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Abstract

This paper presents measurements of Radar Cross Section (RCS) of five Unmanned Aerial Vehicles (UAVs), comprising both

consumer grade and professional small drones, collected in a semi-controlled environment as a function of azimuth aspect angle,

polarization and frequency in the range 8.2-18 GHz. A first-order statistical analysis of the measured RCSs is firstly reported

prior to assessing the radar detection performance on both measured and bespoke simulated data (leveraging the results of the

developed statistical analysis), including, as benchmark terms, the curves for non-fluctuating and Rayleigh fluctuating targets.

1 Introduction

The detection of small Unmanned Aerial Vehicles (UAVs),

commonly referred to as drones, is a challenging problem in

both civilian and defence applications. This is due to the unsuit-

ability of many current surveillance radars to provide adequate

detection performance for such types of targets, characterized

by weak radar signatures, low flight altitude and slow speed.

In this context, collecting drone data and analyzing their

Radar Cross Section (RCS) is a critical step towards the design

of appropriate system architectures capable of dealing with

these types of targets as well as for the development of an

accurate performance prediction of existing algorithms.

Not surprisingly, some valuable experimental campaigns

aimed at characterizing UAV radar signatures have been con-

ducted and the corresponding results are available in the open

literature. In [1], the RCSs of small UAVs have been measured

for different aspect angles in the frequency interval 8− 12 GHz

and in VV polarization. The results have been then examined

using the Inverse Synthetic Aperture Radar (ISAR) method,

which provides useful information regarding the components

that mostly contribute to the drone signature. The RCS mea-

surements of two off-the-shelf drones in the frequency band

5.8− 8.2 GHz has been addressed in [2], and in [3] RCS data

of several drones have been collected in the frequency range

26− 40 GHz. Some measurements in the Ku radar band have

been conducted in [4], whereas, unlike aforementioned refer-

ences, [5] has presented three-dimensional RCS measurements

of a nano-drone from 23 GHz to 25 GHz. In [6] the RCSs of

some nano and micro drones have been collected in the X-

band for several elevation angles, and some statistics related

to measured RCS data have been provided. Besides, [7] has

presented both a statistical analysis of the measured RCS and a

performance prediction of a specific UAV recognition system,

whereas in [4] radar detection performance has been analyzed

in the context of a short-range battlefield radar. In [8], an

experimental 35 GHz Frequency-Modulated Continuous Wave

(FMCW) coherent radar has been proposed to detect small

UAVs, whilst [9] has investigated the detection of drones using

the MIRA-CLE Ka system, which is a MIMO radar developed

for imaging applications. In [10], the detection and the RCS

measurement of a DJI-Phantom 4 have been assessed with the

RAD-DAR, which is an experimental FMCW coherent radar

operating at X-band, whereas other discussions on UAV detec-

tion via FMCW radars can be found in [11]. Furthermore, [12]

has provided an overview of the state of the art in drone activity

monitoring using radar systems.

To the best of the authors’ knowledge, in the open litera-

ture, the assessment of radar detection performance in corre-

spondence of bespoke target fluctuation models representing

measured data in both the X and Ku radar bands has only

received a limited attention. In this regard, the main scope of

this paper is the evaluation of the radar performance using both

measured RCSs of five drones, i.e., AscTec Firefly, AscTec Pel-

ican, Venom VN10, Parrot AR.DRONE, and DJI Matrice 100,

and tailored fluctuation models, i.e., fitting UAV RCS data. To

this end, the raw RCS data are collected in a semi-controlled

environment as a function of frequency, target azimuth aspect

angle and polarization in the interval 8.2− 18 GHz. The results

are analyzed considering sliding frequency intervals of 200

MHz corresponding to a range resolution of 0.75 m, which

allows to model the drones as point-like targets. Furthermore,

a first-order statistical analysis of the measured drones RCSs is

performed by fitting the data with (one- and two- parameters)

distributions typically employed to model the RCS fluctua-

tions [13], via the minimization of the Cramér–von Mises

1

li2106
Text Box
IET Radar 2022: International Conference on Radar Systems,24-27 October 2022, Edinburgh, Scotland, UKhttps://radar2022.theiet.org/

li2106
Text Box
Published by [Publisher]. This is the Author Accepted Manuscript issued with: Creative Commons Attribution Non-Commercial License (CC:BY:NC 4.0).  Please refer to any applicable publisher terms of use.



V

N

A

PC

RAM

Tx

Rx

Turntable

DroneR

A

M

RAM

Fig. 1. A notional representation of the experimental setup.

(CVM) distance between the empirical and the theoretical

Cumulative Distribution Function (CDF). Hence, in the con-

text of a coherent detection, the radar performance is studied

versus the integrated SNR at the radar receiver, with the drones

RCS modeled as a fluctuating target from Coherent Processing

Interval (CPI) to CPI. In particular, the detection performance,

evaluated leveraging both measured and simulated fluctuations

(according to the inferred distribution), is compared with stan-

dard benchmark based on stationary (Swerling 0) and random

(Swerling 1) targets.

The rest of the paper is organized as follows. Section

2 presents the experimental setup and describes the pre-

processing steps. The statistical behavior of the measured RCSs

is analyzed in Section 3, while the radar detection performance

is evaluated in Section 4. Finally, Section 5 addresses con-

cluding remarks and outlines some possible future research

avenues.

2 Experimental Setup

In this section, a description of the experimental setup involved

in the measurement campaign is provided along with details

on data pre-processing and calibration. The RCS data has been

collected in a laboratory environment using the measurement

setup depicted in Fig. 1, which is composed of

• Radar Absorbing Material (RAM) panels to mitigate multi-

path reflections from the ceiling, walls and floor;

• a 2-port MS46322A Anritsu Vector Network Analyzer

(VNA), which measures the frequency response of the

illuminated area over a pre-defined bandwidth;

• a LinearX precision turntable with an angular step resolu-

tion of (up to) 0.1 degrees, fully controlled remotely from a

PC;

• a standard PC to control and synchronize the turntable and

the VNA via the Laboratory Virtual Instrument Engineering

Workbench (LabVIEW) as well as to store and process the

raw data;

• a pair of identical standard horn antennas, one for trans-

mission and the other for reception; they are connected

to the two ports of the VNA by means of low-loss coax-

ial cables and co-located on a tripod. The positions of the

antennas have been adjusted with a cross-laser level to steer

Table 1 Setup and Acquisition Parameters.

Parameter Setup 1 Setup 2

Analyzed Frequency Bandwidth 8.2− 12.4 GHz 12.4− 18 GHz

Azimuth Rotation Step 0.1 degrees 0.1 degrees

Target-antennas Distance ≈ 7.2 m ≈ 3.4 m

Distance from Ceiling 2.71 m 2.71 m

Height above Floor 1.28 m 1.28 m

Range Gating 6.5− 7.8 m 1.5− 4.6 m

Number of FFT/IFFT Points 400100 400100

the antenna boresights at the target. Rotating the antennas

allowed data collection for different polarizations.

Before proceeding with the measurements, the VNA has been

calibrated using the standard “thru” calibration procedure to

provide a measurement setup with a flat frequency response

up to the antennas. The LabVIEW scripts have been designed

to trigger a turntable step rotation after the data acquisition by

the VNA at a specific aspect angle to guarantee collections of

frequency responses with a stationary target.

Although the VNA measured all S-parameters at each fre-

quency [14], for the considered experiments only S21 has been

recorded and analyzed. The HH-pol and VV-pol returns from

five drones have been measured versus frequency and target

azimuth aspect angle in the interval 8.2− 18 GHz. A summary

of the experimental parameters used to collect and analyze

the data is reported in Table 1, whereas the specifications

of the analyzed drones are listed in Table 2. Note that the

employed measurement setup falls in the so-called near-field

non-anechoic range scenario [15].

2.1 Data Pre-processing and Calibration

For each acquisition, a background measurement (obtained in

the absence of the drone) has been collected and subtracted

coherently in the frequency domain from all the data acquired

in the presence of the target. Range-gating has been then

applied to the high range resolution background-free profile to

further isolate the target response in range from residual multi-

path reflections which could not be eliminated with the Coher-

ent Background Subtraction (CBS) [15, 16]. To achieve this,

a tailored rectangular window, with parameters matched to the

drone size and the target-antennas distance (see Table 1), has

been used. The frequency spectrum of the clean signatures has

been then used to extract the point-like target response over a

moving bandwidth of 200 MHz, corresponding to a range reso-

lution of 0.75 m. Precisely, the frequency domain is discretized

in several frequency bins of 200 MHz having central frequen-

cies {8.3 GHz + (i× 100) MHz, i = 0, . . . , 96} and the data

are processed separately in each of them. Therein, the target

can be approximated as a point-like reflector (i.e., target scat-

terers within the range resolution cell) whose power response

(i.e., non-calibrated RCS) is extracted as the squared magnitude

peak in the time domain. However, in the process of measuring

the absolute RCS of a particular target, it is essential to include

an accurate RCS calibration step. The substitution method [15]
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Table 2 Measured Drones Specifications.

Drone # Rotors Weight Width Depth Height Primary Use

AscTec Firefly 6 1600 g 470 mm 430 mm 165 mm Mapping/Surveying

AscTec Pelican 4 1650 g 360 mm 360 mm 188 mm Film & Photo/Mapping/Surveying

Venom VN10 4 148 g 290 mm 210 mm 38 mm Film & Photo

Parrot AR.DRONE 2.0 4 420 g 517 mm 517 mm 127 mm Film & Photo

DJI Matrice 100 4 2355 g 759 mm 755 mm 205 mm Film & Photo/Mapping/Surveying

is the most often used calibration procedure for RCS measure-

ments, which involves measuring a calibrating target (with a

known RCS) with the same test-bed used to collect data from

the target under test [15]. As a result, each measurement related

to the RCS of the calibrating target at a given frequency is com-

pared with the theoretical RCS, and the resulting dB difference

is utilized to calibrate the target measurements, provided that

the test-bed, as well as the system parameters, are stationary. In

the performed campaign, a conductive 10 cm diameter sphere

has been used to calibrate the drone measurement data.

3 Drone RCS Statistical Behavior

The classic approach for evaluating radar detection perfor-

mance is based on the assumption that the target’s RCS fluc-

tuation follows one of the Swerling models I-V [13]. However,

as confirmed by some practical cases, amplitude fluctuations do

not always comply with the aforementioned models, resulting

in a mismatch between the actual and the theoretical radar per-

formance. Indeed, several alternative fluctuation models (e.g.,

Weibull, Log-normal, shadowed Rice, two-state Rayleigh-chi,

just to mention a few) have been proposed in the open lit-

erature to cope with this problem [13, 17]. Using a suitable

statistical description for the target RCS behavior enables the

accurate prediction of radar detection performance as well

as the design of appropriate signal processing architectures.

Toward this goal, in this section, the measured RCS signatures

of several drones are statistically analyzed by fitting the data

with well-known and commonly used distributions (at most bi-

parametric), over different frequencies and polarizations. Then,

the most appropriate statistical model for each drone RCS col-

lection (in the aspect angle domain) is selected resorting to the

CVM distance.

3.1 Statistical Analysis of Drones RCS

Analyzing the measured RCS of the tested drones (see Table 2),

similar average RCS values are obtained in both the HH and

VV polarizations, in agreement with [1]. Moreover, large fluc-

tuations in the RCS values can be observed, which might be

attributed to the presence of a few major scatterers whose

interaction significantly changes with the aspect angles, with

standard deviation in the order of 15 dB for the AscTec Firefly,

10 dB for the AscTec Pelican and DJI Matrice 100, and 20 dB

for the Venom VN10 and the Parrot AR.DRONE 2.0.

Let us now focus on the first-order statistical analysis. Since

the drones RCS strongly changes with the aspect angle, it

appears reasonable the exploitation of a statistical model to

describe the target fluctuation and accurately predict radar

detection performance. Inspired by previous studies on target

RCS fluctuation statistics, in this paper some distributions (at

most bi-parametric), i.e., Exponential, Gamma, LogNormal,

and Weibull, are studied to model the RCS data.

The fitting of the above-mentioned distributions with the

data is performed considering the RCS measurements for dif-

ferent aspect angles at a given frequency f and in a polar-

ization p = {HH,V V }. Formally, the parameter vector of

the distributions is determined as a solution to the following

optimization problem

θ̂(f, p) = argmin
θ

CVM(σ̂(f, p), F (x;θ)) (1)

where F (x;θ) is the CDF of the distribution under test,

θ denotes the distributional parameters, σ̂(f, p)∈ R
n, with

n = 3600, is the vector of the measured/observed RCS, and

CVM(σ̂(f, p), F (x;θ)) is the CVM distance [18], with R
N

the set of N -dimensional column vectors of real numbers. The

optimization problem (1) is tackled by means of the iterative

algorithm proposed in [19] which is implemented in MAT-

LAB with the function fminsearch, using as initial estimate of

the distributional parameters those obtained via the MATLAB

function fitdist.

Table 3 reports the mean values (over the frequency) of the

CVM distances computed between the empirical and theoret-

ical CDFs of the measured RCSs in both HH and VV polar-

izations. Interestingly, the Gamma model is able to achieve

the lowest average CVM distance in almost all the scenar-

ios, with some exceptions where Weibull distribution prevails

over the others (see for instance the case of Asctec Peli-

can in HH or Venom VN10 in VV). However, under these

specific instances, the mean CVM distances achieved by the

Gamma and the Weibull model are relatively close. Moreover,

unlike the Weibull, the Gamma fluctuation law enables a quite

simple and closed-form analytical evaluation of the detection

performance [17]. Furthermore, to confirm the quality of the

aforementioned model to faithfully describe the collected data,

a KS test is performed [18], which unveils that, regardless of

the frequency and the polarization, the hypothesis that the data

are distributed according to the Gamma distribution cannot be

rejected.

Moreover, for almost all the cases the shape parameter α of

the fitted Gamma is close to 1, underlining that the measured

RCS first-order statistics are not far from an Exponential-like

behavior.
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Table 3 Mean CVM distances between empirical and theoretical CDF.

mean CVM distance HH / VV

Distribution AscTec Firefly AscTec Pelican Venom VN10 Parrot AR.DRONE 2.0 DJI Matrice 100

Exponential 0.93 / 0.73 1.21 / 1.43 1.17 / 1.08 0.93 / 0.99 0.85 / 0.77

Gamma 0.59 / 0.49 0.73 / 0.66 0.62 / 0.69 0.66 / 0.57 0.62 / 0.55

LogNormal 1.11 / 1.37 1.09 / 1.15 1.26 / 1.32 1.06 / 1.21 0.98 / 1.04

Weibull 0.63 / 0.50 0.67 / 0.68 0.65 / 0.66 0.67 / 0.58 0.64 / 0.58

4 Radar Detection Performance

In this section, the radar capabilities to detect UAVs is analyzed

by comparing performance under experimental target fluctua-

tions with that resulting from appropriate statistical models. In

particular, due to the huge fluctuations in RCS and hence in

the resulting SNR of the received radar signal, the detection

performance would also be extremely dependent on the aspect

angle. Therefore, an average performance based on a statistical

model for the target RCS (modeled as a random variable) is a

viable mean to carry out a detection analysis [20, 21]. In this

respect, it is assumed that the target’s scatterers, whose com-

position determines the RCS value, are all within a resolution

cell. The Probability of Detection (PD), computed assuming

a desired Probability of False Alarm Pfa = 10−4, is used as

performance metric.

In the following, it assumed that a standard pulse-Doppler

radar illuminates the target (in the Fraunhofer region) for a

CPI T̃ = MT , with M the number of pulses and T the Pulse

Repetition Interval (PRI). It is assumed that the azimuth aspect

angle of the drone is constant within the CPI, namely, the target

amplitude does not change from pulse to pulse. Therefore, for

a radar operating with a carrier frequency f and polarization

p ∈ {HH,V V }, the received signal can be modeled as

r = a(θ, f, p)ejφs+ n (2)

where

• a(θ, f, p) denotes the useful signal strength which accounts

for the target RCS (at aspect angle θ) and the other terms

involved in the radar equation;

• φ accounts for the target phase response, including the target

range, and it is assumed uniformly distributed over [0, 2π];
• s = [1, ej2πfdT , . . . , ej2πfd(M−1)T ]T represents the Doppler

steering vector evaluated in correspondence of the Doppler

frequency fd (assumed known), with (·)T the transpose

operator and j =
√
−1;

• n ∼ CN(0, σ2
nI) is the interference plus noise contribu-

tion, modeled as a zero-mean complex circularly symmet-

ric Gaussian random vector, with covariance matrix σ2
nI;

therein, σ2
n is the noise power level assumed, without loss

of generality, equal to 0 dB.

Let us define the actual integrated SNR for the specific tar-

get aspect angle θ as SNRc(θ, f, p) = SNRc
σ(θ,f,p)

σ̃(f,p)
, with SNRc

the average integrated SNR over the aspect angle and σ̃(f, p)
the mean target RCS value. Then, the probability of detection

for the optimum coherent detector at the aspect angle θ can be

obtained as [13]

PD(SNRc, θ, f, p) = Q

(√
2SNRc

σ(θ, f, p)

σ̃(f, p)
,
√
−2 logPfa

)
,

(3)

with Q(·) denoting the Marcum Q function [22]. Hence, the

mean detection performance over the aspect angle at given

carrier frequency f and polarization p can be computed aver-

aging (3) over all the looking angles.

To validate the fluctuation models inferred in Section 3,

the resulting average PD for each theoretical distribution are

considered. Specifically, the PD corresponding to the Gamma

fluctuation model (whose closed-form expression is available

in [17]) is estimated via standard Monte Carlo counting tech-

niques over 104 independent trials, with the integrated SNR

given by SNRc(θ, f, p) = SNRc
ρ(f,p)

µ(f,p)
, where ρ(f, p) is ran-

domly drawn from a Gamma distribution with parameters

inferred from the fitting procedure, whereas µ(f, p) denotes

its corresponding expected value. Therefore, it results in an

average PD

PD(SNRc, f, p) =
1

104

10
4

∑

i=1

Q

(
√

2SNRc
ρ(f, p)

µ(f, p)
,
√

−2 logPfa

)

.

(4)

For comparison purposes, the PD curves PDSW0 and PDSW1

for non-fluctuating (SW0) and fluctuating (SW1) targets [13],

respectively, are also included, where

PDSW0(SNRc) = Q

(√
2SNRc,

√
−2 logPfa

)
(5)

and

PDSW1(SNRc) = P
1/(1+SNRc)
fa . (6)

PD versus SNRc related to the AscTec Firefly is displayed

in Fig. 2 for three different frequencies, i.e., 2(a) 14.1 GHz,

2(b) 8.5 GHz, and 2(c) 17.1 GHz. The values of the involved

Gamma shape parameter are reported in Table 4. Specifically,

Figs. 2(a) considers the scenario of Exponential-like RCS fluc-

tuation behavior, i.e., α ≈ 1, whilst Fig. 2(b) and Fig. 2(c) refer

respectively to the largest and the lowest values of the shape

parameter, which are achieved, for this UAV, at the polarization

HH and VV, respectively (see Table 4). The figure shows nearly

perfect adherence (with negligible displacements) between the

PD curves obtained using measured and simulated data in all

the reported cases, proving that, also from a radar detection

standpoint, the fitted Gamma distribution is able to describe

the measured data. Furthermore, the results outline that the PD
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curves pertaining to the drone data are always distant from

the SW0 benchmark, but quite close to those of the SW1

model. This emerging trend is expected given the observed

RCS Exponential-like fluctuation characteristics highlighted in

Section 3. In this regard, the results clearly pinpoint that when

α is close to 1 (see Fig. 2(a)), the standard SW1 model pro-

vides accurate performance prediction. Conversely, the more

the shape parameter value deviates from 1, the larger the dis-

crepancy between the predicted performance with the SW1

model and the actual one. Unarguably, the 1.5 dB SNRc differ-

ence at PD = 0.9 between the aforementioned curves (in HH),

illustrated in Figs. 2(b) and 2(c), standouts that there are spe-

cific circumstances where the performance predicted with the

SW1 model leads to an inaccurate performance estimate of the

radar detection task. The larger the value of α (provided that

α > 1), the larger the underestimate. In a similar manner, as α

approaches 0, the overestimation increases.

Moreover, the trend of Fig. 2(a) is confirmed also for the

other collected drones RCS data, i.e., the SW1 model yields an

accurate performance prediction, as long as the shape param-

eter is close to 1. Again, particular attention should be paid to

the cases where the shape parameter α of the fitted Gamma

model deviates from 1. Some instances falling into this last

scenario are analyzed in Fig. 3; therein (see Table 5 for the cor-

responding values of the Gamma shape parameter) Fig. 3(a)

refers to the Venom VN10 at 9.1 GHz, Fig. 3(b) shows the

Parrot AR.DRONE at 14 GHz, Fig. 3(c) considers the AscTec

Pelican at 9.2 GHz. In all the examined cases, a discrep-

ancy between the actual and the SW1 performance curves is

clearly experienced in both polarizations. This behavior, pre-

viously analyzed in Figs. 2(b) and 2(c), is again reflected in

the results under investigation pertaining to the other drones,

which further corroborates the requirement for tailored (bi-

parametric) fluctuation models to accurately predict the UAVs

radar detection performance.

Table 4 Values of the Gamma shape parameter for the

frequencies analyzed in Fig. 2.

Frequency αHH αV V

14.1 GHz 1.05 1.08

8.5 GHz 1.33 1.08

17.1 GHz 1.15 0.9

Table 5 Values of the Gamma shape parameter pertaining to

the cases analyzed in Fig. 3.

Drone Frequency αHH αV V

Venom VN10 9.1 GHz 1.57 1.08

Parrot AR.DRONE 14 GHz 0.95 1.31

AscTec Pelican 9.2 GHz 0.69 1.27

5 Conclusion

This paper has considered the radar detection performance pre-

diction leveraging measured RCS of small UAVs collected in a

semi-controlled environment as a function of frequency, angle,

and polarization. Specifically, RCS measurements from five

drones of different sizes and characteristics have been acquired

in the frequency range 8.2-18 GHz and statistically analyzed

over a moving bandwidth of 200 MHz. The results have high-

lighted that, in the considered frequency bands, the RCSs of

the drones are characterized by strong fluctuations in angle.

However, from a statistical standpoint, the Gamma distribu-

tion proved capable of modeling such measurement variability,

characterized, in the majority of cases, by Exponential-like

fluctuations (described using Gamma shape parameter values

close to 1). The detection performance has been evaluated

using both collected and simulated data (via Monte Carlo

counting technique) considering as terms of comparison the

standard Swerling 0 and Swerling 1 models. Usually, the curves

exhibit performance deviations in the order of dB fractions

from the Rayleigh fluctuating target case.

Future research avenues might consider further statistical

analyses including RCS measurements collected in cross-

polarization as well as the investigation of the corresponding

radar detection performance by resorting to a full polarimetric

processing architecture.
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Fig. 2 PD versus SNRc curves using measured and simulated AscTec Firefly data for HH and VV polarization in the frequency

bin with central frequency: (a) 14.1 GHz, (b) 8.5 GHz, and (c) 17.1 GHz.
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