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Abstract: The study of strange nonchaotic attractors (SNAs) has been mainly 

restricted to quasiperiodically forced systems. At present, SNAs have also been 

uncovered in several periodically forced smooth systems with noise. In this work, we 

consider periodically forced nonsmooth system, and find that SNAs are created by a 

small amount of noise. SNAs can be generated in different periodic windows with 

weak noise perturbation. If the parameter is varied further from the chaotic range, a 

larger noise intensity is required to induce SNAs. Besides, noise-induced SNAs can 

be generated by the periodic attractors near the boundary crisis. In addition, with the 

increasing noise intensity, the intermittency between SNAs and periodic attractors can 

be induced by transient chaos. The characteristics of SNAs are analyzed by Lyapunov 

exponent, power spectrum, singular continuous spectrum, spectral distribution 

functions, and finite time Lyapunov exponent. 
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1. Introduction 

An SNA has a fractal structure, which is not piecewise differentiable, and for 

which the Lyapunov exponents are nonpositive [1]. Many experts have found 

abundant strange nonchaotic dynamical properties in quasiperiodically forced systems 

[2-4]. In the periodically forced vibro-impact systems, the strange nonchaotic 

dynamical phenomena are found near points of codimension-2 [5] and codimension-3 
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[6] bifurcations. In a nonsmooth system with border-collision bifurcations [7], the 

different mechanisms for the birth of SNAs are investigated. The results show that the 

mechanisms of SNAs are more complex than smooth systems. In a quasiperiodically 

forced piecewise smooth system with Farey tree, the torus-adding bifurcation is 

interrupted, the strange nonchaotic dynamical phenomena can be observed [8]. SNAs 

are also found in a quasiperiodically forced single-degree-of freedom gear dynamical 

system [9]. The numerical experiments show that SNAs are the transition between 

quasiperiodic motion and chaotic motion. The attractor does wrinkle in the transition 

which can be regarded as the precursor to SNAs. Papers [10-13] uncover 

multistability of the coexistence of SNAs and quasiperiodic attractors, which enriches 

the study of SNAs. The strange and nonchaotic properties of SNAs can be verified by 

numerical methods such as Lyapunov exponent, phase sensitivity, power spectrum, 

fractal dimension, spectral distribution functions, rational approximations, and so on 

[14-16].  

The generation mechanisms of SNAs are complicated. Torus-doubling route can 

generate SNAs by the interruption of torus-doubling bifurcation [17]. Heagy-Hammel 

route can generate SNAs by the collision of two stable tori with an unstable torus [18]. 

Blowout route means that the quasiperiodic attractor becomes transversally unstable 

when the blowout bifurcation occurs, and the attractor evolves into an SNA with the 

change of the control parameter [19]. In addition, intermittency route is the evolution 

of quasiperiodic attractors into SNAs by saddle-node bifurcation (Type-I 

intermittency) or subharmonic bifurcation (Type-III intermittency) [20-21].  

Robust SNAs are also found in a random system, which can be induced by a 

small amount of noise [22]. In a periodically forced noisy FitzHugh-Nagumo neuron 

model, the strange nonchaotic dynamical phenomena are found, and the properties of 

SNAs are analyzed by numerical methods [23]. In a periodically forced nonlinear 

dynamical system, noise-induced logical SNAs are studied, and the robustness of 

these attractors is tested by logical signal perturbation [24]. In addition, Khovanov et 

al. [25] studied the influence of noise on SNAs and found that a very weak noise 
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could cause the dynamical complexity of SNAs in a quasiperiodically forced system. 

The remaining of this paper is organized as follows. In section 2, we introduce a 

class of periodically forced nonsmooth dynamical systems with noise that is studied in 

this work. In section 3, we discuss noise-induced SNAs in different periodic windows. 

The strange property of SNAs is analyzed by numerical methods. In section 4, we 

study the evolution of attractors, the interval of SNAs is determined by Lyapunov 

exponent and singular continuous spectrum. In section 5, it is shown that the 

periodic-3 attractors near the boundary crisis can evolve into noise-induced SNAs. In 

addition, we uncover that a small noise can induce the intermittency of SNAs in the 

system. Finally in section 6 we present the conclusion. 

 

2. A single-degree-of freedom piecewise linear system 

 

Fig. 1 Schematics of a piecewise linear system. 

We consider a piecewise linear system, as shown in Fig. 1. The mass, spring 

stiffness and damping coefficient are m , 1k and 
1c , respectively. The mass moves in 

the horizontal direction under the external force sin( )p t  and subject to the random 

perturbation ( )D t . The constraint on the right-hand side of the mass is composed 

of a linear spring with stiffness 2k . The gap between the constraint and the 

equilibrium position of the mass is B . The differential equation of the motion can be 

established as 

 
1 ( ) sin( ) ( )mx c x K x p t D t + + = +  ，  (1) 
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and ( )t  is the Gaussian distributed white noise. The mean and autocorrelation 

function are as follows (c.f. [23]), 
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  (2) 

where D  is the noise intensity. In this work, the mean is set to 0, and the variance is 

set to 1. Then the equation (1) can be written as 

 

1

,

( sin( ) ( )+ ( )) / .

x y

y p t c y K x D t m 

=


= − − 
  (3) 

The singular continuous power spectrum can be used to describe the strange 

property of SNAs [26]. There are three types of power spectra in dynamical systems: 

discrete power spectrum (periodic or quasiperiodic motion), continuous power 

spectrum (chaotic motion) and singular continuous power spectrum (strange 

nonchaotic motion). The discrete power spectrum has  -peaks at certain frequencies; 

the continuous power spectrum does not have  -peaks; singular continuous power 

spectrum contains both discrete and continuous spectra. According to the definition of 

the power spectrum, taking the Fourier transform of the orbit of the Poincaré map, we 

get 
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=
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Then the power spectrum of the attractor can be defined as 

 
2

lim ( , ) / .
N

P X N N
→

=   (5) 

In addition, the strange property of SNAs can also be characterized by the 

power-law relation of ( , )X N . If the attractor is periodic or quasiperiodic, then 

2 2( , )X N N . If the attractor is chaotic, then 
2 1( , )X N N . If the attractor is 

an SNA, it has the following relationship 
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2

( , ) ,kX N N   (6) 

where 1 2k  . 

 

3. The period-doubling dynamical phenomena with noisy perturbation 

3.1 The period-doubling of the system in the absence of noise 

We consider the system parameters, (1) 10p = , 0.5m = , 1 1.0k = , 2 30k = , 

1 0.2c = , 0.0001B =  and 0D = . The excitation frequency   is taken as the 

bifurcation parameter, and the bifurcation diagram of the system is shown in Fig. 2. 

For 
1= =3.486  , the corresponding Floquet multipliers of the system are 

1 1( ) 1.0  = −  and 
2 1( ) 0.486  = − . When   passes through 1 , the attractor 

undergoes a period-doubling bifurcation which converts period-1 to period-2 attractor. 

For 
2= =3.712  , the corresponding Floquet multipliers are 1 2( ) 1.0  = −  and 

2 2( ) 0.258  = − . When   passes through 
2 , the period-doubling bifurcation 

occurs again, and the period-2 attractor evolves into a period-4 attractor. For 

3= =3.797  , the corresponding Floquet multipliers are 
1 3( ) 1.0  = −  and 

2 3( ) 0.071  = − . When   passes through 
3 , the period-doubling bifurcation 

occurs, and the period-4 attractor evolves into a period-8 attractor. When 

= ( 1,2,3)i i  = , one eigenvalue of the system is 1− , and the absolute value of 

another eigenvalue is less than 1, then the system undergoes period-doubling 

bifurcations at = ( 1,2,3)i i  = . For =3.826 , the system goes into a chaotic state, 

and the chaotic interval  3.826,  3.868 . When   passes through 3.868, the 

system returns to the periodic state again, which is a period-8 attractor. 
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Fig. 2 The bifurcation diagram for the system parameters (1). 

3.2 SNAs in different periodic windows with noisy perturbation 

For 0D  , the dynamical properties of the system change due to noisy 

perturbation.   is taken as the control parameter to study the dynamical properties 

in different periodic windows. For =3.6  and 0.013D = , the period-2 attractor 

becomes unstable, and the period-2 attractor evolves into a noise-induced SNA, as 

shown in Fig. 3(a). The largest Lyapunov exponent is nonpositive ( 0.175max = − ), as 

shown in Fig. 4(a). For =3.75  and 0.0115D = , the period-4 components merge 

together, and it evolves into a noise-induced SNA, as shown in Fig. 3(c). The 

corresponding largest Lyapunov exponent is negative ( 0.13max = − ), as shown in Fig. 

4(b). For =3.88  and 0.0085D = , four adjacent components merge together, the 

period-8 attractor evolves into noise-induced SNAs, as shown in Fig. 3(e), with the 

largest Lyapunov exponent 
max 0.02 = − , as shown in Fig. 4(c). Snapshot attractors 

can resolve the strange geometry of noise-induced SNAs formed by a largest number 

of trajectories [22, 24, 27]. The blow-up parts of Figs. 3(a), 3(c) and 3(e) show that 

the points are randomly distributed, these snapshot attractors are formed by 100000 

trajectories, which are apparently fractal as shown in Figs. 3(b), 3(d) and 3(f). 

Summarizing, if the parameter is varied further from the chaotic area, the larger noise 

intensity is required to induce SNAs.  
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                    (a)                                     (b) 

  

     （c）                                 （d） 

  

（e）                                   (f)  

Fig. 3 The phase diagram in the ( ,  )x y  plane. (a) =3.6 ; (c) =3.75 ; (e) =3.88 , 

 (b), (d) and (f) are blow-up parts of (a), (c) and (e). 

 

(a)                       (b)                       (c) 

Fig. 4 The largest Lyapunov exponent. (a) =3.6 ; (b) =3.75 ; (c) =3.88 . 
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3.3 Determining the strange property of SNAs 

The singular continuous power spectrum contains discrete and continuous 

components, which can reflect the strangeness of the attractor [22]. The special power 

spectrum plays a very important role in characterizing SNAs, because SNAs exhibit a 

dynamical property between regular and irregular. In order to study the singular 

continuous power spectrum, =3.75  and 0.0115D =  are taken to verify the 

strange property of SNAs (Fig. 3(c)). The power spectrum P  of ( , )X N  is shown 

in Fig. 5(a). The power spectrum is continuous, but there are many   peaks, 

indicating the strange property of the attractor. 

On the basis of studying the power spectrum, the spectrum distribution function 

method [4] can also be used to verify the strange property of SNAs. In the diagram of 

power spectrum (Fig. 5(a)), we get the number of peak values which is greater than a 

constant value  , which obeys the standard power-law relation for SNAs 

( )N    ( 2 1−   − ) [22]. The parameters =3.75  and 0.0115D =  (Fig. 

3(c)) are taken to study the power-law relation. In Fig. 5(b), the scaling exponent 

1.91 = −  satisfies the power-law relation of SNAs, indicating that the attractor is 

strange. 

We consider the SNA in Fig. 3(c), the scaling exponent 1.17k =  can be 

obtained by calculating the power-law relation 
2

( , ) kX N N , the scaling 

exponent k  satisfies the power-law relation for large N, as shown in Fig. 5(c). In 

general, strange nonchaotic dynamical phenomena exist in the transition region from 

quasiperiodic motion to chaotic motion [9, 28]. In terms of the power-law relation of 

( , )X N , its exponent k  is also in the transition region between periodic attractors 

and chaotic attractors. The spectral trajectory in the complex plane of ( , )X N  

shows the fractal structure, which can explain again the strange property of SNAs, as 

shown in Fig. 5(b) [22].  

To characterize further that the property of SNAs, we take =3.75  and 



9 

 

0.0115D = . Figure 6 is the finite time Lyapunov exponents for P(100, λ), the 

distribution of the finite time Lyapunov exponents shows that it is present mostly in 

the negative region. A feature is that the distribution P(100, λ) picks up a tail which 

extends into the 0   region when the attractor is an SNA.  

 

           (a)                                 （b） 

 

（c）                                （d） 

Fig. 5 For =3.75  and 0.0115D = , (a) power spectrum, (b) spectrum distribution function,  

(c) singular continuous spectrum, (d) the fractal structure of trajectories  

in the complex (ReX, ImX) plane. 
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Fig. 6 For =3.75  and 0.0115D = , the distribution of the finite time Lyapunov exponents. 

 

4. The evolution of attractors 

By setting =3.75 , the evolution process of periodic attractors into 

noise-induced SNAs is studied. In the absence of noise ( 0D = ), the attractor is a 

period-4 attractor, as shown in Fig. 7(a). When the noise intensity D  is equal to 

0.005, the attractor is a noisy period-4, as shown in Fig. 7(b). For 0.0115D = , the 

attractor completely loses smoothness, and the period-4 components merge together. 

The periodic attractor evolves into an SNA, as shown in Fig. 7(c). As the noise 

intensity D  exceeds 0.038, the largest Lyapunov exponent is positive, and the 

attractor changes from an SNA to a chaotic attractor. For example, we take 0.04D = , 

the attractor is chaotic, as shown in Fig. 7(d). 

In Fig. 8 we plot the largest lyapunov exponent with the change of noise intensity 

D . It shows that a periodic-4 attractor becomes gradually unstable gradually. In the 

early stage the noise intensity is small, the periodic attractor does not become an SNA, 

because the scaling exponent of the singular continuous spectrum is not between 1 

and 2, the periodic attractor evolves into an approximately periodic attractor. When 

the noise intensity D  is equal to 0.007, the scaling exponent of the singular 

continuous spectrum starts to lie in the interval (1,  2) . Therefore, the parameter 

interval corresponding to SNAs can be determined ( 0.007 0.037D  ), as shown in 

Fig. 8. 

 

（a）                                  （b） 
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（c）                                （d） 

Fig. 7 The phase diagram in the ( ),N x  plane; (a) 0D = , (b) 0.005D = ,  

(c) 0.0115D = , (d) 0.04D = . 

 

Fig. 8 The largest lyapunov exponent. 

 

5. Strange nonchaotic dynamics near boundary crisis 

5.1 Crisis and transient chaos of the system in the absence of noise 

Transient chaos is the form of chaos due to nonattracting chaotic sets in the 

phase space [29]. Now we take the system parameters, (2) 15p = , 1m = , 1 1.0k = , 

2 30k = , 1 0.3c = , 0.2B =  and 0D = , and   is taken as the control parameter. 

The bifurcation diagram of the system is shown in Fig. 9. For 
1

'= =4.27  , the 

Floquet multipliers of the system are 
1

'

1( ) 0.414  =  and 
1

'

2 ( ) 1.0  = , 
1

'

2 ( )   is 1 

as expected. Therefore, the pitchfork bifurcation occurs, and the period-2 attractor 

evolves into a period-4 attractor. In addition, we get two unstable solutions by the 
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shooting method, two unstable periodic orbits are shown by the two dotted lines in 

Fig. 9. For '

2= =4.272  , the Floquet multipliers of the system are '

1 2( ) 0.171  =  

and '

2 2( ) 1.0  = . The attractor undergoes a pitchfork bifurcation which converts 

period-4 attractor to period-2 attractor, but the attractor changes immediately to a 

period-4 attractor with the change of  , as shown in Fig. 9. As   is increased to 

4.282, the system goes into a chaotic state. For =4.29 , the merging crisis (MC) 

occurs, two pairs of symmetrical chaotic attractors collide with unstable periodic 

orbits, and they merge to two larger chaotic attractors. For =4.296 , the chaotic 

attractor collide with an unstable periodic orbit, and the system undergoes boundary 

crisis (BC). At this event, the chaotic attractor disappears suddenly, as shown in Fig. 8. 

In addition, for 4.309,  4. 3][ 32 , the system has is a transient chaos, the 

asymptotic state is the period-3 attractor, as shown in Fig. 9. 

 

Fig. 9 The bifurcation diagram for the system parameters (2). 

5.2 SNAs near the boundary crisis with noise disturbance 

According to the bifurcation diagram in Fig. 9, we take =4.3  and 0D =  

(near the boundary crisis), the system has a periodic-3 attractor, as shown in Fig. 10(a). 

We consider the velocity and displacement with noisy perturbation. If the noise is 

present, it can generate noise-induced SNAs. Take 0.007D = , the attractor has a 

fractal structure, as shown in Fig. 10(b), and the largest Lyapunov exponent 
max  is 

equal to 0.138− , as shown in Fig. 11, so the attractor is nonchaotic. In addition, the 

power spectrum, spectrum distribution function and the singular continuous spectrum 



13 

 

are used to verify the strange property of the attractor (Fig. 10(b)). Many  -peaks 

can be observed in the power spectrum, which is discrete and continuous. The power 

spectrum has periodic and chaotic components, so it validates that SNA is a special 

dynamical phenomenon between periodicity and chaos, as shown in Fig. 12(a). It 

satisfies the power-law relation ( )N    by calculating the spectrum distribution 

functions. The scaling exponent   ( = 1.38 − ) is between 2−  and 1− , and the 

attractor is between ordered and disordered, as shown in Fig. 12(b). Since SNAs have 

singular continuous power spectrum, another evidence of singular continuous 

spectrum can be provided by calculating the Fourier transform ( , )X N . The 

power-law relation 
2 1.31( , )X N N  is seen in Fig. 12(c), which indicates that the 

attractor is strange. In addition, the fractal structure of attractor can be observed in the 

complex plane (Re ,  Im )X X , indicating the strange property of SNAs, as shown in 

Fig. 12(d). Summarizing, the attractor is an SNA in the set of parameters. 

 

（a） 0D =                          （b） 0.082D =  

Fig. 10 For =4.3 , the phase diagram in the ( ,  )x y  plane. 
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Fig. 11 For =4.3  and 0.007D = , the largest Lyapunov exponent. 

   

（a）                               （b） 

  

（c）                                  （d） 

Fig. 12 For =4.3  and 0.007D = , (a) power spectrum, (b) spectral distribution function,  

(c) singular continuous spectrum, (d) the fractal structure of trajectories in the complex plane. 

5.3 The intermittency of SNAs 

In general, there are three types of intermittency [30-31], which are generated 

by saddle-node bifurcation, subcritical Hopf bifurcation and subcritical 

period-doubling bifurcation. However, there is a special type of intermittency, which 
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is called crisis-induced intermittency [32]. Such an intermittency is caused by chaotic 

attractors colliding with an unstable periodic orbit. In this subsection, we uncover that 

noise perturbation can produce intermittency of SNAs in the velocity and 

displacement with noisy perturbation. 

In Figure 9, we take =4.31  in the interval corresponding to intermittency. In 

the absence of noise ( 0D = ), the system exhibits transient chaos. For [0,  1273]N , 

the system is in a chaotic transient, and the trajectory asymptotes to a period-3 

attractor, as shown in Fig. 13(a). In the presence of noise, the period-3 attractor 

gradually loses its stability with the increase of noise intensity and evolves into noisy 

period-3 attractors. As the noise intensity D  is equal to 0.03, there is an 

intermittency dynamical phenomenon in the system. In the ( , )N x -plane, the noisy 

period-3 attractors and SNAs alternate. After the transient chaos disappears, the 

intermittency phenomenon of two attractors appears, as shown in Fig. 13(b). Figure 

14 is the largest Lyapunov exponent corresponding to =4.31  and 0.03D = , the 

largest Lyapunov exponents of noisy period-3 attractors and SNAs are less than zero. 

When the largest Lyapunov exponent is less than zero, there is a fluctuating 

phenomenon, showing that the largest Lyapunov exponent switches between the noisy 

periodic attractor and SNAs. This implies that the types of the attractor change with 

time, and the SNAs coexists with the noisy period-3 attractors, resulting in 

intermittency dynamics. 

 

      (a)                                    (b) 

Fig. 13 For =4.31 , the phase diagram in the ( ),N x  plane, (a) 0D = , (b) 0.03D = . 
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Fig. 14 For =4.31  and 0.03D = , the largest Lyapunov exponent. 

 

6. Conclusion 

In this work, a periodically forced single-degree-of-freedom piecewise linear 

system with noise is considered. It is found that periodic attractors with noise can 

induce SNAs. If the parameter is varied further from the chaotic regime, a larger noise 

intensity is required to induce SNAs. The evolution process of SNAs is uncovered, 

and the interval of SNAs is obtained by using Lyapunov exponent and singular 

continuum spectrum. With the increasing noise intensity, the period-3 attractors near 

the boundary crisis may evolve into SNAs, and the intermittency between SNAs and 

the periodic attractor may take place after transient chaos. 
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