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Abstract: In the modern digital world, electronic devices are being widely employed for various
applications where thermal performance represents a significant technical challenge due to contin-
ued miniaturization, high heat generated in the system, and non-uniform high-temperature causing
failure. Phase change materials (PCMs) owing to the immense heat of fusion are primarily consid-
ered for thermal management, but their insulating properties hedge their applications in electronics
cooling. Nano-enhanced phase change materials (NePCMs) have the ability to improve the ther-
mal conductivity of PCM, decrease system temperature and escalate the operating time of devices.
Accordingly, the current study focused on the experimental investigations for the thermal perfor-
mance of three heat sinks (HS) with different configurations such as a simple heat sink (SHS), a
square pin-fins heat sink (SpfHS), and Cu foam integrated heat sink (CufmHS) with various alumina
nanoparticles mass concentrations (0.15, 0.20 and 0.25 wt%) incorporated in PCM (RT-54HC) and at
heat flux (0.98–2.94 kW/m2). All HSs reduced the base temperature with the insertion of NePCM
compared to the empty SHS. The experimental results identified that the thermal performance of
CufmHS was found to be superior in reducing base temperature and enhancing working time at two
different setpoint temperatures (SPTs). The maximum drop in base temperature was 36.95%, and
a 288% maximum working time enhancement was observed for CufmHS. Therefore, NePCMs are
highly recommended for the thermal management of the electronic cooling system.

Keywords: nano-enhanced phase change material; simple heat sink; square pin-fin heat sink; copper
foam; heat flux; thermal management

1. Introduction

The thermal performance of microchannel-based electronic devices is more critical than
conventional heat exchangers due to their compact size, light weight, and superior cooling
performance. These electronic devices are miniaturizing with expanded functionalities
due to rapid growth and development in the modern digital world. The heat generation
rate has increased with this compactness in electronic components design, resulting in
constantly high component temperature [1,2]. Poor thermal load management of electronic
gadgets may compromise their performance, damage crucial components, and deteriorate
user satisfaction [3]. A study performed by the US Defense Sector reflects that the disaster
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rate of smart electronic components grows as the temperature rises outside the working
environment. Further, the failure rate decreases by 4% with a temperature reduction of
1 ◦C [4]. Therefore, the heat generated in electronic circuits must be dissipated immediately
in the surroundings to gain the maximum efficiency of the device. This will reduce the
chances of severe failure and increase the reliability of the electronic product.

The choice of active cooling techniques for thermal management of electronics is
considered inefficient because of the large occupied space, liquid circulation pump main-
tenance, and fan noise issues resulting in high operational cost and leading to failure of
devices [5]. However, passive cooling methods using phase change materials (PCMs) in
heat pipes or heat sinks are preferred due to high latent heat, no electrical power con-
sumption, and zero emission [6,7]. In this method, a vast amount of potential energy is
ingested by PCMs during the melting phase and released to the environment in solid-
ification, resulting in better thermal management of electronics [8]. Currently, organic
PCMs have marvelous features of repeated use, small volume expansion, non-corrosivity,
nontoxicity, chemical reliability, and high latent heat storage [9,10]. However, the little
thermal conduction response issue of PCMs slows down the charging and discharging
time of electronics, which is a serious technical challenge [11]. In order to counter this
problem, various types of fins [12], metallic foams [13], and nanoparticles (NPs) [14–16] are
employed as thermal conductivity enhancement techniques as discussed in Figure 1. These
techniques are conjugated with PCMs to enhance thermal conductivity and focus excess
heat removal from the system.
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Several researchers are investigating the thermal management of cooling devices utiliz-
ing heat sinks of extended surfaces integrated with PCMs [17], the fins configurations [18],
the filled volume of PCM [19], liquefying temperature of the PCM, and the heating rate are
all aspects that affect the execution of PCM-based heat sinks for electronic applications.

A paraffin wax-based PCM filled-in aluminum heat sink having 72 pin fins was
numerically investigated for the thermal reliability of electronics devices. Compared to the
baseline setup, the highest temperature of the appropriate model dropped by 30%. The
optimal design took longer to heat the latent heat than the baseline model, which took
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less time [20]. The experimental study presented the thermal analysis of round pin-finned
heat sinks of three diameters, and at varying heat flux for electronic equipment. PCM was
used with three-volume fractions of 0.0, 0.5, and 1.0 in each configuration of heat sinks. A
3 mm round pin-finned heat sink showed superior thermal performance at three setpoint
temperatures (SPTs) [21].

A few studies have reported that adding NPs to PCMs may enhance the thermal
conductivity of PCMs. Different metal oxide NPs were studied to compare thermal con-
ductivity and heat transfer improvements. Metal oxide NPs are preferred over metal NPs
due to their low cost, better thermal stability, and consistent performance [22]. A parallel
plate-based fin sink incorporated with PCM and nano-silica (SiO2) was under investigation
for electronic chipset cooling. A NePCM-based heat sink improved heating time up to
220% [23]. The computational study examined the melting and heat transmission properties
of a nanocomposite phase change material (NCPCM) filled-in heat sink for the passive
cooling of electronic devices. Cu NPs of various volume fractions were dispersed in PCM
(RT–28HC). The outcomes delivered that the heat carrying rate was enriched by increasing
NPs concentrations and reducing melting time [24].

Metallic foams of high porosity are under investigation by many researchers as thermal
conductivity enhancers because of their extended surface area and high heat transfer rate
capabilities [25]. They are available in various pore sizes characterized by pores per inch
(PPI). In the commercial market, metal foams are mostly made of nickel, copper, bronze,
stainless steel, aluminum, graphite, and their alloys. The thermal achievement of heat
sinks conjugated with alcohol/graphite foam as PCMs was studied at varying heat fluxes.
Higher alcohol/graphite foam showed a 24% delay in the heating process while achieving
the temperature goal of 90 ◦C [26].

PCM/NePCM-based HSs are widely investigated to provide a better passive cooling
medium for electronic devices as shown in Table 1. Many researchers worked on PCM-
based heat sink configurations, and a few attempts have been made for NePCM-based
simple heat sinks. However, to the researchers’ familiarity, no noteworthy research has been
made that took into consideration all the variables, such as unfinned, finned, metallic foam,
and alumina NePCM in the heat sink assembly during NePCM melting (charging) and
solidification (discharging) phases. The need of faster passive cooling is to conduct more
in-depth experimental studies using nano-PCM bases in different heat sink configurations.
The present study examines the influence of NPs concentration, heat flux behavior on the
base temperature, and enhancement in the device’s operating time at various SPTs. Further,
thermal performances of the simple heat sink (SHS), square pin-fins heat sink (SpfHS),
and Cu foam integrated heat sink (CufmHS) are analyzed for the cooling of electronic
components. NePCM (RT-54HC/Al2O3) of various mass concentrations of NPs (0.15 wt%,
0.20 wt%, and 0.25 wt%) are introduced in heat sinks, and various heat flux densities
are applied to observe heat transfer performance and operating time to achieve various
setpoint temperature (SPT) during charging and discharging periods. The key motivation
of the present study is to elevate the thermal performance of different heat sinks using
NePCM as a working medium at various setpoint temperatures and applied heat flux.

Table 1. Summary of various heat sinks used for passive cooling of electronic components.

Sr.
No

PCM,
NPs/(wt%)

Method/Melting
Point (◦C)

HS Size
(mm3)

HS
Type

Metallic
Foams

Heat Input
(kW/m2)/W

Sonication
Time
(Hr)

Ref.

1
Paraffin wax,

MWCNT/
(0.2, 2)

Experimental
(46–48) 73 × 68 × 44.5 Plate fins - 2–6 5 [27]

2
PCM.

CNT, GNP/
(0.3, 1, 3)

Experimental
(50) 80 × 80 × 30 Simple - 40, 80 and

120 0.83 [28]
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Table 1. Cont.

Sr.
No

PCM,
NPs/(wt%)

Method/Melting
Point (◦C)

HS Size
(mm3)

HS
Type

Metallic
Foams

Heat Input
(kW/m2)/W

Sonication
Time
(Hr)

Ref.

3 Mn(NO3)2,
Fe3O4/(1)

Experimental
(37) 75 × 75 × 40 Plate fins - 5.5–22.5 4 [29]

4
RT-44,

CuO, Al2O3/
(2)

Numerical
(41–45) 50 × 50 × 40 Plate fins - 10, 20 and

30 - [30]

5 Paraffin wax,
Numerical and
Experimental

(52–54)
100 × 100 × 10 Simple Cu foam - - [31]

6 Bi-Pb-Sn-Cd, Experimental
(69.59) 104 × 104 × 25 Simple Cu foam 2, 3 and 4 - [32]

7 PCM,
GNP

Experimental
(58–60) 42 × 42 × 32 Plate fins - 5–20 15 [33]

Note: PCMs are commercially available according to their melting point. Paraffin wax, Mn(NO3)2, Bi-Pb-Sn-Cd,
and RT-44 are distinct categories of PCMs (organic & inorganic) procurable in the trading center synthesized by
various companies. PCM (RT-44) is synthesized by Rubitherm Technologies, a German company, whose melting
point is 44 ◦C.

2. Materials and Methods
2.1. Experimental Setup

The test setup for the thermal analysis of HS is displayed in Figure 2. The major
components of the test setup consisted of DC power supply (Keysight, 6675A, Santa Rosa,
CA, USA), thermocouples (OMEGA™, Beijing, China), a silicon heater (OMEGA™, SRFG-
610, Beijing, China), a heat sink assembly, a digital data logger (Keysight, 34980A, Santa
Rosa, CA, USA), and a laptop. The heat sink assembly had the overall outer dimensions of
116 × 116 × 32 mm3. Different heat sinks having different configurations were individ-
ually tested with various heating loads and cooling medium (NePCM). All heat sinks
were fabricated using a computerized numerical control (CNC) milling machine. Three
input powers of 10 W, 20 W, and 30 W were applied to the heater with the help of a DC
power supply to observe the heat generation rate. A data logger was used for measuring
thermocouple temperature.
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2.2. Heat Sink Assembly and Thermocouple Positioning

In the current research, three heat sinks (SHS, SpfHS, and CufmHS), were used for
thermal management. The HS was the primary part of the experimental setup made of
aluminum. Aluminum material was chosen instead of copper due to its lightweight, three-
times lower density, good thermal conductivity, and corrosion resistance, making it an
appropriate choice for thermal inspection [34]. The internal dimension of the heat sink was
101 × 101 × 27 mm3 with an outer side wall thickness of 7.5 mm. A standard 9% volume
fraction (γ) as thermal conductivity enhancer of SpfHS was considered by taking a cue from
previous research studies and was mathematically calculated using Equation (1).

γ =
VTCE

Vs
(1)

“γ” is the percentage of the size covered by fins (VTCE) to the total size occupied by
the empty heat sink (Vs). Square pin-fins of 3 × 3 × 27 mm3 were fabricated using a CNC
milling machine. Figure 3a presents isometric views of SpfHS. Figure 3b shows a pictorial
view of SHS, SpfHS, and CufmHS. All four side walls of the HS were covered with insulation
tape of 6 mm thickness to stop heat dissipation. The top side of the HS was covered with
a copper plate of 2 mm for unidirectional heat flow for increased heat transfer. A Silicon
rubber plate heater of a similar size to the internal HS cavity and of 2 mm thickness was
pasted with the thermal grease to the underneath cavity of the HS to sustain uniform heat
flux. Thermal grease may help control air gaps, resulting in decreased thermal resistance.

Copper foam (32 PPI, 94% porosity) as a thermal conductivity enhancer was inserted
with NePCM in the SHS internal cavity to check thermal performance. Its properties
provided by the supplier are discussed in Table 2. It was cleaned with acetone, ethanol, and
water before use.

Table 2. Properties of the metallic foam.

Material Pores per
Inch (PPI)

Purity
(%)

Porosity
(%)

Specific
Heat

(kJ/kg·K)

Density
(kg/m3)

Thermal
Conductivity

(W/m·K)

Cu Foam 32 >99 94 0.38 421 387

Pre-calibrated and high-precision 11 K-type thermocouples were connected at various
spots of the HS to analyze the temperature readings at the charging and discharging time
of NePCM at one-minute intervals. Calibration was tested for the temperature series of
15–85 ◦C with a constant temperature water bath. The thermocouples of 0.25 mm wire
diameter were fixed firmly with Araldite epoxy resin to make the joint sealed during the
melting phase of NePCM. Two thermocouples labelled B1 and B2 were inserted in the deep
grooves at the junction of the top side of the heater and the lower side of the HS. H1 and
H2 were mounted at the bottom of the HS to record the temperature. The average of two
thermocouples fixed at the parallel position was used for the temperature estimation during
performance investigation. In addition, P3–P4, P5–P6, and P7–P8 were fixed inside the walls
of HS vertically at height intervals of 8.7 mm. T9 was used to monitor the environment
temperature. Table 3 shows the thermocouple positionings.

Table 3. Locations of eleven thermocouples placed on the heat sink.

Thermocouples B1–B2 P1–P2 P3–P4 P5–P6 P7–P8 T9

Positions (mm) Heat sink Base 0 8.7 17.4 26.1 Room
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2.3. Preparation of NePCM

One-step and two-step procedures were used for the NePCM preparation [35]. In
the one-step method, NPs synthesis and mixing co-occurred. In the two-step method,
NPs were acquired in powder shape and mixed in base PCM for uniform dispersion [36].
The two-step procedure was favored due to its low price and its use on a large scale [37].
NePCM was prepared by adding Al2O3 NPs at various mass concentrations (0.15 wt%,
0.20 wt%, and 0.25 wt%) into organic PCM (RT-54HC). The thermophysical dynamics of
alumina NPs and PCM are briefed in Table 4. Firstly, a digital analytical balance measured
the desired quantity of solid PCM and alumina NPs. Then PCM was liquified at a constant
temperature of 65 ◦C using a hot plate. Alumina NPs were dispersed homogeneously into
the liquefied PCM on the magnetic hot plate stirrer for 150 min at 1400 rpm. To obtain
uniform dispersion and to avoid the accumulation of NPs, the NePCM mixture was allowed
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through the ultrasonication process in a sonication bath for 120 min before final use. Finally,
the mixture was transferred into the HS cavity and let to solidify at room temperature
before thermal analysis. The sequence of steps comprised for the NePCM preparation is
discussed in Figure 4.

Table 4. Properties of the PCM and alumina NPs.

Material
Melting

Point
(◦C)

Latent
Heat

(kJ/kg)

Density
(kg/m3)

Specific Heat
(kJ/kg·K)

Purity
(%)

Thermal
Conductivity

(W/m·K)
References

RT-54HC 54 200 0.85 (s), 0.8 (l) 2 - 0.2 Authors Work
Al2O3 NPs 2977 - - 2.40 100 35 Auregzaib et al. [38]Energies 2022, 15, x FOR PEER REVIEW 8 of 17 
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Figure 4. Sequence of steps for NePCM preparation.

SEM and EDX Analysis of Alumina NPs

SEM and EDX analysis are normally employed to find the morphology and elemental
composition of NPs [39]. In this research, alumina NPs were chemically portrayed by means
of SEM joined with EDX, as featured in Figure 5a,b. The SEM image exposes aggregation
and a slightly larger size of alumina NPs, which may be due to transportation and storage
of NPs. The aggregates of NPs were refined during the ultrasonic process of NePCM
preparation. The presence of Al and O with the weight percentage of 54.74% and 48.26%,
respectively, confirmed the high purity of alumina NPs in EDX analysis as reflected in
Figure 5b. NPs were gold coated during EDX analysis to obtain the high quality of peaks.
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3. Validation and Uncertainty Estimation of the Test Setup

The heat engendered by the heater was supposed to be hot spell dissipation by the
electronic chip, and the HS base was considered the surface of ICs. The base temperature
was an essential parameter for the thermal analysis of HS. The low temperature of the HS
base is a sign of a vaster hot spell dissipation and a prolonged reliability of the electronic
device. Before the start of the analysis of the NePCM based heat sink, the test arrange-
ment was endorsed by assessing the base temperature of the unfilled HS of the current
research article with the pre-existing study investigated by Syeda et al. [40], as revealed in
Figure 6. The same input parameters were applied for the validation of test setup with the
proceeding study.

Energies 2022, 15, x FOR PEER REVIEW 9 of 17 
 

 

 

Figure 6. Test setup validation to investigate HS performance. 

Kline-McClintock’s method was adopted to estimate possible uncertainties in exper-

imental test setup measurements. Heat flux and temperature are two significant quantities 

that contribute to quantifying uncertainties in the test setup. Heat flux (q) depends on 

voltage (V), current (I), and area (A), which can be summed up as 

𝑞 = 𝑓(𝑉, 𝐼, 𝐴) (2) 

where, 𝐴𝑟𝑒𝑎 = 𝑓(𝑙 × 𝑤). 

The temperature, voltage, current, length, and width of contact surface measurement 

errors were calculated as ±0.2 °C, ±0.1 V, ±0.1 A, ±0.02 mm and ±0.02 mm, respectively. 

As a result, heat flux uncertainty will be 

𝜕𝑞

𝑞
= √[(𝑍𝑣 𝛿𝑉)2 + (𝑍𝐼 𝛿𝐼)2 + (𝑍𝑙  𝛿𝑙)2 + (𝑍𝑤  𝛿𝑤)2]  (3) 

where, 

𝑍𝑣=

𝜕𝑞
𝜕𝑉
𝑞

  

𝑍𝐼 =

𝜕𝑞
𝜕𝐼
𝑞

  

𝑍𝑙 =

𝜕𝑞
𝜕𝑙
𝑞

  

𝑍𝑊 =

𝜕𝑞
𝜕𝑤
𝑞

  

So, ∂V, ∂I, ∂l, and ∂w show the voltage, current, length and width uncertainties. Min-

ima and maxima heat flux values revealed after analysis were 2.12% and 3.43%. 

  

Figure 6. Test setup validation to investigate HS performance [40].

Kline-McClintock’s method was adopted to estimate possible uncertainties in experi-
mental test setup measurements. Heat flux and temperature are two significant quantities
that contribute to quantifying uncertainties in the test setup. Heat flux (q) depends on
voltage (V), current (I), and area (A), which can be summed up as

q = f (V, I, A) (2)

where, Area = f (l × w).
The temperature, voltage, current, length, and width of contact surface measurement

errors were calculated as ±0.2 ◦C, ±0.1 V, ±0.1 A, ±0.02 mm and ±0.02 mm, respectively.
As a result, heat flux uncertainty will be

∂q
q

=

√
[(Zv δV)2 + (ZI δI)2 + (Zl δl)2 + (Zw δw)2] (3)

where,

Zv=

∂q
∂V
q

ZI =
∂q
∂I
q

Zl =
∂q
∂l
q
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ZW =
∂q
∂w
q

So, ∂V, ∂I, ∂l, and ∂w show the voltage, current, length and width uncertainties.
Minima and maxima heat flux values revealed after analysis were 2.12% and 3.43%.

4. Results
4.1. Effect of Mass Fractions Alumina NePCM for Various Heat Sink

Figure 7a–c shows the base temperature (Tb) profile variation of alumina NePCM
based heat sinks i.e., SHS, SpfHS, and CufmHS, for several mass fractions of alumina NPs
(0.15, 0.20, and 0.25) at heat flux of 0.98, 1.96, and 2.94 kW/m2. The temperature profile of
the empty SHS base was taken as a reference for thermal analysis of the NePCM filled HS
geometries. Figure 7a reflects the thermal behavior of HS models filled with NePCM at a
heat load of 10 W (0.98 kW·m−2). The temperature of an empty HS base upsurged rapidly
to the maximum value of 76.4 ◦C in 75 min of charging, which may lead to the failure of
electronic gadgets because gadgets are conventionally designed to operate below 70 ◦C for
commercial applications. This problem can be tackled by filling HS with NePCM to trigger
down the Tb.
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At lower alumina NPs concentrations (0.15 wt%), SHS showed the minimum Tb
reduction corresponding to SpfHS and CufmHS. The Tb of SHS, SpfHS, and CufmHS reduced
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to 20%, 24.2%, and 31.57%, respectively. This fact is due to the absorbance of heat in NePCM,
which controls the temperature rise. CufmHS showed better performance than SHS and
SpfHS by use of the immense heat conducting zone. The peak Tb of HS configurations are
61.10 ◦C, 57.89 ◦C, and 56.16 ◦C, relatively. The systematic uncertainties in the applied heat
flux of the experimental setup were observed from 2.12% to 3.43%. The base temperature
reduction at 0.15 wt% of NPs was much higher than the uncertainty values. Therefore,
in the results section, the effect of uncertainty on base temperature reduction and other
observed parameters were ignored.

The 0.20 wt% of alumina NPs and the Tb of SHS, SpfHS, and CufmHS reduced to
20.61%, 25.10%, and 34.94%, respectively. Due to the 9% volume fraction as TCE, SpfHS
showed good results for the reduction of Tb compared to SHS. Once again, CufmHS depicted
promising results due to the slightly higher NPs concentration which increases the thermal
dynamism. At 0.25 wt% of NPs, the superior results achieved for SHS, SpfHS, and CufmHS
resulted in the Tb reduction to 21.32%, 25.74%, and 36.96%, respectively. The CufmHS
showed excellent performance due to its wide surface area and higher concentration of
NPs responsible for the increasing heat dissipation rate.

Figure 7b shows the thermal behavior of various formations of the heat sink imparted
with NePCM (0.15 wt%, 0.20 wt%, and 0.25 wt%) at 20 W (1.96 kW·m−2) heat input. The
Tb of the empty HS was recorded 84.303 ◦C at the tip of the charging mechanism. At
1.96 kW·m−2 input and 0.15 wt% of NPs, the Tb of SHS, SpfHS and CufmHS reduced to
17.49%, 19.73%, and 23.22%, respectively. At this heat input, the percentage of temperature
reduction was reduced compared to 0.98 kW/m2. This outcome is due to high heat pene-
tration in NePCM. Correspondingly, at 0.20 wt% of NPs, the Tb of SHS, SpfHS, and CufmHS
reduced to 18.21%, 20.59%, and 24.73%. The percentage of the Tb drops was improved
at 0.20 wt% as compared with 0.15 wt% of NPs. At the heat input value, the percentage
drop in the Tb of various HS configurations decreased compared to previously applied heat
input because of the complete melting of NePCM. Hence, sensible heating phenomena start
after melting, which is responsible for the temperature rise. The agglomeration of NPs at
the complete melting stage of PCM also negatively affects the heat transfer characteristics,
leading to lowering Tb. At 0.25 wt% of alumina NPs, the Tb profile of CufmHS presented
superior performance, which represents high heat carrying from the heated electronic
appliance to the nature.

For input heat of 30 W (2.94 kW/m2), the Tb profile of various HS investigations
is shown in Figure 7c. The Tb of an empty HS rises to 102.4 ◦C in 4500 s of heating, a
dangerous region for device safety. At subject heat input and 0.15wt% of NPs, CufmHS
performance was better while reducing the Tb to 16.99%, while the other two showed
13.15% and 15.06%. A similar trend with the improved Tb drop was observed for 0.20 wt%
NPs. At 0.25 wt% of NPs, the Tb of SHS, SpfHS, and CufmHS declined to 14.83%, 16.16%,
and 18.54%, accordingly. Again, NPs accumulate at the base of the HS, which is responsible
for reducing the Tb. The use of alumina NPs was useful for heat transfer application
in PCM-based HS, but oxidation of copper foam begins at the subject heat flux, limiting
alumina NPs direct use with copper foam for cooling electronic gadgets.

4.2. Effect of Various Heat Fluxes

The effect on the variation of the Tb of three different heat sinks at varying heat loads
and 0.25 wt% of alumina NPs in RT-54HC during the charging process is illustrated in
Figure 8. At 0.98 kW/m2, the Tb of CufmHS was below NePCM melting temperature.
Therefore, all heat absorbed by NePCM is sensible heating. At this heat flux value, NePCM
in other HSs undergoes the melting process. Heat absorbed after latent heat is called
post-heating. At 2.94 kW/m2, an abrupt rise in the Tb of three different HSs happened
due to the large input of heat into NePCM. The sensible and latent heating area was lower
than post-sensible heating. The temperature rose quickly in post-sensible heating. All HSs
performed effectively at 0.98 and 1.96 kW/m2 compared to 2.94 kW/m2 heat flux.
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4.3. Setpoint Temperature Analysis in Operating Time of Heat Sink Performances

The utmost working temperature after that the reliability and performance of electronic
gadgets drop is called setpoint temperature (SPT). Below critical SPT, electronic devices can
withstand without failure, losing efficiency and work reliably. Three SPTs (45, 60, and 40 ◦C)
were chosen to study the working duration enhancement of SHS, SpfHS, and CufmHS
during the charging (melting phase of PCM) and discharging (solidification of PCM) cycle
in Table 5. All SPTs values were examined at 0.25 wt% of NPs in NePCM mixture and three
heat flux input values (0.98, 1.96, and 2.94 kW/m2).

Table 5. Working time enhancement of heat sinks at various SPTs.

Heat Sink
Type

Charging Charging Discharging

Time to Access SPT-45 ◦C
(s)

Time to Access SPT-60 ◦C
(s)

Time to Access SPT-40 ◦C
(s)

kW/m2 0.98 1.96 2.94 0.98 1.96 2.94 0.98 1.96 2.94

SHS 1170 1080 840 4440 3180 2580 2400 3030 4020
SpfHS 1380 1260 1140 4800 4380 3240 1680 2580 3840

CufmHS 1530 1380 1290 5180 3780 3540 1500 2220 3780

4.3.1. Charging Process

Figure 9 reflects SPT 45 ◦C and 60 ◦C during the charging process to evaluate the best
performance of HS configurations. The SHS gained minimum time, and CufmHS exhibited
maximum time to achieve SPT of 45 ◦C at 0.98 kW/m2 heat flux. The SHS, SpfHS, and
CufmHS took 19.5, 23, and 25.5 min to reach the targeted SPT. This shows that the SpfHS
took more time than the SHS but took less time against CufmHS. It is also evidenced that
simple HS performance was lower than SpfHS and CufmHS at 1.96 kW·m−2. The duration
observed by SHS, SpfHS, and CufmHS is 17, 23, and 25 min, respectively. At heat input of
2.94 kW/m2, it is noted that charging time was reduced through a proceeding larger heat
flux ascribed to more heat absorbed by NePCM and the time experienced by three HSs is
14, 19, and 21.5 min, accordingly.
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Considering SPT 60 ◦C, the performance of all three heat sinks was much better while
comparing their performance in targeting SPT 45 ◦C. At 0.98 kW/m2 heat flux, the SHS
took 74 min to target SPT 60 ◦C, while SpfHS and CufmHS did not reach during 75 min of
charging, which shows an excellent thermal performance in monitoring subject SPT. The
SpfHS and CufmHS took 80 and 86 min longer than the charging cycle minutes revealing
the higher operating time of the electronic device. Three heat sinks took 53, 58, and 63 min
to achieve SPT at 1.96 kW·m−2. The thermal performance of CufmHS was excellent and
took 59 min maximum, while SHS was least performed during the charging cycle at a
2.94 kW·m−2.

4.3.2. Discharging Process

The cooling performance of HS configurations against SPT 40 ◦C at different heat flux
values was examined during the discharging process, as reflected in Figure 10. The SHS
incorporated with NePCM of 0.25 wt% NPs showed the least performance while CufmHS
represented better discharging performance The SHS, SpfHS, and CufmHS gained 40, 28,
and 25 min, respectively. Less time observed for CufmHS showed more heat transferred
towards the environment during the discharging process, reflecting the early cooling of
the system. The SpfHS showed the second most efficient HS after CufmHS. At 2.94 kW/m2,
the SHS, SpfHS, and CufmHS took 67, 64, and 63 min to achieve SPT of 40 ◦C. Once again,
CufmHS took less time during the discharging process, which shows the most effective
heat sink.
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4.4. Effect of the Mass Concentration of Alumina NPs and Heat Flux on Tb Drop and Working
Time Improvement

At various mass concentrations of alumina NPs and heat fluxes applied for various
heat sinks (SHS, SpfHS, and CufmHS), the percentage drop of Tb and percentage improve-
ment of working time at SPT-60 ◦C are compared in Table 6. The percentage drop of Tb
and percentage improvement of working time can be calculated according to Equations (4)
and (5).

% Drop o f base temperature =

[(
TPeak−empty HS

)
− (TPeak HS)

]
100

TPeak−empty HS
(4)

% Improvement o f working time =

[
(Time SPT−HS)−

(
Time SPT−empty HS

)]
100

Time SPT−empty HS
(5)

Table 6. Comparison of the Tb drop ratio and working time improvement ratio.

0.98 kW/m2 1.96 kW/m2 2.94 kW/m2

NPs
(wt%)

Ratio
(%) SHS SpfHS CufmHS SHS SpfHS CufmHS SHS SpfHS CufmHS

0.15
Tb drop 20 24.22 31.57 17.49 19.77 23.22 13.15 15.06 16.99

Working time
enhancement 180 228 252 142 161.90 185.71 110.26 157.95 182.05

0.20
Tb drop 20.61 25.11 34.94 18.21 20.59 24.73 14 15.63 18.38

Working time
enhancement 192 236 276 150 171.43 204.76 121.54 167.69 192.31

0.25
Tb drop 21.32 25.75 36.95 18.96 21.76 26.20 14.83 16.16 19.98

Working time
enhancement 198 244 288 158.57 180.95 223.81 128.21 175.38 202.56

Table 6 shows that the base temperature drop ratio and working time enhancement
ratio of tested HSs increased with the increasing mass concentration of NPs in PCM
(RT_54HC) but decreased at high heat flux values. At 0.98 kW/m2 heat flux, the base
temperature drop ratio and working time enhancement ratio increased for all mass con-
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centrations of NPs for all three HS configurations. At subject heat flux, the performance
parameters increased for SHS, SpfHS, and CufmHS. The CufmHS performance was better
than other HSs by reason of the large covering region, which helped to decrease base
temperature and improve working time. At 2.94 kW/m2 heat flux and 0.25 wt% of alumina
NPs, the working time of heat sinks enhanced by 128.21%, 175.38%, and 202.56%, but
Tb dropped 14.83%, 16.16%, and 19.98%, respectively. The SpfHS and CufmHS thermal
performances were better than SHS. At three mass concentrations of NPs and heat fluxes,
CufmHS showed excellent performance. At applied heat fluxes, the maximum enhancement
in the working time of CufmHS against 0.25 wt% of NPs was 288, 223.81%, and 202.56%,
respectively. PPI also plays a promising role in heat transfer enhancement, and it helps
achieve SPT slowly, resulting in improved operational time. The SHS showed low thermal
performance because it was unfinned. The thermal performance of SpfHS was better than
SHS due to fins acting as thermal conductivity enhancers. However, the performance of
CufmHS was outstanding regarding heat transfer, reducing base temperature and enhanc-
ing the device’s operating time owing to the prominent thermal dynamism of copper foam
and surface area. Figure 11 shows the best thermal behavior of CufmHS for the thermal
handling of electronic gadgets against applied heat fluxes and 0.25 wt% of alumina NPs. It
was shown that the percentage of base temperature drop is enhanced as NPs mass fraction
increases for the CufmHS, but the percentage improvement in operating time decreases as
heat flux value propagates because more heat penetrates into PCM.
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5. Conclusions

In the current experimental study, nanoparticles-based PCM were embedded into
various HSs such as SHS, SpfHS, and CufmHS to investigate thermal behavior in reducing
the base temperature and stretching the operating time of electronic devices at various
heat fluxes. All results of NePCM based HSs were compared with empty SHS. The base
temperature profile of empty SHS increased rapidly compared to NePCM filled HSs base
temperature results, which may damage the electronic components. At applied three heat
flux values, the base temperature of empty SHS was observed to be 76.4 ◦C, 84.3 ◦C, and
102.4 ◦C, respectively, at the tip of the charging operation. The introduction of PCM (RT-
54HC) with NPs concentration (0.15, 0.20, and 0.25 wt%) reduced the base temperature and
enhanced the working moment of the HSs. The thermal performance of SpfHS was found
to be better than SHS, and the inclusion of copper foam further increased the performance
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due to the provision of a larger surface area. For the higher percentage of NPs, 0.25 wt%,
provides the best outcome in CufmHS with temperature reduction of 36.95% and working
time enhancement up to 288%. The performance of HSs was also investigated at SPT of
40 ◦C, and CufmHS showed negligible variation in cooling time as compared to SHS. Other
types of metallic foams with highly conductive materials adopting hybrid cooling can also
be suggested with direct use of alumina NPs based PCM to avoid oxidation and improve
heat transfer for thermal management of electronics. In future studies, heat pipes and
other active cooling systems in conjunction with NePCM can be tested for a better thermal
performance of heat sinks in electronic devices.
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