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Abstract

Edgar Asplund in [1] presented a geometric lemma that largely anti-
cipated many results on the structure of inverses of band matrices. In
this note we discuss an extension of Asplund’s lemma that addresses the
concept of generalized inverse, in particular the Moore-Penrose inverse.

1 Introduction and motivations

The paper [1] of Edgar Asplund contains the first result on the structure of the
inverse of a band matrix without assumptions on its elements. The strength of
the paper, in our opinion, is in its abstract, geometric formulation. Actually, the
importance of the work of Asplund is recognized in [5] where relations between
rank properties of certain subblocks of a matrix and its inverse are reviewed.
These properties play a fundamental role in the work of various authors, aiming
at a precise definition of the concept of rank structure, see for example [3, 4].

Generalized inverses have important applications in matrix theory, see [2].
The (perhaps) best known generalized inverse, named after Moore and Penrose,
is strictly related to the problem of the solution, in the least squares sense, of
an overdetermined linear system, see again [2].

In this note we extend Asplund’s results to the Moore-Penrose inverse of a
band matrix, since an extensive search did not allow us to find any result in this
direction. We try to follow [1] in the spirit and in the form. For this reason, we
do not pursue here any application or specific inversion formula. Both of them
will be shown elsewhere.

2 A geometric lemma

Let V be a finite dimensional vector space over the real or complex field, and
let f : V → V be a linear mapping. We denote with f+ its Moore-Penrose
inverse, for the definition see [2]. As well known, if f is nonsingular f+ = f−1.
More generally, let null(f) be the nullspace of f , and let H = rank (f+). The
definition of the operator f+ implies that H is the orthogonal complement of
null(f) so that V = null(f) ⊕ H. Here, as customary, ⊕ denotes the direct
sum of subspaces. Analogously, K = rank (f) is the orthogonal complement of
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null(f+). If h denotes the projection on H along null(f) it is well known that
f+◦f = h. At this point, let R and S, T and U be two couples of complementary
subspaces of V , so that

V = R⊕ S = T ⊕ U.

Let r indicate the projection on R along S, s indicate the projection on S along
R and let t and u have analogous meanings. In this setting Asplund proves an
elegant result, that here we restate by using the notation | · | to indicate the
dimension of a linear space.

Lemma 1 If f is nonsingular then |tf(S)| = 0 if and only if

|rf−1(U)| ≤ |R| − |T |.

In order to drop the hypothesis of nonsingularity we need to separate the two
implications. We begin with the “only if” part of the lemma.

Lemma 2 If |tf(S)| = 0 then

|rf+(U)| ≤ |U | − |S ∩H|.

Proof. The assumption |tf(S)| = 0 implies f(S) ⊆ U . Now let us consider a
basis in f(S) and let us extend it to a basis of U . Since f+(f(S)) = h(S) we
obtain

|rf+(U)| ≤ |U | − |f(S)|+ |rh(S)|. (1)

Obviously |f(S)| = |S|−|S∩null(f)|. Analogously |h(S)| = |S|−|S∩null(h)| =
|S| − |S ∩null(f)|, since null(h) = null(f). Thus |rh(S)| = |h(S)| − |h(S)∩S| =
|S| − |S ∩null(f)| − |S ∩H|, since h(S)∩S = H ∩S. This leads to the thesis.

The main difference with the nonsingular case is that here we have to con-
sider h(S) instead of S. Let us observe that if f is nonsingular then |U | − |S ∩
H| = |U | − |S| = |R| − |T |. More generally, since H and nullf are complemen-
tary |S| − |S ∩H| ≤ |null(f)| and this implies a useful inequality that helps to
compare the two lemmas 1 and 2

|U | − |S ∩H| ≤ |U | − (|S| − |null(f)|) = |R| − |T |+ |null(f)|.

We now extend the second part of Asplund’s result.

Lemma 3 If
|rf+(U ∩K)| ≤ |U ∩K| − |S ∩H|

then |tf(S ∩H)| = 0.

Proof. Clearly f+(U) ⊆ H and since S ∩H is the nullspace of r over H then
it turns out that S ∩H ⊆ f+(U ∩K) so that f(S ∩H) ⊆ U ∩K leading to the
thesis.
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3 Band matrices and Green’s Matrices

We now turn to band matrices and their (generalized) inverses. Our definitions
are closely related to Asplund’s ones.

Definition 1 A band matrix of order p is a square matrix A = (aij) over the
real or complex field whose elements satisfy aij = 0 for j > i + p. If in addition
aij 6= 0 for j = i + p the band matrix is said to be strict.

Definition 2 A (p, q) Green’s matrix is a square matrix A = (aij) over the real
or complex field whose submatrices have rank ≤ q if their elements belong to the
part of (aij) for which j + p > i.

Now we follow both the statement and the proof of one of the implications
Theorem 1 in [1].

Theorem 1 If A is band matrix of order p ≥ 0 then A+ is a (p, p + |null(A)|)
Green’s matrix.

Proof. Let |V | = n and let A be the representation of a linear mapping f with
respect to the basis vectors bi where i = 1 : n. Take some submatrix of A+

whose elements are all from the part of the matrix where j + p > i. For some q
in the range 0 : (n−p) there must be some submatrix A+(1 : (p+ q), (q +1) : n)
including the given submatrix. We want to prove that its rank is less or equal
to p + |null(A)|. Let R, S, T , U be the subspaces of V spanned by the vectors
bi for i = 1 : (p+ q), i = (p+ q +1) : n, i = 1 : q, i = (q +1) : n respectively (we
agree that the empty set spans the trivial subspace {0}). Clearly |tf(S)| = 0.
Thus we can apply lemma 2 to get the thesis.

Asplund noticed that when strictness is assumed a simple description of the
inverse can be obtained involving a matrix of low rank. An analogous result
holds in general. We need a lemma from matrix theory.

Lemma 4 If A and X are square matrices then rank(X) ≤ 2 |null(A)| +
rank(AXA).

Proof. Given two square matrices A and B it is known and simple to prove
that rank(AB) ≥ rank(B) − |null(A)| and analogously rank(AB) ≥ rank(A) −
|null(B)|. Then

rank(AXA) ≥ rank(AX)− |null(A)| ≥ rank(X)− 2 |null(A)|.

The promised result follows.

Theorem 2 If A is a strict band matrix of order p ≥ 0 then its Moore-Penrose
inverse is the sum of a strict band matrix of order −p and a matrix of rank
p + |null(A)| (and hence also a (p, p + |null(A)|) Green’s matrix).
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Proof. If A is a strict band matrix of order p ≥ 0 then it can be represented
in the form

A =
(

A11 A12

A21 A22

)

where A12 is a (n − p)-square invertible lower triangular matrix. We want to
show that the matrix

A+ −
(

0 0
A−1

12 0

)

has rank at most p + |null(A)| since this clearly implies the thesis.
Since AA+A = A one easily verifies that

A

(
A+ −

(
0 0

A−1
12 0

))
A =

(
0 0
S 0

)

where S = A21 − A22A
−1
12 A11 is the Schur complement of A12 in A. As well

known |null(S)| = |null(A)| so that rank(S) = p− |null(S)| = p− |null(A)|. By
using lemma 4 we obtain what claimed.

4 Extensions

With the due modifications to the definitions and the notations, all the results
proved so far hold if we consider instead of the Moore-Penrose inverse of f any
reflexive type g-inverse of f , i.e., a linear application g such that f ◦ g ◦ f = f
and g ◦ f ◦ g = g. Actually the orthogonality between the range of g and the
nullspace of f which is the distictive feature of the Moore-Penrose inverse, does
not play any active role in the proofs of Section 1.

Since the concept of orthogonality is not directly involved, the proofs in
Section 2 hold for matrices in arbitrary fields. Their validity in more abstract
settings is under consideration.
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