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ABSTRACT 

Dynamic soaring (DS) is a bio-inspired flight maneuver in which energy can be gained by 

flying through regions of vertical wind gradient such as the wind shear layer. With reinforcement 

learning (RL), a fixed wing unmanned aerial vehicle (UAV) can be trained to perform DS 

maneuvers optimally for a variety of wind shear conditions. To accomplish this task, a 6-degrees-

of-freedom (6DoF) flight simulation environment in MATLAB and Simulink has been developed 

which is based upon an off-the-shelf unmanned aerobatic glider. A combination of high-fidelity 

Reynolds-Averaged Navier-Stokes (RANS) computational fluid dynamics (CFD) in ANSYS 

Fluent and low-fidelity vortex lattice (VLM) method in Surfaces was employed to build a complete 

aerodynamic model of the UAV. Deep deterministic policy gradient (DDPG), an actor-critic RL 

algorithm, was used to train a closed-loop Path Following (PF) agent and an Unguided Energy-

Seeking (UES) agent. Several generations of the PF agent were presented, with the final generation 

capable of controlling the climb and turn rate of the UAV to follow a closed-loop waypoint path 

with variable altitude. This must be paired with a waypoint optimizing agent to perform loitering 

DS. The UES agent was designed to perform traveling DS in a fixed wind shear condition. It was 

proven to extract energy from the wind shear to extend flight time during training but did not 

accomplish sustainable dynamic soaring. Further RL training is required for both agents. 

Recommendations on how to deploy an RL agent on a physical UAV are discussed. 
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1 Introduction 

Mother nature has evolved avian species of all kinds to fly optimally through a variety of clever 

maneuvers. Certain species may fly in formations to take advantage of the upwash generated by 

wingtip vortices. Birds in the rear of the formation can exploit the upwash generated upstream to 

fly with considerably less effort. Other species may take advantage of the ground effect to reduce 

drag over bodies of water. Alternatively, some species of birds may exploit thermal updrafts to 

gain free lift by flying in circular patterns in the heated air. Finally, large sea-fairing birds, such as 

the albatross, have evolved to take advantage of the wind shear layer above the ocean to fly for 

long distances with minimal energy expenditure. This is known as dynamic soaring and, compared 

to the other maneuvers, is not easily employed by man-made aerial vehicles. This research seeks 

to explore how to exploit this effect autonomously for fixed wing unmanned aerial vehicles. 

1.1 Dynamic Soaring 

Dynamic soaring is a bio-inspired maneuver in which energy is gained by flying through 

regions of vertical wind gradient. By exploiting wind gradients in nature, albatrosses can fly 

extremely long distances with little energy expenditure. To a similar effect, hobbyist model 

aviators utilize dynamic soaring to fly radio-controlled sailplanes in circular patterns over the edge 

of a cliff at extremely high airspeeds. Exploitable wind gradients can be found over a wide variety 

of geographical features such as flat land, bodies of water, or mountainous areas. The profile of 

the wind gradient changes in shape and magnitude depending on location. For instance, over the 

edge of a cliff, the velocity gradient is extremely sharp, with high velocity immediately over the 

edge and low velocity just below. Over the ocean the wind gradient resembles a viscous boundary 

layer with the gradient decreasing as height increases. In general, the larger the wind shear 

gradient, the better suited the conditions are for dynamic soaring. 
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There are four main phases to a dynamic soaring cycle: 

1. Low Altitude Turn 

2. Windward Climb 

3. High Altitude Turn 

4. Leeward Descent 

In the low altitude turn, the UAV is at its maximum kinetic energy and minimum potential 

energy, or, in other words, maximum velocity and minimum altitude. This is immediately 

succeeded by the windward climb in which kinetic energy is exchanged with potential energy. At 

the top of the maneuver is the high altitude turn or when potential energy is maximum and kinetic 

energy is minimum. It is important that the UAV does not stall during this phase. Finally, the UAV 

executes the leeward descent to exchange the potential energy for kinetic energy. If dynamic 

soaring is successful, the total energy should be conserved at each point during the cycle. This can 

only be accomplished by harvesting energy from the vertical wind gradient. Otherwise, internal 

thrust from an engine would be required to maintain energy. 

There are two primary variations of the dynamic soaring maneuver: traveling and loitering. A 

diagram of the traveling maneuver can be seen in Figure 1.1. The traveling maneuver is an open-

loop cycle that minimizes the energy expenditure to travel over long distances. This maneuver is 

used by the albatross to travel long distances over the ocean. There exists a 180-degree field of 

potential flying directions relative to the wind where traveling dynamic soaring is possible. This 

is loosely analogous to a sailing ship. It cannot easily sail against the direction of the wind, rather 

the ship must travel within the natural constraints created by the wind. To maximize efficiency, a 

UAV should travel parallel to the wind direction. In contrast, to travel perpendicularly to the wind 
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direction extra energy must be expended to return to the starting position upwind. Thus, why 

parallel travel is most efficient and perpendicular is least efficient. 

 

Figure 1.1 Diagram of the traveling dynamic soaring cycle. 

A diagram of the loitering dynamic soaring cycle can be seen in Figure 1.2. This is 

mechanically similar to traveling dynamic soaring perpendicular to the wind direction. Rather, the 

UAV completes the leeward descent and windward climb in the same turning direction. Again, to 

reiterate the consequence, the UAV must expend additional energy in the real world to return to 

the starting position in the cycle. If too little enough energy is expended for this purpose the UAV 

will simply translate downwind the same as the traveling dynamic soaring maneuver. The loitering 

dynamic soaring maneuver is more practical to perform in regions of high wind gradient such as 

cliff soaring but may be impractical over the ocean where the gradient is smaller. 



 
 

4 
 

 

Figure 1.2 Diagram of the loitering dynamic soaring cycle. 

1.2 Dynamic Soaring from Reinforcement Learning 

Reinforcement learning (RL) will be utilized to develop both traveling and loitering dynamic 

soaring cycles. Reinforcement learning is a machine learning technique that develops an optimal 

policy function to solve a control problem by learning from experience. Unlike regular machine 

learning, no dataset is needed to train the genetic algorithm. A reinforcement learning agent can 

be trained with no knowledge of its environment. For training to be successful, an agent must 

balance exploration of its environment and exploitation of potential rewards. The results of several 

variations of reinforcement learning agents will be presented to evaluate the feasibility of using 

reinforcement learning to perform dynamic soaring. 

There are two potential approaches to the application of reinforcement learning to dynamic 

soaring. The first, which will be referred to as the Unguided Energy-Seeking (UES) method, 

utilizes a single agent that controls all aspects of the maneuver. This agent controls the UAV’s 

path and direction with the objective of gaining enough energy to maintain stable flight. A wind 
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shear is applied to the model, and the agent must learn without any prior knowledge how to extract 

energy from it. The second approach is a dual-agent method. In this case, the first agent, known as 

the path following (PF), controls the UAV to follow a predefined path and the second agent, 

referred to as the Path Optimizing (PO) agent, optimizes the path for dynamic soaring. This should 

be a more robust method compared to the single-agent method, allowing for precise control over 

the dynamic soaring cycle. However, this involves higher complexity compared to the UES 

method. 

1.3 Objectives 

There are two primary objectives for this research. The first is to use reinforcement learning to 

simulate dynamic soaring. The agent should be able to optimize the UAV’s maneuver to maintain 

flight without engine thrust. Also, the reinforcement learning agent should be able to adapt to ever-

changing conditions as experienced in the real-world. In the event that the wind shear is not strong 

enough to maintain dynamic soaring, then the UAV should use thrust to maintain flight. 

The second goal is to develop the foundation for deployment of reinforcement learning based 

dynamic soaring in a physical UAV. Ultimately, a similar reinforcement learning algorithm will 

be installed on a physical UAV to test autonomous dynamic soaring maneuvers in the real world. 

This, however, is not attempted in this research due to time constraints. Nevertheless, the steps 

that should be taken to achieve real-world autonomous dynamic soaring will be addressed. 

1.4 Importance of Research 

This research attempts to provide answers to how dynamic soaring can be achieved and 

implemented in the real world. Substantial research exists that mathematically optimizes an ideal 

dynamic soaring path given a perfect, fixed wind shear condition. However, for dynamic soaring 

to work in practice, it needs to be adaptable to all atmospheric disturbances. Because it can generate 

an optimal policy for nearly any type of problem, reinforcement learning is chosen as the 
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optimization method. Ultimately, significant research is required to bridge the gap between the 

results and real-time implementation.  

2 Review of the Relevant Literature 

This thesis is a continuation of previous research on dynamic soaring by Gladston Joseph [1]. 

However, almost all methods from the previous research have been updated. A simple waypoint-

based feedback-control autopilot was developed to perform traveling dynamic soaring maneuvers 

for a fixed wind shear condition. In addition to the autonomous dynamic soaring methods, human 

piloted dynamic soaring was performed for comparison. Dynamic soaring was achievable for both 

methods primarily as a result of an extremely high-lift-low-drag UAV model. Autonomous 

dynamic soaring performed consistent, yet inefficient maneuvers due to artificial limitations in the 

control laws. In contrast, manually piloted dynamic soaring was more efficient, but less consistent 

due to human control. Figure 2.1 shows a snapshot of the maneuvers on a single plot. 

 

Figure 2.1 Results of the autonomous and manually piloted dynamics soaring cycles from 
Gladston Joseph’s thesis [1]. 

Reinforcement learning algorithms have been used to optimize a variety of soaring problems. 

Chung, Lawrence, and Sukkarieh used the eGP-SARSA(λ) algorithm to teach an unpowered glider 

to perform energy gaining maneuvers in a thermal updraft [2]. While not directly related to DS, 

their paper demonstrated the ability of this algorithm to train a UAV to find energy-gaining 
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trajectories under resource-constrained conditions. Reddy et al. applied the Markov decision 

process to glider soaring in the field [3]. They developed an autonomous thermal control law using 

reinforcement learning in the real world. Their results demonstrate that reinforcement learning can 

also be applied to a real-world soaring application. Yet another work on reinforcement learning 

based soaring is by Woodbury, Dunn, and Valasek [4]. In this work, Q-Learning was applied to 

train a UAV to navigate to a known thermal updraft using bank-angle commands. 

Regarding RL applied to DS maneuvers, Perez et al. applied the Neuro Evolution of 

Augmented Topologies (NEAT) algorithm to the dynamic soaring flight trajectory optimization 

problem [5]. The NEAT algorithm utilizes an evolutionary optimizer to build the simplest possible 

artificial neural network for dynamic soaring. Their work demonstrated the advantages of 

reinforcement learning algorithms over traditional optimization methods by using RL to further 

optimize a previously generated DS trajectory. Additionally, they were able to adapt their RL 

algorithm for DS in sinusoidally varying wind shear conditions. Barate, Doncieux, and Meyer 

hand-designed a DS trajectory using Takagi-Sugeno-Kang (TSK) fuzzy rules and optimized the 

trajectory with evolutionary algorithms [6]. Montella and Spletzer demonstrated that their RL 

trained DS controller could achieve better performance compared to a traditionally optimized 

teacher DS controller when deviations were made from the planned trajectory [7]. It is evident 

from the results of these works that RL presents an optimization paradigm which can achieve better 

performance and robustness compared to traditional control optimization methods. 

There has been limited research in the area of real-world autonomous dynamic soaring. Until 

recently, UAV platforms were not quite capable of achieving the performance necessary for 

autonomous dynamic soaring in wind shears over flat land. Recent innovations in cost and flight-
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controller performance, however, make these attempts at real-world dynamic soaring more 

practical, even for small research teams.  

The first attempt of note was performed by Mark Boslough [8] at Sandia National Laboratories 

in 2001. The subject of his research also covered dynamic soaring simulations and optimization of 

the dynamic soaring maneuver using genetic algorithms. Boslough’s flight test consisted of 

human-piloted ridge-soaring where the wind shear gradient is sharpest. Three separate maneuvers 

were recorded. First with the UAV held at a constant airspeed in a headwind over the ridge 

resulting in steady altitude gain, second with repeated climbs and dives into the headwind resulting 

in a net loss in total energy, and thirdly loitering dynamic soaring over the ridge for which a net 

gain in total energy was achieved. In 2015 Zhu et al. [9] attempted dynamic soaring experiments 

to verify their simulation data. Instead of repeated dynamic soaring cycles, they performed a single 

dynamic soaring cycle to compare the airspeed, flight path, and heading between the simulation 

and experiment. There was no net gain in energy during the flights. Another attempt at real-world 

dynamic soaring was carried out by Corey Montella as part of his dissertation [10]. While 

significant work was performed to optimize the dynamic soaring path in simulation, his flight tests 

did not achieve autonomous or human-piloted dynamic soaring due to the lack of wind shear 

during testing. Finally, Bronz et al. [11] attempted autonomous dynamic soaring experiments over 

the edge of a cliff showing that their glider could extract up to 60% of the required power from 

dynamic soaring despite lacking a well optimized path. 

Real-world autonomous dynamic soaring simply has not been achieved yet. While there have 

been several attempts to quantify energy gain using autonomous control, none have truly achieved 

full repeatable dynamic soaring cycles. 
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3 Methodology 

Reinforcement learning for the purpose of deployment on a physical UAV requires a high-

fidelity flight simulator. To this end, the methods for obtaining a high-fidelity aerodynamic model 

are described in addition to the methods for building the flight simulation environment and 

reinforcement learning agents. 

3.1 Dynamic Soaring UAV Platform 

Dynamic soaring can, theoretically, be performed with any fixed-wing UAV given the right 

wind conditions and an adequately designed autonomous control law. However, reality dictates 

that even the most ideal UAV candidate cannot maintain DS forever. Eventually, the wind 

conditions will not be sufficient such that even the most aerodynamically efficient sailplane cannot 

gain enough energy from wind alone to maintain flight. In such an event, the UAV must utilize an 

onboard powerplant to prevent a fatal collision with the ground. 

The ideal vehicle to perform dynamic soaring is a high-strength, lightweight glider with a high 

lift-drag ratio. This idealized UAV minimizes energy-loss through drag as a result of a high wing 

aspect-ratio and thin fuselage section. Alternatively, an argument can be made that such a UAV 

should also have a high mass similar to the wandering albatross to maximize the contribution to 

kinetic energy from gravity as well as from the wind during the leeward descent phase. Of course, 

this is a tradeoff as more lift would be required compared to a lighter UAV of the same design, 

necessitating higher airspeed throughout the maneuver. 

To exploit the vertical wind gradient near the ground for long-range circumnavigational 

dynamic soaring, a UAV needs to be autonomous and intelligent. The wind gradients experienced 

near the ground are not large enough to be consistently utilized by a human pilot. Furthermore, to 

be intelligent requires the UAV to have onboard propulsion to recover airspeed and maintain 

altitude in the absence of wind. 
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Considering these requirements, the FMS Fox Aerobatic Glider was selected as the UAV 

platform for dynamic soaring. The most basic description of the Fox is that it is a glider with a 

motor. For a more detailed description, the geometric and mass properties of the Fox can be found 

in Table 3.1. The Fox has a 3-meter wingspan and wing aspect ratio of 12. Its powerplant is an 

electrically powered motor with a folding propeller mounted on the nose. When not in use, the 

propellors fold back and are pushed against the fuselage by the wind. Despite its glider 

classification, the Fox has a spacious fuselage which allows for great compatibility with many 

different flight controllers and avionics equipment for autonomous control. This large fuselage 

unfortunately contributes a large profile drag, which is a necessary tradeoff. With these factors in 

consideration, the Fox is a great candidate UAV for the development of autonomous DS.  

Table 3.1 Geometric properties of the Fox UAV. 

Variable WING HT VT UNIT 
Airfoil Clark Y NACA 0015 NACA 0010 - 
CR 350 200 360 mm 
CT 164 160 190 mm 
MGC 257 180 275 mm 
b 3000 750 385 mm 
ΛLE 1 5 43 deg 
ΛTE -6 -1.1 21.2 deg 
S 746500 65961 97548 mm2 
I 2 0 0 deg 
AR 12.056 3.44 1.33 - 
TR 0.469 0.8 0.523 - 

 
Before real-world testing, autonomous DS must be proven in a simulation using the Fox. This 

requires the creation of a complete aerodynamic model. The first step is to design a high-fidelity 

CAD model, as can be seen in Figure 3.1. The CAD model was created using the parametric 

computer-aided-design software CATIA. All dimensions were obtained by physically measuring 

the real Fox UAV. Unfortunately, the true airfoil of the Fox UAV is unknown, so a “close-enough” 

low-speed airfoil was chosen. It is unlikely that this discrepancy would have a significant effect 
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on the performance of the simulated Fox compared to the real Fox. Otherwise, the only major 

difference is that the landing gear are modeled as smooth surfaces to simplify the model slightly 

for CFD. Again, this simplification will not have a great effect on the accuracy final aerodynamic 

model.  

 

 

Figure 3.1 Comparison of the physical FMS Fox UAV (left) and Fox CAD model. 

3.1.1 Fox Avionics 

In simulation, any property can be obtained to describe the state of an aircraft. However, in the 

real world these properties must be obtained using sensors inside the aircraft. Not all variables can 

be easily measured. For example, angle of attack is the most direct method to evaluate the stall 

characteristics of an aircraft. It is simple to quantify in a point-mass based simulation. In practice, 

measurement of angle of attack is not feasible for small scale UAVs due to the lack of low-cost 

angle of angle of attack sensors. Because of these physical limitations, if a reinforcement learning 

agent is to be trained offline in a simulator and then deployed on a real UAV, it must only utilize 

aircraft data that can be obtained practically with existing sensors. 

Internally, the Fox UAV contains a full suite of avionics to allow for the measurement of 

position, groundspeed, airspeed, attitude, and to a limited extent, angle of attack. To control the 

aircraft autonomously, an off-the-shelf flight controller called the Pixhawk 4 is used. It also 
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contains an integral accelerometer, gyroscope, magnetometer, and barometer. Paired alongside the 

Pixhawk is a power-management board to allow for precise measurements of power in flight. An 

external real-time kinematics (RTK) GNSS is used to measure position. The GNSS can 

communicate with a RTK base-station element to obtain high-accuracy positional data compared 

to satellite data alone. An airspeed sensor is mounted on the right-wing near the quarter-span 

position. Just as with the Pixhawk flight controller, all components are off-the-shelf. A wiring 

diagram of the full Fox UAV platform can be found in Figure 3.2. 

 

Figure 3.2 Wiring diagram of all components in the Fox UAV platform. 

Finally, despite the lack of affordable angle of attack sensors, an experimental thermal 

anemometry sensor array was used to estimate angle of attack. These sensors must be calibrated 
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in-situ using wind tunnel data to correlate angle of attack to the sensor data. Development of these 

sensors to measure angle of attack is ongoing. 

The mass properties of all components can be found in Table 3.2. All electronic components 

are grouped together in “Avionics” with the exception of the motor and battery, which are the 

heaviest non-airframe components.  

Table 3.2 Mass properties of the Fox UAV platform. 

Component Weight [lb] Weight [kg] 
Motor 0.60 0.272 
Battery 2.00 0.907 
Spar 0.29 0.132 
Left Wing 1.85 0.839 
Right Wing 1.85 0.839 
HT 0.44 0.200 
VT 0.64 0.290 
Fuselage 2.86 1.297 
Avionics 0.86 0.390 
Total 11.39 5.166 

 
3.2 CFD Analysis 

Computational fluid dynamics (CFD) is a powerful tool for engineers to evaluate the 

performance of an aircraft design quickly and conveniently without expensive prototyping and 

wind tunnel tests. However, for a CFD solution to be trusted as accurate, significant validation 

must be performed to prove the methods. Validation of all results is not practical for this project. 

The Fox UAV, with a 3-meter wingspan, is too large to fit inside the Embry-Riddle wind tunnel. 

To make up for this problem, validation was performed against pre-existing wind tunnel data for 

the Fox’s airfoil. 

The CFD method employed in this analysis is known as Reynold’s averaged Navier-Stokes 

(RANS). RANS is a popular method for modeling turbulent flows which decomposes the flow 

properties into both mean and time-averaged components. A byproduct of this methodology is the 
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introduction of the Reynold’s stress term which cannot be easily computed. To complete the RANS 

equations, engineers and physicists have derived several turbulence “closure” models that capture 

the effects of turbulence to varying degrees of accuracy. The use of a particular turbulence model 

can have a great effect on the accuracy of a solution. A simpler model requires less computational 

power to implement but may not accurately represent the turbulence in all applications. 

Particularly for the application of reinforcement learning to dynamic soaring, it is crucial that the 

CFD solution accurately predicts the aerodynamic coefficients at various flight conditions. 

3.2.1 2D CFD Setup 

Before conducting a CFD analysis on the Fox UAV, a 2-dimensional CFD analysis of the 

Fox’s airfoil was performed for validation purposes. A Clark-Y is used as the main airfoil for CFD 

purposes (Figure 3.3). Again, the Clark-Y is used as an approximation of the real Fox’s airfoil. 

Because it is an extremely popular airfoil for low-Reynold’s number aircraft, a significant pool of 

experimental aerodynamic data exists for comparison to CFD predictions. The goal of this analysis 

is to determine the best turbulence model to apply to the 3-dimensional CFD analysis on the Fox 

UAV. 

 

Figure 3.3 Clark Y airfoil. 



 
 

15 
 

The experimental data from the University of Illinois at Urbana-Champaign (UIUC) Low 

Speed Airfoil Tests (LSAT) [12] contains lift, drag, and pitching moment coefficients for several 

Reynolds flows under 500,000, which is representative of the flight conditions experienced by the 

Fox UAV. This data set can be seen in Figure 3.4.  

Figure 3.4 UIUC LSAT wind tunnel data for the Clark Y airfoil at various Reynolds numbers 
[12]. 

Examining the lift curves, the airfoil has poor performance at Reynolds number of 60,000, 

100,000, and 200,000. As the angle of attack is increased, the flow over the airfoil will eventually 

separate from the surface. As the angle of attack decreases, the flow should eventually re-attach to 

the surface. However, at low speeds the flow does not immediately re-attach causing a severe drop 

in lift performance as can be seen in the lift curve in Figure 3.4. Additionally, the drag coefficient 

is significantly higher in these cases, perhaps because of a larger laminar boundary layer 

comparatively. Ultimately, the data at a Reynolds number of 300,000 was chosen for the CFD 

comparison because it was the lowest Reynolds number where the lift, drag, and pitching moment 

coefficients are consistent, even at high angles of attack. This Reynolds number was used to 

determine the flow properties for all subsequent CFD analyses. 

With the experimental data for verification and corresponding Reynolds number chosen, the 

atmospheric properties required for CFD can be calculated. These are summarized in Table 3.3, 
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which also includes the reference chord length (MGC) and wing area of the Fox. These numbers 

were used in both 2D and 3D CFD analyses. Additionally, the atmospheric properties for a typical 

day at sea level were used to calculate the flow properties. 

Table 3.3 Atmospheric, geometric, and flow properties used in both 2D and 3D CFD analyses. 

VARIABLE SYMBOL METRIC US 
Reynolds Number Rex 300000 - 300000 - 
Wing Area S 0.7465 m2 8.0353 ft2 
Chord Length c 0.257 m 0.8432 ft 
Altitude h 0 m 0 ft 
Temperature T 300 K 80.33 °F 
Pressure P 101325 Pa 2116.2 lb/ft2 

Speed of Sound a 347 m/s 1139.2 ft/s 
Density ρ 1.1768 kg/m3 2.28E-03 slugs/ft3 
Dynamic Viscosity μ 1.85E-05 kg/m*s 3.86E-07 slugs/ft*s 
Velocity U 18.313 m/s 60.08 ft/s 
Mach Number M 0.05274 - 0.05274 - 

 
Lastly, a 2D mesh must be created to perform the CFD analysis upon. The meshing software 

Pointwise was used to generate a mesh for the Clark Y. Pointwise allows users to combine the 

benefits of structured and unstructured cell elements using a proprietary meshing method called 

“T-Rex” mesh. In “T-Rex” mesh, rectangular structured grid elements are placed along the surface 

of the target object. These structured rectangular cell elements are designed to accurately model 

the viscous boundary layer along an object’s surface. The cell spacing normal to the object’s 

surface is very small to capture the boundary layer and grows further away from the surface to 

optimize the total number of mesh elements. At a certain point, the mesh transforms into 

unstructured mesh elements to fill in the rest of the mesh that does not require such extreme detail. 

Again, optimizing the total number of elements.  

The mesh used in this analysis can be seen in Figure 3.5. With a mesh generated and freestream 

flow properties derived for a Reynold’s number of 300,000, the CFD analysis can be performed. 
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Again, the objective of the CFD analysis on the airfoil is to determine the best turbulence model 

to apply to the CFD on the full Fox model. The best turbulence model is one which matches the 

experimental data the closest. The full settings of the mesh and CFD for the 2D case can be found 

in Table 7.1 in the Appendix. 

 

 

Figure 3.5 Nearfield (left) and farfield (right) grid for Clark Y airfoil generated in Pointwise. 

3.2.2 2D CFD Analysis 

Before obtaining the results, the resolution of the mesh must be analyzed. Too coarse of a 

mesh, particularly in regions of turbulent flow such as the boundary layer and separated flow, will 

hurt the accuracy of the solution. Ideally, a CFD solution should be mesh independent, meaning 

that the mesh is fine enough that increasing the number of mesh elements will not change the 

solution. 

Such a mesh independence test can be performed in several ways. Typically, the number of 

mesh elements are doubled twice, and the solutions are compared. Of course, not all elements hold 

equal importance to the solution. It is critical that the detail of the mesh is improved around 

particularly turbulent flow features. Doubling the resolution of the far field elements, for example, 

would be a poor application of this method because most of the flow in this region should be ideal. 

While Pointwise was used to discretize the mesh, ANSYS Fluent was used to compute the 

CFD solution. Fluent has a tool called mesh adaptation which enables the refinement, or 

c = 0.257m 20c
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coarsening, of mesh elements as a function of the flow properties. This allows for high precision 

mesh adjustments. Thus, the mesh refinement tool was applied around the regions with the highest 

gradient of total pressure. This results in refined mesh elements around the boundary layer and 

wake only. The mesh elements containing more than 0.5% of the gradient of total pressure were 

selected and can be seen in Figure 3.6. Moreover, Figure 3.7 is a comparison of the adapted mesh 

elements at the trailing edge for both adaptation cases. The total number of mesh elements was 

doubled twice to prove mesh independence. Table 3.4 includes the results of this test. All three 

cases were evaluated using the flow properties in Table 3.3 at 5 degrees angle of attack. There is 

no significant difference in solutions between the original or either of the refined meshes. The 

solution is clearly mesh independent. 

 

Figure 3.6 Clark Y mesh after applying the Fluent mesh adaptation tool. 

  

Figure 3.7 Clark Y trailing edge mesh for the first (left) and second (right) adaptation cases. 
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Table 3.4 Results of the 2D mesh adaptation analysis. 

AoA 
[deg] Mesh # Cd Cl Cm 

5 
22884 0.01475 0.84692 -0.06678 
49798 0.01483 0.84668 -0.06678 
155977 0.01485 0.84490 -0.06640 

 
Figure 3.8 shows the results of the Clark-Y CFD analysis. Several turbulence models were 

tested and compared to the UIUC data at a Reynold’s number of 300,000. The effects on the CFD 

prediction of employing K-Omega, K-Epsilon, and Spalart-Allmaras as the turbulence model are 

evaluated. Spalart-Allmaras is a one-equation turbulence model which solves for a single transport 

equation for a viscosity-like variable. K-Omega and K-Epsilon are both two-equation turbulence 

models in which the scale and energy of the turbulence are defined. In both models, the first 

equation is used to solve for the turbulent kinetic energy. Regarding the second equation, K-

Epsilon solves for the turbulent dissipation and K-Omega solves for the specific turbulent 

dissipation rate which defines the turbulence scale. Two-equation turbulence models are generally 

considered to provide better CFD predictions while one-equation turbulence models are less 

expensive computationally. Additionally, variations of both two-equation models are also 

compared.  

 It is apparent, examining the results in Figure 3.8, that both K-Epsilon and K-Epsilon 

Realizable significantly overestimate the drag compared to the wind tunnel data. Additionally, the 

K-Epsilon models appear to underestimate lift at high angles of attack. In contrast, the K-Omega 

variations are a far better prediction of lift and drag. Between the two variations, standard K-

Omega is almost a perfect prediction of lift to an angle of attack of 15 degrees, while the lift curve 

of the low Reynolds number variation drops off sharply after stall. In the case of Spalart-Allmaras, 

the lift and drag curves are reasonably close to the experimental data. However, the maximum 
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magnitude of the lift coefficient is overestimated. In all cases, the moment prediction appears to 

be poor. It is likely, however, that there is a slight deviation between the chord location from which 

the moment is calculated about between the wind tunnel model and CFD, causing the difference 

in slope. Ultimately, K-Omega SST was chosen as the best turbulence model for the 3D case since 

the lift prediction is the closest to the experimental data beyond the point of stall. 

   

 

Figure 3.8 Results of the 2D CFD analysis comparing several turbulence models to wind 
tunnel data. 

3.2.3 3D CFD Setup 

In contrast to the Clark-Y airfoil CFD analysis, there is no experimental data to compare 

against the Fox UAV CFD. This makes validation of the subsequent aerodynamic model difficult, 

but the quality of the solution can still be evaluated using similar methods as the 2D case. 

Nevertheless, there is one real world validation that is possible. Rather than performing a 

traditional wind tunnel test, the resulting lift-to-drag ratio from CFD can be compared to the glide 

slope of the real Fox UAV from flight testing. The maximum glide slope is directly proportional 

to the maximum lift-to-drag ratio. Unfortunately, this type of analysis provides limited feedback. 

The rest of the aerodynamic model would still need to be validated against to wind tunnel 

experiments. Due to time constraints, neither validation test was performed. Instead, the quality of 

the CFD solution will be evaluated through comparison to other theoretical methods. 
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Using the CAD model from CATIA, a mesh was generated for the Fox UAV in Pointwise 

using the same methods as the 2D mesh. In this case, T-Rex mesh was applied to the surface of 

the CAD model along the leading edges of the wing, horizontal tail, and vertical tail to obtain a 

geometrically smooth leading edge while minimizing the amount of mesh used. This is analogous 

to the 2D case where the spacing between points on the airfoil was smaller near the leading edge 

and larger near the mid-chord. A wing with a fully unstructured mesh would require significantly 

more mesh elements around the leading edge to obtain the same level of detail. The Fox’s surface 

mesh can be seen in Figure 3.9. The remaining of the surface mesh is uniformly unstructured with 

fine unstructured mesh around the root and tip of the wing, horizontal, and vertical tail, and the tip 

of the nosecone. 

 

Figure 3.9 Fox UAV surface mesh. 

Just as in the 2D case, T-Rex is applied to the mesh elements growing off the surface to capture 

the boundary layer on the surface of the Fox. The 3D mesh is divided into two components: near-

field and far-field to allow for high-resolution around the Fox for solution accuracy and low-
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resolution elsewhere to optimize mesh size. The segregation of these elements prevents the T-Rex 

mesh from growing too far away from the Fox as it cannot penetrate the far-field box. Also, the 

near-field boundary can be rotated to change angle of attack, sideslip, and roll. Figure 3.10 shows 

a sectional cut of the final T-Rex mesh around the fuselage and wing. The coloring is used to 

differentiate different types of mesh elements. 

  

Figure 3.10 Section view of the T-Rex mesh elements surrounding the fuselage and right wing. 

Lastly, boundary conditions must be applied to the mesh before being imported into Fluent for 

analysis. All surfaces of the far-field box require boundary conditions. “Velocity Inlet” is applied 

to the wall upstream of the Fox. “Pressure Outlet” is applied to the wall downstream of the Fox. 

“Symmetry” was applied to the remaining four walls on the far-field boundary. Finally, “wall” is 

applied to the surface of the Fox UAV. The resulting mesh and locations of the boundary 

conditions are shown in Figure 3.11. 

 

Figure 3.11 Far-field and near-field boundaries surrounding the Fox UAV and boundary 
conditions. 
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3.2.4 3D CFD Analysis 

A mesh independence analysis was performed to evaluate the quality of the 3D mesh at 

multiple angles of attack. This was again achieved by applying the Fluent mesh adaptation tool 

after an initial solution was computed. This was performed at multiple angles of attack to determine 

if the mesh adequate to capture turbulence and separated flow in three-dimensions. Unlike the 2D 

case, the mesh size was doubled only once as a consequence of the significant increase in 

computational cost for the adapted cases. The results can be seen in Table 3.5. Oddly, there is a 

10.6% change in the solution of the pitching moment coefficient at 0 degrees angle of attack. This 

is likely because the initial pitching moment solution was not fully converged since the 4-degree 

case does not have nearly as much of a difference. The other coefficients have minute differences 

between mesh levels. Thus, the resulting solution for all three-dimensional cases can be considered 

mesh independent. 

Table 3.5 Results of the 3D grid adaptation test at multiple angles of attack. 

AOA 
[deg] Grid # CD CL CM L/D 

0 1934318 0.03082 0.41456 -0.01982 13.45078 
3707676 0.03038 0.41869 -0.02218 13.78154 

% Change 1.45 0.99 10.6 2.40 

4 1934550 0.04687 0.77556 -0.07291 16.54824 
3548222 0.04647 0.77691 -0.07133 16.71910 

% Change 0.86 0.17 2.21 1.02 
 

Compared to the 2D analysis, the computational cost to obtain a converged solution in three-

dimensions is extremely high. This is primarily a function of the mesh size (2,000,000 >> 20,000) 

but is also affected by the equations required to calculate the solution. Rather than reducing mesh 

size, simplifications can be applied to the governing equations to reduce computational cost with 

little effect on the accuracy of the solution.  
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The Navier-Stokes equations are comprised of the continuity, momentum, and energy 

equations. The continuity and momentum equations must always be solved. However, the energy 

equation is optional under specific circumstances. In this case, the flow can be assumed to be 

incompressible such that the density is a constant. Also, if viscosity is assumed to be a constant as 

well, the energy equation can be decoupled from the continuity and momentum equations. This 

allows for the equation to be ignored during computation of the solution, dramatically reducing 

the computational cost. Despite this, the effect on the solution may not be negligible in all cases. 

Thus, a comparative analysis between solutions with and without the energy equations must be 

performed at multiple flow conditions. The results of this analysis can be seen in Table 3.6. There 

is no significant difference with or without the energy equation. Therefore, the energy equation 

can be dropped from the RANS equations. 

Table 3.6 Comparison of compressible and incompressible K-Omega results. 

AoA 
[deg] 

Energy 
Equation CD CL CM L/D 

0 No 0.0307 0.4155 -0.0164 13.5187 
Yes 0.0310 0.4145 -0.0166 13.3876 

% Change 0.73 0.24 1.56 0.98 

10 No 0.1117 1.1405 -0.3058 10.2140 
Yes 0.1118 1.1332 -0.3038 10.1332 

% Change 0.15 0.64 0.67 0.80 
 

The results of the CFD analysis on the Fox UAV can be found in Figure 3.12. The solution 

was evaluated from -40 to 40 degrees angle of attack, -40 to 40 degrees angle of sideslip, and -90 

to 90 degrees of roll. Angle of attack sweep only has an effect on the longitudinal force and 

moment coefficients CL, CD, and CM. In the cases where sideslip and roll are 0 degrees, the lateral 

coefficients CY, Cl, and CN are effectively zero due to the Fox being symmetrical about the 

longitudinal plane. In contrast, sweeping sideslip and roll affects both the longitudinal and lateral 

coefficients.  
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Figure 3.12 Full results of the Fox UAV CFD analysis. 

The velocity streamlines and surface pressure contours as a result of sweeping angle of attack 

and sideslip can be seen in Figures 3.13 and 3.14 respectively. Critical angles were chosen to show 

the flow at different stages of separation. Additionally, the total pressure contour over the Fox’s 

surface is included. Figure 3.13 shows the progression of flow with increasing angle of attack at 0 

AoA, 12 AoA (maximum CL), and 30 AoA (post stall). Figure 3.14 shows the progression of the 

flow over the Fox as sideslip is increased from 0 to 30 degrees.  

To integrate the resulting static force and moment coefficients with the aircraft simulation, the 

results for each swept angle must be combined into a single coefficient. For the lift coefficient as 

an example, a different value exists for angle of attack, sideslip, and roll at any point in time. These 

must be combined such that there is a single lift coefficient as a function of the three angles. To 

accomplish this, equation 1 was developed. 

𝐶𝐶𝐿𝐿𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 = 𝐶𝐶𝐿𝐿(𝛼𝛼) + 𝐶𝐶𝐿𝐿(𝜙𝜙) + 𝐶𝐶𝐿𝐿(𝛽𝛽) − 2𝐶𝐶𝐿𝐿(0) (1) 
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Figure 3.13 Streamlines and surface pressure contours for AoA sweep. 

  

  

Figure 3.14 Streamlines and surface pressure contours for sideslip sweep. 
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Equation 1 combines the contributions of all three coefficients through summation and then 

subtracts away two times the coefficient at steady-level flight (0 degrees angle of attack, sideslip, 

and roll). This prevents the coefficient from being too large when multiple angles are non-zero. 

For example, if both angle of attack and sideslip are nonzero, then the lift coefficient should be 

smaller than if the sideslip was zero. This equation is implemented in the aircraft simulation to 

convert the three sets of 1-dimensional coefficient lookup tables into one set of 3-dimensional 

lookup tables. 

A simple comparison can be performed to evaluate the usefulness of this method. Three test 

cases were chosen with varying angle of attack, sideslip, and roll. A unique CFD solution was 

computed for each case to compare to the output of equation 1. The cases chosen were based upon 

the results from Gladston Joseph [1]. The human piloted dynamic soaring case was used to select 

the cases for the analysis because the attitude was not limited in any way unlike the autonomous 

case. The governing hypothesis is that a human-piloted maneuver more closely reflects dynamic 

soaring generated by reinforcement learning. Figure 3.15 shows the angle of attack, sideslip, and 

roll for the manually piloted dynamic soaring case. From this figure, the angle of attack reaches a 

maximum of about 10 degrees for a normal DS cycle, the sideslip varies between 15 and -20 

degrees, and the roll varies from 0 to 90 degrees. Given this, special cases can be chosen to perform 

a CFD analysis to compare the static coefficients to the lookup table output. 

 

Figure 3.15 Human-piloted dynamic soaring angle of attack, sideslip, and roll data [1]. 
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The subsequent dynamic soaring cases to evaluate the lookup tables are shown in Table 3.7. 

The lookup tables should perform best for Case 1 because it has a high angle of attack, low sideslip, 

and zero roll angle. It should have only slightly more error than if sideslip was zero. Case 2 has a 

high angle of attack and sideslip which will have larger error. Case 3 is the worst-case scenario for 

equation 1 with three large angles. 

Table 3.7 Definition of the special dynamic soaring cases. 

Case AOA [deg] Beta [deg] Roll [deg] 
1 10 3 0 
2 10 15 0 
3 10 15 30 

 
Tables 3.8 and 3.9 show the results of the static aerodynamic lookup table analysis. The 

longitudinal force and moment coefficients (lift, drag, and pitching moment) exhibit the expected 

behavior where the error is larger as the angles increase. However, the lateral force and moment 

coefficients (side force, rolling moment, yawing moment) have large errors in all cases. This 

analysis reveals that equation 1 is not a good estimation of the true aerodynamic model. To prevent 

this error in the future, a fully defined two-dimensional lookup table based upon angle of attack 

and sideslip should be developed. 

Table 3.8 Comparison of CFD and LUT force and moment results for each DS case. 

Case 1 2 3 

CD 
CFD 0.10670 0.12011 0.24711 
LUT 0.11123 0.13313 0.13268 
% Diff 4.24 10.84 46.31 

CY 
CFD -0.00869 -0.09524 -0.57025 
LUT -0.02185 -0.11870 -0.32700 
% Diff 151.42 24.62 42.66 

CL 
CFD 1.15092 1.15552 0.96511 
LUT 1.12785 1.11495 1.06095 
% Diff 2.00 3.51 9.93 
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Table 3.9 Comparison of CFD and LUT force and moment results for each DS case. 

Case 1 2 3 

Cl 
CFD -0.00886 -0.02105 0.30850 
LUT -0.00066 -0.01027 -0.01009 
% Diff 92.51 51.22 103.27 

CM 
CFD -0.25769 -0.23303 -0.28701 
LUT -0.27792 -0.29947 -0.29697 
% Diff 7.85 28.51 3.47 

CN 
CFD -0.01929 -0.27966 -0.25452 
LUT -0.04998 -0.27080 -0.28099 
% Diff 159.09 3.17 10.40 

 
Not only was equation 1 determined to be a poor representation of the aerodynamic model, but 

the roll angle aerodynamic coefficient lookup table is completely incorrect. Through simulation, 

it was revealed that rolling the UAV in any direction would create an unreasonably large yawing 

force. This unusual force would cause the UAV to gain altitude as a result which does not obey 

conventional aeronautical logic. The roll component of the static aerodynamic lookup tables was 

ultimately found to be the culprit. Further review of the CFD methods for roll reveal that the forces 

and moments were not computed around the correct axes relative to the flow. For the wind 

reference frame, which the aerodynamic forces and moments are related to, when the aircraft rolls, 

so does the axes of the aerodynamic forces and moments. The lift vector should be orientated 

perpendicular to the flow as well as the wings. In the CFD solution, this vector was not 

perpendicular to the wings.  

To prove this point, analyzing the side force plot in Figure 3.12, the side force at 90 degrees 

roll is about 0.4. Considering the axis this was measured about did not roll with the aircraft, the 

side force at 90 degrees of roll is the same as the lift force at zero degrees of roll. The lift coefficient 

at zero degrees of roll is also equal to 0.4. So as the UAV rolls in the simulation, lift from the 

wings transforms into side force. If the axes were correct in the roll CFD solution, there would be 

no variation of any of the forces or moments. Consequently, in the final versions of the simulation, 
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the static aerodynamic lookup tables are reduced such that the longitudinal forces and moments 

are only a function of angle of attack and the lateral forces and moments are a function of only 

sideslip. This eliminates the need for any special equation, such as equation 1, for the static 

aerodynamic lookup tables. 

3.3 Surfaces VLM 

Using computational fluid dynamics, the static aerodynamic model of the Fox UAV was 

obtained. The static aerodynamic coefficients can define the static forces and moments of an 

aircraft at an instance in time. However, for an aircraft simulation the dynamic behavior also needs 

to be defined. Even if the static aerodynamic data indicates that the aircraft is statically stable, 

dynamic instabilities may exist. An aircraft can be both stable statically and unstable dynamically, 

thus, establishing the need for a dynamic stability analysis. Also, the true aerodynamic forces and 

moments acting upon the aircraft are a function of both static and dynamic contributions. 

Computational methods can be used to obtain these dynamic stability derivatives as well as the 

control surface coefficients. 

While computational fluid dynamics can be used to directly calculate the static stability 

coefficients in high fidelity, it cannot be used to directly obtain the dynamic stability derivatives 

and control surface coefficients. These are more easily obtained using a method known as vortex 

lattice method (VLM). A software known a Surfaces, a VLM solver, will be used to obtain the 

dynamic aerodynamic model.  

VLM is considered “low-fidelity” in comparison to a “high-fidelity” method such as RANS 

because it neglects both viscosity and geometrical thickness effects. As a result, VLM solvers do 

not model flow separation and are not accurate near or after the point of stall. However, this does 

not mean that results obtained using VLM are unreliable. In fact, they can obtain accurate results 

pre-stall so long as an accurate panel-based representation of an aircraft can be modeled. Figure 
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3.16 shows the Surfaces model of the Fox UAV. VLM works by generating a sheet of vortices to 

model lift and induced drag. Pressure on a panel can be derived from the vortices, which can then 

be used to calculate aerodynamic forces and moments. In Surfaces VLM, both the lifting surfaces, 

such as the wings and empennage, and the fuselage must be modeled to obtain a reasonable 

prediction for the dynamic aerodynamic coefficients. 

 

Figure 3.16 Surfaces model of the Fox UAV. 

While the VLM model of the Fox looks primitive in comparison to the CAD model, it is 

debatably a more accurate model of the physical Fox UAV. This is because not only is the 

geometry of the airframe modeled, the VLM Fox includes control surfaces and an accurate mass 

model. The control surfaces including the ailerons, flaps, elevator, and rudder are modeled to 

obtain the control surface coefficients for control in the simulation. Another important component 

of the VLM model is the mass. The Fox is split into several components which all have individual 

masses. Both the left and right wings, fuselage, horizontal stabilizer, and vertical stabilizer have 

mass which was measured from the real Fox UAV. Additionally, the non-airframe components are 

also modeled to ensure the VLM Fox model’s weight distribution is as accurate as possible. This 
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includes the motor, battery, and all avionics as point-masses. These masses were arranged in such 

a way as to place the center of gravity at 37.5% of the mean geometric chord. The masses of all 

components can be seen in Table 3.2. 

Similar to the high-fidelity CFD, verification needs to be performed to validate the resulting 

VLM solution. There are two analyses that can be used to accomplish this. The first, is to directly 

compare the static coefficients between the CFD and VLM methods. While VLM cannot predict 

an accurate solution post-stall, the pre-stall solution should be reasonably close to the CFD 

solution. This analysis is shown in Figure 3.17 where lift, drag, and pitching moment coefficients 

are compared. 

 

 

 

Figure 3.17 Comparison of VLM and CFD longitudinal solutions. 

Evaluating these plots shows that the VLM model agrees strongly with the CFD solution up to 

roughly 8 degrees angle of attack. This is exactly as predicted. It should be noted that for the drag, 

while VLM can only directly calculate the vortex induced drag, Surfaces allows for the drag to be 

supplemented by external data. In this case, the drag coefficient at 0 angle of attack and skin-

friction drag from other sources can be combined with the induced drag. Additionally, Surfaces 

uses a method to calculate induced drag which is a function of the lift coefficient at minimum drag. 

Both the standard drag coefficient and lift coefficient at minimum drag are obtained from the CFD 
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solution. Since the solutions agree, the dynamic aerodynamic model can be evaluated with high 

confidence. 

A second analysis can be performed to compare the solution to the physical Fox UAV. The 

manufacturer of the Fox states that the ideal center of gravity (CG) margin should be between 90 

to 95 millimeters behind the leading edge of the wing. In addition, model aviation hobbyists who 

have flown the Fox UAV claim that this range can be expanded up to 110 millimeters for improved 

pitch performance. Thus, if the VLM model is true to the real Fox, then it should be dynamically 

stable with the CG located within that margin. Also, it can be inferred that the neutral point (AC) 

should be located just behind that margin, since the CG needs to be in front of the AC for stability. 

The internal components in the Fox were arranged such that the CG is 100 millimeters behind the 

leading edge or at 33% of the mean geometric chord. The neutral point was determined to be 

located 113 millimeters behind the leading edge of the wing, which falls just outside of the alleged 

CG margin as expected. To evaluate the stability of the Fox with this CG and AC configuration, a 

dynamic stability analysis must be performed. 

Surfaces has a built-in tool that automatically evaluates the dynamic stability both 

longitudinally and laterally. The stability results can be seen in Figures 3.18 and 3.19. 

  

Figure 3.18 Longitudinal dynamic stability plots. 
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Figure 3.18 shows the longitudinal short period and long period stability plots. Both periods 

are decreasing over time and are dynamically stable. The short period oscillation evaluates the 

pitch angle over time. It quickly damps out to zero within 1 second from its initial perturbation. 

On the other hand, the long period, which is the change in airspeed as a result of varying the pitch 

angle, takes significantly longer to damp out. This low phugoid damping is typical of glider-like 

aircraft such as the Fox. 

  

 

Figure 3.19 Lateral dynamic stability plots. 

Figure 3.19 shows the lateral dynamic stability plots including the rolling convergence, lateral 

oscillation (Dutch Roll), and lateral spiral convergence. To top left graph in Figure 3.19 shows the 

rolling convergence which, like the longitudinal short period, is the damping of the roll angle after 

a perturbation. It is heavily damped and completely dissipates within a quarter of a second. The 
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top right graph in Figure 3.19 is the lateral oscillation, or “Dutch Roll”. This value is a measure of 

the coupling between sideslip, yaw, and roll. This is heavily damped for the Fox and the 

oscillations are effectively zero within five seconds. Finally, the bottom graph in Figure 3.19 is the 

lateral spiral convergence. If the pilot does not give any input in a banked turn, a stable spiral mode 

will return the wings to level over time and an unstable spiral mode will increase the bank angle. 

For the Fox this mode is unstable and grows over a significant amount of time. This is not a 

substantial issue since a pilot can easily counter this negative effect by simply taking control. 

Likewise, in autonomous flight, this instability is a non-issue. From the data in both Figures 3.18 

and 3.19, the Fox is dynamically stable. 

With the Fox proven to be dynamically stable when the CG and AC are in the same area as the 

physical Fox and the static VLM solution proven to agree with the CFD solution, the dynamic 

stability coefficients can be obtained. Figure 3.20 shows the dynamic damping derivatives varied 

by angle of attack. These plots are grouped by their respective angular rates p, q, and r. The angles 

of attack that the stability derivatives were computed at were determined by varying the airspeed. 

The geometry of an aircraft changes based on the flight conditions. At low-speed and high-angle 

of attack, the elevator must be deflected to a large angle to trim the aircraft for steady-level-flight. 

At high-speed and low angle of attack, the elevator is deflected to a lesser angle. Because only 

angle of attack was swept in the solution, the derivatives for roll and yaw are comparatively small 

to the pitch derivatives. However, only the roll damping with respect to roll and yaw rate changes 

significantly with angle of attack. All other derivatives are nearly constant. The final derivatives 

and control surface coefficients used for the Fox UAV can be seen in the Appendix. 
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Figure 3.20 Dynamic stability derivatives as a function of angle of attack. 

3.4 Flight Simulation 

To simulate the Fox UAV, a 6-degree-of-freedom (6 DoF) aircraft simulation was developed 

using MATLAB and Simulink. MATLAB is a high-level programming language with a set of 

toolboxes useful for reinforcement learning. Simulink is a block diagram programming 

environment which can be used to create time-based multi-rate models. This optimizes the 

programming of the aircraft dynamics model compared to simple lines of code because Simulink 

automatically handles all time-based operation such as derivatives or integrals.  

The Fox UAV simulation was created combining the advantages of both MATLAB and 

Simulink. In MATLAB, the aerodynamic lookup tables from CFD and VLM were programmed 

into a script. This script initializes the aerodynamic model, geometric and inertial reference values, 

and aircraft states. This information is required to define the initial state of the simulation. The 

Simulink model can be seen in Figure 3.21. It is comprised of three primary components. The first 

is the Aircraft Dynamics block which contains the aerodynamic lookup tables, 6-degrees-of-

freedom (6 DoF) aircraft equations of motion, as well as the wind shear model needed for dynamic 

soaring. Additionally, it computes useful properties from the current state of the UAV. The second 

is the RL Autopilot which is the block that performs reinforcement learning. It directly interfaces 

with an external MATLAB script to perform the training and store experience. The third is the 
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Pilot and AP (autopilot) Inputs block. This block allows for a human pilot to control the UAV 

using an external joystick. This is advantageous for debugging the simulation so that the aircraft 

can be tested at different states without the need for autonomous control. Finally, the Cockpit, 

Trim Checker, and 3D Animation blocks are to allow real time visualization of the Fox’s states. 

The three main blocks form a closed-loop system allowing for autonomous dynamic soaring 

simulations. 

 

Figure 3.21 Overview of the main components of the Fox UAV simulation in Simulink. 

3.4.1 Aircraft Dynamics Block 

The aircraft dynamics block contains eight sub-blocks which form the aerodynamic lookup 

tables and 6-DoF aircraft equations of motion to define the state of the UAV at a point in time. 

The contents of each block will be covered in detail. 

3.4.2 Fox Lookup Tables Block 

The purpose of the Fox Lookup Tables block is to define the aerodynamic force and moment 

coefficients at an instance in time as a function of the static, dynamic, and control surface 

coefficients. It requires the angle of attack, sideslip, and roll for inputs and returns the 

corresponding force and moment coefficients. 

Inside of this block are three sub-blocks for the static coefficients, dynamic stability 

derivatives, and the control surface coefficeints respectively. Since equation 1 was proven to be 
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incapable of replicating 3D lookup tables as a function of all three angles, the static lookup tables 

were simplified so that lift, drag, and pitching moment are only a function of angle of attack. Side 

force, rolling moment, and yawing moment are, consequently, only a function of side slip. Thus, 

this block simply passes through the coefficents from the state initialization script in MATLAB. 

The dynamic stability derivative lookup table block performs a similar role. The derivatives 

are only a function of angle of attack. Again, the values are simply imported from the MATLAB 

script. The control surface coefficent block also passes through the values to the subsequent block 

in the Simulink model. 

3.4.3 Aerodynamic Block 

The aerodynamics block receives the force and moment coefficients from the lookup tables 

and outputs the resulting aerodynamic forces and moments as a function of the aircraft’s current 

state. This block can be seen in Figure 3.22. The other inputs from the rest of the model are the 

control surface deflection angles, airspeed, angle of attack, angle of sideslip, and angular rates. 

Only the force and moment outputs are used for calculating the aircraft’s state. The other outputs 

are for data analysis purposes only.  

 

Figure 3.22 Inside the Aerodynamics block. 
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3.4.4 Aerodynamic Coefficient Formulation 

The six blue blocks on the left side of Figure 3.22 are used to calculate the final force and 

moment coefficients to determine the resulting aerodynamic forces and moments as a function of 

the static and dynamic contributions. Equations 2 through 7 are the full set of aerodynamic 

equations. These equations are developed from a larger set of aerodynamic coefficient equations 

from Aircraft Control and Simulation [13] and have been reduced to fit the Fox’s aerodynamic 

model. 

𝐶𝐶𝐷𝐷 = 𝐶𝐶𝐷𝐷𝑆𝑆𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 + 𝐶𝐶𝐷𝐷𝑞𝑞
𝑞𝑞𝑐𝑐̅
𝑉𝑉 + 𝐶𝐶𝐷𝐷𝛿𝛿𝑒𝑒𝛿𝛿𝑒𝑒 + 𝐶𝐶𝐷𝐷𝛿𝛿𝑓𝑓𝛿𝛿𝑓𝑓  (2) 

𝐶𝐶𝑌𝑌 = 𝐶𝐶𝑌𝑌𝑆𝑆𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 + 𝐶𝐶𝑌𝑌𝑝𝑝
𝑝𝑝𝑝𝑝
2𝑉𝑉 + 𝐶𝐶𝑌𝑌𝑟𝑟

𝑟𝑟𝑝𝑝
2𝑉𝑉 + 𝐶𝐶𝑌𝑌𝛿𝛿𝑠𝑠𝛿𝛿𝑎𝑎 + 𝐶𝐶𝑌𝑌𝛿𝛿𝑟𝑟𝛿𝛿𝑟𝑟 (3) 

𝐶𝐶𝐿𝐿 = 𝐶𝐶𝐿𝐿𝑆𝑆𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 + 𝐶𝐶𝐿𝐿𝑞𝑞
𝑞𝑞𝑐𝑐̅
𝑉𝑉 + 𝐶𝐶𝐿𝐿𝛿𝛿𝑒𝑒𝛿𝛿𝑒𝑒 + 𝐶𝐶𝐿𝐿𝛿𝛿𝑓𝑓𝛿𝛿𝑓𝑓 (4) 

𝐶𝐶𝑙𝑙 = 𝐶𝐶𝑙𝑙𝑆𝑆𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 + 𝐶𝐶𝑙𝑙𝑝𝑝
𝑝𝑝𝑝𝑝
2𝑉𝑉 + 𝐶𝐶𝑙𝑙𝑟𝑟

𝑟𝑟𝑝𝑝
2𝑉𝑉 + 𝐶𝐶𝑙𝑙𝛿𝛿𝑠𝑠𝛿𝛿𝑎𝑎 (5) 

𝐶𝐶𝑀𝑀 = 𝐶𝐶𝑀𝑀𝑆𝑆𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 + 𝐶𝐶𝑀𝑀𝑞𝑞

𝑞𝑞𝑐𝑐̅
𝑉𝑉 + 𝐶𝐶𝑀𝑀𝛿𝛿𝑒𝑒

𝛿𝛿𝑒𝑒  (6) 

𝐶𝐶𝑁𝑁 = 𝐶𝐶𝑁𝑁𝑆𝑆𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 + 𝐶𝐶𝑁𝑁𝑝𝑝
𝑝𝑝𝑝𝑝
2𝑉𝑉 + 𝐶𝐶𝑁𝑁𝑟𝑟

𝑟𝑟𝑝𝑝
2𝑉𝑉 + 𝐶𝐶𝑁𝑁𝛿𝛿𝑠𝑠𝛿𝛿𝑎𝑎 + 𝐶𝐶𝑁𝑁𝛿𝛿𝑟𝑟𝛿𝛿𝑟𝑟 (7) 

For equations 2 through 7, the terms with the static subscript are the CFD coefficients, the 

terms with p, q, or r as subscript are the dynamic damping derivatives, and the terms with a δ 

subscript are the control surface derivatives. The dimensional terms include the angular rates p, q, 

and r, the true airspeed V, mean geometric chord 𝑐𝑐̅, the wingspan b, and the control surface angles 

δ.  

3.4.5 Aerodynamic Forces and Moments  

The red block in Figure 3.22 calculates the resulting aerodynamic forces and moments. The 

forces are first calculated in the wind reference frame using equations 8 through 10. 



 
 

40 
 

𝐷𝐷 = 𝑞𝑞�𝑆𝑆𝐶𝐶𝐷𝐷 (8) 

𝑌𝑌 = 𝑞𝑞�𝑆𝑆𝐶𝐶𝑌𝑌 (9) 

𝐿𝐿 = 𝑞𝑞𝑆𝑆𝐶𝐶𝐿𝐿 (10) 

Then, the forces are converted to the body reference frame using equations 11 and 12. Equation 

11 is the transformation matrix to convert from wind to body reference frame. This is multiplied 

with the forces in equation 12 to obtain the resulting forces in the correct reference frame. The 

forces have to be converted to the body reference to be used in the equations of motion since they 

will be combined with non-aerodynamic forces. 

𝑆𝑆 = 𝑆𝑆𝛼𝛼𝑆𝑆𝛽𝛽 = �
cos𝛼𝛼 cos𝛽𝛽 sin𝛽𝛽 sin𝛼𝛼 cos𝛽𝛽
−cos𝛼𝛼 sin𝛽𝛽 cos𝛽𝛽 −sin𝛼𝛼 sin𝛽𝛽
− sin𝛼𝛼 0 cos𝛼𝛼

� (11) 

𝐹𝐹𝐵𝐵𝐴𝐴𝑒𝑒𝑟𝑟𝐴𝐴 = 𝑆𝑆𝑇𝑇 ∗ �
−𝐷𝐷
𝑌𝑌
−𝐿𝐿

� (12) 

The moments do not require such a transformation and can be directly applied in either 

reference frame. Equations 13 through 16 are used to calculate the moments from the moment 

coefficients in this block. 

𝑙𝑙 = 𝑞𝑞�𝑆𝑆𝑝𝑝𝐶𝐶𝑙𝑙  (13) 

𝑀𝑀 = 𝑞𝑞�𝑆𝑆𝑝𝑝𝐶𝐶𝑀𝑀 (14) 

𝑁𝑁 = 𝑞𝑞�𝑆𝑆𝑝𝑝𝐶𝐶𝑁𝑁 (15) 

𝑀𝑀𝐵𝐵𝐴𝐴𝑒𝑒𝑟𝑟𝐴𝐴 = �
𝑙𝑙
𝑀𝑀
𝑁𝑁
� (16) 

3.4.6 Linear Acceleration and Moments 

The Linear Acceleration and Moments block calculates the total forces and moments as a result 

of non-aerodynamic contributions. For the total body force, the thrust force produced by the 
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engines must be added to the aerodynamic forces as in equation 17. This force is then converted 

into linear acceleration by simply dividing by the mass of the UAV in equation 18. 

𝐹𝐹𝐵𝐵 = 𝐹𝐹𝐵𝐵𝐴𝐴 + 𝐹𝐹𝐵𝐵𝑇𝑇  (17) 

𝑎𝑎 =
𝐹𝐹𝐵𝐵
𝑚𝑚  (18) 

Similarly, the total moment on the UAV is a result of more than just aerodynamic moments. 

There is also a moment generated by the offset of the aerodynamic center to the center of gravity 

which is shown in equation 19. Also, a moment is generated by the engine if it is offset to the 

vertical position of the center of gravity as in equation 20. All three moments are summed together 

in equation 21. 

𝑀𝑀𝐵𝐵𝐴𝐴𝐴𝐴 = [𝐴𝐴𝐶𝐶 − 𝐶𝐶𝐶𝐶] × 𝐹𝐹𝐵𝐵𝐴𝐴  (19) 

𝑀𝑀𝐵𝐵𝐸𝐸𝐸𝐸𝐸𝐸 = [𝐸𝐸𝐸𝐸𝐸𝐸 − 𝐶𝐶𝐶𝐶] × 𝐹𝐹𝐵𝐵𝑇𝑇  (20) 

𝑀𝑀𝐵𝐵 = 𝑀𝑀𝐵𝐵𝐴𝐴𝑒𝑒𝑟𝑟𝐴𝐴 + 𝑀𝑀𝐵𝐵𝐴𝐴𝐴𝐴 + 𝑀𝑀𝐵𝐵𝐸𝐸𝐸𝐸𝐸𝐸  (21) 

3.4.7 Equations of Motion and Numerical Integration 

With the total forces and moments acting on the UAV calculated, they can be used to solve the 

6-DoF aircraft equations of motion to derive the state at an instance in time. This will provide 

important quantities such as attitude, angular rates, angular accelerations, airspeed, and 

groundspeed. An overview of this block’s contents can be seen in Figure 3.23. All equations 

contained within that are related to the aircraft equations of motion are taken from Aircraft Control 

and Simulation [13] unless specified otherwise. 
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Figure 3.23 Inside the Equations of Motion and Numerical Integration block. 

3.4.8 Force Equations 

Equations 22 through 24 are used to calculate the UAV’s airspeed. These equations combine 

the contributions of angular acceleration, gravitational acceleration, and linear acceleration and 

integrate to obtain the resulting airspeed. Additionally, to integrate the contribution of the wind 

shear to the UAV’s energy, the derivative of the wind velocity is converted to the body reference 

frame and included in the integral. The integration of the windshear term in the force equation is 

based upon the work by Frost and Bowles [14]. 

𝑈𝑈 = �𝑅𝑅𝑉𝑉 − 𝑄𝑄𝑄𝑄 − 𝐸𝐸 sin𝜃𝜃 +
𝐹𝐹𝐵𝐵𝑥𝑥
𝑚𝑚 − �̇�𝑄𝑥𝑥𝐵𝐵𝐵𝐵 𝑑𝑑𝑑𝑑 (22) 

𝑉𝑉 = �−𝑅𝑅𝑈𝑈 + 𝑃𝑃𝑄𝑄 + 𝐸𝐸 sin𝜙𝜙 cos 𝜃𝜃 +
𝐹𝐹𝐵𝐵𝑦𝑦
𝑚𝑚 − �̇�𝑄𝑦𝑦𝐵𝐵𝐵𝐵 𝑑𝑑𝑑𝑑 (23) 

𝑄𝑄 = �𝑄𝑄𝑈𝑈 − 𝑃𝑃𝑉𝑉 + 𝐸𝐸 cos𝜙𝜙 cos 𝜃𝜃 +
𝐹𝐹𝐵𝐵𝑧𝑧
𝑚𝑚 + �̇�𝑄𝑧𝑧𝐵𝐵𝐵𝐵 𝑑𝑑𝑑𝑑 (24) 
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3.4.9 Flat Earth Navigation 

The Flat Earth Navigation block converts the airspeed to the earth reference frame and 

calculates the position, groundspeed, and flight path of the UAV relative to the earth. Equations 

25 through 27 are used to calculate the groundspeed. Similar to the force equations, the wind shear 

term, W, is included in each equation as suggested by Frost and Bowles [14]. 

𝑝𝑝𝑁𝑁𝑁𝑁𝑟𝑟𝑁𝑁ℎ = �𝑈𝑈 cos 𝜃𝜃 cos𝜓𝜓 + 𝑉𝑉(− cos𝜙𝜙 sin𝜓𝜓 + sin𝜙𝜙 sin𝜃𝜃 cos𝜓𝜓)

+ 𝑄𝑄(sin𝜙𝜙 sin𝜓𝜓 + cos𝜙𝜙 sin𝜃𝜃 cos𝜓𝜓) + 𝑄𝑄𝑥𝑥 𝑑𝑑𝑑𝑑 
(25) 

𝑝𝑝𝐸𝐸𝑎𝑎𝐸𝐸𝑁𝑁 = �𝑈𝑈 cos 𝜃𝜃 sin𝜓𝜓 + 𝑉𝑉(cos𝜙𝜙 cos𝜓𝜓 + sin𝜙𝜙 sin𝜃𝜃 sin𝜓𝜓)

+ 𝑄𝑄(− sin𝜙𝜙 cos𝜓𝜓 + cos𝜙𝜙 sin𝜃𝜃 sin𝜓𝜓) + 𝑄𝑄𝑦𝑦 𝑑𝑑𝑑𝑑 
(26) 

ℎ̇ = �𝑈𝑈 sin𝜃𝜃 − 𝑉𝑉 sin𝜙𝜙 cos 𝜃𝜃 −𝑄𝑄 cos𝜙𝜙 cos 𝜃𝜃 + 𝑄𝑄𝑧𝑧 𝑑𝑑𝑑𝑑 (27) 

The UAV flight path is a quantity unique from its attitude. It is defined as the direction that the 

UAV is actually moving in, rather than where the nose is pointed. This can be derived from the 

current position and the position during the previous time step. Equations 28 through 30 are to 

calculate the difference of position between time levels, and equations 31 and 32 are used to 

calculate the flight path. 

Δ𝑁𝑁 = 𝑁𝑁𝑁𝑁 − 𝑁𝑁𝑁𝑁−Δt (28) 

Δ𝐸𝐸 = 𝐸𝐸𝑁𝑁 − 𝐸𝐸𝑁𝑁−Δ𝑁𝑁 (29) 

Δℎ = ℎ𝑁𝑁 − ℎ𝑁𝑁−Δ𝑁𝑁 (30) 

𝐹𝐹𝑃𝑃𝑙𝑙𝑁𝑁𝑙𝑙𝑙𝑙 = atan2 �Δℎ,�Δ𝑁𝑁2 + Δ𝐸𝐸2� (31) 

𝐹𝐹𝑃𝑃𝑙𝑙𝑎𝑎𝑁𝑁 = atan2(Δ𝐸𝐸,Δ𝑁𝑁) (32) 
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3.4.10 Moment Equations 

The moment equations are used to calculate the angular rates and accelerations. Equations 33 

through 35 are integrated to obtain the angular rates. Additionally, these equations require the 

addition of a set of 9 coefficients. These can be obtained using equations 36 through 45. 

𝑃𝑃 = �(𝑐𝑐1𝑅𝑅 + 𝑐𝑐2𝑃𝑃)𝑄𝑄 + 𝑐𝑐3𝑙𝑙 + 𝑐𝑐4𝑁𝑁 𝑑𝑑𝑑𝑑 (33) 

𝑄𝑄 = �𝑐𝑐5𝑃𝑃𝑅𝑅 − 𝑐𝑐6(𝑃𝑃2 − 𝑅𝑅2) + 𝑐𝑐7𝑀𝑀𝑑𝑑𝑑𝑑 (34) 

𝑅𝑅 = �(𝑐𝑐8𝑃𝑃 − 𝑐𝑐2𝑅𝑅)𝑄𝑄 + 𝑐𝑐4𝑙𝑙 + 𝑐𝑐9𝑁𝑁 𝑑𝑑𝑑𝑑 (35) 

Γ𝑐𝑐1 = �𝐽𝐽𝑦𝑦 −  𝐽𝐽𝑧𝑧�𝐽𝐽𝑧𝑧 −  𝐽𝐽𝑥𝑥𝑧𝑧2  (36) 

Γ𝑐𝑐2 = �𝐽𝐽𝑥𝑥 −  𝐽𝐽𝑦𝑦 +  𝐽𝐽𝑧𝑧�𝐽𝐽𝑥𝑥𝑧𝑧 (37) 

Γ𝑐𝑐3 = 𝐽𝐽𝑧𝑧 (38) 

Γ𝑐𝑐4 = 𝐽𝐽𝑥𝑥𝑧𝑧 (39) 

𝑐𝑐5 =  
𝐽𝐽𝑧𝑧 −  𝐽𝐽𝑥𝑥
𝐽𝐽𝑦𝑦

 (40) 

𝑐𝑐6 =  
 𝐽𝐽𝑥𝑥𝑧𝑧
𝐽𝐽𝑦𝑦

 (41) 

𝑐𝑐7 =  
 1
𝐽𝐽𝑦𝑦

 (42) 

Γ𝑐𝑐8 = 𝐽𝐽𝑥𝑥�𝐽𝐽𝑥𝑥 −  𝐽𝐽𝑦𝑦� + 𝐽𝐽𝑥𝑥𝑧𝑧2  (43) 

Γ𝑐𝑐9 = 𝐽𝐽𝑥𝑥  (44) 

𝛤𝛤 = 𝐽𝐽𝑥𝑥𝐽𝐽𝑧𝑧 −  𝐽𝐽𝑥𝑥𝑧𝑧2  (45) 
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3.4.11 Kinematic Equations 

Equations 46 through 48 are used to calculate the attitude of the aircraft from the angular rates 

p, q, and r. The attitude is also referred to as the Euler angles where yaw is defined in the North, 

East, and Down frame of reference, while pitch and roll are defined in an intermediate reference 

frame. 

𝜙𝜙 = �𝑃𝑃 + tan 𝜃𝜃 (𝑄𝑄 sin𝜙𝜙 + 𝑅𝑅 cos𝜙𝜙)𝑑𝑑𝑑𝑑 (46) 

𝜃𝜃 = �𝑄𝑄 cos𝜙𝜙 − 𝑅𝑅 sin𝜙𝜙𝑑𝑑𝑑𝑑 (47) 

𝜓𝜓 = �
𝑄𝑄 sin𝜙𝜙 + 𝑅𝑅 cos𝜙𝜙

cos 𝜃𝜃 𝑑𝑑𝑑𝑑 (48) 

3.4.12 Inert Body 

The Inert Body block is used simply to calculate the transformation matrix from the North, 

East, and Down reference frame to Body reference frame. Equation 49 is also known as the 

Direction Cosine Matrix or DCM. 

𝑁𝑁𝐸𝐸𝐷𝐷𝑑𝑑𝑁𝑁𝐴𝐴𝐵𝐵𝐶𝐶 = 𝐵𝐵𝐵𝐵 = �
c 𝜃𝜃 c𝜓𝜓 c𝜃𝜃 s𝜓𝜓 − s𝜃𝜃

− c𝜙𝜙 s𝜓𝜓 + s𝜙𝜙 s 𝜃𝜃 c𝜓𝜓 c𝜙𝜙 c𝜓𝜓 + s𝜙𝜙 s 𝜃𝜃 s𝜓𝜓 s𝜙𝜙 c𝜃𝜃
s𝜙𝜙 s𝜓𝜓 + c𝜙𝜙 s 𝜃𝜃 c𝜓𝜓 − s𝜙𝜙 c𝜓𝜓 + c𝜙𝜙 s 𝜃𝜃 s𝜓𝜓 c𝜙𝜙 c 𝜃𝜃

� (49) 

3.4.13 Wind Model 

The wind shear model block allows for the creation of a wind shear of any shape. The direction 

and maximum magnitude can also be changed, allowing for dynamically varying wind shear 

conditions during simulations. This can be seen in Equations 50 through 52 which were developed 

by Military Specification MIL-F-8785C [15]. For this case, a logarithmic wind shear function is 

given as an example. However, the logarithmic terms can be substituted with any type of gradient 

normalized from 0 to 1 to form a wind shear. 
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𝑄𝑄𝑥𝑥 = −𝑄𝑄20
ln ℎ

0.15
ln 20

0.15
cos𝜓𝜓𝑤𝑤𝑤𝑤𝑙𝑙𝑤𝑤 (50) 

𝑄𝑄𝑦𝑦 = −𝑄𝑄20
ln ℎ

0.15
ln 20

0.15
sin𝜓𝜓𝑤𝑤𝑤𝑤𝑙𝑙𝑤𝑤 (51) 

𝑄𝑄𝑧𝑧 = 0 (52) 

3.4.14 Flight Parameters 

The Flight Parameter block calculates the angle of attack, sideslip, magnitude of the airspeed, 

and dynamic pressure. These are obtained using equations 53 through 56. 

𝛼𝛼 = tan−1
𝑄𝑄
𝑈𝑈  (53) 

𝛽𝛽 = sin−1
𝑉𝑉
𝑉𝑉𝑇𝑇𝑇𝑇𝑇𝑇

 (54) 

𝑉𝑉𝑇𝑇𝑇𝑇𝑇𝑇 = �𝑈𝑈2 + 𝑉𝑉2 + 𝑄𝑄2 (55) 

𝑞𝑞� =
1
2𝜌𝜌𝑉𝑉𝑇𝑇𝑇𝑇𝑇𝑇

2 (56) 

3.4.15 Engines 

The thrust of the engine is a function of the airspeed and propellor angular rate. Propellor 

angular rate is calculated using equation 57 and thrust is calculated using equation 58. The thrust 

equation is derived based upon certain geometrical properties of the propellor such as diameter 

and pitch. The source for these equations is regrettably lost. These must be replaced in the future 

for better documentation. However, the maximum and minimum airspeeds of the Fox simulation 

are within a reasonable range of the true maximum and minimum airspeeds of the Fox. 

𝜔𝜔 = 10120𝛿𝛿𝑁𝑁ℎ𝑟𝑟 (57) 
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𝑇𝑇 = 0.2248 ∗ 1.225𝜋𝜋 ∗
(0.0254 ∗ 15)2

4
�

7.5 ∗ 0.0254𝜔𝜔
60

�
2

− �
7.5 ∗ 0.0254𝜔𝜔

60
� (0.3048𝑉𝑉) �

15
3.29546 ∗ 7.5

�
3/2

 
(58) 

3.5 Reinforcement Learning 

Reinforcement learning (RL) is a machine-learning method that automates the process of 

decision-making through goal-oriented modeling. An agent can learn from its environment without 

the need for large, complex data sets for training. Instead, the agent seeks to perform actions which 

result in rewards of variable weight until it reaches its final goal. In other words, a reinforcement 

learning agent searches for an optimal policy that maximizes the expected cumulative long-term 

reward. 

The key elements of the reinforcement learning method are the agent and environment. The 

environment is the world around the agent. It can include a physical environment such as the earth, 

and it can also contain a vehicle with states such as a UAV. The agent is the “brain” of the system. 

It receives observations and rewards from the environment and chooses actions to perform through 

the creation of a policy.  

The policy maps states to actions and can be developed through many different methods. 

Policies can be either deterministic, stochastic, or parametric. A deterministic policy produces a 

consistent result given a set of inputs. If “A” is true, then do “B”. An analogy to this could be a 

lookup table such as the aerodynamic lookup tables for the Fox. A stochastic policy has an element 

of randomness. It can handle less predictable inputs that a deterministic policy cannot. Finally, 

there are parametric policies. These are policies determined using complex deep neural networks. 

In addition to the policy, there is also a learning algorithm contained within the agent’s system. 

The learning algorithm is what generates the policy. It directly observes the environment and 

receives rewards for the actions determined by the policy. There are many types of learning 
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algorithms with different strengths and weaknesses, but one must be chosen based upon the 

requirements of the application. Figure 3.24 shows a diagram of the reinforcement learning loop. 

Again, the environment in the case of dynamic soaring is the UAV. 

 

Figure 3.24 Diagram of the reinforcement learning process. 

Other aspects of reinforcement learning are the reward, actions, and observations. The actions 

and observations can be either discrete or continuous. A discrete action/observation example is a 

game of checkers. There are a finite number of spaces on the board and a finite number of actions 

that can be taken at a given state. A continuous action is an action in which there are theoretically 

unlimited states. An example of this is the elevator on an aircraft. To maintain level flight, there is 

no easily definable position to hold the elevator to. Both large and fine adjustments are needed to 

adapt to the state of the aircraft due to atmospheric perturbations. The observations follow the 

same concept. Ideally, observations need to be states related to the actions in some logical way. 

Thus, a reinforcement learning policy can be derived. If illogical observations are chosen, there is 

no way for an optimal policy to be learned. The final component is the reward function. Rewards 

are used to train an agent to perform specific tasks. Reward functions must be designed such that 

the agent can learn optimal policies through continuous training. 
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In the case of dynamic soaring, both the actions and observations are continuous. This 

significantly narrows the field of candidate learning algorithms. In MATLAB, there are several 

built-in learning algorithms in the Reinforcement Learning toolbox. The most basic algorithm in 

MATLAB that uses both continuous actions and observation states is Deep Deterministic Policy 

Gradient. 

3.5.1 Neural Network 

A neural network is a universal function approximator comprised of a group of interconnected 

nodes called “neurons”. Each neuron has a value which is affected by the weights and biases of 

nodes in lower levels. Neural networks are analogous to a complex lookup table that can model 

any input vs. output relationship given the right combination of nodes. All networks are comprised 

of input nodes, output nodes, and hidden layers between. A diagram of a neural network can be 

seen in Figure 3.25. 

 

Figure 3.25 Diagram of a neural networks with fully connected hidden layers. 

All nodes are fully connected to the nodes in the previous layer. Each node has value and bias, 

and each connection has a weight. These values are combined to form the weight of the new node 

as in equation 59. A nonlinear activation function can be applied to equation 59 to allow for 

modeling of any function using a neural network. This is shown in equation 60. 

𝑎𝑎1
(1) = 𝑤𝑤0,1𝑎𝑎0

(0) + 𝑤𝑤1,1𝑎𝑎1
(0) + b1

(1) (59) 
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𝑎𝑎(𝑙𝑙) = act�𝑤𝑤𝑙𝑙−1𝑎𝑎(𝑙𝑙−1) + b(𝑙𝑙)� (60) 

3.5.2 Deep Deterministic Policy Gradient 

The theory of Policy Gradient was first developed by Sutton et al. in 1999 [16]. Traditionally, 

reinforcement learning algorithms chose “greedy” policies to select actions with the highest 

estimated value. However, this would not always result in the most optimal outcome. Greedy 

policies have a tendency to get stuck on local maximum rewards rather than the global maximum. 

Sutton proposed a method known as Policy Gradient where the policy is explicitly represented by 

a function approximator. With this method, the values of the policy are updated in the direction of 

the gradient of the expected reward. 

As a continuation of this method, Deterministic Policy Gradient was developed by Silver et al. 

in 2014 [17]. The deterministic version of the policy gradient method requires less computational 

effort compared to stochastic policy gradients. Also, the policy gradient integrates only over the 

state space rather than both the state and action spaces. 

Finally, Deep Deterministic Policy Gradient was developed in 2016 by Lillicrap et al. [18] 

which applied a deep neural network as the function approximator. DDPG is a model-free, online, 

off-policy, actor-critic learning algorithm. Model-free methods do not explicitly reference the 

model through the use of generated predictions. For online training, a policy is generated at each 

step. Off-policy means that the policy used to choose an action is separate from the policy that is 

evaluated and updated. Finally, actor-critic is a reference to the type of neural network used. There 

are two networks: the actor network chooses actions while the critic evaluates the value of the 

action and observation states. Figure 3.26 shows a diagram of the actor-critic network.  
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Figure 3.26 Diagram of the actor-critic network for DDPG. 

DDPG uses deep neural networks as the function approximator, which allows for continuous 

action and observation states. Additionally, DDPG uses an experience buffer to minimize 

correlations between successive samples and target networks to improve the stability of learning. 

These methods were inspired by Deep-Q Learning, which also uses deep neural networks. 

3.5.3 Deep Deterministic Policy Gradient Algorithm 

The Deep Deterministic Policy Gradient algorithm is described below for equations 61 through 

66 as developed by Lillicrap et al. [18]. 

During the initialization of a new agent, the critic network 𝑄𝑄(𝑠𝑠, 𝑎𝑎|𝜃𝜃𝑄𝑄)  and actor network 

𝜇𝜇(𝑠𝑠|𝜃𝜃𝜇𝜇)  are assigned random weights 𝜃𝜃𝑄𝑄 and 𝜃𝜃𝜇𝜇. In addition, the target networks 𝑄𝑄′ and 𝜇𝜇′ are 

assigned the same weights such that 𝜃𝜃𝑄𝑄′ ← 𝜃𝜃𝑄𝑄 and 𝜃𝜃𝜇𝜇′ ← 𝜃𝜃𝜇𝜇. Finally, the replay buffer 𝑅𝑅 is 

initialized. 

With the necessary values initialized for a new agent, the episode loop can begin. At the 

beginning of each episode of training a random process 𝑁𝑁 is initialized based upon an arbitrary 

noise model to allow for action exploration. The initial observation state, 𝑠𝑠1, is also obtained at the 

start of each episode. 
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Within each training episode is a loop in time with a predefined length and time-step. Each 

equation is evaluated at every time step within this loop. First, an action 𝑎𝑎𝑁𝑁 is selected according 

to the current policy and exploration noise 𝑁𝑁 in equation 61. 

𝑎𝑎𝑁𝑁 = 𝜇𝜇(𝑠𝑠𝑁𝑁|𝜃𝜃𝜇𝜇) + 𝑁𝑁𝑁𝑁 (61) 

Once the action is taken, the reward 𝑟𝑟𝑁𝑁 and new state 𝑠𝑠𝑁𝑁+1 are observed. The experience 

(𝑠𝑠𝑁𝑁,𝑎𝑎𝑁𝑁 , 𝑟𝑟𝑁𝑁, 𝑠𝑠𝑁𝑁+1) is stored in the replay buffer 𝑅𝑅. Next, a random minibatch of 𝐸𝐸 experience 

(𝑠𝑠𝑤𝑤,𝑎𝑎𝑤𝑤 , 𝑟𝑟𝑤𝑤 , 𝑠𝑠𝑤𝑤+1) is sampled from the replay buffer 𝑅𝑅. Using equation 62, the value function target 

is set to 

𝑦𝑦𝑤𝑤 = 𝑟𝑟𝑤𝑤 + 𝛾𝛾𝑄𝑄′(𝑠𝑠𝑤𝑤+1,𝜇𝜇′(𝑠𝑠𝑤𝑤+1|𝜃𝜃𝜇𝜇
′)|𝜃𝜃𝑄𝑄′) (62) 

where 𝛾𝛾 is the discount factor of the expected future reward. Now the critic can be updated by 

minimizing the loss across all sampled experience using equation 63. 

𝐿𝐿 =
1
𝐸𝐸
��𝑦𝑦𝑤𝑤 − 𝑄𝑄(𝑠𝑠𝑤𝑤,𝑎𝑎𝑤𝑤|𝜃𝜃𝑄𝑄)�2

𝑤𝑤

 (63) 

Equation 64 is used to update the actor policy using the sampled policy gradient. 

∇𝜃𝜃𝜇𝜇𝐽𝐽 =
1
𝐸𝐸
�∇𝑎𝑎𝑄𝑄(𝑠𝑠, 𝑎𝑎|𝜃𝜃𝑄𝑄)|𝐸𝐸=𝐸𝐸𝑠𝑠,𝑎𝑎=𝜇𝜇(𝐸𝐸𝑠𝑠)∇𝜃𝜃𝜇𝜇𝜇𝜇(𝑠𝑠|𝜃𝜃𝜇𝜇
𝑤𝑤

)|𝐸𝐸𝑠𝑠 (64) 

Finally, the target networks are updated in equations 65 and 66. 

𝜃𝜃𝑄𝑄′ ← 𝜏𝜏𝜃𝜃𝑄𝑄 + (1 − 𝜏𝜏)𝜃𝜃𝑄𝑄′ (65) 

𝜃𝜃𝜇𝜇′ ← 𝜏𝜏𝜃𝜃𝜇𝜇 + (1 − 𝜏𝜏)𝜃𝜃𝜇𝜇′ (66) 

The loop in time is repeated for each time step until the completion of an episode where the 

episode loop also repeats until training is complete. 
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3.5.4 Dynamic Soaring using Reinforcement Learning 

There are two proposed approaches to achieving dynamic soaring using reinforcement 

learning. The first is a single-agent method where the agent controls the UAV and also optimizes 

the path to perform dynamic soaring. This method is conceptually simple, however, training an 

agent with no knowledge of its goals to perform a dynamic soaring maneuver is not so simple. A 

second approach is a double-agent method. In this method, the first agent is trained to follow a 

predefined path of waypoints using as little engine thrust as possible. The second agent then 

optimizes the waypoints to create closed-loop dynamic soaring paths. This method is significantly 

more difficult to set up in the simulation but should also be far more robust since the exact path 

the UAV should follow is known. 

Figure 3.27 shows the internal components of the reinforcement learning block in Simulink. 

The main component is the “RL_Agent” block in the center of the figure. This block interacts with 

a MATLAB training script and allows for a Simulink-based model to be trained using 

reinforcement learning. The observation block holds all the observation states. The reward block 

contains all the reward functions. “IsDone” is a feature that allows for an episode to be terminated 

if a specified condition is met. In general, for the Fox simulation, the episode was terminated early 

if the altitude was less than or equal to zero feet. The error block reads the desired waypoints and 

determines the positional, angular, and flight path errors to be used for the rewards and 

observations. Finally, the “RL_Agent” outputs the actions into the environment. In all cases, the 

actions were filtered through a set of PID controllers which, in turn, convert the agent outputs into 

the deflection angles of the control surfaces. 
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Figure 3.27 Overview of the RL Trainer block. 

3.5.5 Waypoint Algorithm 

For the double-agent method to work, a waypoint algorithm had to be developed that computes 

the error between the UAV’s current state and the desired state. The algorithm was designed to 

work specifically for closed-loop waypoint paths. A set of seed-points are input into a spline-based 

interpolation algorithm to obtain a detailed set of thousands of closed-loop waypoints. These 

waypoints alongside the UAV’s position, attitude, and flight path are input into the waypoint 

algorithm. From these inputs the error between the UAV and the desired position, angle, and flight 

path are calculated at every time step. This block can be seen in Figure 3.28. 

 

Figure 3.28 Overview of the waypoint algorithm block. 



 
 

55 
 

The waypoint algorithm uses a reference point separate from the UAV known as a lookahead 

point. This is a point an arbitrary distance in front of the UAV on the longitudinal axis. To work 

with a closed-loop waypoint path, the algorithm needs to determine the closet point to the 

lookahead point to calculate the positional and angular errors. The angular error is the bearing and 

pitch to the nearest waypoint from the look-ahead point. Additionally, the algorithm also 

determines the error between the current flight path of the UAV and the desired flightpath at the 

nearest waypoint. The flight path is used to enforce an ideal direction either clockwise or 

counterclockwise along the closed-loop waypoints. Figure 3.29 is a diagram of the waypoint 

algorithm. 

 

Figure 3.29 Diagram of the waypoint algorithm for the Path-Following reinforcement 
learning agent. 

To obtain the required errors for the Path-Following agent, the lookahead point must be 

calculated as a function of the UAV’s position and desired distance in front of the UAV. Equations 

67 through 69 calculate the position of the look ahead point 
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𝑁𝑁𝐿𝐿𝑇𝑇𝐿𝐿 = 𝑁𝑁𝑈𝑈𝑇𝑇𝑈𝑈 + 𝐿𝐿 cos 𝜃𝜃 cos𝜓𝜓 (67) 

𝐸𝐸𝐿𝐿𝑇𝑇𝐿𝐿 = 𝐸𝐸𝑈𝑈𝑇𝑇𝑈𝑈 + 𝐿𝐿 cos 𝜃𝜃 sin𝜓𝜓 (68) 

ℎ𝐿𝐿𝑇𝑇𝐿𝐿 = ℎ𝑈𝑈𝑇𝑇𝑈𝑈 + 𝐿𝐿 sin𝜃𝜃 (69) 

where 𝐿𝐿 is the desired lookahead distance, 𝑁𝑁 is the northern coordinate, 𝐸𝐸 is the eastern coordinate, 

and ℎ is the altitude coordinate of the UAV and lookahead points. The lookahead point is used 

primarily to ensure that the nearest waypoint to the UAV is never behind the UAV relative to the 

direction it is traveling. 

To obtain the error between the lookahead point and all waypoints equations 70 through 73 are 

used. Notably, equation 73 is the magnitude of the error between the lookahead point and 

waypoints. This will be used to determine the closest waypoint at any given time. 

(𝜀𝜀𝐿𝐿𝑇𝑇𝐿𝐿)𝑁𝑁 = 𝑁𝑁𝑊𝑊𝐿𝐿 − 𝑁𝑁𝐿𝐿𝑇𝑇𝐿𝐿 (70) 

(𝜀𝜀𝐿𝐿𝑇𝑇𝐿𝐿)𝐸𝐸 = 𝐸𝐸𝑊𝑊𝐿𝐿 − 𝐸𝐸𝐿𝐿𝑇𝑇𝐿𝐿 (71) 

(𝜀𝜀𝐿𝐿𝑇𝑇𝐿𝐿)ℎ = ℎ𝑊𝑊𝐿𝐿 − ℎ𝐿𝐿𝑇𝑇𝐿𝐿 (72) 

𝜀𝜀𝐿𝐿𝑇𝑇𝐿𝐿 = �((𝜀𝜀𝐿𝐿𝑇𝑇𝐿𝐿)𝑁𝑁)2 + ((𝜀𝜀𝐿𝐿𝑇𝑇𝐿𝐿)𝐸𝐸)2 + ((𝜀𝜀𝐿𝐿𝑇𝑇𝐿𝐿)ℎ)2   (73) 

Similarly, the error between the UAV position and all waypoints can be calculated using 

equations 74 through 77. 

(𝜀𝜀𝑈𝑈𝑇𝑇𝑈𝑈)𝑁𝑁 = 𝑁𝑁𝑊𝑊𝐿𝐿 − 𝑁𝑁𝑈𝑈𝑇𝑇𝑈𝑈 (74) 

(𝜀𝜀𝑈𝑈𝑇𝑇𝑈𝑈)𝐸𝐸 = 𝐸𝐸𝑊𝑊𝐿𝐿 − 𝐸𝐸𝑈𝑈𝑇𝑇𝑈𝑈 (75) 

(𝜀𝜀𝑈𝑈𝑇𝑇𝑈𝑈)ℎ = ℎ𝑊𝑊𝐿𝐿 − ℎ𝑈𝑈𝑇𝑇𝑈𝑈 (76) 

𝜀𝜀𝑈𝑈𝑇𝑇𝑈𝑈 = [(𝜀𝜀𝑈𝑈𝑇𝑇𝑈𝑈)𝑁𝑁, (𝜀𝜀𝑈𝑈𝑇𝑇𝑈𝑈)𝐸𝐸, (𝜀𝜀𝑈𝑈𝑇𝑇𝑈𝑈)ℎ] (77) 

Equation 78 is used to determine the location of the closest waypoint relative to the lookahead 

point. 
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�𝑁𝑁𝑁𝑁𝑎𝑎𝑟𝑟𝑙𝑙𝑒𝑒𝑁𝑁 ,𝐸𝐸𝑁𝑁𝑎𝑎𝑟𝑟𝑙𝑙𝑒𝑒𝑁𝑁 ,ℎ𝑁𝑁𝑎𝑎𝑟𝑟𝑙𝑙𝑒𝑒𝑁𝑁� = min(𝜀𝜀𝐿𝐿𝑇𝑇𝐿𝐿) (78) 

With the target waypoint located, the positional error between the UAV and target waypoint 

can be calculated using equations 79 through 81. This is the “Pos_Error” output in Figure 3.28. 

�𝜀𝜀𝑝𝑝𝑁𝑁𝐸𝐸�𝑁𝑁 = 𝑁𝑁𝑁𝑁𝑎𝑎𝑟𝑟𝑙𝑙𝑒𝑒𝑁𝑁 − 𝑁𝑁𝑈𝑈𝑇𝑇𝑈𝑈 (79) 

�𝜀𝜀𝑝𝑝𝑁𝑁𝐸𝐸�𝐸𝐸 = 𝐸𝐸𝑁𝑁𝑎𝑎𝑟𝑟𝑙𝑙𝑒𝑒𝑁𝑁 − 𝐸𝐸𝑈𝑈𝑇𝑇𝑈𝑈 (80) 

�𝜀𝜀𝑝𝑝𝑁𝑁𝐸𝐸�ℎ = ℎ𝑁𝑁𝑎𝑎𝑟𝑟𝑙𝑙𝑒𝑒𝑁𝑁 − ℎ𝑈𝑈𝑇𝑇𝑈𝑈 (81) 

 Even though the lookahead point is used to locate the target waypoint, the position error is 

still determined by the true position of the UAV. A drawback to this method is that the minimum 

position error possible is equal to the lookahead distance. This does not present a problem for the 

reinforcement learning algorithm since it simply seeks to minimize the error. It does not need to 

be zero to work optimally. 

Compared to the position error, the angular error requires a more complex analysis. The 

angular error can be broken into two components: lateral and longitudinal. Lateral angular error is 

simply the relative heading from the UAV to the target waypoint.  Longitudinal angular error is 

the relative pitch between the UAV and target waypoint. 

Beginning with the lateral angular error in equation 82 it is simply the difference of the “atan2” 

between the vector of the lookahead point and the vector created between the target waypoint and 

UAV. 

𝜀𝜀𝜓𝜓 = atan2�𝐿𝐿𝑦𝑦, 𝐿𝐿𝑥𝑥� − atan2 ��𝜀𝜀𝑝𝑝𝑁𝑁𝐸𝐸�𝐸𝐸, �𝜀𝜀𝑝𝑝𝑁𝑁𝐸𝐸�𝑁𝑁� (82) 

Ideally, this should output an angle between -180 and +180 degrees, but it exceeds this limit 

in certain cases. Thus, if the error is less than −𝜋𝜋, 2𝜋𝜋 is added to the error, Similarly, if the error 

is more than 𝜋𝜋, 2𝜋𝜋 is removed from the error. This fixes the angular limit issue. 
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The process for longitudinal error is similar to the lateral error. However, the vectors inside 

the “atan2” functions are different. First, a static reference vector, k, is defined as 𝑘𝑘 = [0,0,1]. This 

will be used to develop a vertical vector as a function of the UAV’s current attitude in equation 

83. 

[𝑁𝑁𝑣𝑣𝑒𝑒𝑣𝑣 ,𝐸𝐸𝑣𝑣𝑒𝑒𝑣𝑣 ,ℎ𝑣𝑣𝑒𝑒𝑣𝑣]
= 𝜀𝜀𝑈𝑈𝑇𝑇𝑈𝑈 cos 𝜀𝜀𝜓𝜓 + (𝑘𝑘 × 𝜀𝜀𝑈𝑈𝑇𝑇𝑈𝑈) sin 𝜀𝜀𝜓𝜓 + 𝑘𝑘(𝑘𝑘 ∙ 𝜀𝜀𝑈𝑈𝑇𝑇𝑈𝑈)�1 − cos 𝜀𝜀𝜓𝜓�
+ [𝑁𝑁𝑈𝑈𝑇𝑇𝑈𝑈,𝐸𝐸𝑈𝑈𝑇𝑇𝑈𝑈 ,ℎ𝑈𝑈𝑇𝑇𝑈𝑈] 

(83) 

Finally, the longitudinal angular error can be calculated as a difference of “atan2” functions in 

equation 84. Both equations 82 and 84 are the “Ang_Error” output in Figure 3.28. 

𝜀𝜀𝜃𝜃 = atan2 �𝐿𝐿𝑧𝑧,�(𝐿𝐿𝑥𝑥)2 + �𝐿𝐿𝑦𝑦�
2
�

− atan2 �ℎ𝑣𝑣𝑒𝑒𝑣𝑣 − ℎ𝑈𝑈𝑇𝑇𝑈𝑈,�(𝑁𝑁𝑣𝑣𝑒𝑒𝑣𝑣 − 𝑁𝑁𝑈𝑈𝑇𝑇𝑈𝑈)2 + (𝐸𝐸𝑣𝑣𝑒𝑒𝑣𝑣 − 𝐸𝐸𝑈𝑈𝑇𝑇𝑈𝑈)2� 
(84) 

The last value to calculate is the flight path error. This is required in addition to the angular 

error because the angular error alone is not enough information for the Path-Following agent to 

function. In dynamic soaring the UAV will need to follow the path as closely as possible even at 

high angles of attack. This requires the ideal flight path to be known to the agent. The process for 

this is simple. First, the flight path of the waypoints is found using equations 85 and 86. 

(𝐹𝐹𝑃𝑃𝑊𝑊𝐿𝐿)𝑙𝑙𝑁𝑁𝑙𝑙𝑙𝑙 = atan2 �Δℎ𝑊𝑊𝐿𝐿,�(Δ𝑁𝑁𝑊𝑊𝐿𝐿)2 + (Δ𝐸𝐸𝑊𝑊𝐿𝐿)2� (85) 

(𝐹𝐹𝑃𝑃𝑊𝑊𝐿𝐿)𝑙𝑙𝑎𝑎𝑁𝑁 = atan2(Δ𝐸𝐸𝑊𝑊𝐿𝐿,Δ𝑁𝑁𝑊𝑊𝐿𝐿) (86) 

Then the flight path error can be calculated as the difference between the UAV’s flight path 

and ideal flight path from the waypoints using equations 87 and 88. These are the “Fp_Error” 

output in Figure 3.28. 

(𝜀𝜀𝐹𝐹𝐿𝐿)𝑙𝑙𝑁𝑁𝑙𝑙𝑙𝑙 = (𝐹𝐹𝑃𝑃𝑄𝑄𝑃𝑃)𝑙𝑙𝑁𝑁𝐸𝐸𝐸𝐸 − (𝐹𝐹𝑃𝑃𝑈𝑈𝐴𝐴𝑉𝑉)𝑙𝑙𝑁𝑁𝐸𝐸𝐸𝐸 (87) 

(𝜀𝜀𝐹𝐹𝐿𝐿)𝑙𝑙𝑎𝑎𝑁𝑁 = (𝐹𝐹𝑃𝑃𝑄𝑄𝑃𝑃)𝑙𝑙𝑎𝑎𝑑𝑑 − (𝐹𝐹𝑃𝑃𝑈𝑈𝐴𝐴𝑉𝑉)𝑙𝑙𝑎𝑎𝑑𝑑 (88) 
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3.6 Configuration of the Reinforcement Learning Simulations 

Below is a summary of the actions, observations, and rewards used for the most successful 

reinforcement learning simulations. The adaptations between each agent are a culmination of 

several weeks of development using different settings. Only the most important agents were saved 

to show the evolution of the methods over time.  

Unfortunately, due to technical issues with MATLAB and Simulink, only a few agents could 

be saved for analysis. For example, the first attempts at training the path following agent utilized 

direct control of the Fox’s control surfaces as the action states. It was determined that this method 

of control is not optimal for exploration as most combinations of elevator and aileron deflections 

will result in stalling. More robust methods of control were chosen to allow for the UAV to explore 

the environment to gain experience. With that being said, the first agent that was managed to be 

saved will be referred to as “generation 1” even though it is not the first agent that was developed. 

3.6.1 Path-Following Agent Generation 1 

The first generation of path following agent with any amount of success combined the 

reinforcement learning actions with a set of PID feedback controllers. This allows for the agent to 

directly control certain states of the UAV given that the PID controllers are turned properly. The 

PID controller values can be found in Table 3.10. In this case, the agent controls the UAV by 

specifying the pitch and roll angles. This allows for more exploration compared to direct control 

of the control surfaces. The desired closed-loop path can be seen in Figure 3.30. 

Table 3.10 Generation 1 PID controller gain values used for control of the UAV. 

Controller Output P-Gain I-Gain D-Gain N-Filter Saturation 
Pitch Elevator 100 3 30 100 none 
Roll Aileron 1 0 0.5 100 none 
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Figure 3.30 The predefined close-loop waypoint path used to train the path following agent. 

The waypoints were generated using splines from a set of four seed points. The desired altitude 

is constant at 400 ft. The agent observed the positional error, the angular error, and the current 

UAV attitude. The action and observations are summarized in equations 89 and 90 respectively. 

𝑎𝑎𝑁𝑁 = [𝜃𝜃,𝜙𝜙] (89) 

𝑠𝑠𝑁𝑁 = �𝛿𝛿𝑁𝑁, 𝛿𝛿𝐸𝐸 , 𝛿𝛿ℎ , 𝛿𝛿𝜃𝜃 , 𝛿𝛿𝜓𝜓,𝜙𝜙, 𝜃𝜃,𝜓𝜓� (90) 

The reward function was developed based on the waypoint path error and episode time 

(equations 91 through 93). The reward is calculated at every time step and cumulated over the full 

episode. Particularly for the time reward in equation 93, the value is only added to the total episodic 

reward if a certain condition is met. In this case, if the “IsDone” condition is met, then the time 

reward included. The “IsDone” condition is triggered if the altitude falls below zero feet, or if the 

angular rate of the UAV is beyond 100 rad/s. The altitude “IsDone” condition is used to simulate 

the effect of the UAV crashing into the ground and the angular rate “IsDone” condition is used to 

prevent the angular rates from growing out of control. At high (beyond 100 rad/s) angular speeds, 

the simulation may crash and lose all progress. 
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𝑟𝑟1 = 10𝑒𝑒−0.012𝛿𝛿𝑝𝑝𝐴𝐴𝑠𝑠 (91) 

𝑟𝑟2 = 10𝑒𝑒−0.07𝛿𝛿𝑠𝑠𝑠𝑠𝑠𝑠 − 0.5𝛿𝛿𝑎𝑎𝑁𝑁𝑁𝑁
0.5 (92) 

𝑟𝑟3 = [−1𝐸𝐸3 − 9𝐸𝐸3𝑒𝑒−0.06𝑁𝑁]{𝐼𝐼𝑠𝑠𝐷𝐷𝑁𝑁𝐸𝐸𝑒𝑒 = 1} (93) 

The final component to the reinforcement learning method is the “Reset” function. This allows 

certain parameters to be randomized at the beginning of each episode for more robust training. In 

all generations, the initial position and heading were randomized as in equations 94 through 97. 

ℎ0 = [200: 600] (94) 

𝑁𝑁0 = [−500: 500] (95) 

𝐸𝐸0 = [−500: 500] (96) 

𝜓𝜓0 = [0: 2𝜋𝜋] (97) 

3.6.2 Path-Following Agent Generation 2 

For the second generation of the path-following agent several modifications were made to 

dramatically improve the performance. First, the structure of the deep neural networks was reduced 

significantly. Ideally, the neural networks should be as small as possible to reduce training time. 

However, if too small, the optimal policy cannot be obtained. Additionally, the minibatch of 

randomly sampled experience was increased from 100 to 500 to improve the stability of the actions 

taken. A larger minibatch decreases the likelihood that the sampled experience is poor, preventing 

the selection of low-value actions. Thirdly, the lateral flightpath was included in the observations 

and reward as a way to define the directionality of the waypoints. The new observation states and 

new reward based on the flight path can be seen in equations 98 and 99 respectively. All other 

parameters are the same as in the first generation. 

𝑠𝑠𝑁𝑁 = �𝛿𝛿𝑁𝑁, 𝛿𝛿𝐸𝐸 , 𝛿𝛿ℎ, 𝛿𝛿𝜃𝜃 , 𝛿𝛿𝜓𝜓, 𝛿𝛿𝐹𝐹𝐿𝐿,𝜙𝜙, 𝜃𝜃,𝜓𝜓� (98) 

𝑟𝑟4 = �10𝑒𝑒−0.07𝛿𝛿𝐹𝐹𝐹𝐹 − 05𝛿𝛿𝐹𝐹𝐿𝐿
0.5�{𝛿𝛿𝑝𝑝𝑁𝑁𝐸𝐸 ≤ 50} (99) 
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3.6.3 Path-Following Agent Generation 3 

Two major changes were applied to the third generation of the Path-Following agent. First, the 

Euler rates were added to the reward and observations as an attempt to damp out unwanted 

oscillations in the pitch mode. Also, the PID controllers were retuned, and saturations were added 

so that the output of the PID controllers are limited to the control surface deflection limits. The 

new PID values are listed in Table 3.11. The new observation states and reward functions are given 

in equations 100 and 101. 

Table 3.11 Generation 3 PID controller gain values used for control of the UAV. 

Controller Output P-Gain I-Gain D-Gain N-Filter Saturation 
Pitch Elevator 1 0.1 0.1 100 -40° to +20° 
Roll Aileron 2 0.01 0.5 200 -35° to +35° 

 
𝑠𝑠𝑁𝑁 = �𝛿𝛿𝑁𝑁, 𝛿𝛿𝐸𝐸 , 𝛿𝛿ℎ, 𝛿𝛿𝜃𝜃 , 𝛿𝛿𝜓𝜓, 𝛿𝛿𝐹𝐹𝐿𝐿,𝜙𝜙, 𝜃𝜃,𝜓𝜓, �̇�𝜙, �̇�𝜃, �̇�𝜓� (100) 

𝑟𝑟5 = −0.1���̇�𝜙� + ��̇�𝜃� + ��̇�𝜓�� (101) 

3.6.4 Path-Following Agent Generation 4 

The fourth generation makes significant changes to all areas of the reinforcement learning 

function. As mentioned previously, the changes were made sequentially over a series of 

generations where the agents were not saved. Thus, the fourth generation Path-Following agent is 

a result of the combination of improvements made from unsaved agent generations. 

First, the agent in this generation controls the climb and turn rate of the UAV. This also requires 

a new set of PID controllers, the values for which can be found in Table 3.12. These PID controllers 

also no longer directly control the control surfaces. Instead, the climb rate PID controller feeds 

into a pitch PID controller which feeds into a pitch rate PID controller that finally outputs the 

deflection angle of the elevators. A similar loop was designed for the turn rate as well. 

Additionally, a rate saturation was applied to the control surfaces in addition to the angular 
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magnitude saturation. This ensures that the control surfaces cannot deflect instantaneously 

between angles. The rates were measured from the real Fox UAV during flight tests. 

Table 3.12 Generation 4 PID controller gain values used for control of the UAV. 

Controller Output P-Gain I-Gain D-Gain N-Filter Saturation 
Climb Rate Pitch 0 0.01 0 100 None 
Pitch Pitch Rate 3 0 0 100 None 
Pitch Rate Elevator 0.138 3.15 0.000541 57.1 -25° to +25° 
Turn Rate Roll 0 1 0 100 None 
Roll Roll Rate 5 0 0 100 None 
Roll Rate Aileron 0.0768 2.26 0 100 -25° to +25° 
 
Another major modification is that, in this generation specifically, the aerodynamic model was 

improved. As discussed in the CFD section, the roll lookup tables for the static aerodynamic 

coefficients caused major issues with the flight dynamics of the Fox. This was fixed for generation 

4 onwards. 

Finally, the neural network was modified for further improvements in training performance. 

The size of the critic was reduced too much in previous generations to accurately predict the long-

term reward. Thus, the size of the critic neural network was increased. Also, an action scaling 

activation function was added to the output of the actor network. Without this function, the range 

of action values is limited between negative one and positive one. With the scaling layer, the output 

can be multiplied by a constant to increase or decrease the range to more relevant values. 

The new actions and observation states can be seen in equations 102 and 103 respectively. The 

groundspeed and climb rate were added to the observation in equation 103. 

𝑎𝑎𝑁𝑁 = �ℎ̇, �̇�𝜓� (102) 

𝑠𝑠𝑁𝑁 = �𝛿𝛿𝑁𝑁, 𝛿𝛿𝐸𝐸, 𝛿𝛿ℎ, 𝛿𝛿𝜃𝜃 , 𝛿𝛿𝜓𝜓, 𝛿𝛿𝐹𝐹𝐿𝐿, �̇�𝑁, �̇�𝐸, ℎ̇,𝜙𝜙,𝜃𝜃,𝜓𝜓, �̇�𝜙, �̇�𝜃, �̇�𝜓� (103) 

The new reward functions are given in equations 104 through 109. Slight modifications were 

made to the error-based reward equations. Also, a reward was designed to minimize the total 
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magnitude of the actions. Reward six (equation 109) normalizes the actions taken at a point in time 

by the maximum possible action value and multiplies the output by a negative number. This 

encourages the UAV to take more conservative actions to maximize the reward. 

𝑟𝑟1 = 10𝑒𝑒−0.012𝛿𝛿𝑝𝑝𝐴𝐴𝑠𝑠 − 0.3𝛿𝛿𝑝𝑝𝑁𝑁𝐸𝐸
0.5 (104) 

𝑟𝑟2 = 10𝑒𝑒−0.07𝛿𝛿𝑠𝑠𝑠𝑠𝑠𝑠 − 0.5𝛿𝛿𝑎𝑎𝑁𝑁𝑁𝑁
0.5 (105) 

𝑟𝑟3 = �−05𝛿𝛿𝐹𝐹𝐿𝐿
0.5�{𝛿𝛿𝑝𝑝𝑁𝑁𝐸𝐸 ≤ 50} (106) 

𝑟𝑟4 = [−1𝐸𝐸3 − 9𝐸𝐸3𝑒𝑒−0.06𝑁𝑁]{𝐼𝐼𝑠𝑠𝐷𝐷𝑁𝑁𝐸𝐸𝑒𝑒 = 1} (107) 

𝑟𝑟5 = −0.1���̇�𝜙� + ��̇�𝜃� + ��̇�𝜓�� (108) 

𝑟𝑟6 = −��
ℎ̇𝑁𝑁−1
ℎ̇𝑚𝑚𝑎𝑎𝑥𝑥

� + �
�̇�𝜓𝑁𝑁−1
𝜓𝜓𝑚𝑚𝑎𝑎𝑥𝑥

�� (109) 

3.6.5 Unguided Energy-Seeking Agent 

A single-agent dynamic soaring maneuver was attempted by developing a new set of rewards 

and observations. The UAV was controlled using the same actions as in the fourth-generation path-

following agent where climb rate and turn rate are specified by the agent. This allows for the most 

stable exploration of the environment since there is not a target path to follow in this case. 

However, the PID controllers were retuned, and saturations were added to the inner-loop 

controllers to improve the performance to allow for the best control performance. Additionally, 

for this case the throttle for the engines was set to zero. Thus, there is no thrust force from the 

engines to maintain the UAV’s energy. The agent must gain energy using the wind shear. 

In this case, the wind shear is a simple triangular shape that tapers from 0 wind speed at the 

ground to 40 ft/s windspeed at 50 ft altitude. From 50 ft and above, the windspeed is constant. This 

is visualized in Figure 3.31. The windshear is orientated such that it is blowing from south to north. 
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When the simulation initializes, the UAV will be in a tailwind, which is advantageous for 

immediately gaining energy from the wind shear. 

 

Figure 3.31 Triangular wind shear used to train the UES agent to perform dynamic soaring. 

Because there is no ideal path for the UAV to follow, new observations and rewards had to be 

specified. The actions, which are the same as the fourth-generation path following algorithm are 

given in equation 110. For the observations in equation 111, the agent observes Euler angles, Euler 

rates, climb rate, airspeed, windspeed, and angle of attack. The windspeed is the difference 

between the groundspeed and airspeed. In a tailwind, the windspeed should be positive, and visa-

versa for a headwind.  

𝑎𝑎𝑁𝑁 = �ℎ̇, �̇�𝜓� (110) 

𝑠𝑠𝑁𝑁 = �𝜙𝜙,𝜃𝜃,𝜓𝜓, �̇�𝜙, �̇�𝜃, �̇�𝜓, ℎ̇,𝑉𝑉𝑇𝑇,𝑉𝑉𝑤𝑤,𝛼𝛼� (111) 

The new rewards for the single-agent dynamic soaring are defined in equations 112 through 

117. The first reward in equation 112 is designed such that the UAV must have a positive climb 

rate in a headwind and negative climb rate in a tailwind. This is meant to force the UAV into 

performing the windward climb and leeward descent phases of the dynamic soaring cycle. The 

second reward is designed to teach the agent to keep the angle of attack below the point of stall. 

The third reward is related to the rate of change of total energy. In a successful dynamic soaring 
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cycle, the total energy should be the same at the beginning and end of the maneuver. However, 

this is not easy to determine without a pre-defined path. Thus, this condition can be approximated 

by training the agent to minimize the total energy rate of change to prevent the loss of total energy. 

The fourth and fifth reward functions are for the same purpose as they were in the previous path-

following agent.  

𝑟𝑟1 = [10]�𝑉𝑉𝑤𝑤 > 0 & ℎ̇ < 0 || 𝑉𝑉𝑤𝑤 < 0 & ℎ̇ > 0� (112) 

𝑟𝑟1 = [−10]�𝑉𝑉𝑤𝑤 > 0 & ℎ̇ > 0 || 𝑉𝑉𝑤𝑤 < 0 & ℎ̇ < 0� (113) 

𝑟𝑟2 = −10|𝛼𝛼| − [100]{𝛼𝛼 ≥ 12°} (114) 

𝑟𝑟3 = −0.01�𝐸𝐸�̇�𝑁� (115) 

𝑟𝑟4 = −10 �
ℎ̇𝑁𝑁−1
ℎ̇𝑚𝑚𝑎𝑎𝑥𝑥

� − 10 �
�̇�𝜓𝑁𝑁−1
𝜓𝜓𝑚𝑚𝑎𝑎𝑥𝑥

� (116) 

𝑟𝑟5 = 𝑑𝑑 + [−1𝐸𝐸3 − 9𝐸𝐸3𝑒𝑒−0.06𝑁𝑁]{𝐼𝐼𝑠𝑠𝐷𝐷𝑁𝑁𝐸𝐸𝑒𝑒 = 1} (117) 

Finally, the new PID configuration can be seen in Table 3.13. Saturations are applied to the 

outputs of all PID controllers to limit the pitch and roll angles and rates to realistic ranges. 

Consequently, new gains were tuned for the PID controllers. 

Table 3.13 UES agent PID controller gain values used for control of the UAV. 

Controller Output P-Gain I-Gain D-Gain N-Filter Saturation 
Climb Rate Pitch 0 0.005 0 100 π/3 to -π/3 
Pitch Pitch Rate 3 0 0 100 -1 to 1 
Pitch Rate Elevator 0 1 0 100 -25° to +25° 
Turn Rate Roll 0 2 0 100 π/3 to -π/3 
Roll Roll Rate 5 0 0 100 -1 to 1 
Roll Rate Aileron 0 1 0 100 -25° to +25° 
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4 Results 

Each reinforcement learning agent was simulated for 20 episodes. The episode with the highest 

total reward was used to demonstrate the performance of each agent.  

4.1.1 Path-Following Agent Generation 1 Results 

The history of the reward for each training episode can be seen in Figure 4.1. The vertical 

dashed black bars represent a 24-hour period in real-time. Evaluating the reward shows that the 

first-generation agent can maximize the reward over time. However, this agent also exhibits very 

inconsistent performance as the reward has a large trough around 3000 episodes and decreases 

drastically from episode 7000 onwards. Additionally, the critic does not predict an accurate long-

term reward. Over time, both the actual and predicted rewards should converge. This may be a 

result of the extremely inconsistent performance of the agent. The reward oscillates constantly 

between -7500 and 7500. 

 

Figure 4.1 Episode reward and predicted reward for the first-generation agent. 
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Other aspects of the training statistics can be used to analyze the performance. Figure 4.2 

displays the episode clock time and total episode steps. For the clock time, the time to complete 

each episode increases consistently as the agent gains experience. For the episode steps plot, if an 

episode does not complete the maximum number of steps, then it was terminated by the IsDone 

function. Therefore, it is clear that there are a large number of failed training episodes. This is 

especially true closest to episode 10000 where the highest density group of failed episodes is 

present. 

  

Figure 4.2 Episode clock time and steps for the first-generation agent. 

Further analysis of the agent’s performance can be carried out by reviewing the logged data of 

the UAV during the simulated episode. Figure 4.3 shows the pitch and roll actions chosen by the 

agent over time. It is obvious that these actions are poorly optimized as both the pitch and roll 

actions oscillate rapidly between the maximum and minimum values. 
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Figure 4.3 Pitch and Roll actions performed by the first-generation agent. 

The ground track and altitude of the UAV can be seen in Figure 4.4 compared to the ideal path. 

The UAV is able to detect and loosely follow the ideal ground track. However, it does a poor job 

at maintaining the altitude, especially during a sharp turn. 

  

Figure 4.4 Ground track and altitude for the first-generation agent. 

The true roll and pitch angles as well as their corresponding rates can be seen in Figure 4.5. 

They have large oscillations as a result of the poorly optimized actions. 
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Figure 4.5 Euler angles and rates for the first-generation agent. 
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generation. This means that the performance is consistent until episode 2000 where the reward 

increases sharply, and the reward varies drastically between episodes. However, the critic 

predicted reward does not converge to the true reward. This indicates that the neural network is 

not properly optimized for this case. 

Analysis of the episode clock time and steps in Figure 4.7 proves that the performance of the 

agent improved from the last generation. The only large grouping of failed episodes is near the 

start of training and only a few failed episodes exist outside of that group. The clock time plot 

again shows the episode time increases as experience is gained. However, there is a large time 
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advantageous if the computational cost to simulate the environment exceeds the cost to learn the 

policy. This is not the case since the simulation clock time is slowed significantly during training. 

 

Figure 4.6 Episode rewards for the second-generation agent. 

  

Figure 4.7 Episode clock time and steps for the second-generation agent. 
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Figure 4.8 Pitch and roll actions performed by the second-generation agent. 

The ground track and altitude plots in Figure 4.9 demonstrate the most drastic improvement 

from the previous agent generation. The ground track has very little error in comparison to the first 

generation. The UAV immediately turns toward the nearest waypoint and precisely follows the 

path. However, the altitude track does not perform as well. There are large pitch oscillations 

present in the solution. This is a result of the error in the roll aerodynamic model. The oscillations 

would not be so drastic if the UAV did not have to compensate for the instability created by the 

faulty aerodynamic lookup tables. 

  

Figure 4.9 Ground track and altitude for the second-generation agent. 
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Finally, the pitch and roll angles and rates plots can be seen in Figure 4.10. They tell the same 

story as the altitude plot: excessive pitch oscillation. However, this also shows that despite the 

ground track having little error, there are also significant oscillations in roll. Most likely, this a 

consequence of the faulty aerodynamic model again. 

  

Figure 4.10 Euler angles and rates for the second-generation agent. 
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Figure 4.11 Episode rewards for the third-generation agent. 

  

Figure 4.12 Episode clock time and steps for the third-generation agent. 
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The pitch and roll actions in Figure 4.13, ground track and altitude in Figure 4.14, and pitch 

and roll angles and rates in Figure 4.15 show no major improvements from the previous generation. 

This proves that while improvements were made in the rate of learning, the overall performance is 

still the same. A different approach was tested in Generation 4. 

  

Figure 4.13 Pitch and roll actions performed by the third-generation agent. 

  

Figure 4.14 Ground track and altitude for the third-generation agent. 
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Figure 4.15 Euler angles and rates for the third-generation agent. 

4.1.4 Path-Following Agent Generation 4 Results 

Unlike the first three generations, the fourth generation must follow a path with a variable 

target altitude. This path is similar to the path from the previous generation except that the path is 

“tilted” to more closely resemble a closed-loop dynamic soaring maneuver.  

As a consequence of the significant improvements applied to the model, the fourth-generation 

agent has by far the best performance. Instead of the agent choosing the UAV’s attitude as the 

action, the climb and turn rates are used. Examining Figure 4.16, it is immediately clear that unlike 

the previous generations, the critic is able to correctly predict the long-term reward. Also, the new 

actions, paired with a better designed PID controller loop, result in more consistent experiences 

between episodes. While the reward plateaus between episode 1000 and 2500, it suddenly begins 

to improve beyond episode 2500.  
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Figure 4.16 Episode reward for the fourth-generation agent. 

The effect of more consistent experience can be seen in the episode steps plot in Figure 4.17. 

Compared to the third-generation agent, there are even fewer failed training episodes. Notably, 

there are no failed episodes beyond episode 100. Another improvement as a result of the new 

control method. The clock time plot demonstrates that the agent gained experience consistently for 

the first 2500 episodes. Episode time increases at a greater rate compared to all previous 

generations. When the training overcomes the reward plateau around episode 3000, the clock time 

spikes and then remains consistent. Perhaps this is a result of the convergence of the predicted and 

true rewards.  
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Figure 4.17 Episode clock time and steps for the fourth-generation agent. 

In continuation of the trend of improvements, the action plots in Figure 4.18 have significantly 

less oscillations compared to the pitch and roll actions in the previous generations. Particularly, 

the climb rate action has almost no oscillations. In contrast, the turn rate action oscillations are too 

large. Further improvements can be made to prevent this behavior. 

  

Figure 4.18 Climb and turn rates actions performed by the fourth-generation agent. 
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target altitude. This is made clear by the altitude graph. The target altitude is the altitude of the 

closest waypoint to the UAV. Noticeably, the slope of the target altitude is higher before and after 

the small corrective turns compared to the true altitude slope. This reinforces the idea that the 

maximum climb rate was not sufficient for this maneuver. If either the climb rate was increased or 

maximum altitude slope decreased, the ground track would not have such corrective turns. 

  

Figure 4.19 Ground track and altitude for the fourth-generation agent. 
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Figure 4.20 Euler angles and rates for the fourth-generation agent. 

Finally, to evaluate the robustness of the fourth-generation agent, the waypoint path was 

modified. In this case, there is no variation in altitude just as with the first three generations. Figure 

4.21 presents the results. The agent is able to follow the ground track, albeit not perfectly in 

comparison to the previous waypoint case. Also, there are no smaller corrective turns as with the 

previous case, reinforcing the point that they only exist in the solution as a result of the maximum 

climb rate being too small. However, the altitude performance is extremely poor. It is clear that 

the agent’s experience causes it to mimic the original path with varying altitude. With more 

training, this could be improved. 
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Figure 4.21 Ground track and altitude for second waypoint mission for the fourth-generation 
agent 

4.1.5 Unguided Energy-Seeking Agent Results 

Because the fourth-generation path-following agent demonstrated that direct control of the 

climb and turn rates was the most stable action method, it was also applied to the unguided energy-

seeking agent. These actions will allow for stable and reliable exploration of the environment by 

minimizing the likelihood of a stall. The pitch and roll angles and rates are saturated to further 

reduce the chances of stall. 

The training results can be seen in Figure 4.22. In contrast to the final path-following case, the 

UES agent struggles to gain consistent experience. However, the reward does not deviate greatly 

between successive episodes, proving that some type of behavior is being taught by the reward 

function. This agent was only trained for 700 episodes due to time constraints. However, by this 

episode, the reward is locally maximal. 
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Figure 4.22 Episode reward for the UES agent. 

Analysis of the episode clock time and steps in Figure 4.23 shows that the episodes are 

increasing in length as experience is gained. Near the final episodes, the agent manages to keep 

the UAV from crashing for the full duration. This shows that the agent is learning how to gain 

energy from the wind shear in some form. 

  

Figure 4.23 Episode clock time and steps for the UES agent. 
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The resulting climb and turn rate actions from the agent are below in Figure 4.24. These actions 

are extremely oscillatory unlike the fourth-generation path-following agent. However, this is not 

necessarily a poor result since the dynamic soaring maneuver may require rapid changes in climb 

and turn rate. Further analysis of the solution is necessary  

  

Figure 4.24 Climb and turn rate actions performed by the UES agent. 
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Figure 4.25 Ground track and altitude for the UES agent. 

While the altitude is not maintained between cycles, Figure 4.26 shows that the airspeed is 

maintained. Ground speed is also plotted alongside airspeed. 

 

Figure 4.26 Airspeed and ground speed for the UES agent. 
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Figure 4.27 Total energy and total energy rate for the UES agent. 

It is difficult to deduce from these results whether the issue preventing repeatable dynamic 

soaring is the wind shear not being sufficient or if the agent simply needs further optimizations 

through training and reward function design. However, these results show a lot of potential, 

proving that reinforcement learning can be used for dynamic soaring if the model is properly 

configured. 
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5 Discussions, Conclusions, and Recommendations 

Reinforcement learning is a powerful tool for intelligent control of complex systems. Dynamic 

soaring is a great application for this method because it requires optimization against a large 

number of everchanging variables. In this analysis, the Fox UAV was chosen as a platform to 

develop reinforcement learning based dynamic soaring simulations and for future application in 

the real world. A variable-fidelity hybrid-aerodynamic model was calculated for the Fox using 

RANS computational fluid dynamics and the vortex lattice method. A six-degrees-of-freedom 

aircraft simulation was developed using the aerodynamic model and reinforcement learning was 

performed to assess the potential for its application to dynamic soaring. Future application of these 

methods will use reinforcement learning to perform true sustainable dynamic soaring for a variety 

of wind shear conditions. 

5.1 Discussion 

For path-following, control of the UAV using climb rate and turn rate has been proven to be 

more robust compared to control of the UAV using pitch and roll angles or direct control of the 

UAV’s control surfaces. The UAV is shown to follow a closed-loop path with altitude variation 

with significantly smaller angular rate oscillations compared to the other methods of UAV control. 

Additionally, the combination of closed-loop feedback control in this method may allow for the 

reinforcement learning agent to be deployed on a different UAV without the need for significant 

retraining. Only the PID controllers need to be tuned to make the new UAV capatable. This 

characteristic will hopefully allow for the safe deployment of the agent on the real Fox UAV. 

Additionally, this agent can be improved to adapt to different paths through further reinforcement 

learning. The next step for this method is to pair the closed-loop path-following agent with a path-

optimization agent in a wind shear to develop dynamic soaring cycles. Both agents can be trained 

at the same time, allowing for the path-following agent to learn to adapt to variations in the path 
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without constant thrust and for the path-optimization agent to design realistic paths for a given 

wind shear condition. Finally, this method can be expanded in the future to allow for open-loop 

“traveling” dynamic soaring.  

While dynamic soaring was not fully achieved using the unguided energy seeking method, it 

has been shown that it is possible with further optimization of the model. By assigning a reward 

to force the UAV to dive in a tailwind and climb in a headwind assures that the windward climb 

and leeward descent phases of the dynamic soaring cycle are achieved. Furthermore, applying a 

reward to the derivative of the total energy with respect to time encourages the UAV to utilize the 

wind shear near the ground to maintain total energy over time. It is shown that the agent learned 

to fly in repeated cycles to maintain the airspeed through this method. However, the altitude was 

not maintained between cycles. Consequently, the total energy is not conserved. Again, further 

optimization and a more sufficient wind shear may yield better results. 

5.2 Conclusions 

The results demonstrate that dynamic soaring is feasible using reinforcement learning. Both 

methods, closed-loop path-following and unguided energy seeking show potential to achieve 

stable dynamic soaring with further optimizations. In the future, these methods can be expanded 

to work for a variety of wind shear conditions and for traveling dynamic soaring. The final test 

will ultimately be in deployment of the reinforcement learning agents on the real Fox UAV to 

show that RL-based control is stable.  

5.3 Recommendations 

Extending reinforcement learning methods to the real world will require a series of analyses to 

prove the application of the control method. Deploying a fully-fledged dynamic soaring agent 

directly on the Fox UAV without any testing will almost certainly result in a rapid collision with 

the ground. To prevent this failure, reinforcement learning will have to be integrated in safe steps. 
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First, a simple test to demonstrate the ability for reinforcement learning to interface with the 

UAV systems should be performed. As discussed previously, the Fox has a Pixhawk autopilot for 

as the flight controller and a Raspberry Pi as the companion computer. A simple test could be 

performed on the ground where the RL agent attempts to control the elevator as a response to the 

observation of certain states that can be affected without flying such as attitude or airspeed. This 

process will also be crucial to understanding how to deploy an agent trained offline on the 

simulator. 

The second analysis can be performed in flight. The accuracy of the path following agent can 

be analyzed by comparing the actions taken by the flight controller to the desired action of the 

agent. The agent could be trained to follow a simple closed-loop path at a fixed altitude in the 

simulator. Then, the same path can be followed using the Pixhawk autopilot on the real Fox UAV. 

While the Fox is controlled by the autopilot, the path-following RL agent will be deployed on the 

flight computer without the ability to control the UAV. This will allow for the agent to observe the 

state of the UAV and choose actions based on those states. Finally, the actions taken by the agent 

should be compared to the real inputs from the autopilot to assess the performance of the pretrained 

agent. If the actions are reasonably close, then the next step can be progressed to. 

After testing the RL agent without allowing it to control the UAV, the next logical step is to 

allow it to take direct control of the UAV. There are two methods that can be applied here. First is 

to again control the UAV using the traditional autopilot. In this case, however, the agent will use 

guided reinforcement learning to gain experience directly from the autopilot commands. This 

method can help transition the agent from simulation to real-world safely. Alternatively, if the 

previous analysis was extremely successful, the agent can be train using unguided reinforcement 
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learning in the real world. Once reinforcement learning based control of the UAV is achieved, then 

real world dynamic soaring can be attempted. 

For the Fox UAV to dynamically soar as does the Albatross, a sufficient wind shear needs to 

be present. Of course, as discussed earlier, the closed-loop path-following reinforcement learning 

agent should be able to perform dynamic soaring like maneuvers with or without the presence of 

wind shear. The UAV will need to be able to intelligently switch between a normal cruise flying 

mode and dynamic soaring. Initially, the agent will assume no wind shear is present, performing 

the most conservative maneuver possible using engine power to prevent stalling during the 

windward climb. During subsequent cycles, the path will be optimized by the path-optimizing 

agent to reflect the true wind shear. Over time, the UAV will either perform true dynamic soaring 

without using internal thrust or will simply continue to perform dynamic soaring-like maneuver 

that are more energy efficient compared to flying at cruise speed. 
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7 APPENDIX A – CFD Solution Settings 

Table 7.1 2D CFD setup information. 

2D Methods 
  VARIABLE VALUE UNIT 

Grid Cell Count 22885 - 
Wall Spacing 1.85E-05 m 

Boundary 
Conditions 

Type Pressure Farfield - 
Mach # 0.053 - 
AoA -10 to 20 deg 
Temperature 300 K 
Operating Pressure 101325 Pa 
Gauge Pressure 0 Pa 
Turbulent Intensity 5 % 
Turb Viscosity Ratio 10 - 

Reference  
Values 

Area 0.257 m2 
Density 1.1768 kg/m3 
Depth 0 m 
Enthalpy 2029.449 j/kg 
Length 0.257 m 
Pressure 0 Pa 
Temperature 300 k 
Velocity 18.31 m/s 
Viscosity 1.8462E-05 kg/m*s 
Specific Heat Ratio 1.4 - 

Model 
Information 

Solver Pressure-Based - 
Energy Equation on - 
Viscous Model Variable - 
Numerical Scheme AUSM - 
Spatial Accuracy Second-order - 
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Table 7.2 3D CFD setup information. 

3D Methods 
  VARIABLE VALUE UNIT 

Grid Cell Count 1934318 - 
Wall Spacing 9.25E-05 m 

Boundary 
Conditions 

Inlet Velocity Inlet - 
Outlet Pressure Outlet - 

Case 
Information 

Inlet Velocity 18.313 m/s 
Mach # 0.053 - 
AoA -40 to 40 deg 
Sideslip -40 to 40 deg 
Roll -90 to 90 deg 
Temperature 300 K 
Operating Pressure 101325 Pa 
Gauge Pressure 0 Pa 
Turbulent Intensity 5 % 
Turb Viscosity Ratio 10 - 

Reference  
Values 

Area 0.7465 m2 

Density 1.1768 kg/m3 
Enthalpy 0 j/kg 
Length 0.257 m 
Pressure 0 Pa 
Temperature 300 k 
Velocity 18.313 m/s 
Viscosity 1.8462E-05 kg/m*s 
Specific Heat Ratio 1.4 - 

Model 
Information 

Solver Pressure-Based - 
Energy Equation off - 
Viscous Model k-omega SST - 
Numerical Scheme SIMPLE - 
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8 APPENDIX B – Summary of aerodynamic coefficients and derivatives 

Table 8.1 Angle of attack static lookup table for the Fox UAV. 

AOA 
[deg] CD CY CL Cl CM CN 

-40 7.535E-01 -4.452E-03 -8.142E-01 1.825E-03 5.458E-01 -2.567E-03 
-30 5.083E-01 1.701E-03 -7.258E-01 -3.605E-03 4.268E-01 5.095E-03 
-25 3.878E-01 -3.265E-04 -6.344E-01 1.690E-03 3.555E-01 1.448E-03 
-20 2.792E-01 -5.834E-04 -5.234E-01 -2.812E-03 2.872E-01 -3.528E-03 
-18 2.412E-01 1.193E-04 -4.833E-01 -2.265E-03 2.777E-01 -1.862E-03 
-16 2.032E-01 -6.132E-04 -4.509E-01 -4.237E-03 2.897E-01 -2.905E-03 
-14 1.623E-01 -3.812E-04 -4.392E-01 -5.514E-04 3.933E-01 -8.674E-04 
-12 1.281E-01 -3.762E-04 -3.712E-01 1.638E-03 3.358E-01 -1.580E-04 
-10 9.876E-02 -9.944E-04 -3.016E-01 6.707E-04 2.713E-01 -1.702E-03 
-8 5.134E-02 4.707E-04 -3.125E-01 -4.256E-04 1.585E-01 -1.728E-03 
-6 3.000E-02 -7.632E-04 -1.468E-01 1.087E-03 8.607E-02 -1.412E-03 
-4 2.683E-02 3.812E-05 3.954E-02 1.580E-03 4.799E-02 -4.063E-04 
-2 2.732E-02 -6.397E-04 2.276E-01 3.095E-04 1.085E-02 -3.918E-04 
0 3.082E-02 -2.958E-04 4.146E-01 7.739E-04 -1.982E-02 2.015E-06 
2 3.731E-02 -3.050E-04 5.958E-01 -1.038E-03 -3.932E-02 -7.126E-04 
4 4.687E-02 -1.008E-03 7.756E-01 -5.224E-04 -7.291E-02 -3.050E-03 
6 5.944E-02 -4.027E-04 9.396E-01 -1.533E-03 -1.144E-01 -1.606E-03 
8 8.476E-02 -1.213E-03 1.028E+00 -7.497E-04 -2.280E-01 -2.502E-03 
10 1.108E-01 2.551E-03 1.131E+00 1.702E-03 -2.821E-01 1.912E-03 
12 1.390E-01 -4.293E-03 1.215E+00 -5.293E-03 -3.496E-01 -3.237E-03 
14 1.849E-01 -2.711E-03 1.144E+00 -2.520E-02 -4.116E-01 -1.228E-02 
16 2.410E-01 4.530E-03 1.077E+00 3.527E-03 -4.217E-01 1.575E-02 
18 3.026E-01 -1.041E-03 9.709E-01 -2.670E-03 -3.389E-01 -5.224E-04 
20 3.629E-01 1.114E-03 9.573E-01 -9.106E-03 -3.828E-01 -3.095E-03 
25 5.016E-01 -5.990E-03 9.684E-01 5.843E-03 -4.288E-01 -1.827E-02 
30 6.347E-01 1.435E-02 9.984E-01 4.281E-02 -4.912E-01 -2.672E-02 
40 8.995E-01 2.609E-02 1.008E+00 4.908E-02 -6.102E-01 1.055E-02 
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Table 8.2 Sideslip static aerodynamic coefficient lookup table for the Fox UAV. 

Beta 
[deg] CD CY CL Cl CM CN 

-40 2.447E-01 2.927E-01 2.661E-01 7.711E-02 -7.532E-02 5.296E-01 
-30 1.500E-01 2.449E-01 3.451E-01 3.285E-02 -1.066E-01 4.874E-01 
-25 1.059E-01 1.974E-01 3.646E-01 2.868E-02 -7.397E-02 4.179E-01 
-20 7.524E-02 1.548E-01 3.841E-01 2.244E-02 -5.217E-02 3.361E-01 
-18 6.565E-02 1.385E-01 3.898E-01 2.073E-02 -4.095E-02 3.042E-01 
-16 5.743E-02 1.238E-01 3.951E-01 1.681E-02 -3.485E-02 2.779E-01 
-14 4.887E-02 1.130E-01 4.020E-01 5.272E-03 -3.953E-02 2.637E-01 
-12 4.155E-02 9.347E-02 4.063E-01 3.998E-03 -4.091E-02 2.169E-01 
-10 3.767E-02 7.621E-02 4.077E-01 4.340E-03 -3.072E-02 1.795E-01 
-8 3.495E-02 6.058E-02 4.091E-01 4.153E-03 -2.265E-02 1.436E-01 
-6 3.291E-02 4.508E-02 4.097E-01 3.121E-03 -1.740E-02 1.072E-01 
-4 3.154E-02 2.961E-02 4.111E-01 1.999E-03 -1.465E-02 6.991E-02 
-2 3.096E-02 1.350E-02 4.118E-01 8.770E-04 -1.662E-02 3.005E-02 
0 3.082E-02 -2.958E-04 4.146E-01 7.739E-04 -1.982E-02 2.015E-06 
2 3.096E-02 -1.350E-02 4.118E-01 -8.770E-04 -1.662E-02 -3.005E-02 
4 3.154E-02 -2.961E-02 4.111E-01 -1.999E-03 -1.465E-02 -6.991E-02 
6 3.291E-02 -4.508E-02 4.097E-01 -3.121E-03 -1.740E-02 -1.072E-01 
8 3.495E-02 -6.058E-02 4.091E-01 -4.153E-03 -2.265E-02 -1.436E-01 
10 3.767E-02 -7.621E-02 4.077E-01 -4.340E-03 -3.072E-02 -1.795E-01 
12 4.155E-02 -9.347E-02 4.063E-01 -3.998E-03 -4.091E-02 -2.169E-01 
14 4.887E-02 -1.130E-01 4.020E-01 -5.272E-03 -3.953E-02 -2.637E-01 
16 5.743E-02 -1.238E-01 3.951E-01 -1.681E-02 -3.485E-02 -2.779E-01 
18 6.565E-02 -1.385E-01 3.898E-01 -2.073E-02 -4.095E-02 -3.042E-01 
20 7.524E-02 -1.548E-01 3.841E-01 -2.244E-02 -5.217E-02 -3.361E-01 
25 1.059E-01 -1.974E-01 3.646E-01 -2.868E-02 -7.397E-02 -4.179E-01 
30 1.500E-01 -2.449E-01 3.451E-01 -3.285E-02 -1.066E-01 -4.874E-01 
40 2.447E-01 -2.927E-01 2.661E-01 -7.711E-02 -7.532E-02 -5.296E-01 
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Table 8.3 Roll angle static aerodynamic coefficient lookup table for the Fox UAV. 

Roll 
[deg] CD CY CL Cl CM CN 

-90 3.050E-02 4.186E-01 -1.193E-04 -3.224E-04 2.580E-05 2.197E-02 
-80 3.054E-02 4.117E-01 7.259E-02 5.643E-05 -3.785E-03 2.179E-02 
-70 3.048E-02 3.928E-01 1.429E-01 -3.627E-04 -7.452E-03 2.015E-02 
-60 3.027E-02 3.623E-01 2.090E-01 2.048E-04 -1.033E-02 1.866E-02 
-50 3.046E-02 3.201E-01 2.689E-01 -9.673E-06 -1.310E-02 1.607E-02 
-40 3.043E-02 2.691E-01 3.201E-01 -3.692E-04 -1.591E-02 1.373E-02 
-30 3.037E-02 2.086E-01 3.606E-01 -9.560E-04 -1.732E-02 1.019E-02 
-20 3.041E-02 1.434E-01 3.931E-01 1.419E-04 -2.004E-02 7.058E-03 
-10 3.032E-02 7.288E-02 4.116E-01 -4.127E-04 -2.091E-02 3.452E-03 
0 3.082E-02 -2.958E-04 4.146E-01 7.739E-04 -1.982E-02 2.015E-06 
10 3.032E-02 -7.288E-02 4.116E-01 4.127E-04 -2.091E-02 -3.452E-03 
20 3.041E-02 -1.434E-01 3.931E-01 -1.419E-04 -2.004E-02 -7.058E-03 
30 3.037E-02 -2.086E-01 3.606E-01 9.560E-04 -1.732E-02 -1.019E-02 
40 3.043E-02 -2.691E-01 3.201E-01 3.692E-04 -1.591E-02 -1.373E-02 
50 3.046E-02 -3.201E-01 2.689E-01 9.673E-06 -1.310E-02 -1.607E-02 
60 3.027E-02 -3.623E-01 2.090E-01 -2.048E-04 -1.033E-02 -1.866E-02 
70 3.048E-02 -3.928E-01 1.429E-01 3.627E-04 -7.452E-03 -2.015E-02 
80 3.054E-02 -4.117E-01 7.259E-02 -5.643E-05 -3.785E-03 -2.179E-02 
90 3.050E-02 -4.186E-01 -1.193E-04 3.224E-04 2.580E-05 -2.197E-02 
 

Table 8.4 Roll rate damping derivative lookup table for the Fox UAV. 

AoA  
[deg] 

𝑪𝑪𝒍𝒍𝒑𝒑 𝑪𝑪𝒀𝒀𝒑𝒑 𝑪𝑪𝑵𝑵𝒑𝒑 

-2.778 -5.6940E-01 4.8432E-02 -3.3039E-02 
-2.360 -5.6919E-01 4.8601E-02 -3.3120E-02 
-1.776 -5.6990E-01 4.8759E-02 -3.3095E-02 
-0.9234 -5.6977E-01 4.8928E-02 -3.3118E-02 
0.3927 -5.7410E-01 4.9316E-02 -3.3123E-02 
2.532 -5.7614E-01 4.9891E-02 -3.3281E-02 
6.593 -5.8955E-01 5.0902E-02 -3.3654E-02 
16.18 -6.3724E-01 4.9647E-02 -3.4210E-02 
25.14 -7.1281E-01 4.9722E-02 -3.6229E-02 
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Table 8.5 Pitch rate damping derivative lookup table for the Fox UAV. 

AoA  
[deg] 

𝑪𝑪𝑳𝑳𝒒𝒒 𝑪𝑪𝑫𝑫𝒒𝒒 𝑪𝑪𝑴𝑴𝒒𝒒 

-2.778 9.5689E+00 7.0661E-02 -1.8261E+01 
-2.360 9.4968E+00 8.9401E-02 -1.8265E+01 
-1.776 9.3592E+00 1.1879E-01 -1.8264E+01 
-0.9234 9.4739E+00 1.6488E-01 -1.8262E+01 
0.3927 9.3690E+00 2.3103E-01 -1.8263E+01 
2.532 9.6508E+00 3.4921E-01 -1.8277E+01 
6.593 9.6738E+00 5.6283E-01 -1.8336E+01 
16.18 9.3985E+00 9.7205E-01 -1.8976E+01 
25.14 8.5543E+00 1.2014E+00 -1.9555E+01 

 

Table 8.6 Yaw rate damping derivative lookup table for the Fox UAV. 

AoA  
[deg] 𝑪𝑪𝒍𝒍𝒓𝒓 𝑪𝑪𝒀𝒀𝒓𝒓 𝑪𝑪𝑵𝑵𝒓𝒓 

-2.778 8.3999E-02 2.7420E-01 -8.8173E-02 
-2.360 8.9403E-02 2.7407E-01 -8.8039E-02 
-1.776 9.8348E-02 2.7393E-01 -8.7667E-02 
-0.9234 1.0734E-01 2.7371E-01 -8.7449E-02 
0.3927 1.2158E-01 2.7334E-01 -8.6752E-02 
2.532 1.4506E-01 2.7276E-01 -8.5761E-02 
6.593 1.9222E-01 2.7174E-01 -8.4003E-02 
16.18 2.8445E-01 2.6906E-01 -7.9988E-02 
25.14 3.6152E-01 2.6733E-01 -7.6819E-02 
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Table 8.7 Control surface coefficients for the Fox UAV. 

Coefficient Value 
𝐶𝐶𝐷𝐷𝛿𝛿𝑒𝑒 1.815E-02 
𝐶𝐶𝐷𝐷𝛿𝛿𝑓𝑓 4.235E-02 
𝐶𝐶𝑌𝑌𝛿𝛿𝑠𝑠 -3.065E-02 
𝐶𝐶𝑌𝑌𝛿𝛿𝑟𝑟 -2.397E-01 
𝐶𝐶𝐿𝐿𝛿𝛿𝑒𝑒 6.240E-01 
𝐶𝐶𝐿𝐿𝛿𝛿𝑓𝑓 1.368E+00 
𝐶𝐶𝑙𝑙𝛿𝛿𝑠𝑠 3.556E-01 
𝐶𝐶𝑀𝑀𝛿𝛿𝑒𝑒

 -2.200E+00 
𝐶𝐶𝑁𝑁𝛿𝛿𝑠𝑠 -1.539E-02 
𝐶𝐶𝑁𝑁𝛿𝛿𝑟𝑟  -8.129E-02 
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