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Introduction and Notations

This paper finds its motivation in the pursuit of ideals whose local
cohomology modules have maximal Hilbert functions. In [11], [12] we
proved that the lexicographic (resp. squarefree lexicographic) ideal
of the family of graded (resp. squarefree) ideals with assigned Hilbert
function provides sharp upper bounds for the local cohomology modules
of any ideal of the family. More precisely, the Hilbert series of the local
cohomology modules of any ideal of the family are smaller than or
equal to those of the lexicographic ideal. Moreover these bounds are
determined explicitly in terms of the Hilbert function, which is the
specified starting data. In the present paper a characterization of the
class of ideals with the property of having maximal local cohomology
modules in the sense explained above is accomplished.
Let us set some notation to be used henceforth.
Let R

.
= K[X1, . . . , Xn] denote the polynomial ring in n variables over a

field K of characteristic 0 with its standard grading, m
.
= (X1, . . . , Xn)

the maximal homogeneous ideal of R. We set X1 > X2 > . . . > Xn

and consider the lexicographic order induced by this assignment onMd,
the set of all monomials of R of degree d, for all d. A lex-segment of

degree d is thus a set L = {u ∈ Md : u ≥ v} for some v ∈ Md, and a
graded ideal is called lexicographic if every graded component of I is
generated as a K-vector space by a lex-segment. It is well known that
given a homogeneous ideal I ⊆ R there exists a unique lexicographic
ideal which has the same Hilbert function as I. We shall denote it by
I lex and call it the lexicographic ideal associated with I.
The canonical module of R will be denoted by ωR ≃ R(−n). If M

stands for a graded R-module, then Hilb(M, t) will denote its Hilbert
series in terms of t. The local cohomology modulesH i

m
(M) ofM will be

considered with support on the maximal graded ideal m and with their
natural grading. We write hi(M)j for the dimension as K-vector space
of H i

m
(M)j. The dual of the local cohomology modules according to the

Local Duality Theorem will be denoted with Ei(M)
.
= ExtiR(M,ωR).
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We write Isat for the saturation of an ideal I with respect to m.

A well known theorem of Bigatti-Hulett-Pardue states that in the
family of graded ideals with a given Hilbert function the lexicographic
ideal has the greatest Betti numbers. The class of ideals with the same
resolution as that (i.e. with all of the Betti numbers equal to those)
of the lexicographic ideal is characterized in [7]. These ideals are the
so-called Gotzmann ideals. We recall that an ideal is called Gotzmann
iff in each degree it has the same number of generators as its associated
lexicographic ideal. Note that the definition can be re-read as follows:
Gotzmann ideals have the same 0th graded Betti numbers as those of
their associated lexicographic ideal. The result of [7] shows then that
the maximality of all the other graded Betti numbers is forced by that
of the 0th ones.
It is worth to point out that a similar behaviour underlies our situation
as well, where Gotzmann ideals will play again some important role.
We state now the main result of this paper.

Theorem 0.1. For any graded module I, the following are equivalent

conditions:

(i) (Isat)lex = (I lex)sat;
(ii) h0(R/I)j = h0(R/I lex)j, for all j;
(iii) hi(R/I)j = hi(R/I lex)j, for all i, j.

Thus, the theorem states that, as it happens in the context of Betti
numbers, the equality of the 0th local cohomology forces the equality
of any other. One can wonder if this sort of rigidity behaviour is to be
expected more generally, i.e. is it true that if hi(R/I)k = hi(R/I lex)k
for some i and all k, then hj(R/I)k = hj(R/I lex)k for all j ≥ i and all
k? There is some computational evidence that this might be true. The
analogous question for the graded Betti numbers has been investigated
in [5], where it has been answered positively.

The author would like to express his gratitude to Aldo Conca for
many fruitful discussions about the contents of this paper.

1. Gotzmann ideals and sequentially CM modules

Let us start by proving the equivalence of Conditions (i) and (ii) of
Theorem 0.1.

Lemma 1.1. For any ideal I, we have that

(Isat)lex = (I lex)sat iff h0(R/I)j = h0(R/I lex)j, for all j.
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Proof. Observe that the inclusion (Isat)lex ⊆ (I lex)sat holds true in
general. In fact, one shows first that (I : m)lex ⊆ I lex : m, which
is easy and descends from the property which defines lexicographic
ideals. Secondly, one observes that (I : m

2)lex = ((I : m) : m)lex

which is contained in (I : m)lex : m ⊆ I lex : m2. Proceeding in this
manner will eventually lead to the desired inclusion. Now one notices
that Condition (ii) provides an information about some Hilbert func-
tions: Since H0

m
(R/I) ≃ Isat/I, one has that h0(R/I)j = dimK Isatj −

dimK Ij = dimK(I
sat)lexj − dimK I lexj , which is less than or equal to

dimK(I
lex)satj − dimK I lexj = h0(R/I lex)j for what we said before. One

sees immediately that equality holds iff (Isat)lex = (I lex)sat, and this
completes the proof. N

Let us denote by Gin(I) the generic initial ideal of I with respect
to the reverse lexicographical order induced by the assignment X1 >
X2 > . . . > Xn. In [9] we studied the problem of characterizing those
ideals such that hi(R/I)j = hi(R/Gin(I))j. For the reader’s sake we
recall the main theorem here and recall the definition of sequentially
Cohen-Macaulay after Proposition 1.8 when it is really needed.

Theorem 1.2. Let M be a finitely generated graded R-module with

graded free presentation M = F/U . The following conditions are equiv-

alent.

(a) F/U is sequentially CM;

(b) for all i ≥ 0 and all j one has hi(F/U)j = hi(F/Gin(U))j.

In general it holds that hi(R/I)j ≤ hi(R/Gin(I))j ≤ hi(R/I lex)j
(see [11]). Thus, the class of ideals we are searching for must have
the property that R/I is sequentially CM. Therefore one may state a
fourth condition, wondering if this is equivalent to those of Theorem
0.1:

(iv) R/I is sequentially CM and Gin(I) = I lex.

By virtue of the above theorem one sees that (iv) ⇒ (iii). In fact, if
R/I is sequentially CM, for all i, j one has hi(R/I)j = hi(R/Gin(I))j,
where the latter is equal to hi(R/I lex)j, since Gin(I) = I lex.
On the other hand, one sees that in general (iv) needs not to be implied
by (i). First let us prove an easy lemma.

Lemma 1.3. Let I be a homogeneous ideal and Gin(I) its generic

initial ideal. If (Isat)lex = (I lex)sat then (Gin(I)sat)lex = (Gin(I)lex)sat.

Proof. As observed at the beginning of this section, one inclusion is
trivially true: (Gin(I)sat)lex ⊆ (Gin(I)lex)sat. Thus, it is enough to
show that the two ideals have the same Hilbert function. Since I and
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Gin(I) have the same Hilbert function and therefore same lexicographic
ideal, one has (Gin(I)lex)sat = (I lex)sat = (Isat)lex, by hypothesis. Re-
call now that Gin(Isat) = Gin(I)sat (see for instance [6]). Therefore,
H(Isat, t) = H(Gin(Isat), t) = H(Gin(I)sat, t), and as a consequence
H(Isat, t) = H((Gin(I)sat)lex, t). Finally, we deduce that

H((Gin(I)lex)sat, t) = H((Isat)lex, t) = H(Isat, t)
= H((Gin(I)sat)lex, t),

which yields the desired conclusion. N

By virtue of the above lemma, we need now an example of a strongly
stable ideal, which is not lexicographic, but satisfies (i). This is pro-
vided in what follows.

Example 1.4. Let I = (x2, xy, y2, xz2, yz2) be an ideal of K[x, y, z].
It is easy to verify that I is strongly stable and therefore I = Gin(I).
An easy computation provides that the associated lex-ideal is I lex =
(x2, xy, xz, y3, y2z, yz2). Thus, I 6= I lex and (Isat)lex = (I lex)sat =
(x, y). This shows that Condition (i) is not equivalent to Condition
(iv).

Next, some lemmata which illustrate our hypothesis and character-
ize it. We shall prove that an ideal with the exchange property is
sequentially CM.

Lemma 1.5. Let I be a homogeneous ideal. Then

I = Isat and (Isat)lex = (I lex)sat ⇔ I lex = (I lex)sat.

Proof. “⇒”: It is immediately seen.
“⇐”: Since I lex = (I lex)sat, one has that H0

m
(R/I lex) = 0 and, by

virtue of [11], Theorem 5.4, also H0
m
(R/I) = 0, i.e. I = Isat. Now the

conclusion follows immediately. N

Lemma 1.6. Let I be a homogeneous ideal. If I = Isat is Gotzmann

then (Isat)lex = (I lex)sat.

Proof. By hypothesis depthR/I > 0 and since I is a Gotzmann ideal,
it has the same resolution as I lex. Therefore, also R/I lex has positive
depth. This implies that I lex = (I lex)sat and we are done. N

The stronger counterpart of the above lemma is the following: Let
I be a homogeneous ideal such that (Isat)lex = (I lex)sat. Then Isat is
Gotzmann. One can see that this last statement is equivalent to that
of the following lemma.

Lemma 1.7. Any ideal I such that I lex is saturated is a Gotzmann

ideal.
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Before we start to prove the latter fact, it is worth to underline that
if the lexicographic ideal is saturated, the Hilbert function has a very
rigid behaviour. In fact, saying that any ideal associated with that
lexicographic ideal is Gotzmann implies that any of these ideals has
the same resolution as the lex-ideal.
A saturated lexicographic ideal has indeed a very special structure and
its generators can be described explicitly in terms of the Hilbert poly-
nomial of R/I by means of a vector v of integers in a way that we are
going to recall for the reader’s sake.
Let PR/I(X) =

(

X+a1
a1

)

+
(

X+a2−1
a2

)

+ . . .+
(

X+al−(l−1)
al

)

, with a1 ≥ a2 ≥
. . . al ≥ 0 be a representation of the Hilbert polynomial, also referred
to as its Gotzmann representation. Let now vi

.
= |{j : n− aj − 1 = i}|,

for i = 1, . . . , n − 1 and order the monomials of the minimal set of
generators of I lex, call it G(I lex), lexicographically. It is not difficult
to see that vi represents the exponent of the variable Xi in the least
monomial of highest degree in G(I lex). Let us also set h to be the
maximum index of a non-zero vi. Then, the minimal set of generators
of (I lex)sat is the set

{Xv1+1
1 , Xv1

1 Xv2+1
2 , . . . , Xv1

1 · . . . ·X
vh−1+1
h−1 , Xv1

1 · . . . ·X
vh−1

h−1 X
vh
h },

where, according to our settings, vi ≥ 0, for i = 1, . . . , n − 1 and
vh > 0. We also recall that the vanishing of the local cohomology mod-
ules H i

m
(R/I lex) is determined by the vanishing of the (n − i)th entry

of the vector v = (v1, . . . , vh) (cf. [11], Proposition 6.6).

Proof of Lemma 1.7. We make use of an induction argument on h. If
h = 1, then I lex is simply the principal ideal (Xa

1 ), for some a ∈ N>0,
and there is nothing to prove. Suppose now the thesis proven for any
ideal such that the length of the vector v is h−1. There are two possible
cases. If v1 = 0, then the ideal I lex contains the linear form X1, and
consequently I contains a linear form, let us say l. Thus I lex = (X1, J)
and I = (l, I ′), for some ideals J = J ′R, where J ′ is the saturated
lexicographic ideal in R′ .

= K[X2, . . . , Xn] represented by the vector
(v2, . . . , vh), and I ′ ⊂ R. Clearly X1 is R/J-regular, and we also may
assume that l is R/I ′-regular. From this fact one deduces that J ′ is the
lexicographic ideal associated with I ′R′, and one can use the inductive
hypothesis to reach the conclusion.
Otherwise, if v1 > 0, we observe that gradeIlex(R) = 1 since E1(R/I lex)
6= 0, and that I lex = Xv1

1 J , where J is a saturated lexicographic ideal
represented by the vector (0, v2, . . . , vh) in K[X1, . . . , Xn]. Moreover v1
equals the multiplicity e of R/I lex, which is the same as that of R/I.
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We also have that gradeI(R) = 1, since the dimension of R/I is the
same as that of R/I lex, therefore I can be written as a product of a
polynomial f times an ideal I ′, whose grade is bigger than 1. Observe
that deg f equals the multiplicity of R/I, which is v1. For showing
this simple fact, let us look at the short exact sequence 0 → fR/I →
R/I → R/fR → 0. It is easy to see that the multiplicity of R/fR is

deg f , since the h-vector of R/fR is
∑deg f

i=1 ti, while its dimension is
n − 1. On the other hand the Hilbert function of the left-hand side
module is up to a shift that of the module R/J , whose dimension is
less than n − 1 and therefore cannot contribute to the multiplicity of
R/I.
Since tdeg f Hilb(I ′, t) = Hilb(I, t) = Hilb(I lex, t) = tv1 Hilb(J, t), we
deduce that J is the lexicographic ideal associated with I ′, and the
proof of the lemma is complete by the use of the previous case. N

Proposition 1.8. Let I be an ideal such that (Isat)lex = (I lex)sat. Then
R/Isat is sequentially CM.

It is now convenient to recall the definition of sequentially Cohen-
Macaulay modules. A finitely generated graded R-module M is said
to be sequentially Cohen-Macaulay if there exists a finite filtration 0 =
M0 ⊂ M1 ⊂ M2 ⊂ . . . ⊂ Mr = M of M by graded submodules
of M such that each quotient Mi/Mi−1 is CM, and dim(M1/M0) <
dim(M2/M1) < . . . dim(Mr/Mr−1).
Sequentially CM modules have an interesting characterization in terms
of their homological properties, as illustrated by a theorem of Peskine
(cf. [9], Theorem 1.4). Peskine’s result asserts that a module M is
sequentially CM iff for all 0 ≤ i ≤ dimM the modules En−i(M)

.
=

Extn−i
R (M,ωR) are either 0 or CM of dimension i. For a more complete

overview of the properties of sequentially CM modules we refer to [9],
and we proceed by proving Proposition 1.8.

Proof. Let us assume that I lex is saturated and let us prove that R/I
is sequentially CM. We shall use the same notation as above. In par-
ticular the vector that determines I lex will be denoted by v, and vi, for
i = 1, . . . , h, will denote its entries.
The idea is the same as that of the proof of the above lemma, by induc-
tion on the index h. If h = 1, then I and I lex are principal, therefore
R/I and R/I lex are Cohen-Macaulay, and Cohen-Macaulay modules
are obviously sequentially CM.
If h > 1 we may assume without loss of generality that v1 is 0 and there-
fore that I and I lex contain the linear form X1. The following is an
application of the graded version of the Rees’ Lemma. Let I = (X1, I

′)
6



and I lex = (X1, J), where J = J ′R and J ′ is the (saturated) lexi-
cographic ideal associated with I ′(R/(X1)) determined by the vector
(v2, . . . , vh) in K[X2, . . . , Xn]. Thus we have graded isomorphisms for
all i ≥ 1

ExtiR(R/I,R) ≃ ExtiR(R/(X1, I
′), R)

≃ Exti−1
R/(X1)

((R/(X1))/(I
′(R/(X1))), R/(X1))(1),

which, by induction, is either 0 or Cohen-Macaulay of dimension (n−
1) − (i − 1) = n − i. By virtue of the aforementioned homological
characterization of sequentially CM modules this is equivalent to the
thesis. N

As an immediate consequence of the above observations, we deduce
the property we were interested in.

Proposition 1.9. Let I be an ideal such that (Isat)lex = (I lex)sat. Then
R/I is sequentially CM.

Proof. By virtue of the above proposition it is enough to notice that
an R-module M is sequentially CM iff M/H0

m
(M) is sequentially CM.

In our case M = R/I and M/H0
m
(M) ≃ (R/I)/(Isat/I) ≃ R/Isat. N

Observe that if I is a proper cyclic ideal, its lexicographic ideal is
(Xd

1 ) for some positive integer d, which is saturated. Moreover, R/I
is CM of dimension n − 1, and its only non-vanishing Ext-group is
the first one. This is isomorphic to a shifted copy of R/I itself, and
therefore cyclic. Applying this observation to the inductive argument
of the proof of Proposition 1.8, one deduces the following.

Proposition 1.10. Let I be an ideal such that (Isat)lex = (I lex)sat,
then all of its Ext-groups except possibly the nth-one are cyclic.

2. Proof of Theorem 0.1

We prove first the result for strongly stable ideals. Recall that a
monomial ideal I is said to be strongly stable if, for every u ∈ I, one has
Xiu/Xj ∈ I for all Xj|u and i < j. For a strongly stable ideal one has
that Isat = I : (Xn)

∞. In particular, one knows that R/I has positive
depth iff Xn does not appear in any of the monomials which minimally
generate I. Suppose now that I is strongly stable and thatXn is R/I lex-
regular. Then, if we denote by a · the equivalence classes in the quotient

of the polynomial ring by the last variable, one has I lex = I
lex
. Let us

give a quick explanation for this fact. Since I lex is strongly stable as
well and Xn is R/I lex-regular, none of the monomial of the minimal set

of generators of I lex contain the last variable, thus I lex is a lexicographic
7



ideal in the variables X1, . . . , Xn−1. Since depthR/I lex ≤ depthR/I,
and I is a strongly stable ideal, for the reason explained above Xn

is also R/I-regular. Therefore we can control the behaviour of the
Hilbert function when passing to the quotient by the last variable, and
the conclusion follows easily.
The following is a technical lemma about local cohomology and we refer
to [2] or [3] for more details about the Local Duality Theorem and the
properties of the canonical module.

Lemma 2.1. Let I ⊂ R an ideal of R and let S
.
= R[X], with maximal

graded ideal n. The following graded isomorphism of R-modules holds.

H i
n
(S/IS) ≃ HomR(S,H

i−1
m

(R/I))(1).

Proof. The relation ωS = (ωR ⊗R S)(−1) between the canonical mod-
ules of S and R is well known. By the Local Duality Theorem, one has
that H i

n
(S/IS) is the dual of Extn+1−i

S (S/IS, ωS), which is defined to be
HomK(Ext

n+1−i
S (S/IS, ωS), K). After writing S = S ⊗R R and substi-

tuting ωS by means of the formula written above, one obtains that the
latter is isomorphic to HomK(Ext

n+1−i
S⊗RR(R/I⊗RS, (ωR⊗RS)(−1)), K) ≃

HomK(Ext
n+1−i
S⊗RR(R/I ⊗R S, ωR ⊗R S), K)(1) and, since S is R-flat, this

is isomorphic to HomK(S ⊗R Extn+1−i
R (R/I, ωR), K)(1). Using a well-

known formula in homological algebra and applying the Local Duality
Theorem again, one finally deduces

H i
n
(S/IS) ≃ HomR(S,HomK(Ext

n+1−i
R (R/I, ωR), K))(1)

≃ HomR(S,H
i−1
m

(R/I))(1),

as required. N

Lemma 2.2. Let S = R[X] be a polynomial ring in one indeterminate

over R with graded maximal ideal n. Let I be an ideal of R. Then, for

all i, j,

dimK H i
n
(S/IS)j =

∑

h≥j

dimK H i−1
m

(R/I)h+1.

Proof. The proof is based on the above lemma and on some consid-
erations about the S-module structure of HomR(S,N), where N is
an arbitrary R-module. Let us consider the R-linear application · :
S×HomR(S,N) → HomR(S,N) defined by ·(s, ϕ)(t)

.
= s·ϕ(t)

.
= ϕ(st).

This map endows HomR(S,N) with an S-module structure.

Let now N and S be graded. One defines a graded structure of S-
module on HomR(S,N) as follows. We set

HomR(S,N)i
.
= {ϕ ∈ HomR(S,N)|ϕ(Sj) ⊂ Ni+j, for all j}
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to be the ith graded component of HomR(S,N).
Observe that, if ϕ ∈ HomR(S,N)i ∩ HomR(S,N)j and i 6= j, then
ϕ(Sk) ⊂ Ni+k ∩ Nj+k = (0), i.e. ϕ = 0. If ϕ ∈ HomR(S,N)i, s
is an element of Sj and t ∈ Sk then sϕ(t) = ϕ(st) ∈ Ni+(k+j), i.e.
sϕ ∈ HomR(S,N)i+j. Finally, one can verify that HomR(S,N) ⊂
⊕i HomR(S,N)i.

Let now S be as in the hypothesis and consider the homogeneous
isomorphism of graded S-modules α

HomR(S,N)
α
→ Πj≥0Nx−j

that maps an element ϕ of HomR(S,N) into (. . . , ϕ(xj)x−j, . . .).
Thus, HomR(S,N)i ≃ (Πj≥0Nx−j)i ≃ ⊕h≥iNh, and ifN is Artinian one
can deduce that the dimension as a K-vector space of HomS(R,N) is
just the sum of the dimensions of the graded components Nh of N with
h ≥ i. Now the conclusion follows from Lemma 2.1. N

Proposition 2.3. Let I be a strongly stable ideal such that (Isat)lex =
(I lex)sat. Then

hi(R/I)j = hi(R/I lex)j, for all i, j.

Proof. As we noticed already several times, the hypothesis is equivalent
to saying that h0(R/I)j = h0(R/I lex)j for all j. We may then assume
that I is saturated, i.e. that depthR/I is positive. By induction on n
we also suppose the thesis to be true for any strongly stable ideal on a
polynomial ring with less than n variables. Bearing in mind the remarks
before Lemma 2.2, the conclusion is a straightforward application of the
latter. N

Proof of Theorem 0.1, (i) ⇒ (iii). By Proposition 1.9, we know that
R/I is sequentially CM. If Gin(I) = I lex, we achieve the conclu-
sion immediately for what we said before Lemma 1.3. Otherwise, by
virtue of Lemma 1.3 we may assume without loss of generality that
I is strongly stable, by substituting it with its generic initial, since
hi(R/I)j = hi(R/Gin(I)j. The thesis is thus an application of Propo-
sition 2.3. N
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