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Abstract

In the era of digital transformation of the manufacturing and process industry, heterogeneity of assets is one of the most challenging issues
towards digitally integrating components within the Industrial Internet of Things. In this context every participant relies on its proprietary digital-
ization approach envisioned by Plattform Industrie 4.0. To consolidate these heterogeneous data exchange interfaces, e.g communication protocols,
data formats etc., an intermediate step of harmonization is required. Our contribution provides an architecture based on the Asset Administration
Shell standard to bring heterogeneous Cyber-Physical-Systems together. We illustrate the functionality through an abstract use-case.
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1. Motivation

In the course of digitalization the manufacturing industry is
establishing digital representatives of physical assets such as
sensors and all kinds of machines. Suitable concepts to do so
are Digital Twins (DTs) [1] and Asset Administration Shells
(AASs) [1] that allow to monitor and even control their physical
counterparts. In the end, this digital transformation results in
a digital factory with all its assets able to communicate with
each other and the cloud. This, also known as the Industrial
Internet of Things (IIoT) [2], follows the idea of the Plattform
Industrie 4.0 (P14.0)!, which already delivers some well defined
interfaces and standards to enable a unified design.

In a broader scope, several of these digital factories will
work together and share all their data with each other. Here
some problems arise, like privacy, data security, and legal issues
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[3]. Another important challenge that needs to be addressed is
the combination of different underlying digitalization solutions
that are implemented by the different stakeholders. The situa-
tion will be as follows: every data provider, e.g. factories, is im-
plementing and is relying on its own proprietary digitalization
approach using different data formats (e.g. binary, text) and in-
terfaces (e.g. OPC UA, HTTP, MQTT). Nevertheless, to enable
the cooperation of the different parties, an intermediate step is
needed to harmonize the different data outputs and in the end
offer a standardized and agreed upon format everyone can use.

This paper focuses particularly on the digital representation
of physical assets and harmonization of data interfaces. The har-
monization of data interfaces is an incremental process where
the data from a physical device is abstracted from a set of pos-
sibly proprietary approaches to a generalized data format and
uniform interface. We present a solution for this harmonization
task in the form of an architecture based on the AAS standard
that aims for the integration of heterogeneous Cyber-Physical-
Systems. To do so we identified requirements that arise in the
context of harmonization and then present a novel solution for
each of them. We present both, an exemplary implementation
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in the project FAMOUS?, and a general overview utilizing ab-
straction layers incorporated in our architecture. Different pro-
tocols can be used from data providers and we present the map-
ping of an AAS on two of them (OPC UA and MQTT) in detail
and compare them in the end.

2. Related Work

The Industrie 4.0 (I4.0) movement aims to shift the existing
processes into a digital domain, where the assets of an industry
and the accompanying processes are digitized. This vision is a
multi-disciplinary challenge that demands careful consideration
of both, chosen technologies and approaches [4]. The success
of the vision depends partly on amalgamation of the diverse
domains of Cyber-Physical-Production-Systems [5] and use of
suitable technologies [6]. It requires the mapping of a heteroge-
neous set of features collected from participating domains to a
digital domain [7]. Accounting to the vast variety of aspects of
physical devices, e.g. their communication interfaces and man-
ufacturing practices, to name a few, there is an urgent require-
ment for a strategy for harmonization. One way of achieving
harmonization is through lifting the abstraction level of assets
and making the automation functions modular [8], leading the
way for distributed DTs. To this end, a service oriented archi-
tecture for automation is possible [9]. The research community
advocates AAS as one of the efficient methods in leading har-
monization of heterogeneous environments [10]. In a hierarchi-
cal system, the level of abstraction of an entity is important.
It adds a layer of morphism around the entity such that, at the
given level in the hierarchy, the morphism exposes relevant de-
tails to the participating entities and hides non-essential details.
For example, considering a sensor device as an entity, it is es-
sential for the operator who physically controls the device (a
lower level of abstraction) to utilize the information included
in the sensor’s data sheet. While an application interested in re-
ceiving the sensor values (at the higher level of abstraction), is
interested about the interface through which data is exchanged
with the sensor [11]. The AAS incorporates models [12] and
makes it easier for services residing at higher levels of abstrac-
tion to access data and manage assets located in heterogeneous
lower abstraction environments [13].

3. Requirements to achieve harmonization

To achieve harmonization in a way that meets the definition
of the previous section, we identified several requirements that
need to be satisfied. For the purposes of discussion we identified
two abstract uses cases that are illustrated in Figure 1:

1. Bottom-up: Assets (e.g. sensors) are located in the phys-
ical domain on the lowest abstraction level. Owned by
the data providers they are accompanied with a data sheet
that includes all the relevant information of the asset (e.g.
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measured unit, measurement frequency, etc.) and an of-
fered (proprietary) interface. The providers want to offer
their data to the data consumers and therefore need to lift
the abstraction level. This can be realised by transform-
ing a physical asset into a digital representation (a DT) to
achieve interoperability and promote usability.

2. Top-down: On the highest level of abstraction the service
providers want to consume the data from the physical do-
main in a way that is simplified as much as possible and re-
duced to the relevant parts. In consequence a data provider
knows the level of abstraction that is needed for its service
to operate sufficiently.

In both use-cases arise the same two main questions:

1. Q1: How can this be achieved in general?
2. Q2: How can interoperability be achieved between
providers and consumers?

Serwc_e /Product / Service \
Domain
| AAS specification |
| connection specs |
\ | abstraction level |/ Consumer
KX
Digital .
Domain Asset Administration Shell
Abstraction | Digital Twin |

Physical
Domain

| AAS specification

| datasheet |

Provider

Fig. 1. A graphical illustration of the abstraction level elevation.

Figure 1 illustrates an abstract solution for Q1 in the fol-
lowing way: A physical asset needs to also provide an AAS
specification as a composition of AAS meta-models [14] that
includes all the required information of how to represent the
asset in a digital form. This specification is a blueprint for the
digital representation. In the digital domain, the AAS instance
that is responsible for the harmonization process receives the
AAS specification and uses this information to create a DT of
the physical asset. The data exchanged from the asset uses its
own (proprietary) interface and is received by a so-called lifter
that is responsible for elevating the abstraction level. The lifted
data is then received by the AAS instance and can be received
from other digital assets if the current abstraction level is high
enough. If this is not the case, the data can be sent through
a lifter again. This procedure is repeated until the abstraction



Nikolaos-Stefanos Koutrakis et al. / Procedia CIRP 107 (2022) 95-100 97

level meets the requirements. The data consumers in the service
domain need to know, additionally to the required abstraction
level, how they can connect themselves to the AAS instance
and how the data will be provided (IP address and protocol).
Additionally they can receive the AAS specification of the as-
set they want to consume from and with this information they
are able to consume only the specific data they need for their
services. Based on this abstract architecture we identified the
following requirements:

1. Standardized interfaces: To enable the data exchange be-
tween assets (physical/virtual assets and services) it is re-
quired, that the data offered by the providers can be con-
sumed through a standardized interface. Assets may pro-
vide their data through any (proprietary) interface, but af-
ter the harmonization only one standard interface should
be in use.

2. Standardized data formats: Another important require-
ment is the usage of a standardized data format. Again,
assets may deliver their data in any form, but after the har-
monization the data should be provided in a standardized
format for the consumers.

3. Interoperability: Relating to Q2, a requirement is the in-
teroperability between the involved assets on different ab-
straction levels. The participating entities should therefore
be able to communicate and understand the exchanged
data formats. This point includes the two aforementioned
requirements but does not stop there.

4. Abstraction: As already stated above, the consumers do
not need all the data that comes with a physical asset. They
require specific information like for example the accelera-
tion measurement of a sensor that measures acceleration,
level and speed. The sensor in the physical domain also
provides data about measurement frequency etc. and there-
fore an elevation of the abstraction level is required, so
that in the end the data meets the needs of the consuming
service. The abstraction requirement also includes the ab-
straction of interfaces and data formats. Generally speak-
ing, implementation details should be hidden by abstrac-
tion.

5. Easy to use: A more general requirement is the ability to
make use of the harmonization in a way that is as straight
forward as possible. Most preferred would be a simple
plug-and-play solution, but if this is not possible, then the
process should be assisted as much as possible. Next to a
simplified usage, the data output in the end should be un-
derstandable and reduced to the important information. All
of this can be achieved by a good usage of abstraction.

4. Towards Harmonization

4.1. Generic Architecture

Figure 2 shows a conceptual architecture of an envisioned
AAS. The blocks in the figure are color coded to align to a
specific layer in the Reference Architectural Model Industrie
4.0 reference architecture. Starting from the bottom, the phys-

S i e | e [

- Interface
Service Domain - Servic-e Assel

PI14.0 Compliant AAS

i/f’plgmze Implementation

) " / Model
~——————\_ Inges

LN [ AAS Model Mod Elements
J Specification H AAS Agent & AAS
| (JSON)

Attributes
Regist Envi t
Digital Domain egistry nvironment ™y

Templates| Instances Interfaces

\ J/

:

| Actor

g ﬂj

Physical Physical Asset
Domain

RAMI 4.0 Layers

Functional

i Integration I:l
Communication [ | Asset

Fig. 2. Conceptual architecture of harmonization with AAS.

ical domain represents physical assets. To operate the asset,
the asset’s attributes and data interfaces are relevant to a user.
Depending on the design and capabilities, an asset has a set
of heterogeneous attributes and interfaces. The user employs
relevant technology to make the asset functional. For the pur-
pose of modeling the asset in a digital domain, it is sufficient
that the user abstracts the interfaces and attributes of the as-
set, through a combination of meta-model instances provided
by the AAS standard. The AAS provides the facility to model
the asset through AAS specification in the form of a digital doc-
ument for example JavaScript Object Notation (JSON), which
is used as default format in our discussion in the rest of the pa-
per. The computing node runs an AAS agent capable of reading
the JSON and transforming the embedded AAS specification
into a digital model in the AAS environment, such that there is a
one-to-one mapping between the attributes and interfaces of the
physical asset to their digital counterparts in the form of model
elements. Furthermore, through the medium of the AAS agent,
the same AAS specification in the form of JSON guides the
services in the service domain towards accessing the attributes
and interfaces of the physical asset. If needed, the AAS inter-
face located in the physical and the service domain translates
to and from a proprietary protocol, into a generic standardized
protocol of the digital domain. The approach of AAS makes it
possible to build assets as modular and re-usable blocks. We
can observe the following distinct points:

o A common AAS specification in the form of JSON ele-
vates the abstraction level of physical assets and makes it
reachable at all 3 domains.

e It’s sufficient for users who intend to access the phys-
ical asset to communicate with the AAS agent in the
digital domain with a standardized protocol. This way
AAS relieves the user’s burden of prerequisite expertise
in lower abstraction technologies that physical asset orig-
inally uses.

Extending from Figure 2 we now focus on modeling the as-
set’s attributes and data interfaces. The set of meta-models pro-
vided by the AAS is extensive. The general layout of an AAS
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specification has 4 top level objects, where each top level ob-
ject holds objects of a specific type. The field idShort in each
object holds a unique identifier visible and referable under a
given namespace.

¢ assetAdministrationShells: holds objects of type asse-
tAdministrationShell. Each assetAdministrationShell ref-
erences one or more objects of type submodel identified
by idShort. Each object of type assetAdministrationShell
represents an AAS as a kind of a re-usable femplate or an
instance.

e submodels: holds objects of type submodel. Each sub-
model delineates an asset in the form of one or more hi-
erarchically organized objects of type submodelElement
Each submodelElement models a specific aspect of the
asset. Both submodel and submodelElement object types
can hold representations of kind, either template or in-
stance. Together, they take the responsibility of mod-
elling the asset.

e assets: holds objects of type asset. Each asset can be
kind, either type or instance. Each asset object models
certain necessary non-functional features of the asset.

o conceptDescriptions: holds objects of type conceptDe-
scription. Each conceptDescription provides descriptions
of extended concepts referred by other object types in the
AAS to enhance the representation vocabulary.

Figure 3 gives a graphical representation of an AAS descrip-
tion of a hypothetical accelerometer sensor, which would be
given as a JSON or XML document in reality. Starting from the
outermost rectangle, assetAdministrationShells[0], exposes the
object of type assetAdministrationShell that represents an in-
stance of an AAS with idShort = ”Sensor_A”. This AAS further
refers to an instance of type submodel with idShort = ”Gyro”.
Furthermore, the referred submodel holds the objects of type
submodelElement identified by idShort = ”’x” which holds mod-
elType = "Property” and “event_x”” which holds the modelType
= "BasicEvent”. “event_x" holds the required details about the
data interface used to receive events from the property ’x”. It is
used as a common example in the following subsections.

Submodel-Element
modelType=,BasicEvent”,
idShort=, event_x“

Submodel-Element
modelType=, Property”
idShort=,,x"

Submodel-Instance: idShort=,Gyro*

AAS: idShort=,Sensor_A"

AssetAdministrationShells

Fig. 3. Exemplary AAS description

In the following subsections we show, how abstract AAS de-
scriptions are mapped to the concrete network protocols OPC
UA and MQTT for interoperability in the different layers apart
from offering an implementation specific data interface.

4.2. Asset Administration Shell via OPC UA: Mapping AAS el-
ements to nodes

OPC UA is a Machine To Machine (M2M) communication
protocol. The AAS standard provides rules for mapping the
AAS specification syntactically onto OPC UA nodes. A com-
prehensive discussion on the rules of mapping between AAS
and OPC UA is given in [15, 16]. The hierarchical arrangement
of OPC UA nodes under the node AASRoot holds all other AAS
nodes. Each node’s unique browseName derived from idShort
of the encapsulated AAS object uniquely identifies the node un-
der a given namespace. The node’s displayNode derived from
idShort of the AAS provides a human readable name to the
node. Each node thus defined, has a specific type definition de-
pending on the object type of the AAS node refers to. Referring
to Figure 3, the following points provide an overview of our
mapping implementation:

e General hierarchy: The OPC UA server works in tandem
with an AAS agent that holds the digital models. Trans-
lation rules map digital models present in the AAS agent
on the OPC UA server. The AASRoot is the top-level node
that holds all other AAS nodes. Each unique AAS node,
an analog of the assetAdinistrationShell object in JSON,
holds the encapsulated submodel in yet another unique
node. The node of the submodel then holds the nodes of
submodelElements of Property x and BasicEvent event x.

o Relationship: The node of BasicEvent event_x references
the Property x.

o Data Exchange: Among other details, the node of event_x
holds a variable node responsible in holding the value of
data the clients can write to or read from. The clients that
write to the variable node lift the abstraction level of data
received from assets to a standardized interface of OPC
UA such that any client subscribed to the variable node
can receive the abstracted data without worrying about
the underlying topology or implementation details of the
asset.

4.3. Asset Administration Shell via MQTT: Mapping AAS ele-
ments to topics

MQTT is a lean Pubsub communication protocol well estab-
lished in the IloT-world. Further details are given in [17].

Basic mapping-approach is: Each individual AAS occupies
a root topic in the form <namespace>/<aasIdShort>.
The namespace-element is a generic item used to group a set
of AASs together, e.g. a company’s name. The AAS’ short ID
in the second position is used to identify the concrete AAS
instance. As short ID must contain only “letters, digits and
underscores” [14], this fits the MQTT topic constraints [17].
The AAS’ elements are published at sub-topics below this root
topic.

4.3.1. AAS self description

Accordingly the AAS’ self description in the form of
a JSON-document is published at the topic: <name-
space>/<aasIdShort>/aas. The third element aas was
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chosen in analogy to the REST interface described in [18]. Self
description is published as refained message, so that a new sub-
scriber receives it immediately when subscribing.

4.3.2. Submodel properties

In an AAS specification, a submodel property con-
sists of the property’s meta data and the property’s value.
In BaSyx [18], when offering AAS via HTTP/REST, a
client can choose exactly the section of an AAS’ de-
scription it is interested in, e.g. by querying GET
<host>/<aasIdShort>/submodels/<submodelId-
Short>/submodelElements/<elementIdShort>/~
value: Via the URI the client can choose between a property
value, a full property description or even a complete submodel.

Transferring this concept directly to MQTT or similar would
result in a huge number of topics: Each single element of an
AAS specification had its own topic. Even worse: When up-
dating just one Property value, in addition to the value’s topic’s
message another separate message to every topic corresponding
to each parent element would have to be sent.

A lean solution inspired by [19] would be: Leave out the
value attribute in the AAS description. Instead the value is
sent at an implicitly defined topic in the form: . ./submo-
delElements/<elementIdShort>/value. This might
align with the idea of the ValueOnly-serialization [20], but does
not seem to be covered by the standard as of today. This is why
we propose the usage of AAS-Events:

{
"idShort": "event_x",
"observed": {
"keys": [{
"type": 25,
"idType": 2,
"value": "<urn of submodel>",
"local": true
}, {
"type": 15,
"idType": 4,
"value": "Prop_X",
"local": true
3,

"modelType": {"name": "BasicEvent"},
"messageTopic": "<namespace>/Sensor_A/submodels
/Gyro/submodelElements/event_Prop_X",

"kind": 0}

The value field in the AAS specification is left out. In addi-
tion to the property of concern the submodel contains a model
element of type “BasicEvent” [20], referring to the property us-
ing the “observed”-attribute. It names the concrete MQTT topic
for the value updates in its messageTopic-attribute. Note: Al-
though in the example the event’s name relates to the property’s
name, an arbitrary name is possible.

4.4. Common data format for OPC UA and MQTT

Due to large overlap between our requirements and the
JSON-based Production Performance Management Protocol
(PPMP) of the Eclipse Unide project [21], we chose it as data
exchange format. In detail we use the Measurement Message,

Version 3. For our use-case we decided to make two elements
mandatory, which are optional in the standard: Each TimeMea-
surement must contain a Context object and: The Context object
must contain at least a non-empty value in the "unit’-field, as it
is used as minimum semantic description of the data.

5. Evaluation

This section provides a general comparison between imple-
menting AAS through OPC UA and MQTT. Keeping the JSON
representation of Figure 3 as a common point, we try to super-
impose the implementations of MQTT and OPC UA to com-
pare. The section first addresses the experiences relating to each
requirement listed in Section 3 and then makes a general com-
ment on the use-cases.

5.1. Experiences and comparison: AAS on OPC UA and MQTT

1. Standardized interfaces: Both MQTT and OPC UA ele-
vate the proprietary data interfaces of the assets to a stan-
dardized protocol. The clients connecting to the imple-
mentation may use a plug and play approach to receive
data.

2. Standardized data formats: Detailed in Section 4.4, both
implementations act as an intermediate medium between
the producer and consumer of data. The agreed contract of
the data format [21] between the producer and consumer
is kept intact by the implementations.

3. Interoperability: The message exchange protocols of
MQTT and OPC UA are interoperable thanks to the stan-
dardization and also the ecosystem of products and ser-
vices available around them. OPC UA is a de-facto stan-
dard for M2M communication in industries. MQTT is
widely prevalent in the field of IIoT.

4. Abstraction: OPC UA and MQTT focus different sce-
narios. While OPC UA was designed to be the all-
encompassing solution for IloT, MQTT was developed as
a simple, lean, general-purpose solution. Correspondingly
one will make the choice depending on the operational sce-
nario. It made sense to us to use MQTT in the physical
layer, supporting low resource devices and highly dynamic
network environments. Analogously, it made sense to use
the client-server-based OPC UA in the service layer, as it
offers all features services require to search and query the
specific portion of data they need.

5. Easy to use: The AAS implementation benefits users by
providing a standardized method of modeling their assets
through the meta-models provided by the AAS standard
of PI4.0. OPC UA and MQTT are two different technolo-
gies that can hold AAS representations. Together with in-
teroperability and abstraction as outlined earlier, they can
address the challenge of incorporating digital models for
automation. The discussion further reinforces the vision of
a common AAS specification that can be reused between
physical, digital and service domains as shown in Figure 2.
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5.2. Benefits to the use-case

To come back to the two abstract use-cases from section 3,
we have demonstrated how they benefit from the presented har-
monization approach. In the bottom-up case the data providers
are now able to abstract their assets through the meta-model that
is provided by the AAS standard. Consequently, they commu-
nicate interfaces and attributes to higher abstraction levels in a
clear and easy manner. On the other side, the top-down perspec-
tive benefits from the elevated abstraction level to standardized
interfaces which enables for the users the possibility to focus
on the development of their applications that can then be used
by plug-and-play.

6. Summary and Future work

Digitalization will be an important part of modern industry
and concepts like AAS and DT represent state-of-the-art solu-
tions for this task. To combine several proprietary digitaliza-
tions on different levels (physical, digital and service level) a
harmonization approach is necessary that ensures interoperabil-
ity. We presented a definition of what can be understood as har-
monization and provided some examples for related work in
this domain. With a definition on hand we were able to iden-
tify some major requirements that need to be fulfilled in or-
der to deliver a satisfying harmonization approach. To illustrate
these requirements we used two abstract use-cases in an exem-
plary digitalization architecture. Then we presented a more con-
crete architecture developed in the FAMOUS project that can be
mapped on different communication protocols. We investigated
this mapping in more detail for MQTT and OPC UA and com-
pared them. Using superimposition we were able to point out
the benefits and disadvantages of the two interfaces and con-
cluded the comparison. The presented MQTT mapping only
handles submodel elements of type Property. Mapping rules for
other submodel element types have to be developed in the fu-
ture. Also, the AAS standard is an evolving thing and at the
moment of writing the so-called events are not covered yet. As
soon as this is ready, the presented AAS mappings need to be
adjusted.
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