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Abstract— This paper presents a study of end-to-end meth-
ods for predicting autonomous vehicle navigation parameters.
Image-based and Image & Lidar points-based end-to-end
models have been trained under Nvidia learning architectures
as well as Densenet-169, Resnet-152 and Inception-v4. Various
learning parameters for autonomous vehicle navigation, input
models and pre-processing data algorithms i.e. image cropping,
noise removing, semantic segmentation for image data have
been investigated and tested. The best ones, from the rigorous
investigation, are selected for the main framework of the study.
Results reveal that the Nvidia architecture trained Image &
Lidar points-based method offers the better results accuracy
rate-wise for steering angle and speed.

I. INTRODUCTION

It is well know that AI/ML End-to-End learning refers to

methods where the model learns all the steps between the

initial input phase and the final output result. In the learning

process the different parameters are trained simultaneously

[1]. Referring to the topic of ground vehicle traversability

assessment, such kind of methods are incorporated in several

papers. End-to-end methods research mainly cover the ter-

rain understanding and control tasks such as the prediction

of steering angle or speed. End-to-end methods comprise

deep learning and reinforcement learning- based approaches.

Here, we employ the former methods to predict steering

angle and speed of the vehicle.

Deep learning approaches receive substantial interest from

the wider research community. Few resources are listed

in this paper, that are relevant to the study. Work in [2]

demonstrated an end-to-end method navigation behaviour

and imaging approach for mobile robots. The robot navi-

gation commands: left, right, and forward as well as images

from three cameras (a hiker was equipped with the relevant

sensors traversing the forest trail in the study) were collected

to create the dataset. All images were labelled corresponding

to the terrain class as a part of supervised learning methods.

To predict the navigation command, deep learning (DNN)

method was used. Validation was performed in real environ-

ment using a aerial robot (quadrotor). This was an innovative

way to obtain the dataset, using a human (hiker) subset,

however this is not realistic for off-road ground vehicle

traversability.

A recent paper by [3] proposed a road detection method

using a camera and Lidar (for on-road vehicle application).

The contribution of the study was the fusion of information
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form thwo types of sensors, i.e. Lidar and cameras. Point

clouds from Lidar were converted to the different feature

maps, and the neural network used as inputs the feature

maps and camera images. The authors presented different

fusion algorithms, i.e. early, late, and (their proposed) cross

fusion to compare information fusion effects. According to

the analysis of their results, the best accurate model with

96.03% was obtained using the cross-fusion approach with

the KITTI dataset[4]. Clearly their model shown good and

promising performance, albeit the study and setup favors on-

road vehicle scenarios.

Regarding vehicle traversability (or vehicle going) safety, a

study by [5] implemented a safety solution to avoid collisions

(the authors referred to their approach as Simplex-Drive).

The study related to on-road vehicles, and the validation

was using a lane changing scenario in dense traffic. Re-

searchers have also proposed regression algorithm to predict

exact navigation parameters, and combined methods have

been used in various studies for improving prediction. The

authors in [6] studied twelve driver actions such as left turn,

straight and right turn predicted from a Driver Behavior

Classification (DBC) algorithm, and steering angle from a

Steering Angle Regression (SAR) algorithm. The camera

image, Lidar data and odometry data have been used in

the SAR algorithm as inputs (while only the camera image

was used in DBC). Gated Recurrent Fusion Unit (GRFU)

learning algorithm, similar to LSTM, were implemented

for improving prediction accuracy. The authors verified the

approach using Open Racing Car Simulator (TORCS)[7] and

Honda Driving datasets[8] that have been gathered in the

simulation and also using real environment, respectively. The

proposed method was shown to have improved the Mean

Squared Error (MSE) and mean Average Precision (mAP)

score.

As mentioned, the literature is rich regarding end-to-end

methods and only a small/selected set has been discussed

here. The interested reader is referred to further resources in

the literature that study this topic, in particular deep learning,

i.e. [9], [10], [11], [12], [13], [14], [15], [16], [17], [18], [19],

[20], [21], [22], [23].

This paper presents a study of end-to-end methods for pre-

dicting autonomous vehicle navigation parameters. Image-

based and Image & Lidar points- based end-to-end models

have been trained under Nvidia learning architectures as

well as Densenet-169, Resnet-152 and Inception-v4. Results

reveal that the Nvidia architecture trained Image & Lidar

points- based method offers the best results having an

accuracy rate of 73% and 84% for steering angle and speed,
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respectively. Our approach is presented in the methodology

section, and further discussion is presented in the results

section.

II. DATASET

Regarding the dataset used in this study, we refer to

the DBNET raw dataset [24]. We perform pre-processing

of the data such as cropping, noise removing, semantic

segmentation, downsampling of Lidar data, to obtain the

following dataset distribution: Total Dataset= 26178, Train

use= 16680 data (63.71%), Evaluation use= 4358 data

(16.64%), Test use= 5140 data (19.63%).

III. METHODOLOGY

The main model determination phase is particularly im-

portant in training algorithms. Figure 1 presents the process

chart. It can be seen that various parameters in processing or

pre-processing steps such as batch-size, learning rate, image

cropping, data augmentation, data noise removal, arranging

point cloud to predict steering angle and vehicle speed. Pre-

processing was an important step to select the parameters

for the study. Moreover, Convolutional Neural Networks

receive close attention when it comes to prediction of pa-

rameters. Four learning methods, namely Nvidia, Inception-

v4, Densenet-169 and Resnet-152 have been used to predict

steering angle and vehicle speed here.

Tolerances for calculation of accuracy have been selected

at 0.05 for steering angle and 0.1 for speed. That means, If

the predicted steering angle or speed value is lower than the

tolerance, the algorithm is acknowledge it as a correct label.

Accuracy is the rate of correct label values in the total labels.

Fig. 1. Process Chart for Determining Main Parameters & Properties and
Processing Algorithms - Orange: Selected after-test steps, Blue: Others

IV. MAIN MODEL DETERMINATION PHASE

In this section, we discuss the parameters for the main

model determination phase.

A. Batch-size

Three batch-size models have been tested on the same

model and parameters, the aim being to note the effect of

batch-size on the learning algorithm. We noted that Batch-

size= 8 is better in terms of the combination of: accuracy,

training time, accuracy for test data and response time

(accuracy graphs can be seen in Figure 2)

Fig. 2. Batch-size comparison (steering angle and speed accuracy)

B. Image Cropping

While vision sensors (cameras) provide much useful in-

formation for the surrounding environment of the vehicle,

typically there are unnecessary parts of the image such as

sky, or insignificant objects (per the application) which are

normally removed to target training and improve results.

We perform two cropping models, to obtain the optimised

outcome, see Figure 4. Firstly, the images have been cropped

420 pixels left and right, and 240 pixels top and bottom

(note that images were first converted to 840x600). For the

second case, the images were resized to 760x400 an cropped.

Once cropping completed the images were resized to 66x200,

224x224 and 299x299 for the learning algorithms. Figure

3 illustrates that the two models are almost identical (with

minor differences). However, we select the second approach

given the training time, computational power and slightly

increased accuracy.

Fig. 3. Image cropping comparison (steering angle and speed accuracy)

C. Lidar Points Down-Sampling

Lidar sensor-wise there are almost 1 million points in

the point cloud dataset (some portions between 300k-400k).

Such large data set portion may hinder training of the

learning algorithm due to the effect of large point cloud on

time and computational power requirement. As a result, we

opt to down-sampling the Lidar dataset to 16,384 and 32,768

points. We also apply SOR (Statistical Outlier Removal) Fil-

ter and Noise Filter (VoxelGrid) methods have been applied

to remove noise from the point cloud (Figure 5. Moreover,

Figure 6 compares the Lidar Points Down-Sampling model

versions. IT is seen that accuracy is almost identical in the

two cases, however training time has decreased to almost

half using the 16,384 points model.



Fig. 4. Image Cropping model

Fig. 5. Point Cloud Noise Filter Models

D. Image Type

We employ two image model types i.e. RGB image

and Segmented image obtained from semantic segmenta-

tion algorithm (Figure 7) have been used in the training

algorithms. We noted that segmented images effected the

learning algorithm, typically links to complex environment

and/or incorrect /inadequate labelling. Hence, the RGB im-

age approach has been chosen for the main model of study.

E. Neural Network Type

We compare Deep Neural Network (DNN) and

DNN+Long Short-Term Memory(LSTM) methods for

the training of the algorithms. Adding LSTM to neural

network has increased the accuracy rate more than 10% for

the steering angle and 5% percent for the speed, refer to

Figure 8.

V. RESULTS FOR MAIN ALGORITHMS

As discussed in the previous section, the best parameters

for the main study were used to provide the results for the

Fig. 6. Comparison of Lidar Points Down-Sampling Models

Fig. 7. Image Types Left: RGB Image Right: Segmented Image

main algorithms. The better cropped RGB image, the 16,384

Lidar points used as inputs and batch-size= 8, the learning

rate was set to 0.001, DNN+LSTM network model have been

used in the learning model. Hence, two end-to-end models

(only image-based and image & Lidar point based) have been

tested with four different learning models i.e. Inception-v4,

Resnet-152, Nvidia and Densenet-169 (see Figure 9). For

the training and results we used the Cranfield University

HPC facility with V100 GPU card and two Intel E5-2620

v4 (Broadwell) CPUs.

Using the above setup, training was performed and tabu-

lated to compare and contrast the methods and algorithms.

As seen from Figure 8, Nvidia DNN+LSTM model provides

the better result comprising the image & Lidar point-based

input model. In this context, the accuracy rate achieved was

an average of 73% and 84% for the steering angle and

speed, respectively (this can also be noted on Table ). Clearly

incorporating the 3D Point Cloud to the model improved

accuracy c.15%.

Also, actual values and predicted values from learned

model for steering angle and vehicle speed have been com-

pared under best model, Nvidia learning architecture with

inputs Image & and Lidar Points. Model 1, that is only image

Fig. 8. Comparison of DNN and DNN+LSTM models



Fig. 9. Architecture of Main Approach

Fig. 10. Comparison of Actual and Predicted Values for Model 1

based input, has been demonstrated in Figure 10 and Model

2, fused data, in Figure 11. The Figures illustrate that Model

2 is more favorable.

Fig. 11. Comparison of Actual and Predicted Values for Model 2

VI. CONCLUSIONS

This paper presented work which is part of a PhD study

looking into advanced off-road ground vehicle traversabil-

ity. In particular, the study in this paper refers to end-to-

end methods for predicting autonomous vehicle navigation

parameters. We presented rigorous investigation of Image-

based and Image & Lidar points- (fused) based end-to-

end models of Nvidia learning architectures, Densenet-169,

Resnet-152 and Inception-v4. Various learning parameters

TABLE I
COMPARISON OF LEARNING ARCHITECTURES ACCURACY

FOR MODELS 1 AND 2

Learning

Architectures

Parameter

Type

Model 1

Accuracy

Model 2

Accuracy

Steering Angle 44% 61%
Inception-v4

Speed 68% 73%

Steering Angle 50% 65%
Resnet-152

Speed 66% 78%

Steering Angle 68% 81%
Nvidia

Speed 77% 88%

Steering Angle 36% 55%
Densenet-169

Speed 54% 65%

for autonomous vehicle navigation, input models and pre-

processing data algorithms i.e. image cropping, noise re-

moving, semantic segmentation for image data have been

investigated and tested. It was found that the Nvidia learning

network provided more accurate and reliable results for

predicting steering angle and speed for the vehicle. Adding

an LSTM (a recurrent neural network (RNN) type) to the

model improved accuracy considerably. Results of this paper,

although with the on-road dataset, inform future work that

relates to collecting further datasets using a UGV platform

in off-road environments, further training the models and

advancing the traversability solutions.
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