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Abstract

Children born very preterm or with a very low birthweight (VLBW), are at a significantly elevated
risk of brain injury from inflammation or hypoxic-ischaemic events. Resulting damage to pre-
myelinating cells and other issues, commonly lead to diffuse and acute white matter injury with
long term impacts on cognitive and motor function. On average, over one in ten births are
now preterm. Mortality rates for preterm births have declined, but unfortunately, neurological
disorders remain a major impairment for this group.

The New Zealand VLBW cohort enrolled all infants born VLBW in 1986, and has undergone
several multi-disciplinary follow up studies. Most recently, this included comprehensive cranial
MRI scans at an age between 26 and 30 years. The MRI session included diffusion-weighted
imaging, to examine white matter health in early adulthood. Probabilistic tractography has
been used to isolate whole white matter tracts and to construct structural networks.

Of the 42 tracts identified, 12 showed significantly reduced volumes in the VLBW cohort (n
= 141) compared to controls born normal birthweight (n = 49). These included the acoustic
radiations, left cortico-spinal tract, left superior thalamic radiation, forceps major and minor,
and the inferior longitudinal fasciculi. This indicates that the impact of an early birth remains
as smaller WM volumes in early adulthood. Only three tracts showed altered diffusion proper-
ties. The forceps major and left temporal cingulum subsection showed a reduction in fractional
anisotropy; these two tracts, along with the right optic radiation, also show an increase in ra-
dial diffusivity. These diffusion properties indicate poorer white matter health for these tracts,
but this is much less pronounced than is commonly reported in child and adolescent studies.
Taken together, these results suggest that the white matter of VLBW individuals may eventually
mature similarly to their term born peers, but with lasting reductions in volume.

Structural network analysis used: AAL3 parcellation; FSL’s probabilistic tractography; and
two normalisations, a standard approach (waytotal) and a novel algorithm developed for this
thesis (node strength normalisation). This analysis found the VLBW group had marginally in-
creased global efficiency, with an unchanged characteristic path length, suggesting that the short
paths may be shorter in the VLBW group. Mean clustering coefficient was significantly de-
creased, and node-wise clustering generally reflected this trend. Notably, the cerebellum showed
a slightly higher clustering in the VLBW group potentially in relating to impaired motor func-
tion. Modularity was higher, indicating a stronger community structure in the scale of 20-40
nodes.

This thesis also introduced a novel normalisation algorithm: node strength normalisation
(NSN). This algorithm allows nodes to have their strengths estimated and scaled relative to each
other, allowing meaningful comparisons between subjects, with minimal underlying assumptions.
It is the hope that NSN will be applicable more broadly, improving the validity of structural
network analyses across a wide range of neuroimaging applications.
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1 Introduction

1.1 Preterm births

Human gestation is rapid and complex. When development is interrupted by a premature birth,
it can have long-term health consequences [Cai et al., 2019, Evensen et al., 2020, Patel, 2016].
This forms the basis of the Developmental Origins of Health and Disease Theory [Wadhwa et al.,
2009], which postulates that individuals can be predisposed to several health disorders throughout
their lifetime as a result of environmental influences at critical stages of fetal and early child
development [Mandy and Nyirenda, 2018, Arima and Fukuoka, 2020]. This theory is supported
by the increased rates of neurological and cognitive disorders, respiratory issues, blindness and
deafness associated with preterm births [Ward and Beachy, 2003,Su et al., 2016].

A typical pregnancy lasts around 37 to 42 weeks, with a healthy birthweight around 2500g
to 4500g [ICD, 2019]. One in ten pregnancies however, result in premature birth (<37 weeks
gestation) [Chawanpaiboon et al., 2019, Vogel et al., 2018]. Survival rates have dramatically
improved with medical advancements, such that most premature infants with access to high
quality neonatal care are expected to survive to adulthood. However, with the threshold of
viability now at approximately 23 weeks gestation, the short-term and long-term morbidity of
preterm birth places a significant burden on individuals, families and health-care systems [Rogers
and Hintz, 2016]. Understanding the effect of the developmental disruption associated with
preterm birth is important to help guide interventions to improve patient outcomes.

Both gestation time and birthweight are indicators of prenatal development, which have been
used in the study of neonatal outcomes, although they are not exactly equivalent [Hollanders
et al., 2019]. Historically, birthweight was seen to be the more reliable indicator, however this
has moved toward gestational age with the development of ultrasound in recent years. Spe-
cific definitions of very-preterm (VP; generally <32 weeks gestation) and very low birthweight
(VLBW, birthweight <1500g) vary between studies and regions. The criterion used for this study
was a birthweight under 1500g, standard for 1986 when the study commenced.

Morbidities
The neurocognitive morbidities more commonly observed in VLBW/VP born individuals fall

across several domains. These include sensory-motor, social cognition and executive function.
Though many studies are focused on the early years of development, it is important to note that
many of these issues persist beyond childhood, and cause lifelong difficulties.

Movement and coordination disorders affect approximately 37% of VP individuals in child-
hood [Bolk et al., 2018,Arnaud et al., 2007]. Cerebral palsy (CP) affects around 10% of individuals
born less than 28 weeks [Himpens et al., 2008, Smith et al., 2020]. These movement disorders
vary in severity, from awkwardness walking and moving, to requiring special equipment, or an
inability to move independently at all.

Attention problems, processing speeds and attention deficit hyperactivity disorder (ADHD)
are seen at much higher rates in VLBW/VP cohorts throughout childhood [Agrawal et al.,
2018,Franz et al., 2018,Alamolhoda et al., 2021]. These problems are found to negatively correlate
with school achievement and IQ, and to persist into adulthood [Jaekel et al., 2013,Robinson et al.,
2022,Breeman et al., 2016]. Working memory impairments are also found, which relate to lower
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IQ observed in VLBW/VP individuals [Ward and Beachy, 2003, Kelly et al., , Dong and Yu,
2011]. This impacts these individuals throughout their lives, influencing their schooling success
and career prospects.

Other neurological issues include autism spectrum disorder (ASD) and epilepsy. ASD has
been found to affect around 7% of VP/VLBW individuals, impacting on their quality of life in
a variety of ways, including lower rates of social engagement, higher rates of underemployment
and mental health problems [Agrawal et al., 2018, Limperopoulos et al., 2008, Stephens et al.,
2012] Epilepsy is observed at greatly increased rates (around 4.5 times) in preterm children and
adults compared to full-term, with risk decreasing with increased gestational age [Hirvonen et al.,
2017,Crump et al., 2011].

Figure 1: Early brain development timeline.
Reprinted from Neuroscience & Biobehavioral Reviews , Volume 27, Issues 12, Susan L Andersen,
Trajectories of brain development: point of vulnerability or window of opportunity?, Pages 3-18,
Copyright 2003, with permission from Elsevier
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Processes underlying common morbidities
VLBW/VP neonates are not ready for the unfavourable environment outside the womb. The

ideal in-utero environment provides a stable, continuous supply of oxygen and nutrients through
the placenta, and protects the fetus with a stable temperature, low light, low noise environment
free of infection, inflammation and injury. By contrast, a preterm birth is often preceded by a
suboptimal in-utero environment, where energy or oxygen supply may be impaired, or the fetus
is exposed to infection and inflammation. This is followed by the experience of the NICU, which
exposes the neonate to light, noise, variable temperatures, microbes, excess oxygen and more.
This forces immature organs, such as the immune and respiratory organs, to quickly adapt to
function in the post-natal environment cite.....

Particularly important is the vulnerability of the developing brain to ischemia, inflammation,
and infection. These factors are known to commonly lead to acute and diffuse injury.

On the cellular level, the neurological development ongoing during an early birth includes
synapse production, myelination and refinement of the connectivity structure through neuron
and axonal growth and migration, and programmed cell death (roughly outlined in figure 1). At
this stage the surface of the cortex is largely smooth, with the surface gray matter (GM) rapidly
proliferating and beginning to fold. The connections within the brain are taking shape, with the
white matter (WM) tracts being established, and myelination beginning [Kocak, 2009, Poduslo
and Jang, 1984].

Myelination is the process of wrapping axons in a fatty, insulating sheath, which enables rapid
and efficient electrical communication along axons. Some structures are normally myelinated at
term, but most myelination occurs in the first two years post-birth [Grant and Griffin, 2018]. The
cells which go on to perform myelination are pre-myelinating oligodendrocytes (preOLs). PreOLs
are particularly vulnerable to hypoxia-ischemia and inflammation events, due to their immaturity,
and so are at a high risk of death or harm in VLBW/VP neonates. Death of these preOLs causes
rapid growth and specialisation of their precursor cells, but the regenerated preOLs, and those
injured are poorer myelinators, ultimately leading to a widespread white matter injury (WMI).
Neurons are also affected in hypoxia-ischemia events, with a widespread impact on to dendritic
growth, and general GM atrophy observed [Back, 2014,Volpe, 2009].

The delicate blood vessels in the preterm brain are also particularly vulnerable to disruption,
and at a high risk of rupturing. Intraventricular hemorrhaging (IVH), bleeding into the ventricles,
is an occurance of this which significantly damages tissues adjacent to the ventricles in 10-15%
of VLBW individuals [McCrea and Ment, 2008,Ballabh and de Vries, 2021].

Damage to the deep white matter near the ventricles, periventricular leukomalacia (PVL)
can also result from adverse events in the NICU, and affects from a fifth to half of VLBW/VP
individuals [Volpe, 2008b,Collins et al., 2018,Volpe, 2008a].

These disruptions have a widespread effect on both WM and GM health, and are consistent
with the morbidities mentioned above [Shah et al., 2008,Murray et al., 2014]. White matter injury
can account for the majority of neurological deficits [Khwaja and Volpe, 2008]. Further, white
matter injury is found to mediate aspects of GM development and abnormal neurodevelopment
[Shah et al., 2008,Murray et al., 2014].

MRI studies of neonates and infants have been used to quantify the location and severity of
this disrupted growth [Kidokoro et al., 2013, Edgin et al., 2008]. These disruptions are found
throughout the newborn VLBW/VP brain, due to the diffuse nature of the injuries. With a sim-
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ilarly wide range of neurocognitive impairments, it is difficult to identify specific regions relating
to adverse outcomes. A review of the relationship between WM tracts and childhood disorders
highlighted the corpus callosum, cerebellum, centrum semiovale, sensorimotor, subcortical nu-
clei, and posterior limb of the internal capsule as frequently being found with reduced volumes
in VLBW/VP cohorts [Parikh, 2016].

Studies through childhood and adolescence again find a broad range of structural alter-
ations throughout the brain, frequently related to patient outcomes. Volumetric studies of WM
tracts often highlight the corpus callosum, internal and external capsules, cerebellum and spinal
chord [Gimnez et al., 2006, Soria-Pastor et al., 2008, Taylor et al., 2011, Cald et al., 2006], with
particularly poor outcomes for patients who experienced IVH [Nosarti et al., 2008]. Diffusion
tensor imaging (DTI; see section 1.2) studies of WM health indicate impaired WM health in
VLBW/VP groups, in addition to reduced volumes. These studies also highlight the internal
and external capsule, corpus callosum, especially the splenium, in addition to the left and right
uncinate fasciculi, and many other WM tracts [Eikenes et al., 2011,Constable et al., 2008,Skranes
et al., 2007, Mullen et al., 2011, Vollmer et al., 2017]. Largely WM health is inferred through a
reduction in fractional anisotropy (FA), often with a corresponding increase in mean diffusivity.
These measures are explored in section 1.2.

Imaging studies of adults born VLBW/VP are very few. A study on hippocampal structure
found reduced volme in VLBW adults at age 26 [Aanes et al., 2020]. A previous study of this
dataset on GM thickness found atrophy in medial and lateral temporal areas in the VLBW group,
which also correlated with attention [Pascoe et al., 2019].

As individuals born preterm or with very low birthweight progress into adulthood, as with
everyone, their brain matures and adapts. The extreme plasticity of the developing brain may
allow some amount of the damage to be repaired or appropriate and efficient compensatory
pathways to be established. To properly assess this, and to understand the trajectory of abnormal
brain development, studies of VLBW/VP individuals need to be done later in life as well. These
studies are relatively few, and it is the aim of this thesis to add to the sparse literature on
VLBW brain development into early adulthood. Considering the important impairments to
white matter development, and the strong relationship between cognitive outcomes and WM
integrity and volume, this thesis will focus on WM health in the brains of adults born VLBW.

1.2 Magnetic resonance imaging

Magnetic resonance imaging (MRI) is an astoundingly flexible 3D imaging technique. MRI is
non-invasive, non-ionising with excellent soft tissue contrast. MRI also has a great variety of
scanning protocols which allow for different characteristics to be measured, such as T1 and T2
structural images, arterial spin labelling and most importantly here, diffusion weighted imaging
(DWI). Its excellent contrast, flexibility, and non-invasiveness lend it to be used in brain research
for both children and adults.

MRI is based on the behaviour of atomic nuclei, typically hydrogen, in a strong magnetic field
( ~B0). Classically, the magnetic moments of the hydrogen nuclei generally align with the external
magnetic field. These nuclei may be excited by a resonant radio pulse, which rotates the nuclei
away from (or toward) aligning with ~B0. Nuclei precess around ~B0 as per the larmor equation
ω = γB0, where omega is the angular velocity of the precession and γ is the gyromagnetic ratio.
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When precessing together this ensemble emits a detectable radio wave. Contrast in MRI comes
from differing net transverse magnetic moments specific to different tissues, resulting from either
re-alignment of the nuclei with ~B0 (T1), or an (irreversible) lack of cohesion in the ensemble
precession (T2).

Diffusion

Diffusion in the brain is strongly influenced by underlying microstructure. In areas with loose,
non-ordered microstructures, such as the ventricles, movement of water is largely unobstructed.
This results in large, undirected (ie. isotropic) diffusion. By contrast, GM has a relatively
restrictive, but generally isotropic microstructure, resulting in weak undirected diffusion. WM
tracts are most interesting: the highly ordered, tube-like structure of axons cause moderate-high
diffusion parallel to the tracts, but very low diffusion perpendicular. For this reason, the ability
of diffusion imaging to quantify how water movement is impeded allows for informative inferences
on the health, strength and directionality of the underlying micro-structure [Alexander et al.,
2007].

Diffusion weighted imaging

Diffusion-weighted imaging (DWI) is a scanning protocol which is sensitive to diffusion (of water).
In essence, DWI tags water in a small volume, then records the proportion which remains in that
volume after a short interval. Each scan is parametrised by a b-vector (~b), which gives the
direction of diffusion sensitivity, and a b-value (b, s/mm2) which relates to the magnitude of the
sensitivity. Acquiring many DWIs with at least two b-values (usually several with b = 0), allows
analysis of diffusion properties, which may be used to make inferences about the underlying
microstructure.

To achieve sensitivity to diffusion, a gradient magnetic field (along ~b) is applied, followed by
a reverse gradient a short time later (generally 20-50 ms). The gradient field causes a change in

precession speed, de-phasing the precession along~b by an angle which is functionally dependant on
position in the~b direction. The negative gradient then attempts to re-phase the precession at each
point/plane, by applying an equal and opposite gradient, such that precession at any point along
~b is rotated back by the same angle. Any particles which have moved along ~b between gradient
applications will experience a different change in phase, and so have their phase scattered. This
loss of phase coherence causes a drop in signal proportional to diffusion along ~b. By comparing
this image to one with no (or different) diffusion weighting, diffusion can be quantified under a
variety of models, producing images such as figure: 2 [Mori and Zhang, 2006].

Modern DWI sequences can collect hundreds of whole brain images: one for each of a few
b-values, for each of potentially hundreds of b-vectors. The volume of data produced necessitates
further processing (beyond the usual artefact reduction etc); common approaches to quantify-
ing diffusion include DTI, diffusion kurtosis imaging, neurite orientation dispersion and density
imaging, and constrained spherical deconvolution.
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Figure 2: Diffusion tensor image, showing FA in grayscale, with coloured lines overlayed showing
direction of primary diffusion. Blue: inferior-superior; green: anterior-posterior; and red: left-
right. WM is seen in white, as it has a high FA. Visible WM tracts include: the corpus callosum
(red), seen as a central frown in the para-sagittal view (left) and a central cross in the transverse
view (right), with diffusion running left-right; and the cingulum bundle running anterior-posterior
(green), following the superior edge of the corpus callosum in the para-sagittal view.

Diffusion tensor imaging

Diffusion tensor imaging (DTI) is perhaps the most established method for processing DWIs.
DTI makes the strong assumption that each voxel contains homogeneous tissue in which diffusion
occurs as a multivariate gaussian. As such, observed differences can have a variety of underlying
causes, making interpretation difficult. A brief overview of DTI and the subsequent metrics used
in this analysis is provided here.

DTI represents diffusion with a ‘diffusion ellipsoid’ at each voxel. This estimates the average
diffusion in each direction as the radius of the ellipsoid in said direction. The ellipsoid can be
represented by a 3x3 matrix D, though commonly this is broken into its eigenvalues and rotations
to the respective eigenvectors, giving: D = V ΛV T with

Λ =

λ1 0 0
0 λ2 0
0 0 λ3


The shape and size of these ellipsoids are characterised by the eigenvalues, which are commonly
analysed with the following metrics:

Fractional anisotropy (FA) quantifies how directional a diffusion signal is. FA is calculated as

FA =

√
(λ1 − λ2)2 + (λ2 − λ3)2 + (λ3 − λ1)2

2(λ1
2 + λ2

2 + λ3
2)

(1)
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This gives FA a value between 0 (undirected/isotropic diffusion) and 1 (diffusion in a single
direction only). An example DTI construction is figure 2, which highlights WM tracts by their
high FA.

Mean diffusivity (MD) quantifies the overall magnitude of the diffusion. MD is calculated as
the mean of the eigenvalues,

MD =
λ1 + λ2 + λ3

3
(2)

Other common metrics include axial diffusivity (AD = λ1), which quantifies the magnitude
of the diffusion along the direction of greatest diffusion, and radial diffusivity (RD = (λ2 +λ3)/2)
which quantifies diffusion perpendicular to primary diffusion. Interpretation of these is more
nuanced, and can in part be inferred by FA and MD, so have been excluded from this analysis.

Interpretations of DTI metrics

A great amount of work has gone into characterising what, and how microstructural configura-
tions affect these metrics. In specific circumstances, they can be highly informative, but care
must be taken when interpreting them; several arrangements of complex architecture can give
rise to similar summary metrics.

Intracellular elements are deemed unimportant when explaining diffusion properties. Studies
on the giant axons of the squid and lamprey have allowed the axoplasm to be imaged isolated
from the cell membranes in a living axon. These found very low FA (0.11 and 0) and an MD
similar to that of water (71% and 72%) [Beaulieu and Allen, 1994,Takahashi et al., 2002].

The cell membrane has been found to be the main contributor to FA. This has been confirmed
through studies of various unmyelinated WM tracts. These include: normally unmyelinated
WM [Beaulieu, 2002, Takahashi et al., 2002], WM which has not yet undergone myelination
(neonatal studies) [Partridge et al., 2004, Larvaron et al., 2007], and where pathology prevents
WM myelination [Harsan et al., 2007,Tyszka et al., 2006]. These studies each found a significant
degree of FA (0.2 to 0.8 depending on species and tract) indicating that the bulk of FA comes
from the axon cell membrane.

Myelination is thought to play an influencing role on FA, but to be a smaller contributor
relative to cell membrane integrity. Comparisons between the above unmyelinated fibres and
their appropriate myelinated counterparts found the myelinated fibres to have an FA 12% to
40% greater, and also an MD almost always reduced by 10% - 20% [Harsan et al., 2007,Tyszka
et al., 2006].

This indicates that DTI should be a good indicator of WM health, however care needs to be
taken to maintain specificity. Various artefacts are commonly seen when the assumptions of DTI
are not met. Partial volume effects with CSF near the ventricles artificially lower FA and increase
MD. The presence of multiple fibre bundles, such as at the crossing of the Corpus callosum and
corticospinal tract, also reduces FA, and flattens the tensor. Recent studies with multiple b-
values have also determined the diffusion to be non-gaussian in time, and newer methods such
as diffusion kurtosis imaging have been established to account for this.

A study on Wallerian degeneration along the motor pathways found decreased FA when the
tracts were isolated, but unchanged where they crossed other tracts [Pierpaoli et al., 2001]. A
reduction in RD with similar AD was linked to dysmyelination without axonal damage [Song
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et al., 2002], however many arangements of fibre populations were found which could give rise to
this change [Wheeler-Kingshott and Cercignani, 2009,Douaud et al., 2009].

Tractography

Another way to utilise DWIs is through tractography. WM tracts are of course not localised
to individual voxels, but appear as a series of adjacent, similarly aligned voxels throughout a
diffusion image. These may be followed producing a streamline along a particular WM pathway.

Different techniques have been developed to carry out this procedure, based on how each
voxel’s diffusion is modelled. Older deterministic algorithms have been replaced by increasingly
sophisticated probabilistic methods. In the determinnistic approach, the direction of greatest
diffusion is followed every time. The probabilistic approach used in this thesis is the ball and
stick model. In this model, each voxel contains a number of infinitely anisotropic components,
representing WM fibre populations, and an isotropic component, representing noise and scattered
fibres. As a streamline reaches each voxel, a random direction from that voxel’s modelled fibre
distribution can be drawn and followed. Each technique has advantages and disadvantages; the
probabilistic model was chosen here as it is robust to uncertainty in the diffusion measurements.

This is further explored in section 2.5

1.3 Methods of analysis

Multiple techniques exist to analyse whole brain images. Specifically for DWI, two main avenues
stand out: tract-, or region-wise analysis; and network analysis.

The region-of-interest approach entails identifying regions (WM tracts) in each subject, and
extracting summary metrics such as FA or MD. The gold standard for identifying WM tracts
is expert manual segmentation, however this is laborious, and impractical for large datasets. A
whole brain approach like tract based spatial statistics (TBSS), which has been previously used
on this dataset, is a method which registers the highest FA from voxels perpendicular to a pre-
specified WM skeleton [Pascoe et al., 2019]. This picks out the centre of WM tracts, but loses
information from the tract as a whole, as each voxel forms its own comparison, loses statistical
power, as more stringent multiple comparisons control is needed, and it can be difficult to account
for partial volume effects. TBSS is also limited in that it cannot determine the volume of tracts.
Tractography may be used with pre-specified masks designed to isolate whole WM pathways in
each subject, as seen in figure 3. This allows the whole tract to be isolated, and analysis done
on a tract-by-tract basis. This increases statistical power, captures all voxels within the length
and breadth of a tract, and allows for volumetric analysis.

The second, fundamentally different approach is to treat the brain as a network (a mathemat-
ical graph). This approach defines regions of GM, and focuses on the connections between them,
as opposed to summary metrics from the regions themselves. For this analysis, tractography is
run between each pair of regions. The number of streamlines then indicates the strength of that
connection.

Both types of analyses can tell us something about the brain and the state of WM. In this
thesis both techniques are explored in an effort to provide a more complete picture of the state
of the adult brain born VLBW.
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1.4 Network analysis

It almost goes without saying that the brain is a network by nature. This structure exists
as a fractal, from the molecular biochemistry in the scale of angstroms to the incorporation
of peripheral nerves on the scale of metres [Sejnowski, 2016]. A network in this context is a
mathematical graph representing connectedness within the brain. This graph is a set of nodes
(or vertices), along with a matrix of edges, representing how the nodes are integrated. These
networks can vary greatly in construction and interpretation based on the scale and imaging
modality used.

Micro- and meso- scale networks

On the cellular level, individual neurons can form the nodes of this network, connected via a
multitude of synapses. Estimates of the number of neurons present in a human brain are in the
order of 1011, with 1015 synapses between them [Herculano-Houzel, 2009]. In addition to where
these connections are, information on the type and strength of these connections is important to
understanding how they function [Sporns et al., 2005]. Whilst such a description would provide
profound insight, the level of detail required exceeds our capacity to efficiently collect, store, and
process such data [Mikula, 2016].

On the slightly larger ’mesoscale,’ structures may be seen in the local groupings of neurons.
Groups of around 10-100 cells form cortical columns and mini-columns, tiny units perforating
the neocortex [Cruz et al., 2005]. There is some evidence that these form functional units in the
brain, making a network of this scale highly attractive [Jones, 2000,Buxhoeveden and Casanova,
2002]. With a width of around 40-80 µm, mapping these still presents a colossal task, and falls
well below what may be studied in vivo.

Macroscale networks

This begs the question: what can we measure? The tools of modern, non-invasive network
analysis are generally limited to electro- and magneto-encephalography (EEG and MEG); and
functional and diffusion magnetic resonance imaging (MRI) [He and Evans, 2010]. These modal-
ities can reach resolutions down to millimetres, as such they are considered ’macro-scale’ net-
works [Hedrich et al., 2017]. EEG, MEG and functional MRI (fMRI) all seek to measure activity
in the brain, through electrical or magnetic signals (EEG and MEG) or changes in magnetic sus-
ceptibility resulting from increased blood flow (fMRI, in particular blood oxygen level dependent
imaging (BOLD)). Diffusion MRI seeks to map WM pathways, by characterising the diffusion
of water within the brain. Diffusion MRI is the technique used in this analysis, and so will be
explained in slightly more depth in the following sections.

Ionising modalities such as positron emission tomography and single-photon emission com-
puted tomography are also able to produce informative functional images, such as by measuring
glucose metabolism or cerebral blood flow. These techniques require the injection of radionu-
clides, which will expose participants to a small degree of harmful radiation. As such, a more
thorough cost-benefit analysis is needed to justify their use.
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Parcellation
Defining the nodes of a network (parcellation) is a matter of active research, and depends

greatly on the imaging modality used. EEG and MEG are the simplest, as each electrode or
magnetometer quite naturally lends itself to be used as a node ( [Bosma et al., 2009] for example).
Some variability exists, depending on the headcap or MEG machine used, but for a given study,
node choice is generally straightforward. In MRI, 3d images are produced without externally
defined nodes, which leaves node construction a much more open problem. In general, voxels are
grouped or parcellated into regions of interest (ROIs) either randomly (with some constraints)
or based on a priori anatomical and/or functional information.

Each Node should be a homogeneous region, sharing similar connections and function(s).
Function, information processing and task performing in the brain, is carried out by the grey
matter (GM) residing mainly on the cortical surface. White matter (WM) conducts signals
between GM volumes, and as such, will be involved in the construction of the edges. Ideally
then, parcellations should consist exclusively of distinct GM regions [Park and Friston, 2013].
Many templates exist which have been expertly constructed to divide the brain into known
anatomical and/or functional regions [Zalesky et al., 2010, Rolls et al., 2020, Destrieux et al.,
2010]. Another approach is to extract the GM and randomly parcellate it into similarly sized,
contiguous regions. With small enough regions, these should achieve the desired result, though
interpretations will differ. Anatomical pacellations are generally limited to fewer than 150 ROIs,
but random parcellations may push this in excess of 5000 [Qi et al., 2015].

No gold standard currently exists for parcellations; it is an open question to what degree
parcellation affects network measures [Qi et al., 2015, Zalesky et al., 2010, Wang et al., 2011].
This is a very interesting question, but falls beyond the scope of this thesis.

Edge construction
The construction of the edges of a network is where the main distinction between functional

and structural networks lies. EEG, MEG and fMRI produce time series data of brain activity.
The strength of the edge between each pair of nodes in functional networks is based on the
correlation in this activity time series. This lends toward the interpretation of connected regions
being strongly involved in performing the same task(s) [van den Heuvel et al., 2017,van Diessen
et al., 2015]. Diffusion MRI on the other hand, produces data on how water diffuses throughout
the brain (further explained in 1.2). With this, WM tracts may be traced, following the process
of tractography (further explained in 2.5) from each ROI to each other ROI. The edge strength
will be related to the number of streamlines which connect each pair of ROIs. This lends the
edges to be interpreted as the strength of the physical connection between regions, which may
be involved in information transfer, or capacity for functional integration.

Usefulness of macroscale networks
With such a coarse representation of the underlying networks, one may wonder whether

meaningful inferences can be gleaned from macro-scale networks. With each voxel containing
∼105 neurons [Cosgrove et al., 2007, Herculano-Houzel, 2009], these networks alone will not
reveal the arcane workings of the mind. They do however show some robust properties, with
disruptions commonly seen in certain neurological disorders. Some of these are mentioned here
to further motivate and justify analysis of these networks, and give examples of metrics used.
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Metric selection and explanation are the subject of section 2.7.4, and the validity of their
interpretation is discussed later, in section 4.2. Briefly, aspects of network organization include:
integration, how well connected each node is in the network, measured by characteristic path
length and efficiency; segregation, how much the network falls into strongly interconnected sub-
graphs or clusters, measured by clustering coefficient (CC) and modularity; and infrastructure,
characterising how certain nodes of a network tend to connect the clusters, measured by node
centrality, rich club coefficient and small worldness.

CP is associated with widespread reduction in connectivity and reduced WM integrity, es-
pecially long range fibres, and those associated with the sensorimotor network. This is related
to a greater characteristic path length, and a corresponding drop in global efficiency [Englander
et al., 2013, Pannek et al., 2014]. Nodewise analysis also the nodal efficiency of the precentral
gyrus and right middle frontal gyrus of particularly reduced [Jiang et al., 2021].

ASDs are thought to be related alterations of neural connections [Yamasaki et al., 2017].
Analysis of whole brain structural networks has shown a shorter characteristic path length, and
greater local connectivity [Li et al., 2014]. A separate analysis of the rich club (RC) coefficient
showed a stronger RC organisation in ASD individuals, with a greater connectedness within the
RC [Ray et al., 2014].

Epilepsy is thought to be a disorder of brain network organisation.Many studies have been
done to characterise the evolution of functional networks during seizures, with robust changes
to CC and Characteristic path length observed [Kramer and Cash, 2012, Engel et al., 2013].
Structural network analysis is less common, and often focuses specifically on important regions or
tracts. These have found widespread disconnections in the temporal lobes of those suffering from
temporal lobe epilepsy. In a study of medial temporal lobe epilepsy, increased global clustering
coefficient, and regional changes to node degree, efficiency, CC and betweenness centrality were
found [Besson et al., 2014,Bonilha et al., 2012].

Alzheimer’s Disease (AD), though not known to be related to VLBW/VP births, is a disease
which has had many network based analyses. Good test re-test reproducibility for the CC,
characteristic path length, degree, global efficiency, modularity, local efficiency, and betweenness
centrality have been found for AD [Welton et al., 2015]. For this reason, these metrics are
included in the analysis of the VLBW cohort.

1.5 Exploration of structural networks

Structural network analysis is an exciting, developing field, with techniques being continually
revised, tweaked and re-written to improve the accuracy and reliability. A comprehensive evalu-
ation of the best processing pipeline, from scanning, preprocessing, tractography, normalisation,
selection and calculation of metrics, is a mammoth task far beyond the scope of this thesis. Here,
techniques and measures are chosen which are well established in literature, and representative
of what a ‘typical’ analysis might look like. While they mostly seem robust, I have been in-
terested in, and have investigated the normalisation of the streamline count matrix, and some
generalisations of binary network measures to their weighted counterparts.

A novel normalisation algorithm, node strength normalisation (NSN), was developed and
used alongside the traditional waytotal normalisation to gauge its performance. Metrics are also
evaluated under both normalisation schemes, and their validity is discussed.

11



1.6 Research aims

This thesis investigated the long term effects of being born VLBW/VP on WM integrity and
organisation, through use of diffusion-weighted MRI. This project included two parts: tract-wise
analysis, and whole brain structural network analysis.

Tract-wise analysis used tractography with established masks to isolate whole WM tracts in
each individual. This allowed comparisons of DTI measures and volumes for each tract between
adults born VLBW and age-matched controls born with normal birthweight.

Structural network analysis used tractography to find the strength of the connections between
anatomically distinct regions of GM. This was used to find properties of the structural network
topology thought to depict important aspects of organisation, including integration, segregation,
hubs and network infrastructure.

Structural network analysis is a developing field. Through the research and implementation
of network analysis, a significant amount of work went into understanding and evaluating the
methods and metrics used. In addition, a novel algorithm to normalise connection matrices was
developed and used alongside the traditional method, with the intention of improving the validity
of results. This evaluation and innovation formed a secondary aim of this thesis.
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2 Data and methods

2.1 The 1986 cohort

The 1986 New Zealand VLBW study is a nation-wide multidisciplinary investigation into child
health and development. In the multiple assessment waves since it began, aspects from car-
diovascular health to cognitive function have been investigated. The initial study focused on
retinopathy, and enrolled all 411 infants born between 500-1499g (inclusive) in New Zealand in
1986 [Darlow, 1988]. Since then, three follow up assessments have been carried out, as summarised
in table 1. At age 7-8, a health and neuodevelopmental assessment was completed [Darlow et al.,
1997]. This was followed by a short followup at age 23-24 [Darlow et al., 2013], and a two day
health and neuropsychological assessment, with cranial MRIs for 150 VLBW and 50 controls at
26-30 years [Darlow et al., 2015]. It is the diffusion MRI scans from the age 26-30 study which
form the basis of this thesis.

A control cohort of 100 healthy, term born adults was gathered for the age 26-30 health and
neuropsychological assessment. Controls were selected either by peer nomination from cohort
members, or random sampling from electoral rolls. Balance for gender, ethnicity and regional
distribution was maintained.

Initial funding was available for 200 cranial MRI scans. Adults born extremely preterm (EP,
<28 weeks) were prioritised, as this group is known to have higher rates of neuro-developmental
issues. Three of the 57 EP individuals were excluded: one with a cerebral shunt, one who was
pregnant at the time of MRI assessment, and one with extreme claustrophobia. One further scan
was corrupted by motion and unusable. A further 96 VLBW individuals were randomly selected
for scanning, bringing the total number in this group to 150. Four VLBW scans did not include
diffusion sequences, due to time constraints or claustrophobia cutting the scanning session short.
A further VLBW scan was excluded due to severely disrupted anatomy. Two additional scans
were carried out to supplement those excluded due to anatomical reasons. Finally, five VLBW
scans were excluded from the diffusion analysis due to excess movement during this imaging
sequence (see 2.4).

The first 50 term born individuals to agree to scanning formed the control group. One control
scan was excluded, as it had excess movement during the diffusion sequence.

In total, the final diffusion cohort consisted of 141 VLBW and 49 control participants, as
summarised in table 2.

Age, years Included in study Deceased Declined Untraced/Overseas
0.2 313 74 25 —
7-8 298 86 7 21
23-24 230 88 — 58
26-28 250 89 38 35
26-30 (MRI) 150 — — —

Table 1: Studies conducted with the VLBW cohort, with numbers of participants, as per [Pascoe
et al., 2019,Darlow et al., 2015,Darlow et al., 1997,Darlow et al., 2013].
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Ethics

The study received ethical approval from the Upper South B Regional Ethics Committee (super-
seded by the Southern Health and Disability Committee) (ref: URB/12/05/015).

2.2 Initial data collection

Variables of interest including birthweight, sex and gestational age were determined at birth, and
were available for use in this thesis.

2.3 Scanning protocols

All scans were carried out on the same 3T General Electric HDxt scanner (GEHealthcare, Wauke-
sha, USA) with an eight-channel head coil. The full hour-long protocol included multiple scan
types: T1-weighted structural (SPGR), resting state functional MRI, arterial spin labelling perfu-
sion MRI, T2-weighted and T2-weighted FLAIR images, and DTI. The DTI acquisition analysed
here was as follows:

A 2D diffusion-weighted, spin echo, echo planar imaging sequence was used to mea-
sure microstructural integrity, with diffusion weighting in 64 uniformly distributed
directions (b = 1000 s/mm2) and 8 acquisitions without diffusion weighting (b = 0
s/mm2): TE/TR = 96/10000 ms, flip angle = 90 deg., acquisition matrix = 128 ×
128 × 74, FOV = 250 mm, slice thickness = 2 mm, voxel size = 1.95 × 1.95 × 2
mm3, NEX = 1, ungated [Pascoe et al., 2019].

Data acquisition for this study began prior to the routine acquisition of reversed phase en-
coding images that allow the correction of susceptibility distortions in diffusion-weighted data.
As these were not acquired, full susceptibility distortion correction using FSL’s TOPUP could
not be done.

Group
Scans
performed

Scans excluded: Scans
usedMovement Incomplete/missing Disrupted anatomy

VLBW 152 5 4 2 141
Controls 50 1 49

Table 2: Scans carried out, and reasons for rejection.

2.4 Data pre-processing

A limited number of pre-processing steps had already been performed on this dataset. To allow
for tractography to be performed, I have extended this process, and re-run steps which were
incomplete on some subjects.

Image processing was carried out using FSL (v5.0.9, [FSL, ]) and included the following
processes:
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EDDY
Movement and distortion and correction was carried out using EDDY [Andersson and Sotiropou-

los, 2016]. Our diffusion imaging sequence comprised of 72 images across 12 minutes. The ex-
tended duration of this sequence allows ample time for patient movement, which needs to be
estimated and corrected. The threshold for exclusion due to movement was set at greater than
2 voxels (4mm) for absolute motion (relative to first acquisition), or greater than 3σ for relative
motion (relative to the previous acquisition). Five VLBW scans and one control scan were re-
jected due to excessive movement, as per section 2.1. The large, rapidly changing gradients used
in DWI induce eddy currents which in turn cause image distortions. It is crucial to correct for
these and ensure proper registration, with each voxel in each image depicting the same volume
within the brain, so diffusion can be correctly characterised.

DTIFIT
Fitting of a diffusion tensor model (as per section 1.2) was done using DTIFIT. These are

fit under a bayesian framework, with uninformative priors, beyond keeping values positive where
appropriate [Behrens et al., 2003]. Along with the diffusion tensors, voxelwise measures including
FA, MD, AD and RD were calculated, as per section 1.2.

BEDPOSTX
BEDPOSTX fits the ball-and-stick model of fibre populations in each voxel which is used

by the tractography algorithm. This model comprises of an isotropic component, representing
noise and scattered fibres, and one or more infinitely anisotropic components, representing the
main fibre population(s). Automatic relavence determination is used to find the number of fibre
populations evident in each voxel. This model is then used by the tractography algorithm for
streamline tracing [Behrens et al., 2007,Jbabdi et al., 2012,Behrens et al., 2003].

Some subjects had incomplete/missing BEDPOSTX results, which were re-run and completed
successfully.

FNIRT and inverse FNIRT
A mapping between each subjects’ FA image and the standardised Montreal Neurological

Institute (MNI) space was found using FNIRT, and inverse FNIRT to find the reverse transform.
This allows the masks for XTRACT and parcellation for network analysis, both of which are
specified in MNI space, to be transformed into subject space. FNIRT works by first applying a
linear warp (affine transformation) then iteratively building a local, non-linear deformation field
of increasing resolution [Andersson et al., 2007b]. This allows for regional variations, such as
enlarged ventricles, to be accounted for, ensuring good registration of the masks and nodes.

2.5 Tractography

Subsequent to this pre-processing, tractography was run in two ways: to identify and extract
DTI metrics from WM tracts of interest, and to form structural connectivity graphs.

Tractography is in principal a simple process, following a basic loop:

1. Seed a streamline. The default of 5000 streamlines per voxel in the seed mask was used.
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2. Draw a sample orientation from the orientation density function (found by BedpostX) of
nearby voxels.

3. Take a step in that direction. The default step size of 0.5mm was used

4. Check if a termination criterion was met:

• Termination mask

• Maximum length

• Too steep a turn, default of ≈ 80o was used

5. Stop if termination criteria is met, or repeat from 2.

This results in a path through the brain, following the direction of the WM.

2.6 Tract identification with XTRACT

I have used XTRACT to identify the 42 well defined tracts shown in table 3. XTRACT runs
with known, prespecified masks, which are transformed into subject space for tractography. Seed
and target masks are placed at either end of a WM bundle, and exclusion masks are placed to
remove streamlines which stray onto other tracts [Warrington et al., 2020]. Each streamline adds
to a heatmap, which is thresholded to create a mask isolating each WM tract in each subject’s
diffusion space. These WM masks are then used to extract key metrics including volume and
mean, median and variance for each of FA, MD, RD, AD and length. An example of this process
can be seen in figure 3.

Figure 3: FSLs Xtract masks for isolating the forceps major. Left: seed (green) target (blue) and
exclusion (red) masks, with tract heatmap in cyan/pink. Right: example thresholded heatmap,
to isolate voxels along the forceps major.
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Tract Abbreviation
Arcuate Fasciculus AF
Acoustic Radiation AR

Anterior Thalamic Radiation ATR
Cingulum subsection : Dorsal CBD

Cingulum subsection : Peri-genual CBP
Cingulum subsection : Temporal CBT

Corticospinal Tract CST
Frontal Aslant FA
Forceps Major FMA
Forceps Minor FMI

Fornix FX
Inferior Longitudinal Fasciculus ILF

Inferior Fronto-Occipital Fasciculus IFO
Middle Cerebellar Peduncle MCP

Middle Longitudinal Fasciculus MdLF
Optic Radiation OR

Superior Thalamic Radiation STR
Superior Longitudinal Fasciculus 1 SLF1
Superior Longitudinal Fasciculus 2 SLF2
Superior Longitudinal Fasciculus 3 SLF3

Anterior Commissure AC
Uncinate Fasciculus UF

Vertical Occipital Fasciculus VOF

Table 3: Tracts found by Xtract, as per [Warrington et al., 2020]

2.7 Network construction

I have also constructed structural connectivity matrices for graph theoretical analysis. The
parcellation used was Automatic anatomical labelling atlas 3 (AAL3), and streamlining was run
between each region as per 2.5. These matrices were normalised both by waytotal and node
strength normalisation, and subsequently used to calculate the graph metrics analysed below.

2.7.1 Parcellation

Automatic anatomical labelling atlas 3 (AAL3; [Rolls et al., 2020]) at 2mm resolution was used
for this analysis. This was decided due to AAL’s common, long-standing use in literature, having
been used for both structural and functional analyses of various conditions and disorders [Tzourio-
Mazoyer et al., 2002, He et al., 2018, Disselhoff et al., 2020, Qi et al., 2015]. The AAL atlases
are based on a single-subject high resolution T1 image formed from 27 acquisitions from the
Montreal Neurological Institute in 1998 [Tzourio-Mazoyer et al., 2002]. This image was divided
into the current 166 ROIs based on anatomical features via automatic sulci detection and manual
segmentation.
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AAL3 is offered in both 2mm and 1mm resolution. The 2mm resolution was used to match
the resolution of the diffusion images, and to lower computation time.

FSL’s ProbtrackX allows for ROIs to be specified in either subject (diffusion) space or in
any other space, as long as transformations to and from said space are provided. Both diffusion
and MNI spaces were trialed. ROIs were eroded when writing parcellations to diffusion-space,
as shown in figure 4. Due to this, AAL3 was provided to ProbtrackX in MNI space, along with
forward and inverse warps to each subject’s diffusion space.

To confirm the appropriateness of the warping method, linear and non-linear warps, produced
using FSL’s FLIRT and FNIRT [Jenkinson and Smith, 2001, Jenkinson et al., 2002, Andersson
et al., 2007a], were visually compared as per figure: 4. The non-linear warp was chosen due
to overall better conformance to the frontal lobes and internal structures such as the thalamus.
This is especially important here, as DWI is commonly associated with susceptibility artefacts.
These cause an elongation of the frontal lobes, and to a lesser extent an indentation of posterior
regions (this direction depends on the direction of phase encoding, for this dataset it ran anterior-
posterior). This deformation is partially corrected for in FSL’s EDDY, but the linear warps still
tended to undershoot the frontal regions. The non-linear warps generally seem to overshoot the
external bounds of the brain, however this is not of concern, as a brain mask is applied at the
time of tractography, nullifying any streamlines beyond the cortex.
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Figure 4: Automated anatomical labelling atlas 3 parcellation (colour) in subject space via linear
(top) and non-linear (mid, whole mask transform, and bottom, ROIs transformed individually)
transformations. These are overlaid on a subject’s fractional anisotropy image (greyscale). Views
(left to right) are Sagittal, axial, and coronal. Views are in radiological convention (left is right).
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Figure 5: Connection matrices of a single subject, produced with a variety of settings. Top-left
shows the settings which were used applied to the whole dataset: AAL3 in 2mm resolution in
MNI space, related to subject space using a non-linear warp. This is very similar to the top-right
matrix, which used AAL in 1mm resolution. About 50 of the 27000 connections were found
to deviate by more than an order of magnitude. Bottom shows the tractography done in DTI-
space: noteably many ROIs have no connections, as those regions were completely eroded by the
transformation.

2.7.2 Normalisation

The output of ProbtrackX’s network tractography is an observed matrix, Oij, where each element
is the observed number of streamlines (NoS) from ROI i to ROI j. As the NoS efferent from
an ROI is proportional to the size of that ROI, normalisation must be done to prevent large
ROIs from artificially appearing more connected due to their size. Furthermore, the constant
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of proportionality is a parameter of the ProbtrackX program, so normalisation is neccesary to
compare studies.

A common normalisation technique is by waytotal: dividing each observed NoS by the total
NoS originating in that ROI. This makes the strength of each edge be interpretable as the pro-
portion of connectivity from each region. This however introduces a bias against well connected
regions, as can be seen in the following example.

Consider running probabilistic tractography on the undirected graph depicted in figure 6
(top), with two edges of weights one and three. The streamlining process is the culmination
of dozens of random steps, ultimately leading each streamline to one of the other ROIs, or
to terminate without being counted. This may be modelled as each streamline ‘choosing’ a
destination ROI probabilistically, weighted by the strength of the corresponding edges. Applying
this to the example graph, we would expect 100% of (counted) streamlines from nodes A and
C to reach node B, but from node B, for 1/4 to travel to A, and 3/4 to C, as shown in the
directed graph in figure 6 (bottom). This is equivalent to normalisation by waytotal, and is
clearly non-representative of the underlying connectivity.

With the knowledge that the underlying true graph should be symmetric, due to the symmetry
of DWI, we can leverage the asymmetries in O to reconstruct the true connection matrix T , up
to a constant.

To find T , consider the formation of the observed connection matrix O. An observed edge
Oij will be the product of the number of streamlines seeded at that node (waytotal),

∑
aOia and

the proportion of true node strength (sum of edge weights leaving node i),
∑

a Tia, belonging to
edge Tij. This gives the equation and rearrangement

Oij =
Tij∑
a Tia

∑
a

Oia (3)

Tij =
Oij∑
aOia

∑
a

Tia (4)

For simplicity of notation, let O be normalised by waytotal,
∑

aOia = 1, and let the row
weights of T be denoted ti =

∑
a Tia. Equation 4 becomes

Tij = Oijti (5)

If we assume that, since diffusion data cannot reveal the direction of a WM pathway, the
theoretical matrix is symmetric,

Tij = Tji (6)

We may substitute the above two equations.

Oijti = Tij = Tji = Ojitj (7)

This gives us an equation relating each pair of row (or column) sums in T:

Oijti −Ojitj = 0 (8)

for {i,j ∈ 1,2,3...n | i < j}. This may be gathered into a, overspecified matrix equation
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Figure 6: Example true graph (T , top), and the graph observed from random streamlining on T ,
and normalising by waytotal (O, bottom)

A~t = ~0 (9)

In the ideal case, where O is free of noise, this may be solved directly by finding the nullspace
of A. If noise is present, the nullspace of A is trivial (~t = ~0). In this case we can estimate ~t based
on the mean squared error (MSE), given by

MSE = tTATAt (10)

This will also be minimised by the trivial solution ~t = ~0; indeed, even if the true value of t were
known, MSE would grow as T is scaled. It should be noted that only information on the ratios
between elements of ~t is known, so T can only be reconstructed to an arbitrary scaling.

To find a useful solution, a t which minimises the mean squared error for a given matrix
weighting (‖t‖) is found (equivalently t which minimises growth of MSE with scaling of t). This
will be the eigenvector with the least eigenvalue of ATA. It is perhaps simplest to justify this by
considering eq. 10 as specifying an ellipsoid (in t space) for a given MSE. The major axis, which
is given by the eigenvector with the least eigenvalue, will always give the point(s) furthest from
the origin with a given MSE. This solution is equivalent to solving the least squares problem with
‖t‖ = 1, and is sensible as the scaling of ‖t‖ (and by extension the reconstructed T ) is arbitrary.

This novel approach, which I refer to as Node Strength Normalisation (NSN), to connection
matrix normalisation provides an estimate of the true connection matrix, who’s elements are
interpretable as the strength of the connection between ROIs, relative to each other of that
subject’s connections. NSN boosts the connections of well connected nodes, and diminishes
those of less, by allowing the total strength efferent from an ROI to vary above or below 1. It
also provides two estimates for each edge, as T is assumed to be symmetric. In this analysis, the
average of these is used.

NSN was implemented in MATLAB, and that code is available at
www.github.com/LiamBignell/NodeStrengthNormalisation.

NSN does not account for the lower weights we would expect to see for long range connections.
This is a known issue with tractography, with current solutions being a tradeoff between specificity
and sensitivity. As such, no distance corrections are used in this analysis.
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Brain property Graph measure
Segregation Global Clustering Coefficient C

Local Clustering Coefficient Ci

Modularity Q
Integration Characteristic path length L

Global efficiency E
Hubs and Betweenness centrality g(v)
infrastructure Rich club coefficient φ(r)

Table 4: Graph metrics included in analysis, with symbols.

This thesis examines structural connectivity networks using both standard waytotal normal-
ization, as well as my proposed Node Strength Normalisation (NSN).

2.7.3 Thresholding

Initial work on graph theoretical networks focused on binary networks, those where edges were
either present or absent, with no indication of their strength. To achieve these, thresholding
of the connection matrices is done, removing the weakest edges, and setting remaining edge
weights to one. This discards a large portion of the information present, and so generalisation of
network metrics to weighted graphs have been proposed, and commonly adopted. With these,
the information present in the edge weights may be retained.

This analysis was done with no thresholding. Scrutiny of the graph metrics used here found
some metrics behaved poorly on totally un-thresholded graphs. Some thresholding was trialled,
but due to multiple comparisons issues, could not be included in the statistical analysis. This is
discussed further in section 4.2.

2.7.4 Graph properties

One difficulty in network analysis is selecting significant and interpretable properties to investi-
gate. For this analysis, seven metrics were selected, as summarised in table 4. In selecting these,
consideration was given to representation in literature, interpretability, representation of various
topological properties, and reproducibility. Many of these metrics were popularised in [Rubinov
and Sporns, 2010], which both highlights some topological properties observed in the human
brain, and how they are demonstrated by a variety of metrics. This paper also introduces soft-
ware to calculate them (Brain Connectivity Toolbox; BCT). This is the toolbox used to calculate
all metrics except rich club. Specific algorithms are discussed in section 4.2.2.

These metrics can broadly be categorised by the underlying properties they are reported to
represent, as follows:

Integration
Perhaps the most understandable of the network topology ideas is that of integration. Strongly

integrated networks are ones in which any two nodes are ‘near’ each other, either having few
and/or strong edges along path(s) between them.
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Characteristic path length, L is calculated as the mean shortest path between each pair of
nodes. For weighted graphs, the ‘length’ of an edge is taken as the inverse of its strength.

Efficiency, E, is calculated as the mean of the inverses of the shortest path length between
each pair of nodes. This makes E closely related to C, but where C is more heavily influenced
by longer paths, E is more influenced by the shorter paths. This is particularly important if
any nodes become disconnected; if no paths between two nodes exists, C will become infinite,
whereas E will remain bounded.

Segregation
Topological segregation is based on the idea of groups of nodes strongly integrating amongst

themselves, but weakly to nodes in other groups. Scale becomes an important factor here, as
groups may in turn be comprised of sub-groups. The formation of the nodes themselves hints at a
finer community structure, where voxels are grouped together by their propensity to work together
as a group. This structure continues down to the scale of cortical columns/mini-columns, formed
from individual neurons, as discussed in 1.4. As such, these measures identify only macro-scale
clusters, appropriate to the size of the regions.

Clustering coefficient (CC) is a common measure used to quantify clustering in a network.
A node’s CC is the proportion of pairs of nodes, which both connect to the first, which connect
also to each other. CC is defined on each node separately, and the mean of these gives the global
CC. A proper explanation and evaluation of the generalisations of these to the weighted case is
given in section 4.2.2.

Modularity, Q, is the other value used here to quantify segregation. Modularity evaluates
the quality of a particular grouping of nodes by calculating the fraction of edges falling within
the given groups, minus the expected fraction for an equivalent random network. The idea of an
‘equivalent random network’ is quite involved; to skirt around this topic, the average of graphs
with the same degree distribution is used. This is known as the configuration model [Newman
and Girvan, 2004]. Modularity captures the idea that a good clustering should have much greater
connectivity within the group than we would expect by chance. This ranges from -0.5 indicating
only without group edges to 1, indicating only within group edges. Modularity requires a pre-
specified grouping, which has been done here using the Louvain method [Blondel et al., 2008].

Hubs and infrastructure
Small-world networks are those which display both higher segregation (clustering) and better

integration (lower path lengths) than random graphs. Both aspects of small-world networks are
assumed to be necessary for optimal information processing [Sporns, 2011, Stam, 2010]. These
networks are commonly characterised by smaller, relatively isolated communities with strongly
interconnected hub nodes.

The hub nodes sit on the boundary of communities, and allow for both high segregation and
integration. Identifying and quantifying these hub nodes may be done in several ways. Most
simply is node degree - the number of edges connecting to a node, or for weighted networks,
strength - the sum of the connecting weights. This is sometimes referred to as the degree cen-
trality. This shows how connected a node is locally, but may not capture its placement within
the wider network. To capture wider dynamics, betweenness centrality may be used.

Betweenness centrality counts the number of shortest paths each node is involved in. Those

24



nodes which are highly central will be involved in many paths, and thus have a high betweenness
centrality. Nodes with a high Betweenness centrality were thought to be highly influential in the
control of information flow, or key in coordinating the network [Freeman, 1977]. These highly
central nodes are also of interest in the context of network resilience. Disruption to those hubs
poses a greater risk in networks with fewer hub nodes [van den Heuvel and Sporns, 2013].

Rich club, φ(r), is the final metric included here, and aims to describe how strongly connected
the ’richest’ nodes are. The rich club is thought to be comprised of the hub nodes, and forms
when the richest nodes preferentially connect with each other (more than would be expected
by chance). This organisation is thought to enable efficient communication [Kanel et al., 2021].
Nodes and edges are ranked based on a ’richness’ measure, r. For a given richness, the total
strength in the subgraph containing only those nodes richer than r, denoted W>r is compared
to the total strength among the E strongest edges in the full graph, where E is the number of
edges present in W>r. By varying r, a rich club curve can be plotted as the exclusiveness of this
club is varied [Opsahl et al., 2008b].

The implementation used in BCT used node degree as the richness parameter, r. This was
found to behave particularly poorly when thresholding was not applied. Instead, node strength
was used. This eliminates the possibility of using waytotal normalisation (as node strengths are
all set to 1), so only normalisation with NSN is reported. This is further discussed in section
4.2.2. r was varied from 0 (all nodes) to 500 (5% of nodes).

2.8 Statistical analysis

Linear regression was used to perform groupwise comparisons between VLBWs and controls.
Age and sex were included as covariates, as these are known to have an effect on brain structure;
all statistics shown have been adjusted for age and sex. When running multiple models across
a number of WM tracts and network nodes, false discovery rate (FDR) was controlled using
the BenjaminiHochberg procedure. The corrected p-values are displayed as ‘q-values’, and are
considered significant at q<0.05.

ROI metrics
Two approaches were used to analyse tract-wise data. Firstly, a direct comparison as per

above, with an independent comparison between VLBW and control for each tract (with FDR
correction). Secondly, principal component analysis (PCA) was used to analyse data-driven
groups of tracts. In this instance, PCA was used both as a data-reduction procedure, and
to highlight tracts with a high covariance. In this manner, we expect tracts involved in the
same network to appear in the same principal component (PC). The top five PCs were retained
for further analysis. The contributing tracts from those with a significant group difference are
reported.

Xtract’s reconstruction finished unsuccessfully in 61 of the 7980 reconstructions. These were
spread across 47 subjects, and 9 tracts. Most notable is the Fornix, both left and right, which
had 16 subjects with no volume. Missing values were excluded from linear regression, and
imputed for PCA. Data imputation was carried out using multivariate imputation by chained
equations [Buuren and Groothuis-Oudshoorn, 2011].
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Network metrics
As with WM tracts, graph theoretic metrics were analysed using linear regression to find

groupwise differences. Where metrics are found on a node-wise basis, independent FDR correc-
tions were done. Rich club coefficient naturally has a significant degree of correlation between
similar r values. As such, BenjaminiHochberg FDR correction was not appropriate. Due to time
constraints, FDR was not controlled for.

Software
Statistical analysis was carried out with R in RStudio [R Core Team, 2022, RStudio Team,

2022]. Important packages included mice (interpolation) [Buuren and Groothuis-Oudshoorn,
2011]; ggplot2 (ploting) [Wickham, 2016]; factoextra (PCA) [Kassambara and Mundt, 2020];
tidyr and dplyr (data manipulation) [Wickham and Girlich, 2022, Wickham et al., 2022]; tidy-
graph (creating graphs in R) [Pedersen, 2020]; and ggraph (graph visualisation) [Pedersen, 2021]
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3 Results

3.1 White matter tract comparisons

The results from the direct comparisons of WM pathways found several tracts with lower volumes
in the VLBW group, largely with similar FA and MD (as per figures 7 to 9, and tables 11 to 13).
Tracts with reduced volumes bi-laterally included the acoustic radiations, inferior longitudinal
fasciculus, and superior longitudinal fasciculus III; in addition to the left peri-genual cingulum
subsection, cortico-spinal tract and superior thalamic radiation; the right fornix; and the forceps
major and minor. For DTI measures, only three tracts survived FDR correction. The left
temporal cingulum subsection (hippocampal white matter) and the forceps major exhibited both
reduced FA and increased MD in the VLBW group relative to controls; the right optic radiation
also showed significantly higher MD in VLBW compared to controls.
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Figure 7: 95% confidence intervals for each tract’s mean difference in volume (mm3), VLBW-
Control, corrected for intracranial volume, age and sex. Numbering is per table 11. Intervals are
coloured by their FDR corrected q-values, red: q = 0.05, purple: q = 0.01, blue: q = 0.001.
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Figure 8: 95% confidence intervals for each tract’s mean difference in FA, VLBW-Control, cor-
rected for age and sex. Numbering is per table 12. Intervals are coloured by their FDR corrected
q-values, red: q = 0.05, purple: q = 0.01, blue: q = 0.001.
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Figure 9: 95% confidence intervals for each tract’s mean difference in MD, VLBW-Control,
corrected for age and sex. Numbering is per table 13. Intervals are coloured by their FDR
corrected q-values, red: q = 0.05, purple: q = 0.01, blue: q = 0.001.
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PCA
For both FA and MD, the first five principal components were retained for further investi-

gation. Components are shown graphically in figures 10 to 13, and numerically in tables 5, 6, 8
and 9.

For FA, the first five components explained 60.3% of the variance. Of these, the second
component, which explained 8.1% of the variance, was the only to show a significant group
difference (p = 0.029), after adjusting for age and sex (figures 10 and 11a). Primary contributors
to this PC are shown in table 8.

PC % Contribution µV LBW−Control (σ) t-stat p-value
1 38.6 0.121 (0.668) 0.181 0.856
2 8.1 -0.822 (0.315) -2.608 0.010
3 6.5 -0.219 (0.275) -0.800 0.425
4 4.0 -0.155 (0.226) -0.683 0.495
5 3.1 0.335 (0.201) 1.666 0.097

Table 5: The first five principal components of FA, their contribution and statistical comparisons.

p = 0.86 p = 0.0099 p = 0.42 p = 0.5 p = 0.097
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Figure 10: Group comparisons of the top five FA principal components, corrected for age at scan
and sex

For MD, the first five components explained 62.2% of the variance. Of these, the fourth and
fifth components were significantly different between the VLBW and control group, with p-values
of >0.001 and 0.003 respectively (figure 12). Their percentage contribution of explained variance
were 4% and 3.1% (figure 13a), and their major constituents are shown in table 9.
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Figure 11: FA PCA plots: scree plot and second PC.

PC % Contribution µV LBW−Control† (σ†) t-stat p-value
1 35.80 0.168 (0.687) 0.244 0.807
2 9.40 0.626 (0.343) 1.822 0.070
3 8.00 0.082 (0.323) 0.254 0.799
4 5.20 1.345 (0.238) 5.640 0.000
5 3.80 -0.642 (0.216) -2.968 0.003

Table 6: The first five principal components of MD, their contribution and statistical comparisons.

p = 0.81 p = 0.07 p = 0.8 p = 6.3e−08 p = 0.0034
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Figure 12: Group comparisons of the top five MD principal components, corrected for age at
scan and sex
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principal component
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Figure 13: MD PCA plots, scree plot and third through fifth PCs.

3.2 Network analysis

Global metrics
Results from the global metrics were generally consistent across both normalisation schemes,

and are summarised in figure 14 and table 10. The VLBW group shows some evidence of
greater integration, with a non-significantly lower characteristic path length, and greater global
efficiency, significant under node strength normalisation (NSN; p < 0.001). Segregation measures
were both significant, with the VLBW group having a greater modularity (p = 0.02, waytotal
normalisation (Wt); p = 0.021, NSN), and a lower mean CC (p = 0.015, Wt; p = 0.006, NSN).
The segregation results appear inconsistent, as it is generally expected that mean clustering and
modularity should be positively correlated.
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Figure 14: Single graph measures under both normalisation schemes. Group comparison p-values
corrected for age at scan and sex are shown above boxplots. A and B: integration measures,
characteristic path length and efficiency respectively. C and D: segregation measures, modularity
and mean CC respectively.
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Betweenness centrality
The differences in betweenness centrality (by node) did not reach statistical significance for

most nodes, as seen in figure 16. Those which were significant, after age, sex and FDR correction,
are listed in table 7.

Notably, superior frontal gyri appeared bi-laterally, with both left and right showing a signifi-
cantly greater centrality under both normalisation schemes. The waytotal normalisation grouped
by lobe hints that central regions may have an overall lower centrality, but this is not evident
under NSN.

ROI number ROI µdiff (Wt) µdiff (NSN) q-val (Wt) q-val (NSN)
1 Precentral L -270 2.5 0.012 0.0004
3 Frontal Sup 2 L 700 1960 0.0015 0.0026
4 Frontal Sup 2 R 600 1670 0.0051 0.047
9 Frontal Inf Tri L -240 -270 0.012 0.72
34 Insula R 130 120 0.013 0.35
59 Postcentral L -240 -27 0.012 0.75
63 Parietal Inf L -81 -29 0.013 0.26
76 Putamen R 330 1200 0.038 0.064
151 ACC sup L -45 -22 0.31 0.0004

Table 7: Nodes with a significant difference in betweenness centrality, corrected for age, sex and
FDR. Difference is VLBW - control.

Node-wise clustering coefficient
The differences in CC by node, seen in figure 16, generally reflected the globally lower CC

seen in VLBWs. This was particularly prominent in the central and parietal lobes. Interestingly,
this trend was reversed in the cerebellum, which instead showed a slightly higher clustering in
the VLBW group.

Rich club curve
The rich club curves are shown in figure 15. The VLBW group had a significantly lower RC

coefficient in the cutoff range from 127 to 247 (p < 0.05; age and sex, but NOT FDR corrected).
In this range, the RC coefficient is 0.728 to 0.567 for controls, and 0.718 to 0.556 for VLBWs.
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Figure 16: Forest plots for the nodewise difference (VLBW - Control) in betweenness centrality
under both normalisations. The 95% confidence interval is shown before performing FDR correc-
tion, and coloured by corrected q-value (red: q = 0.05, purple: q = 0.01, blue: q = 0.001). Nodes
are divided by lobe, and into left/right (bottom/top) hemispheres within lobe where appropriate.
SCGM is sub cortical grey matter.
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Figure 17: Forest plots for the nodewise difference (VLBW - Control) in Clustering Coefficient
under both normalisations. The 95% confidence interval is shown before performing FDR correc-
tion, and coloured by corrected 1-value (red: q = 0.05, purple: q = 0.01, blue: q = 0.001). Nodes
are divided by lobe, and into left/right (bottom/top) hemispheres within lobe where appropriate.
SCGM is sub cortical grey matter.
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Figure 15: Rich club curve using node strength as the rich club parameter, r, under NSN. Bold
lines show group means, lighter lines show one standard deviation either side. r ranges from zero,
including all nodes, to 500, including 5% of nodes. Significant group differences are seen between
r = 127, 42% of nodes, and r = 247, 20% of nodes. These differences do not survive BH FDR
correction, but are significantly correlated.
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4 Discussion

4.1 Interpretation of results

White matter tracts
Twelve tracts were found to have a significantly smaller volume in the VLBW group compared

to controls (table 11). This indicates WM growth remains stunted into early adulthood in several
regions. Two tracts, the forceps major (fma) and left temporal cingulum subsection (cbt l,
hippocampal white matter) showed both significantly lower FA and greater MD in the VLBW
group. In addition, the right optic radiation (or r) also showed a significantly greater MD, with
a non-significantly lower FA. These results indicate poorer WM health in these tracts for VLBW
individuals.

Reduced volumes are consistent with the widespread impairment of WM development seen in
literature. Curiously, being born VLBW did not show as strong of an effect on the DTI indicators
of microstructural WM health as previous DTI studies through childhood and adolescence. This
indicates that WM may eventually mature similarly in VLBW adults as controls, but with a
reduced volume.

Various microstructural alterations could give rise to the observed differences in FA and MD
in the reported tracts. An important consequence of VP/VLBW birth is the known disruption to
process of myelination in the white matter (as per section 1.1). Poorer myelination of these tracts
in the VLBW group is a likely underlying cause which would be consistent with the observed
differences in FA and MD. Another explanation could be a simple decrease in axon density, which
would also be consistent with these results and the altered development following a preterm birth.

Damage to the acoustic radiations is one known mechanism leading to the higher rates of
hearing loss seen in VLBW/VP cohorts [Cristobal and Oghalai, 2008]. The smaller volumes of
these tracts shown here may be related to the vulnerability of these tracts.

The left cortico-spinal tract and superiorthalamic radiation, shown to have a reduced volume,
are both important tracts in the motor network. The differences seen in these tracts are consistent
with the poorer motor outcomes seen in VLBW/VP cohorts. A reduction in the left hemisphere
in particular is an interesting finding worthy of further investigation given the lateralisation of
some language functions.

It is reported that the splenium is a tract critical for reading skills, with damage to the
splenium associated with alexia [Dougherty et al., 2005]. A trend of poorer reading ability, but
not dyslexia, is observed among VP/VLBW children (age four and nine, [Samuelsson et al.,
1999]), but not significantly persisting into adulthood (ages 9 and 15, [Samuelsson et al., 2006]).
The reduced volume and integrity of the forceps major, containing the splenium, may be reflective
of this trend.

A previous whole-brain analysis performed on this dataset also identified lower FA in the
forceps major, but no significant difference in cbt l, or MD globally. A slightly greater RD, and
a mix of increased and decreased AD was found. It is unclear whether the cbt l and or r showed
significant differences in AD and RD [Pascoe et al., 2019]. Overall, the results presented here
show fewer significant differences than the TBSS study, but are consistent with the forceps major.

That analysis was carried out using tract based spatial statistics (TBSS). TBSS provides an
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option with which to address registration in diffusion-weighted images; it does so by constructing
a WM tract skeleton using the voxels with the greatest FA perpendicular to the skeleton. This
takes only the most central voxels along principal WM tracts. The tractographic approach used
here seeks to identify complete WM tracts, and compare all voxels in each tract in aggregate. The
inclusion of more data beyond the centre of the track may explain slightly discrepancy between
results.

Several studies have suggested specific associations of AD and RD to specific microstructural
properties. RD was linked to dysmyelination [Song et al., 2002], and AD to axonal injury [Budde
et al., 2009]. These relationships are known to perform poorly when axonal damage or loss,
inflammation, or demyelination coexist [Winklewski et al., 2018]; or under certain arrangements
such as in the crossing fibres problem [Wheeler-Kingshott and Cercignani, 2009]. Given the
number of models and comparisons planned, I explicitly decided not to assess AD and RD.

PCA
PCA of FA values from all the reconstructed WM tracts revealed a single principal component

with a significant group difference. This component resembled the motor network, with the
strong contributions from the cortico-spinal tracts and superior thalamic radiations (left and
right), followed by the forceps major and minor. This component is mirrored in the third PC of
MD (table 9), with the same four motor tracts. This MD component however did not show a
significant group difference. This indicates that these tracts are strongly related to one another,
and at lease in terms of FA, showed an association with being born VLBW. It is noteworthy
that these tracts are identified bi-latterlly. This indicates that differences in the microstructural
properties of these motor tracts were consistent across brain hemispheres, even if the volumes of
these tracts were not.

It is less clear which networks the other components found for MD might represent. A few
tracts appear bi-laterally, such as the acoustic radiations and vertical occipital fasciculi, but many
do not.

Graph properties
Of the integration metrics investigated, the VLBW group has a non-significant decrease in

characteristic path length (CPL) relative to controls, and an increase in global efficiency, sig-
nificant under node strength normalisation. Overall this would indicate that the VLBW group
tends to have better global communication than controls.

With CPL bring more influenced by longer paths, and the opposite true for efficiency, we can
infer that the longer paths are similar in each group, while the short paths tend to be shorter in
the VLBW group. This would give rise to the difference in significance seen between the metrics.

The segregation measures shown in figure: 14 show the VLBW group having both a greater
modularity and a lower mean CC when compared to controls. Paradoxically, both of these
measures are thought to be measures of network segregation, related to the tendency to form
clear sub-groups. A possible solution to this arises when the scale of the modules is considered.

Modularity suffers from a resolution limit, allowing it to only look at modules of a certain size,
related to a parameter of the community finding algorithm. With the default value used in this
analysis, the vast majority of subjects had four to eight modules found. This gives each module
on average 20 to 40 regions, which represent large modular structures. The greater modularity
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observed in the VLBW group then indicates an organisation of nodes more naturally forming
larger sub-graphs.

The CC inherently looks only at the local neighbourhood of each node by evaluating the
tendency for pairs of nodes in the local neighbourhood to be connected. This gives a much finer
resolution with which to view network segregation. A high clustering is related to nodes being
in a locally integrated, but globally segregated environment.

A simultaneous high modularity and low clustering might then indicate that the VLBW
group tends to have stronger community structure on the scale of 20-60 nodes, but fewer or
weaker interconnections within those communities.

The per-node CC, seen in figure 17 largely reflects the global difference seen earlier, with a
particularly strong effect seen in the central grey matter. The notable exception to this is the
clustering within the cerebellum, where overall greater clustering is seen in the VLBW group.
The cerebellar increase does not survive FDR correction in most regions, but this would be an
interesting point of further investigation. The cerebellum is important for movement and coordi-
nation, areas in which VLBW/VP groups often perform poorly. The CC within the cerebellum
may be informative of patient outcomes.

Structural network studies of preterm born individuals are largely restricted to the first few
months or years after birth [Brown et al., 2014,Thompson et al., 2016]. Furthermore, differences
in methodology limit the comparability of studies (as explored below). As such, this analysis
represents the only (to the best of our knowledge) graph theoretical analysis of adults born either
premature or with VLBW.

4.1.1 Limitations and future direction

As has been stated before, DTI has strong limitations from its gaussian assumptions. An inability
to resolve multiple fibre populations, and general oversimplification of the underlying processes
restricts our ability to make inferences about the underlying microstructures. Implementing a
more complex technique, such as constrained spherical deconvolution (CST), or diffusion kurtosis
imaging (DKI) would allow a more precise probe into the cellular arrangement in VLBW brains.
CST allows multiple fibre populations to be estimated, at greater angular resolution, but requires
scanning with a greater b-value that was acquired for this dataset [Tournier et al., 2007,Wilkins
et al., 2015, Dell’Acqua et al., 2013]. DKI allows the skew of the diffusion to be estimated,
increasing confidence in the results, but will require additional scans with at lease three (two
non-zero) b-values [Steven et al., 2014].

A related limitation arises from the susceptibility artefacts present in DWI. These artefacts,
resulting here in an elongation of the frontal lobes, are a well known issue with echo-planar imag-
ing (EPI) used in most diffusion sequences. The direction of elongation/compression is related
to the direction of phase encoding. Modern DWI sequences commonly reverse this direction
to allow the artefacts to be accurately and quickly corrected for [Andersson et al., 2003, Smith
et al., 2004,Graham et al., 2017]. Taking reverse phase encoded images was not commonplace at
the time of scanning. Techniques such as FSL’s EDDY can partially correct for the distortions
without requiring reverse encoded images, but more heavy-handed approaches, such as deep
learning algorithms, may be advisable for future analyses [Schilling et al., 2019, Qiao and Shi,
2022]. The small elongations would have affected tractography to a small degree, as the distances
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in the anterior and posterior regions would be slightly off. Along with inconsistent distances, the
volumes found by XTract would also be affected by these artefacts. This should have the same
effect across both VLBWs and controls and so be unlikely to bias these results, but will impact
volumetric comparisons to other MRI acquisitions.

A logical next step in the analysis of this data is to incorporate measures relating to neurolog-
ical outcomes. Associations among WM integrity and both motor and neurocognitive outcomes
would provide further understanding of the long-term consequences of VLBW. Furthermore,
these brain-behaviour relationships could be compared to previous studies of younger cohorts to
elucidate any consistent relationships across development. In particular, it would be interesting
to compare those principal components which resembled the motor network to movement and
coordination outcomes.

The Xtract reconstruction algorithm failed to identify several tracts, 61 in total. At least one
tract failed in 47 of 190 subjects, with at most three tracts failing in each subject, and at least
one subject failed in 9 of 42 tracts. The poorest performing tracts were the left and right fornix
(16 each), and the superior longitudinal faciculus (9). This was handled by excluding the NaN
values from direct comparisons, and interpolating using MICE for PCA. The rate at which this
occurred did not vary significantly between groups, so this is not thought to have biased results.

An important source of bias to be aware of in neuroimaging research, is the potential for
circular analysis. For example, picking what to investigate based on preliminary results, such as
investigating a tract voxelwise based on a whole-tract difference. A subtle variation of this may be
at play with the DTI metrics found by XTract. Tractography is based on the DWI; the diffusion
properties of each voxel influence its chance of being included in a given tract. The voxels chosen
in turn have their diffusion properties analysed. This double-dipping into diffusion properties
may potentially bias results, however, further investigation would be needed to determine the
extent of this effect.

The graph theoretical analysis completed here is one of the first to analyse the structural
connectivity in young adults born VLBW. Several limitations with the current methods have
been identified below, in section 4.2. In this exciting, developing field, there is a need for a com-
prehensive review of the vast methodological differences. These span across scanning protocols,
pre-processing, parcellation, tractography, formulation of edge strengths, thresholding, metrics
reported and method for calculating them. Understanding how these choices affect results and
interpretations is crucial to making valid, meaningful and insightful statements, and designs for
future studies.
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4.2 Structural network analysis

Brain network analysis offers a truly unique insight into the organisational properties relating
to both cognition and clinical practice. This field is still in its infancy, with wild methodologi-
cal differences between studies. These include parcellations, construction and normalisation of
connection matrices, selection of properties, and even how to calculate properties. This makes
it difficult to make meaningful comparisons in the literature, as these decisions can null or even
reverse trends.

What has been studied here is largely restricted to structural networks, constructed through
probabilistic tractography. Here I would like to raise some perceived issues arising from this
process, and offer some suggestions to alleviate them.

4.2.1 Normalisation

When probabilistic tractography is run, several outputs can be generated. In this analysis, total
streamline count between each pair or regions was used. This has the advantage of making mini-
mal assumptions regarding the underlying processes, but necessitates normalising the connection
matrices, as streamline count is proportional to region volume.

In this thesis, two methods have been used: node strength normalisation (NSN), a novel
algorithm which scales connection matrices such that the mean edge strength in each subject is
one; and waytotal (Wt) normalisation, a standard approach which scales each region to have an
efferent strength of one.

Edge strengths under these normalisations are not directly comparable between subjects, as
the absolute strengths of each edge is not known. While they may be approximately correct, it
is highly unlikely that the strengths should be this way between subjects, especially when the
VLBW group is known to be at greater risk of widespread white matter damage.

A difference in absolute scaling is not an issue for some graph properties which only require the
relative strength within subjects to be known. This should be considered when selecting metrics.
Of the seven metrics calculated here, all but CC are invariant to scaling of the entire connectivity
matrix, as per NSN. Unfortunetly, all vary when scaling each node’s outgoing strength, as per
waytotal normalisation.

Providing this valid basis upon which to compare subjects is the greatest boon to NSN over
waytotal normalisation. Furthermore, it allows a meaningful rich club curve to be calculated,
without necessitating thresholding of the connectivity matrices.

In terms of performance, NSN was similar to Wt for most metrics. Of the four global metrics,
a greater difference was seen in three under NSN, potentially indicating a stronger sensitivity.
Betweenness centrality and nodewise clustering generally show a smaller variance under NSN
with a similar relative effect size, tentatively indicating better overall accuracy.

The assumption underlting NSN is that the true connectivity matrix is symmetric. This
requires both symmetry in the fibre modelling, and in tractography. Diffusion imaging must
be symmetric at each voxel, and the ball and stick model used in this analysis retains this
symmetry. The paths taken by the streamlines may not be, in the case of converging and
diverging tracts. Some exotic tractography techniques, such as those using asymmetric fiber
populations [Bastiani et al., 2017], may not be suited to this iteration of NSN. Further research
under different tractography algorithms would be advisable to validate its use.
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4.2.2 Metrics

Graph measures were introduced in section 2.7.4 and an evaluation of CC, rich club and modular-
ity is given here. Many have a sound foundation for their definition and interpretation in binary
graphs, but become muddied or misrepresented by poor generalisations to weighted graphs.

Rich club
The rich club is a commonly observed network feature in which the highly connected nodes

preferentially connect to each other. To quantify this property, a rich club coefficient, φ(k), is
calculated. In binary networks, φ(k) is the proportion of edges present in the subgraph comprising
of nodes with degree of at least k, out of the total number of possible edges which could exist in
such a subgraph.

Rich club organisation also arises in random networks. The highly connected nodes have more
connections, and are therefore more likely to connect with all other nodes, not just those of high
degree. Due to this, it is common to normalise by the average rich club coefficient of equivalent
random networks when attempting to discern whether the rich club exists. This is not necessary
for this analysis, as our groups are being compared relative to each other.

A similar metric is defined for weighted networks, the weighted rich club parameter, φw(r)
[Opsahl et al., 2008a]. To select the rich club, nodes are ordered and selected based on a richness
parameter, r. All nodes with richness over some threshold for r forms the weighted rich club
subgraph. The total strength of edges within this subgraph, W>r, is found, along with the total
strength of the corresponding number of strongest edges,

∑E>r

l=1 w
rank
l , where E>r is the number

of edges in the rich club, and wrank
l is the lth strongest edge. The ratio of these gives the weighted

rich club coefficient

φw(r) =
W>r∑E>r

l=1 w
rank
l

This should perform well, and be faithful to the unweighted case, so long as r is chosen
appropriately. Three candidate properties for r were originally investigated: node degree, node
strength and average edge strength (totals strength over degree). Average strength is reported
to perform the best, as strongly connected nodes are selected, while also accounting for connect-
edness [Opsahl et al., 2008a].

An important factor when considering which to choose is the impact of noise on φw(r). Edges
with no true underlying connectivity are very likely to end up with some small, non-zero strength
when probabalistic models are used, as it is here. This drastically inflates node degree, and hence
deflates average edge strength. Thresholding can mitigate this problem, but was not done for
this analysis due to discarding of information, and difficulties selecting an appropriate threshold.
Regardless, metrics should not be reliant on thresholding to delineate weak edges into true and
false positives.

The best of these candidates for r may then be node strength. This was used successfully
with NSN, producing the rich club curve reported, however, all node strengths are scaled to 1
under waytotal normalisation, making the rich club non-discernable.

Keeping in mind that under NSN, each subject’s connection matrix has been scaled to have
an average edge strength of one, node strength (used as r) is equivalent to a proportion of average
node strength. To demonstrate this mathematically, consider richness as a node strength over r.
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Figure 18: Example graph with strong edges AB, BC and CA; and weak edges AD and DC

Each node has their absolute strength, ai, scaled to ti = ai∑
j aj
n, where ti is the NSN strength of

the ith node, and n is the number of nodes in the graph. Selecting each ti > r finds nodes with
ai∑
j aj

> nr, a proportionate measure. This is advantageous, as it retains the ability to distinguish

the rich club, and allows comparisons between subjects. Analyses would benefit from obviating
this fact, and scaling to remove n, to allow easier comparisons between studies.

Clustering coefficient
Binary CC, Ci, finds the proportion of a node’s neighbours which are connected to each other.

Formally,

Ci =
2ti

ki(ki − 1)

where ti is the number of triangles around node i, doubled as the graphs are undirected, and
ki is the node degree, so ki(ki − 1) gives the number of (directed) triplets around node i. This
can equally well be considered as the number of times the closed triangle subgraph (4) occurs,
modulated by occurrences of the open triangle subgraph (∠) around a given node.

It is desirable for generalisations of this to weighted networks to resolve to the binary case
as strong edges →1 and weak edges →0. In addition, it would be logical for strong edges to be
weighted more than weak edges.

A weighted CC may be calculated in a number of ways (see [Opsahl and Panzarasa, 2009]).
The generalisation used in BCT is that proposed by [Onnela et al., 2005], which considers the
‘intensity’ of the triangular subgraphs around each node. Intensity is defined as the geometric
mean of normalised edge weights in the subgraph,

∑
j,k

3
√
ŵijŵjkŵki (where ŵij = wij/max(wij)

is the edge weight from region i to j, scaling the maximum edge strength to 1). The sum of
intensities replaces the count of closed triangles in the binary case, giving

C̃i =

∑
j,k

3
√
ŵijŵjkŵki

ki(ki − 1)
(11)

.
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This generalisation only fulfils the requirement of resolving to the binary case as strong edges
tend to 1, as the number of open triangles has not been generalised from the binary case. To
see this, consider the graph depicted in figure 18: with one strong triangle, ABC, and one weak,
ACD. We would expect C̃A to be near one, as D is very weakly connected to A, so ABC, a closed
triangle, should contribute the majority to C̃A. This is not the case, as each non-zero edge is
considered equally important. The one strong closed triangle ABC (and weak closed triangle

ACD) gets modulated by the three open triangles BAC, BAD and CAD, giving C̃A ≈ 1/3.

Furthermore, if AD were lowered to zero, C̃A will snap up from 1/3 to 1.
A lesser issue is the choice of geometric mean for defining subgraph intensity. This seems

arbitrary beyond fulfilling the desirable property of being 1 only when all values are 1, and
dropping to 0 when any value drops to 0. This leads to no clear interpretation in the context of
brain networks, though this is by no means the only example of this. Perhaps if edge strength
were interpretable as a form of speed, the harmonic mean may be appropriate, while also fulfilling
the above requirements.

Global clustering coefficient
Global CC is the arithmetic mean of all nodes C̃i, and suffers the same issues. In addition,

nodes with high strength/degree are weighted equally to those of low degree. This is not neces-
sarily an issue, but it is worth noting that triangles around low degree/strength nodes contribute
more to the global CC than triangles around high degree/strength nodes.

Clustering coefficient and thresholding
Where weak, dubious edges strongly affect a metric, such as the diminishing of CC, removing

these weak edges by thresholding becomes attractive.
Thresholding was done by removing between none and 90% of the weakest edges. This was

performed after the main analysis was carried out, and so is not intended to analyse group
differences per se, due to multiple comparisons issues. Instead this was done look into the
behaviour of the metrics at hand.

The CC under a varying threshold is shown in figure 19. Overall, CC increased exponentially
when thresholding was used. Remarkably this trend was stronger in the VLBW group, leading
to a switch in significant differences from a lower CC at low thresholds to higher CC at high
thresholds, for VLBWs. This was hypothesised to indicate that the VLBW group tended to have
more weak/dubious edges, but the strong edges observed tended to be stronger than the controls.
This would result in the observed trend, as the weak edges would dubiously lower CC, but when
removed leave a stronger clustering structure.

To test this, the logs of the edge strengths were found, and the ratio of the histograms between
groups was plotted (figure 20). We do indeed see a greater spread in the VLBW edge strengths, as
shown by their relatively higher frequencies of extreme edge strengths. The change in significance
also roughly lines up with the plateau seen in figure 19, though further investigation would be
required to confirm this conjecture.

Modularity
Modularity, Q, quantifies the quality of a given modular structure. For binary undirected

graphs, it is calculated as the fraction of edges falling within the given groups, less the expected
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Figure 19: Clustering coefficient for controls and VLBWs (left & right at each threshold) under a
varying threshold, under node strength normalisation. Significance levels for the group difference
at each threshold are shown near the top. Ns: p > 0.05; *: p 6 0.05; **: p 6 0.01; ***: p 6
0.001 (0 to 0.3, 0.875 and 0.9). These group differences are not corrected for age, sex, or multiple
comparisons.

fraction for an equivalent random network [Newman and Girvan, 2004]. This captures the idea
that a good clustering should have much greater connectivity within groups than we would
expect by chance. This ranges from -0.5, indicating only without group edges, to 1, indicating
only within group edges. The ‘equivalent random network’ in this case is the average of graphs
with degree, or strength, distribution preserved [?].

Modularity suffers from a resolution limit. As proposed groups become smaller, they have an
increasingly reduced expected number of edges between them and other groups. For sufficiently
small groups, any connection can be seen as a strong indication of connectedness [Fortunato and
Barthlemy, 2007].

4.2.3 NSN limitations and future work

In this analysis, I have demonstrated the usefulness of the novel normalisation algorithm NSN in
structural network analysis. While results here are promising, further work is required to charac-
terise how noise effects this normalisation. With the output matrix being theoretically symmetric,
each element effectively has two estimates, which may allow the underlying uncertainty in T to
be estimated. This could be pursued in future work.
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Figure 20: Relative frequencies of edges, binned by edge strength. The non-significant clustering
occurs between a log strength of -3.5 and 1
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5 Conclusions

Tract-wise analysis used tractography with established masks to isolate whole WM tracts in each
individual. This allowed comparisons of DTI measures and volumes for each tract between adults
born VLBW and age-matched controls born with normal birthweight. Significantly reduced
tract volume in a number of tracts was identified in the VLBW groups, and key tracts showed
reduced FA and increased MD. PCA identified interesting patterns of bi-lateral white matter
tract differences between the VLBW and healthy control groups.

Structural network analysis used tractography to find the strength of the connections between
anatomically distinct regions of GM. This was used to find properties of the structural network
topology thought to depict important aspects of organisation, including integration, segregation,
hubs and network infrastructure. There was evidence to suggest the VLBW group exhibited a
slight increase in integration and segregation on a large scale, but lower segregation on a node-
wise scale. Mixed evidence suggests that a select few hub nodes are changed in the VLBW
groupp. These differences are shown to persist into adulthood.

A novel algorithm to normalise connection matrices was developed and used alongside the
traditional method with the intention of improving the validity of results. Alongside this, a
significant amount of work went into understanding and evaluating common methods and metrics
in graph theoretical network analysis. It is the hope that this normalisation scheme, and other
recommendations made here will find broad applications in brain network analysis improving the
validity and interpretability of this field.
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6 Appendix

PC Tract (rotation)
1 af r (0.21) ifo l (0.21) ifo r (0.21) mdlf l (0.2) mdlf r (0.2) slf3 r (0.2) af l (0.19)
2 str l (-0.32) cst l (-0.31) str r (-0.3) cst r (-0.29) fma (0.24) fmi (0.24) cbp l (0.21)
3 atr r (-0.28) atr l (-0.28) fmi (-0.28) cbp r (-0.25) fa l (-0.24) ilf l (0.23) fa r (-0.22)
4 fx l (0.54) fx r (0.39) cbt r (0.35) cbt l (0.33) vof r (-0.23) mcp (0.18) cbp l (-0.17)
5 mcp (-0.45) ar r (0.36) slf2 r (-0.35) ar l (0.34) fa r (-0.28) uf l (0.27) atr l (0.25)

Table 8: Tracts contributing to the top five components for FA.

PC Tract (rotation)
1 mdlf l (0.2) af l (0.2) af r (0.2) slf3 l (0.2) ifo r (0.19) slf3 r (0.19) str r (0.19)
2 or l (0.31) or r (0.3) fa l (-0.27) fa r (-0.25) fma (0.25) fmi (-0.23) cbt r (0.23)
3 cbp l (-0.32) cbp r (-0.31) fmi (-0.29) cst r (0.29) cst l (0.27) str l (0.25) str r (0.24)
4 ar l (-0.39) fma (0.31) af l (-0.29) ar r (-0.27) ilf l (-0.26) uf l (-0.25) or r (0.21)
5 vof l (0.35) atr l (-0.33) cbt l (-0.26) vof r (0.23) slf3 r (0.23) fx l (-0.22) cbp r (0.21)

Table 9: Tracts contributing to the top five components for MD.

Metric Nrm µControl (σ) µV LBW (σ) µV LBW − µControl (σ) t-stat p-value
1 CPL Wt 65.7 (5.34e-01) 64.9 (3.09e-01) 7.29e-01 (6.28e-01) -4.20 4.0e-05
2 CPL NSN 0.472 (1.04e-02) 0.450 (6.04e-03) 2.13e-02 (1.23e-02) 0.32 7.5e-01
3 GE Wt 0.0208 (1.58e-04) 0.0211 (9.13e-05) -3.39e-04 (1.85e-04) 4.70 4.6e-06
4 GE NSN 4.41 (4.77e-02) 4.7 (2.76e-02) -2.90e-01 (5.61e-02) 3.40 8.9e-04
5 Mod Wt 0.431 (4.23e-03) 0.442 (2.45e-03) -1.17e-02 (4.97e-03) 1.70 9.7e-02
6 Mod NSN 0.385 (4.00e-03) 0.396 (2.32e-03) -1.09e-02 (4.71e-03) 1.30 1.8e-01
7 MCC Wt 0.00155 (2.19e-05) 0.00148 (1.27e-05) 6.32e-05 (2.58e-05) -3.80 2.0e-04
8 MCC NSN 0.290 (4.82e-03) 0.274 (2.79e-03) 1.59e-02 (5.66e-03) -3.90 1.4e-04

Table 10: Statistical comparisons for global graph measures. Values have been corrected for age
and sex.
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Tract µControl (SE) µV LBW (SE) µ(Control−V LBW ) (SE) t-stat p-value q-value
1 ac 11527 ( 990) 10281 ( 537) 1245 (1162) -1.071 0.285 0.499
2 af l 50692 ( 834) 49414 ( 453) 1278 ( 980) -1.304 0.194 0.387
3 af r 55113 ( 894) 54407 ( 485) 706 (1050) -0.672 0.502 0.664
4 ar l 6092 ( 392) 4576 ( 212) 1516 ( 460) -3.294 0.001 0.009
5 ar r 5344 ( 342) 3860 ( 189) 1485 ( 405) -3.662 <0.001 0.006
6 atr l 35653 ( 608) 34347 ( 330) 1306 ( 715) -1.828 0.069 0.171
7 atr r 34297 ( 590) 33846 ( 320) 451 ( 693) -0.651 0.516 0.664
8 cbd l 16182 ( 444) 14838 ( 241) 1345 ( 521) -2.580 0.011 0.041
9 cbd r 17074 ( 601) 16460 ( 326) 614 ( 706) -0.870 0.385 0.599

10 cbp l 2553 ( 166) 2545 ( 90) 8 ( 195) -0.043 0.966 0.966
11 cbp r 2677 ( 167) 2622 ( 91) 56 ( 196) -0.285 0.776 0.815
12 cbt l 6179 ( 184) 6082 ( 100) 96 ( 217) -0.446 0.656 0.754
13 cbt r 5883 ( 157) 5928 ( 85) -45 ( 184) 0.245 0.807 0.827
14 cst l 25585 ( 632) 23194 ( 343) 2391 ( 742) -3.224 0.001 0.009
15 cst r 26481 ( 582) 25559 ( 316) 922 ( 684) -1.349 0.179 0.376
16 fa l 22166 ( 452) 21246 ( 245) 920 ( 531) -1.733 0.085 0.198
17 fa r 21046 ( 469) 21742 ( 255) -696 ( 551) 1.263 0.208 0.397
18 fma 41568 ( 811) 38633 ( 440) 2935 ( 953) -3.081 0.002 0.012
19 fmi 53199 ( 967) 49900 ( 525) 3299 (1135) -2.906 0.004 0.019
20 fx l 8673 ( 507) 7700 ( 283) 973 ( 600) -1.621 0.107 0.236
21 fx r 7006 ( 421) 5578 ( 233) 1428 ( 497) -2.873 0.005 0.019
22 ifo l 55272 ( 976) 54262 ( 530) 1010 (1147) -0.881 0.380 0.599
23 ifo r 57339 ( 951) 56354 ( 516) 985 (1117) -0.882 0.379 0.599
24 ilf l 30308 ( 634) 27625 ( 345) 2683 ( 745) -3.601 <0.001 0.006
25 ilf r 31613 ( 643) 29149 ( 349) 2464 ( 755) -3.263 0.001 0.009
26 mcp 33448 (1254) 34693 ( 681) -1245 (1473) 0.845 0.399 0.599
27 mdlf l 40484 ( 632) 39642 ( 343) 841 ( 742) -1.133 0.259 0.472
28 mdlf r 41323 ( 574) 41047 ( 312) 276 ( 674) -0.410 0.682 0.754
29 or l 29170 ( 543) 27921 ( 295) 1248 ( 638) -1.958 0.052 0.145
30 or r 31226 ( 498) 30058 ( 270) 1168 ( 584) -1.998 0.047 0.141
31 slf1 l 21281 (2009) 20191 (1063) 1090 (2319) -0.470 0.639 0.754
32 slf1 r 20630 (1961) 21462 (1048) -832 (2291) 0.363 0.717 0.772
33 slf2 l 17862 (1354) 16639 ( 748) 1222 (1596) -0.766 0.445 0.644
34 slf2 r 25028 (1316) 24037 ( 715) 992 (1545) -0.642 0.522 0.664
35 slf3 l 32653 ( 942) 28891 ( 512) 3762 (1107) -3.400 0.001 0.009
36 slf3 r 35516 ( 907) 32883 ( 493) 2633 (1065) -2.472 0.014 0.050
37 str l 28089 ( 485) 26049 ( 263) 2040 ( 569) -3.585 <0.001 0.006
38 str r 25806 ( 460) 24772 ( 250) 1034 ( 540) -1.914 0.057 0.150
39 uf l 23955 ( 686) 22084 ( 373) 1871 ( 806) -2.321 0.021 0.069
40 uf r 19999 ( 512) 19751 ( 278) 247 ( 601) -0.412 0.681 0.754
41 vof l 14712 ( 423) 15037 ( 230) -325 ( 497) 0.653 0.514 0.664
42 vof r 15539 ( 419) 15756 ( 228) -218 ( 492) 0.442 0.659 0.754

Table 11: Volumetric statistical comparisons table. Volumes given in mm3. q-values have under-
gone FDR correction.
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Tract µControl (SE) µV LBW (SE) µ(Control−V LBW ) (SE) t-stat p-value q-value
1 ac 0.3715 (0.0061) 0.3681 (0.0035) 0.0034 (0.0072) -0.468 0.640 0.901
2 af l 0.3401 (0.0027) 0.3440 (0.0016) -0.0039 (0.0032) 1.218 0.225 0.548
3 af r 0.3492 (0.0027) 0.3515 (0.0016) -0.0023 (0.0032) 0.720 0.473 0.827
4 ar l 0.3542 (0.0055) 0.3653 (0.0031) -0.0111 (0.0064) 1.729 0.085 0.441
5 ar r 0.3723 (0.0055) 0.3893 (0.0032) -0.0170 (0.0065) 2.611 0.010 0.103
6 atr l 0.3467 (0.0025) 0.3510 (0.0014) -0.0044 (0.0029) 1.516 0.131 0.548
7 atr r 0.3517 (0.0026) 0.3520 (0.0015) -0.0002 (0.0030) 0.081 0.935 0.945
8 cbd l 0.3452 (0.0032) 0.3401 (0.0018) 0.0051 (0.0037) -1.374 0.171 0.548
9 cbd r 0.3134 (0.0036) 0.3131 (0.0021) 0.0003 (0.0042) -0.070 0.945 0.945

10 cbp l 0.3742 (0.0046) 0.3642 (0.0027) 0.0099 (0.0054) -1.830 0.069 0.414
11 cbp r 0.3325 (0.0044) 0.3330 (0.0025) -0.0005 (0.0051) 0.098 0.922 0.945
12 cbt l 0.2605 (0.0036) 0.2458 (0.0021) 0.0147 (0.0043) -3.428 0.001 0.016
13 cbt r 0.2703 (0.0043) 0.2647 (0.0025) 0.0057 (0.0050) -1.127 0.261 0.548
14 cst l 0.3937 (0.0036) 0.3947 (0.0021) -0.0010 (0.0042) 0.225 0.822 0.945
15 cst r 0.3997 (0.0035) 0.4031 (0.0020) -0.0034 (0.0041) 0.820 0.413 0.771
16 fa l 0.3083 (0.0025) 0.3103 (0.0014) -0.0020 (0.0029) 0.673 0.502 0.843
17 fa r 0.3165 (0.0027) 0.3170 (0.0015) -0.0005 (0.0031) 0.156 0.876 0.945
18 fma 0.3857 (0.0036) 0.3682 (0.0021) 0.0174 (0.0042) -4.154 <0.001 0.002
19 fmi 0.3567 (0.0030) 0.3585 (0.0017) -0.0018 (0.0035) 0.502 0.616 0.901
20 fx l 0.2779 (0.0045) 0.2756 (0.0027) 0.0023 (0.0054) -0.434 0.665 0.901
21 fx r 0.2712 (0.0044) 0.2743 (0.0026) -0.0031 (0.0052) 0.591 0.555 0.897
22 ifo l 0.3630 (0.0024) 0.3607 (0.0014) 0.0023 (0.0028) -0.804 0.422 0.771
23 ifo r 0.3734 (0.0025) 0.3700 (0.0015) 0.0034 (0.0030) -1.135 0.258 0.548
24 ilf l 0.3387 (0.0030) 0.3398 (0.0017) -0.0011 (0.0035) 0.322 0.748 0.945
25 ilf r 0.3514 (0.0034) 0.3508 (0.0019) 0.0006 (0.0040) -0.158 0.874 0.945
26 mcp 0.3391 (0.0037) 0.3306 (0.0022) 0.0085 (0.0044) -1.940 0.054 0.414
27 mdlf l 0.3524 (0.0028) 0.3581 (0.0016) -0.0056 (0.0033) 1.681 0.094 0.441
28 mdlf r 0.3594 (0.0027) 0.3680 (0.0016) -0.0086 (0.0032) 2.671 0.008 0.103
29 or l 0.3817 (0.0031) 0.3776 (0.0018) 0.0041 (0.0037) -1.131 0.260 0.548
30 or r 0.3872 (0.0031) 0.3825 (0.0018) 0.0046 (0.0037) -1.257 0.211 0.548
31 slf1 l 0.3409 (0.0051) 0.3521 (0.0028) -0.0112 (0.0059) 1.898 0.059 0.414
32 slf1 r 0.3448 (0.0049) 0.3514 (0.0028) -0.0066 (0.0058) 1.139 0.256 0.548
33 slf2 l 0.3237 (0.0042) 0.3295 (0.0025) -0.0058 (0.0049) 1.180 0.240 0.548
34 slf2 r 0.3281 (0.0035) 0.3299 (0.0020) -0.0018 (0.0041) 0.443 0.658 0.901
35 slf3 l 0.3150 (0.0028) 0.3194 (0.0016) -0.0044 (0.0033) 1.339 0.182 0.548
36 slf3 r 0.3244 (0.0026) 0.3230 (0.0015) 0.0014 (0.0031) -0.459 0.647 0.901
37 str l 0.3582 (0.0034) 0.3591 (0.0020) -0.0010 (0.0040) 0.237 0.813 0.945
38 str r 0.3600 (0.0036) 0.3616 (0.0021) -0.0016 (0.0042) 0.373 0.709 0.931
39 uf l 0.3156 (0.0027) 0.3118 (0.0016) 0.0039 (0.0032) -1.211 0.227 0.548
40 uf r 0.3153 (0.0029) 0.3125 (0.0017) 0.0028 (0.0034) -0.813 0.417 0.771
41 vof l 0.2952 (0.0035) 0.2963 (0.0020) -0.0011 (0.0041) 0.268 0.789 0.945
42 vof r 0.3074 (0.0031) 0.3079 (0.0018) -0.0005 (0.0037) 0.124 0.901 0.945

Table 12: FA statistical comparisons table. q-values have undergone FDR correction.
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Tract µ†Control (SE†) µ†V LBW (SE†) µ†(Control−V LBW ) (SE†) t-stat p-value q-value

1 ac 9.3683 (0.1977) 9.6598 (0.1145) -0.2915 (0.2324) 1.254 0.211 0.411
2 af l 8.1087 (0.0519) 8.0448 (0.0301) 0.0639 (0.0610) -1.047 0.296 0.469
3 af r 7.9741 (0.0481) 7.9020 (0.0278) 0.0721 (0.0565) -1.276 0.203 0.411
4 ar l 8.5038 (0.0890) 8.2349 (0.0512) 0.2689 (0.1044) -2.576 0.011 0.082
5 ar r 8.1124 (0.0812) 7.8550 (0.0480) 0.2575 (0.0961) -2.679 0.008 0.082
6 atr l 8.5492 (0.0650) 8.5402 (0.0376) 0.0090 (0.0764) -0.118 0.906 0.942
7 atr r 8.5002 (0.0813) 8.6202 (0.0471) -0.1200 (0.0956) 1.255 0.211 0.411
8 cbd l 8.0052 (0.0534) 7.9864 (0.0309) 0.0188 (0.0628) -0.299 0.765 0.846
9 cbd r 8.2053 (0.0669) 8.3003 (0.0388) -0.0950 (0.0787) 1.208 0.229 0.418

10 cbp l 8.1882 (0.0568) 8.2025 (0.0330) -0.0143 (0.0668) 0.214 0.831 0.895
11 cbp r 8.1963 (0.0613) 8.2686 (0.0356) -0.0723 (0.0721) 1.003 0.317 0.469
12 cbt l 9.0848 (0.0961) 9.5136 (0.0556) -0.4288 (0.1129) 3.797 <0.001 0.007
13 cbt r 9.2095 (0.0897) 9.3903 (0.0519) -0.1808 (0.1054) 1.716 0.088 0.284
14 cst l 8.4979 (0.0896) 8.7031 (0.0519) -0.2052 (0.1053) 1.948 0.053 0.222
15 cst r 8.4313 (0.0856) 8.6047 (0.0496) -0.1734 (0.1006) 1.723 0.086 0.284
16 fa l 9.0558 (0.0871) 8.9725 (0.0505) 0.0833 (0.1024) -0.813 0.417 0.565
17 fa r 8.9089 (0.0830) 8.8082 (0.0480) 0.1008 (0.0975) -1.033 0.303 0.469
18 fma 8.7090 (0.0907) 9.0967 (0.0525) -0.3876 (0.1066) 3.637 <0.000 0.007
19 fmi 8.9288 (0.0719) 8.8099 (0.0416) 0.1189 (0.0845) -1.408 0.161 0.411
20 fx l 11.8828 (0.2673) 12.1035 (0.1589) -0.2208 (0.3167) 0.697 0.487 0.620
21 fx r 11.8319 (0.2200) 12.1576 (0.1295) -0.3257 (0.2601) 1.252 0.212 0.411
22 ifo l 8.0398 (0.0417) 8.0742 (0.0241) -0.0344 (0.0490) 0.702 0.484 0.620
23 ifo r 7.9518 (0.0454) 8.0701 (0.0263) -0.1183 (0.0533) 2.219 0.028 0.146
24 ilf l 7.7509 (0.0429) 7.6797 (0.0249) 0.0712 (0.0505) -1.410 0.160 0.411
25 ilf r 7.6842 (0.0445) 7.6544 (0.0258) 0.0297 (0.0524) -0.568 0.571 0.666
26 mcp 7.7955 (0.0594) 7.7265 (0.0344) 0.0690 (0.0698) -0.989 0.324 0.469
27 mdlf l 7.9550 (0.0501) 7.9070 (0.0290) 0.0480 (0.0588) -0.816 0.415 0.565
28 mdlf r 7.9860 (0.0464) 7.9232 (0.0268) 0.0628 (0.0545) -1.152 0.251 0.439
29 or l 7.9467 (0.0624) 8.1098 (0.0361) -0.1631 (0.0734) 2.224 0.027 0.146
30 or r 7.9776 (0.0692) 8.2254 (0.0401) -0.2478 (0.0814) 3.046 0.003 0.037
31 slf1 l 8.6125 (0.1005) 8.5438 (0.0563) 0.0687 (0.1165) -0.590 0.556 0.666
32 slf1 r 8.7508 (0.1125) 8.6729 (0.0644) 0.0779 (0.1319) -0.590 0.556 0.666
33 slf2 l 8.3191 (0.0860) 8.4267 (0.0509) -0.1075 (0.1016) 1.058 0.291 0.469
34 slf2 r 8.4071 (0.0823) 8.4133 (0.0477) -0.0062 (0.0968) 0.064 0.949 0.949
35 slf3 l 8.4008 (0.0625) 8.3025 (0.0362) 0.0983 (0.0734) -1.339 0.182 0.411
36 slf3 r 8.2064 (0.0662) 8.1985 (0.0383) 0.0078 (0.0778) -0.101 0.920 0.942
37 str l 8.6975 (0.0898) 8.8439 (0.0520) -0.1464 (0.1055) 1.387 0.167 0.411
38 str r 8.5494 (0.0938) 8.7729 (0.0543) -0.2235 (0.1102) 2.028 0.044 0.205
39 uf l 8.7216 (0.0828) 8.5546 (0.0479) 0.1670 (0.0973) -1.716 0.088 0.284
40 uf r 8.7056 (0.0604) 8.5248 (0.0350) 0.1808 (0.0710) -2.546 0.012 0.082
41 vof l 7.6719 (0.0622) 7.5809 (0.0360) 0.0910 (0.0732) -1.243 0.215 0.411
42 vof r 7.4394 (0.0629) 7.4631 (0.0364) -0.0237 (0.0739) 0.321 0.749 0.846

Table 13: MD statistical comparisons table. † Values increased by a factor of 104 for ease of
display. q-values have undergone FDR correction.
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