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Abstract. In this paper we consider the n dimensional Navier-Stokes equations

 and we prove a new regularity criterion for weak solutions. More precisely, if n=

3, 4 we show that the "smallness" of at least n-1 components of the velocity in

 L•‡(0, T; Lnw (Rn)) is sufficient to ensure regularity of the weak solutions.

1. Introduction

The aim of this paper is to improve a criterion for the regularity of weak 
solutions of the Navier-Stokes equations in Rn and to give a simpler proof of some 
known results. We shall consider the system of the Navier-Stokes equations below

(1)

in R•~(0, T),

in Rn•~(0, T),

in Rn,

and to avoid inessential calculation we assume that the external force f vanishes, 

even if it is easy to include nonzero smooth forces. Here Lp:=(Lp(Rn))n, for 

1_??_p_??_•‡ with norm •a.•ap, is the usual Lebesgue space. It is well-known that if a 

weak solution belongs to

(2) L°(0, T; L") with G + rc < 1, for q > n,

then it is regular, see Prodi [18] and Serrin [19] if 2/p+n/q<1. For the case with 
2/p+n/q=1 see for instance Sohr [20]. A recent monograph on the existence 
and regularity theory for the Navier-Stokes equations, that collects almost all the 
results cited and used in this paper, is the book of Galdi [7]. The classical result
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above, involving the condition (2) (which is present just in the 1934 Leray's paper 

[13]), does not cover the limit case p=•‡ and q=n, but the remarkable result of 

non-existence of Leray's self similar solutions in L3 proved in Necas, Ruzicka, and 

Sverak [17], may also suggest that L•‡ (0, T; L3) is a regularity class. Recall also 

that the study of L3 solutions is interesting by itself, since it is a starting point in 

the dimensionfree estimates of Caffarelli, Kohn, and Nirenberg [6].

In this direction there are some partial results, in particular it is known that

(3)
is a uniqueness class, see Kozono and Sohr [11]. See also P. -L. Lions and Masmoudi 

[15]. A little bit stronger condition on the time variable, for instance continuity 

(Sohr and von Whal [21]), or left continuity (Masuda [16]), or bounded variation 

(Kozono and Sohr [12]) ensures the regularity. For a review on these results see 

Kozono [10].

Another condition, ensuring the regularity, is the one involving the so called 
"Hypothesis A"

, introduced by Beirao da Veiga [3]. In reference [3] it is proved (for 

the problem with n=3, 4) that if u•¸L•‡(0, T; Ln) satisfies the "Hypothesis A;" 

then u is a strong solution of (1) in (0, T). Observe that, as quite particular cases, 

Hypothesis A is satisfied if the solution is left-continuous or of bounded variation 

with values in Ln or even if the jumps of the La-norm are small enough. In Beirao 

da Veiga [4] this result is improved by showing that, if at least n-1 components 

of u satisfy Hypothesis A, then the solution is regular.

On the other hand it is well-known that if the norm of u in L•‡(0, T; Ln) 

is small enough, then the solution is smooth. For an elementary proof see [3]. 

By requiring some smallness it is possible to weaken the condition in the space 
variables. In Kozono [10] it is also shown that the smallness in

(4)
is enough to have regularity, where Lnw is the weak-La space.

In this paper we give a simple proof of this result and we improve it by showing 

that only n-1 components of the velocity satisfying the latter condition is sufficient 

to have smoothness of weak solutions.

Our calculations are true at a formal level for any n, but the result will follow 

for n_??_4. In particular, our result encompasses the case n=3, which is more 

interesting from the physical point of view. For n_??_5 it is necessary to resort to 

more technical methods, see for example Struwe [22]. Recall also (see •˜ 4 in Kato [9]) 

that n=4 is a limit case, just for the problem of existence of weak solutions.

We recall that the divergence-free vector u is a weak (or Leray-Hopf) solution 

of the Navier-Stokes equations if it has the following regularity properties

(5) u•¸Cw(0,T;L2)•¿L2(0, T; H1), with u E Ll C(0, T; H-1);
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if it satisfies

(6)

for all divergence-free ƒÓ•¸C1(0,T;H1•¿Ln) and furthermore if the so called "energy 

inequality" holds:

(7) IIu(t)II2 + / IIDu(s)II2 ds < ~ IIuoII2, for any t_??_0.

Here Wk,p:=(Wk,p(Rn))n and Hs:=WS;2 are the customary Sobolev spaces.
 Recall that Cw(0, T; L2) is the space of weakly continuous functions on (0, T) with 

values in L2.
We say that a weak solution u is strong if it also satisfies:

(8) u•¸L2(0,T;H2)•¿L•‡(0,T;H1), with a E L2(0, T; L2).

In particular it is well-known that strong solutions are unique in the class of weak 

solutions. Furthermore, a strong solution is also regular (say a classical solution). 

Note that, by a standard result of functional analysis, condition (8) implies that 

u•¸C(0,T;H1) and, if n_??_4, we have that H1•¼Ln. Then strong solutions belong 

to C(0, T; La), that is a regularity class.

We denote by [.]n, the quasi-norm of or weak-Ln space, see Section 2 for the 

precise definition of this space and some of its properties. In the sequel we shall 

need the following definition.

DEFINITION 1. Given a vector b•¸Rn, we define b as the projection of b onto 

the hyperplane generated by the first n-1 vectors of an orthonormal basis of Rn.

The main result we shall prove is the following.

THEOREM 1.1. Let u0•¸H1, with •¤•Eu0=0 and let u be a weak solution of 

the Navier-Stokes equations (1) in Rn•~(0, T), for n_??_4. There exists a positive 

constant C0 such that if

(9) Sup {u(t)] n < C0,
 0<t<T

then the solution u is strong in (0, T).

REMARK 1.2. The positive constant C0 depends only on the space dimension 
n and on the viscosity coefficient v. Moreover, C0 is independent of the initial datum 
and of the time T, see the inequality (13) below.
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2. Some results regarding Lorentz spaces

In the sequel we shall use some results related to Lorentz spaces. We briefly 

recall the definition of such spaces. Given a measurable function f:Rn•¨R we 

say that f•¸Lp,q, for 1_??_p_??_•‡ and 1_??_q _??_•‡, if

where ƒÊ{.} denotes the Lebesgue measure. With this definition the spaces Lp,q 

are not Banach spaces, since •a.•ap,q is just a quasi-norm. If p>1 it is possible 

to define Lp,q in an equivalent way so as to make it a Banach space, see Ch. 1 in 

Bergh and Lofstrom [5]. We observe that Lp,•‡=Lpw the Marcinkiewicz (or weak) 

Lp space of measurable functions such that

~If IIL, P~ [f] v := sup ~ ({x ~E R"L : ff(x)J > o'})h/P<00.

We also recall that, if ƒÁ1_??_ƒÁ2, then Lp,ƒÁ1•¼Lp,ƒÁ2; furthermore Lp,p is isomorphic 

to the usual Lebesgue space Lp, for 1_??_p<•‡.

For our purposes we need the following lemma, which is proved in Kozono [10], 

Section 2. For the reader's convenience we sketch its proof.

LEMMA 2.1. Let v be in D1,2:= {v•¸L1loc:•¤v•¸L2} , w be in L2 and z be 

in Lnw. Then

with the constant C1(n) depending only on the space dimension n.

PROOF. We recall that if f•¸Lp1,q1 and g•¸Lp2,q2 (for 1<p1, p2<•‡) 

with 1/p:=1/p1+1/p2<1, then f g•¸Lp,q with

•afg•ap,q_??_C•af•ap1

,q1•ag•ap2,q2 for q:=min{q1,q2}.

By using the above result (a generalization of the classical Holder inequality) we 
obtain

We now observe that if f•¸D1,2, then f•¸L n 2 ,2 with

(10)
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This last inequality can be easily shown by a density argument. In fact, if f

•Ç•‡0(Rn), then

where ƒÖn is the volume of the unit ball in Rn. By using the Hardy-Littlewood

- Sobolev inequality it follows that the operator ƒ¡ belongs to L(Lp, Lq) (the space 

of bounded linear operators from Lp into Lq) for 1<p<n, 1<q<•‡ and 1/q=

1/p-1/n. Then by real interpolation (the General Marcinkiewicz Interpolation 

Theorem 5.3.2 in Bergh and Lofstrom [5]) we obtain

Finally, by using (10) and by recalling that L2'2=L2 we complete the proof of 

Lemma 2.1. • 

3. Proof of Theorem 1.1

We can now prove the main result of this paper. The proof is based on classical 

manipulations (see for instance J.-L. Lions [14], Ch. I) together with anew result, 

namely Eq. (11) below, that is obtained in Bae and Choe [1]. By a continuation 

argument we shall show that to prove Theorem 1.1 it is sufficient to prove the 

following lemma.

LEMMA 3.1. Given a divergence-free a0•¸H1, consider the Cauchy problem 

for the Navier-Stokes equations in (ƒÑ-ƒÂ,ƒÑ)•º(0,T), with as as initial value. Let 

u be a weak solution in (ƒÑ-ƒÂ, ƒÑ), as well as a strong solution in (ƒÑ-ƒÂ,ƒÑ•Œ) for each 

ƒÑ•Œ<ƒÑ. Assume moreover that u satisfies (9) for a small enough positive constant 

C0. Under the above hypotheses u is a strong (hence regular) solution in (ƒÑ-ƒÂ, ƒÑ).

PROOF. We differentiate the first equation in (1) with respect to xk, we take 

the scalar product with •Ýui/•Ýxk and we integrate over Rn. We get

where
n 2 n 2 2u

i and IV2uI2= a IVuI2ax~axk,j=1 i,j,k=1
By a careful inspection of the right hand side (see Eq. (2.3)-(2.4)-(2.5) in Beirao 
da Veiga [4]) it follows that

(11)
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where C2 (n) is a positive constant, depending only on the space dimension n. To 
prove (11) note that, by the incompressibility condition, we have

(12)

If i=j=n, and by recalling that

we obtain that the right hand side of (12) is equal to

We then consider the case i•‚n

Furthermore, if i=n and j•‚n

and (11) easily follows. By using (11) together with Lemma 2.1, we get the following 
estimate.

Finally, if

(13)

a standard application of the Gronwall lemma implies that
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This proves Lemma 3.1 if n=3, because L•‡(ƒÑ-ƒÂ, ƒÑ; H1) is a regularity class. 

Observe that the Gronwall lemma implies also that

and, if n=4,

Since W1,4(R4)_??_L•‡(R4), to conclude it is necessary to resort to the criterion 

proved in Beirao da Veiga [2]. In fact, in the last reference it is proved that if

u e Lp (T  8, r; W 1'q (Rn)) for + `u < 2 with <p_??_2,

then the weak solution u is regular in (ƒÑ-ƒÂ, ƒÑ). • 

REMARK 3.2. If the external force f does not vanishes, but if it is smooth 

enough (say for instance f•¸L2(0, T; L2) and •¤•Ef=0), then Lemma 3.1 is still 

true. In fact, in this case the same manipulations as above imply that, for all ƒÅ>0,

By using Lemma 3.1 we can now easily prove Theorem 1.1.

PROOF OF THEOREM 1.1. The proof of Theorem 1.1 follows by a contin

uation argument. In fact, the local existence theorem for strong solutions (see 

Leray [13] Chap. 4, •˜ 23, for the three-dimensional case and Kato [9] for the Cauchy 

problem in R4) implies that the Cauchy problem (1) has a unique strong solution in 

some interval [0, T,), for some strictly positive T1. For convenience, let us suppose 

that this interval is the maximal interval of existence of the strong solution starting 

from u0 at time t=0. Let us suppose that T1<T. Then Lemma 3.1 with a0=u0 

and (ƒÑ-ƒÂ,ƒÑ)=(0,T1) shows that u(T1) belongs to H1. A further continuation of 

u is then possible. Absurd since [0, T1) was the maximal existence interval. • 

REMARK 3.3. We recall again that a strong solution is unique also in the 

larger class of Leray-Hopf weak solutions. In particular, to identify a weak solu

tion on [0, T] and a strong solution on the same interval, just the classical energy 

inequality (7) is necessary. We also observe that a more restrictive form of this in

equality (roughly speaking the same for almost all s•¸[0, T] as initial values) is used 

in the proof of uniqueness of weak solutions with arbitrary norm in L•‡(0, T; Ln).

REMARK 3.4. Observe that if u0 belongs just to L2 and if condition (9) is 

satisfied, then the solution is strong in (t, T), for each t>0.
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4. Some remarks on the problem in a general domain

We observe that to obtain (11) it is essential to study the Navier-Stokes equa

tions in the whole space, or at least in the periodic setting, to avoid the presence 

of boundary conditions. On the other hand, we may consider the Navier-Stokes 

equations in ƒ¶, where ƒ¶•¼R3 is a smooth (say C2+ƒÊ, for ƒÊ>0) bounded domain.

We can prove in a different way the regularity-criterion involving the smallness 

of u in the class (4), proved in Kozono [10]. We shall prove the following theorem, by 

assuming a condition that involves all the components of the velocity field. Recall 

that, since the initial-boundary value problem for the Navier-Stokes equations is 

generally supplemented with the homogeneous Dirichlet conditions

u=0 on •Ýƒ¶,

a weak solution must satisfy the following condition

instead of (5). Furthermore, in (6) the test-functions must vanish on the boundary. 

For the existence of weak solution of the Navier-Stokes equations in such a domain 

ƒ¶, see for instance J. -L. Lions [14] or Masuda [16]. We have the following result.

THEOREM 4.1 (Kozono). Let u0•¸H10(ƒ¶), with •¤•Eu0=0 and let u be a 

weak solution of the Navier-Stokes equations in ƒ¶•~(0, T), for ƒ¶•¼R3 as above. 

There exists a positive constant C1 such that if

(14)

then the solution u is strong in (0, T).

REMARK 4.2. By using the same techniques of Galdi and Maremonti [8] it 

is possible to prove the same result as Theorem 4.1 in a more general domain. In 

particular, it is sufficient that ƒ¶ is an arbitrary domain, uniformly of class C2. It 

means that ƒ¶ lies on one part of its boundary •Ýƒ¶ and, for each x0•¸•Ýƒ¶, there exists 

a ball centered at x0 and of radius independent of x0, such that •Ýƒ¶•¿B admits a 

Cartesian representation xn=ƒÁ(x1,...,xn), where ƒÁ is a function of class C2 with 

derivatives up to the second bounded independently of x0.

Reasoning as in the proof of Theorem 1.1, it is clear that to prove Theorem 4.1 

it is enough to prove the following lemma.

LEMMA 4.3. Given a divergence free a0•¸H10(ƒ¶), consider the initial value

problem for the Navier-Stokes equations in ƒ¶•~(ƒÑ-ƒÂ,ƒÑ)•¼ƒ¶•~(0,T), with a0 as 

the initial value. Let u be a weak solution of (1) in (ƒÑ-ƒÂ,ƒÑ), as well as a strong
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solution in (ƒÑ-ƒÂ, ƒÑ•Œ) for each ƒÑ•Œ<ƒÑ. Assume moreover that u satisfies (14) for 

a small enough positive constant C1. Under the above hypotheses u is a strong 

solution in (ƒÑ-ƒÂ, ƒÑ).

PROOF. We use the classical manipulations introduced in Prodi [18], namely 

multiplying the equation by Au (where A is the well-known Stokes operator) and 

doing suitable integration by parts. Observe that the same estimate can be obtained 

by using the technique of the previous section.

It follows that

(15)

To estimate the right hand side of (15), we observe that if we work in a domain ƒ¶ 

as above of R3 the result of Lemma 2.1 is still true. In this case it is necessary to 

require, as additional hypothesis, that v•¸H10(ƒ¶), w•¸L2(ƒ¶) and z•¸L3w(ƒ¶) to 

obtain (the norms and quasi-norms are obviously in Lp,q(ƒ¶))

see again Kozono [10]. We finally obtain

and the same argument of Lemma 3.1 holds, since the Gronwall lemma implies that

provided that

This concludes the proof of Lemma 4.3. • 
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