture, lacking most safety measures

229



Chapter 6. Evaluation

Table 6.9: Min-cut algorithm results for Case 2

Connection Kind

Original intermediate and high pressure inlets → Ori-
ginal Precooler Pneumatic

Redundant intermediate and high pressure inlets →
Redundant Precooler

Pneumatic

APU→ Pack flow control valve Pneumatic

to a much safer architecture approaching realistic standards. More importantly,

they were able to do so by automating many repetitive aspects and ensuring con-

sistency at every step of the process. Additionally, the enablers gather from the

RFLP definition the relevant information when implementing each of the safety

features in the evaluation architecture, helping architects to understand the effect

of their decision in the architecture, or what additional considerations need to be

accounted for when making the architecture safer.

The methods also shown some limitations as some safety-related compon-

ents, such as the cross-feed valve in the pneumatic system or the power transfer

unit located between two hydraulic circuits, could not be modelled appropriately

by any of the enablers and had to be added manually*.

6.4.3 Fault Tree Analysis Support

The support for automating the creation of fault trees from the architecture defin-

ition is evaluated by applying it to the A320 inspired system architecture. Fault

trees are created using the developed support at different stages of implementa-

tion of physical redundancy and then results are checked to ensure that they are

in line with the hypothesis used by the fault tree creation algorithm (see Sec-

tion 5.4.1) and the presence of more or less redundancy in the architecture.

*It might be possible to reuse most parts of the functional redundancy enabler to support a
more generic functional-logical zigzagging and therefore support this scenario as well. However,
this is out of the scope of this thesis and it was not tested
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Based on the application of the physical redundancy enabler in Section 6.4.2,

the four stages of redundancy included in the FTA methods evaluation are:

1. Initial architecture: the architecture used at this stage has not been modi-

fied to make it more redundant.

2. Second engine: the architecture is modified to take into account the exist-

ence of two engines.

3. Redundant engine + pneumatics: a second redundant channel is added

to the hydraulic system.

4. Redundant engine + pneumatics + air pack: a new redundant leg con-

taining the air conditioning pack and adjacent ECS components is created,

The FTA support automatically creates a fault tree starting from a selected

component. The tree intends to model the inability of the selected component

to fulfil its function. The chosen component in this evaluation is the ECS’s mixer

unit that delivers air to the cabin. The tree is presented to the user as depicted

in Figure 6.18 and analysed both qualitatively and quantitatively. The quantitat-

ive results consist of the minimal cut sets and minimal path sets. Each series of

sets is also presented in its filtered version, where only one representative set is

kept for each group of symmetric sets. Symmetric sets have the same number

and type of components (common solution template) element-wise, and these

components belong to redundant legs providing the same function. Quantitative

results include the probability of failure of the top-event (the selected solution fails

to provide its function), the relative probability of failure of each set with respect

to the probability of failure of the top-event, and two rankings of solutions ac-

cording to the Fussell-Vesely and Birnbaum importance measures respectively.

The probabilities of failure assigned to the individual components have not been

determined rigorously but they allow to demonstrate the methods.
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Figure 6.18: Detail of the fault tree created for the initial architecture
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The reports generated by AirCADia Architect with the FTA results can be found

in Appendix B; in this section, only a summary with the most relevant results will

be presented. Table 6.10 shows the probability of failure for the trees corres-

ponding to the four stages of redundancy. As expected, the probability decreases

monotonically as redundancy increases. However, the contribution of each stage

is of different orders of magnitude. The largest impact is that of the third stage,

where redundancy is added to the PNE.

Table 6.10: Probability of failure for the four stages of redundancy

Stage Probability of failure Ptop

Initial 1.011 ·10−006

Engine 1.010 ·10−006

Pneumatics 9.001 ·10−009

ECS 9.000 ·10−009

A closer look at the cut sets brings more insight into the variation of the results

with the various degrees of physical redundancy. Table 6.11 shows the minimal

cut sets for the tree created for the initial architecture. The lack of redundancy

causes mosts cut sets to have only one element, except for the last cut. This set,

composed of the two engine core inlets, reflect the only redundancy that affects

the mixer unit. The information about the relative probability of the cut set Pset with

respect to the total probability of failure Ptop indicates that the PNE’s precooler is

the main responsible component.

Table 6.12 shows the minimal cut sets for the tree created after modelling the

redundancy representing the second engine. The effect of redundancy can be

seen in the two last cut sets, which have grown from one and two components to

two and four components respectively. However, since the probability of failure of

the individual components is low, their contribution to Ptop small and its value is

only slightly improved.
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Table 6.11: Minimal cut sets for Stage 1

Components Pset/Ptop

Mixer Unit 9.891 ·10−004

Cabin 9.891 ·10−004

ZoneController 9.891 ·10−004

TrimAirValve 9.891 ·10−004

PackFlowControlValve 9.891 ·10−004

CompressorTemperatureSensor 9.891 ·10−004

TemperatureSensor 9.891 ·10−004

TurbineBypassValve 9.891 ·10−004

PackController 9.891 ·10−004

FanInlet 9.891 ·10−004

Precooler 9.891 ·10−001

PressureRegulatorValve 9.891 ·10−004

IntermediatePressureInlet, HighPressureInlet 9.891 ·10−013

The next stage of redundancy consists in the addition of a new leg in the pneu-

matic system. The FTA algorithm is then applied to the architecture obtaining the

minimal cut sets shown in Table 6.13. The single-component cut sets containing

the precooler and the pressure regulator valve are replaced by four sets of two

components each. The sets represent the four possible combinations of choosing

one component from the first leg (precooler or valve) and one from the second

leg (precooler or valve). Since this time two precoolers need to fail at the sim-

ultaneously to provoke the failure, Ptop is vastly reduced. The more influential

components are now those with a low probability of failure.

The last stage of redundancy is reached after duplicating the air pack, pack

flow control valve and related controllers in the environmental control systems.

This time the number of minimal cut sets has more than doubled. Every single

¶The zero-valued probability is due to the precision of the C# decimal numerical type used in
AirCADia Architect
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Table 6.12: Minimal cut sets for Stage 2

Components Pset/Ptop

Mixer Unit 9.901 ·10−004

Cabin 9.901 ·10−004

ZoneController 9.901 ·10−004

TrimAirValve 9.901 ·10−004

PackFlowControlValve 9.901 ·10−004

CompressorTemperatureSensor 9.901 ·10−004

TemperatureSensor 9.901 ·10−004

TurbineBypassValve 9.901 ·10−004

PackController 9.901 ·10−004

Precooler 9.901 ·10−001

PressureRegulatorValve 9.901 ·10−004

FanInlet, FanInlet2 9.901 ·10−013

IntermediatePressureInlet, IntermediatePressureInlet2,
HighPressureInlet, HighPressureInlet2

0.000¶
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Table 6.13: Minimal cut sets for Stage 3

Components Pset/Ptop

Mixer Unit 1.111 ·10−001

Cabin 1.111 ·10−001

ZoneController 1.111 ·10−001

TrimAirValve 1.111 ·10−001

PackFlowControlValve 1.111 ·10−001

CompressorTemperatureSensor 1.111 ·10−001

TemperatureSensor 1.111 ·10−001

TurbineBypassValve 1.111 ·10−001

PackController 1.111 ·10−001

FanInlet, FanInlet2 1.111 ·10−010

Precooler2, Precooler 1.111 ·10−004

PressureRegulatorValve2, Precooler 1.111 ·10−007

Precooler2, PressureRegulatorValve 1.111 ·10−007

PressureRegulatorValve2, PressureRegulatorValve 1.111 ·10−010

IntermediatePressureInlet, IntermediatePressureInlet2,
HighPressureInlet, HighPressureInlet2

0.000 ·10+000
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one-component set has been replaced by one or more larger sets except for the

mixer unit and the cabin. These two components are now the greatest contrib-

utors to Ptop, which has been reduced considerably but not as much as in the

previous stage.

Discussion

The FTA support was able to generate fault trees from the architecture definition

with very little additional user’s input. Providing the component that performs the

function whose failure represents the tree’s top event is enough for the algorithm

to construct the tree. Qualitative and quantitative evaluation of the fault trees con-

firmed the ability of the algorithm to generate fault trees that reflect trends in the

probability of failure caused by an increasing degree of redundancy. It was also

possible to differentiate between the effect of making redundant major or minor

contributors to the total probability. Safety experts will likely have to review and

possibly extend or correct parts of the trees as the design evolves but the method

presented in this thesis enable architects to obtain quick feedback regarding their

architectural decision without requiring inputs, which has the potential of speeding

up the architecting process.
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Table 6.14: Minimal cut sets for Stage 4

Components Pset/Ptop

Cabin 4.990 ·10−001

Mixer Unit 4.990 ·10−001

RamAirInlet, RamAirInlet2 4.990 ·10−010

RamAirInlet2, MainHeatExchanger 4.990 ·10−007

RamAirInlet, MainHeatExchanger2 4.990 ·10−007

MainHeatExchanger2, MainHeatExchanger 4.990 ·10−004

MainHeatExchanger2, PrimaryHeatExchanger, Turbine 4.990 ·10−010

MainHeatExchanger2, TurbineBypassValve, Turbine 4.990 ·10−013

MainHeatExchanger2, PrimaryHeatExchanger, CJ2 4.990 ·10−004

PrimaryHeatExchanger2, Turbine2, MainHeatExchanger 4.990 ·10−010

PrimaryHeatExchanger2, CJ3, MainHeatExchanger 4.990 ·10−004

RamAirInlet, PrimaryHeatExchanger2, Turbine2 4.990 ·10−013

RamAirInlet, PrimaryHeatExchanger2, CJ3 4.990 ·10−007

MainHeatExchanger2, TurbineBypassValve, CJ2 4.990 ·10−007

TurbineBypassValve2, CJ3, MainHeatExchanger 4.990 ·10−007

RamAirInlet, TurbineBypassValve2, Turbine2 4.990 ·10−016

RamAirInlet, TurbineBypassValve2, CJ3 4.990 ·10−010

RamAirInlet2, PrimaryHeatExchanger, Turbine 4.990 ·10−013

RamAirInlet2, TurbineBypassValve, Turbine 4.990 ·10−016

RamAirInlet2, PrimaryHeatExchanger, CJ2 4.990 ·10−007

RamAirInlet2, TurbineBypassValve, CJ2 4.990 ·10−010

TurbineBypassValve2, Turbine2, MainHeatExchanger 4.990 ·10−013

And 16 more sets of four components each ≤ 4.990 ·10−004
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6.4.4 Architecture Sizing And Performance Support

The support for sizing and determining the performance of the architecture is

evaluated by applying it to the A320 inspired system architecture. Sizing work-

flows are created for the flight control system and hydraulic system. The proposed

methods allow for the consideration of different configurations such as those cre-

ated by failed components or determined by other design considerations. The

configurations used for this evaluation, which were selected to enable demon-

stration of the novel aspects of the sizing support, are:

• All Active: in this configuration all components are active and none of them

has failed.

• FAC Fail: similar to ‘All Active’ but the flight augmentation computer in the

flight control system has failed.

• Left Aileron Actuator Fail: the actuator of the left aileron has failed but the

rest of the components are available.

Similarly, it is also possible to consider several environmental regions when

sizing the system. The regions represent the allowed values of variables that

model the context of the aircraft. In particular, three regions are considered for

this evaluation, namely ‘Whole Envelope’, ‘Landing’ and ‘Cruise’. The ‘Whole

Envelope’ is chosen as the default region, which is used whenever no other region

is explicitly linked to a scenario. The environmental variables considered and their

lower and upper bounds are shown in Table 6.15. ‘Landing’ and ‘Cruise’ regions

override the upper and lower bounds respectively of some of the environmental

variables as indicated in Table 6.15

The last step before workflows can be created is to map one or more regions

to each configuration. By default, configurations are mapped to the default region,

which in this case is the ‘Whole Envelope’ region. However, for evaluation pur-
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Table 6.15: Bounds of environmental variables

Variable Lower Bound Upper Bound

Whole Envelope

Altitude (m) 0 12000

Velocity (m/s) 0 250

Dynamic Pressure (Pa) 0 1000000

Mach 0 0.9

Angle of Attack (rad) −1 1

Elevator Deflection (rad) −1 1

Landing

Altitude 0 3000

Velocity 0 125

Dynamic Pressure 0 350000

Mach 0 0.4

Cruise

Altitude 3000 12000

Velocity 125 250

Dynamic Pressure 350000 1000000

Mach 0.4 0.9
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poses, the ‘FAC Fail’ configuration is mapped exclusively to the ‘Cruise’ region,

and the ‘Left Aileron Actuator Fail’ mapped exclusively to the ‘Landing’ region.

A workflow needs to be created for each combination of subsystem and config-

uration. To reduce the number of required workflows, the method ‘projects’ each

configuration into each of the subsystems. Since all configurations are the same

from the HYD’s perspective, there is no need to create three different workflows

and only one is enough. The situation is different for the FCS as both scenarios

affect it. Thus, the number of required workflows is three.

The creation of the workflow for the hydraulic system is simple because it

does not depend on any environmental variables and the algorithm is capable

of determining a schedule for the workflow without user input. However, after

examining the result it was discovered that a better workflow with fewer reversed

models could be obtained by indicating to the algorithm that the volumetric flow

at the HYD’s hydraulic output is a known variable. An excerpt of the workflow as

presented by AirCADia Architect can be seen in Figure 6.19. The total number of

reversed models is one, and the model corresponds to a connection model.

The creation of workflow for the flight control system is somewhat more in-

volved as the system depends on environment variables (the actuators interact

with the environment) requiring that the variables belonging to the components

are mapped to the corresponding environmental variables. The mapping process

was required only once as the mapping can be reused for all the workflows. Un-

like the first time, the workflows provided by the algorithm using default inputs

were satisfactory, not requiring additional action for any of the three workflows.

Ten connection models required to be reversed to schedule the workflow.

Discussion

The sizing support was able to handle the fast creation of computational work-

flows for the HYD and FCS subsystems requiring only a small amount of user
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Figure 6.19: excerpt of HYD workflow
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input, and taking into account the interaction of the system with the environment

and several configurations that model component failures. The quality of the

provided workflows is high as the number of reversed models is low compared

with the total number of models in each of the workflows. Furthermore, the re-

versed models are connection models, which are generally easier to reverse and

their numerical treatment, when required, is more robust. The presented support

enables architects to accelerate the process of obtaining feedback regarding the

impact on performance of different architectures, without the need of involving

simulation experts at every step.

243





6.5. Industrial evaluation

6.5 Industrial evaluation

6.5.1 Purpose

The final part of the evaluation consisted in an industrial evaluation. The industrial

evaluation is only a first attempt to the success evaluation of the support (see

Table 6.1) as it was not possible to test the research in a real industrial project. A

group composed of four specialists from Airbus and one from Cranfield University

participated in the evaluation session. The main purpose of the session was to

obtain feedback regarding:

• The usefulness and industrial relevance of the proposed methods.

• The availability of the information required by the methods during concep-

tual design.

• Their ability to reduce the number or duration of time-consuming activities

and increase interactivity.

• How to improve the techniques in the future to make them more useful and

relevant.

6.5.2 Approach

A feedback questionnaire combining closed-form Likert-type questions with open-

ended questions was created. The Likert questions were divided into groups that

correspond to each of the methods plus one additional group of questions about

the overall framework. The open questions referred to the overall framework as

well. An online tool called Microsoft Forms [152] was used to elaborate the ques-

tionnaire, distribute it during the evaluation session and collect the responses

from the participants. A printed version of this questionnaire can be viewed in

Appendix C.
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The evaluation session took place on the 9th of December 2020 and it was

done via an online videoconference. The session was structured as follows:

1. Introductory presentation (30 min). The presentation served to introduce

the participants to the research, the use case (A320 inspired systems archi-

tecture) and AirCADia Architect; combined with a live demonstration of the

application of the methods to the use case using AirCADia Architect. Due to

temporal limitations, the demonstration only included one example for each

of the methods developed in the research.

2. Questions and discussion (30 min). At this point, the participants were given

some time to ask questions about the research and discuss the presented

methods.

3. Questionnaire (15 min). The questionnaire was distributed and explained

to the participants, including their right to withdraw and how to do so. The

respondents were given up to seven days to complete the questionnaire,

modify their answers or withdraw.

Several days prior to the session the participants were given a brief report intro-

ducing the research and its background as well as a copy of the consents form

describing their consent to participate, ability to withdraw, and handling of the

collected data (see Appendix D).

The information of the five participants is summarised in Table 6.16. Five par-

ticipants may seem a small number, but it should be noted that there appears

to be no specific rules on how to determine appropriate sample size in qualitat-

ive research. As Patton [153, p. 184] suggest, the sample size depends on the

available resources, time allotted and purpose of the research.
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Table 6.16: Participant information

Workplace Years of Experience

Participant 1 Cranfield University 5

Participant 2 Airbus 25

Participant 3 Airbus 35

Participant 4 Airbus 30

Participant 5 Airbus 15

6.5.3 Results and Discussion

Below are presented the aggregated responses for each of the groups of Likert

questions. The valid responses for any of the questions are ‘Strongly Disagree’,

‘Disagree’, ‘Neutral’, ‘Agree’ and ‘Strongly Agree’. In the figures presenting the

results, ‘Strongly Disagree’ and ‘Strongly Agree’ have been abbreviated to ‘S.

Disagree’ and ‘S. Agree’ respectively; the vertical axes represent the number

of participants that selected a particular category. A different colour has been

used for each participant. The assignment of colour is consistent throughout all

the figures, e.g. the red answer correspond always to the same participant. No

information regarding which colour represent which participant is given because

the questionnaire is anonymous. The question numbers are in accordance with

those in the original form. This is the reason the first group of questions starts at

number six, as the first five questions refer to personal data.
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STPA Support

This group of questions is focused on the STPA enabler, consisting of the meth-

ods for automatically creating hierarchical control structures and detailed control

loops. It is composed of three questions reproduced in Table 6.17. The answers

to these questions are summarised in Figure 6.20.

Table 6.17: Likert questions related to STPA

Question Number Please indicate to what extent you agree or disagree with the
following statements

Question 6.1 The proposed enablers enhance the interactivity of the safety as-
sessment process.

Question 6.2 The proposed enablers result in a tighter integration between
the architecture definition (in particular, the logical view) and the
safety assessment models.

Question 6.3 The approach of STPA combined with RFLP satisfy the industrial
need for safety assessment capabilities.

Results for questions 6.1 and 6.2 show a high degree of agreement (four

‘Agree’ and one ‘Strongly Agree’). This supports the claim that the proposed

STPA enabler can increase interactivity and integration with the architecture defin-

ition during the safety assessment process. Responses for question 6.3 range

between ‘Disagree’ and ‘Agree’, which indicates that STPA support can satisfy

a relevant number of capabilities needed by industry but not all of them, which

signals the existence of room for improvement regarding this area.
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(a) Question 6.1

(b) Question 6.2

(c) Question 6.3

Figure 6.20: Answers to Likert questions related to STPA
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Safety Architecting Enablers

This group of questions focuses on the three enablers for architecting safety prin-

ciples, namely physical redundancy, functional redundancy and containment. The

three questions displayed in Table 6.18 represent this group. The responses to

the questions are presented in Figure 6.21.

Results for questions 7.1 shows unanimous agreement (five ‘Agree’), support-

ing the claim that the proposed enabler can increase the interactivity of architect-

ing the safety principles stated above. Responses to question 7.2 show more

variety but also show a high degree of agreement, indicating the potential of the

methods to reduce the number of time-consuming manual activities required. The

answers to question 7.3 show a much lower level of agreement; the majority are

‘Neutral’ and even one is ‘Strongly Disagree’. This indicates that the supported

safety principles can satisfy only a part of industrial requirements but there are

still many more principles to consider.

Table 6.18: Likert questions related to Safety architecting enablers

Question Number Please indicate to what extent you agree or disagree with the
following statements

Question 7.1 The proposed enablers enhance interactivity while architecting
physical and functional redundancy, and containment.

Question 7.2 The proposed enablers reduce the number of time-consuming
manual activities required for architecting physical and functional
redundancy, and containment.

Question 7.3 Physical and functional redundancy, and containment cover to a
sufficient extent the industrial requirement for safety principles.
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(a) Question 7.1

(b) Question 7.2

(c) Question 7.3

Figure 6.21: Answers to Likert questions related to Safety architecting enablers
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Fault Tree Analysis Support

This group of questions is centred around the methods for Fault Tree Analysis.

It consists of the three questions presented in Table 6.19. The results gathered

from the participants are shown in Figure 6.22.

Table 6.19: Likert questions related to Fault Tree Analysis

Question Number Please indicate to what extent you agree or disagree with the
following statements

Question 8.1 The proposed enablers reduce the number of time-consuming
manual activities for FTA creation.

Question 8.2 The proposed enablers enhance interactivity of the exploration of
FTA results.

Question 8.3 The level of detail of the FTA created by this technique is com-
mensurate with conceptual design.

Answers for questions 7.1, 7.2 and 7.3 are similar (majority of ‘Agree’ and

some ‘Strongly Agree’), shows a high degree of agreement. These results sup-

porting the claims that the proposed FTA enabler reduces the number of time-

consuming manual activities required for FTA creation, enhances interactivity

while exploring FTA results, and operates at a level of detail appropriate for con-

ceptual design.
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(a) Question 8.1

(b) Question 8.2

(c) Question 8.3

Figure 6.22: Answers to Likert questions related to Fault Tree Analysis
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Sizing Support

This group of questions refers to the proposed Sizing support. Table 6.20 contains

the two questions that comprise this group. The answers to these questions are

summarised in Figure 6.23.

Table 6.20: Likert questions related to Sizing

Question Number Please indicate to what extent you agree or disagree with the
following statements

Question 9.1 The proposed enablers reduce the number of time-consuming
manual activities for sizing workflow creation.

Question 9.2 The level of detail regarding context definition (configura-
tion/scenarios and environmental conditions) is appropriate for
conceptual design.

Responses to question 9.1 range from ‘Neutral’ to ‘Strongly Agree’, which is

the most chosen value. This indicates the capability of the proposed enabler

to reduce the number of time-consuming activities when creating computational

workflows used for sizing. Results to question 9.2 are distributed around ‘Agree’,

supporting the claim the level of detail about configurations, scenarios and envir-

onmental conditions is appropriate for conceptual design.
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(a) Question 9.1

(b) Question 9.2

Figure 6.23: Answers to Likert questions related to Sizing
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Overall Framework

The last group of Likert questions refers to the overall framework consisting of all

the proposed methods. The three questions belonging to this group are shown in

Table 6.21. The responses to these questions displayed in Figure 6.24.

Table 6.21: Likert questions related to Overall framework

Question Number Please indicate to what extent you agree or disagree with the
following statements

Question 10.1 The techniques presented allow the exploration of more design
alternatives during conceptual design, specifically regarding dif-
ferent ways of complying with safety requirements.

Question 10.2 The additional exploration capabilities will contribute to a higher
level of understanding regarding how to achieve safety and the
effects on system performance.

Question 10.3 An interactive software tool similar to the one presented, integ-
rated with existing tools used in the company, would be useful
and add value to the company.

The answers to questions 10.1, 10.2 and 10.3 show a majority of ‘Agree’ val-

ues, some ‘Strongly Agree’ and one ‘Neutral’ in question 10.3. This shows a high

level of agreement, which support the claim that the proposed techniques allow

the exploration of more design alternatives during conceptual design, contribut-

ing to a higher level of understanding on how to achieve safety and which effects

it has on system performance. The results also show that a tool like AirCADia

Architect, integrated with existing tools, can add value to the industry.
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(a) Question 10.1

(b) Question 10.2

(c) Question 10.3

Figure 6.24: Answers to Likert questions related to Overall framework
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Open Questions

The three open-ended questions that close the questionnaire are reproduced in

Table 6.22. Regarding question 11, the participants highlighted the following pos-

itive aspects of the methods: automation and ability to speed up processes (men-

tioned by participants 1, 2 and 3), linking between different domains to ensure

consistency (answered by participants 1 and 4), and ability of the methods to

“incorporate safety considerations. . . without the need for expert input at every

stage” (participant 5). Furthermore, these positive characteristic are in line with

the aim and objectives of the research (see Chapter 1.3), which is especially

important as their achievement is what the success evaluation intends to prove.

Table 6.22: open questions

Question Number Question Text

Question 11 Is there anything that you particularly liked about any of the
presented methods? Which one of them do you believe would
be the most useful? How do you think the methods could add
value in the conceptual design stage?

Question 12 Is there anything that you did not particularly like about any of the
presented methods? Any particular capability that the methods
fail to support?

Question 13 Regarding the certification process, how relevant is the early con-
sideration of safety? How could these methods contribute to-
wards the certification of aircraft in the future?

Question 12 helped to understand the limitations of the proposed methods

and obtain ideas for further improvement. Respondents 3 and 5 highlighted the

lack of verification and validation in the framework and suggested their addition.

Participant 5 also worried about the methods might not be able to handle novel

configurations. Participant 1 warned about the possibility that “the initial work to

setup such a tool on an industrial scale may be extensive”. Finally, respondent

2 highlighted the importance of including hazards both from past experience and

more formal methods.
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Question 13 explored the relationship between early consideration of safety,

the certification process and the presented methods. The answers from parti-

cipants 4 and 5 highlighted the importance of considering safety at early design

stages and its potential to accelerate the certification process. Regarding the abil-

ity of the methods to contribute to certification of aircraft, respondent 2 indicated

that “ more model-based demonstration (including safety one) shall be introduced

in the future but should be carefully looked at before fully trusting them”. This is in

line with participants 3 and 5 reiterating the importance of validation and verifica-

tion for the methods to be used in industry. Participants 1 and 5 were positive with

the ability of the methods to explore multiple solutions or allow for novel trades.

Based on the presented results, it is possible to conclude that the industrial

evaluation was successful, with the presented methods having the potential to

make safety architecting at early design stages more efficient and contribute to

the exploration of more design alternatives. However, it is also important to con-

sider that the methods still present limitations that hinder their ability to be used in

an industrial setup, and that should be considered in future work. Further evalu-

ation is also desirable, preferably in a more realistic setup and with the architects

using the software.
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6.6 Summary and Conclusions

The results from the support and application evaluation studies indicated that

the proposed methods work correctly and provide expected results. The STPA

support was evaluated by applying it to the WBS case study. The results were

compared to those obtained via manual application of the methods by Leveson

et al. The degree of similarity was considerable even though there were some dis-

crepancies, which were due to missing information in the original description of

the system and its possible misinterpretation. This problem highlights the import-

ance of having a common unambiguous description of the system that methods

can use, such as the one used in this research.

The enablers for the architecting of safety principles were able to reproduce

most of the safety features from the architecture of a real aircraft at the level of de-

tail employed in this research. They enabled the implementation of safety meas-

ure by automating many repetitive aspects and ensuring consistency at every step

of the process. The enablers work interactively, providing relevant information at

each step, which can help architects to understand the effect of implementing

safety principles in the architecture.

The FTA support was able to generate fault trees automatically from the ar-

chitecture definition with very little additional user’s input. Qualitative and quant-

itative evaluation of the fault showed that the generated fault trees that reflect the

expected trends in the probability of failure and cut sets caused by an increas-

ing degree of redundancy. The FTA support can help architects to obtain quick

feedback after changes are made to the architecture, which has the potential of

accelerating the architecting process.

The sizing support was able to handle the fast creation of computational work-

flows taking into account the interaction of the system with the environment and

several configurations that model component failures. The workflows presented a
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low number of reversed models, which is generally an indication of good quality.

The support is expected to speed up the determination of the impact of architec-

ture changes on performance.

The industrial feedback provided valuable information regarding application

and success evaluations. Although this only constituted an initial application and

success evaluation, the responses from the expert were positive, indicating the

ability of the methods to contribute towards the achievement of the objectives and

aim of the research. The evaluation presented in this chapter has proven the

ability of the methods to make safety an integral part of the systems architecting

process, increasingly automating assessment and system development activities,

improving the efficiency and effectiveness of design for safety.

However, the industrial evaluation identified some areas where further work

is needed. The participants highlighted the lack of verification and validation in

the framework. They also pointed out the importance of being able to include

hazards from past experience and formal methods. The participants also raised

concerns regarding the ability of the methods to handle novel configurations and

the required amount of initial work to set up the tool.

It is also important to discuss the challenges the use of the proposed meth-

ods presents in an actual industrial setup. To get the maximum benefit from

the methods, the architecture must be modelled by following the proposed RFLP

framework, a framework that can be easily converted to and from the proposed

framework or adapt the methods to their own framework. The more difficult the

conversion between frameworks (e.g. time or resource consuming), the smaller

the expected benefit from using the proposed methods. Regarding the type of

data required, at a minimum, the methods require that the logical view (compon-

ents and connections) is defined and computational models for each component

are available for the sizing enabler. The result obtained from the methods can be

enhanced by providing additional information such as the requirement and func-
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tional views, inter-view relations, probability of failure, disturbance propagation

inside components, and functional-logical knowledge (e.g. which solution satis-

fies which function and what functions are derived as a result). An architecting

framework that contains these types of data is likely to be easily convertible to the

presented RFLP framework or the methods could be easily adaptable to such a

framework.
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Summary and Conclusions

7.1 Introduction

This chapter concludes the main body of this thesis. First, a summary of the re-

search is provided in Section 7.2. The summary focuses on how the proposed

methods achieve the aims and objectives of the research. This is followed by a

discussion of the research findings and contribution to knowledge in Section 7.3.

Finally, the limitation of the research and suggestions for future work are presen-

ted in Section 7.4.

7.2 Research Summary

7.2.1 Research Clarification

The research presented in this thesis is structured according to the four stages

of engineering design research by Blessing and Chakrabarti [1]. The first stage,

Research Clarification consisted of a literature review that identified areas of im-

provement regarding the design of safe systems and provided enough information

to formulate the aim and objectives. First, the literature review clarified the con-

cepts of safety, reliability, and resilience; definitions for these terms were obtained
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after compiling and identifying the most frequent traits of existing definitions in the

literature. It was also found that both reliability and resilience are closely related

to safety. Methods for improving reliability or resilience can also have a positive

impact on safety, however safety cannot be restricted to reliability as some acci-

dents — those caused by interactions of working, rather than component failure

— cannot be prevented by increasing component reliability.

The literature review also clarified how the safety assessment process, used

to show compliance with certification requirements, and the rest of the aircraft

development processes relate to each other. On the safety assessment side, two

main kinds of activities were identified, namely hazard assessment (creation and

verification of safety requirements) and safety analysis (validation of the system

against safety requirements). On the system development side, it was found that it

is fundamental to support the architecting of safety principles. It is also important

to and be able to assess the impact on performance as soon as possible after

safety-motivated changes are made to the architecture.

As a result of the research clarification, the following aim (restated here for

convenience) was proposed:

To improve the efficiency and effectiveness of design for safety as

an integral part of the systems architecting process.

The following objectives were formulated in support of the aim:

1. Automate and integrate the hazard assessment process with the systems

architecting process to allow a seamless definition of safety requirements.

2. Develop interactive methods to support the introduction of safety principles

during architecture definition.

3. Automate the creation of system safety and performance models, enabling

swift assessment of the candidate architectures.

264



7.2. Research Summary

7.2.2 Descriptive Study I

The Research Clarification was followed by the Descriptive Study I, which con-

sisted in a detailed literature review regarding the most relevant topics concern-

ing the objectives. First, accident models were reviewed to better understand

the hazard assessment and safety analysis methods that the models underpin.

Then, the methods themselves were studied and STPA hazard assessment and

FTA were chosen as the most appropriate methods for which to develop com-

putational support, which is intended to automate them and integrate them with

the rest of system development processes and tools as required by the research

objectives.

Several computational tools to support STPA were reviewed. It was concluded

that none of them supports the automated creation of detailed STPA control loops

from the architecture definition and only one of them supports the automated cre-

ation of hierarchical control structures. Furthermore, none of them was integrated

nor easily integrable with tools that support other parts of the architecture defini-

tion such as requirements or functions.

Regarding FTA, the existing methods for automating the creation of fault trees

were studied. It was found that the reviewed approaches require the architec-

tural information to be translated to different specific languages, which limits their

ability to be integrated easily with other tools that provide sizing and performance

information.

To support the architecting of safety into the design, several safety principles

were reviewed. Many of them were taken from the field of resilience, as it was

shown earlier in the review how resilience can indeed contribute to safety. The

principles of physical redundancy, functional redundancy, and containment were

identified as the most applicable within the scope of this research, considering

that the objective was to develop a computation support tool to support the inclu-

sion of safety principles within the architecture.
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Two limitations were found with current methods to support the sizing of com-

plex systems present. Some of the methods require extensive manual setup or

expert knowledge, hindering the ability to provide results swiftly after the archi-

tecture definition is modified. Others, despite being more automated, can only

consider certain combinations of systems and components. A method free from

both limitations was found, but its applicability is limited as it considers only a

single flight condition to determine the sizes of the system. More flight condi-

tions and configurations need to be considered to determine the most demanding

conditions for a system, especially when designing novel architecture where past

experience is insufficient.

7.2.3 Prescriptive Study I

In the Prescriptive Study I stage, several methods were developed to overcome

the limitations of current approaches identified in the literature review. All meth-

ods used the RFLP definition of the architecture as an input, which is expected to

facilitate the integration of the safety and development activities and help to im-

prove the consistency of the results. The RFLP framework by Guenov et al. was

identified as a promising framework for modelling the architecture. However, dur-

ing the development of the methods, it was found that this RFLP approach was

insufficient and some parts needed to be extended. Therefore, the first part of the

methodology chapter revolves around the improved RFLP framework. The follow-

ing parts of the methodology focused on methods to support hazard assessment,

enablers for architecting safety principles, and methods for safety analysis and

sizing.
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RFLP Framework

The most common relations in the framework, namely hierarchical and flow re-

lations, were presented first, including the object model that supports such re-

lations. Regarding flow relations, the exchange of matter, energy or information

between components is modelled using concepts from the Functional Basis (see

Section 2.3.1). Flow is exchanged through ports and links between ports. Links

can be seen in groups called connections, which represent mixing and distribu-

tions of flow as well as the existence or lack of redundancy.

The main elements in the RFLP views are requirements, functions and solu-

tions. Requirements are presented in a hierarchy. Three kinds of requirements

are considered, namely functional, performance and safety requirements. Func-

tion and solutions are related both hierarchically and via flow relations. Solutions

are categorised as leaf solutions, composite solutions (subsystems), and control-

lers.

Objects that model relations between elements that belong to different views

were also presented. The relations that were considered are ‘Function satisfies

requirement’, ‘Solution satisfies requirement’, ‘Solution fulfils function’ and ‘Solu-

tion derives function’. Finally, the concepts of template and template library were

introduced. Templates facilitate the creation of functions and solutions ensuring

consistency between similar elements and avoiding having to define the same

element more than once.

Methods to Support Hazard Assessment

Two novel methods were developed to support architects in the hazard assess-

ment process, in particular the methods, provide support for creating the models

required in steps 2, 3 and 4 of the STPA hazard assessment process. The first

method uses the information in the logical view of the architecture to automat-

ically elaborate consistent hierarchical control structures, which can be used to
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identify unsafe control actions. The flow and hierarchical relation in the logical

view determine the position in the hierarchy of the controllers and what type of

information (feedback, control or same level signals) is exchanged among them

and the controlled processes.

The second method enables the automated creation of more detailed control

loops to support the identification of loss scenarios. Given a controller, the sets

of actuators, sensors and process solutions are determined either automatically

by the method or manually by the user. The links between sets are determined

similarly to the ones in the method for creating hierarchical control structures.

Enablers for Architecting Safety Principles

Three novel enablers were developed to help architects interactively implement

safety principles into architectures. Specifically, the enablers support the intro-

duction of physical redundancy, functional redundancy and containment.

The architecting enabler for physical redundancy helps architects to increase

the redundancy of the architecture by duplicating one or more times a part of

the architecture. The extension of the redundant leg — which components will

be replicated — is calculated by traversing the logical view according to a set of

rules that the architect can modify. Once the extension is satisfactory, the desired

number of redundant legs is created.

The enabler for functional redundancy supports increasing the redundancy of

the architecture by adding one or more components that can perform one of the

already fulfilled functions in the architecture in a dissimilar manner. The solu-

tions in the architecture and redundant leg and solution templates from the library

are compared and sorted according to their ability to fulfil the function. When a

solution from the library is added to the leg, new functions might be derived as

a result. These functions need to be fulfilled, which is achieved by repeating the

process.
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The architecting enabler for containment helps architects to study the propaga-

tion of disturbances that originate from one or more solutions (disturbance sources)

and could affect one or more susceptible solutions (disturbance sinks). The ena-

bler can create and analyse the effects of including barriers — any solution that is

capable of stopping the propagation of a disturbance. The best location for barri-

ers can be determined manually or automatically by using a min-cut algorithm.

Method for Automated Creation of Fault Trees

A safety method that enables the automatic creation and interactive analyses of

fault tree analyses was developed. A novel algorithm is used to create fault trees

from the architecture definition. The flow relations in the logical view are used

together with the information about existing redundancy to determine the type and

inputs of the fault tree gates. Trees created this way can be analysed by applying

standard qualitative and quantitative techniques. The results are linked to the

different parts of the tree and logical view and can be visualized interactively.

Method for Automated Creation of Sizing Workflows

A method for automating the creation of sizing workflows was built on top of an ex-

isting state-of-the-art RFLP sizing enabler. The developed methods make it pos-

sible to consider more detailed information about the system context and system

configurations, such as those failure configurations that the system can handle

thanks to the architected safety principles such as redundancy.

7.2.4 Descriptive Study II

The Descriptive Study II stage consists of the evaluation of the research. Several

studies were performed to test and evaluate the novel methods and enablers de-

veloped during the course of this research. In order to be evaluated, the methods
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were implemented within a prototype object-oriented software called AirCADia

Architect. Three types of evaluation were carried out in this research, namely

support, application and success evaluation. Two use cases were developed for

evaluation purposes. One of the use cases is inspired in the wheel brake system

example from the ARP 4761 [58], the other one in the systems architecture of an

Airbus A320 including the cabin, ECS, FCS, PNE, HYD and engine systems.

Support evaluation, which is also referred to as verification, checked the con-

sistency and correct functioning of the developed tool. The support evaluation

was conducted by applying the proposed techniques to the two case studies and

comparing the results with those provided by manual application of the methods,

existing automated tools, or existing designs. The results indicated that the pro-

posed methods work correctly and provide expected results.

Application evaluation investigated whether the application of the methods

contributes towards achieving the aim of the research. It was also based on the

application of the methods to the use cases. The result showed the ability of the

methods to reduce the time required for architecting and assessing the impact of

safety as they automate significant parts of the process reducing the number of

required manual activities. Greater consistency in the architecture definition and

between the definition and STPA, FTA and sizing analyses was also observed.

The potential of the methods to work with a common architecture definition, mit-

igating the problems of interpreting ambiguous architectural diagrams or descrip-

tions from various sources, was demonstrated as well.

Success evaluation intended to determine whether the developed methods

can provide value and be useful in practice. As it was not possible to test the

performance of the methods on a real industrial project, the evaluation consisted

in the obtention of feedback from a panel of specialists from Airbus and Cranfield

University. The research and a live demonstration based on the A320 inspired use

case was presented to the panel. After the presentation, an online questionnaire
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was given to the participants. The responses from the experts were positive,

indicating the ability of the methods to contribute towards the achievement of the

objectives and aim of the research. The feedback also provided suggestions to

improve the presented work and make it more industrially relevant.

7.3 Novelty and Contribution to Knowledge

This research has resulted in the following novelty and contribution to knowledge

and engineering practice:

• Even though resilience is a popular topic spanning many research fields, the

literature review showed there is no clear definition of resilience and that it is

unclear how resilience relates to safety. The analysis of several resilience-

related references was employed to propose a definition for resilience that

is relevant within the scope of this research. After careful consideration, it

was concluded that resilience does not depart significantly from the aims of

safety and reliability when applied to this research, and therefore there is

no need for such term. Nevertheless, resilience principles were found to be

relevant for this research and relabelled as safety principles.

• Two novel methods for automating the creation process of the necessary

models for STPA hazard analysis of systems architectures. In particular:

– The first method creates hierarchical control structures, which com-

prise the whole system.

– The second method allows architects to focus on a particular part of

the system as it creates detailed controlled loops of such part.

The automation of model creation reduces the time required for STPA haz-

ard analysis. It also increases the consistency of the results with respect to
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the architecture definition and other analysis as it uses the common RFLP

model as input to the methods.

• Three novel interactive enablers developed to facilitate the introduction of

safety principles, namely physical redundancy, functional redundancy and

containment. The application of these principles is expected to modify the

architecture in such a way that safety is increased. The enablers provide

the relevant information for implementing each one of the principles, which

is expected to lead to better decisions from architects. The automation of

instantiation and linking of functions and solution reduces the required time

for architecting safety. It also reduces the likelihood of making errors while

performing these repetitive tasks.

• A novel method to automate the creation of fault trees. The method tra-

verses the architecture and adds gates to the fault tree. The type of each

gate depends on the existing redundancy in the architecture. Gates’ inputs

correspond to other gates or failures of individual components. The ele-

ments of the tree are linked to the architecture to facilitate the interactive

exploration of results. The method reduces the time required for FTA and

the consistency of the results as the source of information is the common

RFLP model.

• A method developed to automate substantial parts of the creation process

of computational workflows used for sizing. The method extends a state-

of-the-art method that was designed for only one sizing point. The novel

method is capable of accounting for different scenarios (including failure

scenarios) and flying conditions. This way, the time spent on sizing is re-

duced while being able to account for complex sizing problems.

• An improved RFLP framework. It was developed to overcome the limitations

of existing RFLP frameworks that made them unsuitable to be used with the
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developed methods. The framework allows the definition of architectures

in such a way that all proposed methods refer to the same model and thus

become tightly integrated. This reduced the likelihood of different analyses

evolving at a different pace and referring to different versions of the system.

7.4 Limitations and Future Work

There are several limitations regarding the proposed techniques, which could be

addressed in future work. These limitations and avenues for future research are

as follows:

• The methods for creating hierarchical control structures currently lump to-

gether all process solutions in one node. However, several examples of

hierarchical control structures that do not adhere to this rule can be found in

Reference [61], which was used to prepare the case study employed for the

evaluation of STPA support (see Section 6.3.2). It is important to study how

to provide a way to group process solutions in more than one node without

losing the benefits of automation.

• Similar to the point above, there are examples of detailed control loops that

do not match exactly the generic structure proposed in the STPA hand-

book [92] and used by the method developed in this research. It needs to

be investigated how to provide more flexibility to create control loops without

the additional manual input offsetting the benefits of automation.

• The visualization of STPA models, in particular the automatic layout of the

items, was not found completely satisfactory in examples that include many

components. Visualization of the models seems to be an important part

of the STPA process, so improving this aspect is crucial for extending the

applicability of the proposed methods to larger systems.
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• Merging the components created by the redundancy enablers with the exist-

ing architecture is not trivial when the interfaces of subsystems are involved.

A set of default rules, which produced good results in the evaluation case

studies, was proposed. However, the applicability of these rules to other

cases needs to be studied and new rules and options might need to be

included.

• A central part of the functional redundancy enabler is the functional-logical

information (e.g. the ability of a solution to fulfil a function and its need for

derived functions) contained in solutions and templates. At a basic level, this

information is inferred from component and function interfaces. However,

more detailed functional-logical information is expected to lead to a more

precise ranking of solutions. Since it is difficult to define the relations a

priori, it would be beneficial to develop ways to capture this information as

the architecture is defined so it can be reused later.

• The modelling of disturbance propagation used in this thesis does not dif-

ferentiate between types of disturbance. Removing this limitation would in-

troduce more complexity but it would also enable more realistic studies.

• The minimum cut algorithm used to determine the optimal placement of

barriers takes into account the weights associated with graph edges. These

weights might be used to express the user’s preference for the location of

barriers but no mechanism to do so is currently available. Also, the algorithm

outputs only one minimum cut, but more cuts with the same value might

exist. Removing these limitations is a suggested avenue for future research.

• The method for automated fault tree creation considers only the failure of

components without specifying which kind of failure. Furthermore, only AND

and OR gates are applicable with the current level of detail regarding re-

dundancy. If the architecting framework is extended to model information
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about failure modes and redundancy, the fault tree creation algorithm can

be extended to generate trees that include this information. The traversal

logic of the algorithm is expected to be reusable for this purpose.

• Depending on the kind of sizing workflow obtained by applying the proposed

method, a unique solution for the sizing problem might not exist. Therefore,

additional criteria need to be employed to obtain a single solution (e.g. op-

timise weight or power consumption). The set of variables that describe

system attributes is determined by optimising the system according to such

criteria. By contrast, finding the most demanding condition implies finding

the set of variables that models the environment so that the performance

of the system is minimised. Methods for solving this double optimization

problem in an efficient matter need to be researched further.

• Scheduling workflows for systems involving a great number of models can

be challenging when the models generate conflicts in their default config-

uration, e.g. the default workflow is overdetermined. Support methods are

required to help architects resolve these issues, including better visualiza-

tion of workflows.

• This research focused on particular aspects of the safety and system de-

velopment processes. Other relevant activities and analyses, such as de-

termining the layout of components or thermal analysis among others, need

to be performed during the early design stages. Adapting the methods to

the RFLP framework would be beneficial to obtain a better integration and

increase consistency among the analyses. This would also test the ability of

the proposed framework to model the required aspects of the system during

conceptual design and inform further development of the framework. One

possibility for extending the framework is including the physical view of the

system, which was out of scope in this research.
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• When a part of the architecture is modified, all the analyses related to that

part are likely to become outdated and their results might become invalid.

The author believes that, in response to certain minor changes, it would be

possible to automatically repeat some analyses so they are kept up to date

without requiring new user input. Which analyses and which kind of changes

can be handled in this way need to be determined in future research.

• The industrial evaluation highlighted the lack of verification and validation

in the framework. Verification and validation are suggested to be added in

future work. One of the participants also warned about the amount of initial

work required for using the proposed methods. Another respondent high-

lighted the importance of including hazards from past experience and formal

methods. Quantifying the effort required for the initial setup and how to re-

use this information and past experience for future projects is an interesting

avenue for future research, especially if it involves a real industrial project.
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Appendix A

Definitions from literature review

A.1 Safety

1. Patriarca et al. [33]: no definition.

• Resilience Engineering (RE) is a paradigm for safety management that

focuses on systems coping with complexity and balancing productivity

with safety.

2. Madni and Jackson [40]: system property that encompasses the beha-

viour of and interactions among subsystems, software, organizations, and

humans.

• Conventional risk management approaches employ hindsight and cal-

culations of failure probabilities, resilience engineering is a proactive

approach that looks for ways to enhance the ability of organizations

to explicitly monitor risks, and to make appropriate trade-offs between

required safety levels and production and economic pressures.

• Predictable Versus Unpredictable Disruptions: Traditional system safety

analysis, as documented in MIL-STD-882 depends, for the most part,

on designing systems to survive previously encountered disruptions.
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Even so, the expectation exists that a system designed for resilience

will avoid, survive, and recover from unpredicted disruptions also.

3. Francis and Bekera [41]: freedom from those conditions that can cause

death, injury, occupational illness, damage to or loss of equipment or prop-

erty, or damage to the environment. (From MIL-STD-882 [154])

• Resilience engineering is distinguished from traditional safety manage-

ment in that, instead of identifying and alleviating risk factors, it aims to

build system that can withstand unanticipated disruptions. Anticipate,

circumvent, and recover rapidly from events that threaten safety.

• While a resilient system is likely to be safe, the converse is not ne-

cessarily true. Safety may be obtained at the cost of other objectives.

Systems may not be designed with enough adaptive capacity and thus,

not resilience.

4. Uday and Marais [50]: the objective of ensuring accident prevention through

actions on multiple safety levers, such as technical, organizational, or regu-

latory. It values human life (or property loss) over other performance traits.

• With respect to resilience, safety can be thought of as the aspect of

survivability that is related to minimizing loss of life (or property).

• In some cases, both these attributes go together. In other cases, the

emphasis is on performance.

5. Jackson [51]: no definition.

• Safety endeavours to prevent the failure of a system. Resilience goes

beyond safety in that it calls for mechanisms to anticipate failure and to

enable the system to recover from a major disruption.

6. Haimes [54]: no definition.
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A.1. Safety

• Resilience engineering is a paradigm for safety management that fo-

cuses on how to help people cope with complexity under pressure to

achieve success.

7. Jackson [55]: no definition.

• Thus, one could say that safety, which is achieving a system goal or

objective without loss of life, is the whole point of system resilience.

• In addition, system safety does not normally concern itself with the

anticipation factor in system resilience.

• Traditional safety analysis does not treat the interaction of components.

8. Richards et al. [63]: no definition.

• An extension of the traditional fields of reliability engineering and safety

management, resilience engineering

9. ARP 4754A [64]: the state in which risk is acceptable. Risk is the com-

bination of the frequency (probability) of an occurrence and its associated

level of severity. The levels of severity are defined in line with CS-25 [65,

§AMC 25.1309], which focuses on the effects on the aircraft, crew and pas-

sengers.

10. Leveson [59]: freedom from accidents. An accident is defined as an un-

desired and unplanned event that results in a loss (including loss of human

life or injury, property damage, environmental pollution, and so on).
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A.2 Resilience

1. Sitterle et al. [35]: a resilient system is one which 1) is trusted and ef-

fective in a wide range of contexts (robustness), 2) easily adapted through

reconfiguration or replacements.

2. Patriarca et al. [33]: feature if a system that allows it to respond to an

unanticipated disturbance that can lead to failure and then resume oper-

ations quickly and with minimum decrement in performance. (related to

robust, buoyant, elastic, flexible)

3. Tierney and Bruneau [36]: R4, Robustness, Redundancy, Resourceful-

ness, Rapidity.

4. Hollnagel [37]: responding, monitoring, learning, anticipating.

5. Woods [38]: (from different fields: safety, complexity, human organiza-

tions, ecology. . . ) system property that arises from 1) how a system re-

bounds from disrupting events 2) its robustness (absorb perturbations) 3) its

graceful extensibility (avoid sudden failure) 4) its sustained adaptability (gov-

ernance policies to sustain function over changing conditions).

6. Westrum [39]: system property consisting of two of the following 1) Avoid-

ance: anticipation of a mishap. 2) Survival: resist destruction. 3) Recovery:

sometimes with reduced performance.

7. Madni and Jackson [40]: multi-faceted capability encompassing avoiding

(anticipation), absorbing (robustness), adapting to (reconfiguration) and re-

covering (restoration) from disruptions.

8. Francis and Bekera [41]: capability of effectively combating disrupting

events: 1) Anticipate and absorb: forecast triplets and prepare. 2) Adapt

3) Recover.
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A.2. Resilience

9. Enos [42]: ability of a system to react to and return to full function after an

interruption to system operation.

10. Neches and Madni [43]: ability of a system to adapt affordably and perform

effectively across a wide range of operational contexts, defined by mission,

environment, threat, and force disposition.

11. Neches and Madni [43]: robustness that is achieved through thoughtful,

informed design that makes systems both effective and reliable in a wide

range of contexts.

12. Chalupnik, Wynn and Clarkson [44]: capacity of a system to tolerate dis-

turbances while retaining its structure and function, focusing on a system’s

recovery from perturbation

13. Hosseini, Barker and Ramirez-Marquez [32]: ability of an entity or system

to return to normal condition after the occurrence of an event that disrupts

its state.

14. Henry and Ramirez-Marquez [34]: ability of an entity to recover from an

external disruptive event.

15. Tran et al. [45]: ability to prepare and plan for, absorb, recover from, and

more successfully adapt to adverse events.

16. Uday, Chandrahasa and Marais [46]: ability of a system, process or or-

ganization to react to, survive, and recover from undesired but not neces-

sarily unplanned or unexpected changes (disruptions)

17. Uday and Marais [155]: ability of a system to survive and recover from

changes, represented as a combination of survivability and recoverability.

18. Farid [47]: combination of a static ‘survival’ property, which measures the

degree of performance after a disruption, and a dynamic ‘recovery’ property,
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which measures how quickly the performance returns to normal operation.

19. Ayyub [48]: ability to prepare for and adapt to changing conditions and

withstand and recover rapidly from disruptions. Include deliberate attack

types, accidents, or naturally occurring threats or incidents. It can be meas-

ured based on the persistence of a corresponding functional performance

under uncertainty in the face of disturbances.

20. Jackson and Ferris [49]: ability to adapt to changing conditions and pre-

pare for, withstand, and rapidly recover from disruption.

21. Uday and Marais [50]: ability of a system or organization to react to and

recover from disturbances at an early stage with minimal effect on its dy-

namic stability, usually represented as a combination of survivability and

recoverability.

22. Jackson [51]: ability of the system to withstand a major disruption within ac-

ceptable degradation parameters and to recover within an acceptable time

and composite costs and risks.

23. Martin-Breen and Anderies [52]: ability of a system to resist external

forces, shocks, and disturbances and can quickly return to its normal state.

24. Whitson and Ramirez-Marquez [53]: ability of a system to maintain func-

tion when shocked and the speed at which it recovers from to achieve a

desired state.

25. Haimes [54]: ability of a system to withstand a major disruption within ac-

ceptable degradation parameters and to recover within an acceptable time

and composite costs and risks.

26. Jackson [55]: combination of at least two of the following: avoidance, sur-

vival and recovery.
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27. Burch [56]: ability of an architecture to support the functions necessary

for mission success in spite of hostile action or adverse conditions. Higher

probability, shorter periods of reduced capability, and across a wider range

of scenarios, conditions, and threats.

28. Youn, Hu and Wang [57]: resilience is the degree of a passive survival rate

(or reliability) plus a proactive survival rate (or restoration).

29. Barker, Ramirez-Marquez and Rocco [156]: resilience can be defined as

the time dependent ratio of recovery over loss.

30. Filippini and Silva [157]: ability to resist, react and recover, in a word the

resilience.

31. Yodo and Wang [137]: ability to survive and recover from the likelihood

of damage due to disruptive events or mishaps. In engineering, speed of

returning to equilibrium. . . how fast an engineered system can adapt to de-

viation following a misfortune. . . .

32. Mehrpouyan et al. [158]: ‘maintaining system functions despite the exist-

ence of failures’.

33. Ferris [159]: ‘ability to provide required capability in the face of adversity’.

What degradation and restorative possibilities are appropriate in the face of

threats need to be determined.

34. Ren et al. [160]: ‘system-level capability to adapt to a disturbance and then

recover from the disturbance’.

35. Yodo and Wang [161]: ability to anticipate, respond, and adapt to changes

in order to reduce the magnitude and duration of disruptive events.

• ‘the ability of the system to continue with its intended functionalities

without failure by itself does not define resiliency behaviour in a sys-
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tem. A resilient system is also a system that should be able to recover

the system misfortunes to its prime operating state, given adequate

resources and time’.

36. Raz and Kenley [162]: system’s ability to recover from internal failures,

faults, errors the effects of the evolving operational environment.
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A.3 Reliability

1. Patriarca et al. [33]: property of a system consisting of having an accept-

ably low probability of failure.

• Reliable if the failure probability is acceptable low while (in contrast)

something is resilient if it has the ability to recover from irregular vari-

ations, disruptions, and degradation of expected working conditions

2. Madni and Jackson [40]: ability of the system to perform required functions

under stated conditions for a specified period of time.

• Resilience offers a vastly different approach; it creates safety by anti-

cipating and planning for the unexpected. From this perspective, safety

becomes a dynamic capability that requires reinforcement and invest-

ment on an ongoing basis.

3. Francis and Bekera [41]: no definition.

• System robustness and reliability are prototypical pre-disruption char-

acteristics of a resilient system

4. Enos [42]: probability that a system or component will satisfy its require-

ments over a given period of time and under given conditions.

• Linked to repairability which in turn helps to achieve resilience.

5. Chalupnik, Wynn and Clarkson [44]: probability that a system will not

fail under the full range of operating conditions, including both expected

unexpected conditions.

• This document view resilience as something similar to reliability includ-

ing only unexpected conditions under varying environment and require-

ments.
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6. Hosseini, Barker and Ramirez-Marquez [32]: no definition.

• Engineering resilience as the sum of the passive survival rate (reliabil-

ity) and proactive survival rate (restoration) of a system.

7. Tran et al. [45]: no definition.

• Traditional systems engineering: ‘. . . resist disruptions through clas-

sical reliability methods, such as redundancy at the component level’.

Resilience, sustaining and recovering critical system functions often

through adaptation.

• Focusing on known and expected threats (e.g. through robust design,

vulnerability assessment, and reliability engineering) leaves a system

dangerously susceptible to unanticipated ones.

8. Uday and Marais [50]: ability of a system and its components to perform

required functions under stated conditions for a specified period of time.

• Resilience is a function of system properties such as component reli-

ability or reconfigurability.

• Simple systems and components: resilience and reliability equivalent.

Complex systems and SoSs: the difference grows with complexity.

• Simplifying hypothesis of traditional reliability and risk approaches be-

come less and less reasonable as complexity augments.

9. Ayyub [48]: no definition.

• Some resilience metrics as a function of reliability.

10. Jackson and Ferris [49]: no definition.

• Reliability is relevant for implementing physical redundancy to improve

resilience. But resilience considers a broader spectrum of failure modes

than traditional reliability analysis.
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11. Whitson and Ramirez-Marquez [53]: probability that the system performs

its intended function, for a specific mission time, under normal and known

operating conditions.

• Resiliency quantifies the probability that the system performs its in-

tended function, for a specific mission time, when in the presence of

external causes.

12. Jackson [55]: no definition.

• An unreliable system will have a difficult time during the survival phase

of resilience. First line against disruptions, but it is not the whole story.

13. Burch [56]: no definition.

• The key difference is that reliability is defined by the system’s response

to failures internal to the system while resilience is defined by the sys-

tem’s response to external threats or conditions.

14. Youn, Hu and Wang [57]: ability of an engineered system to maintain its

capacity and performance above a safety limit during a given period of time

under stated conditions.

• Engineering resilience as the sum of the passive survival rate (reliabil-

ity) and proactive survival rate (restoration) of a system.

15. Richards et al. [63]: no definition.

• To be resilient, systems must not only be reliable but also able to re-

cover from disturbances.

16. ARP 4761 [58, p. 10]: ‘the probability that an item will perform a required

function under specified conditions, without failure, for a specified period of

time’.
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17. Leveson [59]: probability that the behaviour of a component will satisfy its

specified behavioural requirements over time and under given conditions.
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Appendix B

Fault Tree Analysis Reports

This chapter presents the fault tree analysis results used for evaluating the re-

search. Section 2.5 provides more information regarding the meaning of the res-

ults.
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FTA Analysis Results - FTAView

TOP Event
1.011E-006

Minimal Cut Sets (relative probability)
[ Mixerunit (S35) ] P: 9.891E-004
[ Cabin (S33) ] P: 9.891E-004
[ ZoneController (S50) ] P: 9.891E-004
[ TrimAirValve (S34) ] P: 9.891E-004
[ PackFlowControlValve (S48) ] P: 9.891E-004
[ CompressorTemperatureSensor (S44) ] P: 9.891E-004
[ TemperatureSensor (S45) ] P: 9.891E-004
[ TurbineBypassValve (S43) ] P: 9.891E-004
[ PackController (S51) ] P: 9.891E-004
[ FanInlet (S57) ] P: 9.891E-004
[ Precooler (S54) ] P: 9.891E-001
[ PressureRegulatorValve (S53) ] P: 9.891E-004
[ IntermediatePressureInlet (S58),HighPressureInlet (S59) ] P: 9.891E-013

Minimal Cut Sets Filtered
[ Mixerunit (S35) ]
[ Cabin (S33) ]
[ ZoneController (S50) ]
[ TrimAirValve (S34) ]
[ PackFlowControlValve (S48) ]
[ CompressorTemperatureSensor (S44) ]
[ TemperatureSensor (S45) ]
[ TurbineBypassValve (S43) ]
[ PackController (S51) ]
[ FanInlet (S57) ]
[ Precooler (S54) ]
[ PressureRegulatorValve (S53) ]
[ IntermediatePressureInlet (S58),HighPressureInlet (S59) ]

Fussell-Vesely Ranking
1. Precooler (S54) : 9.891E-001
2. PressureRegulatorValve (S53) : 9.891E-004
3. FanInlet (S57) : 9.891E-004
4. ZoneController (S50) : 9.891E-004
5. CompressorTemperatureSensor (S44) : 9.891E-004
6. TemperatureSensor (S45) : 9.891E-004
7. TurbineBypassValve (S43) : 9.891E-004
8. PackController (S51) : 9.891E-004



9. PackFlowControlValve (S48) : 9.891E-004
10. TrimAirValve (S34) : 9.891E-004
11. Cabin (S33) : 9.891E-004
12. Mixerunit (S35) : 9.891E-004
13. IntermediatePressureInlet (S58) : 9.891E-013
14. HighPressureInlet (S59) : 9.891E-013
15. PrimaryHeatExchanger (S38) : 0.000E+000
16. Compressor (S41) : 0.000E+000
17. RamAirInlet (S37) : 0.000E+000
18. MainHeatExchanger (S39) : 0.000E+000
19. Turbine (S42) : 0.000E+000
20. ConnectorJoint2 (S46) : 0.000E+000

Birnbaum Ranking
1. PressureRegulatorValve (S53) : 1.000E+000
2. FanInlet (S57) : 1.000E+000
3. Precooler (S54) : 1.000E+000
4. ZoneController (S50) : 1.000E+000
5. CompressorTemperatureSensor (S44) : 1.000E+000
6. TemperatureSensor (S45) : 1.000E+000
7. TurbineBypassValve (S43) : 1.000E+000
8. PackController (S51) : 1.000E+000
9. PackFlowControlValve (S48) : 1.000E+000

10. TrimAirValve (S34) : 1.000E+000
11. Cabin (S33) : 1.000E+000
12. Mixerunit (S35) : 1.000E+000
13. IntermediatePressureInlet (S58) : 1.000E-009
14. HighPressureInlet (S59) : 1.000E-009
15. PrimaryHeatExchanger (S38) : 0.000E+000
16. Compressor (S41) : 0.000E+000
17. RamAirInlet (S37) : 0.000E+000
18. MainHeatExchanger (S39) : 0.000E+000
19. Turbine (S42) : 0.000E+000
20. ConnectorJoint2 (S46) : 0.000E+000

Minimal Path Sets
[ IntermediatePressureInlet (S58),Mixerunit (S35),Cabin (S33),ZoneController
(S50),TrimAirValve (S34),CompressorTemperatureSensor (S44),PackFlowControlValve
(S48),TemperatureSensor (S45),TurbineBypassValve (S43),PackController (S51),FanInlet
(S57),Precooler (S54),PressureRegulatorValve (S53) ]
[ Mixerunit (S35),Cabin (S33),ZoneController (S50),TrimAirValve
(S34),CompressorTemperatureSensor (S44),PackFlowControlValve
(S48),TemperatureSensor (S45),TurbineBypassValve (S43),PackController (S51),FanInlet
(S57),Precooler (S54),PressureRegulatorValve (S53),HighPressureInlet (S59) ]

Minimal Path Sets Filtered



[ IntermediatePressureInlet (S58),Mixerunit (S35),Cabin (S33),ZoneController
(S50),TrimAirValve (S34),CompressorTemperatureSensor (S44),PackFlowControlValve
(S48),TemperatureSensor (S45),TurbineBypassValve (S43),PackController (S51),FanInlet
(S57),Precooler (S54),PressureRegulatorValve (S53) ]
[ Mixerunit (S35),Cabin (S33),ZoneController (S50),TrimAirValve
(S34),CompressorTemperatureSensor (S44),PackFlowControlValve
(S48),TemperatureSensor (S45),TurbineBypassValve (S43),PackController (S51),FanInlet
(S57),Precooler (S54),PressureRegulatorValve (S53),HighPressureInlet (S59) ]



FTA Analysis Results - FTAView

TOP Event
1.010E-006

Minimal Cut Sets (relative probability)
[ Mixerunit (S35) ] P: 9.901E-004
[ Cabin (S33) ] P: 9.901E-004
[ ZoneController (S50) ] P: 9.901E-004
[ TrimAirValve (S34) ] P: 9.901E-004
[ PackFlowControlValve (S48) ] P: 9.901E-004
[ CompressorTemperatureSensor (S44) ] P: 9.901E-004
[ TemperatureSensor (S45) ] P: 9.901E-004
[ TurbineBypassValve (S43) ] P: 9.901E-004
[ PackController (S51) ] P: 9.901E-004
[ Precooler (S54) ] P: 9.901E-001
[ PressureRegulatorValve (S53) ] P: 9.901E-004
[ FanInlet (S57),FanInlet2 (S62) ] P: 9.901E-013
[ IntermediatePressureInlet (S58),IntermediatePressureInlet2 (S64),HighPressureInlet
(S59),HighPressureInlet2 (S63) ] P: 0.000E+000

Minimal Cut Sets Filtered
[ Mixerunit (S35) ]
[ Cabin (S33) ]
[ ZoneController (S50) ]
[ TrimAirValve (S34) ]
[ PackFlowControlValve (S48) ]
[ CompressorTemperatureSensor (S44) ]
[ TemperatureSensor (S45) ]
[ TurbineBypassValve (S43) ]
[ PackController (S51) ]
[ Precooler (S54) ]
[ PressureRegulatorValve (S53) ]
[ FanInlet (S57),FanInlet2 (S62) ]
[ IntermediatePressureInlet (S58),IntermediatePressureInlet2 (S64),HighPressureInlet
(S59),HighPressureInlet2 (S63) ]

Fussell-Vesely Ranking
1. Precooler (S54) : 9.901E-001
2. PressureRegulatorValve (S53) : 9.901E-004
3. ZoneController (S50) : 9.901E-004
4. CompressorTemperatureSensor (S44) : 9.901E-004
5. TemperatureSensor (S45) : 9.901E-004
6. TurbineBypassValve (S43) : 9.901E-004



7. PackController (S51) : 9.901E-004
8. PackFlowControlValve (S48) : 9.901E-004
9. TrimAirValve (S34) : 9.901E-004

10. Cabin (S33) : 9.901E-004
11. Mixerunit (S35) : 9.901E-004
12. FanInlet (S57) : 9.901E-013
13. FanInlet2 (S62) : 9.901E-013
14. IntermediatePressureInlet (S58) : 0.000E+000
15. IntermediatePressureInlet2 (S64) : 0.000E+000
16. HighPressureInlet (S59) : 0.000E+000
17. HighPressureInlet2 (S63) : 0.000E+000
18. PrimaryHeatExchanger (S38) : 0.000E+000
19. Compressor (S41) : 0.000E+000
20. RamAirInlet (S37) : 0.000E+000
21. MainHeatExchanger (S39) : 0.000E+000
22. Turbine (S42) : 0.000E+000
23. ConnectorJoint2 (S46) : 0.000E+000

Birnbaum Ranking
1. PressureRegulatorValve (S53) : 1.000E+000
2. Precooler (S54) : 1.000E+000
3. ZoneController (S50) : 1.000E+000
4. CompressorTemperatureSensor (S44) : 1.000E+000
5. TemperatureSensor (S45) : 1.000E+000
6. TurbineBypassValve (S43) : 1.000E+000
7. PackController (S51) : 1.000E+000
8. PackFlowControlValve (S48) : 1.000E+000
9. TrimAirValve (S34) : 1.000E+000

10. Cabin (S33) : 1.000E+000
11. Mixerunit (S35) : 1.000E+000
12. FanInlet (S57) : 1.000E-009
13. FanInlet2 (S62) : 1.000E-009
14. PrimaryHeatExchanger (S38) : 0.000E+000
15. Compressor (S41) : 0.000E+000
16. RamAirInlet (S37) : 0.000E+000
17. MainHeatExchanger (S39) : 0.000E+000
18. Turbine (S42) : 0.000E+000
19. ConnectorJoint2 (S46) : 0.000E+000
20. IntermediatePressureInlet (S58) : -1.005E-014
21. IntermediatePressureInlet2 (S64) : -1.005E-014
22. HighPressureInlet (S59) : -1.005E-014
23. HighPressureInlet2 (S63) : -1.005E-014

Minimal Path Sets
[ IntermediatePressureInlet (S58),Mixerunit (S35),Cabin (S33),ZoneController
(S50),TrimAirValve (S34),CompressorTemperatureSensor (S44),PackFlowControlValve



(S48),TemperatureSensor (S45),TurbineBypassValve (S43),PackController (S51),FanInlet
(S57),Precooler (S54),PressureRegulatorValve (S53) ]
[ IntermediatePressureInlet (S58),Mixerunit (S35),Cabin (S33),ZoneController
(S50),TrimAirValve (S34),CompressorTemperatureSensor (S44),PackFlowControlValve
(S48),TemperatureSensor (S45),TurbineBypassValve (S43),PackController (S51),Precooler
(S54),FanInlet2 (S62),PressureRegulatorValve (S53) ]
[ Mixerunit (S35),Cabin (S33),ZoneController (S50),TrimAirValve
(S34),CompressorTemperatureSensor (S44),PackFlowControlValve
(S48),TemperatureSensor (S45),TurbineBypassValve (S43),PackController (S51),FanInlet
(S57),Precooler (S54),PressureRegulatorValve (S53),IntermediatePressureInlet2 (S64) ]
[ Mixerunit (S35),Cabin (S33),ZoneController (S50),TrimAirValve
(S34),CompressorTemperatureSensor (S44),PackFlowControlValve
(S48),TemperatureSensor (S45),TurbineBypassValve (S43),PackController (S51),FanInlet
(S57),Precooler (S54),PressureRegulatorValve (S53),HighPressureInlet (S59) ]
[ Mixerunit (S35),Cabin (S33),ZoneController (S50),TrimAirValve
(S34),CompressorTemperatureSensor (S44),PackFlowControlValve
(S48),TemperatureSensor (S45),TurbineBypassValve (S43),PackController (S51),FanInlet
(S57),Precooler (S54),PressureRegulatorValve (S53),HighPressureInlet2 (S63) ]
[ Mixerunit (S35),Cabin (S33),ZoneController (S50),TrimAirValve
(S34),CompressorTemperatureSensor (S44),PackFlowControlValve
(S48),TemperatureSensor (S45),TurbineBypassValve (S43),PackController (S51),Precooler
(S54),FanInlet2 (S62),PressureRegulatorValve (S53),IntermediatePressureInlet2 (S64) ]
[ Mixerunit (S35),Cabin (S33),ZoneController (S50),TrimAirValve
(S34),CompressorTemperatureSensor (S44),PackFlowControlValve
(S48),TemperatureSensor (S45),TurbineBypassValve (S43),PackController (S51),Precooler
(S54),FanInlet2 (S62),PressureRegulatorValve (S53),HighPressureInlet (S59) ]
[ Mixerunit (S35),Cabin (S33),ZoneController (S50),TrimAirValve
(S34),CompressorTemperatureSensor (S44),PackFlowControlValve
(S48),TemperatureSensor (S45),TurbineBypassValve (S43),PackController (S51),Precooler
(S54),FanInlet2 (S62),PressureRegulatorValve (S53),HighPressureInlet2 (S63) ]

Minimal Path Sets Filtered
[ IntermediatePressureInlet (S58),Mixerunit (S35),Cabin (S33),ZoneController
(S50),TrimAirValve (S34),CompressorTemperatureSensor (S44),PackFlowControlValve
(S48),TemperatureSensor (S45),TurbineBypassValve (S43),PackController (S51),FanInlet
(S57),Precooler (S54),PressureRegulatorValve (S53) ]
[ IntermediatePressureInlet (S58),Mixerunit (S35),Cabin (S33),ZoneController
(S50),TrimAirValve (S34),CompressorTemperatureSensor (S44),PackFlowControlValve
(S48),TemperatureSensor (S45),TurbineBypassValve (S43),PackController (S51),Precooler
(S54),FanInlet2 (S62),PressureRegulatorValve (S53) ]
[ Mixerunit (S35),Cabin (S33),ZoneController (S50),TrimAirValve
(S34),CompressorTemperatureSensor (S44),PackFlowControlValve
(S48),TemperatureSensor (S45),TurbineBypassValve (S43),PackController (S51),FanInlet
(S57),Precooler (S54),PressureRegulatorValve (S53),IntermediatePressureInlet2 (S64) ]
[ Mixerunit (S35),Cabin (S33),ZoneController (S50),TrimAirValve
(S34),CompressorTemperatureSensor (S44),PackFlowControlValve



(S48),TemperatureSensor (S45),TurbineBypassValve (S43),PackController (S51),FanInlet
(S57),Precooler (S54),PressureRegulatorValve (S53),HighPressureInlet (S59) ]
[ Mixerunit (S35),Cabin (S33),ZoneController (S50),TrimAirValve
(S34),CompressorTemperatureSensor (S44),PackFlowControlValve
(S48),TemperatureSensor (S45),TurbineBypassValve (S43),PackController (S51),FanInlet
(S57),Precooler (S54),PressureRegulatorValve (S53),HighPressureInlet2 (S63) ]
[ Mixerunit (S35),Cabin (S33),ZoneController (S50),TrimAirValve
(S34),CompressorTemperatureSensor (S44),PackFlowControlValve
(S48),TemperatureSensor (S45),TurbineBypassValve (S43),PackController (S51),Precooler
(S54),FanInlet2 (S62),PressureRegulatorValve (S53),IntermediatePressureInlet2 (S64) ]
[ Mixerunit (S35),Cabin (S33),ZoneController (S50),TrimAirValve
(S34),CompressorTemperatureSensor (S44),PackFlowControlValve
(S48),TemperatureSensor (S45),TurbineBypassValve (S43),PackController (S51),Precooler
(S54),FanInlet2 (S62),PressureRegulatorValve (S53),HighPressureInlet (S59) ]
[ Mixerunit (S35),Cabin (S33),ZoneController (S50),TrimAirValve
(S34),CompressorTemperatureSensor (S44),PackFlowControlValve
(S48),TemperatureSensor (S45),TurbineBypassValve (S43),PackController (S51),Precooler
(S54),FanInlet2 (S62),PressureRegulatorValve (S53),HighPressureInlet2 (S63) ]



FTA Analysis Results - FTAView

TOP Event
9.000E-009

Minimal Cut Sets (relative probability)
[ Mixerunit (S35) ] P: 1.111E-001
[ Cabin (S33) ] P: 1.111E-001
[ TrimAirValve (S34) ] P: 1.111E-001
[ ZoneController (S50) ] P: 1.111E-001
[ PackFlowControlValve (S48) ] P: 1.111E-001
[ CompressorTemperatureSensor (S44) ] P: 1.111E-001
[ TemperatureSensor (S45) ] P: 1.111E-001
[ TurbineBypassValve (S43) ] P: 1.111E-001
[ PackController (S51) ] P: 1.111E-001

Minimal Cut Sets Filtered
[ Mixerunit (S35) ]
[ Cabin (S33) ]
[ TrimAirValve (S34) ]
[ ZoneController (S50) ]
[ PackFlowControlValve (S48) ]
[ CompressorTemperatureSensor (S44) ]
[ TemperatureSensor (S45) ]
[ TurbineBypassValve (S43) ]
[ PackController (S51) ]

Fussell-Vesely Ranking
1. ZoneController (S50) : 1.111E-001
2. CompressorTemperatureSensor (S44) : 1.111E-001
3. TemperatureSensor (S45) : 1.111E-001
4. TurbineBypassValve (S43) : 1.111E-001
5. PackController (S51) : 1.111E-001
6. PackFlowControlValve (S48) : 1.111E-001
7. TrimAirValve (S34) : 1.111E-001
8. Cabin (S33) : 1.111E-001
9. Mixerunit (S35) : 1.111E-001

10. IntermediatePressureInlet (S58) : 0.000E+000
11. IntermediatePressureInlet2 (S62) : 0.000E+000
12. HighPressureInlet (S59) : 0.000E+000
13. HighPressureInlet2 (S63) : 0.000E+000
14. PressureRegulatorValve2 (S67) : 0.000E+000
15. FanInlet (S57) : 0.000E+000
16. FanInlet2 (S64) : 0.000E+000



17. Precooler2 (S65) : 0.000E+000
18. RamAirInlet2 (S69) : 0.000E+000
19. MainHeatExchanger2 (S71) : 0.000E+000
20. PrimaryHeatExchanger2 (S70) : 0.000E+000
21. Turbine2 (S74) : 0.000E+000
22. Compressor2 (S73) : 0.000E+000
23. CompressorTemperatureSensor2 (S76) : 0.000E+000
24. TemperatureSensor2 (S77) : 0.000E+000
25. TurbineBypassValve2 (S75) : 0.000E+000
26. ZoneController2 (S81) : 0.000E+000
27. PackController2 (S79) : 0.000E+000
28. PackFlowControlValve2 (S80) : 0.000E+000
29. PrimaryHeatExchanger (S38) : 0.000E+000
30. Compressor (S41) : 0.000E+000
31. RamAirInlet (S37) : 0.000E+000
32. MainHeatExchanger (S39) : 0.000E+000
33. Turbine (S42) : 0.000E+000
34. ConnectorJoint2 (S46) : 0.000E+000
35. ConnectorJoint3 (S78) : 0.000E+000

Birnbaum Ranking
1. IntermediatePressureInlet (S58) : 0.000E+000
2. IntermediatePressureInlet2 (S62) : 0.000E+000
3. HighPressureInlet (S59) : 0.000E+000
4. HighPressureInlet2 (S63) : 0.000E+000
5. PressureRegulatorValve2 (S67) : 0.000E+000
6. FanInlet (S57) : 0.000E+000
7. FanInlet2 (S64) : 0.000E+000
8. Precooler2 (S65) : 0.000E+000
9. RamAirInlet2 (S69) : 0.000E+000

10. MainHeatExchanger2 (S71) : 0.000E+000
11. PrimaryHeatExchanger2 (S70) : 0.000E+000
12. Turbine2 (S74) : 0.000E+000
13. Compressor2 (S73) : 0.000E+000
14. CompressorTemperatureSensor2 (S76) : 0.000E+000
15. TemperatureSensor2 (S77) : 0.000E+000
16. TurbineBypassValve2 (S75) : 0.000E+000
17. ZoneController2 (S81) : 0.000E+000
18. PackController2 (S79) : 0.000E+000
19. PackFlowControlValve2 (S80) : 0.000E+000
20. PrimaryHeatExchanger (S38) : 0.000E+000
21. Compressor (S41) : 0.000E+000
22. RamAirInlet (S37) : 0.000E+000
23. MainHeatExchanger (S39) : 0.000E+000
24. Turbine (S42) : 0.000E+000
25. ConnectorJoint2 (S46) : 0.000E+000
26. ConnectorJoint3 (S78) : 0.000E+000



27. ZoneController (S50) : -8.000E-009
28. CompressorTemperatureSensor (S44) : -8.000E-009
29. TemperatureSensor (S45) : -8.000E-009
30. TurbineBypassValve (S43) : -8.000E-009
31. PackController (S51) : -8.000E-009
32. PackFlowControlValve (S48) : -8.000E-009
33. TrimAirValve (S34) : -8.000E-009
34. Cabin (S33) : -8.000E-009
35. Mixerunit (S35) : -8.000E-009

Minimal Path Sets
[ CompressorTemperatureSensor (S44),Mixerunit (S35),Cabin (S33),ZoneController
(S50),TrimAirValve (S34),PackFlowControlValve (S48),TemperatureSensor
(S45),TurbineBypassValve (S43),PackController (S51) ]

Minimal Path Sets Filtered
[ CompressorTemperatureSensor (S44),Mixerunit (S35),Cabin (S33),ZoneController
(S50),TrimAirValve (S34),PackFlowControlValve (S48),TemperatureSensor
(S45),TurbineBypassValve (S43),PackController (S51) ]



FTA Analysis Results - FTAView

TOP Event
9.001E-009

Minimal Cut Sets (relative probability)
[ Mixerunit (S35) ] P: 1.111E-001
[ Cabin (S33) ] P: 1.111E-001
[ ZoneController (S50) ] P: 1.111E-001
[ TrimAirValve (S34) ] P: 1.111E-001
[ PackFlowControlValve (S48) ] P: 1.111E-001
[ CompressorTemperatureSensor (S44) ] P: 1.111E-001
[ TemperatureSensor (S45) ] P: 1.111E-001
[ TurbineBypassValve (S43) ] P: 1.111E-001
[ PackController (S51) ] P: 1.111E-001
[ FanInlet (S57),FanInlet2 (S64) ] P: 1.111E-010
[ Precooler2 (S65),Precooler (S54) ] P: 1.111E-004
[ PressureRegulatorValve2 (S67),Precooler (S54) ] P: 1.111E-007
[ Precooler2 (S65),PressureRegulatorValve (S53) ] P: 1.111E-007
[ PressureRegulatorValve2 (S67),PressureRegulatorValve (S53) ] P: 1.111E-010
[ IntermediatePressureInlet (S58),IntermediatePressureInlet2 (S62),HighPressureInlet
(S59),HighPressureInlet2 (S63) ] P: 0.000E+000

Minimal Cut Sets Filtered
[ Mixerunit (S35) ]
[ Cabin (S33) ]
[ ZoneController (S50) ]
[ TrimAirValve (S34) ]
[ PackFlowControlValve (S48) ]
[ CompressorTemperatureSensor (S44) ]
[ TemperatureSensor (S45) ]
[ TurbineBypassValve (S43) ]
[ PackController (S51) ]
[ FanInlet (S57),FanInlet2 (S64) ]
[ Precooler2 (S65),Precooler (S54) ]
[ PressureRegulatorValve2 (S67),Precooler (S54) ]
[ Precooler2 (S65),PressureRegulatorValve (S53) ]
[ PressureRegulatorValve2 (S67),PressureRegulatorValve (S53) ]
[ IntermediatePressureInlet (S58),IntermediatePressureInlet2 (S62),HighPressureInlet
(S59),HighPressureInlet2 (S63) ]

Fussell-Vesely Ranking
1. ZoneController (S50) : 1.000E+000
2. CompressorTemperatureSensor (S44) : 1.000E+000



3. TemperatureSensor (S45) : 1.000E+000
4. TurbineBypassValve (S43) : 1.000E+000
5. PackController (S51) : 1.000E+000
6. PackFlowControlValve (S48) : 1.000E+000
7. TrimAirValve (S34) : 1.000E+000
8. Cabin (S33) : 1.000E+000
9. Mixerunit (S35) : 1.000E+000

10. PrimaryHeatExchanger (S38) : 0.000E+000
11. Compressor (S41) : 0.000E+000
12. RamAirInlet (S37) : 0.000E+000
13. MainHeatExchanger (S39) : 0.000E+000
14. Turbine (S42) : 0.000E+000
15. ConnectorJoint2 (S46) : 0.000E+000
16. IntermediatePressureInlet (S58) : -1.111E-019
17. IntermediatePressureInlet2 (S62) : -1.111E-019
18. HighPressureInlet (S59) : -1.111E-019
19. HighPressureInlet2 (S63) : -1.111E-019
20. FanInlet (S57) : -1.111E-001
21. FanInlet2 (S64) : -1.111E-001
22. Precooler (S54) : -1.112E+002
23. Precooler2 (S65) : -1.112E+002
24. PressureRegulatorValve (S53) : -1.112E+002
25. PressureRegulatorValve2 (S67) : -1.112E+002

Birnbaum Ranking
1. FanInlet (S57) : 1.200E-025
2. FanInlet2 (S64) : 1.200E-025
3. IntermediatePressureInlet (S58) : 8.400E-026
4. IntermediatePressureInlet2 (S62) : 8.400E-026
5. HighPressureInlet (S59) : 8.400E-026
6. HighPressureInlet2 (S63) : 8.400E-026
7. PrimaryHeatExchanger (S38) : 0.000E+000
8. Compressor (S41) : 0.000E+000
9. RamAirInlet (S37) : 0.000E+000

10. MainHeatExchanger (S39) : 0.000E+000
11. Turbine (S42) : 0.000E+000
12. ConnectorJoint2 (S46) : 0.000E+000
13. ZoneController (S50) : -5.600E-026
14. CompressorTemperatureSensor (S44) : -5.600E-026
15. TemperatureSensor (S45) : -5.600E-026
16. TurbineBypassValve (S43) : -5.600E-026
17. PackController (S51) : -5.600E-026
18. PackFlowControlValve (S48) : -5.600E-026
19. TrimAirValve (S34) : -5.600E-026
20. Cabin (S33) : -5.600E-026
21. Mixerunit (S35) : -5.600E-026
22. Precooler (S54) : -1.105E-014



23. Precooler2 (S65) : -1.105E-014
24. PressureRegulatorValve (S53) : -1.011E-012
25. PressureRegulatorValve2 (S67) : -1.011E-012

Minimal Path Sets
[ IntermediatePressureInlet (S58),Mixerunit (S35),Cabin (S33),ZoneController
(S50),TrimAirValve (S34),CompressorTemperatureSensor (S44),PackFlowControlValve
(S48),TemperatureSensor (S45),TurbineBypassValve (S43),PackController (S51),FanInlet
(S57),Precooler (S54),PressureRegulatorValve (S53) ]
[ Mixerunit (S35),Cabin (S33),ZoneController (S50),TrimAirValve
(S34),CompressorTemperatureSensor (S44),PackFlowControlValve
(S48),TemperatureSensor (S45),TurbineBypassValve (S43),PackController
(S51),IntermediatePressureInlet (S58),FanInlet (S57),Precooler2
(S65),PressureRegulatorValve2 (S67) ]
[ Mixerunit (S35),Cabin (S33),ZoneController (S50),TrimAirValve
(S34),CompressorTemperatureSensor (S44),PackFlowControlValve
(S48),TemperatureSensor (S45),TurbineBypassValve (S43),PackController
(S51),IntermediatePressureInlet (S58),Precooler2 (S65),FanInlet2
(S64),PressureRegulatorValve2 (S67) ]
[ Mixerunit (S35),Cabin (S33),ZoneController (S50),TrimAirValve
(S34),CompressorTemperatureSensor (S44),PackFlowControlValve
(S48),TemperatureSensor (S45),TurbineBypassValve (S43),PackController (S51),FanInlet
(S57),Precooler2 (S65),PressureRegulatorValve2 (S67),IntermediatePressureInlet2 (S62) ]
[ Mixerunit (S35),Cabin (S33),ZoneController (S50),TrimAirValve
(S34),CompressorTemperatureSensor (S44),PackFlowControlValve
(S48),TemperatureSensor (S45),TurbineBypassValve (S43),PackController (S51),FanInlet
(S57),Precooler2 (S65),PressureRegulatorValve2 (S67),HighPressureInlet (S59) ]
[ Mixerunit (S35),Cabin (S33),ZoneController (S50),TrimAirValve
(S34),CompressorTemperatureSensor (S44),PackFlowControlValve
(S48),TemperatureSensor (S45),TurbineBypassValve (S43),PackController (S51),FanInlet
(S57),Precooler2 (S65),PressureRegulatorValve2 (S67),HighPressureInlet2 (S63) ]
[ Mixerunit (S35),Cabin (S33),ZoneController (S50),TrimAirValve
(S34),CompressorTemperatureSensor (S44),PackFlowControlValve
(S48),TemperatureSensor (S45),TurbineBypassValve (S43),PackController (S51),Precooler2
(S65),FanInlet2 (S64),PressureRegulatorValve2 (S67),IntermediatePressureInlet2 (S62) ]
[ Mixerunit (S35),Cabin (S33),ZoneController (S50),TrimAirValve
(S34),CompressorTemperatureSensor (S44),PackFlowControlValve
(S48),TemperatureSensor (S45),TurbineBypassValve (S43),PackController (S51),Precooler2
(S65),FanInlet2 (S64),PressureRegulatorValve2 (S67),HighPressureInlet (S59) ]
[ Mixerunit (S35),Cabin (S33),ZoneController (S50),TrimAirValve
(S34),CompressorTemperatureSensor (S44),PackFlowControlValve
(S48),TemperatureSensor (S45),TurbineBypassValve (S43),PackController (S51),Precooler2
(S65),FanInlet2 (S64),PressureRegulatorValve2 (S67),HighPressureInlet2 (S63) ]
[ IntermediatePressureInlet (S58),Mixerunit (S35),Cabin (S33),ZoneController
(S50),TrimAirValve (S34),CompressorTemperatureSensor (S44),PackFlowControlValve
(S48),TemperatureSensor (S45),TurbineBypassValve (S43),PackController (S51),Precooler
(S54),FanInlet2 (S64),PressureRegulatorValve (S53) ]



[ Mixerunit (S35),Cabin (S33),ZoneController (S50),TrimAirValve
(S34),CompressorTemperatureSensor (S44),PackFlowControlValve
(S48),TemperatureSensor (S45),TurbineBypassValve (S43),PackController (S51),FanInlet
(S57),Precooler (S54),PressureRegulatorValve (S53),IntermediatePressureInlet2 (S62) ]
[ Mixerunit (S35),Cabin (S33),ZoneController (S50),TrimAirValve
(S34),CompressorTemperatureSensor (S44),PackFlowControlValve
(S48),TemperatureSensor (S45),TurbineBypassValve (S43),PackController (S51),FanInlet
(S57),Precooler (S54),PressureRegulatorValve (S53),HighPressureInlet (S59) ]
[ Mixerunit (S35),Cabin (S33),ZoneController (S50),TrimAirValve
(S34),CompressorTemperatureSensor (S44),PackFlowControlValve
(S48),TemperatureSensor (S45),TurbineBypassValve (S43),PackController (S51),FanInlet
(S57),Precooler (S54),PressureRegulatorValve (S53),HighPressureInlet2 (S63) ]
[ Mixerunit (S35),Cabin (S33),ZoneController (S50),TrimAirValve
(S34),CompressorTemperatureSensor (S44),PackFlowControlValve
(S48),TemperatureSensor (S45),TurbineBypassValve (S43),PackController (S51),Precooler
(S54),FanInlet2 (S64),PressureRegulatorValve (S53),IntermediatePressureInlet2 (S62) ]
[ Mixerunit (S35),Cabin (S33),ZoneController (S50),TrimAirValve
(S34),CompressorTemperatureSensor (S44),PackFlowControlValve
(S48),TemperatureSensor (S45),TurbineBypassValve (S43),PackController (S51),Precooler
(S54),FanInlet2 (S64),PressureRegulatorValve (S53),HighPressureInlet (S59) ]
[ Mixerunit (S35),Cabin (S33),ZoneController (S50),TrimAirValve
(S34),CompressorTemperatureSensor (S44),PackFlowControlValve
(S48),TemperatureSensor (S45),TurbineBypassValve (S43),PackController (S51),Precooler
(S54),FanInlet2 (S64),PressureRegulatorValve (S53),HighPressureInlet2 (S63) ]

Minimal Path Sets Filtered
[ IntermediatePressureInlet (S58),Mixerunit (S35),Cabin (S33),ZoneController
(S50),TrimAirValve (S34),CompressorTemperatureSensor (S44),PackFlowControlValve
(S48),TemperatureSensor (S45),TurbineBypassValve (S43),PackController (S51),FanInlet
(S57),Precooler (S54),PressureRegulatorValve (S53) ]
[ Mixerunit (S35),Cabin (S33),ZoneController (S50),TrimAirValve
(S34),CompressorTemperatureSensor (S44),PackFlowControlValve
(S48),TemperatureSensor (S45),TurbineBypassValve (S43),PackController
(S51),IntermediatePressureInlet (S58),FanInlet (S57),Precooler2
(S65),PressureRegulatorValve2 (S67) ]
[ Mixerunit (S35),Cabin (S33),ZoneController (S50),TrimAirValve
(S34),CompressorTemperatureSensor (S44),PackFlowControlValve
(S48),TemperatureSensor (S45),TurbineBypassValve (S43),PackController
(S51),IntermediatePressureInlet (S58),Precooler2 (S65),FanInlet2
(S64),PressureRegulatorValve2 (S67) ]
[ Mixerunit (S35),Cabin (S33),ZoneController (S50),TrimAirValve
(S34),CompressorTemperatureSensor (S44),PackFlowControlValve
(S48),TemperatureSensor (S45),TurbineBypassValve (S43),PackController (S51),FanInlet
(S57),Precooler2 (S65),PressureRegulatorValve2 (S67),IntermediatePressureInlet2 (S62) ]
[ Mixerunit (S35),Cabin (S33),ZoneController (S50),TrimAirValve
(S34),CompressorTemperatureSensor (S44),PackFlowControlValve



(S48),TemperatureSensor (S45),TurbineBypassValve (S43),PackController (S51),FanInlet
(S57),Precooler2 (S65),PressureRegulatorValve2 (S67),HighPressureInlet (S59) ]
[ Mixerunit (S35),Cabin (S33),ZoneController (S50),TrimAirValve
(S34),CompressorTemperatureSensor (S44),PackFlowControlValve
(S48),TemperatureSensor (S45),TurbineBypassValve (S43),PackController (S51),FanInlet
(S57),Precooler2 (S65),PressureRegulatorValve2 (S67),HighPressureInlet2 (S63) ]
[ Mixerunit (S35),Cabin (S33),ZoneController (S50),TrimAirValve
(S34),CompressorTemperatureSensor (S44),PackFlowControlValve
(S48),TemperatureSensor (S45),TurbineBypassValve (S43),PackController (S51),Precooler2
(S65),FanInlet2 (S64),PressureRegulatorValve2 (S67),IntermediatePressureInlet2 (S62) ]
[ Mixerunit (S35),Cabin (S33),ZoneController (S50),TrimAirValve
(S34),CompressorTemperatureSensor (S44),PackFlowControlValve
(S48),TemperatureSensor (S45),TurbineBypassValve (S43),PackController (S51),Precooler2
(S65),FanInlet2 (S64),PressureRegulatorValve2 (S67),HighPressureInlet (S59) ]
[ Mixerunit (S35),Cabin (S33),ZoneController (S50),TrimAirValve
(S34),CompressorTemperatureSensor (S44),PackFlowControlValve
(S48),TemperatureSensor (S45),TurbineBypassValve (S43),PackController (S51),Precooler2
(S65),FanInlet2 (S64),PressureRegulatorValve2 (S67),HighPressureInlet2 (S63) ]
[ IntermediatePressureInlet (S58),Mixerunit (S35),Cabin (S33),ZoneController
(S50),TrimAirValve (S34),CompressorTemperatureSensor (S44),PackFlowControlValve
(S48),TemperatureSensor (S45),TurbineBypassValve (S43),PackController (S51),Precooler
(S54),FanInlet2 (S64),PressureRegulatorValve (S53) ]
[ Mixerunit (S35),Cabin (S33),ZoneController (S50),TrimAirValve
(S34),CompressorTemperatureSensor (S44),PackFlowControlValve
(S48),TemperatureSensor (S45),TurbineBypassValve (S43),PackController (S51),FanInlet
(S57),Precooler (S54),PressureRegulatorValve (S53),IntermediatePressureInlet2 (S62) ]
[ Mixerunit (S35),Cabin (S33),ZoneController (S50),TrimAirValve
(S34),CompressorTemperatureSensor (S44),PackFlowControlValve
(S48),TemperatureSensor (S45),TurbineBypassValve (S43),PackController (S51),FanInlet
(S57),Precooler (S54),PressureRegulatorValve (S53),HighPressureInlet (S59) ]
[ Mixerunit (S35),Cabin (S33),ZoneController (S50),TrimAirValve
(S34),CompressorTemperatureSensor (S44),PackFlowControlValve
(S48),TemperatureSensor (S45),TurbineBypassValve (S43),PackController (S51),FanInlet
(S57),Precooler (S54),PressureRegulatorValve (S53),HighPressureInlet2 (S63) ]
[ Mixerunit (S35),Cabin (S33),ZoneController (S50),TrimAirValve
(S34),CompressorTemperatureSensor (S44),PackFlowControlValve
(S48),TemperatureSensor (S45),TurbineBypassValve (S43),PackController (S51),Precooler
(S54),FanInlet2 (S64),PressureRegulatorValve (S53),IntermediatePressureInlet2 (S62) ]
[ Mixerunit (S35),Cabin (S33),ZoneController (S50),TrimAirValve
(S34),CompressorTemperatureSensor (S44),PackFlowControlValve
(S48),TemperatureSensor (S45),TurbineBypassValve (S43),PackController (S51),Precooler
(S54),FanInlet2 (S64),PressureRegulatorValve (S53),HighPressureInlet (S59) ]
[ Mixerunit (S35),Cabin (S33),ZoneController (S50),TrimAirValve
(S34),CompressorTemperatureSensor (S44),PackFlowControlValve
(S48),TemperatureSensor (S45),TurbineBypassValve (S43),PackController (S51),Precooler
(S54),FanInlet2 (S64),PressureRegulatorValve (S53),HighPressureInlet2 (S63) ]
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Building safety into the 
conceptual design of 
complex systems.  
Evaluation Questionnaire

Sergio Jimeno Altelarrea 

Email: s.jimeno@cranfield.ac.uk  
Telephone: 07341 957 208

* Required

Personal Data

Name (Optional).1.

 

Number must be between 100000 ~ 999999

Participant id number. * 2.

 

Job title and department (Optional).3.

 

2/14/2021



Number must be between 0 ~ 100

Years of relevant experience. * 4.

 

Check this item to
confirm

I confirm that I have read and understand the information provided on the 
consent form and give my consent to taking part in this research.

5.

2/14/2021



STPA Enabler

Strongly
disagree Disagree Neutral Agree

Strongly
agree

The proposed enablers
enhance the
interactivity of the
safety assessment
process.

The proposed enablers
result in a tighter
integration between
the architecture
definition (in particular,
the logical view) and
the safety assessment
models.

The approach of STPA
combined with RFLP
satisfy the industrial
need for safety
assessment capabilities.

Please indicate to what extent you agree or disagree with the following 
statements by marking the appropriate box. * 

6.

2/14/2021



Safety architecting enablers

Strongly
disagree Disagree Neutral Agree

Strongly
agree

The proposed enablers
enhance interactivity
while architecting
physical and functional
redundancy, and
containment.

The proposed enablers
reduce the number of
time-consuming
manual activities
required for
architecting physical
and functional
redundancy, and
containment.

Physical and functional
redundancy, and
containment cover to a
sufficient extent the
industrial requirement
for safety principles.

Please indicate to what extent you agree or disagree with the following 
statements by marking the appropriate box. * 

7.

2/14/2021



FTA enabler

Strongly
disagree Disagree Neutral Agree

Strongly
agree

The proposed enablers
reduce the number of
time-consuming
manual activities for
FTA creation.

The proposed enablers
enhance interactivity of
the exploration of FTA
results.

The level of detail of
the FTA created by this
technique is
commensurate with
conceptual design.

Please indicate to what extent you agree or disagree with the following 
statements by marking the appropriate box. * 

8.

2/14/2021



Sizing enabler

Strongly
disagree Disagree Neutral Agree

Strongly
agree

The proposed enablers
reduce the number of
time-consuming
manual activities for
sizing workflow
creation.

The level of detail
regarding context
definition
(configuration/scenario
s and environmental
conditions) is
appropriate for
conceptual design.

Please indicate to what extent you agree or disagree with the following 
statements by marking the appropriate box. * 

9.

2/14/2021



Overall framework (Efficiency and effectiveness)

Strongly
disagree Disagree Neutral Agree

Strongly
agree

The techniques
presented allow the
exploration of more
design alternatives
during conceptual
design, specifically
regarding different
ways of complying with
safety requirements.

The additional
exploration capabilities
will contribute to a
higher level of
understanding
regarding how to
achieve safety and the
effects on system
performance.

An interactive software
tool similar to the one
presented, integrated
with existing tools used
in the company, would
be useful and add value
to the company.

Please indicate to what extent you agree or disagree with the following 
statements by marking the appropriate box. * 

10.

2/14/2021



Open questions

Is there anything that you particularly liked about any of the presented 
methods? Which one of them do you believe would be the most useful? How 
do you think the methods could add value in the conceptual design stage?

11.

 

Is there anything that you did not particularly like about any of the presented 
methods? Any particular capability that the methods fail to support?

12.

 

2/14/2021



This content is neither created nor endorsed by Microsoft. The data you submit will be sent to the form owner.

Microsoft Forms

Regarding the certification process, how relevant is the early consideration of 
safety? How could these methods contribute towards the certification of aircraft 
in the future?

13.

 

2/14/2021
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Glossary

Accident Causation Model Model that

explain how accidents happen and there-

fore determine how accidents are investig-

ated, how the risk associated with existing

products is assessed, and how safer sys-

tems are designed.

Barrier Component that stop the

propagation of disturbances, such as a

valve or a circuit breaker.

Computational Model Executable

piece of computer code that describes part

of the physical behaviour and other relev-

ant characteristics (e.g. weight or cost) of a

solution in the architecture.

Computational Workflow Ordered set

of computational models, which are ex-

ecuted according to their order.

Containment Safety principle that

states that the system should assure that

failures cannot propagate from node to

node.

Element Term that encompasses the

fundamental parts of an architecture such

as requirements, functions and solutions.

Fault Tree Analysis Inductive safety

analysis technique based on fault trees.

Analysis of the trees provides information

regarding the probability of failure of the top

event and the minimal cut sets.

Fault Tree Failure model that explains

a particular system failure mode, called the

top event, in terms of lower-level events.

Function What the system or parts of

the system must do to meet the require-

ments

Functional Basis Formal function rep-

resentation that describes functions as a

combination of a flow and an operation on

the flow. It proposes two vocabularies, flow

and operation, from where the terms that

describes the functions are obtained.

Functional Modelling The process of

creating the functional model of a system,

which describes the system in terms of the
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elementary functions that are required to

achieve its overall purpose.

Functional Redundancy Safety prin-

ciple that states that there should be two or

more independent and physically different

ways to perform a critical task.

Graph A graph G is a pair (V,E), where

V is a finite set and E is a binary relation on

V . The set V contains the vertices and the

set E contains the edges. Vertices can be

used to represent elements of an architec-

ture and edges can be used to represent

relations between the elements.

Graph Cut Subset of edges that, if re-

moved, separates the graph that contains it

into two disjoint sets as one set of vertices

cannot be reached from the other.

Hazard Asessment The examination

of the system to identify safety-related risk

and propose safety requirements.

Hierarchycal Control Structure Model

of a system in terms of feedback control

loops including controllers, control actions,

feedback signals, controlled processes and

other inputs and outputs that is used in

STPA.

Minimal Cut Sets Minimal sets of com-

ponents that, when all fail together, cause

the system to fail.

Minimum Cut Cut whose capacity is

minimum over all cuts of the grpah.

Minimum Cut Problem The problem of

finding the minimun cut of a graph.

Model Based Systems Engineering

The application of modelling to support sys-

tem engineering activities.

Reliability The ability of the system to

perform its required functions under expec-

ted conditions for a specified period of time,

generally expressed as a probability.

Requirement Stakeholder need that a

particular system aims to satisfy.

Resilience The ability of a system to

maintain its functionality in the face of dis-

ruptive events. It is a dynamic capability,

enabled by three sequential phases: sur-

vival phase, reconfiguration phase and re-

covery phase.

RFL Paradigm Systems architecting

paradigm that assumes that systems en-

gineering is distributed over four notional

domains: Requirements, Functional, Lo-

gical and Physical.

Physical Redundancy Safety principle

that states that the system should possess

two or more independent and identical legs

to perform critical tasks.

Safety The ability of a system not to

cause, under given conditions, critical or

catastrophic events. Catastrophic event are
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defined as those that can cause death, in-

jury, occupational illness, damage to or loss

of equipment or property, or damage to the

environment.

Safety Analysis The analysis of the ar-

chitecture of a system to verify that safety

requirements are met.

Safety Principle General design

strategy that is expected to result in a

safer system and that can be applied to

the designs of diverse systems.

Solution Component of the architec-

ture that implements one or more functions

of the architecture.

STPA Hazard asessment method

based on systems and contorl theory that

includes additional causes for accidents

such as system design errors, human error

(in more detail than just random failure) and

various types of systemic accident causes

SysML General-purpose architecture

modeling language for systems engineer-

ing applications. SysML is a dialect of UML.

Systems Engineering Transdisciplin-

ary and integrative approach to enable the

successful realization, use, and retirement

of engineered systems, using systems prin-

ciples and concepts, and scientific, techno-

logical, and management methods.

Template Objects that contain the in-

formation that allows the the consistent in-

stantiation of architectural elements aco-

ording to the type of element described in

the template.

Traversal The systematic exploration of

the edges of a graph to discover every ver-

tex that is reachable from an initial vertex.

UML Modelling language whose pur-

pose is to specify, visualize, and document

models of software systems, including their

structure and design, in a way that the sys-

tem requirements can be met.
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