
Doctoral Dissertations and Master's Theses 

Fall 2022 

Deep Learning Prediction Models for Runway Configuration Deep Learning Prediction Models for Runway Configuration 

Selection and Taxi Times Based on Surface Weather Selection and Taxi Times Based on Surface Weather 

Shlok Misra 
Embry-Riddle Aeronautical University 

Follow this and additional works at: https://commons.erau.edu/edt 

Scholarly Commons Citation Scholarly Commons Citation 
Misra, Shlok, "Deep Learning Prediction Models for Runway Configuration Selection and Taxi Times Based 
on Surface Weather" (2022). Doctoral Dissertations and Master's Theses. 693. 
https://commons.erau.edu/edt/693 

This Thesis - Open Access is brought to you for free and open access by Scholarly Commons. It has been accepted 
for inclusion in Doctoral Dissertations and Master's Theses by an authorized administrator of Scholarly Commons. 
For more information, please contact commons@erau.edu. 

http://commons.erau.edu/
http://commons.erau.edu/
https://commons.erau.edu/edt
https://commons.erau.edu/edt?utm_source=commons.erau.edu%2Fedt%2F693&utm_medium=PDF&utm_campaign=PDFCoverPages
https://commons.erau.edu/edt/693?utm_source=commons.erau.edu%2Fedt%2F693&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:commons@erau.edu


 

  

 

Deep Learning Prediction Models for Runway Configuration Selection and Taxi 

Times Based on Surface Weather  

 

 

 

 

Shlok Misra 
 

 

 

 

Thesis Submitted to the College of Aviation in Partial Fulfillment of the Requirements 

for the Degree of Master of Science in Aeronautics 

 

 

 

 

Embry-Riddle Aeronautical University 

Daytona Beach, Florida 

October 2022  



ii 

 

 

 

 

 

 

 

 

© 2022 Shlok Misra 

All Rights Reserved. 

 

  



This  was prepared under the direction of the candidate’s  
Committee Chair, , and has been approved by the members  

of the  committee. It was submitted to the College of Aviation and was 
accepted in partial fulfillment of the requirements for the Degree of  

in 

Committee Chair 

Committee Member Committee Member 

Deep Learning Prediction Models for Runway Configuration Selection and 
Taxi Times Based on Surface Weather  

Shlok Misra

Dahai Liu, Ph.D.

Dahai Liu Digitally signed by Dahai Liu 
Date: 2022.11.21 14:38:33 
-05'00'

Hong Liu Digitally signed by Hong Liu 
Date: 2022.11.21 16:10:38 
-05'00'

Ahmed Abdelghany, 
Ph.D.

Digitally signed by Ahmed 
Abdelghany, Ph.D. 
Date: 2022.11.21 16:16:33 -05'00'

Steven Hampton
Digitally signed by Steven 
Hampton
Date: 2022.11.29 14:59:04 -05'00'

Christopher Grant
Digitally signed by Christopher 
Grant
Date: 2022.12.08 13:45:09 -05'00'

November 21, 2022

Ahmed Abdelghany, Ph.D.Hong Liu, Ph.D.

Dahai Liu, Ph.D.

Donald S. Metscher
Digitally signed by Donald S. 
Metscher
Date: 2022.11.28 08:49:18 -05'00'

Alan J. Stolzer Digitally signed by Alan J. Stolzer 
Date: 2022.11.29 15:32:29 -05'00'



iv 

Abstract 

Researcher: Shlok Misra 

Title: Deep Learning Prediction Models for Runway Configuration Selection 

and Taxi Out Times Based on Surface Weather 

Institution: Embry-Riddle Aeronautical University 

Degree: Master of Science in Aeronautics 

Year: 2022 

Growth in air traffic demand in the United States has led to an increase in ground delays 

at major airports in the nation. Ground delays, including taxi time delays, directly impacts 

the block time and block fuel for flights which affects the airlines operationally and 

financially. Additionally, runway configuration selection at an airport significantly 

impacts the airport capacity, throughput, and delays as it is vital in directing the flow of 

air traffic in and out of an airport. Runway configuration selection is based on interrelated 

factors, including weather variables such as wind and visibility, airport facilities such as 

instrument approach procedures for runways, noise abatement procedures, arrival and 

departure demand, and coordination of ATC with neighboring airport facilities. The 

research problem of this study investigated whether runway configuration selection and 

taxi out times at airports can be predicted with hourly surface weather observations. This 

study utilized two sequence-to-sequence Deep Learning architectures, LSTM encoder-

decoder and Transformer, to predict taxi out times and runway configuration selection for 

airports in MCO and JFK. An input sequence of 12 hours was used, which included 

surface weather data and hourly departures and arrivals. The output sequence was set to 6 

hours, consisting of taxi out times for the regression models and runway configuration 
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selection for the classification models. For the taxi out times models, the LSTM encoder-

decoder model performed better than the Transformer model with the best MSE for 

output Sequence 2 of 41.26 for MCO and 45.82 for JFK. The SHAP analysis 

demonstrated that the Departure and Arrival variables had the most significant 

contribution to the predictions of the model.  

For the runway configuration prediction tasks, the LSTM encoder-decoder model 

performed better than the Transformer model for the binary classification task at MCO. 

The LSTM encoder-decoder and Transformer models demonstrated comparable 

performance for the multiclass classification task at JFK. Out of the six output sequences, 

Sequence 3 demonstrated the best performance with an accuracy of 80.24 and precision 

of 0.70 for MCO and an accuracy of 77.26 and precision of 0.76 for JFK. The SHAP 

analysis demonstrated that the Departure, Dew Point, and Wind Direction variables had 

the most significant contribution to the predictions of the model.  

Keywords: taxi times, runway configuration, deep learning, sequence-to-sequence 

models, long short-term memory, transformer, aviation 
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Chapter I: Introduction 

Growth in air traffic demand in the United States has led to increased air traffic 

and system delays in the National Airspace System (NAS; Federal Aviation 

Administration [FAA], 2018). The number of flights and passengers at 30 core airports in 

the United States for 2019 increased by 1.8% and 3.2%, respectively, compared to the 

yearly average of flight operations from 2015–2018 (FAA, 2020). With an increase in 

yearly flight operations and passengers traveled, flight delays for 2019 increased by 15% 

compared to the yearly average for 2015–2018. Weather-related events were the most 

significant cause of flight delays and accounted for 69.8% of delays in 2019. Flight 

delays lead to increased costs for airlines due to direct costs, such as passenger 

compensation, and indirect costs, such as passenger satisfaction and reputation loss (Gu 

et al., 2013). The cost of flight delays rose by 9.3% in 2019 ($8.3 billion) as compared to 

the yearly average for 2012–2018 due to an increase in expenses for fuel and crew 

compensation (FAA, 2020). 

The increase in flight delays and delay costs significantly affects the operations of 

an airline. Airlines operate with constrained resources and schedule their flights in terms 

of fixed block times (Sohoni et al., 2017). Any disruption to block times can affect the 

overall operations of an airline. Additionally, block time calculations are used to calculate 

block fuel for each flight, which is the total fuel loaded into an aircraft before each flight 

(Skybrary, n.d.). Block time and block fuel for a flight are affected by delays occurring 

on the ground and in flight (Cirium, 2015; Sohoni et al., 2017). Delays in taxi out at the 

origin airport and taxi in at the destination airport directly affect the block fuel for a flight 

(Ramanjun & Balakrishnan, 2015). Moreover, taxi out and taxi in times are affected by 
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the runway configuration selected for take-off and landing operations at an airport 

(Diana, 2018). Additionally, delays during taxi operations at the origin and destination 

are not the only cause of flight delays for flights, taxi delays significantly affect fuel burn 

and emissions at major airports (Simaiakis & Balakrishnan, 2010). 

Airlines invest considerable resources in forecasting such delays, which can aid in 

resource planning and allocation (Fan, 2019). Accurate delay forecasting based on 

available data has been demonstrated to be an effective delay mitigation tool for airlines. 

The research problem of this study investigated whether runway configuration selection 

and taxi out times at airports can be predicted utilizing hourly surface weather 

observations. This study utilized two Deep Learning architectures to predict taxi out 

times and runway configuration selection for two major airports in the United States. 

Statement of the Problem 

Ground delays affect the operating network of an airline and the operations of the 

entire NAS (FAA, 2018). Due to constrained ground resources, airlines invest 

considerable resources in optimizing ground operations at major airports (Kang & 

Hansen, 2018). The runway configuration at an airport is selected by the governing Air 

Traffic Control (ATC) facility. It can have a significant impact on the ground operations 

of an airline (Ramanjun & Balakrishnan, 2015). The runway configuration selection 

impacts the taxi out and taxi-in times at an airport, and the runway capacity, utilization, 

and throughput directly impact the overall capacity of an airport (Ramanjun & 

Balakrishnan, 2015). Although the direction of wind flow at an airport is considered a 

major factor in determining the runway configuration selection at an airport, interrelated 

factors such as predicted arrival and departure demand, noise abatement procedures, and 



3 

 

coordination with nearby airport ATC facilities influence the runway configuration 

selection as well (Ramanjun & Balakrishnan, 2015; Wang & Zhang, 2021).  

There is a need for forecasting techniques that can model the relationship of these 

factors to predict runway configuration selection and taxi out times at airports. Although 

there is literature available on the viability of utilizing Artificial Feedforward Neural 

Networks for runway configuration prediction, there is a lack of literature on developing 

a robust Machine Learning algorithm for an airport with different runway configurations. 

Additionally, literature on predicting taxi times has not focused on the dependency of taxi 

times on time-related factors. Previous studies have only aimed to use weather factors to 

predict runway configuration selection and taxi times at a single point in time rather than 

for several periods or sequences. Consequentially, there is a lack of research on using 

sequence-to-sequence time series Deep Learning models to predict a sequence of runway 

configuration selection and taxi out times based on an input sequence of weather and 

operations-related input variables.    

Purpose Statement 

The purpose of this study was to develop two Deep Learning architectures to 

predict runway configuration selection and taxi out times at two major airports in the 

United States based on hourly surface weather observations. The models were developed 

for MCO International Airport (MCO) and JFK- John F. Kennedy International Airport 

(JFK). The study demonstrated the utilization of sequence-to-sequence time series 

models for predicting runway configuration selection and taxi out times for several 

periods (hours). Sequence-to-sequence models such as Recurrent Neural Network (RNN) 

encoder-decoder models, specifically Long Short Term Memory (LSTM) and Gated 
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Recurrent Units (GRUs), and Transformer models, were developed in the study. The 

models were used for a multi-class classification task (runway configuration selection) 

and a regression task (taxi out times).  

The utilization of regularization and feature importance techniques determined the 

most significant variables affecting the runway configuration selection and taxi out times 

at an airport. Model performance for the regression task was evaluated on Mean Squared 

Error (MSE), Mean Absolute Squared Error (MASE), Mean Absolute Error (MAE), and 

R-Squared. The model performance for the classification task was evaluated on the 

accuracy, precision, recall, and Cohen’s kappa scores.  

Significance of the Study 

Taxi times and runway configuration selection can directly affect ground delays at 

an airport (Wang & Zhang, 2021). Although the direction of wind flow at an airport is 

considered a major factor in determining the runway configuration selection at an airport, 

interrelated factors such as predicted arrival and departure demand, noise abatement 

procedures, and coordination with nearby airport ATC facilities influence the runway 

configuration selection as well (Ahmed et al., 2018). The complexity of interrelated 

factors that influence the runway selection configuration and the dynamic nature of 

weather-related factors make runway configuration challenging for airlines operating at 

major airports.  

Time-series Deep Learning models, specifically sequence-to-sequence models, 

can be used to model the inter-relation of such variables and their temporal dependencies 

through time and create a prediction model. A runway configuration selection and taxi 

out times forecasting model, such as the models developed in this study, can aid an 
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airline and airport management in predicting taxi out and runway configurations at 

airports and determining the most significant weather-related predictors (Carvalho et al., 

2020).  

The runway configuration selection and taxi out times prediction models will 

allow airline management to make informed short-term operations decisions such as 

block fuel and contingency fuel planning along with resource and gate allocations. The 

theoretical significance of this study is the use of sequence-to-sequence for multi-class 

classification and regression. The application of sequence-to-sequence time series models 

in different domains is a subject of research for scientists. The effective utilization of the 

models in this study will be a significant contribution to the literature on RNN encoder-

decoder models and Transformer models. 

Research Questions  

The study investigated the following research questions: 

1. Can runway configuration selection be predicted based on hourly surface 

weather observations utilizing neural networks? 

2. Can taxi out times be predicted based on hourly surface weather observations 

utilizing neural networks? 

3. What variables are most significant in predicting runway configuration 

selection at the selected airports? 

4. What variables are most significant in predicting taxi out times at the selected 

airports? 



6 

 

5. How does a Transformer model compare to an LSTM encoder-decoder model 

in sequence-to-sequence predictive performance for runway configuration 

selection and taxi out times at the selected airports? 

6. What are the most effective model hyperparameters for sequence-to-sequence 

modeling? 

Delimitations 

The study was limited to data for two airports — MCO and JFK — to avoid the 

risk of developing underfitting models. The models developed in this study have low 

generalization power for predicting taxi out times and runway configuration selection at 

airports other than the two selected airports. The two airports selected have different 

runway layouts, with MCO having four parallel runways and JFK having four runways, 

which are parallel and intersecting (Horenjeff et al., 2010). Additionally, the Deep 

Learning models that developed for the study were limited to variants of RNNs such as 

LSTM and GRUs and Transformer models to preserve the temporal dependency of the 

data.  

Limitations and Assumptions 

The models developed in this study were based on the operations and weather at 

only MCO and JFK. Additionally, the models were developed utilizing RNNs and 

Transformers, which are based on certain assumptions. A central assumption of RNNs is 

that current data or information is dependent on previous time lags of data or information 

in the time series (Goodfellow et al., 2016). Multivariate autoregressive models such as 

Vector Autoregression (VAR) were not utilized based on the literature review on the 
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subject and the limitation of moving average and autoregressive models (Kirchgässner & 

Wolters, 2008).  

The independent variables or predictors utilized to develop the prediction models 

were limited to the data variables available through the FAA Aviation System 

Performance Metrics (ASPM) and National Oceanic and Atmospheric Administration 

(NOAA) databases (FAA, n.d.; NOAA, n.d.). Significant predictors of runway 

configuration selection and taxi out times that might not be available through the FAA 

ASPM and NOAA databases were not used for model development. Finally, the study 

did not utilize any feature engineering technique for feature selection, as all the features 

selected for the model development were based on the availability of data and literature 

reviewed.  

Summary 

An increase in flight delays has a direct operational and financial impact on 

airlines and passengers. With an increasing number of flight operations and passengers 

traveling at major airports, there is an increase in flight delays and delay costs for airlines 

and passengers. Weather and traffic volumes continue to be the most significant causes of 

flight delays. Ground delays during the taxi phase significantly contribute to overall flight 

delays and fuel burn. Air traffic volumes, airport capacity, weather events, and runway 

configuration can impact ground delays at major airports. With the impact of weather on 

flight delays, airlines have explored delay forecasting techniques as possible mitigation 

rules.  

Delay forecasting techniques, including Machine Learning models, have 

demonstrated proficiency in forecasting delays based on identified predictors. This study 
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used time series sequence-to-sequence Deep Learning models to predict runway 

configuration and taxi out times for two airports in the United States. A review of model 

architecture for similar use cases was conducted to develop a baseline model and choose 

effective hyperparameters and optimization methods. 

Definitions of Terms 

Attention Mechanism Attention mechanism is used by Machine 

Learning models while processing 

sequential data where weights are 

assigned to the input sequence to decide 

which input steps are essential and should 

be retained for memory (Geron, 2019). 

Convolutional Neural Network Form of Neural Networks that utilizes 

convolution to concentrate on feature 

extraction from extensive multi-

dimensional data (such as an image) to 

develop feature maps or kernels 

(Goodfellow et al., 2016). 

Deep Learning Form of Representation Learning that 

enhances Hierarchical Feature Learning 

where the models extract features and 

create representations in multiple levels of 

the training data with the use of high-level 
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features that are defined in terms of lower-

level features (Bengio, 2012). 

Machine Learning Computer programming that learns 

patterns from large data which can be 

used to create prediction models (Lee, 

2019).  

Recurrent Neural Network Form of Neural Networks which utilize 

Recurrent Cells where an output 

connection from a cell feeds back into the 

cell as recurring input along with the next 

input to allow the processing of sequential 

data (Goodfellow et al., 2016). 

Runway Configuration Number and relative orientations of one or 

more runways on an airfield (Horenjeff et 

al., 2010). 

Runway Configuration Selection The runway(s) being used in an airport 

during a particular period (Wang & 

Zhang, 2021). 

Shapley Value Imputation A feature assessment technique which 

computes Shapley Values utilizing 

coalitional game theory by treating each 

feature as a player in the game (Molnar, 

2021). 
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Transformer Model The model architecture used for sequential 

data that uses modules such as Masked 

Multi-Head Attention and Feed Forward 

Layers that are stacked upon each other in 

the encoder and decoder section of the 

model along with Input Embedding for 

positional encoding of sequential data 

(Vaswani et al., 2017).  

List of Acronyms 

ASDE-X         Airport Surface Detection, Type X 

ATC Air Traffic Control 

ASPM Aviation System Performance Metrics 

BPTT Backpropagation Through Time 

CNN Convolutional Neural Network 

ELU                Exponential Linear Unit 

EWR New York Liberty International Airport 

FAA Federal Aviation Administration 

Google Colab Google Colaboratory 

GRU Gated Recurrent Unit 

IFA-SVR Improved Firefly Algorithm-Support Vector Regressor 

JFK New York John F. Kennedy International Airport 

LGA New York LaGuardia International Airport 

LSTM Long Short Term Memory 
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MAE     Mean Absolute Error 

MCO Orlando International Airport 

MSE  Mean Squared Error 

NAS National Airspace System 

NOAA National Oceanic and Atmospheric Administration 

PSO-SVR Particle Swan Optimization-Support Vector Regressor 

RMSE Root Mean Squared Error 

ReLU Rectified Linear Unit 

RNN Recurrent Neural Network 

SHAP Shapley Value Imputation 

XGBoost         Extra Gradient Boosting 
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Chapter II: Review of the Relevant Literature 

The literature review was conducted to identify research on the impact of weather 

on ground delays and taxi times at airports. Additionally, literature on the effect of 

runway configurations on ground operations at major airports was reviewed to identify 

the problem and significance of the study. Finally, previous studies on the use of data-

driven modeling techniques, including Machine Learning and Deep Learning techniques, 

to predict taxi times and runway configurations were reviewed to select significant 

independent variables to predict taxi time and runway configurations at major airports. 

The purpose of such a literature review was to study previous work, analyze research 

gaps, and build a foundation upon which the models were developed for this study. 

Runway Configuration 

Runway configuration is defined as the “number and relative orientations of one 

or more runways on an airfield” (Horenjeff et al., 2010, p. 177). The runway 

configuration is a critical design consideration for the development of an airport. Civil 

aviation authorities around the world publish advisories and guidelines on preferred 

runway configurations for airports based on factors including wind patterns, traffic 

volumes, noise abatement, and geographical location (FAA, 2014). There are five 

primary runway configurations: single runway, parallel runways, intersecting runways, 

Open-V runways, and hybrid runways (Horenjeff et al., 2010). 

Runway Configuration Selection  

Runway configuration selection refers to the runway(s) used in an airport during a 

particular period (Wang & Zhang, 2021). While an airport might contain multiple 

runways that can are used for take-off and landing operations, not all runways are used at 
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all points of time. Runway configuration selection is determined by weather, air traffic 

demand, noise abatement, coordination with neighboring ATC facilities, and the 

operating plan of the ATC facility at the airport (Ramanjun & Balakrishnan, 2015; Wang 

& Zhang, 2021).  

Runway configuration selection has a direct impact on the ground operations of 

an airport as it affects the taxi times and determines the ground delays at an airport 

(Wang & Zhang, 2021). There is significant literature on different aspects of runway 

configurations, including research on optimizing and predicting runway configuration 

selection for an airport based on certain independent variables. A review of the literature 

on the topic provides insights into the theoretical foundations of runway configuration 

selection and the factors that influence the model development process.  

Runway Configuration Selection Optimization 

Literature on runway configuration selection optimization has focused on 

optimizing runway configuration selection for an airport as a queueing system problem. 

Generally, queueing system problems are mathematical problems that are used to explain 

congestion due to service demand, where the demand and service times are assumed 

random (Bertsimas et al., 2011; Jacquillat et al., 2016; Li & Clarke, 2010).  

Stochastic Dynamic Programming. Li and Clarke (2010) evaluated the effect of 

runway configuration selection on the efficiency of an airport based on delays, fuel burn, 

and emissions. Li and Clarke utilized the principles of stochastic dynamic programming 

to develop a decision model for runway configuration selection. Utilizing stochastic wind 

information, runway configuration capacity curves, traffic demand for an airport, and 
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penalty terms for runway configuration switches, Li and Clarke developed a model to 

maximize the weighted arrival and demand capacity of an airport in a given time horizon. 

The model proposed by the authors included Pareto-arrival-departure rate trade-

off and configuration schedule optimization. Pareto-arrival-departure is a capacity curve 

for an airport for each runway configuration. Li and Clarke (2010) utilized the Pareto-

arrival-departure rate trade-off in the model to maximize the weighted capacity of the 

airport while minimizing the number of unserved landings and take-offs. The 

configuration schedule optimizer utilized reward coefficients calculated from the solution 

of the Pareto-departure-arrival rate trade-off to optimize the runway configuration 

schedule. Li and Clarke developed the model for JFK and utilized weather and traffic 

data for the model development. Li and Clarke evaluated the model based on a decision 

simulation. They evaluated that the optimal decisions based on the model could reduce 

delays by as much as 80% depending on the weather conditions and the flight operations 

schedule when compared to historical runway configurations for the same conditions.  

Utilizing a similar approach utilizing dynamic programming, Jacquillat et al. 

(2016) developed a model to optimize runway configurations and airport service rates. 

The model aimed to minimize the congestion costs within a stochastic queuing and 

operating system. The authors identified various endogenous and exogenous variables, 

such as weather variables and traffic volumes, which exhibited stochastic properties 

which were not known with certainty in advance. Some state variables used for the 

optimization problem included arrival queue length, departure queue length, runway 

configuration used in the preceding time horizon, and weather conditions. The decision 

variables for the optimization problem were the runway configuration selection for the 
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next time horizon and the rates of arrivals and departures that should have been served. 

Once the state variables and decision variables were specified, a Dynamic Programming 

model was developed and optimized.  

Jacquillat et al. (2016) developed their model based on the operations and weather 

data for JFK. To improve model performance, the authors included an approximate one-

step-look-ahead algorithm. The model indicated that optimal solutions to the decision 

variables were path-dependent and “on the stochastic evolution of arrival and departure 

queues during the day” (Jacquillat et al., 2016, p. 1). Jacquillat et al. evaluated that the 

deployment of the model could potentially reduce congestion costs by 20%–30% by 

optimizing runway configurations and arrival/departure rates at JFK. The model 

highlighted the stochasticity of endogenous and exogenous variables, such as 

arrival/departure flow and weather variables that influence congestion costs and the need 

to integrate operating stochasticity in optimization models.  

Mixed Integer Programming. Bertsimas et al. (2011) developed a Mixed Integer 

Programming model to select an optimal runway configuration for an airport based on 

various independent conditions. The model was further extended to determine the optimal 

number of departures and arrivals served by an airport at different time horizons. 

Bertsimas et al. found that an optimal runway configuration selection is critical to 

reducing both in-flight and on-ground delays and their associated costs. Bertsimas et al. 

developed the Mixed Integer Programming model for the airports in the New York 

Metropolitan area to capture the relationship and interdependency of operations between 

the airports in the region. A novel contribution of the study was the development and 

application of a Mixed Integer Programming model for optimizing runway configuration. 
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Compared to traditional heuristic approaches to optimizing runway configuration 

selections, Bertsinas et al. assessed that the Mixed Integer Programming model could 

potentially reduce costs by up to 10% by optimizing runway configurations and 

arrival/departure demand.  

Runway Configuration Selection Prediction 

Data-driven techniques can be used to model the relationship between factors 

such as weather and runway configuration selection (Avery & Balakrishnan, 2016; 

Ramanjun & Balakrishnan, 2015; Wang & Zhang, 2021). Previous literature has focused 

on using different data-driven models, such as machine learning and discrete choice 

models. 

Artificial Neural Network. Ahmed et al. (2018) utilized a Multi-Layered 

Artificial Neural Network approach to predict the runway configuration and the 

corresponding runway movements at Amsterdam Schiphol International Airport. The 

authors developed a Feedforward Neural Network and a Recurrent Backpropagation 

Neural Network. Ahmed et al. utilized data for two days that included 1,789 arrivals and 

departures at the selected airport. Additionally, data from hourly surface weather 

observations, including wind direction, wind speed, visibility, cloud ceiling, air 

temperature, dew point, and surface pressure, were used for the model development.  

The authors only evaluated the models on MSE for the runway movements 

prediction model and not explicitly the runway configuration. For the Feedforward 

Neural Network, 13 neurons were used for the input layer, followed by 10 neurons in the 

single hidden layer. The sigmoid-tangent activation function was used for the output 

layer. The validation MSE for the Feedforward Neural Network was 0.00018. The 
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authors did not mention the hyperparameters used for the Recurrent Backpropagation 

Neural Network. However, the MSE was evaluated to be 0.00024, which was higher as 

compared to the Feedforward Neural Network. The authors did not conduct a feature or 

variable importance assessment to evaluate the most significant independent variables.  

Convolutional Neural Network (CNN). Wang and Zhang (2021) utilized an 

assembled gridded weather forecast to predict the runway configuration selection at three 

major airports in the New York City area — JFK, New York LaGuardia International 

Airport (LGA), and Newark Liberty International Airport (EWR). Using a gridded 

weather forecast allowed the model to capture the interdependency of operational 

parameters of airports in the same geographical area rather than create isolated predictive 

models for each airport. Rather than using surface weather observations for airports, the 

authors utilized Rapid Refresh (RAP) data, which was a numerical weather model 

maintained by the National Center for Environmental Protection in the United States. The 

RAP weather predictions were generated for a 13 km horizontal grid rather than a 

geographical point. The authors utilized RAP data available for areas within 200 Nautical 

Miles (370.4 km) of the JFK City area. A significant contribution of the study was the 

development and utilization of a CNN model for the prediction task. 

For the model development, Wang and Zhang (2021) used a CNN model due to 

its ability to extract features and process high-dimensional data. The authors used 63 

independent variables for the model training, which included 23 surface weather 

variables. The CNN model architecture implemented sets of two 2-dimensional 

Convolutional layers followed by a Batch Normalization layer, Dropout layer, and 

Maximum Pooling layer. The Batch Normalization and Dropout layers were treated as 
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regularization features for the model. The final CNN architecture was built with six 2-

dimensional convolutional layers, three Batch Normalization layers, three Dropout layers, 

and three Max Pooling layers. The final layer was a Dense layer with a Softmax 

activation function for the multi-label classification task. Each of the Convolutional 

layers utilized a Rectified Linear Unit (ReLU) activation function. The model predicted 

the runway configuration with an accuracy of 79.21%, 85.86%, and 87.25% for JFK, 

LGA, and EWR respectively. A limitation of the study identified by the authors was the 

lack of flight operations data in the model development, such as data on scheduled 

arrivals and departures at the airports.  

Time Series Modeling. Rebollo et al. (2021) utilized a recursive multi-step (time-

series) Machine Learning approach to predict runway configurations at the selected 

airport. Rebollo et al. utilized time of the day, surface weather data, future arrival and 

departure counts, and runway configuration at the previous time step as the independent 

variables for the prediction model. Surface weather data used for the model development 

included wind direction and speed, cloud ceiling, visibility, temperature, precipitation, 

and lightning probability. Rebollo et al. used 30-minute time steps and trained the model 

for 3-hour outlook and 6-hour outlook where the model could predict the runway 

configuration 3 hr and 6 hr in advance. A novel contribution of the study was the model 

development and evaluation strategy for the time series models. 

For the model development, Rebollo et al. (2021) used a Random Forest classifier 

and an Extra Gradient Boost (XGBoost) classifier. The models were evaluated primarily 

on prediction the accuracy where the XGBoost classifier outperformed the Random 

Forest classifier on the 3-hour outlook and 6-hour outlook predictions. The models were 
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developed and tested for six airports, including Charlotte Douglas International Airport, 

Dallas Fort Worth International Airport, EWR, Dallas Love Field Airport, and LGA. The 

model exhibited the most robust prediction performance for Dallas Fort Worth 

International Airport with an accuracy of 89.3% for the 3-hour prediction and 82.8% for 

the 6-hour prediction.  

Autoencoders. Dalmau and Herrema (2019) utilized a type of Machine Learning 

model called Autoencoders to develop a runway configuration prediction model. 

Utilizing two encoders and a decoder to develop the prediction model architecture, 

Dalmau and Herrema aimed to predict the runway configuration at Amsterdam Schiphol 

International Airport, Netherlands. The authors utilized a sequence-to-sequence 

Autoencoder model where each output at a time step was a class label prediction 

representing the predicted runway configuration. The independent variables utilized to 

develop the prediction model included surface weather data, departure and arrival 

demand, time of the day, day of the week, and runway configuration data for the previous 

time step. The input data was utilized in 15-minute time steps.  

For the model development, Dalmau and Herrema (2019) utilized two encoders. 

The first encoder was used to input weather information and arrival and departure 

demand data for 6 hr prior to the predicted time step and 6-hour forecasts after the time 

step. The second encoder was used to input runway configuration predictions from the 

previous time steps. For both the encoders, bidirectional-RNNs were used, which allowed 

the encoder to receive information from both the past and future time step predictions. 

The final dense layer of the encoders was used at the first hidden layers of the decoder, 

which also utilized an RNN architecture. For the RNNs in the encoders and decoders, 
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LSTM cells were utilized. The model was developed with 16 LSTM cells in the encoders 

and 32 LSTM cells in the decoder. The model was trained on a batch size of 64, a 

learning rate of .001, and early stopping with a patience of five. The model was evaluated 

on precision, recall, and f1-scores. The model demonstrated precision of .86 for all 

runway configuration predictions for a 2-hour prediction outlook.   

Discrete Choice Models for Runway Configuration Prediction 

While Wang and Zhang (2021), Khater et al. (2021), Dalmau and Herrema 

(2019), and Ahmed et al. (2018) demonstrated the use of Neural Networks for runway 

configuration selection prediction, Avery and Balakrishnan (2016) analyzed the impact of 

factors such as wind speed and direction, visibility, air traffic demand, and ATC 

workload on runway configuration selection. The authors evaluated that runway 

configuration changes occur less often than what would be optimal or predicted due to 

such operational inertia. Avery and Balakrishnan explored the utilization of Discrete 

Choice Models to accommodate the possible operational inertia while making predictions 

and developing the model variables and weights. Discrete Choice models are a form of 

behavioral models that are used to explain or predict possible nominal decisions by an 

individual from a set of alternatives based on a utility function. Avery and Balakrishnan 

developed the utility function with random variables selection such as operational inertia, 

wind speed and direction, arrival and departure demand, cloud ceiling and visibility, and 

noise abatement procedures. The study’s novelty was the modeling of human decision-

making and operational inertia.  

The authors added a positive contribution to the utility function if the prediction 

runway configuration was used in the previous time interval. Avery and Balakrishnan 
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(2016) developed the discrete choice model for San Francisco International Airport, 

LGA, and EWR. The model could predict the runway configurations with an accuracy of 

81.2%, 81.3%, and 77.8% for a 3-hour prediction window for San Francisco International 

Airport, LGA, and EWR respectively. The authors found that the operational inertia 

variable was the most significant variable in predicting runway configuration, followed 

by the headwind component of the arrival runway. Additionally, configurations with high 

departure and arrival capacity were preferred during high-traffic demand periods.  

Use of Empirical Observations for Model Development. Ramanjun and 

Balakrishnan (2015) utilized empirical observations to develop a statistical model to 

characterize the runway configuration selection by ATC personnel. Empirical 

observations were recorded and processed for EWR and LGA. The authors utilized the 

likelihood maximization utility function to estimate the parameters of the model, and the 

correlations between different choices were modeled using a multinomial nested logit 

model. Some of the models expected to influence the decision of runway configuration 

selection and added as parameters of the model were inertia, weather conditions (cloud 

ceilings and visibility), wind direction and speed, arrival and departure demand, and 

inter-airport coordination. Inertia was used as a parameter for the statistical Discrete 

Choice model developed in the study where the “utility function of the incumbent 

configuration is expected to be higher than those of the other candidate configurations 

due to the inertia factor” (Ramanjun & Balakrishnan, 2015, p. 4). Additionally, 

configuration proximity referred to the extent of change of the runway configuration 

needed and was measured in the difference in angle (measured in degrees) between the 

succeeding and preceding runway configurations. The model developed for EWR 
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comprised 57 parameters, and the model for LGA comprised 36 parameters. The runway 

configurations were predicted for a 3-hour forecast horizon. The models were evaluated 

on the accuracy, and the parameters were evaluated on the utility coefficients. 

The models achieved an accuracy of 82% for EWR and 85% for LGA. The 

significance of each parameter on the runway configuration prediction was evaluated 

based on the utility coefficients of each parameter. For LGA and EWR, configuration 

from the previous time step (inertia) had the highest utility coefficient, followed 

departure/arrival demand, weather conditions, and configuration proximity.  

Taxi Times Prediction 

Taxi time prediction has been demonstrated to be an effective tool for developing 

solutions to mitigate the effects of delays. With increased fleet capacity and flight 

activities, airlines are increasingly interested in predicting taxi out and taxi in times to 

optimize ground operations, flight scheduling, and resource management at airports (Lian 

et al., 2018). Taxi time delays also directly impact the block times for a flight and affect 

the fuel burn and emissions for aircraft. Diana (2018) explained that taxi times prediction 

benefits airports, airlines, and regulatory analysts because it allows forecasting and 

assurance of on-time performance for aircraft operating in the airport. Taxi times 

prediction significantly affects block fuel and contingency fuel calculations and assists 

airline management in forecasting congestions at airports. Taxi times are influenced by 

several factors, including airport layout, ATC workload, runway configuration, weather, 

and air traffic demand. Different Machine Learning techniques can predict taxi times at 

airports (Diana, 2018; Lian et al., 2018).  
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Machine Learning Approach. Diana (2018) developed Machine Learning 

models to predict taxi out times at Seattle Tacoma International Airport by comparing the 

performance of different types of Machine Learning models. The author utilized Linear 

Regression, Penalized or Regularized Regression, Ridge Regression, Support Vector 

Regression, and Ensemble models for regression, such as Random Forest, Extra Trees, 

and Bagging. The author did not test the development of time series or Deep Learning 

models. Additionally, Diana utilized five independent variables for training the models, 

which were departure demand, departure throughput, percentage of total airport capacity 

utilized, approach condition, and runway configuration. Diana utilized data available 

from different datasets such as Aeronautical Radio Inc. (ARINC) Out-Off-On-In times, 

FAA Traffic Flow Management System, and U.S. Department of Transportation Aviation 

Service Quality Service. Diana used two samples of data with 1,380 observations in each 

sample. One sample consisted of data from June 2016 to August 2016, and the other 

sample consisted of data from June 2015 to August 2015.  

The author utilized RMSE for cross-validation and Coefficient of Determination 

for the model evaluation and hyperparameter tuning. For the Coefficient of 

Determination evaluation, the Bagging Regression and Random Forest Regression scored 

0.95, followed by Linear Regression and Ridge Regression, which scored 0.74 each. For 

the cross-validation evaluation, Linear Regression and Ridge Regression models had the 

lowest RMSE of 3.5443 and 3.5444 respectively. Diana evaluated that the Linear 

Regression and Ridge Regression models performed best when fewer instrument 

approach procedures were used, and runway configuration prediction was more stable. 

Support Vector Regression was evaluated to be the worst-performing model in all cases.  
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Utilizing Airport Surface Detection Equipment, Model X (ASDE-X) data, Lee et 

al. (2016) developed Machine Learning models to predict taxi out times at Charlotte 

Douglas International Airport. The ASDE-X data had multiple variables available for 

each flight, but the authors could not utilize all the available data variables due to data 

unavailability. Some of the variables utilized for the model development were terminal 

concourse, runway configuration, departure fix for the Standard Instrument Departure 

procedure, weight class of the aircraft, scheduled push-back time of the aircraft from the 

gate, number of departures for the runway, number of arrivals scheduled, the month of 

the year, and unimpeded taxi time. Lee et al. treated every data point as a separate input 

and did utilize any time series relationships for the model development. Utilizing the data 

collected, Lee et al. developed models using Linear Regression, Support Vector Machine, 

K-Nearest Neighbors, Random Forest, and Neural Network.  

The developed models were evaluated based on RMSE and MAE. Lee et al. 

(2016) trained and tested the models on four different combinations of runway 

configurations and weather conditions. For four combinations, Linear Regression and 

Random Forest performed the best regarding RMSE and MAE evaluations, while 

Support Vector Machine and Neural Network had the highest errors. The Linear 

Regression model exhibited RMSE and MAE of as low as 4.83 and 3.79 respectively, 

while the Random Forest model exhibited RMSE and MAE of as low as 4.82 and 3.75 

respectively. 

Queuing Approach. Lian et al. (2018) explored the use of data-based predictions 

and queuing-based approaches with regard to causal factors to predict taxi times at 

airports. Lian et al. aimed to predict the taxi out times for Beijing Peking International 
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Airport, China, and used the data sourced from the Aviation System Performance 

database for the airport. Some of the parameters used to train the models for the 

prediction included the number of aircraft in the departure queue, the number of aircraft 

scheduled to land, the distance of the taxi route for the aircraft, airport delays in minutes, 

planned take-off time, and the actual pushback time. For the model development, the 

authors adopted a prediction method where causal factors were identified to select the 

input variables and model the dependencies. The authors tested the usability of 

Generalized Linear Models, Softmax Regression Models, Artificial Neural Networks, and 

Support Vector Regressions. Lian et al. utilized data for 13 days to train the models and 

used data for three days to test the model. A novel contribution of the study was the 

development and testing of two improved versions of the Support Vector Regressors. 

Lian et al. (2018) utilized two versions of the Support Vector Regressors called 

Particle Swan Optimization-Support Vector Regressor (PSO-SVR) and Improved Firefly 

Algorithm-Support Vector Regressor (IFA-SVR), which demonstrated the highest 

accuracy rate and were the most effective in capturing non-standard taxi times. The IFA-

SVR demonstrated an RMSE of 2.29 and a Mean Absolute Percentage Error (MAPE) of 

13.2%. Regarding model performance, IFO-SVR was followed by the PSO-SVR model 

with an RMSE of 2.59 and MAPE of 13.6%. Lian et al. assessed the departure queue 

length, number of potential landing aircraft, and distance of taxi route to be the most 

significant independent variables for models. Additionally, utilizing the taxi delay time of 

the preceding hour as an input variable improved the prediction performance of the 

model.  
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Reinforcement Learning. Balakrishna et al. (2010) utilized another variation of 

Machine Learning called Reinforcement Learning and treated the taxi out prediction task 

as a sequential decision-making process and stochastic control problem. For a 

Reinforcement Learning model, a system state defined by various independent variables 

is used as an input for a model to train and predict a taxi out time. In the model, a utility 

function is updated based on the absolute difference between the predicted and actual 

value. Balakrishna et al. developed the model for Tampa International Airport. To define 

the system state as an input to the model, several state variables were identified which 

included number of aircraft in the queue at the departure runway, number of departure 

aircraft that will be taxiing, and number of arrival aircraft that will be taxiing. 

Additionally, the average taxi out time in the previous time interval was added as a state 

variable to introduce some temporal dependency in the system state. The Reinforcement 

Learning model was evaluated based on the mean error of the predictions. 

The authors were able to predict the taxi out time for any given time period with a 

mean error of less than 1.5 minutes with an accuracy of 93.7%. In terms of predicting taxi 

out times for individual flights, the authors of the study were able to predict taxi out times 

with a mean error of less than two minutes with a probability of 81%. Balakrishna et al. 

evaluated that taxi out times prediction is a dynamically changing problem due to short-

term changes in variables such as runway configuration and the number of departing and 

arriving traffic. For such a dynamically changing departure process, Reinforcement 

Learning is a more suited process rather than traditional statistical or parametric modeling 

processes that will not be able to capture short-term trends.  
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Fuzzy Rule-Based System. Unlike the Machine Learning approaches followed 

by Lian et al. (2018), Diana (2018), Balakrishna et al. (2010), and Ravizza et al. (2014) 

explored soft computing methods, particularly the Fuzzy Rule-Based System, to predict 

taxi out times. The independent variables used for the modeling process included taxi 

distance, number of departing aircraft, number of arriving aircraft, and number of aircraft 

in taxiing queue. The data was collected from Stockholm-Arlanda International Airport 

and Zurich International Airport to develop the Fuzzy Rule-Based Systems. 

Ravizza et al. (2014) utilized two Fuzzy Rule-Based Systems named Mamdani 

Fuzzy Rule-Based System and Takagi and Sugeno Fuzzy Rule-Based System. The model 

performances were evaluated on RMSE, MAE, Root Relative-Squared Error, and 

Relative Absolute Error. Ravizza et al. explained that “TSK fuzzy Rule-Based Systems 

use fuzzy membership functions to subdivide the input space in the premise part and a 

weighted sum of multiple Linear Regression approaches in the consequent part” (p. 405). 

For Stockholm Arlanda International Airport and Zurich International Airport, the Takagi 

and Sugeno Fuzzy Rule-Based System had the lowest RMSE, MAE, Root Relative-

Squared Error, and Relative Absolute Error. The Takagi and Sugeno Fuzzy Rule-Based 

System had an RMSE and MAE of 1.44 and 1.06 for Stockholm Arlanda International 

Airport and 1.30 and 0.96 for Zurich International Airport. The Takagi and Sugeno Fuzzy 

Rule-Based System was evaluated to be the best-performing model and was used to 

interpret the model and significance of the independent variables.  

https://www.sciencedirect.com/topics/engineering/fuzzy-membership-function
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Theoretical Framework 

The study utilized various concepts of Machine Learning and Deep Learning 

which were used as the theoretical framework guiding the model developed in the study.  

Machine Learning  

Advancements in the field of computing technology and statistical learning has 

allowed for increased utilization and deployment of Machine Learning models. Geron 

(2019) described Machine Learning as the “science and art of programming computers so 

they can learn from data” (p. 2). With extensive data available, Machine Learning models 

can leverage mathematical and statistical foundations to extract functional patterns and 

trends from large data. Machine Learning can also be compared to how humans learn, 

think, and make decisions or predictions.  

Differences Between Traditional Programming and Machine Learning. 

Geron (2019) explained the difference between a traditional programming approach and 

Machine Learning approach towards problem-solving. In a traditional programming 

approach, a rule-driven program is developed based on domain knowledge and 

experience to process input data. The program is evaluated and modified before 

deployment. However, in a Machine Learning approach, a rule-driven program is not 

explicitly developed but instead learned by a computer with input data. Large input data 

can train and develop a Machine Learning algorithm.  

A Machine Learning approach is useful when a rule-driven program cannot be 

developed. Additionally, Machine Learning models are more efficient, accurate, and 

adaptable than traditional programming models. Machine Learning models can also be 

used to analyze large amounts of data and capture relationships, trends, and patterns that 
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might not be understood otherwise. Machine Learning approaches have been 

advantageous in cases where existing solutions cannot be explicitly computed through a 

traditional rule-based approach. Applications of Machine Learning can be found in 

multiple industries, including aviation, banking, engineering, law enforcement, 

manufacturing, and automobiles industries. Some successful uses of Machine Learning 

include speech recognition, credit card fraud detection, image classification, document 

classification, and credit card fraud detection.  

Applications of Machine Learning. Lee (2019) explains that while Machine 

Learning utilizes foundations from various disciplines, scientific computing, 

mathematics, and statistics form the core of Machine Learning models. Machine 

Learning models can be used for descriptive and predictive tasks. Descriptive tasks are 

used to understand and analyze large amounts of data, whereas predictive tasks are used 

to utilize historical data for making predictions in the future. Additionally, Machine 

Learning is a term that includes various types of models and algorithms that can be used 

for different types of tasks as objectives, including but not limited to supervised learning, 

unsupervised learning, representation learning, semi-supervised learning, and 

reinforcement learning.  

Deep Learning  

Deep Learning, just like Machine Learning, is a form of Artificial Intelligence 

that is developed with algorithms inspired by the neurons and functioning of a human 

brain (Geron, 2019). Deep Learning is considered a more modern and advanced form of 

Machine Learning that leverages more robust computing powers and larger datasets to 

solve more complex problems. Deep Learning models have demonstrated effectiveness 
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using more training data, large model parameters and weights, and increased 

computational power available (Goodfellow et al., 2016). Deep Learning has also 

benefited from backpropagation algorithms that use “a fast, greedy algorithm that can 

learn deep, directed belief networks one layer at a time, provided the top two layers form 

an undirected associative memory” (Hinton et al., 2006, p. 1527). A significant advantage 

of Deep Learning models is their ability to extract useful features from the training data 

and use those features to train the model resulting in performance that is more robust. 

Deep Learning models utilize Feature Learning by extracting significant features from 

large data and learning from significant representations of the data.  

Differences Between Machine Learning and Deep Learning. Goodfellow et al. 

(2019) developed Figure 1 to describe the relationship between Artificial Intelligence, 

Machine Learning, Representation Learning, and Deep Learning. Deep Learning is 

considered a type of Representation Learning that uses feature extraction to enhance 

model training and performance. Deep Learning enhances the concepts of Representation 

Learning through Hierarchical Feature Learning, where the models extract features and 

create representations in multiple levels of the training data with the use of high-level 

features that are defined in terms of lower-level features (Bengio, 2012). Bengio (2009) 

described the concepts of Hierarchical Feature Learning as “automatically learning 

features at multiple levels of abstraction allow a system to learn complex functions 

mapping the input to the output directly from data, without depending completely on 

human-crafted features” (p. 2). The uses of Deep Learning models have significantly 

increased and are a significant domain of computation research. 
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Figure 1 

Venn Diagram for Deep Learning 

 

Note. Reprinted from “Deep Learning” by I. Goodfellow, Y. Bengio, and A. Courville, 

2016 (https://www.deeplearningbook.org/). Copyright 2016 by Massachusetts Institute of 

Technology Press. Reprinted with permission (Appendix A1). 

Deep Learning models are now used in applications such as face recognition, 

speech recognition, language translation, natural language processing, image recognition, 

voice recognition, and autonomous vehicles (Goodfellow et al., 2016). Some of the most 

common types of Deep Learning algorithms are Feedforward Neural Networks, CNN, 

Recurrent Neural Networks (RNN), and Autoencoders. 
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Neural Network Models 

Neural Network models are a form of Deep Learning that were inspired by human 

brains and mimicked how neurological neurons transfer signals to each other. While 

research on Neural Networks can be dated back to 1944, the performance of Neural 

Network models developed in the 20th century was modest and restricted their 

advancement and utilization (Hardesty, 2017). However, the 21st century saw a 

resurgence of Neural Network research which was augmented by larger datasets and 

graphic chips or Graphic Power Units (GPU) which optimized computation. Due to the 

advancements in Deep Learning research, Neural Networks are commonly regarded as 

the best performing Artificial Intelligence system (Hardesty, 2017).  

The simple Neural Network model is The Perceptron which was invented in 1957 

by Frank Rosenblatt. A simple Perceptron consisted of linear threshold units and was 

originally used to compute simple binary classification problems (Geron, 2019). By 

utilizing linear threshold units, the Perceptron could compute linear combinations of the 

input data and define the binary classification problem based on threshold units. With 

further advancements, the Perceptron could also be used for multi-class classification 

problems. Like other linear classification problems, the Perceptron model demonstrated 

weakness is computation and performance and lost popularity in the 1970s. However, 

research on the Perceptron continued in the 1980s, which led to the development and 

utilization of the Multilayer Perceptron Model or Deep Neural Network models. Rather 

than a single linear threshold unit, Deep Neural Networks developed utilized several 

layers or hidden layers of neurons. Unlike the Perceptron model with the threshold linear 

unit, the neurons of Deep Neural Networks were capable of performing non-linear 
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operations that enhanced performance. Additionally, the introduction and advancement of 

backpropagation algorithms further improved the training and performance of Deep 

Neural Networks.  

Neural Network Computation Overview 

The Backpropagation training algorithm is a form of a Gradient Descent 

algorithm used in Deep Neural Networks to compute gradients through a forward pass 

and backward pass in the network. The Backpropagation computes the error gradients for 

each neuron in the network for every weight and bias term for the model. The 

Backpropagation algorithm repeats with every batch of training data to reduce the loss 

function of the model. After each batch (or mini-batch) is used to predict from the Neural 

Network (Forward Pass), the model output is compared to the desired output to compute 

the network error (loss function). The Backpropagation utilizes gradient calculation and 

calculates the contribution of each neuron in the network to the overall network error. By 

performing gradient descent through the hidden layers, it adjusts the weights and bias 

terms of the neurons in the Deep Neural Network to reduce the model error. Figure 2 

depicts a Neural Network with two input neurons, one hidden layer of three neurons, and 

an output layer. The signal 𝑎𝑎𝑖𝑖 transferred from the input layer to the hidden layers is 

multiplied by weight 𝑤𝑤𝑖𝑖𝑖𝑖 corresponding to that input-hidden layer along with the bias 𝑏𝑏𝑖𝑖 

to form a pre-activation signal 𝑧𝑧𝑖𝑖 for the hidden layer. Equation 1 describes the 

formulation for the pre-activation signal 𝑧𝑧𝑖𝑖. 

𝑧𝑧𝑖𝑖 =   𝑏𝑏𝑖𝑖 +  ∑ 𝑎𝑎𝑖𝑖𝑤𝑤𝑖𝑖𝑖𝑖𝑖𝑖                                                                                               (1) 
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The pre-activation signal is transformed to 𝑎𝑎𝑖𝑖 due to the activation function 𝑔𝑔𝑖𝑖 of the 

hidden layer. With a similar action of the output layer, the final output of the network is 

𝑎𝑎𝑘𝑘 as described in Figure 2.  

Figure 2 

Neural Network Formulation  

 

Note. Reprinted From “Derivation: Error Backpropagation & Gradient Descent for 

Neural Networks” by D. Stansbury, 2020, The Clever Machine.  

(https://dustinstansbury.github.io/theclevermachine/derivation-backpropagation). 

Reprinted with permission (Appendix A2). 

The model output 𝑎𝑎𝑘𝑘 is compared to the desired output 𝑡𝑡𝑘𝑘 to compute the model 

error 𝐸𝐸 which is described in Equation 2. 

𝐸𝐸 =  1
2

 ∑ (𝑎𝑎𝑘𝑘 − 𝑡𝑡𝑘𝑘)2𝑘𝑘∈𝐾𝐾                                                                                                     (2)  

The Backpropagation algorithm can be used to compute the error gradients for the 

model neurons using the error 𝐸𝐸 value. The Backpropagation algorithm can be 

represented by the equation depicted in Equation 3.  

∂ E
∂wjk

=  1
2

 ∑ (ak − tk)2k∈K = (ak −  tk) ∂
∂wjk

(ak − tk) = (ak −  tk) ∂
∂wjk

(ak)    (3)  
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 Utilizing Backpropagation, the gradient computation can be extended to the 

hidden layers gradients which is represented by Equation 4.  

∂ E
∂wjk

= (ak −  tk) ∂
∂wjk

(ak) =  (ak −  tk) ∂ E
∂wjk

gk(zk) = (ak −  tk)gḱ(zk)aj       (4) 

The final error gradient computation is a product of the error term (𝑎𝑎𝑘𝑘 −  𝑡𝑡𝑘𝑘), 

derivation of the output activation function 𝑔𝑔�́�𝑘, and activation output of node 𝑗𝑗 in the 

hidden layer. The error gradient computation is used to update the weights and bias of the 

neurons. The output weight adjustments can be depicted in Equation 5 where 𝜇𝜇 is the 

learning rate.  

wjk −  μ ∂E
∂wjk

→  wjk                                                                                              (5) 

While Multilayer Perceptron or Deep Neural Networks demonstrated proficiency 

in various classification and regression tasks, they had limited performance in tasks such 

as image recognition, time series analysis, speech recognition, and signal processing. 

Advancements of Convolutional Neural Networks, Recurrent Neural Networks, and 

Autoencoders were attempts to improve and diversify the performance and applications 

of Neural Networks.  

Convolutional Neural Networks 

Convolutional Neural Networks (CNN) or Space Invariant Artificial Neural 

Networks are a form of Neural Networks that are commonly utilized for image 

recognition (Geron, 2019). Convolutional layers are regarded as critical components of 

CNNs. Convolution allows the CNN to concentrate on feature extraction from extensive 

multi-dimensional data (such as an image) to develop feature maps or kernels. Multiple 

convolutional layers could be stacked to assemble multiple low-level feature maps into 

large high-level feature maps. Some of the hyperparameters utilized for the convolutional 
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operation include the number of feature maps or kernels, the size of kernel, the number of 

strides, and the activation function. While CNNs are commonly associated with image 

recognition, CNNs have also been successfully used for time series analysis due to their 

ability to extract significant features from extensive multi-dimensional data and retain 

spatial context of input data. While spatial context due to local connectivity of 

convolutional operations is helpful for image recognition, spatial context can be used for 

retaining temporal relationships in 1-dimensional Convolutional layers. Although CNNs 

are be applied for time-series analysis, Recurrent Neural Networks are the most popular 

candidates for time series and sequential data analysis. 

Recurrent Neural Network 

RNNs are a form of Neural Networks that are best suited for sequential data. 

While regular Deep Neural Networks can handle sequential data, RNNs perform better 

while handling longer sequences. RNNs utilize Recurrent neurons or cells, which are 

similar to regular Neural Network cells, but also have an output connection feeding in a 

recurring input. An RNN cell receives an input, produces an output, and feeds that output 

back to itself. At a time frame 𝑡𝑡, an RNN cell receives an input 𝑥𝑥(𝑡𝑡) and its own output 

from the previous time step 𝑦𝑦(𝑡𝑡−1). Consequently, each RNN neuron has two sets of 

weights where 𝑤𝑤𝑥𝑥 corresponds to input 𝑥𝑥(𝑡𝑡) and 𝑤𝑤𝑦𝑦 corresponds to input 𝑦𝑦(𝑡𝑡−1). The 

output of a recurrent layer can be depicted by Equation 6 where 𝑏𝑏 is the bias term.  

𝑦𝑦(𝑡𝑡) =  𝜙𝜙(𝑤𝑤𝑥𝑥𝑡𝑡𝑥𝑥𝑡𝑡 +  𝑤𝑤𝑦𝑦𝑡𝑡𝑦𝑦(𝑡𝑡−1)) + 𝑏𝑏                                                                         (6) 

RNNs have demonstrated better performance than other time series forecasting 

techniques due to their ability to compute trends and seasonality (Geron, 2019). RNNs 

utilize a variation of Backpropagation called Backpropagation Through Time (BPTT). 
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BPTT, just like the Backpropagation algorithm, is used to update model parameters 

(weights and biases) to minimize the model error. However, BPTT rolls through all input 

time steps where the errors are calculated and accumulated for each time step. With the 

total model error, BPTT updates model parameters through the input time steps. While 

utilizing RNN models is advantageous for time series data, RNNs have demonstrated 

weakness capturing relationships in long sequential data due to the exploding and 

vanishing gradient problem. Variants of the RNN architecture, such as LSTM and GRU, 

have demonstrated better performance while handling longer sequences due to the 

presence of gates in the cells. The presence of gates allows LSTM cells to combat the 

vanishing and exploding gradient problem such as preserving long-term dependencies in 

the data. LSTM cells contain Input Gates, Output Gates, and Forget Gates and utilize 

Tangent and Sigmoidal operations on the data to preserve significant long term data in 

sequences. Figure 3 depicts the architecture of an LSTM cell. 
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Figure 3 

Long Short Term Memory Cell 

 

Note. Reprinted from “Hands-On Machine Learning with Sci-Kit Learn, Keras, and 

Tensorflow: Concepts, Tools, and Techniques to Build Intelligent Systems” by A. Geron, 

2019, p. 517. Copyright 2019 by O’Reilly. Reprinted with permission (Appendix A3). 

 GRU cells are simpler versions of LSTM cells while demonstrating comparable 

performance. Rather than three different types of gates, GRU cells do not contain an 

Output Gate and a single gate controller controls the Input and Forget Gates. Figure 4 

depicts the architecture of a GRU cell. 
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Figure 4 

Gated Recurrent Unit Architecture 

 

Note. Reprinted from “Hands-On Machine Learning with Sci-Kit Learn, Keras, and 

Tensorflow: Concepts, Tools, and Techniques to Build Intelligent Systems” by A. Geron, 

2019, p. 519. Copyright 2019 by O’Reilly. Reprinted with permission (Appendix A3). 

The Input Gate used in LSTM and GRU cells determines whether information 

from the input data must be modified or retained by the model. The Input Gate decides 

the operation based on the input 𝑥𝑥𝑡𝑡 and previous cell state ℎ𝑡𝑡−1, and the computation is 

depicted in Equation 7. 

𝑖𝑖𝑡𝑡 = 𝜎𝜎(𝑊𝑊𝑥𝑥𝑖𝑖
𝑇𝑇𝑥𝑥(𝑡𝑡) + 𝑊𝑊ℎ𝑖𝑖

𝑇𝑇ℎ(𝑡𝑡−1) + 𝑏𝑏𝑖𝑖)                                                                        (7) 

The Forget Gate used in LSTM and GRU cells determines the information from 

the input data that should be erased from memory. The computation is depicted in 

Equation 8.  

𝑓𝑓𝑡𝑡 = 𝜎𝜎(𝑊𝑊𝑥𝑥𝑥𝑥
𝑇𝑇 𝑥𝑥(𝑡𝑡) + 𝑊𝑊ℎ𝑥𝑥

𝑇𝑇 ℎ(𝑡𝑡−1) + 𝑏𝑏𝑥𝑥)                                                                      (8) 
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The Output Gate used in LSTM cells determines the information from the LSTM 

that should be transferred to the next cell state ℎ𝑡𝑡+1. The computation is depicted in 

Equation 9. 

𝑂𝑂𝑡𝑡 = 𝜎𝜎(𝑊𝑊𝑥𝑥𝑥𝑥
𝑇𝑇 𝑥𝑥(𝑡𝑡) + 𝑊𝑊ℎ𝑥𝑥

𝑇𝑇 ℎ(𝑡𝑡−1) + 𝑏𝑏𝑥𝑥)                                                                     (9) 

While RNN and its variation have been considered suitable for time series 

forecasting, literature suggests that utilizing RNNs in combination with other Neural 

Network architectures such as CNNs and Autoencoders can further improve results. Qu 

et al. (2020) demonstrated the use of CNNs for flight delay prediction utilizing operations 

and meteorological data. Qu et al. utilized a Dual-Channel CNN and Squeeze and 

Excitation-Densely Connected CNN to conduct a time series flight delay prediction task.  

Sequence-to-Sequence Forecasting Using Recurrent Neural Networks 

Due to their architectural features, RNNs are compelling candidates for time 

series forecasting. LSTM models used for sequence-to-sequence modeling utilize an 

encoder-decoder architecture. LSTM and GRUs can take in a sequence of input data to 

produce a single output, as in the case of sequence-to-vector models, or an output 

sequence of variable length, as in the case of sequence-to-sequence models. Sequence-to-

sequence models are useful for applications such as language translation and are 

compelling candidates for the temporal analysis of data. The encoder component of a 

sequence-to-sequence model takes the sequence input and maps the input into a high-

dimensional vector. The high dimensional vector is used by the decoder component to 

transform it into an output sequence. The Attention mechanism included in encoder-

decoder models has further improved sequence-to-sequence model performance for 

processing sequential data. A Transformer is a type of attention encoder-decoder model 
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that has gained prominence as a robust sequence-to-sequence model for time series 

forecasting and has been considered a viable alternative to RNNs or time series 

forecasting.  

Transformer Models  

Transformer models, introduced in 2017, have gained popularity for sequence-to-

sequence modeling in Natural Language Processing and time series forecasting (Vaswani 

et al., 2017). Similar to the LSTM sequence-to-sequence models, Transformer models 

utilize an encoder-decoder architecture. However, Transformers utilize an Attention 

mechanism which, in addition to the encoded vector, uses the input sequence and decides 

which steps of the input sequence are essential and should be retained for memory. Along 

with the encoded vector from the encoder, the model uses weights assigned to different 

inputs from the sequence by the attention mechanism. The decoder will utilize the 

encoded vector along with the weights information for the output sequence. Unlike 

RNNs, Transformer models do not use Recurrent cells and modules that are stacked upon 

each other in the encoder and decoder section of the model. The modules are composed 

of Masked Multi-Head Attention and Feed Forward Layers for the attention mechanism. 

Additionally, Input Embedding is used for the positional encoding of the input sequence. 

Figure 5 depicts the Transformer model proposed by Vaswani et al. (2017). 
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Figure 5 

Transformer Model Architecture 

 

Note. From “Attention Is All You Need” by A. Vaswani, N. Shazeer, N. Parmar, J. 

Uszkoreit, L. Jones, A. Gomez, L. Kaiser, and I. Polosukhin, 2019, Advances in Neural 

Information Processing Systems, 30, p. 3 

(https://papers.nips.cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf). 

Copyright 2017 by Curran Associates. Reprinted with permission (Appendix A4).   

The Multi-Head Attention layers utilize linear and scaled dot-product attention 

mechanisms for their functioning. The attention mechanism used in the Multi-Head 

Attention layers is depicted in Equation 10, where 𝑄𝑄 is a matrix that contains the query 



43 

 

for the vector representation of the input sequence, 𝐾𝐾 is a matrix that contains the key for 

the vector representation of the input sequence, and 𝑉𝑉 are the values of vector 

representation of the input sequence.  

𝐴𝐴𝑡𝑡𝑡𝑡𝐴𝐴𝐴𝐴𝑡𝑡𝑖𝑖𝐴𝐴𝐴𝐴 (𝑄𝑄,𝐾𝐾,𝑉𝑉) = 𝑆𝑆𝐴𝐴𝑓𝑓𝑡𝑡𝑆𝑆𝑎𝑎𝑥𝑥 �𝑄𝑄𝐾𝐾
𝑇𝑇

�𝑑𝑑𝑘𝑘
� 𝑉𝑉                                                                         (10) 

The Attention mechanism is used to assign weights 𝑎𝑎 to the vector representation 

of the input sequence, which defines how each input of the sequence is influenced by the 

other inputs. The Softmax function assigns weights 𝑎𝑎 to the input vectors between 0 and 

1 as depicted in Equation 11. 

𝑎𝑎 = 𝑠𝑠𝐴𝐴𝑓𝑓𝑡𝑡𝑆𝑆𝑎𝑎𝑥𝑥 �𝑄𝑄𝐾𝐾
𝑇𝑇

�𝑑𝑑𝑘𝑘
�                                                                                          (11) 

While Transformer models are commonly used for Natural Language Processing 

applications such as language translation, modifications to the architecture can lead to 

their effective utilization for time-series tasks as well (Zeng et al., 2022). Firstly, the 

Input Embedding is removed since the input sequence will contain numerical data. A 

linear transformation can be used instead to transform the input sequence to a high-

dimensional vector representation. Additionally, the Softmax layer from the decoder is 

removed because the output will be real values and not probabilities.  

Summary 

The section reviewed the literature on topics deemed necessary for the study. 

Some of the topics reviewed included runway configurations, the impact of runway 

configuration on airport operations, runway configuration optimization and prediction, 

the impact of taxi out times on flight delays, taxi out times prediction, and Deep Learning 

concepts such as RNNs and sequence-to-sequence models such as Transformer models. 

The literature on runway configuration and taxi out prediction substantiated the need for 
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further research while exposing the research gaps in past literature. While Machine 

Learning techniques have successfully been utilized for runway configuration and taxi 

out time prediction, there is a significant gap in utilizing time series prediction models for 

analysis. Literature suggested that the use of any time series models and Deep Learning 

models is vastly underutilized despite of their demonstrated success for sequence 

modeling. The most significant research gap is the lack of sequence-to-sequence 

modeling for taxi out times and runway configuration prediction tasks.  

The section also reviewed several Machine Learning models that have 

demonstrated success in time series analysis and focused on the increased success and 

utilization of sequence-to-sequence models. The demonstrated success of RNNs and 

Transformer models warrants their application and testing for predicting runway 

configuration and taxi out times. Additionally, while LSTM models have been used for 

time series prediction tasks in the reviewed literature, Transformer models have not been 

utilized despite their demonstrated success. This study aimed to close the research gap 

and add to the literature on sequence-to-sequence modeling and its application for 

runway configuration and taxi out times prediction.  
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Chapter III: Methodology 

The study aimed to develop prediction models for runway configuration and taxi 

out times based on surface weather observations for two airports in the United States. The 

two airports used for the model development were MCO and JFK. For the model 

development, data for hourly surface weather observations, traffic volumes, runway 

configuration, and taxi out times per hour were collected from different databases and 

processed to develop a corpus of data. This chapter reviews the methodology adopted for 

the study, including the data collection, data preprocessing, model development, 

programming, hyperparameter selection, feature assessment, and model evaluation 

procedures. The details provided in this chapter are consequential for replicating the 

model development strategy or using the results for further research and development on 

the subject. 

Research Method Selection 

The study utilized a data-driven exploratory approach to analyze and capture the 

temporal relationship of the variables of interest to fill the research gaps within Machine 

Learning and Aviation. While advances in Machine Learning and Deep Learning 

algorithms have resulted in a variety of modeling choices, the researcher adopted Deep 

Learning models that have demonstrated proficiency in time series prediction especially 

sequence-to-sequence modeling. LSTM encoder-decoder and Transformer models were 

developed to predict runway configuration and taxi out times based on surface weather 

observations for two airports in the United States. Once the models were developed, the 

LSTM encoder-decoder and Transformer models were evaluated and compared for the 

regression task (taxi out times) and classification task (runway configuration). For the 
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taxi out times prediction, the models were evaluated on RMSE, MAE, R-Squared, and 

MSE. For the runway configuration prediction, the models were evaluated on the 

accuracy, precision, recall, and kappa score. To assess the impact of each variable on the 

prediction models developed, a feature assessment evaluation was conducted. Shapley 

Value Imputation (SHAP) analysis was utilized to determine the effect of each variable 

on the predictions made by the model.  

Apparatus and Materials 

Deep Learning models require a large corpus of data to capture dependencies and 

relationships among variables. There is no single database that could be used to develop a 

model to answer the research questions. The hourly surface weather observations for the 

two airports were downloaded from an open-source Local Climatological Data repository 

managed by the NOAA (NOAA, n.d.). The hourly traffic data (number of scheduled 

departures and arrivals), taxi out times, and runway configurations for the two airports 

were downloaded from an open-source ASPM database managed by the FAA. The 

datasets were downloaded in Comma Separated Values (CSV) format and were pre-

processed using Microsoft Excel and the Pandas library on the Python programming 

language.  

For the model development, popular Machine Learning and Deep Learning 

libraries on Python, such as NumPy, Sci-Kit Learn, Keras, and Tensorflow 1.0, were 

used. All steps of the model development and evaluation were conducted utilizing Python 

operations and libraries.  
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Population/Sample 

The sample for this study is flights that departed from JFK and MCO from 

January 2012 to December 2021 and the corresponding hourly surface weather 

observations, hourly traffic demand, runway configuration selection, and taxi out times. 

While the study utilized data from only two airports in the United States, the population 

for the study can be considered all the flights to and from airports with similar weather 

patterns, traffic operations, and runway configurations. To develop Machine Learning 

models, especially models that utilize a Deep Learning architecture, many data points 

were required to ensure adequate model fit and lower the potential for model underfitting 

or model overfitting. The two airports chosen for this study were based on traffic demand 

and runway configurations. MCO comprised of four parallel runways, and JFK 

comprised four intersecting and parallel runways. Utilizing two airports with different 

runway configurations allowed the researcher to develop and validate Deep Learning 

models with varying runway configurations and weather patterns.   

Sources of the Data 

The data to build the Deep Learning models was sourced from two separate 

databases. The researcher utilized a database for hourly surface weather observations for 

the two airports from January 2012 to December 2021 from an open-access data 

repository managed by the NOAA (NOAA, n.d.). The hourly traffic demand, runway 

configuration selection, and taxi out times data were sourced from the FAA ASPM 

database (FAA, n.d.). All the data sources utilized for this study were developed and 
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maintained by reputed governmental agencies in the United States. Hence, the data 

sources were expected to provide unbiased and accurate data.  

Treatment of the Data 

Initial data cleaning was conducted utilizing Microsoft Excel. The ASPM and 

NOAA datasets were joined to create a new dataset using the Pandas library on Python. 

Finally, there was a dataset for each airport which consisted of data on surface weather 

observations, traffic, taxi out times, and runway configurations for each airport. Once the 

datasets were joined, further data pre-processing was required to ensure there were no 

missing values. The Pandas library was used to ensure every hour in the specified period 

had a separate row in the dataset. Considering the dataset for the study was a time series 

dataset, cells with missing values could not be deleted so as to preserve the temporal 

nature of the data. For continuous variables, linear interpolation was used to estimate the 

values of the missing cells. For discrete variables, forward filling was used to estimate the 

values of the missing cells. Linear interpolation and forward filling are standard methods 

used in time series analysis to compensate for missing values. Once the data was cleaned 

and pre-processed, the two datasets each consisted of 87,671 instances or rows.  

Python libraries such as Sci-Kit Learn, Tensorflow, and Keras cannot process 

discrete input values. Discrete variables require Binarization to convert discrete values to 

continuous numerical values. Binarization, commonly called dummy values, can be 

conducted utilizing the Pandas library, where the discrete variables are transformed into 

vectors of binary numbers. Additionally, the classification task (runway configuration 

prediction) task for JFK was treated as a multi-class classification problem due to the 

number of dependent variables to be predicted. The runway configuration variable 
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needed to be one-hot encoded utilizing the OneHotEncoder feature on Sci-Kit Learn 

before the models could be developed. Table 1 describes the continuous and discrete 

variables in the dataset. Out of the 15 variables defined in Table 1, Runway 

Configuration and Taxi out Times were treated as the dependent variables for the study. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



50 

 

Table 1 

Variables Used for the Classification Models 

Variable Source Data Type Notes 
Day of the week MS Excel Discrete 7 days 

Departures             ASPM Continuous  

Arrivals ASPM Continuous  

Surface pressure NOAA Continuous  

Temperature NOAA Continuous         Unit: Celsius 

Dew point temperature NOAA Continuous         Unit: Celsius 

Precipitation NOAA Continuous         Unit: Inches 

Weather type NOAA Discrete No Significant 
Weather, Fog, Rain, 
and Thunderstorm 

Pressure change NOAA Continuous Unit: Inches of 
Mercury (Hg) 

Relative humidity NOAA Continuous  

Visibility NOAA Continuous Unit: Statute Miles 

Wind direction NOAA Discrete North-East, North-
West, South-East, 
South-West, Calm, 

Variable 
Wind Speed NOAA Continuous        Unit: Knots 

Taxi out time ASPM Continuous        Unit: Minutes 

Runway configuration ASPM Discrete  

 

Before the data was used for the model development, the data needed to be split 

for training, validation, and testing. Due to the temporal nature of the data, cross-

validation or random shuffling strategy could not be adopted, so the data was split into 
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80% for training, 10% for validation, and 10% for testing. The data splitting was 

conducted utilizing the Train-Test Split function in Sci-Kit Learn, where Shuffle was set 

to False.  

Python Programming Language 

Python is a high-level programming language that is used for multi-disciplinary  

Purposes, including web development, scientific computing, web scraping, automation, 

data analytics, and Machine Learning (Van Rossum & Drake, 2009). Python has become 

an increasingly popular choice as a programming language for data analytics and 

Machine Learning over other programming languages such as R, Julia, and Java. Python 

requires the use of a development environment that acts as an interface for programmers 

to input commands and view and access outputs. For the analysis, all Python operations 

were conducted on Jupyter Notebook and Google Colaboratory (Google Colab). Several 

Python libraries were used for the study.  

Pandas 

Pandas is an open-source data analysis and manipulation library used in Python 

(McKinney, 2010). Pandas can be used for data analysis tasks, including indexing, 

reading data files, writing and re-writing data in a file, reshaping data structures, data 

range generation, data shifting, filtration, data slicing, data merging, and joining. Pandas 

was used for the initial data preprocessing of the study, which included joining the 

NOAA and ASPM datasets, compensating for hourly intervals, and linearly interpolating 

and forward filling missing values. Pandas library was used to index the datasets utilizing 

the Date/Time column to structure the data for time series analysis.  
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NumPy  

NumPy is an open-source Python library used for mathematical operations with 

data arrays (Harris et al., 2010). NumPy can perform advanced data structuring and 

mathematical operations utilizing data arrays. NumPy was used for restructuring the input 

data for model development, standardization of input data, and transforming the output 

data structures. NumPy is a powerful data analysis tool when used in conjunction with 

other Python Libraries such as Pandas and Tensorflow.  

Sci-Kit Learn 

Sci-Kit Learn is a popular open-source Machine Learning Library on Python that 

is primarily used for preprocessing and model development tasks (Pedregosa et al., 

2011). Sci-Kit Learn is used for creating Machine Learning models, including 

Regression, Random Forest, Decision Tree, Support Vector Machine, Naïve Bayes 

Classifier, and Extreme Gradient Boost. For the study, Sci-Kit Learn was primarily used 

for the Train-Test split to form the training, validation, and testing data sets and the 

Standard Scalar operation to standardize the training, validation, and testing datasets. Sci-

Kit Learn was also used for model evaluation tasks such as developing the confusion 

matrix and computing the accuracy, MAE, MSE, RMSE, precision, kappa score, and 

recall.  

Tensorflow 

Tensorflow is an open-source Machine Learning and Deep Learning library 

developed by Google’s Brain Team in 2019 (Abadi et al., 2016). Tensorflow is a popular 

library for Deep Learning due to its data structure utilization of 3-dimensional tensors for 

training which optimizes performance, improves flexibility, and reduces training time. 
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The study utilized Tensorflow to develop all the models in the study. Features included in 

the Tensorflow library such as TimeSeriesGenerator were used to easily reshape the 

training, validation, and testing data to the tensor format for developing the models. 

Model Development and Architecture 

A Deep Learning model involves the selection and validation of various 

hyperparameters, including number of cells per layer, the number of hidden layers, 

activation functions, loss function, and optimization algorithm. The hyperparameters for 

this study were selected based on available literature and baselines model and a trial-and-

error approach.  

Activation Functions 

Unlike the Perceptron model, modern Deep Neural Network models can utilize 

non-linear operators as activation functions. Enhancement and discovery of activation 

functions remain a focus of modern Deep Learning. However, some of the most common 

activation functions include Linear, Sigmoid, TanH, ReLU, Softmax, and Radial Based 

Functions. The ReLU activation functions, depicted in Equation 12, consist of various 

variants, which include Leaky ReLU, Random ReLU, Parametric ReLU, and Exponential 

Linear Unit (ELU). ELU, depicted in Equation 14, is a popular choice as an activation 

function in the hidden layers, while the Softmax activation function, expressed in 

Equation 13, is commonly used as an activation function for output layers of the multi-

class classification models. The Sigmoid activation function, expressed in Equation 15, 

was used as an activation function in the output layer of binary classification models.  

ReLU(X) = max{x, 0}                                                                                         (12) 

Softmax(xi) = exp(xi) /∑ exp (xj)                                                                   (13) 
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ELUα =  �α(exp(z) − 1)if z < 0
z if z > 0

                                                                        (14) 

Sigmoid ϕ = 1
1+ e−z

                                                                                             (15) 

Loss Function 

 Deep Learning models like the ones developed in this study need a loss function 

to minimize during the training stage of model development. Based on the output and 

expected probability distribution and domain need of the modeling problem, various loss 

functions can be used in conjunction with an optimization algorithm to minimize the loss 

function. Some standard loss functions used in Deep Learning are Hinge Loss, Kullback-

Leibler Divergence, and Cross-Entropy for classification problems and MSE and MAE 

for regression problems.  

The models were developed for two airports which were MCO and JFK. For 

MCO, there were two possible runway configurations resulting in two possible outputs to 

the binary classification model. For the binary classification model, Binary Cross 

Entropy/Log Loss, depicted in Equation 16, was used as the loss function.   

𝐻𝐻𝑝𝑝(𝑞𝑞) = − 1
𝑁𝑁
∑ 𝑦𝑦𝑖𝑖 . log (𝑝𝑝(𝑦𝑦𝑖𝑖𝑁𝑁
𝑖𝑖=1 )) + (1 − 𝑦𝑦𝑖𝑖). log (1 − 𝑝𝑝(𝑦𝑦𝑖𝑖))                          (16) 

While the classification model developed to predict the runway configuration for 

MCO could be treated as a binary classification model, the classification model to predict 

the runway configuration at JFK was developed as a multi-class classification model. For 

JFK, four possible runway configurations or outputs were possible. For the multi-label 

classification model, Categorical Cross Entropy, depicted in Equation 17, was used as the 

loss function, and the output class was one-hot encoded.   

𝐻𝐻𝑝𝑝(𝑞𝑞) = −∑ 𝑦𝑦𝑖𝑖 . 𝑙𝑙𝐴𝐴𝑔𝑔𝑦𝑦�𝑖𝑖𝑁𝑁
𝑖𝑖=1                                                                                    (17) 
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The regression models developed to predict the taxi out times at the two airports 

utilized MSE as the loss function. MSE, depicted in Equation 18, measures the difference 

between the predicted output value and the actual output value. 

𝐌𝐌𝐌𝐌𝐌𝐌 = 𝟏𝟏
𝐍𝐍
∑ (𝐲𝐲𝐢𝐢𝐧𝐧
𝐢𝐢=𝟏𝟏 − 𝐲𝐲𝟏𝟏  � )𝟐𝟐                                                                                   (18)                                      

Optimization Algorithm 

An optimization algorithm is a crucial hyperparameter in developing Deep 

Learning models that minimize the loss function and the generalization error. Some of the 

standard optimization algorithms or optimizers used in Deep Learning are Gradient 

Descent, Stochastic Gradient Descent, and Adam. Based on published literature and 

understanding of the subject, Adam was chosen as the optimizer for developing all the 

models in the study. Adam has been regarded as the most effective and robust optimizers 

for developing Deep Learning models. Adam, which is derived from adaptive moment 

estimation, utilizes exponential weighted moving averages, which is also known as leaky 

averages, to gain an estimate of the momentum and second moment of the gradient 

(Brownlee, 2017; Kingma & Ba, 2017). Adam is an extension of Stochastic Gradient 

Descent, which maintains the same learning rate for all weight updates. However, Adam 

maintains a dynamic learning rate with a per-parameter learning rate, which is adapted 

based on the average first moment and the average second moment of the gradient.  

Adam requires a few configuration parameters before it can be used. Alpha is 

considered the learning or step size, Beta1 is considered the exponential decay rate for 

the first-moment estimate, Beta2 is considered the exponential decay rate for the second-

moment estimate, and Epsilon is a small number to prevent any division by zero. 

Considering the models were developed utilizing the Tensorflow Python Library, default 
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values of the parameter configurations preset by Tensorflow were used where Alpha was 

set to .001, Beta1 was set to .9, Beta2 was set to .999, and Epsilon was set to 𝐴𝐴−8 

(Brownlee, 2017). 

Regularization 

Regularization is an effective strategy used in Machine Learning to reduce 

overfitting or testing errors. Based on the bias-variance tradeoff concept, regularization 

techniques are used to improve the simplicity, computation efficiency, and generalization 

of the model (Goodfellow et al., 2016). Some standard regularization techniques used for 

Deep Learning are Lasso, Ridge, Early Stopping, and Dropout. For the study, Early 

Stopping and Dropout were used as regularizers.  

Dropout was used as a regularizer and was set to 50%. At every iteration of 

training, 50% of the cells in the dropout layer were removed along with their inbound and 

outbound connections. Training different iterations with different cells in the layer 

resembled an ensemble training method where the final model would not be dependent 

on any particular cell or connection, which would improve the generalization power of 

the model. Early Stopping is another regularization technique similar to a cross-validation 

technique where the model was trained on a training and validation set. The loss function 

of the validation set was monitored, and when the validation loss function stopped 

reducing or improving, the training was stopped. An essential parameter for Early 

Stopping was Patience, which is the number of epochs with no improvement or reduction 

of the validation loss function after which training was stopped. For the study, Patience 

was set to 20.  
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Repeat Vectors 

Repeat Vectors are used for sequence-to-sequence modeling and can be added to 

the model architecture using the TensorFlow library (Geron, 2019). The Repeat Vector 

layer is added to repeat the input from the previous layer and repeat the input n times 

where n is an adjustable hyperparameter. For sequence-to-sequence modeling, n is set to 

the length of the output sequence so that the input can be repeated n number of times for 

generating n different predictions to complete the output sequence.  

Time Distributed 

For a sequence-to-sequence problem, we require the LSTM encoder to layers to 

be capable of generating an output sequence rather than just an output vector. Along with 

Repeat Vectors, Time Distributed layers are used as wrapper layers to every temporal 

step in the input sequence (Geron, 2019). Additionally, the Time Distributed layer 

requires the input layers to be 3-dimensional tensors to produce 3-dimensional time 

distributed output tensors for the output sequence. Applying a Time Distributed layer 

allows a simpler and fully connected dense layer to each temporal step in the input 

sequence. The advantage of this addition is that the model requires few weights and 

parameters for improved computational speed and capacity.  

Model Development 

To predict the taxi out times and runway configurations, two Deep Learning 

model architectures were developed, validated, and tested to ensure the best model fit. An 

LSTM encoder-decoders model was compared with a Transformer model for sequence-

to-sequence modeling. For sequence-to-sequence modeling, various parameters must be 

set to shape the input and output sequences. Considering every row in the datasets used 
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for model development corresponded to an hour, the dataset was treated as a time series 

dataset with an hourly resolution. Appendix C depicts the coding utilized to transform the 

data from a Dataframe format to create the input and output sequences for the supervised 

learning task. Figure 6 illustrates the model development pipeline deployed for this study. 

Figure 6 

Model Development Pipeline 

 

For both the runway configuration and taxi out times prediction tasks, the window 

length for the input sequence was set to 24, implying 24 hours of data was used for the 

prediction. Additionally, the models were trained on mini-batches of 16 instances to 

ensure computation efficiency. With the inclusion of additional features due to the 

Binarization of the discrete variables, 27 features were used for the input data. The input 

tensors for training the Deep Learning models must be shaped as [batch size, window 

size, features].  

Considering the models developed were sequence-to-sequence, the output needed 

to be a sequence too. The output sequence was set to four time steps which implied the 

model predicted taxi out times and runway configurations for 6 hours. Multiple output 
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values for each prediction indicated that the classification and regression tasks could be 

treated as multi-label supervised learning models. Figure 6 illustrates the input sequence 

used to predict an output sequence for the class label.  

Figure 7 

Input and Output Sequencing 
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Runway Configuration Class Labels 

The Deep Learning models for the study were developed, validated, and tested on 

two different airports in the United States, each with two different runway layouts and 

weather patterns. The two airports selected have different runway layouts, with MCO 

having four parallel runways and JFK having four runways which are parallel and 

intersecting runways. Depending on the different runway configurations possible at the 

two airports, the class labels were coded for the multi-class classification tasks. The class 

labels were one-hot encoded for the classification problem and were based on the 

historical runway configuration data gathered from the ASPM database. Table 2 

describes the different class labels used to train the classification models.  

MCO is a major Class B airport located in MCO, Florida. The airport has four 

parallel runways, which are Runway 36L/18R, Runway 36R/18L, Runway 17L/35R, and 

Runway 17R/35L. The departure and arrival flows are conducted in two possible 

configurations, which are North or South. Runway configuration prediction for MCO was 

treated as a binary classification problem with 1 indicating a North flow and 0 denoting a 

South flow. 

 JFK is a major airport located in Queens, JFK. The airport has four parallel and 

intersecting runways, which are Runway 13L/31R, Runway 13R/31L, Runway 22L/04R, 

and Runway 22R/04L. The departure and arrival flows are conducted in four possible 

configurations. The runway configuration prediction for JFK was treated as a multi-class 

classification task with four class labels. 
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Table 2 

Description of Class Labels 

Airport Departure Runway 
Configurations  

Class Labels 
Code 

MCO  RWY36R/RWY35L 
RWY18L/RWY17R 

N 
S 

JFK RWY13R 
RWY22R 
RWY31L 
RWY31R 

E 
W 
N 
S 

Note. N, S, E, and W denote North, South, East, and West configurations. 

Model Evaluation 

The models were evaluated for the classification and regression tasks separately. 

The taxi out time prediction was treated as a regression task and the models were 

evaluated on MSE, MAE, R-Squared, and RMSE. The runway configuration selection 

prediction task was treated as a classification task and the models were evaluated on the 

accuracy, precision, recall, and Cohen’s kappa score.  

Feature Assessment 

Model interpretability is a critical aspect of building any Machine Learning 

model. Understanding and assessing the impact of each feature or variable on the 

prediction of the model allowed for the acquisition of insights into the prediction 

mechanisms of Deep Learning models rather than treating the models as black boxes. 

While Feature Importance and Variable Importance are common feature assessment 

techniques, they have been demonstrated to perform poorly in capturing attribute 

dependency among the attributes or features used for model development. This weakness 

of Feature Important and Variable Importance might over-emphasize or under-emphasize 

some features depending on how those features correlate with other features. This 
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weakness is commonly referred to as the high-correlation variable problem (Hooker et 

al., 2019). A relatively modern and advanced technique called Shapley Additive 

Explanations (SHAP) can be used to assess the features utilized to develop a Machine 

Learning model, especially a neural network model (Molnar, 2021). Derived from a game 

theory approach to explain the output of models, SHAP computes Shapley Values 

utilizing coalitional game theory by treating each feature as a player in the game. The 

SHAP computation can be illustrated by Equation 19, where 𝑔𝑔 is the explanation model, 

�́�𝑧 ∈ {0,1}𝑀𝑀 is the coalition vector, M is the maximum coalition size, and ∅𝑖𝑖 is the feature 

attribution of a feature j.   

𝑔𝑔(�́�𝑧) = ∅0 +  ∑ ∅𝚥𝚥𝑀𝑀
𝚥𝚥=1

́ �́�𝑧𝑖𝑖                                                                                      (19) 

A significant advantage of utilizing SHAP to interpret a model is the robustness 

of SHAP to attribute dependency. Using Shapley Value Imputation, SHAP is robust to 

the multicollinearity among the features (Lipovetsky & Conklin, 2001; Lundberg & Lee, 

2017). The mean magnitude of SHAP values will be derived utilizing the SHAP library 

in Python.  

Summary 

 The primary focus of the study was the development of the LSTM encoder-

decoder and Transformer models for the sequence-to-sequence tasks for predicting 

runway configuration selection and taxi out times. The chapter focused on the data 

collection and pre-processing techniques that included the joining of the databases, 

Binarization for discrete variables, and processing cells with missing values. 

Additionally, the class labels or dependent variables for the classification and regression 

tasks were described. The section introduced the programming language Python and the 
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associated libraries used for data pre-processing, model development, model evaluation, 

and feature assessment tasks. Pandas, NumPy, Sci-Kit Learn, TensorFlow, and SHAP 

libraries on Python were used in this study.  
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Chapter IV: Results 

This chapter presents the results of the study. The chapter includes results for the 

exploratory data analysis for the data utilized for the study, final model architectures for 

the LSTM Encoder-Decoder and Transformer models, model evaluation metrics, and 

feature assessment used for the models.  

Exploratory Data Analysis 

Exploratory Data Analysis (EDA) is an essential stage of any Machine Learning 

task and is used to understand the trends and patterns in the data used for the model 

development. Through various descriptive statistical techniques and data visualization 

methods, EDA can be conducted to gain deeper insights into the data used for the model 

development.  

The initial EDA was focused on the dependent variables used for the regression 

task (taxi out times) and classification task (runway configuration selection). Figure 8 is a 

histogram of the taxi out times at MCO (M = 13.93, SD = 7.34) and JFK (M = 27.47, SD 

= 14.58). 

Figure 8 

Histogram of Taxi Out Times at MCO and JFK 
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Figure 9 depicts the average taxi out times for MCO and JFK by Month. The 

average taxi out time at JFK was higher every month than the average taxi out time at 

MCO. Additionally, the average taxi out time for JFK was the highest in January (34.68 

min), and the average taxi out time for MCO was the highest in July (15.24 min). 

Figure 9 

Average Taxi Out Time Per Month 

  

Figure 9 depicts the average taxi out time at the MCO and JFK per year. JFK has 

seen a decrease in the average taxi out time through the years. Similarly, MCO has seen a 

decrease in the average taxi out time per year from 2012 to 2021.  
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Figure 10 

Average Taxi Out Time Per Year 

 

Figure 11 depicts the runway configuration selections at JFK. Configuration C 

was the most popular configuration, followed by Configuration B.  

Figure 11 

Runway Configuration Selection for JFK  
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Figure 12 depicts the runway configuration selections at MCO. The North 

configuration was more widely used as compared to the South configuration. 

Figure 12 

Runway Configuration Selection for MCO 

 

Figure 13 is a wind rose diagram for the historical wind direction and speed data 

for MCO. As depicted, westerly winds were the most prominent winds in terms of 

frequency and wind speed. Wind direction and wind speed are essential aspects for the 

study to predict runway configuration, as the literature suggested that wind direction was 

a significant variable for prediction models developed in previous studies.  
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Figure 13 

Wind Rose Diagram for MCO  

 

Figure 14 is a wind rose diagram for the historical wind direction and speed data 

for JFK. As depicted, southerly and westerly winds were the most prominent winds in 

terms of frequency and wind speed. 

Figure 14 

Wind Rose Diagram for JFK  
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Time Series Analysis 

Due to the temporal nature of the data used in the study, a significant focus of the 

EDA was to evaluate some data characteristics for time series analysis. The analysis 

included stationarity testing, Autocorrelation Function (ACF), and Partial Autocorrelation 

Function (PACF). Stationarity Testing is conducted on time series datasets to ensure that 

properties such as mean, variance, and autocorrelation structure do not change over the 

time covered by the data. While not a significant assumption for Deep Learning models, 

stationarity allows researchers to understand the trends and seasonality in time series data 

and accommodate any changes in periodic fluctuations in the time series over time. The 

distribution of a stationary time series dataset would be similar irrespective of the point of 

time the sampling is conducted, as parameters such as variance and mean would remain 

relatively constant over time. While the stationarity of a dataset can be evaluated visually 

through various visualization techniques, various statistical tests such as Augmented 

Dickey-Fuller Test, Kwiatkowski–Phillips–Schmidt–Shin (KPSS) Test and Philip-Perron 

Test exist to test stationarity (Kulaksizoglu, 2015).  

An Augmented Dickey-Fuller Test was conducted at a significance level of .05. 

The Augmented-Dickey Fuller Test tests the null hypothesis that a unit root is not present 

in the time series analyzed. Based on the test statistic, which is a negative number, the 

null hypothesis can be rejected and determined that the unit root is not present in the time 

series and that the time series is stationary. Table 3 depicts the results of the Augmented 

Dickey-Fuller Test for MCO. All the variables used for the airport with continuous values 

were evaluated with the Augmented Dickey-Fuller Test and were determined to be 
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stationary. The properties of the variables, such as mean, variance, and autocorrelation 

functions did not change with time.  

Table 3 

Augmented Dickey-Fuller Test for MCO 

Variable Test Statistic Number of Lags Chosen 
Hourly departures -8.3071 66 

Hourly arrivals -9.2989 66 

Altimeter -21.5164 66 

Dew point -14.9095 66 

Temperature -12.8554 66 

Precipitation -36.7054 50 

Pressure changes -49.198 65 

Relative humidity -21.494 66 

Visibility -27.897 66 

Taxi out time -27.5861 66 

Note. The critical value for all variables was -2.862. All variables were determined to be 

stationary. 

Table 4 depicts the results of the Augmented Dickey-Fuller Test for JFK. All the 

variables used for the airport with continuous values were evaluated with the Augmented 

Dickey-Fuller Test and were determined to be stationary. The properties of the variables, 

such as mean, variance, and autocorrelation functions did not change with time.  
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Table 4 

Augmented Dickey-Fuller Test for JFK  

Variable Test Statistic Number of Lags Chosen 
Hourly departures -11.9618 65 

Hourly arrivals -11.6401 66 

Altimeter -25.7672 66 

Dew point -10.2717 66 

Temperature -7.7673 66 

Precipitation -49.7126 50 

Pressure changes -51.4636 65 

Relative humidity -22.6754 66 

Visibility -31.5319 66 

Taxi Out Time -25.5431 66 

Note. The critical value for all variables was -2.862. All variables were determined to be 

stationary 

The ACF is used to define how the time series data points of a variable are related 

to previous data points of the same variable. ACF can be used to understand the self-

similarity of a data point of a variable to the previous data points in the same variable. 

While ACF is a significant assessment for univariate time series analysis, utilizing ACF 

for the dependent variable for a multi-variate time series analysis is helpful to understand 

how much of the variance in the dependent variable can be captured by lagged versions 

of the same dependent variable itself. An ACF at a significance of .05 was conducted for 

taxi out times data for MCO and JFK. Figure 15 depicts the ACF plot with 40 lags for 

MCO. It is evident that the taxi out times variable experiences a significant 
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autocorrelation effect from its previous data points. However, the autocorrelation effects 

periodically shift between positive and negative values.  

Figure 15 

ACF Plot for Taxi Out Time at MCO 

 

Figure 16 depicts the ACF plot with 40 lags for JFK. It is evident that taxi out 

times experiences a significant autocorrelation effect from its previous data points. 

However, the autocorrelation effects changes and remain positive through the lag period.  

Figure 16 

ACF Plot for Taxi Out Time at JFK  
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The autocorrelation for time series data points can also be evaluated through 

PACF. PACF is similar to ACF but only captures the autocorrelation effect of a lagged 

version of a variable that is not captured by other succeeding lagged versions. PACF is 

used to understand the unique autocorrelation effect rather than the cumulative 

autocorrelation effect of a lagged version of the variable. The PACF for the taxi out times 

variable was computed at a significance of .05 for both airports. Figure 17 depicts the 

PACF for the taxi out times at MCO with 40 lags. It is evident that the partial correlation 

of the lagged versions of taxi out times is significant up to 16 data points. However, the 

partial correlation effect switches from positive to negative as the lag order increases.  

Figure 17 

PACF Plot for Taxi Out Time at MCO 

 

Figure 18 depicts the PACF for taxi out times at JFK with 40 lags. It is evident 

that the partial correlation of the lagged versions of taxi out times is significant up to a 

lag order of 16. However, the partial correlation effect switches from positive to negative 

as the lag order increases. Unlike MCO, the partial autocorrelation for JFK is only 

significant up to a lag order of 3, and the partial autocorrelation remains positive. 
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Figure 18 

PACF Plot for Taxi Out Time at JFK 

 

A Granger’s Causality Test was conducted to analyze the relationship between the 

time series variables in the data. A Granger’s Causality Test can be used to statistically 

evaluate the causality effect of a time series on another time series. The Granger’s 

Causality Test is used as a statistical hypothesis test to analyze if one time series can be 

used to predict another time series. Granger's Causality is tested in the context of linear 

autoregressive models. Granger's Causality for two variables or two-time series 𝑋𝑋1 and 

𝑋𝑋2 can be represented by Equations 20 and 21, where p is the maximum number of 

lagged observations, A is the matrix containing the coefficients of the model, and E1 and 

E2 are the residuals or prediction errors for each time series.  

𝑋𝑋1(𝑡𝑡) =  ∑  𝐴𝐴11𝑖𝑖𝑋𝑋1
𝑝𝑝
𝑖𝑖=1 (𝑡𝑡 − 𝑗𝑗) + ∑  𝐴𝐴12𝑖𝑖𝑋𝑋2

𝑝𝑝
𝑖𝑖=1  (𝑡𝑡 − 𝑗𝑗) +  𝐸𝐸1(𝑡𝑡)                       (20) 

𝑋𝑋2(𝑡𝑡) =  ∑  𝐴𝐴21𝑖𝑖𝑋𝑋1
𝑝𝑝
𝑖𝑖=1 (𝑡𝑡 − 𝑗𝑗) + ∑  𝐴𝐴22𝑖𝑖𝑋𝑋2

𝑝𝑝
𝑖𝑖=1  (𝑡𝑡 − 𝑗𝑗) +  𝐸𝐸2(𝑡𝑡)                       (21) 

Appendix B1 depicts the Python code utilized to create the causality matrix. A 

Lag of 12 was used for the test. Figure 19 and Figure 20 depict the causality matrix for 

the data for MCO and JFK respectively. Significant causality between Wind Direction 
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variables and taxi out times was observed. Additionally, the Weather Type variables 

demonstrated significant causality with taxi out times as well.  

Figure 19 

Granger’s Causality Test for MCO 

 

Figure 20 

Granger’s Causality Test for JFK 

 

Model Architecture 

A vital component of the study was to develop robust Deep Learning models to 

predict runway configuration selection and taxi out times. LSTM Encoder-Decoder and 

Transformer models were used as baseline models, and their associated hyperparameters 

were tuned to develop the final models. Domain knowledge and trial-and-error were used 
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to identify the best hyperparameters concerning the training loss and validation loss. The 

EDA and time series analysis were also used to select and initialize specific 

hyperparameters such as input and output length and variable section. The EDA was 

essentially used to analyze the data imbalance. An imbalanced data, either for the 

independent or dependent variables, can induce bias or lead to overfitting models. The 

EDA demonstrated that the data was moderately balanced and could be used for model 

development without any data transformation. The time series analysis was used to 

understand various time series characteristics, such as the autocorrelation and causality of 

the multi-variate time series data. The Granger’s Causality Test for MCO and JFK 

demonstrated a significant causality associated with the variables that could be used to 

model the relationships. The PACF and ACF plots were used to select the input sequence 

length of 24 for the model development.  

LSTM Encoder-Decoder Model 

The LSTM encoder-decoder architecture was used for the classification and 

regression tasks. The initial model was built based on the literature available on the 

subject and proven techniques in the field of time series forecasting. Figure 15 depicts the 

LSTM encoder-decoder model architecture used for the classification and regression 

tasks. Appendix D depicts the coding utilized to develop and evaluate the model. A 1-

dimensional convolution layer was used as the input layer with 12 filters, and the kernel 

size was set to 6. The input layer was followed by a layer of 32 LSTM units. Considering 

the temporal nature of the task, each layer was set to return the output sequence. After the 

LSTM layer, a Leaky ReLU layer was added with an alpha of .01, followed by a dropout 

layer set at 0.3. The dropout layer was added as a regularizer to prevent overfitting.  
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The encoder section of the model continued with another LSTM layer of 64 

LSTM units and another Leaky ReLU and dropout layer. An additional LSTM layer of 

64 LSTM units was added. However, the last layer acted as the last layer of the encoder 

section of the model, so the layer did not return a sequence. To connect the encoder and 

decoder sections, a repeat vector layer for six time steps was added. The repeat vector for 

six time steps was added because the desired output sequence consisted of six output 

values. The decoder layer started with an LSTM layer of 32 LSTM units with ReLU 

activation, followed by another LSTM layer of 64 LSTM units. For computation 

efficiency and sequence-to-sequence modeling effectiveness, a TimeDistributed Dense 

layer of 32 units and ReLU activation function was added. 

The LSTM encoder-decoder model ended with the output layer. The output layer 

was adjusted based on the task specifications. For the regression task, the output layer 

was a Dense layer of a single unit. For the binary classification task in the case of MCO, 

a Dense layer of a single unit was added. However, a sigmoid activation function was 

added to the ouput binary values. For the multi-class classification task in the case of 

JFK, a Dense layer of four units was added with the softmax activation function. 

An LSTM model requires a loss function and optimizer for the training of the 

model. For the regression task, MSE was used as the loss function and Adam was used as 

the optimizer. For the binary classification model, Binary Cross Entropy was used as the 

loss function while Categorical Cross Entropy was used as the loss function for the multi-

class classification task. Adam was used as the optimizer for both the classification tasks. 

Table 3 depicts the model summary for the multi-class classification problem utilizing the 
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LSTM encoder-decoder model. The LSTM encoder-decoder model consisted of 104,501 

parameters. Figure 21 depicts the model plot for the LSTM encoder-decoder model. 

Table 3 

Model Summary for the LSTM Encoder-Decoder Model 

Layer Output Shape Number of Parameters 
1-D Convolutional  (None, 19, 12) 1,524 
LSTM-1 (None, 19, 32) 5,760 
Leaky ReLU (None, 19, 32) 0 
Dropout (None, 19, 32) 0 
LSTM-II (None, 19, 64) 24,832 
Leaky ReLU (None, 19, 32) 0 
Dropout (None, 19, 32) 0 
LSTM-III (None, 64) 33,024 
Repeat Vectors (None, 6, 64) 0 
LSTM-IV (None, 6, 32) 12,416 
LSTM-V (None, 6, 32) 24,832 
Time Distributed (None, 6, 32) 2,080 
Time Distributed         (None, 6, 32) 33 

Note. Total trainable parameters in the model was 104,501 
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Figure 21 

LSTM Encoder-Decoder Model Plot 
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Transformer Model 

The Transformer model was used for classification and regression tasks. To use 

the Transformer for the time series task rather than a Natural Language Processing task, 

several aspects of the traditional Transformer architecture needed to be adjusted to fit the 

requirements of the task. The input and output sequence data was identical to that used 

for the LSTM encoder-decoder model.  

Unlike the LSTM encoder-decoder model, the Transformer model cannot be 

directly created as a function of Tensorflow. Several functions needed to be coded to 

develop the final Transformer model. The encoder section of the model was first 

developed with the addition of normalization, multi-head attention, and dropout layers. 

Epsilon is a hyperparameter added to the normalization layer, which is a variance that is 

added to avoid the division of any term by 0. The epsilon was set to 1 x 10-6. The 

feedforward section of the encoder consisted of a normalization layer, a 1-dimensional 

convolutional layer, and a dropout layer. The convolutional layer consisted of 12 filters 

with a kernel size of 3 and ReLU as the activation function.  A final dense layer was 

added to complete the encoder sequence.  

The decoder layer was used to generate the desired output sequence. The decoder 

layer was initiated using a simple linear dense layer followed by multi-head attention and 

feedforward layers. For simplicity, the hyperparameters for the encoder and decoder 

layers were kept similar, if not the same. The encoder and decoder consisted of two 

multi-head attention layers and two feedforward layers. The head size for the multi-head 

attention layers was set to 32 for all the layers. The dropout was set to 0.3, and the 

number of transformer blocks was set to 4.  
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The transformer model utilized Adam as the optimizer and MSE for the loss 

function for the regression tasks. For the binary classification task and multi-class 

classification task, binary cross-entropy and categorical cross-entropy were used as loss 

functions respectively. Early stopping with a patience of 10 was set as a regularizer, and 

the model was trained on batch sizes of 64. Figure 22 is a pictorial representation of the 

Transformer model developed for the study. Appendix E depicts the coding used to 

develop the models.  

Figure 22 

Transformer Model Architecture 
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Model Evaluation 

The LSTM encoder-decoder and Transformer models were evaluated separately 

for the regression and classification tasks. The taxi out time prediction task was treated as  

regression tasks, and the models were evaluated on MSE, RMSE, R-squared, and MAE.  

Taxi Out Time Prediction 

The LSTM encoder-decoder and Transformer models were developed to predict 

the taxi out times for MCO and JFK. Additionally, using Repeat Vectors and Time 

Distributed layers, an output sequence of six continuous values was generated that 

represented taxi out times prediction for a six-hour outlook. Utilizing a customized query, 

each sequence component could be used as a variable to be evaluated against the actual 

value of the sequence to compute the MSE, RMSE, R-Squared, and MAE. Table 4 

depicts the model evaluation parameters for the taxi out time prediction for MCO and 

JFK. Figure 23 and Figure 24 depict the loss curve measured by MSE for the training and 

validation sets for MCO and JFK respectively.  

Based on the evaluation results, the LSTM encoder-decoder models performed 

slightly better than the Transformer model for MCO and JFK. There was an improvement 

in model performance from Sequence 1 to Sequence 2 and then a degradation in 

performance for the LSTM encoder-decoder and Transformer models. The best 

prediction performance was exhibited by the LSTM encoder-decoder model for MCO to 

predict the Sequence 2 taxi out time. Based on the Loss Curves for MCO and JFK, the 

training was stopped once the validation loss stopped reducing due to the early stopping 

used as a regularizer. Due to the difference in the training and validation loss, there is an 

observable scope for overfitting in both models.  
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Table 4 

Model Evaluation Parameters for the Taxi Out Time Prediction 

  LSTM Encoder-Decoder Transformer 
Parameter Sequence MCO JFK MCO JFK 

MSE 1 43.12 46.52 47.23 49.52 
 2 41.26 45.82 47.19 48.81 
 3 43.26 45.99 49.27 49.58 
 4 44.89 47.25 51.34 49.57 
 5 47.84 50.15 54.29 50.02 
 6 51.29 52.52 58.92 51.03 

R-Squared 1  0.57 0.49 0.52 0.48 
 2  0.61 0.51 0.52 0.49 
 3  0.59 0.50 0.48 0.48 
 4  0.56 0.46 0.47 0.48 
 5  0.47 0.45 0.47 0.47 
 6  0.43 0.39 0.45 0.47 

RMSE 1  6.57 6.82 6.87 7.04 
 2  6.42 6.76 6.86 6.98 
 3  6.57 6.78 7.02 7.04 
 4  6.78 6.87 7.16 7.05 
 5  6.92 7.08 7.36 7.07 
 6  7.16 7.24 7.67 7.14 

MAE 1  3.92 4.21 4.31 4.38 
 2  3.84 4.13 4.29 4.31 
 3  3.97 4.52 4.38 4.42 
 4  4.12 4.84 4.41 4.51 
 5  4.22 5.26 4.43 4.50 

 6  4.56 5.46 4.52 4.57 
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Figure 23 

Taxi Out Time Loss Curve for MCO  

 

Figure 24 

Taxi Out Time Loss Curve for JFK  

 

 

 

 



85 

 

Runway Configuration Selection Prediction 

The LSTM encoder-decoder and Transformer models were developed to predict 

the runway configuration selection for MCO and JFK. Considering the runway 

configuration selection prediction task was a classification task, the output layer needed 

to be modified for the LSTM encoder-decoder and transformer models.  

For the binary classification task for MCO, a single cell in the output layer with 

the sigmoid activation function was used. For the multi-class classification task for JFK, 

four cells in the output layer with Softmax activation function were used. Additionally, 

for the multi-class classification task, the labels needed to be one-hot encoded before the 

model development. Using Repeat Vectors and Time Distributed layers, an output 

sequence of six values was generated that represented runway configuration selection 

prediction for a 6-hour outlook. Utilizing a customized query, each component of the 

sequence could be used as a variable to be evaluated against the actual value of the 

sequence to computer the accuracy, precision, recall, and kappa score. Table 5 depicts the 

model evaluation parameters for the runway configuration prediction for MCO and JFK. 

Figure 25 and Figure 26 depict the loss curve measured by cross entropy for the training 

and validation sets for MCO and JFK respectively.  

Unlike the taxi out time models, the LSTM encoder-decoder and Transformer 

models have comparable performance for the runway configuration selection task. For 

the LSTM encoder-decoder model, the best prediction performance is observed in 

Sequence 3, while the best prediction performance for the Transformer model is observed 

in Sequence 3 and Sequence 4. The training loss decreased with increasing epochs for 

MCO and JFK. However, due to early stopping used as a regularizer, the training was 
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stopped due to a lack of improvement in validation set performance. Despite utilizing 

early stopping as a regularizer, the loss curves indicate overfitting for both models.  

Table 5 

Model Evaluation Parameters for the Runway Configuration Selection Prediction 

  LSTM Encoder-Decoder Transformer 
Parameter Sequence MCO JFK      MCO JFK 

Accuracy 1 78.26 76.54 72.32 73.24 
 2 79.25 77.12 72.18 71.25 
 3 80.24 77.24 71.26 73.54 
 4 78.56 74.26      70.15 69.54 
 5 73.45 71.54 66.54 68.24 
 6 70.15 66.25 62.38 63.58 

Precision 1  0.78 0.77  0.76 0.76 
 2  0.79 0.78  0.76 0.76 
 3  0.70 0.78  0.78 0.80 
 4  0.70 0.80  0.82 0.79 
 5  0.66 0.78  0.80 0.78 
 6  0.64 0.76  0.80 0.78 

Recall 1  0.83 0.82  0.78 0.77 
 2  0.84 0.80  0.78 0.78 
 3  0.72 0.78  0.80 0.78 
 4  0.72 0.84  0.84 0.80 
 5  0.72 0.78  0.82 0.78 
 6  0.60 0.76  0.80 0.76 

Kappa  1  0.54 0.54  0.56 0.58 
 2  0.56 0.52  0.54 0.53 
 3  0.52 0.51  0.56 0.58 
 4  0.50 0.56  0.60 0.56 
 5  0.51 0.52  0.58 0.56 

 6  0.46 0.50  0.53 0.54 
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Figure 25 

Runway Configuration Selection Loss Curve for MCO 

 

Figure 26 

Runway Configuration Selection Loss Curve for JFK  

 

To analyze the classification model performance, a confusion matrix was 

developed for the testing set. Considering the LSTM encoder-decoder and Transformer 

models predicted six sequences for two airports, a total of 24 confusion matrices could be 
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created. However, only the best-performing sequence for MCO and JFK was chosen to 

develop the confusion matrix. Figure 27 depicts the confusion matrix for Sequence 2 for 

MCO. The runway configuration selection prediction task for MCO was a binary 

classification task with two possible outcomes (Table 2). There was a better predictive 

performance observed for predicting the South runway configuration. Figure 28 depicts 

the confusion matrix for Sequence 3 for JFK. The runway configuration selection 

prediction task for MCO was a multi-class classification task with four possible outcomes 

(Table 2). The best predictive performance was observed for predicting the North runway 

configuration followed by predicting the West runway configuration.  

Figure 27 

Confusion Matrix for MCO 
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Figure 28 

Confusion Matrix for JFK  

 

Model Interpretation 

SHAP was used to interpret the models to get a better insight regarding the 

predictors or factors that significantly influenced the predictions of the Deep Learning 

models developed in this study. The SHAP library on Python was used to conduct the 

SHAP analysis. Due to computation feasibility, only the best-performing models were 

used for the SHAP analysis. Additionally, like the loss functions used in the model 

development, all output sequences were evaluated with the same weights. Figure 29 

depicts the mean absolute SHAP values for the taxi out time prediction model at MCO. 

The number of departures had the highest impact on the model predictions, followed by 

the number of arrivals.  
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Figure 29 

Mean Absolute SHAP Values for Taxi Out Times at MCO 

 

SHAP values can be positive or negative depending on their impact on the model 

prediction. Figure 30 depicts the magnitude of the SHAP values of the different 

Independent Variables for the taxi out time prediction model at MCO and their impact on 

the model predictions. The number of departures had significantly high positive and 

negative SHAP values, while number of arrivals has a high positive SHAP value, but a 

low negative SHAP value.  
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Figure 30 

SHAP Values for Taxi Out Times at MCO 

 

A SHAP Dependence plot can be used to evaluate the effect of a variable value on 

the SHAP value over the entire dataset. Figure 31 depicts a SHAP Dependence plot for 

the Departures variable for the taxi out times prediction model at MCO. A positive 

relationship between the number of departures and SHAP value is observed, which 

implies that as the number of departures increases, the impact of departures compared to 

other variables in the dataset increases on the model predictions.  
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Figure 31 

SHAP Dependence Plot for Taxi Out Times at MCO.  

 

A SHAP analysis could be conducted for the runway configuration selection 

model at MCO too. Figure 32 depicts the mean absolute SHAP values for the binary 

classification model. Just like the taxi out times model, Departures has the highest mean 

absolute SHAP value, but the magnitude of the SHAP value is lower. There is a more 

significant impact of other variables, such as Dew Point and Wind Direction (NE, NW, 

SE, and SW) on the predictions made by the model.  
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Figure 32 

Mean Absolute SHAP Values for Runway Configuration Selection at MCO 

 

The SHAP values for the runway configuration selection prediction models 

demonstrate a higher balance in terms of the impact of different variables on the model 

predictions as compared to the SHAP values for the taxi out times prediction model. 

Figure 33 depicts the SHAP values for the different independent variables for the runway 

configuration selection prediction model at MCO. 
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Figure 33 

SHAP Values for Runway Configuration Selection at MCO 

 

The SHAP analysis was conducted for the taxi out times and runway configuration 

selection prediction models at JFK too. Just like the taxi out times prediction model for 

MCO, Departures had the highest impact on the predictions of the model, followed by 

Arrivals. Figure 34 depicts the mean absolute SHAP values for the taxi out times 

prediction at JFK. 
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Figure 34 

Mean Absolute SHAP Values for Taxi Out Times at JFK 

 

The runway configuration selection task for JFK was a multi-class classification 

task with four possible outputs. A SHAP analysis was conducted for the multi-class 

classification task as well. Figure 35 depicts the mean absolute SHAP values for the 

runway configuration selection model at JFK. The mean absolute SHAP values were also 

classified by the four one-hot encoded classes. Dew Point had the highest mean absolute 

SHAP values, followed by Relative Humidity. The runway configuration selection SHAP 

values for the multi-class classification values differed from the runway configuration 

selection SHAP values for the binary classification problem. 
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Figure 35 

Mean Absolute SHAP Values for Runway Configuration Selection at JFK 

 

Note. For the SHAP analysis, E, N, S, and W were treated as Class 0, Class 1, Class 2, 

and Class 3 respectively.  

Considering the Dew Point and Relative Humidity had the highest SHAP values, 

the SHAP Dependence plots were analyzed for the Dew Point and Relative Humidity 

variables. Figure 36 and Figure 37 depict the SHAP Dependence plot for Dew Point and 

Relative Humidity at JFK respectively. The SHAP Dependence plot can be developed for 

each class by treating it as a binary classification task. As evident in Figure 36, the SHAP 
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score for Dew Point is negatively skewed around 0 to -2 when the Dew Point temperature 

is less than 20 °C. Such a SHAP analysis can be extended to other classes presented in 

the multi-class classification task. Similarly, the SHAP scores for Relative Humidity are 

negatively skewed as well, but the curve flattens after the Relative Humidity rises over 

50. Extremely low SHAP values are observable at low Relative Humidity values.  

Figure 36 

SHAP Dependence Plot for Dew Point at JFK 
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Figure 37 

SHAP Dependence Plot for Relative Humidity at JFK 

 

Summary 

Chapter IV presented the results of the study. Firstly, an EDA was conducted to 

analyze and understand the data that was used for the study. Aspects of the data that were 

analyzed included the data imbalance of the dependent variable, distribution of the 

dependent variable, autocorrelation effect for the dependent variable, and the causality 

and correlation between the variables. The EDA focused on not only understanding the 

relationship between the variables used in the study, but also understanding the 

autocorrelation of variables due to the temporal nature of the data. The Granger Causality 

Test demonstrated the causality between the different time-series variables used in the 

study. 

Based on the data collected, the LSTM encoder-decoder and Transformer models 

were developed. The final model architectures for the LSTM encoder-decoder and 
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Transformer models were described, including the hyperparameters, loss function, and 

optimization algorithms. The taxi out times prediction models were evaluated on MSE, 

MAE, RMSE, and R-Squared values and the runway configuration selection prediction 

models were evaluated on the accuracy, precision, recall, and Kappa score values.  

While the LSTM encoder-decoder and Transformer models demonstrated 

comparable performance, the LSTM encoder-decoder models demonstrated better model 

evaluation scores for the taxi out times prediction task. The best model evaluation scores 

were observed in output Sequence 2 for the taxi out times prediction model. The LSTM 

encoder-decoder models also outperformed the Transformer model on most of the model 

evaluation scores for the runway configuration selection task. The best model evaluation 

scores were observed in output Sequence 3 for the runway configuration selection 

prediction model. 

The SHAP method was used to interpret the models. Based on the model 

performance, the LSTM encoder-decoder models were interpreted utilizing the SHAP 

plots. For the taxi out times prediction model, Departures and Arrivals were the most 

significant variables for the prediction models. For the runway configuration selection 

prediction model, Departures, Dew Point, and Wind Direction-related variables were 

determined to be the most significant variables for the prediction models.  
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Chapter V: Discussion, Conclusions, and Recommendations  

The purpose of the study is to develop Deep Learning sequence-to-sequence 

models to predict taxi out times and runway configuration selection based on hourly 

surface weather variables. This chapter discusses the key takeaways of the study based on 

the literature reviewed and background, the methodology used for the study, and the 

results of the study. Additionally, several conclusions from the study will be discussed 

and will be used to state the theoretical and practical contribution of the study. Finally, 

the results will be used for recommendations and discuss areas for further research.  

Discussion 

A significant focus of the study was to develop Deep Learning models to predict 

taxi out times and runway configuration selection. A review of related literature indicated 

that models to predict taxi out times and runway configuration selection had been 

developed before. However, models developed before have varied in different aspects, 

such as the model algorithms used, variables used for model development, and Machine 

Learning architectures used for model development. However, a gap in the literature that 

this study aimed to focus on was the utilization of sequence-to-sequence models to 

predict a sequence of taxi out times and runway configuration selection values rather than 

just a singular vector or data point. Considering the data was structured as a time series 

dataset with an hourly resolution, each output sequence data point would correspond to 

an hourly prediction. Based on the literature reviewed, such a model would be helpful for 

users as it would allow the users to not just predict values for the next time period but 

also predict values for the following six periods.  
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Deep Learning models that have demonstrated success in sequence-to-sequence 

learning were used. Two novel architectures, LSTM encoder-decoder and Transformers, 

were used. The model development required several hyperparameter tuning, which was 

done primarily on trial and error. A baseline model was initially used for training and 

testing. Several hyperparameters such as the number of layers, number of neurons in each 

layer, and activation functions were tuned to develop the final model. A significant focus 

of further research could be on further hyperparameter tuning utilizing other methods 

such as Keras Tuner, GridSearch, and Random Search. The lack of optimal 

hyperparameters used is a significant challenge for Deep Learning model development 

and is a limitation while assessing and comparing model performance. 

The predictions were evaluated based on the testing data for MCO and JFK. For 

the taxi out times prediction task, the LSTM encoder-decoder model performed better 

than the Transformer model. However, the regression performance for both models can 

be considered modest, considering the highest R-Squared value observed for Sequence 2, 

which implies that the model was only able to capture approximately 61% of the variance 

in the data. Such a medium R-Squared value in a multi-variate task can be attributed to 

either poor model performance, high out-of-sample error for the model, or poor selection 

of features. Based on the Loss Curve plotted for the models (figures 22–25), it is apparent 

that the models were overfitting due to the divergence of the training and validation 

curves and the difference between the training and validation loss. While multiple 

regularizers, such as dropout layers and early stopping, were used, the effects of 

overfitting were observed in the model performance. The feature assessment technique 

used for this study, SHAP values, indicated that the number of hourly departures and 



102 

 

number of hourly arrivals were the most significant factors that influenced the 

predictions. The results are intuitive as a higher number of departures and arrivals per 

hour in an airport would lead to higher congestion which could impact the taxi out times.  

Similar to the approach adopted for the taxi out times prediction, LSTM encoder-

decoder and Transformer models were used to develop models to predict the runway 

configuration selection. The baseline models had to be adjusted to output binary and 

categorical values rather than continuous values. For the binary classification task for 

MCO, the LSTM encoder-decoder model performed better than the Transformer model, 

with the best performance observed for Sequence 3. However, the performance of the 

Transformer and LSTM encoder-decoder models was almost the same for the multi-class 

classification task for JFK. The SHAP analysis demonstrated the significant influence of 

Dew Point, Departures, and wind direction-related variables on the runway configuration 

selection predictions. It is important to note that due to the binarization process of the 

Wind Direction variable, the effect or influence of each wind direction was individually 

assessed rather than the cumulative effect of all the wind directions.  

Based on the domain understanding, the possible role of the Departures and Wind 

Direction variables can be understood. However, the effect of Dew Point on runway 

configuration selection would be a case for further analysis and research on feature 

engineering. The main focus of the study was the development of the LSTM encoder-

decoder and Transformer models for the use cases in this study which warrants a more 

detailed discussion on the architecture and performance of those models. 
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LSTM Encoder-Decoder Model 

The LSTM encoder-decoder models developed in this study were based on 

baseline models published in related literature. Hyperparameter tuning was conducted 

primarily through monitoring the validation loss and trial-and-error. The final LSTM 

encoder-decoder model developed can be considered a deep model with 13 layers that 

included convolutional, LSTM, dropout, repeat vector, and time-distributed layers. The 

final model contained 104,501 trainable parameters and will require robust computational 

power during deployment. The computational efficiency of the LSTM encoder-decoder 

model was not a focus of the study and can be considered a limitation and area of future 

research. The performance of the LSTM encoder-decoder model can be attributed to a 

large number of baseline models available in the literature and the different types of 

algorithms that were used based on recommended practices.  

Transformer Model 

A large amount of available literature for Transformer models focused on the 

utilization of the model for Natural Language Processing tasks such as language 

translation. The utilization of Transformers for time-series tasks can be considered 

relatively recent, which highlights the potential for further research and development to 

create baseline models. Due to the scope of this study, only baseline models were utilized 

for hyperparameter tuning. With the limited literature on the subject, it is expected that 

the performance of the Transformer model was affected by the lack of optimal 

hyperparameters and the lack of baseline models used in this study. The poor 

performance of the Transformer models cannot be attributed to the inability of the 

Transformer models to model time-series or sequential data, as such models have 
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demonstrated better performance than LSTM encoder-decoder models in similar 

sequential data use cases.  

The Transformer model developed in this study can be considered rudimentary 

compared to the LSTM encoder-decoder model, with only two layers each in the encoder 

and decoder sections. Standard and recommended practices of utilizing positional 

encoding followed normalization, multi-head attention, and feedforward neural layers 

were used for developing the model. The output layers were adjusted based on the 

continuous, binary, or categorical outputs desired for the taxi out times and runway 

configuration selection models. Further research on the hyperparameter tuning and model 

development for the Transformer models is expected to add valuable literature on the 

subject.  

Conclusions 

Deep Learning models, specifically LSTM encoder-decoder and Transformer 

models, were developed, validated, and tested to predict taxi out times and runway 

configuration selection for MCO and JFK. The significance of the study was highlighted 

by the research gap, and domain needs to be identified from the literature. Based on 

statistical tests such as the Augmented Dickey Fuller Test to test stationarity, ACF and 

PACF to identify autocorrelation, and the Grangers Causality Test to identify causality 

between the time series variables, the dataset used for the model development was 

assessed to be appropriate to capture and model temporal relationships. 

For the taxi out time prediction task, the LSTM encoder-decoder model 

performed better than the Transformer model for MCO and JFK. Out of the six output 

sequences, Sequence 2 demonstrated the best performance for JFK. The SHAP analysis 
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demonstrated that the Departure and Arrival variables had the most significant influence 

on the predictions.  

For the runway configuration prediction tasks, the LSTM encoder-decoder model 

performed better than the Transformer model for the binary classification task at MCO. 

The LSTM encoder-decoder model and the Transformer model had a comparable 

performance for the multiclass classification task at JFK. Out of the six output sequences, 

Sequence 3 demonstrated the best performance for JFK. The SHAP analysis 

demonstrated that the Departure, Dew Point, and Wind Direction variables had the most 

significant influence on the predictions.  

Theoretical Contributions 

The study contributed to the literature in several ways. Firstly, the study 

contributed to the literature on the impact of weather variables on taxi out times and 

runway configuration selection. Utilizing Deep Learning models, the relationship 

between different weather variables and taxi out times could be modeled and quantified 

through a deployable model. Additionally, utilizing a SHAP analysis, the models could 

be interpreted to understand the modeled relationships better. Secondly, the study 

contributed to the literature on the use of time series modeling applications in aviation. 

The literature reviewed for this study suggested that time series modeling techniques such 

as linear autoregressive and moving average have been utilized for different aviation 

prediction tasks. However, this study added to the body of literature by highlighting 

additional use cases of time series Deep Learning models that can be used for various 

aviation applications.  
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The study also contributed to the literature on sequence-to-sequence modeling. 

Previous literature on predicting taxi out times and runway configuration selection treated 

the dependent variable as a single data point or vector. The advancement of sequence-to-

sequence techniques in Deep Learning has allowed users to predict a sequence of outputs 

with some sequential relationship between them. The methodology and results of this 

study are novel because it demonstrates an additional use case of sequence-to-sequence 

modeling in aviation. Finally, the study also contributed to the literature on the different 

applications of LSTM and Transformer models. As reviewed in the literature, the 

advancement of Deep Learning is rapidly progressing, with scholars researching and 

developing different model architectures and techniques to improve feasibility and 

performance. While this study did not contribute to developing any new or improved 

model architecture or technique, the study did contribute towards the applications 

research aspect of Deep Learning research by utilizing and testing the existing models in 

an aviation use case.  

Practical Contributions 

 The results of the study have various practical contributions for different 

stakeholders in the aviation industry, including airlines, ATC, airports, and regulatory 

bodies. The literature review suggested the significant effect of different runway 

configurations on the operations at an airport including the effects on taxi times, capacity 

restrictions, and ground delays. Previous literature on utilizing predictive modeling has 

focused on accurately forecasting runway configurations as a tool for resource allocation 

and forecasting. Similarly, forecasting taxi out times at an airport can help airlines and 
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airports accurately predict airport capacity restraints and ground delays to help mitigate 

such delays in advance and efficiently utilize airport resources. 

A runway configuration selection and taxi out times forecasting model, such as 

the models developed in this study, can aid an airline and airport management in 

predicting taxi out and runway configurations at airports and determining the most 

significant weather-related predictors. The runway configuration selection and taxi out 

times prediction models will allow airline managers to make better informed short-term 

operations decisions such as block fuel and contingency fuel planning along with 

resource and gate allocations. 

Limitations of the Findings 

The findings of this study have several limitations that need to be considered. The 

performance of Deep Learning models is significantly affected by the feature engineering 

or selection process used for their development. While the literature reviewed suggested 

significant features or variables that demonstrated success in predicting taxi out times and 

runway configuration selection in previous studies, the features used in this study for the 

development of the models was restricted by the availability and access to data. The data 

used in this study was limited to two public access databases managed by the FAA and 

NOAA. Previous studies reviewed utilized data from different sources, such as ARINC 

and ASDE-X, that were not accessible to the researcher for this study (Diana, 2018; Lee 

et al., 2016). Features that might have improved the performance of the models and have 

significant relationships to the dependent variables used in the study might not be 

included due to the lack of availability of data. Additionally, the model development 

utilized a large number of features. Utilizing a large number of features can lead to a 



108 

 

compromise on the performance and the generalization of the model predictions. 

Dimension reduction techniques are utilized to cope with, such issues, which are 

commonly known as the Curse of Dimensionality. This study did not utilize any 

dimensionality reduction techniques due to the scope and objective of the study. 

Techniques commonly used for dimension reduction, such as Principal Component 

Analysis, Truncated Singular Value Decomposition, and Latent Discriminant Analysis, 

were not used for the study and can be considered a limitation of the study.  

The critical component of the model development for Deep Learning models is 

the loss function used to train the model. The models developed in this study utilized a 

time series multivariate input to predict an output sequence. The loss function considered 

every sequence output with equal weightage or importance which could lead to sub-

optimal optimization while training the model. Similarly, the loss curve also considered 

each output of the sequence with equal weightage and did not consider any sequential 

dependency. Hence, the loss curve cannot be directly interpreted to evaluate the model 

performance. There is a need to develop a more domain-specific loss function or adjust 

the currently utilized loss function to improve the model performance interpretation and 

the optimization of the model training. 

The development and training of a Deep Learning model significantly depends on 

the hyperparameter tuning method or strategy used. The LSTM encoder-decoder and 

Transformer models were developed based on baseline models that were available in 

published literature for similar use cases. Additionally, the hyperparameters were 

manually tuned based on previous knowledge and trial and error. The manual process of 

hyperparameter tuning can be considered a limitation of the study as this could have led 
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to sub-optimal hyperparameters that could have affected the performance of the models. 

Finally, the study did not consider the computational power and efficiency of the models 

in the study. If the models are deployed for commercial use, the efficiency, data flow, and 

computational feasibility of model deployment need to be considered as well.  

Recommendations 

While the results can be considered novel and have theoretical and practical 

contributions, there are several recommendations proposed for further research on the 

topic. The recommendations are targeted towards regulatory authorities including the 

FAA, airlines, and researchers in the Machine Learning community.  

Recommendations for Regulatory Authorities 

While the model development and testing focused on just two airports in the 

United States, the methodology and results of the study are expected to benefit 

stakeholders in the aviation industry around the world. The development of the models in 

this study was possible due to the availability and quality of data available to the 

researcher. Data utilized in this study included surface weather observations and airport 

traffic data. The models could be expanded to include data related to gate allocations, 

gate delays, passenger demand, departure and arrival queues, airspace capacity, and 

departure queuing sequence. Such variables have been demonstrated to be significant 

predictors of runway configuration selection and taxi times in previous studies and were 

not utilized in this study due to restricted access. Previous studies utilized data from 

different sources, such as ARINC and ASDE-X, that were not accessible to the researcher 

for this study (Diana, 2018; Lee et al., 2016). Regulatory authorities such as the FAA can 
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work to expand the amount of data collected and attempt to release such data to the 

public, which can encourage research and development efforts.  

The utilization of predictive models, such as the ones developed in this study, will 

also require regulatory approval. As long as Machine Learning models are not deployed 

and utilized, their usability will not be tested and will remain an area of uncertainty for 

Machine Learning researchers. Authorities such as the FAA need to encourage the 

utilization of Machine Learning models in airports and air traffic operations while 

maintaining the safety standards in the NAS.  

Recommendations for Airlines 

The models developed in the study were trained on public access data from the 

FAA ASPM and NOAA databases. The FAA ASPM database did not contain data 

variables specific to airlines, such as terminal or gate allocation information. Gate 

allocation can affect the taxi out times for an aircraft and has been demonstrated to be a 

significant predictor of taxi out times. Additionally, certain data variables are critical for 

an airline operation at a particular airport, such as the utilization of intersection 

departures or the departure fixes after departure from a particular runway. Airlines should 

invest on collecting and maintaining data that might be unique to their airline operations 

and might improve the performance of such prediction models. The results and model 

pipeline of this study should be used as a theoretical foundation for airlines to collect and 

maintain their data and develop predictive models that will be suited to their unique 

operations.  
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Recommendations to the Machine Learning Community 

The study utilized two Deep Learning architectures. While there is significant 

literature on utilizing LSTM encoder-decoder models for time series sequence-to-

sequence learning, the literature on Transformers for multivariate time series sequence-

to-sequence problems and the availability of baselines models is minimal. Significant 

literature on the utilization of Transformer models is limited to use cases in Natural 

Language Processing. Further research and development efforts are required in 

developing Transformer models for time series models due to their demonstrated success 

in processing sequential data in Natural Language Processing. The development and 

success of models will encourage the deployment of predictive models in airport and 

airline operations and expand research and development opportunities in the aviation 

industry.  
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Appendix B 

Granger’s Causality Test 

B1 Python Code for Granger’s Causality Test 

Figure B1 

Python Code for Granger’s Causality Test 
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Appendix C 

Python Code to Create Input and Out Sequence 
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Appendix D 

Python Code to Develop the LSTM Encoder-Decoder Model 
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Python Code to Develop the Transformer Model 
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