
CHAPTER 5

Inference of Network
Expressions

5.0. Introduction

This chapter introduces various mathematical models and combinatorial
algorithms that are used to infer network expressions which appear re-
peated in a word or are common to a set of words, where by network
expression is meant a regular expression without Kleene closure on the
alphabet of the input word(s). A network expression on such an alphabet is
therefore any expression built up of concatenation and union operators. For
example, the expression A(C + G)T concatenates A with the union (C + G)
and with T. Inferring network expressions means discovering such expres-
sions which are initially unknown. The only input is the word(s) where
the repeated (or common) expressions will be sought. This is in contrast
with another problem, we shall not be concerned with, which searches for
a known expression in a word(s) both of which are in this case part of the
input. The inference of network expressions has many applications, notably
in molecular biology, system security, text mining, etc. Because of the rich-
ness of the mathematical and algorithmic Al problems posed by molecular
biology, we concentrate on applications in this area. The network expres-
sions considered may therefore contain spacers where by spacer is meant
any number of do not care symbols (a do not care is a symbol that matches
anything). Constrained spacers are consecutive do not care symbols whose
number ranges over a fixed interval of values. Network expressions with do
not care symbols but no spacers are called “simple” while network expres-
sions with spacers are called “flexible” if the spacers are unconstrained, and
“structured” otherwise. Both notions are important in molecular biology.

Applied Combinatorics on Words, ed. David Tranah.
Published by Cambridge University Press. © Cambridge University Press 2005.

241

242 5. Inference of Network Expressions

Applications to biology motivate us also to consider network expressions
that appear repeated not exactly but approximately.

Only exact combinatorial methods that are nontrivial (that is, are not
simple brute-force schemes which enumerate all possible network expres-
sions) will be mentioned. In most cases, the network expressions that have
been considered in the literature present some constraint that generally ap-
plies to the union operator. Indeed, the operands concerned by the union
operation will most often be elements of the alphabet A and not arbitrary
words in A+ as is the case with unrestricted network expressions. For
instance, we do not allow expressions such as A(CG + G)T.

The literature on the inference of regular expressions, also called gram-
matical inference, is vast, and predates computational biology by many
years. The inference problems addressed in this chapter present special
characteristics in relation to such general problems. The most important
ones are that, although the expressions considered here are simpler in the
sense indicated above, their occurrences are not exact and come hidden
inside often very large texts. To use the terms commonly adopted in the
grammatical inference community, we work with (positive) examples that
have first to be fished from a sea of other textual information, mostly noise.
Most often, there is not only one regular expression, and thus one set of
examples, but various distinct ones hidden in the same text.

5.1. Inferring simple network expressions:
models and related problems

5.1.1. The star model

A star expression X is an expression of the form X = e1e2 · · · em where each
ei is the union of elements of the alphabet, that is ei = ai,1 + ai,2 + · · · +
ai,ni

with ai,j ∈ A for 1 ≤ j ≤ ni ≤ Card(A), 1 ≤ i ≤ m. Star expressions
are therefore words on the alphabet P(A) of all nonempty subsets of A,
that is, they are elements of P(A)+. This includes the set A which we
denote by • and call the do not care symbol.1 Let F (w) denote the set of
factors of a word w. A star expression denotes also a finite set of words of
length m. A star expression X ∈ P(A)+ is said to occur exactly in a word
w ∈ A+ if there exists v ∈ F (w) such that v ∈ X. The factor v is said to be
an occurrence of X in w.

The notion of approximate occurrence relies on the notion of a distance
between two words u and v on A. In biology, like in a number of other text
applications, a natural distance measures the effort required to transform
one word into the other given certain allowed operations. The operations

1 One also finds in the literature the terms wild card and joker.

5.1. Inferring simple network expressions 243

that model best the mutational events that may happen during replication
and survive are the substitution (that is replacement) of a letter of A by
another, the deletion of a letter in one of the two words, and the insertion
of a letter. Finally, a match is an operation that leaves the letter unchanged.
These are called edit operations.

Let S, D, I, M denote the four edit operations described above. An
edit transcript is a string over the alphabet S, D, I, M that describes a
transformation of a word u into another v. An equivalent way of describing
such transformation is through a global alignment of u and v. This is
obtained by inserting spaces in both u and v, transforming them into u′ and
v′ defined over A ∪ {−} where {−} denotes a space and |u′| = |v′|. An edit
transcript can be easily converted into a global alignment and viceversa.

A cost c may be attributed to each operation where c is a function
(A ∪ {−}) × (A ∪ {−}) → R. The cost of a global alignment (and thus of
the associated edit transcript) of two words u′ and v′ of length n is then∑n−1

i=0 c(u′[i], v′[i]). Not all cost functions define a distance. This will be
the case if the function c is symmetric and if c(a, b) for a, b ∈ A ∪ {−} is
strictly greater than 0 if a �= b and is 0 otherwise.

Two types of distances have attracted special attention. These are the
Hamming distance and the edit distance (this last is also called the Leven-
shtein distance).

In the case of the edit distance, the cost function is

c(a, b) =
{

1 if a �= b;
0 otherwise for a, b ∈ A ∪ {−}.

The edit distance is thus the minimum number of substitutions, inser-
tions, and deletions required to transform u into v. The Hamming distance
applies only to words of the same length, and is restricted to substitution/
match operations. The cost function is the same as for the edit distance
applied to a, b ∈ A. It counts the minimum number of substitutions needed
to obtain v from u assuming they have the same length. The Hamming
distance will be denoted by distH and the edit distance by distE .

Given a positive integer d, a d-occurrence of X in a word w is a word
v ∈ F (w) such that there exists a word u ∈ X with dist(u, v) ≤ d for some
fixed d. An expression X ∈ P(A)+ is thus said to appear approximately
in w if it has a d-occurrence in w. Where there is no possible ambiguity,
reference to d will be dropped in all such notations.

The distances considered between words v and u are, as suggested,
usually Hamming or edit, although any other may be used. For ease of
exposition, we consider Hamming distance exclusively. Issues related to the
use of the edit distance instead are left as open problems in Section 5.5.1.

The above definitions of approximate occurrence of an expression lead
to the following inference problem statements. They call upon the concept

244 5. Inference of Network Expressions

of quorum. This is the minimum number of times an expression must appear
repeated in the input word(s). In the case of a set of words, the quorum is
the number of distinct words where the expression appears.

EXPRESSION INFERENCE PROBLEM FOR A STAR EXPRESSION

Expression X repeated in a word
INPUT: A word w ∈ A+, a quorum q and a distance d.
OUTPUT: All star expressions X ∈ P(A)+ that occur d-appro-
ximately in w at least q times.

Expression X common to a set of words
INPUT: N words w1, w2, . . ., wN ∈A+, a quorum q, a dis-
tance d.
OUTPUT: All star expressions X ∈ P(A)+ that occur d-appro-
ximately in at least q of the N words w1, w2, . . . , wN .

Observe that nothing, except algorithmic Al concerns, would forbid con-
sideration, in all the above definitions and problem statements, of network
expressions without constraints on the union operator.

These definitions and statements have been adopted in a number of
exact algorithms, namely Combi, Poivre, Speller, Smile, Pratt, and
Mitra-count. The main difference between the algorithms has been in
the type of further constraints put on the network expressions allowed. In
Combi, the expressions are indeed elements ofP(A)+ with just a constraint
on the number of times the do not care symbol A may be used in the
expression. This last constraint is used by all algorithms. In Poivre as in
Pratt, the expressions are over an alphabet S where S is a proper subset
of P(A). In Pratt furthermore, expressions must appear exactly in a word
(d = 0). In Speller and Mitra-count, the expressions are elements of
A+. Speller was later extended to handle elements of S ⊆ P(A)+, as is
the case for Smile.

The model described in this section is called a star model because the
expressions X given as output may be viewed as the centre of star trees
whose edges have the distance between X and each of its occurrences in
the input word(s) as length. A special case of the problem of finding such
expressions has been called the closest substring problem. This is stated
in the following way, where by Fk(w) we denote the set F (w) ∩ Ak of w

having length k.

CLOSEST SUBSTRING PROBLEM

INPUT: N words w1, w2, . . . , wN over the alphabet A and integers d

and k.
OUTPUT: A word x of length k over A such that there exist ui ∈
Fk(wi) with distH (x, ui) ≤ d for all 1 ≤ i ≤ N .

5.1. Inferring simple network expressions 245

It is interesting to observe the relation between an expression within the
star model and another well-known mathematical object: Steiner strings.
Given a set of words x1, . . . , xN of the same length in A+, a Steiner string
is a word x̄ also in A+ which minimizes

∑N
i=0 distH (x̄, xi). One may

then wonder whether an expression X that solves the expression inference
problem for star expressions leads to a Steiner string, that is, are the star
expressions that are found also solutions of the Steiner string problem for
their sets of occurrences? The answer is negative. A simple counterexample
is the star expression ACAA repeated in the word w = AAAAAACAC with
d = 1 and q = 4. The expression ACAA of length 4 is indeed a solution
of the star expression inference problem since it has 4 occurrences in w,
namely at positions 0, 1, 2, 5 (positions in a word start at 0). Expression
AAAC is also a solution with 5 occurrences, at positions 0, 1, 2, 3, 5. Neither
expression is a Steiner string of its set of occurrences. In both cases, this is
the word AAAA. Notice that AAAA is not itself a solution of the problem.

The star-model admits a variant that is interesting for some biological
applications. The variant applies to the case of expressions common to a
set of words and assumes a phylogenetic tree is given as input together
with the words. This is a binary tree that represents the speciation events
that have led to the different species currently existing (each represented
by a word in the input words set and associated to a leaf of the tree) from
the ancestors that are not known. The tree may be unrooted, or rooted if
the order of the events in time is known. We assume here that the tree
is rooted. It is this tree, and not a star-tree, that is used to compute the
distances.

In fact, each edge in the tree is labelled by the Hamming distance
between the words at its extremities. Given a phylogenetic tree, a set of
words placed at the leaves, and an integer k, factors of length k, one for
each input word, and intermediate expressions corresponding to internal
nodes have to be inferred such that the sum of the labels over all edges of
the tree is minimized. Such minimal sum is called parsimony score. The
expressions are elements of A+, the problem (in its decision version) as
addressed by the Footprinter algorithm is as follows.

SUBSTRING PARSIMONY PROBLEM

INPUT: N words w1, w2, . . . , wN ∈ A+, a phylogenetic tree F for
the words, a length k, and an integer d.
OUTPUT: Factors of length k for the leaves and words of length k for
all internal nodes of the tree that have a parsimony score of at most d.

Another variant that has been considered constrains the expressions
given as solutions to the expression inference problem to satisfy a uniform

246 5. Inference of Network Expressions

property. Suppose expressions of a length k are sought and let X be
a solution of the problem. Let also two positive integers, d ′ < d and
k′ < k, be given. The following must then be true: for all i such that
0 ≤ i ≤ |X|, distH (X[i . . i + k′ − 1], v[i . . i + k′ − 1]) ≤ d ′. Intuitively,
this constraint imposes that the possible differences between an expres-
sion X solution of the problem and each of its occurrences be uniformly
spread, hence the name given to the property. A further variant has been
used in Weeder where the constraint that must be satisfied is: for all
i such that 0 ≤ i ≤ |X|, distH (X[0 . . i], v[0 . . i]) ≤ [(i × d)/k]. The in-
convenience of a constraint of this latter type is that an asymmetry is
introduced: differences may accumulate at the end of the occurrences of an
expression.

5.1.2. The clique model

In this model, given an alphabet A, the network expressions on A that
are considered have the constraint that union operators may this time be
applied to elements of Ak only, where k is the length of the expressions
sought. Such expressions are therefore collections of words w ∈ Ak , and
the notion of occurrence is associated to both a distance and a quorum. The
definition of occurrence in this case is thus operational and includes within
it the problem statement.

Such an alternative model has been used by some authors, most no-
tably in the algorithms Winnower, Mitra-graph, and KMRC. Mitra-
graph uses in fact both models: the clique model and the star. Winnower
and Mitra-graph formalize the model and problem in graph-theoretical
terms.

We state the problem in the case of a set of words. Given a set of N words
w1, w2, . . . , wN over the alphabet A and two nonnegative integers d and k,
let G = (V1 ∪ · · · ∪ VN, E) be an N-partite graph where Vi = F (wi) ∩ Ak

(that is it is the set of all factors of length k of wi for all i) and there is
an edge between vi ∈ Vi, vj ∈ Vj for i �= j if distH (wi, wj) ≤ 2d. Given
d and k as above, and given a quorum q, we say that a network expression
X is a (d, q)-clique if and only if it is a set of q words of length k such that
(u, v) ∈ E for all u, v ∈ X.

The problem is then formulated as follows.

EXPRESSION INFERENCE AS A CLIQUE PROBLEM

INPUT: N words w1, w2, . . . , wN ∈ A+, a quorum q, a length k, and
a distance d; the associated N-partite graph G.
OUTPUT: All (d, q)-cliques of G.

5.1. Inferring simple network expressions 247

The output cliques correspond to expressions X having occurrences that
are all pairwise 2d-approximations2 of each other in at least q of the N

words w1, w2, . . . , wN . Expression X is the union of its occurrences.
In Poivre instead, the graph is built upon a relation R between the let-

ters of the alphabetA that is also part of the input. Typically, the relation will
be nontransitive and model the degree to which shared physico-chemical
properties between the biological units denoted by the letters (nucleic or
amino acids) enable them to perform equivalent functions in a molecule.
The relation R on the letters of A is straightforwardly extended to a re-
lation R on words of the same length in A+ as follows: two factors u, v

of length k are in relation by R extended if u[i] is in relation with v[i]
by R, for 0 ≤ i ≤ k − 1. Relation R extended to factors of length k is de-
noted by Rk . The problem is then expressed in a way that resembles the
formulation given above except that graph G = (V1 ∪ · · · ∪ VN, E) is now
such that there is an edge between nodes vi ∈ Vi, vj ∈ Vj for i �= j if the
corresponding factors in wi, wj are in relation by Rk . In Poivre, the idea
was used to infer contiguous motifs in protein structures previously coded
into a string of pairs of angles whose values are discretized into integers by
means of a grid.

A natural question is whether for each solution X of the expres-
sion inference as a clique problem in the case of Winnower, there
exists an expression Y such that |Y | = |X| and Y is a solution under
the star model for the collection of words, which is the set of occur-
rences of X, distance d, and same quorum. The answer is no. Let us
assume expressions in only A+ are considered. Let the input words be
the set {w1 = ACAC, w2 = AGAG, w3 = ATAT}, d = 1 and q = 3. The ex-
pressions in A+ of length 4, X1 = ACAC, X2 = AGAG, and X3 = ATAT
are solutions of the expression inference as a clique problem, because
the (nonproper) factors w1 = ACAC, w2 = AGAG, w3 = ATAT in the three
input words wi form a clique of the 3-partite graph G. Yet no expres-
sion Y in A4 exists that is a solution of the problem as formulated in the
star model for d/2. Obviously, there are solutions for distance d. In that
case, however, there may be more solutions in the star model, some of
which have more occurrences. Consider this time the following set of in-
put words {w1 = ACAC, w2 = AGAG, w3 = ATAT, w4 = TCTG} and d, q as
before. Expression X = ACAC|AGAG|ATAT remains a solution within the
clique model for quorum 3. Within the star model and with d/2 = 1, any
expression of the type AbAc, with b, c ∈ A, b �= c, is a solution with three
occurrences while expression Y = ACAG is also a solution but with four
occurrences (w1, w2, w3, w4).

2 It will be explained later in this section why a 2d threshold is used instead of simply d.

248 5. Inference of Network Expressions

5.1.3. Other models

Other models have been used, in general, for inferring expressions that are
either elements ofA+ or sets of elements ofAk for a given positive integer k.
In the case of expressions inA+, those sought are the “most surprising” ones
in the statistical sense. They correspond to expressions whose probability of
occurring (exactly or approximately) in the input word(s) is lower than ex-
pected assuming a certain statistical model that is in general a Markov model
of order p of the input word(s) for p < (k − 1). The algorithms for comput-
ing the “most surprising” expressions either perform brute-force enumera-
tion of all possible expressions and then sophisticated exact or approximate
statistical evaluation (described in detail in Chapter 6), or are heuristic (for
example, Profile). We therefore do not speak of this model further.

In the case of expressions that are sets of elements of Ak for a given
positive integer k, it is worth mentioning that another measure has been used
to decide whether a set of factors in some input word(s) should be grouped.
The measure corresponds to what has been called the relative entropy of
a set of words or Kullback–Leibler information number. This measure is
not a distance (triangular inequality is not satisfied) and is global; it is not
built upon a pairwise relation between the factors and therefore it does
not lead to a graph-theoretical formulation as above. Algorithms that seek
network expressions that are elements of A+ can use the relative entropy
of the sets of occurrences of the expressions given as output as a measure of
“surprise” that will be different from the measure given by the probability of
occurrence of the expression under the same conditions as it was inferred.

5.2. Algorithms

5.2.1. Inference in the star model

Preliminaries: suffix tree and generalized suffix tree

Long words, specially when they are defined over a small alphabet, may
contain many exact repetitions. From this observation follows the idea of
using an indexed representation of the input word(s). Using a representation
that has a unique pointer for identical factors enables comparison of such
factors more than once with the expressions as these are inferred to be
avoided. The index used by the algorithm whose description follows is a
suffix tree.

Details on the suffix tree construction may be found in Chapter 2. We
just recall below that the suffix tree of an input word w, denoted by Tw or
simply T when the input word is clear from the context, has the following
properties:

5.2. Algorithms 249

1. each edge of the suffix tree is labelled by a nonempty factor of the
input word w;

2. each internal node of the suffix tree has at least two edges leaving it;
3. the factors labelling distinct edges that leave a same node start with

distinct letters;
4. the label of each root-to-leaf path in the suffix tree represents a suffix

of the input word and the label of each root-to-node path represents a
factor;

5. each suffix of w is associated with the label of a (unique) root-to-leaf
path in the tree.

Furthermore, an edge links the node spelling ax to the node spelling x

for every a ∈ A and x ∈ A∗. Such edges are called suffix links and are what
allows the tree to be built in time linear with respect to the length of the word.

When the input is a set of words W = {w1, w2, . . . , wN }, a tree called
generalized suffix tree is used to represent in a compact way all the suffixes
of the set of words. A generalized suffix tree is constructed in a way very
similar to the suffix tree for a single word. We denote such generalized trees
by GT W or simply GT when the input words are clear from the context.
Generalized suffix trees have properties similar to those of a suffix tree with
word w substituted by the set of words W . In particular, a generalized suffix
tree GT satisfies the fact that every suffix of every word wi in the set leads
to a distinct leaf. When several words share a suffix, the generalized suffix
tree must have as many leaves corresponding to the suffix, each associated
with a different word. To achieve this property during construction requires
simply concatenating to each word wi a symbol that is not in A and that is
specific to that word.

Speller algorithm

We describe in this section the original Speller algorithm. The algo-
rithm was later extended to allow for more general network expressions
(over P(A)+ and not just A+) and its performance was improved (see
Section 5.3.2).

For ease of exposition, the algorithm is first described as a way of
inferring expressions of fixed length that are repeated in a single word.
In fact, the length of the expressions output by the algorithm may range
over an interval (kmin, kmax) with possibly kmax) = ∞. In this last case, the
longest expressions output will be those still satisfying the quorum. When
kmin = kmax = ∞, only the longest expressions satisfying the quorum are
output. It is relatively straightforward to modify the algorithm to treat any
of these cases, or to infer expressions common to a set of words, as will be
briefly indicated.

250 5. Inference of Network Expressions

Speller uses a suffix tree representation of the input word. Actually, it
builds (at the same cost) a suffix tree with an additional information attached
to each nonleaf node indicating the number of leaves in the subtree rooted at
that node. This is also the number of occurrences in w of the factor spelled
by the path from the root to the node. Denoting both node and factor by v,
the information added to node v is denoted by �(v).

Candidate expressions in A+ are for convenience processed in lexi-
cographical order, starting from the empty word ε. For each candidate
expression, say x, all pointers to nodes spelling d-approximate occurrences
of x are kept (we say the nodes themselves are (node-)occurrences of x).
Let

occ(x, i) = {y ∈ F (w) | dH (y, x) = i}
and let

occx =
d⋃

i=1

occ(x, i)

be the set of occurrences of x. Possibly, some such sets are empty. Let
�(x) = ∑

y∈occx
�(y). The candidate expression x is processed as long as

�(occx) ≥ q. If x has reached the length k, it is output, otherwise its possible
extensions are considered. Let xa be its first extension (recall that extensions
are attempted in lexicographical order) for a ∈ A. The occurrences of x

belonging to occ(x, 0) ∪ occ(x, 1) ∪ occ(x, 2) . . . ∪ occ(x, d − 1) are also
occurrences of xa. On the other hand, among the occurrences of x that
belong to the set occ(x, d) (their Hamming distance from x is already the
maximum allowed), only those followed by a in w may be occurrences
of xa. The procedure of extension of a candidate expression is applied
recursively. Clearly, if a given candidate expression x no longer satisfies
the quorum, it is useless to extend it.

A pseudocode for the algorithm Speller is given below. It assumes
the suffix tree T of w has already been built. We define:

occ(x, i)a = {y ∈ occ(x, i) | ya ∈ F (w)}
(it is the subset of occ(x, i) followed by the letter a).

InitializeSpeller()
1 x ← ε

2 � by convention, the empty word occurs everywhere in w

3 � with Hamming distance 0
4 occ(ε, 0) ← {0, 1, . . . , |w| − 1}
5 for i ← 1 to d do
6 occ(ε, i) ← ∅

5.2. Algorithms 251

Speller(x, w, q, k, d)
1 if �(x) ≥ q then
2 if |x| = k then
3 OUTPUT ← OUTPUT ∪ {x, occx}
4 else for a in A do
5 for i ← d downto 0 do
6 occ(xa, i) ← occ(x, i)a
7 if i ≥ 1 then
8 occ(xa, i) ← occ(x, i)a∪

(occ(x, i − 1) \ occ(x, i − 1)a)
9 Speller(xa, w, q, k, d)

10 return OUTPUT

The time complexity of Speller is in O(nVH (d, k)) where n is |w| and
VH (d, k) is the size of the set containing all words of length k at Hamming
distance d from another of length k. We have that VH (d, k) ≤ kd Card(A)d .
Therefore, Speller is linear in the input size, but possibly exponential
with respect to d. It has linear space complexity. When d = 0, Speller
has linear (optimal) time complexity.

When the length of the expressions sought is given as a range of values
(kmin, kmax), the algorithm continues extending candidates as long as they do
not reach kmax. Any candidate expression x having already reached length
kmin that satisfies the quorum is output.

In the case where Speller is extended to handle expressions in S ⊆
P(A)+, a ∈ A in line 4 just needs to be replaced by S ∈ S while x and xa

in lines 6, 8, and 9 are replaced, respectively, by X and XS.
Speller can also be applied to infer expressions in A+ common to

a set of words. As mentioned, a generalized suffix tree GT is used in this
case to represent all the suffixes of the input words. When we are dealing
with N words, it is no longer enough to know the value of �(v) for each
node v in GT in order to be able to check whether an expression satisfies
the quorum. Indeed, for each node v, we need this time to know not the
number of leaves in the subtree of GT having v as root, but that number for
each different word to which the leaves refer.

In order to do that, we associate to each node v in GT a Boolean array
bitv of size N , that is defined by:

bitv[i] =

1, if at least one leaf in the subtree rooted at x

represents a suffix of wi

0, otherwise

for 1 ≤ i ≤ N .
Let �′(x) be the total number of cells set to 1 in the Boolean array that

results from the OR of bitv for all nodes v that are occurrences of x in GT .

252 5. Inference of Network Expressions

This corresponds to the number of distinct input words where x occurs.
The algorithm then changes only in that the condition to be satisfied now
is �′(x) ≥ q.

The time complexity in this case is in O(nN2VH (d, k)) if n is the length
of each input word (assuming for simplicity that they have the same length).
The space complexity is O(nN2k).

Mitra-count algorithm

The Mitra-count algorithm proceeds in exactly the same way as
Speller except that Mitra-count works directly on the input word(s)
and not on an index of the word(s) in the form of a (generalized) suffix tree.
The time and space cost of building the suffix tree is thus saved. Another
advantage of the approach is that the positions of the occurrences of the
expressions can be kept naturally ordered as the expressions are recursively
extended. This is also a characteristic of earlier algorithms like Combi and
Poivre which work in essentially the same manner as Mitra-count.
On the other hand, the inference step is less efficient both in terms of time
(if a factor has multiple copies in the input word(s), it will be processed as
many times as it has copies) and of space (for the same reason, factors with
multiple copies that are occurrences of an expression will need an equal
number of pointers to them).

Footprinter algorithm

Footprinter has a completely different approach from Speller, or from
the other approaches that will be described in this chapter. It can address
only the problem of inferring expressions common to a set of words. Unique
among all the approaches, it also needs as input a phylogenetic tree besides a
set of words. In a simplified way, a phylogenetic tree, that we denote byF , is
a tree describing the speciation events that have led to the species currently
observed, or to those having existed in the past. It is a tree with values
attached to the edges whose topology represents the evolutionary relations
between the species (current or ancestral) and whose nodes correspond
to the species. The value of an edge indicates the evolutionary distance
separating the species labelling the nodes at the edge’s extremities. Each
possible set of factors, one taken from each input word, will be considered,
that is, placed at the leaves of the input phylogenetic tree. The parsimony
score of the tree is then calculated before deciding whether the set, and the
expression at the root of the tree, are a solution of the substring parsimony
problem. The problem is known to be NP-hard.

5.2. Algorithms 253

Only expressions of a single fixed length k are addressed by Foot-
printer. Extension to a range of length values is not straightforward: in
practice, the algorithm has to be run again for each different length required
for the output expressions.

The algorithm couples a straightforward dynamic programming tech-
nique with the use of a table tabv containing Card(A)k entries for each node
v of F , including the leaves. All sets of factors are thus treated together.
Each entry x (with x ∈ Ak) in the table corresponds to one possible word
of length k to be assigned to node v, and contains the value of the best
parsimony score that can be achieved for the subtree rooted at v, if node v

is labelled with x. Denote by C(v) the set of children of node v in F . Then
table tabv can be computed for all nodes v of F starting from the leaves by
performing the steps indicated in the following algorithm Footprinter.
The quorum is assumed to be N .

Footprinter(F, w1, w2, . . . , wN, k, d)
1 for all nodes v ∈ F starting from the leaves do
2 for all x ∈ Ak do
3 if v is a leaf of F then
4 � let wv be the input word placed at leaf v in F
5 if x is a factor of wv then
6 tabv[x] ← 0
7 else tabv[x] ← +∞
8 else tabv[x] ← ∑

u∈C(v) miny∈Ak (tabu[y] + distH (x, y))
9 return {x ∈ Ak | tabroot[x] ≤ d}

The algorithm has a structure that resembles the structure of the Fitch
algorithm for the so-called small parsimony problem. It proceeds from the
leaves up to the root looking for the optimum at each level up, and then,
once the root has been reached from all leaves, goes down the phylogenetic
tree again to recover the values at each internal node and leaf that actually
produced all optimal parsimony solutions that are below d.

It is possible to use a quorum lower than N , giving rise to the so-called
substring parsimony problem with losses. The basic idea is the following.
One assumes the evolution time along the edges of the phylogenetic tree is
also known, and the quorum is in this case expressed as a minimum total
evolutionary time summed over all edges in the subtree containing as leaves
the factors that are occurrences of an equivalent expression. An expression
may therefore have less than N occurrences, but the occurrences must
then span a “wide-enough” evolutionary time, that is, they must concern
organisms that are “distant enough” in terms of evolution.

254 5. Inference of Network Expressions

5.2.2. Inference as a clique detection problem

Winnower algorithm

The algorithm Winnower allows expressions to be inferred that are col-
lections of words in Ak for a given positive integer k that is the length of
the expression. Like Footprinter (and unlike Speller or similar algo-
rithms which do not use an index), there is no efficient way of handling a
range of values for the length of the expressions sought.

The method was elaborated to allow expressions common to a set of N

input words to be inferred but may easily be adapted to find expressions
repeated in a single input word. It can as easily be modified to handle a
quorum lower than N although in what follows the method is presented for
a quorum of N only.

Given N input words, w1, w2, . . . , wN of the same length n, an in-
teger d, and a length k, Winnower starts by building the graph G =
(V1 ∪ · · · ∪ VN, E) as indicated in Section 5.1.2. The graph has O(nN)
nodes and O(n2N) edges.

The goal is then to find all cliques of size N in G, which is an NP-
complete problem. The idea of Winnower is to remove edges that cannot
belong to cliques. This makes the graph sparse enough that clique detection
is easier to perform.

This is achieved by incrementally eliminating what are called spurious
edges. An edge is spurious if it does not belong to any extendable clique of a
given size where by extendable clique of size c is meant a clique contained in
all other possible cliques of size c + 1. By observing that every edge belong-
ing to a clique of size N also belongs to at least

(
N−2
c−2

)
extendable cliques of

size c and through a suitable choice of c, it is possible to eliminate spurious
edges. This is recursively done as long as possible. At the end, one ex-
pects the graph will contain only cliques of size N , or that at least detecting
cliques of size N will have become very easy to do in the graph that remains.

The pseudocode is not given in this case as the core ideas are those just
described. Care with implementation is required for the efficiency of some
essential parts of the algorithm but these are not given in enough detail for
us to feel that we can reproduce their essence with perfect fidelity. They are
therefore omitted.

The time complexity of Winnower is claimed by the authors to be
in O((nN)c+1) which is the cost of eliminating spurious edges (for c = 3,
eliminating spurious edges takes on average O(N4n2.66) time according to
them.) If d = 0, Winnower takes exponential time and is therefore, like
Footprinter, not optimal.

There are interesting instances with critical values of d that cannot be
efficiently handled by Winnower because too few edges can be eliminated

5.2. Algorithms 255

and the clique detection step must thus be performed in a dense graph. This
is the case in what the authors called the challenge problem: for instance,
for k = 15, d = 4, and Card(A) = 4, it is already not feasible to apply
Winnower to an instance as small as 20 words each of length 600.

Mitra-graph algorithm

Mitra-graph is an algorithm that mixes the ideas behind Mitra-count
(that is, behind Speller) and Winnower. It thus works within both
the star and clique model. The solutions produced are those that would
be obtained with Mitra-count for expressions in Ak with a distance
of d and, originally, a quorum of N . Extending it to expressions of a
length covering a range of values, or to a quorum less than N is more
straightforward and less costly to do than for Winnower.

Like Winnower, Mitra-graph builds a graph and looks for cliques
of size N in it. The big difference is that the graph depends now at each
step on the candidate expression currently considered. The graph is thus
denoted by G = (x, V1 ∪ · · · ∪ VN, E), or G = (x, V, E) for short. The set
of nodes of G are defined as in Winnower. It is in the set of edges
that the two graphs differ. For each node vi , set vi = pisi with |pi | = |x|
(and |si | = k − |x|). In Mitra-graph, there is an edge between vi and
vj if and only if the three inequalities distH (x, pi) ≤ d, distH (x, pj) ≤ d,
and distH (x, pi) + distH (x, pj) + distH (si, sj) ≤ 2d hold. The condition
of existence of an edge is therefore stronger with Mitra-graph than
with Winnower. Finding cliques in this graph is also much easier to do
than in the graph used by Winnower (it basically eliminates all edges
that enter nodes with degree less than N − 1), while the pruning ideas of
both Mitra-count (when an expression does not satisfy the quorum any
longer) and Winnower allow this in theory to be a more efficient approach
than Mitra-count alone.

The algorithm presents an additional cost due to the fact that the
graph has to be updated continuously as viable expressions are recur-
sively explored (in lexicographic order as in Mitra-count). The key
idea in this case comes from the observation that once expression xy with
y ∈ A+, x ∈ A∗ has been treated, either expression xya with a ∈ A will
be considered or, if xy did not satisfy the quorum and y[1], . . . , y[|y| − 1]
were all equal to the last letter in the alphabet, it is expression xb with
b ∈ A and different from the first letter in y (it will, in fact, be the next
letter in the alphabet) that will be considered. From the graph G(xy, V, E),
it is easy to obtain G(xb, V, E) if the values of distH (x, vi[0 . . (|x| −
1)], distH (x, vj [0 . . (|x| − 1)], distH (vi[|x| . . (k − 1), vj [|x| . . (k − 1)]) are
kept for each edge (vi, vj).

256 5. Inference of Network Expressions

As for Winnower and for the same reason (not enough detail is
presented in the literature indicating how the algorithm is actually imple-
mented), a pseudocode for Mitra-Graph is omitted.

5.3. Inferring network expressions with spacers

5.3.1. Mathematical models and related inference problem

In biology, network expressions with spacers are a first approach to model
sequences along a molecule, typically DNA, that function in a cooperative
way in the sense that they need to simultaneously bind a same or different
molecular complex so that a given biological process may be initiated.
In the case of so-called “higher” organisms, the sites may even come in
big clusters. The relative positions along the molecule of the sites that are
inside a cluster are in general not random, because they are recognized
either by the same complex and cannot therefore stand too much apart,
or by different complexes that interact between them. In this last case, the
distances between sites along the molecule may be longer but are often quite
constrained. Finally, not all positions within a site are equally important
for the binding to happen. In particular for binding sites in proteins where
recognition is strongly connected to the 3D structure of the molecule, even a
single binding site (single in the sense that it binds a unique site in the other
molecule) may concern a sequence of noncontiguous positions at variable
distances one from another that correspond to amino acids close in 3D space.

Given an alphabet A, a network expression X with spacers is an ordered
sequence of simple network expressions X1, . . . , Xp with X1, . . . , Xp ∈
P(A)+ and p ≥ 2.

The expression X is said to appear exactly in a word w if there exist fac-
tors u1, . . . , up of w such that w = t0u1t1 · · · tp−1uptp with t0, . . . , tp ∈ A∗
and ui ∈ Xi for 1 ≤ i ≤ p. Given d = (d1, . . . , dp) nonnegative inte-
gers, X is said to appear d-approximately in w if w = t0u1t1 · · · tp−1uptp
with t0, . . . , tp ∈ A∗ and, for all i ∈ [1, p], there exists vi ∈ Xi such that
distH (ui, vi) ≤ di .

Finally, given a network expression X with constrained spacers, that
is, given a sequence of simple network expressions X1, . . . , Xp, posi-
tive integers d1, . . . , dp, and intervals [min1, max1], . . . , [minp−1, maxp−1]
with mini ≤ maxi nonnegative integers, X is said to appear approximately
in a word w if w = t0u1t1 · · · tp−1uptp with t0, . . . , tp ∈ A∗, ui a di-
approximate occurrence of Xi for all i ∈ [1, p] and |tj | ∈ [minj , maxj]
for all j ∈ [1, p − 1]. The case of intervals containing negative values may
also be considered but has not been treated in the literature.

5.3. Inferring network expressions with spacers 257

From now on, network expressions X with constrained spacers and com-
posed of p simple network expressions X1, . . . , Xp separated by distances
within the intervals [min1, max1], . . . , [minp−1, maxp−1] will be denoted
by X = X1 [min1, max1] X2, . . . , Xp−1 [minp−1, maxp−1]Xp. Network ex-
pressions with unconstrained spacers and composed of p simple network
expressions X1, . . . , Xp will be denoted by X = X1 ∗ · · · ∗ Xp.

5.3.2. Algorithms

Inferring network expressions with constrained spacers

Mitra-dyad algorithm. Mitra-dyad infers network expressions with
constrained spacers only for the case p = 2, that is expressions of the type
X = X1[min, max]X2. The reason is that the inference is performed in a
Mitra-graph but containing O(max − min + 1) times more nodes and
potentially O((max − min + 1)2) more edges. Indeed, supposing |X1| =
|X2| = k, each factor u of length k of the input words w1, . . . , wN , which
corresponded to a node in the original graph, now gives rise to O(max −
min + 1) nodes, each one corresponding to the factor u followed by the
factor v starting i positions after the end of u, when such a position exists,
for i between min and max. Nodes are then linked under the same conditions
as for Mitra-graph; in particular, the existence of an edge between two
nodes remains dependent on the expression X = X1[min, max]X2 that is
being currently considered. Once this graph is built, Mitra-dyad runs
Mitra-graph on it. The way the graph is built ensures that the solutions
found in this way correspond to the required network expressions with
constrained spacers.

Smile algorithm. There are in fact two versions of the Smile algo-
rithm. Both versions call the Speller algorithm given in Section 5.2.1
as an internal subroutine. The basic algorithm for a single input word is
shown below. It is straightforward to adapt it to the case of N input words.
For ease of exposition, we assume that, in the expression X = X1[min1,

max1]X2, . . . , Xp−1[minp−1, maxp−1]Xp, all expressions Xi have the same
length k and maximum number of differences allowed d. The way that
the search space is considered makes the main difference between the two
versions of Smile. It is worth observing that besides being able to handle
a different distance d for each simple expression in X, Smile can handle a
global distance, something Mitra-dyad cannot do.

The Smile algorithm shown below assumes that p = 2 and that the
suffix tree T of w has been previously built. The notations X1 and X2 stand
for candidate motifs for, respectively, the first and second expressions in
the network expression containing the spacer that is being searched for.

258 5. Inference of Network Expressions

Smile(w, q, k, d, (min1, max1), . . . , (minp, maxp))
1 for i ← 1 to p − 1 do
2 for each solution of Speller(X1, w, q, k, d) do
3 consider only the search space of all factors of w

4 that start from mini to maxi positions after
5 occurrences of X1 in w

6 return Speller(X2, w, q, k, d)

The extension of Smile to the case where p > 2 is straightforward.
The difference between the two versions of the Smile algorithm is in how
lines 3 to 5 are dealt with. We explain it in the simple case where p = 2 and
|X1| = |X2| = k. Generalization to different lengths (or range of lengths)
for each simple expression in X, or to a general p, is straightforward for
the first version and more elaborate for the second. Details may be found
in the literature indicated in the notes at the end of the chapter.

The first version of Smile proceeds as follows. For each expression X1

of length k satisfying the quorum that is obtained, together with its set of
node-occurrences in T , that we denote by occX1 , all simple expressions X2

are sought. The search starts (using Speller) with the expression X2 = ε

and occXa
the set of words v which have an ancestor u in occX1 with

min ≤ level(v) − level(u) ≤ max, where level(v) indicates the length of the
label of the path from the root to node v in T . From a node-occurrence u in
occX1 , a jump is therefore made in T to all potential start node-occurrences
v of X2. These nodes are the min to max-generation descendants of u

in T .
The second version of Smile initially proceeds like the first. For each

simple expression X1 inferred, and for each node-occurrence u of X1 con-
sidered in turn, a jump is made in T down to the descendants of u located
at lower levels. This time, however, the algorithm just passes through the
nodes at these lower levels, grabs some information the nodes contain and
jumps back up to level k again. The information grabbed in passing is used
to temporarily and partially modify T and start, from the root of T , the in-
ference of all possible companions X2 for X1 that are located at the required
distance (min, max). Once this operation has ended, the part of T that was
modified is restored to its previous state. The inference of another simple
expression X1 then follows. The whole process unwinds in a recursive way
until all expressions X satisfying the initial conditions are inferred.

More precisely, the operation between the spelling of X1 and X2 locally
changes T up to level k into a tree T ′ that contains only the prefixes of
length k of suffixes of w starting at a position between min and max from
the end position in w of an occurrence of X1. Tree T ′ is, in a sense, the
union of all the subtrees t of depth at most k rooted at nodes that represent

5.3. Inferring network expressions with spacers 259

start occurrences of a potential companion X2 for X1. Speller can then
be applied directly to T ′. The information that is grabbed in passing is
the one required to modify T into T ′: it corresponds to the Boolean arrays
indicating to which factors of w belong the leaves of all potential end
node-occurrences of companions for X1 in the tree.

The complexity of the first version of Smile for a single input word
is O(n + n2k+maxV

2
H (d, k)) where n2k+max is the number of nodes at level

2k + max in the suffix tree. Its space complexity is O(n(2k + max)).
The complexity of the second version of Smile for a single input word

is O(n + min{n2
k, n2k+max}V 2

H (d, k) + n2k+maxVH (d, k))) and its space
complexity O(n(2k + max) + nk).

Inferring network expressions with unconstrained spacers

Smile algorithm revisited. Extensions of the Smile algorithm also
enable flexible spacers to be dealt with.

The first extension concerns what is called “meta-differences”. Given
a nonnegative integer D, a network expression X = X1[min1, max1]X2,
. . . , Xp−1 [minp−1, maxp−1]Xp is said to appear exactly in a word w

if there exist factors uj1, . . . , ujq
of w such that p − D ≤ q ≤ p and

w = t0uj1 t1 · · · tq−1ujq
tq , with t0, . . . , tq ∈ A∗, 1 ≤ j1 < · · · < jq ≤ p and

uji
∈ Xji

for i = 1, . . . , q. An equivalent definition may be derived for
approximate occurrences of X.

The second extension allows Smile to handle restricted intervals of
distances between the simple network expressions X1, . . . , Xp, exploring
in a same run a wide range of possibilities for the middle value of the
interval. The expressions that may be inferred in this case are of the type
X = X1[m1 ± ε1]X2, . . . , Xp−1[mp−1 ± εp−1]Xp where, for 1 ≤ i < p, εi

is a nonnegative integer and mi ∈ [Mini , Maxi] with Maxi − Mini as large
as desirable.

Pratt algorithm. Trying to infer network expressions with completely
unconstrained spacers would in most situations lead to trivial solutions
besides being a computationally harder problem. Pratt therefore imposes
some constraints on the amount and distribution of do not care symbols
that are allowed. The expressions treated may however be more flexible
than the constrained spacers of Smile as presented in Section 5.3.2. We
shall see in a moment the extensions of Smile which enable spacers that
are as unconstrained to be dealt with as in Pratt, although in a different
way.

The constraints that Pratt puts on the spacers are specified as input
parameters. Some of the main ones are:

260 5. Inference of Network Expressions

1. a maximum number of spacer regions, that is of regions that are
composed of a contiguous sequence of do not care symbols;

2. a maximum length for spacer regions;
3. a maximum number of overall do not care in the expressions sought;
4. a maximum length of the network expression.
Other possible constraints are omitted for the sake of simplicity.
Speller takes in general as input N words, that is, it infers common

network expressions, but it can easily be modified to treat the case of a single
input word. It works basically like Speller for expressions inS ⊆ P(A)+.
Unlike Speller, Pratt does not use a suffix tree representation of the
input word(s) but a simple queue or file data structure like Combi or
Poivre. The do not care symbol is treated in a way similar to another
element of S, with counters enabling whatever spacer constraint was given
as input to be checked.

The version of Smile that allows intervals for the distances between
single network expressions results in performances analogous to those of
Pratt as far as spacers are concerned, although in a slightly different way.
Smile can be more flexible and it further allows for differences in the
inference process.

5.4. Related issues

5.4.1. The concept of basis

Given some input word(s), the number of even simpler expressions X ∈
A(A ∪ •)∗A can be exponential with the length of the input, so that it is
infeasible to list all of them along with their occurrences in the word(s).
Fixing the Hamming distance to 0 or using a high quorum does not avoid
the explosive growth in the number of such expressions. Several researchers
are working to alleviate this drawback.

Among the many methods proposed to select expressions, one can single
out those based on the notion of maximality or specificity. We assume d = 0.
Since the expressions may contain do not cares, approximate occurrences
are in a certain sense still allowed. Informally, an expression X in A(A ∪
•)∗A is maximal if it cannot be extended to the left or to the right by
adding further symbols and/or if none of its do not care symbols can be
replaced by an alphabet letter, without losing any occurrences. In other
words, specifying more a maximal expression causes a loss of information,
while this is not true for nonmaximal expressions. While the notion of
maximality reduces significantly the number of expressions, their number
may still be exponential.

5.4. Related issues 261

A significant step in reducing the number of maximal expressions is
the introduction of the notion of basis. Informally speaking, a basis is
a set of (maximal) expressions that can generate all the (other) maximal
expressions by simple mechanical rules. The maximal expressions in the
basis are representative of the information content of the words in that
they can generate all the other repeated or common expressions. A notion
of basis called the set of tiling motifs was introduced. It has size linear
in the length n of the input word(s) and it is able to generate the repeated
expressions (possibly exponential in number) that appear at least twice with
do not care symbols in such input over an alphabet A. This basis has some
interesting features such as being (a) a subset of previously defined bases;
(b) truly linear as its expressions are less than n in number and appear in
the word for a total of 2n times at most; (c) symmetric as the basis of the
reversed word is the reverse of the basis; (d) computable in polynomial
time, namely in O(n2 log n log Card(A)) time. As an example, the basis of
tiling motifs for repeats in the word w = ATATACTATCAT contains three
elements, namely x1 = ATA•••TAT, x2 = ATAT••T, and x3 = TATA••AT
that are able to generate (through a suitable operation that also takes into
account the positions where the motifs in the basis occur) all other repeated
motifs such as TAT, TA, AT, ATA•••T, etc. that appear at least twice in w.
For instance, the motif ATA•••T can be obtained by the overlap of the
occurrences of x1 and of x2 at position 0.

A more general and flexible framework is required for repeated or
common expressions when d > 0 and the notion of a basis may perhaps
not be extended in this case. Some fuzzy form of clustering should then be
considered.

5.4.2. Inferring tandem network expressions

Problem definition

Tandem arrays (called tandem repeats when there are only two units) are
approximate powers (squares) of a word, that is, a sequence of approximate
repeats that appear adjacent in a word. The inference of tandem arrays may
proceed in much the same way as for simple expressions that are repeated
a number of times in a word (using for instance Speller or Mitra-
count). Checking that the expression appears tandemly repeated can then
be done a posteriori. This however can be a very inefficient approach as
many expressions will be generated whose occurrences have no chance of
forming a tandem array. It is therefore more interesting to develop a method
that allows the tandem condition of a repeat to be checked as it proceeds
with the inference, that is, simultaneously with it. The use of a suffix tree

262 5. Inference of Network Expressions

is not interesting when approximate matches are sought because a suffix
tree does not allow the positions of the occurrences to be kept ordered for
easy processing of the tandem condition. An approach like the one adopted
by Mitra-count, that was also used earlier in Combi or Poivre, is the
most appropriate in this case.

Before sketching the main ideas of the algorithm, called Satellite,
we need to introduce the more complex models required by tandem arrays.
There are in fact two definitions related to a tandem array model, one called
prefix model and the other consensus model. This latter concerns tandem
array models strictly speaking while prefix models are in fact models for
approximately periodic repeats that are not necessarily (yet) tandem. They
correspond to the prefixes of a consensus model.

Formally, a prefix model of a tandem array is a word x ∈ A+ (x could
also belong to P(A)+) that approximately matches a train of wagons. A
wagon of x is a factor u in w such that distE(x, u) ≤ d for d a nonnegative
integer (observe that in this case, it is the edit distance that has been consid-
ered). A train of a prefix model x is a collection of wagons u1, u2, . . . , up or-
dered by their starting positions in w and satisfying the following properties:

(P1) p ≥ q where q is again a quorum indicating this time the mini-
mum number of units the sought tandem arrays must have;

(P2) leftui+1
− leftui

∈ [min period, max period] is the position of
the left end of wagon u in w and min period, max period are
the minimum and maximum period of the repeat.

A consensus model must further satisfy the following property:
(P3) leftui+1

− rightui
= 0

where rightu is the position of the right end of wagon u. The property
checks that the occurrences of consensus models are indeed tandem. This
is verified only when |x| ∈ [min period, max period], that is when the
length of the repeat has reached the value specified as input.

The tandem array inference problem is then the following.

INFERENCE OF TANDEM ARRAY PROBLEM

INPUT: A word w ∈ A+, a quorum q, an edit distance d, and a
minimum and maximum period min period and max period.
OUTPUT: All expressions x ∈ A+ that are consensus models for
tandem arrays (that is, properties (P1), (P2), and (P3) are satisfied).

Satellite algorithm

Expressions for tandem arrays are inferred by increasing length. The algo-
rithm keeps track of individual wagons, and at each step determines, on the

5.4. Related issues 263

fly, if they can be combined into at least one train (observe that a wagon can
belong to more than one train). The latter corresponds to checking, for each
wagon, whether it belongs to at least one set of wagons satisfying these
properties (P1) and (P2/P3).

For each expression x that is a prefix model for a tandem array, a list
of the wagons of x that belong to at least one train of x is kept. When the
expression x is extended into the expression x ′ = xa, two tasks must be
performed:

1. determine which wagons of x can be extended to become wagons
of x ′;

2. among these newly-determined wagons of x ′, keep only those that
belong to at least a train of x ′. This requires effectively assembling
wagons into trains.

The trains do not need to be enumerated in the second step, it sufficer to
determine whether if a wagon is part of a train. This allows an extension
step to be performed in time linear with the length of the input word.

Consider the directed graph G = (V, E) where V is the set of all wagons
of x and there is an edge from wagon u to wagon v if leftv − leftu ∈
[min period, max period]. A wagon u is then part of a train if it is in a path
of length q or more in G. Determining this is quite simple as the graph is
clearly acyclic.

For each expression x of length between min period and max period, it
remains to check whether x satisfies the properties of a consensus model for
a tandem array. Consider now a directed bipartite graph Gx = (Lx ∪ Rx, E)
whose vertices are the positions at which, respectively, the left and right
ends of wagons of x occur. Edges i → j with i ∈ Lx, j ∈ Rx are wagon
edges and edges j → i with i ∈ Lx, j ∈ Rx are gap edges. There is a wagon
edge i → j if and only if w[i . . j − 1] is a wagon, and there is a gap edge
j → i if and only if i = j . Thus, an edge sequence i → j → k occurs in
Gx if and only if there are wagons u and v such that u = wiwi+1 · · · wj−1,
leftv = k, and leftv − rightu = 0. It follows that a position/node which is on
a path of length 2q or more is part of a train satisfying properties (P1), (P2),
and (P3). Such a position is called a final position or final node. Let G′

x

be the graph induced by the set, Fx , of all final nodes. If G′
x is nonempty,

then x is a consensus model for a tandem array having the characteristics
specified in the input.

The complexity of Satellite is O(n max period ME(d, k)) where n

is, as before, |w| and ME(d, k) is the size of the set containing all words of
length k at edit distance d from another word of length k. This is actually the
complexity of Speller multiplied by the term max period because of the
need to check for the tandem condition. An extended version of Satellite
allows tandem arrays that may miss a period to be dealt with, meaning that

264 5. Inference of Network Expressions

the repeat may contain some units that have accumulated more differences
than allowed. Such units are called bad wagons. A number of them may be
authorized in a train.

5.5. Open problems

5.5.1. Inference of network expressions using edit distance

In theory, all algorithms presented in this chapter may be modified to handle
edit instead of Hamming distance. Indeed, edit distance is already an integral
part of Poivre (and of Satellite). Thus Mitra-count, which behaves
much as Poivre, can easily be extended to use an edit distance. The same
is true of Speller and such a modification was suggested and quickly
sketched by the authors. A more recent approach using a suffix tree such as
Speller introduces what appears to be an algorithm producing a different
solution from Speller given the same instance.

There has also been a theoretical discussion on how to introduce edit
distance into Footprinter, which includes the time complexity that the
resulting algorithm would have. However, Footprinter is not suitable for
dealing with expressions or occurrences of variable length which appear
when insertions and deletions are allowed. The reason comes from the data
structure used (the table at each node of the tree).

Winnower could also theoretically handle an edit distance, but the
number of edges in the graph would grow as would the number of spurious
edges. Mitra-graph would have the same type of problem but the filtering
of spurious edges is easier to perform and therefore the algorithm might be
able to handle the situation much better than Winnower.

Finally, the first version of Smile is, like Speller, easily modifiable to
handle an edit distance. Although theoretically not impossible, introducing
such distance into the second version of Smile might be more tricky.

In all cases, it is worth exploring more compact ways of representing
the occurrences of an expression once insertions and deletions are allowed.
One possible way extends ideas for pattern matching in a long text with
edit distance.

5.5.2. Minimal covering set

The concept of minimal covering set of expressions may enable two dif-
ficulties encountered to be addressed by currently existing combinatorial
algorithms for network expression inference in a set of words. These dif-
ficulties are, first how to fix a priori the quorum, and second (an even
harder problem) how to efficiently identify weak and rare expressions? To

Notes 265

solve the second problem one can increase the value of d while simul-
taneously decreasing the value of q. However, this may lead to a huge
number of solutions, many of which are uninteresting. A minimal cov-
ering set extends the concept of individual expressions, with or without
spacers, to that of a family of expressions which “completely explains” a
set of words. In a more precise way, the problem could be expressed in
the following (informal) way. Given a set of input words, one must find a
minimal set of r ≥ 1 expression(s) (the value of r is unknown at start) such
that:

• each expression has an occurrence in at least one input word;
• distinct expressions among the r may have occurrences in the same

input word but the number of times this may happen is smaller than a
threshold value t (possibly t may be 0: there is no “word overlap” of
the expressions);

• all words are covered by (at least) one expression in the family (strictly
one in case the threshold t is 0).

Notes

The term network expression to denote repeated regular expressions without
the Kleene closure was introduced for the first time by Mehldau and Myers
(1993).

The literature on grammatical inference is large. Three papers have
been influential on the theory of learning grammars. The first by Gold
(1967) introduced the notion of “language identification in the limit”, the
second by Wharton (1974) relaxed the condition of an exact identification
by allowing for various descriptions of the correct solution, while the third
by Valiant (1984) relaxed such a condition by allowing for a solution to be
only approximately correct. The earliest and main expository of inference
problems for regular grammars is Angluin (1982, 1987).

The definitions and statements concerning the star model have been
adopted in several exact algorithms, namely Combi (Sagot and Viari 1996),
Poivre (Sagot, Viari, and Soldano 1997), Speller (Sagot 1998), Smile
(Marsan and Sagot 2000b, 2001), Pratt (Jonassen, Collins, and Higgins
1995), and Mitra-count (Eskin and Pevzner 2002). The uniform prop-
erty variant of the star model has been introduced by Sagot (1996) and a
similar idea in a previous paper (Sagot, Soldano, and Viari 1995).

The closest substring problem has been defined and proved to be NP-
complete in (Fellows, Gramm, and Niedermeier 2002). It remains an open
problem whether it is parameter-tractable for a constant size alphabet when
either d alone or d and N are fixed (Fellows et al. 2002).

266 5. Inference of Network Expressions

The definitions of the substring parsimony problem and the proof
of its NP-hardness are given in Blanchette, Schwikowski, and Tompa
(2000). The small parsimony problem was introduced in (Fitch 1975)
and the substring parsimony problem with losses in Blanchette (2001);
Blanchette, Schwikowski, and Tompa (2002). The Footprinter algo-
rithm was presented and analysed in Blanchette et al. (2000); Blanchette
(2001); Blanchette and Tompa (2002); Blanchette et al. (2002). The time
complexity of Footprinter is O(Nk Card(A)k + nNk), where n is the
length of each input word (assuming they have the same length). The high-
est term was in fact Nk Card(A)k in a first paper (Blanchette et al. 2000).
This came from the fact that the computation of the Hamming distance
between two words of length k (which takes O(k) time) is done for each
of the O(N) edges in F , each of the O(Card(A)k) possible values for x,
and each of the O(Card(A)k) possible values for y. In Blanchette (2001),
an improvement of the original algorithm described in Blanchette et al.
(2000) was introduced which enabled the exponent k instead of 2k to be
obtained. The improvement is achieved by means of an auxiliary table for
each edge in F . Details may be found in Blanchette (2001). Footprinter
is thus linear with the size of the input words but exponential with the
length k of the expressions sought. If d = 0, Footprinter still takes ex-
ponential time and is therefore not optimal. The algorithm Winnower was
described in Pevzner and Sze (2000). One must observe that if a quorum
lower than N is used, the size of the cliques sought is the only thing that
changes in Winnower. In practice, however, the smaller the quorum, the
less spurious edges there will be that can be safely eliminated. Winnower’s
descendant was presented in Eskin and Pevzner (2002); Eskin, Gelfand, and
Pevzner (2003). The two algorithms that are similar to Winnower and
Mitra-graph, namely KMRC and Poivre, appeared in Sagot, Viari,
Pothier, and Soldano (1995); Soldano, Viari, and Champesme (1995).

Information concerning the Profile data base can be found in Buhler
and Tompa (2001).

Some examples of the use of relative entropy for the evaluation of
network expressions can be found in Vanet, Marsan, and Sagot (1999);
Pavesi, Mauri, and Pesole (2001b).

The algorithm Speller was introduced in Sagot (1998), while the
two variants it inspired, Mitra-count and Weeder, were described
in, respectively, Eskin and Pevzner (2002) and Pavesi, Mauri, and Pesole
(2001a). Detailed information about the generalized suffix tree data struc-
ture can be found in Bieganski, Riedl, Carlis, and Retzel (1994); Hui (1992).
A recent approach using a suffix tree as in Speller but working with the
edit distance is given in Adebiyi, Jiang, and Kaufmann (2001); Adebiyi and
Kaufmann (2002). The approach seems to produce a different solution from

Notes 267

the one that would result from an application of an extension of Speller
enabling the edit distance to be worked with.

Concerning algorithms for inferring network expressions with con-
strained spacers, the various versions of the Smile algorithm are described
in Marsan and Sagot (2000b, 2001), and Mitra-dyad is presented in
Eskin and Pevzner (2002); Eskin et al. (2003).

For the case of unconstrained spacers, Pratt is introduced in Brazma,
Jonassen, Vilo, and Ukkonen (1998c, 1998b); Brazma, Jonassen, Eidham-
mer, and Gilbert (1998a); Jonassen et al. (1995). A few years after Pratt
was conceived, an algorithm that is roughly equivalent to Pratt in terms
of its output was elaborated which uses a lazy implementation of the suffix
tree (Giegerich, Kurtz, and Stoye 1999) to represent the patterns as these
are produced. The lazy suffix tree construction as adapted by the authors
to their needs takes quadratic time but is claimed to be efficient in most
practical situations (Brazma et al. 1998c).

The notion of basis of repeated motifs was introduced in Parida,
Rigoutsos, Floratos, Platt, and Gao (2000); Parida, Rigoutsos, and Platt
(2001). The more recent notion of tiling motifs was described in Pisanti,
Crochemore, Grossi, and Sagot (2003).

Finally, the Satellite algorithm for inferring tandem network expres-
sions can be found in Sagot and Myers (1998).

Readers interested in approaches to the inference, in biological applica-
tions, of simple network expressions or of network expressions with spacers
using heuristics or statistical methods may consult Durbin, Eddy, Krogh,
and Mitchison (1998); Pevzner (2000); Waterman (1995). Machine learn-
ing techniques have also long been used to infer patterns or grammars.
References to some of these techniques as they apply to biology may be
found in Baldi and Brunak (1998).

