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ABSTRACT OF THESIS 

IN-SITU CHARACTERIZATION OF BURR FORMATION IN FINISH MACHINING 

OF INCONEL 718 

One of the undesirable byproducts that occur during the machining process is the 

development of burrs, which are defined as rough excess material that forms around the 

geometric discontinuities of a part. Burrs are especially problematic because they have 

negative impacts across the triple bottom line: economic, environmental, societal. For one, 

they are expensive to remove because the deburring process is entirely manual and requires 

skill. Further, burr material is typically discarded which is adding to the already mounting 

waste generated from machining such as in coolant and chip disposal. Lastly, there are 

many societal implications, such as operator injury during assembly and the failure of parts 

in service because of leftover burrs that turned into stress concentrations.  

Therefore, optimizing the machining process to minimize burrs and promote 

sustainable manufacturing is a central challenge for manufacturers today. However, the 

burr formation mechanism is complex, and research on the phenomenon is scarce. The 

current state of the art focuses almost exclusively on drilling and micro-milling processes, 

with very little work investigating burr formation in the conventional machining processes 

of turning and milling. Research as it pertains to materials that are difficult-to-machine like 

nickel and titanium-based superalloys is even less common, as most of the literature 

focuses on softer materials like aluminum and steel alloys. Superalloys are especially 

crucial to the aerospace industry, comprising most of the components in jet engines.    

Thus, the objective of this study was to characterize burr formation for nickel-based 

superalloy Inconel 718 using a custom-built in-situ testbed capable of ultra-high-speed 

imaging in orthogonal cuts. Experiments were carried out to measure the variation in burr 

development with respect to several cutting parameters: uncut chip thickness, tool-wear, 

and cutting speed. Firstly, the exit and side burr geometry were measured after each 

machining trial for a variety of different metrics. Results showed that all cutting parameters 

have an influence on the burr geometry, although not every cutting parameter had statistical 

significance on certain burr metrics. For instance, it was found that side burrs were much 

more sensitive to tool-wear than exit burrs. Then, by combining digital image correlation 

(DIC) with a physics-based model, the flow stress was calculated during exit burr 



formation and results revealed that the stress at the exit burr root was approximately equal 

to the flow stress. Finally, this study investigates the fracture phenomenon during exit burr 

formation—it was found that besides the requirement of high strain rate and depth of cut, 

negative exit burrs, there is a microstructural size effect, which had not been reported by 

prior work. 

KEYWORDS: Burr Formation, Finish Machining, Inconel 718, Tool-Wear, In-Situ 

Characterization, Digital Image Correlation (DIC)  

 

 

 

 

 

 Hamzah M. Zannoun 

    (Name of Student) 

 

December 1st, 2022 

              Date 



 

 

 

 
 
 
 
 
 
 
 
 

IN-SITU CHARACTERIZATION OF BURR FORMATION IN FINISH 

MACHINING OF INCONEL 718 

 

 

By 

Hamzah M. Zannoun 

 

 

 

 

 

 

 

 

 

 

 

Dr. Julius M. Schoop 

Director of Thesis 

 

Dr. Jesse B. Hoagg 

Director of Graduate Studies 

 

               December 1st, 2022 

               Date 

 

 

 

 

 

 



III 

 

ACKNOWLEDGMENTS

I would like to start by thanking my amazing advisor, Professor Julius Schoop. I 

first approached Dr. Schoop because I was interested in machining, given my passion for 

automotive and aerospace engine manufacturing. Despite my limited knowledge of the 

subject, he was still very enthusiastic about me joining the team. Throughout my entire 

time working under him, he would always come in with a smile on his face—I have yet to 

ever see him in a bad mood. Despite his busy schedule, he always makes time for students 

to discuss research, give professional advice, and get to know them on a more personal 

level. To me, Dr. Schoop was far more than just an academic advisor. He was also a 

mentor, role model, and friend. I felt I could really be myself around him and selecting 

him as my advisor was honestly the best decision of my academic career. Thank you, Dr. 

Schoop, for being the best advisor a student could ask for. 

Next, I would like to thank my two committee members, Professor I.S. Jawahir 

and Professor Fazleena Badurdeen. Dr. Jawahir is one of the humblest and kindest 

professors I have ever met. Despite his immense reputation, he is extremely friendly and 

personable with everyone he meets, especially students. I had many enlightening 

conversations with Dr. Jawahir, and I could tell that he was invested in my success. He is 

a shining example of a great leader, making ISM such an accommodating and enjoyable 

place to work. Dr. Badurdeen is another professor I have an incredible amount of respect 

for. I have had the pleasure of taking four classes with Dr. Badurdeen, more than any other 

professor during my time at UK, and every time I walked away with invaluable skills and 

knowledge on sustainable manufacturing. I thank you both for everything you do at ISM, 

it has been an honor knowing you personally and professionally. Big thanks also go out to 

Dana Harrod for everything she does—I could not imagine ISM without her. I would also 

like to show my appreciation for Professor John Balk and Dr. Mike Detisch for allowing 

me to use equipment at the EMC, which improved the quality of my thesis work 

tremendously. Special recognition goes out to Professor Scott Stephens, who I learned a 

lot from during my time as his TA.  

There are a great many individuals that I met during my time as a graduate student 

that I would like to thank, starting of course with my fellow collaborators in the Schoop 



IV 

 

Research Group: E-Lexus Thornton, Mehedi Hasan, Victor Sodje, David Adeniji, 

Gatewood Arnold, Guher Toker, Avery Hartley, Dan Caudill, and Kyle Oligee. It was a 

pleasure working with you on papers and research projects, but I am also grateful for all 

the fun conversations and good times we had. I am proud to call you all my friends. Special 

thanks go out to the undergraduate students of the group: Zach Rohrer, Naol Wolde, Jaden 

Kim, Jakob Eichhorn, and Connor Vomero, who were all instrumental in assisting me with 

my research. I would like to recognize Zach Rohrer in particular, who went above and 

beyond in aiding me during my experiments, saving me countless hours. I also want to 

acknowledge all my other colleagues from ISM: Gisele Guedes, Syed Ibn Mohsin, and 

Yangyang Wu. There are also the two exchange students from Germany: Matthias 

Wimmer and German Gonzalez Fernandez. It was awesome getting to know you guys 

during the short time that you were here. Furthermore, I would like to give sincerest 

appreciation to my other longtime friends: Seth Bottom, Korbin Jackson, Evan Lindsay, 

Bruno Tacchi, John Hinkebein, Hector Rosa, and Joe Gomez. Thank you, guys, for 

sticking with me through the years. 

Last but certainly not least, I give utmost thanks to my family: my younger brother, 

Hisham, but particularly my parents, who paved the way for me to have a stress-free 

experience in college. They provided me with all the support I needed to succeed not only 

in school but also in life, and I could not have done any of this without them. They 

sacrificed a lot so that I could have a bright future, and for that I am eternally grateful. 

Thank you for everything, mama and baba, I hope I made you proud. 



V 

 

TABLE OF CONTENTS 

ABSTRACT OF THESIS ................................................................................................... II 

ACKNOWLEDGMENTS ................................................................................................ III 

TABLE OF CONTENTS ................................................................................................... V 

LIST OF TABLES ........................................................................................................... VII 

LIST OF FIGURES ....................................................................................................... VIII 

CHAPTER 1. Introduction ............................................................................................. 1 

CHAPTER 2. Background and Literature Review ........................................................ 5 

2.1 Machining of Nickel-Based Superalloys ................................................................ 5 

2.2 Effects of Cutting Conditions on Surface Integrity ................................................ 7 

2.2.1 Cutting Tool Condition ................................................................................. 10 

2.2.2 Surface Roughness ........................................................................................ 13 

2.2.3 Machining-Induced Residual Stress ............................................................. 17 

2.2.4 Microhardness and Microstructure ............................................................... 20 

2.3 Burr Formation...................................................................................................... 25 

2.3.1 Types of Burrs and Formation Mechanism .................................................. 26 

2.3.2 Effects of Cutting Conditions on Burrs ........................................................ 30 

CHAPTER 3. Experimental Setup and Measurement ................................................. 36 

3.1 In-Situ Testbed for High-Speed Imaging of Orthogonal Cuts .............................. 36 

3.2 Sample and Tool Preparation ................................................................................ 39 

3.2.1 Sample Polishing and Etching ...................................................................... 39 

3.2.2 Tool Sharpening and Imposition of Flank-Wear .......................................... 40 

3.3 Force Measurement ............................................................................................... 42 

3.4 Displacement Measurement .................................................................................. 43 

3.5 Optical Microscopy for Capturing Burrs .............................................................. 46 

CHAPTER 4. Characterization of Burr Geometry ...................................................... 47 

4.1 Exit Burr Development ......................................................................................... 47 

4.1.1 Effects of Uncut Chip Thickness on Exit Burrs ............................................ 50 

4.1.2 Effects of Tool-Wear on Exit Burrs .............................................................. 52 

4.1.3 Effects of Cutting Speed on Exit Burrs......................................................... 53 



VI 

 

4.2 Side Burr Development......................................................................................... 53 

4.2.1 Effects of Uncut Chip Thickness on Side Burrs ........................................... 55 

4.2.2 Effects of Tool-Wear on Side Burrs ............................................................. 56 

4.2.3 Effects of Cutting Speed on Side Burrs ........................................................ 57 

CHAPTER 5. Displacement and Stress Analysis ........................................................ 59 

5.1 Subsurface Displacement at Exit Burr Root ......................................................... 59 

5.2 Subsurface Stress at Exit Burr Root...................................................................... 60 

CHAPTER 6. Exit Burr Fracture Analysis .................................................................. 65 

6.1 Effects of Cutting Parameters on Exit Burr Fracture ............................................ 65 

6.2 Effects of Tool-Wear on Exit Burr Fracture ......................................................... 68 

6.3 Effects of Microstructure on Exit Burr Fracture ................................................... 69 

CHAPTER 7. Conclusions and Outlook ...................................................................... 71 

7.1 Summary of Findings ............................................................................................ 71 

7.2 Future Work .......................................................................................................... 73 

APPENDIX ....................................................................................................................... 75 

REFERENCES ................................................................................................................. 79 

VITA ................................................................................................................................. 91 

 

 

 



VII 

 

LIST OF TABLES 

Table 2-1. Positive Exit Burr Metrics Proposed by Ko and Dornfeld [82] ...................... 28 

Table 3-1. Experimental matrix for in-situ trials .............................................................. 38 

Table 3-2. Polishing recipe for Inconel 718 in-situ workpiece ......................................... 40 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

VIII 

 

LIST OF FIGURES 

Figure 1-1. Burrs in (a) milling (reproduced from [8] under the CC license); (b) turning  

(reproduced from [9] with permission of Springer Nature, License Number 

5440320873157); (c) drilling (reproduced from [5, 8, 10] under the CC license and with 

permission of Springer Nature and Elsevier, License Numbers 5440370956751 and 

5440371134411) ................................................................................................................. 3 

Figure 1-2. Framework of factors affecting total machining performance (reproduced from 

[6] with permission of ASME) ........................................................................................... 4 

Figure 2-1. Correlation between material properties and machining defects (reproduced 

from [15] with permission of Springer Nature, License Number 5427931460106) ........... 5 

Figure 2-2. Tool-wear modes and mechanisms. Images reproduced from [19-25] with 

permission of Elsevier and Springer Nature, License Numbers 5440380404232, 

5440381087265, 5440400334357, 5440381365393, 5440390090010, 5440390338603, 

5440391308844................................................................................................................... 7 

Figure 2-3. Cutting force variation with cutting speed for Inconel 718 (reproduced from 

[24, 28] with permission of Springer Nature and Elsevier, License Numbers 

5427940633570 and 5427960339270) ............................................................................... 8 

Figure. 2-4 Cutting temperature variation with cutting speed and feed rate (reproduced 

from [19] with permission of Elsevier, License Number 5427950598778) ....................... 9 

Figure 2-5. Change in flank-wear with cutting speed for Inconel 718 under (a) dry 

conditions (reproduced from [24] with permission of Springer Nature, License Number 

5427940633570) and (b) wet conditions (reproduced from [39] under the CC-BY-NC-ND 

License) ............................................................................................................................. 11 

Figure 2-6. (a) Forces in relation to feed rate and duration of cut (reproduced from [42] 

with permission of Elsevier, License Number 5427961127336); (b) flank-wear in relation 

to feed rate (reproduced from [19, 45] with permission of Elsevier, License Numbers 

5427960912537 and 5427950598778); (c) flank-wear with number of impacts/cutting 

length (reproduced from [44] with permission of Elsevier, License Number 

5428000043935) for Inconel 718...................................................................................... 13 

Figure 2-7. Surface roughness variation with tool-wear (reproduced from [24] with 

permission of Springer Nature, License Number 5427940633570) ................................. 14 

Figure 2-8. Surface roughness variation with cutting speed for (a) bainite steel (reproduced 

from [54] with permission of Elsevier, License Number 5427961284848) and (b) Inconel 

718 (reproduced from [39] under the CC-BY-NC-ND License) ...................................... 16 

Figure 2-9. Effect of feed rate on surface roughness in CT and UAT for Inconel 718 and 

Inconel 625 (reproduced from [32] under the CC-BY License) ....................................... 16 



 

IX 

 

Figure 2-10. RS profile at various feed rates for Inconel 718 (reproduced from [31] with 

permission of Elsevier, License Number 5427970504660) .............................................. 18 

Figure 2-11. Fatigue life variation with feed rate for face milling of Inconel 718 

(reproduced from [53] with permission of Springer Nature, License Number 

5427970703568) ............................................................................................................... 20 

Figure 2-12. The three grain deformation zones (reproduced from [15] with permission of 

Springer Nature, License Number 5427971400371, originally modified from [72] with 

permission of Elsevier, License Number 5427971266957) .............................................. 22 

Figure 2-13. Change in microhardness with varying cutting speed for Ni-alloy FGH95  

(reproduced from [74] with permission of Springer Nature, License Number 

5427980085840) ............................................................................................................... 23 

Figure 2-14. Variation in deformation depth with respect to various parameters for Inconel 

718 (reproduced from [41] with permission of Taylor & Francis) ................................... 24 

Figure 2-15. High-speed in-situ images of positive exit burr (a) initiation; (b) development; 

(c) final formation (after cut) at 𝑉𝐵 = 0 μm, ℎ = 80 μm, 𝑣𝑐 = 6 m/min ........................... 27 

Figure 2-16. Schematic of exit burr development [82] ..................................................... 28 

Figure 2-17. Process of fracture in negative exit burr formation (𝑉𝐵 = 0 μm, ℎ = 80 μm, 𝑣𝑐 

= 60 m/min) ...................................................................................................................... 29 

Figure 2-18. Change in burr height with number of holes drilled for stainless steel 304 

(reproduced from [100] with permission of Elsevier, License Number 5427980351490).

........................................................................................................................................... 31 

Figure 2-19. Effect of feed rate and cutting speed on burr height for stainless steel 304 

(reproduced from [100] with permission of Elsevier, License Number 5427980351490).

........................................................................................................................................... 34 

Figure 2-20. Effect of grain size and feed rate on burr formation for wrought Alloy 718 

(reproduced from [111] with permission of Springer Nature, License Number 

5427980508001) ............................................................................................................... 34 

Figure 3-1. In-situ testbed used for physics-informed and data-driven characterization of 

machining processes ......................................................................................................... 37 

Figure 3-2. Images of (a) geometry and (b) microstructure of slotted and polished Inconel 

718 in-situ workpiece sample ........................................................................................... 39 

Figure 3-3. Flank-wear (𝑉𝐵 = 150 μm) and hone (𝑟𝛽 ~ 30 μm) for a worn tool .............. 42 

Figure 3-4. Calculation of force averages in MATLAB ................................................... 43 



 

X 

 

Figure 3-5. In-situ imaging procedure for conducting subsurface analysis with DIC 

(reproduced from [115] with permission of Springer Nature, License Number 

5427980654590) ............................................................................................................... 44 

Figure 3-6. Keyence VHX-7000 digital microscope used for scanning and measuring burrs

........................................................................................................................................... 46 

Figure 4-1. Schematic representation of exit burr parameters: (a) thickness (𝑏𝑡); (b) height 

(𝑏ℎ); (c) initiation distance (𝜔); (d) inclination angle (𝜓); (e) initial negative shear angle 

(𝛽0); (f) initiation angle (𝜂) ............................................................................................... 47 

Figure 4-2. Visual of burr initiation point from a vertical view of the machined surface..

........................................................................................................................................... 48 

Figure 4-3. Average profiles for exit burr thickness (𝑏𝑡) at (a) 𝑣𝑐 = 6 m/min (significant 

effect of tool-wear) and (b) 𝑣𝑐 = 60 m/min (no significant effect of tool-wear) .............. 49 

Figure 4-4. Average profiles for exit burr height (𝑏ℎ) at (a) 𝑣𝑐 = 6 m/min and (b) 𝑣𝑐 = 60 

m/min. No significant effect of tool-wear......................................................................... 49 

Figure 4-5. Average profiles for inclination angle (𝜓) at (a) 𝑣𝑐 = 6 m/min and (b) 𝑣𝑐 = 60 

m/min. No significant effect of tool-wear......................................................................... 49 

Figure 4-6. Average profiles for initiation distance (𝜔) at (a) 𝑣𝑐 = 6 m/min and (b) 𝑣𝑐 = 60 

m/min. Significant effect of tool-wear .............................................................................. 50 

Figure 4-7. Average profiles for initial negative shear angle (𝛽0) at (a) 𝑣𝑐 = 6 m/min and 

(b) 𝑣𝑐 = 60 m/min. No significant effect of tool-wear ...................................................... 50 

Figure 4-8. Average profiles for initiation angle (𝜂) at (a) 𝑣𝑐 = 6 m/min and (b) 𝑣𝑐 = 60 

m/min. No significant effect of tool-wear......................................................................... 50 

Figure 4-9. Side view of cavity at the top of exit burrs observed at high uncut chip thickness 

(ℎ = 80 μm) and high cutting speed (𝑣𝑐 = 60 m/min) ....................................................... 51 

Figure 4-10. Average profiles for side burr thickness (𝑠𝑏𝑡) at (a) 𝑣𝑐 = 6 m/min and (b) 𝑣𝑐 

= 60 m/min. Significant effect of tool-wear...................................................................... 54 

Figure 4-11. Overview of side burr thickness (𝑠𝑏𝑡) images at (a) 𝑣𝑐 = 6 m/min and (b) 𝑣𝑐 

= 60 m/min ........................................................................................................................ 54 

Figure 4-12. Overview of side burr height (𝑠𝑏ℎ) images at (a) 𝑣𝑐 = 6 m/min and (b) 𝑣𝑐 = 

60 m/min ........................................................................................................................... 55 

Figure 5-1. Vertical displacement (𝛿𝑣) calculated at exit burr root from DIC displacement 

fields .................................................................................................................................. 60 



 

XI 

 

Figure 5-2. Schematic illustration of the process for calibrating contact width (2𝑎): (a) 

modeling results of von Mises stress; (b) DIC displacement field (reproduced from [115] 

with permission of Springer Nature, License Number 5427980654590) ......................... 61 

Figure 5-3. Vertical displacement field from DIC analysis overlaid on in-situ optical 

micrographs for (a) 𝑣𝑐 = 6 m/min and (b) 𝑣𝑐 = 60 m/min; Model-generated von Mises (𝜎𝑉𝑀) 

stress fields overlaid on DIC vertical displacement fields for (c) 𝑣𝑐 = 6 m/min and (d) 𝑣𝑐 = 

60 m/min ........................................................................................................................... 62 

Figure 5-4. Model-analyzed normalized stress at exit burr root ....................................... 63 

Figure 6-1. Positive to negative exit burr transition for 𝑉𝐵 = 0 μm, ℎ = 80 μm, 𝑣𝑐 = 60 

m/min ................................................................................................................................ 66 

Figure 6-2. Vertical view of positive to negative exit burr transition at 𝑉𝐵 = 0 μm, ℎ = 80 

μm, 𝑣𝑐 = 60 m/min for (a) Trial 1 and (b) Trial 2 ............................................................. 67 

Figure 6-3. Negative burr formation development at 𝑉𝐵 = 0 μm, ℎ = 80 μm, 𝑣𝑐 = 60 m/min 

with (a) true uncut chip thickness (ℎ𝑡𝑟𝑢𝑒) and (b) exit burr thickness (𝑏𝑡) ....................... 68 

Figure 6-4. Vertical view of positive to negative exit burr transition at ℎ = 80 μm, 𝑣𝑐 = 60 

m/min for (a) 𝑉𝐵 = 50 μm and (b) 𝑉𝐵 = 150 μm ............................................................. 69 

Figure 6-5. Relationship between and grain size (𝑑𝑣) and negative exit burr size (𝑏𝑡) .... 70 

Figure A1. MATLAB script for force average calculation ............................................... 75 

Figure A2. MATLAB script for automatic image capture using in-situ testbed vertical 

microscope ........................................................................................................................ 78 

 

 

 



1 

 

CHAPTER 1. INTRODUCTION 

Machining is the world’s largest manufacturing process, accounting for 5% of the 

global GDP [1]. Machining is a subtractive process where material is removed using a 

cutting tool from a rotating or stationary workpiece, with the two main machining 

processes being turning and milling. Turning involves a rotating workpiece with a tool that 

is fed horizontally along the axis (longitudinal turning) or along the face (face turning). 

Milling involves a stationary workpiece that is cut with a rotating tool that follows a 

programmed path. After primary processing (forging/casting), there is secondary 

processing, which may involve rough machining—in rough machining (roughing), 

excessive amounts of material are removed to obtain the desired shape. After secondary 

processing comes finish machining (finishing). In finishing, minimal amounts of material 

are removed to improve the surface finish of the workpiece to meet the desired quality 

specifications such as surface roughness and residual stress (RS). Given the wasteful nature 

of roughing and considering recent trends towards near-net-shape manufacturing (e.g., via 

precision casting or additive manufacturing), finishing is becoming increasingly more 

relevant in industry and will thus be the focus of this work. 

Machining is especially prevalent in the aerospace industry for producing jet engine 

components, which are usually comprised of resilient materials known as so-called 

superalloys. Most superalloys are nickel-based, and the most prevalent is Inconel 718 [2], 

which is the focus of this study. Nickel-based superalloys (Ni-alloys) are metals capable of 

withstanding elevated temperatures because of their excellent material properties such as 

high yield strength, high hardness, and wear resistance, making them ideal for the extreme 

environment of jet engines. It is these attributes, however, that make them difficult to 

machine. For instance, low thermal conductivity leads to the buildup of high temperatures 

at the tool-workpiece interface where much of the heat is transferred into the tool, 

accelerating tool-wear. Worn tools are undesirable because they result in low cutting 

efficiency and subsequently, worse part quality. To avoid negative effects such as this, 

cutting parameters must be optimized (i.e., the feed rate and cutting speeds, also known as 

‘feeds and speeds’). Companies are trying to increase productivity by machining faster, but 

the thermomechanical effects present in machining must be considered to maintain surface 



 

2 

 

integrity. In this context, the objective of the present work was to gain a comprehensive 

understanding the phenomenon of burr formation in machining, particularly the 

relationship between tool-wear and cutting parameters. 

Burr formation is one of the undesirable byproducts that occur in machining 

processes. The International Organization for Standardization (ISO) 13715 defines burrs 

as the “rough remainder of material outside the ideal geometrical shape of an external 

edge, residue of machining or of a forming process.” Figure 1-1 shows examples of the 

kinds of burrs seen in industry across various machining processes. Burrs are problematic 

because of their negative impacts across the triple bottom line (TBL) of sustainable 

manufacturing: economic, environmental, societal impacts. For one, they are expensive to 

remove because they require post-finishing in the form of deburring, which is an entirely 

manual operation that requires skill [3]. Deburring is a non-productive operation that can 

account for up to 30% of manufacturing expenses in jet engine parts and up to 20% of 

manufacturing expenses in automotive parts [4]. Further, the copious amounts of burr 

material are typically discarded which adds to the already mounting waste generated from 

machining such as in coolant and chip disposal. Lastly, there are many societal 

implications, such as operator injury during assembly and the failure of parts in service 

because of leftover burrs that turned into stress concentrations [5]. Therefore, optimizing 

the machining process to minimize burrs will contribute greatly to achieving some of the 

tenants of sustainable machining: reduced costs, improved environmental friendliness, less 

waste, and better personnel health/safety [6, 7]. 
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Figure 1-1. Burrs in (a) milling (reproduced from [8] under the CC license); (b) turning  

(reproduced from [9] with permission of Springer Nature, License Number 

5440320873157); (c) drilling (reproduced from [5, 8, 10] under the CC license and with 

permission of Springer Nature and Elsevier, License Numbers 5440370956751 and 

5440371134411). 

Despite its ubiquitous occurrence in machining operations, burr formation has not 

been widely explored in literature, and much of the notable work is decades old. The “first 

wave” of burr formation studies occurred between 1965 and 1980 [11]; and there has only 

been marginal strides in research on the topic since. The literature that does exist focuses 

primarily on two specific machining processes: drilling and micro-machining. While both 

are important in industry, drilling is not finish machining process but rather a rough 

machining process, so surface integrity is not the primary concern. Micro-machining on 

the other hand, is a more niche process compared to its more conventional counterparts. 

Furthermore, very little work has sought to explore the other more widely used processes 

of turning and milling. Additionally, the materials explored in prior studies are typically 

more ductile metals like aluminum and stainless steel—very few works have addressed 

burr formation in Ni-alloys like Inconel 718, which are crucial to the aerospace industry 

and known for their excessive work hardening. Since research on burr formation is 

relatively sparse, efforts on modeling are lacking as well.   

Given how problematic and expensive burr formation is in the manufacturing 

space, there is a demand for more research on the subject to further developments for 

optimizing machining processes by finding ways to reduce or eliminate it. While some burr 

formation is likely unavoidable, it can be substantially mitigated with process control—

that is, the proper selection of parameters like feeds and speeds, depth of cut, and tool path, 

as well as physics-informed tool-life criteria. Optimizing machining processes through the 

suppression of burrs requires an understanding of “total machining performance”, which 

refers to the interacting nature between performance parameters such as tool-wear, chip 

segmentation, burr formation, etc. (see Figure 1-2). For example, cutting with worn tools 

will result in more friction at the tool-workpiece interfaces which alters the chip 

formation—changes in the chip formation affect the deformation in the primary shear zone, 

which then directly affects the state of stress in the cutting area. Furthermore, this study 
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sought to not only analyze the formation of burrs, but also consider how they are related to 

other machining aspects such as tool condition and microstructure state. 

 

Figure 1-2. Framework of factors affecting total machining performance (reproduced from 

[6] with permission of ASME). 

Thus, the objective of this study was to characterize burr formation in nickel-based 

superalloy Inconel 718 via a high-speed, high-resolution in-situ experimental method. 

Experiments were carried out to measure the variation in burr geometry with respect to 

varying factors like tool-wear condition, uncut chip thickness (i.e., the feed), and cutting 

speed. Results showed that all these factors have a significant effect on some aspects of 

burr formation, although certain burr metrics were found to be insensitive with respect to 

different process conditions. Using a physics-based model, the flow stress was calculated 

at the exit burr root, and it was found to be approximately equal to the flow stress. Finally, 

this study investigates the conditions for fracture during exit burr development—results 

show that negative exit burrs are a contingent upon high strain rate and high uncut chip 

thickness, which had been reported in prior work, but also dependent on the microstructural 

state, which has not been previously observed. 
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CHAPTER 2. BACKGROUND AND LITERATURE REVIEW  

2.1 Machining of Nickel-Based Superalloys 

Ni-alloys are notoriously difficult to cut due to their material properties. The focus 

of this work is on Inconel 718, a thermal resistant Ni-alloy used in gas turbines, rocket 

engines, and turbine blades [12]. Inconel 718 is typically composed of around 54% nickel 

(Ni), 22% iron (Fe), 17% chromium (Cr), 5% niobium (Nb), 1% titanium (Ti), and 0.5% 

aluminum (Al). These elements give it great oxidation and corrosion resistance, as well as 

fatigue and tensile strength at elevated temperatures [12-14]. Inconel 718 is also known for 

its easy weldability and crack resistance [12, 13]. It is, however, these very properties that 

result in poor machining performance for Inconel 718 and other Ni-alloys. Yin et al. [15] 

present a schematic illustrating the correlations between several Ni-alloy properties and 

their negative effects during machining in Figure 2-1. 

 

Figure 2-1. Correlation between material properties and machining defects (reproduced 

from [15] with permission of Springer Nature, License Number 5427931460106). 

The standard metrics for measuring the ease of machining a certain material is the 

tool-wear or tool-life. The durable material properties of Ni-alloys like Inconel 718 from 

Figure 2-1 put an enormous amount of stress on the cutting tool, which results in rapid 
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tool-wear. The main tool-wear modes are flank-wear, notch-wear, and crater-wear. These 

forms of wear are caused by several different mechanisms: abrasion, adhesion, diffusion, 

and chemical affinity. Abrasion and adhesion are the most common mechanisms as they 

are present at both low and high temperatures, whereas diffusion and chemical wear arise 

at high temperature when the tool material reacts with the workpiece material [16]. Figure 

2-2 presents some examples of these modes and mechanisms for tool-wear. Worn tools 

should be avoided because they typically generate a poor surface integrity, which is 

unacceptable for machined components (especially aerospace components), because the 

surface integrity drives the functional performance when the part goes into service. 

Machining with worn tools can cause surface defects like cracks and white layers, which 

have a detrimental impact on the fatigue life [17]. Worn tools also lead to tensile residual 

stress generation, which has a very negative effect on surface integrity for reasons such as 

enabling the propagation of stress corrosion cracks when the part is in contact with 

corrosive media [18]. Cracks are very undesirable because they act as stress 

concentrations—thus, tensile residual stress not only decreases the corrosion resistance, 

but also degrades the fatigue life. Poor surface integrity can be prevented by machining at 

slower feeds and speeds, but this also raises the manufacturing costs [17]. Thus, there is a 

balance to be struck between productivity and part quality to ensure economic stability. 
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Figure 2-2. Tool-wear modes and mechanisms. Images reproduced from [19-25] with 

permission of Elsevier and Springer Nature, License Numbers 5440380404232, 

5440381087265, 5440400334357, 5440381365393, 5440390090010, 5440390338603, 

5440391308844. 

Thus, to prevent rapid tool-wear and workpiece damage, machining hard-to-cut 

metals like Ni-alloys requires careful consideration of the process parameters. This is easier 

said than done, as the mechanics involved in machining are complex and require a thorough 

understanding of material behavior. With manufacturers looking to machine parts faster to 

scale up productivity, it falls on researchers to provide insight on the intricacies of the 

machining process to preserve surface integrity. This involves close analysis of the material 

behavior under the elevated machining regimes such as high feeds and speeds, variations 

in tool-wear, and different lubrication conditions. However, another issue is the lack of 

communication between industry, academia, and even governmental organizations 

regarding the optimization of machining processes for sustainability [6]. To achieve 

sustainable machining and furthermore, sustainable manufacturing, there must be 

collaboration between all these groups.  

2.2 Effects of Cutting Conditions on Surface Integrity 

Machining performance (sometimes generically referred to as ‘machinability’) is 

heavily driven by the selection of cutting tools, cooling/lubricating conditions, and perhaps 

most importantly, the cutting parameters. The latter include the cutting speed, feed rate 

(uncut chip thickness in orthogonal machining), and depth of cut. Cutting speed refers to 

how fast the workpiece (turning) or the tool (milling) are moving relative to one another. 

Feed rate refers to the amount by which the tool is fed into the workpiece with each 

cut/revolution, and depth of cut refers to how much material is taken off with each pass. 

Improper selection of any of these parameters can result in catastrophic damage to the 

workpiece and tool. The tool condition must also be maintained because excessive tool-

wear or tool breakage can severely harm the machined part through chatter, burrs, and 

induction of tensile residual stress. Thus, many researchers have sought to understand the 

impact from these parameters to improve total machining performance.  
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Cutting forces, which are an indicator of the thermomechanical loading during the 

machining process, are well known to decrease with increasing cutting speed, and this was 

confirmed by many works [19, 24, 26, 27]. Cutting forces decrease with cutting speed 

because of the thermal softening effect, which creates less shear strength/resistance in the 

primary shear zone and subsequently reduces friction at the tool-chip interface [24, 27]. 

However, beyond a certain point, work hardening (the material’s tendency to strengthen 

with prolonged plastic deformation, also referred to as strain hardening) will overcome the 

thermal softening effect and cutting forces will again start increasing with cutting speed 

[15]. This effect is depicted in Figure 2-3; it seems to occur between cutting speeds of 60-

100 m/min, which is the upper regime for machining with tungsten carbide (WC) inserts.  

 

Figure 2-3. Cutting force variation with cutting speed for Inconel 718 (reproduced from 

[24, 28] with permission of Springer Nature and Elsevier, License Numbers 

5427940633570 and 5427960339270). 

Smaller cutting forces are good for prolonging tool life, as the mechanical loading 

on the tool is lower. However, increasing the cutting speed also raises the cutting 

temperature, which creates new problems. The temperature rises with increasing cutting 

speed for a number of reasons, such as more heat energy being generated from a higher 

strain rate in the shear zone [19]. The higher cutting speed also means there is less time for 

heat transfer, and with Ni-alloys such as Inconel 718 being relatively poor thermal 

conductors, this results in much of the heat being retained at the tool-workpiece interface 

[14, 24]. As abrasive wear rate is inversely proportional to the strength of the tool material, 

and hot hardness of cutting tool materials such as WC drops rapidly beyond 600 °C, higher 

cutting speeds will at some point result in a rapid increase in tool-wear rate. The increase 
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in temperature with cutting speed was observed by many authors [19, 26, 27, 29]. Thakur 

et al. [19] conducted dry turning experiments on Inconel 718 with WC inserts and noted a 

nearly linear increase in temperature with cutting speed that was consistent across multiple 

feed rates (see Figure 2-4). 

 

Figure. 2-4 Cutting temperature variation with cutting speed and feed rate (reproduced 

from [19] with permission of Elsevier, License Number 5427950598778). 

Interestingly, Rakesh et al. [24] observed a rapid increase in temperature between 

the two cutting speeds of 50 to 100 m/min, but a slight decline when the speed was 

increased beyond that. They believe this was attributed to a deviation in tool geometry from 

massive tool-wear. High cutting temperatures are furthermore not desirable because of 

their implication on surface integrity of the workpiece. An increase in temperature at the 

cutting zone means a reduction in the shear strength of the material, making it more prone 

to plastic deformation, therefore increasing surface roughness and burr formation. Just as 

higher cutting temperatures weaken the workpiece material, it also softens the tool 

material, accelerating tool-wear [21]. 

While cutting forces tend to decrease with increasing cutting speed, the opposite is 

true for increasing feed rate. When feed rate is increased, the area of the uncut chip is 

increased accordingly, resulting in higher forces [30]. This increased mechanical loading 

will increase tool-wear because of greater stresses on the wedge of the cutting tool and 

higher cutting temperature, as was observed by Thakur et al. [19]. The effect of increasing 

cutting forces with feed rate was present in several works [30-32]. Thus, both cutting speed 
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and feed rate have significant influences on the thermomechanical effects present during 

machining. This section will discuss how both parameters affect the three main aspects of 

surface integrity: surface roughness, residual stress, and microstructure/microhardness. 

2.2.1 Cutting Tool Condition 

Tool selection and tool-wear management through optimal cutting parameters is 

paramount because of tooling’s vital role in determining total machining performance, 

particularly workpiece quality aspects. For cutting such tough materials like Ni-alloys, tool 

materials are required to have good wear resistance and thermal shock properties, high 

strength and hot hardness, and chemical stability at elevated temperatures [33]. The 

standard tool material for machining Inconel 718 is cemented tungsten carbide (WC), 

which is chosen for its good balance of fracture toughness and thermal shock resistance 

[25].  

WC inserts can come with chemical vapor deposition (CVD) or physical vapor 

deposition (PVD) coatings or be uncoated, although most modern tools now employ 

advanced coatings because of their substantial tool-life benefits due to the higher hardness 

and wear resistance [34]. Some of the most common CVD/PVD coatings are TiAlN, TiN, 

and CrN; TiAlN has been consistently proven to be the most effective coating because of 

its superior hot hardness and oxidation resistance [33]. While coatings can improve the 

durability of WC inserts, coated WC tools are still limited to relatively modest cutting 

speeds around 80 m/min [35], which is low compared to speeds routinely achieved in 

cutting aluminum and steel alloys.  

For ultra-high-speed machining on the order of several hundreds of m/min, ceramic 

tools are the preferred option because of their superior hot hardness and chemical wear 

resistance which yields a longer tool life than WC [26]. Because of their propensity towards 

thermal shock, ceramic tools are often used without external cooling or lubricating media, 

which may result in catastrophic tool chipping and failure. While ceramic tools provide 

reasonable tool life at very high cutting speeds, they are generally avoided for finish 

machining because of their negative effect on surface integrity [36]. This is supported by 

Zhou et al. [37], who found that ceramic tools induced a deeper severe plastic deformation 
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(SPD) zone (to be discussed further in Section 2.2.4) and much higher tensile residual stress 

(to be discussed in Section 2.2.3) than PCBN tools. The latter finding is supported by 

Holmberg et al. [38], who also saw that ceramic tools induced a much higher tensile 

residual stress on the surface compared to WC inserts. Holmberg et al. [38] also observed 

that worn ceramic tools induced a lower tensile residual stress than the new tools, but at a 

greater depth. Although, they noted a lower surface roughness for the ceramic tools than 

the WC tools. 

In addition to selecting the correct tool, it is also important to select the correct 

feeds and speeds. As stated earlier, increasing the cutting speed lowers the cutting forces. 

While this means a lower mechanical load on the tool, this increases the thermal load on 

the tool because of the increased heat generation and low thermal conductivity for many 

Ni-alloys [15]. Thus, increasing the cutting speed will still lead to more tool-wear because 

of thermal damage. Many different works noted tool-wear increasing with cutting speed 

[19, 24, 26, 39-41]. Figure 2-5 shows how the most common type of tool-wear, flank-wear, 

increases with cutting speed. 

 

Figure 2-5. Change in flank-wear with cutting speed for Inconel 718 under (a) dry 

conditions (reproduced from [24] with permission of Springer Nature, License Number 

5427940633570) and (b) wet conditions (reproduced from [39] under the CC-BY-NC-ND 

License). 

Feed rate also has a detrimental impact on tool-wear. Unlike cutting speed, 

increasing the feed rate directly raises the cutting forces, putting more mechanical stress 
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on the tool. This was shown by Rahman et al. [42] in their wet turning experiments on 

Inconel 718 using coated WC inserts (see Figure 2-6a). Not only that, but there is more 

friction at the tool-workpiece interface, resulting in more heat generation, and therefore a 

higher cutting temperature [35]. This increased friction is not good for ceramic tools since 

they are prone to thermal wear, as was shown by Narutaki et al. [43]. As stated earlier, the 

cutting temperature should be suppressed to prevent heat from being transferred into the 

tool and accelerating its rate of wear.  

However, it should be noted that the effect of increasing feed rate on tool-wear is 

minor because it mainly increases the mechanical loading and less so the thermal loading. 

Thus, the tool’s strength will not deteriorate to the same degree as increasing the cutting 

speed, where the dominant thermal effects compromise the structural integrity of the tool. 

Still, the added mechanical loading from a higher feed rate does still have an impact on 

tool-wear development, as shown in Figure 2-6b. When analyzing tool-wear with respect 

to feed rate, data is usually normalized by using the cutting length (since a higher feed rate 

means a fixed distance will be traveled in less time). Li et al. [44] divided the cutting length 

by the feed rate to obtain the number of revolutions or “number of impacts in their milling 

experiments on Inconel 718 with coated WC inserts. Figure 2-6c shows their results for 

both up-milling and down-milling (the turning direction of milling cutters has a substantial 

impact on machining performance, including burr formation, to be discussed in Section 

2.3.2). Furthermore, it is imperative to consider the effects of cutting parameters on tooling 

because worn tools can seriously compromise surface integrity, to be discussed in later 

sections. 
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Figure 2-6. (a) Forces in relation to feed rate and duration of cut (reproduced from [42] 

with permission of Elsevier, License Number 5427961127336); (b) flank-wear in relation 

to feed rate (reproduced from [19, 45] with permission of Elsevier, License Numbers 

5427960912537 and 5427950598778); (c) flank-wear with number of impacts/cutting 

length (reproduced from [44] with permission of Elsevier, License Number 

5428000043935) for Inconel 718. 

2.2.2 Surface Roughness 

One of the metrics for measuring surface integrity is surface roughness. Surface 

roughness is defined simply as the average of the peaks and valleys of a machined part’s 

surface finish, quantified by the value, 𝑅𝑎; higher 𝑅𝑎 values denote a higher surface 

roughness (i.e., worse surface finish). Thus, surface roughness should be minimized to 

meet the tight fitting tolerances associated with machined jet engine parts. A high surface 

roughness also means a higher friction coefficient, which contributes to a higher wear rate 

for the component. On the contrary, a low surface roughness improves part reliability by 

providing better fatigue strength, corrosion resistance, and wear resistance [46, 47]. Like 
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all surface integrity characteristics, surface roughness is controlled by the tool condition 

and cutting parameters.  

One of the reasons tool-wear needs to be mitigated is because of its implications on 

surface roughness [15]. Multiple studies have shown that worn tools lead to higher surface 

roughness [24, 48, 49]. Rakesh and Datta [24] conducted dry turning experiments on 

Inconel 718 with uncoated WC inserts and noticed a nearly linear trend of surface 

roughness increasing with tool-wear, as shown in Figure 2-7. Nalbant et al. [48] compared 

the surface roughness obtained with different WC coatings in dry turning of Inconel 718—

not only did the coatings have a major effect on surface roughness, but surface roughness 

steadily increased as the machining time progressed. These findings indicate that as the 

tool wears, the surface roughness deteriorates.  

 

Figure 2-7. Surface roughness variation with tool-wear (reproduced from [24] with 

permission of Springer Nature, License Number 5427940633570). 

While tool-wear is generally undesirable for controlling surface roughness, it has 

been reported by multiple studies that new/sharp tools may not be ideal either. In fact, it 

has been shown that moderate levels of wear can produce a better surface finish than new 

tools. Sharman et al. [41] performed dry turning experiments with coated and uncoated 

WC inserts and found that the worn coated tools produced a substantially lower surface 

roughness than new tools, especially at higher feed rate. Interestingly, this was not the case 
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with uncoated tools, where wear only worsened the surface roughness (although only one 

cutting speed was tested whereas three cutting speeds were tested for the coated tools).  

Cutting parameters also play an important role in surface roughness. Most studies 

report that surface roughness decreases with increasing cutting speed [14, 19, 39, 50-52]. 

This is due to the thermal softening effect, which is attributed to the higher cutting 

temperature obtained when raising the cutting speed. Thermal softening lowers the yield 

and tensile strengths of the workpiece, which makes the material easier to deform [15]. 

However, some authors [39, 53, 54] noticed that as the cutting speed increased, the surface 

roughness decreased but began rising after a certain point, as shown in Figure 2-8. This 

can also be seen in the work by Thakur et al. [19], where the surface roughness ‘bottoms 

out’ after a speed of 55 m/min. It is likely that it would begin to rise if data was collected 

beyond this point. This behavior is due to work hardening overcoming the thermal 

softening effect, which is the second stage as explained by Yin et al. [15]. The initial 

decrease is because of thermal softening (as expected), but the increase is likely due tool-

wear developing [35, 39]. Lu et al. [49] explain this behavior in a similar context, that being 

increased cutting time rather than increased cutting speed. New tools begin cutting with a 

higher surface roughness and overtime a mildly worn tool will yield a lower surface 

roughness because of decreased residue on the machined surface. However, tool-wear will 

eventually cross a threshold to where the residue left will be higher, and at this point surface 

roughness begins to increase with tool-wear. This phenomenon was previously discussed 

as being observed by Sharman et al. [41]. 
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Figure 2-8. Surface roughness variation with cutting speed for (a) bainite steel (reproduced 

from [54] with permission of Elsevier, License Number 5427961284848) and (b) Inconel 

718 (reproduced from [39] under the CC-BY-NC-ND License). 

The biggest influencing factor on surface roughness, however, is feed rate [15, 55]. 

Surface roughness always increases with feed rate because of kinematic effects (increased 

‘scallops’ left by each revolution of the tool) and increased mechanical loading. This is 

indicated by the higher cutting forces, which stress the tool and induce wear. When the tool 

becomes worn, it begins to tear material rather than cut, resulting in a poor surface finish 

[56]; this was confirmed by several studies [41, 49, 57]. Increasing the feed rate causes 

‘feed marks’ to form, which contributes to a higher surface roughness [32, 41]. Wang et al. 

[53] saw an increase in surface roughness with increasing feed rate in their dry face milling 

experiments on Inconel 718 using coated WC inserts. Bai et al. [32] illustrated the rise in 

surface roughness with feed rate in their turning experiments on Inconel 625 and Inconel 

718 using coated WC inserts. They compared conventional turning (CT) to ultrasonic 

assisted turning (UAT) and found that the latter produced a significantly better surface 

finish than the former for both materials, as shown in Figure 2-9; UAT is one of the many 

novel machining technologies that can have a major influence on surface integrity. Another 

noteworthy technology is cryogenic machining, which has been shown to vastly increase 

tool life because of its cooling efficiency (effectively preventing thermal softening) when 

combined with minimum quantity lubrication (MQL) [58, 59]. The enhanced tool-life has 

been shown to yield remarkably lower surface roughness [60]. 

 

Figure 2-9. Effect of feed rate on surface roughness in CT and UAT for Inconel 718 and 

Inconel 625 (reproduced from [32] under the CC-BY License). 
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2.2.3 Machining-Induced Residual Stress 

Machining-induced residual stress (RS) is an imperative surface integrity factor that 

has been shown to have major influence on fatigue life, a very crucial characteristic for the 

quality and performance of machined superalloy parts. RS is the stress that remains in the 

workpiece even after the machining operation is complete. RS impacts fatigue life by either 

decreasing it via tensile ‘pre-load’ towards crack propagation, or increasing fatigue life 

through compressive RS, which serves to suppress crack initiation and growth [15]. Inconel 

718 for instance, is more susceptible to dimensional instability than Ti-6Al-4V or mild 

steel [61]. RS can be categorized as tensile or compressive. Generally speaking, tensile RS 

is the byproduct of thermally-dominant machining, and compressive RS is the byproduct 

of mechanically-dominant machining [33, 62]. At low cutting speeds where the cutting 

temperature is low, the deformation is mainly mechanical, resulting in more compressive 

subsurface RS. At higher cutting speeds where the heat generation is much higher, the 

formation of tensile RS is much more prevalent. Fatigue life is important for superalloy 

parts because they are undergo cyclical loads in service; tensile RS degrades fatigue life 

because it decreases the allowed alternating stress whereas compressive RS improves 

fatigue life because it increases the allowed alternating stress [33]. Thus, the former should 

be avoided, but the latter is desirable. RS is most tensile at the surface and becomes more 

compressive deeper in the subsurface. Typical RS profiles exhibiting the ‘hook’ shape that 

occurs due to combined thermomechanical loading (thermal loads dominating near the 

surface, mechanical load dominating in deeper subsurface layers) are shown in Figure 2-

10.  
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Figure 2-10. RS profile at various feed rates for Inconel 718 (reproduced from [31] with 

permission of Elsevier, License Number 5427970504660). 

Along with cutting speed, tool-wear is one of the biggest attributors to tensile RS 

formation, as was proven by many researchers [31, 38, 63]. Sharman et al. [63] compared 

coated and uncoated WC inserts in dry turning and found that tool-wear had the biggest 

influence on the RS profile. In all cases, surface tensile RS increased dramatically with 

tool-wear—this is caused by the heightened temperatures due to the friction from 

ploughing/rubbing from the tool flank-wear. However, this also comes with a benefit, as 

the deeper plastic deformation from the rubbing/ploughing allows for deeper penetration 

of compressive RS beneath the thermally affected surface layer that is also larger in 

magnitude. In a later study, Sharman et al. [31] observed the same effect in the wet turning 

of Inconel 718 using coated WC inserts. Owing again to the importance of tool material 

selection (WC versus ceramic), Holmberg et al. [38] discovered that ceramic tools induced 

higher tensile RS than WC tools in wet milling. Another important aspect relating to the 

effect of tooling on RS is the rake angle. Studies have corroborated that a negative rake 

angle is preferable because it generates a more compressive RS, whereas a positive rake 

angle generates a more tensile RS [36, 62, 64].  

In terms of feeds and speeds, both have been shown to increase tensile RS. It has 

been identified that tensile RS increases with increasing cutting speed [52, 54, 65]. Sadat 
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[52] found that the magnitude of both the tensile and compressive RS increased 

considerably with cutting speed, however the depth of the surface tensile RS decreased in 

dry turning with WC inserts. Wang et al. [66] noticed a very interesting effect regarding 

the correlation between RS and cutting speed: the RS first decreases (i.e., becomes more 

compressive) as cutting speed increases from 40 to 60 m/min, but then increases drastically 

(i.e., becomes more tensile) when going from 60 to 80 m/min in the ball end milling of 

Inconel 718 under wet conditions. They attribute this to the decrease in thermal loading at 

the cutting zone because of increased chip flow rate. A higher chip flow rate means more 

heat is transferred out of the cutting zone because it is carried away with the chip—this 

effect is elaborated upon by Pawade et al. [62]. However, between 60 and 80 m/min, the 

thermal load remains trapped in the cutting zone, which is what leads to the rapid increase 

in tensile RS [66]. This is likely due to the heat generated in the cutting zone exceeding the 

capability of heat dissipation through the chip. Interestingly, this effect of increasing 

cutting speed first improving surface integrity then hurting it at a higher regime was 

previously shown to be true for surface roughness as well (see Figure 2-8). Furthermore, 

each tool seems to have a critical cutting speed above which the thermal effects exceed its 

limits and result in poor surface integrity (i.e., higher surface roughness or tensile RS) [40, 

67].  

While cutting speed is the most dominant variable in milling processes, in turning 

processes, feed rate often has a more pronounced effect on RS than cutting speed. This 

difference may be explained by the different thermomechanical loads imposed by each of 

these processes, primarily the large degree of ‘chip thinning’ in milling processes 

(relatively large tool radius vs. small feed), as opposed to the relatively large uncut chip 

thickness values encountered in turning processes (relatively small corner radius vs. large 

feed). Based on literature, the rise in tensile RS in turning is larger when feed rate increases 

compared to when cutting speed increases [31, 62, 63, 68]. Sharman et al. [31] found that 

increasing the feed rate produced higher values of tensile RS and a deeper tensile layer. 

They explain that a higher feed rate creates larger and deeper tensile RS because of the 

increased forces and heat generation, which concurs with other works [19, 30-32, 35]. This 

was shown in Figure 2-10. Wang et al. [53] attained the same result, seeing a moderate 

increase in surface tensile RS. They also noted that the RS component parallel to the feed 
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of the tool was always higher than the component vertical to the feed. Although what makes 

their work unique, is that they conducted three point bending fatigue life experiments to 

calculate the fatigue life per feed rate: Figure 2-11 shows how the feed rate has a significant 

effect on decreasing the fatigue life. This is a remarkable finding, as very few works 

perform fatigue life testing in addition to the RS measurements.  

 

Figure 2-11. Fatigue life variation with feed rate for face milling of Inconel 718 

(reproduced from [53] with permission of Springer Nature, License Number 

5427970703568). 

2.2.4 Microhardness and Microstructure 

The microstructure of a material refers to its grain structure (i.e., how the material is 

composed on a fine scale). Different materials have different types of grains that vary in 

size, orientation, and phase. The prefix of “micro” comes from the fact that the grains are 

on the scale of micrometers in size [69]. Since the grains are so small, they can only be 

characterized with special microscopy techniques such as scanning electron microscopy 

(SEM) or electron back scatter diffraction (EBSD). Microhardness refers to the hardness of 

the grains composing the microstructure and is measured with methods like the Vickers or 

Knoop indenter tests. Figure 2-13 shows a typical microhardness profile.  
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Both chemistry and microstructure are determining factors of a material’s 

properties; the chemistry is set early in the process (when the material is still in liquid form), 

but the microstructure can be altered after the material has solidified through heat and 

pressure. For instance, alloys are usually heat treated to obtain 𝛾′ and 𝛾′′ phase precipitates 

because of their effect on thermal stability [15]. Therefore, it is of great importance to pay 

attention to a material’s microstructural state as it undergoes processing where it can 

experience significant changes. Machining, however, is an operation that is typically 

intended to attain a certain surface quality, while not altering the workpiece’s 

microstructure. However, the microstructure in a shallow near-surface layer will often 

change due to the intense thermomechanical loads in machining processes. For example, 

severe grain deformation may lead to dynamic recrystallization, which is where the grains 

become more refined, thereby increasing the microhardness according to the well-known 

Hall-Petch effect [70].  

Grain refinement at the surface may lead to the formation of a “nanocrystalline 

layer”, which is comprised of very fine grains typically less than 200 nm in diameter. 

Speaking to the importance of the lubrication and techniques, a recent study by Toker et al. 

[71] showed that cryogenic turning results in a considerably larger nanocrystalline layer at 

high cutting speed than similar conditions under flood cooling, suggesting that faster feeds 

and speeds can be used in cryogenic machining compared to conventional alternative 

cooling methods. Nanocrystalline layers are beneficial because they increase the 

microhardness of the surface, although a recent review by la Monaca et al. [18] showed that 

too much grain deformation or surface layer hardening will result in excessive brittleness, 

which lowers wear performance and fatigue life. Yin et al. [15] explain the three 

deformation zones observed by Zhou et al. [72] and Imran et al. [73], shown in Figure 2-12. 

Zone 1 is the uppermost part of the subsurface and is known as the SPD zone, or white layer. 

It is very negative for fatigue life and should therefore be minimized as much as possible 

[15, 74]. Zone 2 is a partial deformation layer where the grains and grain boundaries have 

elongated, and Zone 3 is unaffected [15]. 
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Figure 2-12. The three grain deformation zones (reproduced from [15] with permission of 

Springer Nature, License Number 5427971400371, originally modified from [72] with 

permission of Elsevier, License Number 5427971266957). 

Like with the other surface integrity aspects, tooling has a major effect on 

microstructure development as well. Various studies observed that worn tools cause higher 

subsurface microstructural deformation than new tools [31, 41, 63, 72]. Sharman et al. [31] 

found that tool-wear had the greatest impact on microstructural alteration: higher tool-wear 

resulted in considerably deeper deformation layers that contained deformed grains, cracked 

carbides, and surface cavities. Since microstructural deformation means a higher 

microhardness, it would be reasonable to assume that surfaces machined with worn tools 

would have a higher microhardness as well. This was observed by Sharman et al. [41], who 

found that new tools produced a smaller increase in microhardness than worn tools. 

However, it should be noted that literature analyzing the effects of tool-wear on 

microstructure is limited. 

Cutting parameters have also been proven to alter the microstructure. Studies have 

shown that higher cutting speed has a subtle if not negligible effect on subsurface 

deformation [50, 74-76]. In their dry milling experiments with coated WC inserts on Inconel 

718, Cai et al. [75] saw no major difference in microstructure at 50 m/min, however they 

noted deformed grain boundaries at 80 m/min and 110 m/min—the deformation depth 

between 80 m/min and 110 m/min was similar, however. Even though the increase in 

subsurface alteration between these two speeds was negligible, there was a notable increase 

in the microhardness. Jin and Liu [74] also saw this trend in their high-speed milling 

experiments on Ni-alloy FGH95, as shown in Figure 2-13. Given the durability of Ni-alloys, 
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small changes in the cutting parameters will have little effect on the workpiece [41]. This 

theory is supported by Jin et al. [50], who conducted dry milling experiments on Ni-alloy 

FGH95 using WC inserts in the cutting regime of 20-600 m/min. They did not see a 

significant increase in subsurface deformation depth until 300 m/min, which is well beyond 

the maximum cutting speed employed by Cai et al. [75]. Interestingly, however, they 

observed a gradual decrease in white layer thickness with increasing cutting speed. They 

explain that this is because heat has less time to diffuse into the subsurface as cutting speed 

increases, resulting in a thinner white layer. Jin and Liu [74] continued studying this effect 

in a similar study with the same conditions but at much higher speeds (800-4000 m/min). 

They found that white layer thickness was essentially constant across the entire cutting 

speed regime, except for a slight increase at 2400 m/min. This also correlated to a drop in 

microhardness at that speed, after which it began rising again (see Figure 2-13). This is a 

crucial development, because it alludes to an inverse relationship between the white layer 

and microhardness.  

 

Figure 2-13. Change in microhardness with varying cutting speed for Ni-alloy FGH95  

(reproduced from [74] with permission of Springer Nature, License Number 

5427980085840). 

While it appears that cutting speed is not a substantial factor on microstructure, the 

opposite is true for feed rate. Sharman et al. [41] compared new and worn WC inserts in the 

turning of Inconel 718, and found that for every tool and cutting speed, increasing the feed 
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rate produced a much deeper microstructural depth (see Figure 2-14). They also found that 

microhardness increased with feed rate in all cases. A higher feed rate means larger cutting 

forces, which induce more and deeper plastic deformation because of the increased 

mechanical loading in the subsurface.  

 

Figure 2-14. Variation in deformation depth with respect to various parameters for Inconel 

718 (reproduced from [41] with permission of Taylor & Francis). 

Ji et al. [76] analyzed the microstructure of Inconel 718 in selective laser melted and 

wrought form during dry micro-milling with coated WC inserts. For both workpieces, 

increasing the feed rate increased the microhardness. Further cementing the point of cutting 

speed not having a major effect, the authors observed virtually no change in microhardness 

for both cases when increasing the cutting speed. Although it is important to point out that 

the increase in microhardness with feed rate was noticeably larger when the cutting speed 

was higher. Thus, it can be inferred that a higher feed rate in combination with a higher 

cutting speed results in more microstructural deformation.  
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2.3 Burr Formation 

Burr formation is a special subset of surface integrity that is not viewed in the same 

light as the other categories like surface roughness, RS, or microstructure. Burrs can be 

defined as material that plastically deforms at a part’s corners or edges because of plastic 

flow during machining—this usually occurs at the entrance and exits of the cutting tool on 

the workpiece [5]. Burrs do not necessarily affect the mechanical properties of machined 

parts like other surface integrity characteristics do, but that does not mean they do not pose 

a serious issue for part quality. Jin et al. [5] provide an extensive list of all the potential 

problems resulting from burrs, which include creating stress concentrations (which harms 

fatigue life), poor dimensional accuracy, and issues during assembly like operator injury.  

Thus, burrs need to be removed before a part can go into service, and this is done 

through deburring. However, deburring is not only unproductive and costly, but it can ruin 

dimensional tolerances because the process is manual and subject to human error since it 

is difficult to automate [5]. While deburring will always be required to some extent, it 

should be avoided as much as possible because it adds no value [77]. Edge finishing 

operations like deburring are usually neglected during the design stage, which causes them 

to be unsustainable because there was no planning beforehand. Selecting the appropriate 

deburring tools and processes requires knowledge of burr formation, namely size and 

location [78]. The cost of burr treatment is enormous—at one point the manufacturing 

sector was spending $5 billion annually on burr removal [79].  

Furthermore, understanding the formation of burrs to minimize them will have 

many economic benefits for the manufacturer [4]. Unfortunately, however, literature 

review showed that the landscape of burr formation research is still in its infancy. Most of 

the foundational, novel work was conducted decades ago, and recent studies focus almost 

exclusively on drilling and micromachining. Very few works have investigated burr 

formation in the conventional processes of turning and milling and even fewer address burr 

formation in superalloys—most of the work found involved more common materials like 

steel and aluminum. This section provides an overview of the work that has been conducted 

on burr formation.  
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2.3.1 Types of Burrs and Formation Mechanism 

Gillespie [79] performed what is perhaps the first work focusing on burr formation 

in machining and would go on to be referenced often by future scholars investigating the 

phenomenon. He provided a thorough analysis of burr formation across turning, milling, 

drilling, and grinding. Through this, he became the first to lay out an interpretation for the 

burr formation mechanism. According to Gillespie [79], there are three different types of 

burr mechanisms: lateral extrusion of workpiece material, bending of the chip over the 

edge, and tearing of the chip from the workpiece. However, Gillespie [79] is most known 

for pioneering the classification of burrs, for which there is still no universal standard since 

companies typically have their own convention for naming burrs [5].  

Gillespie [79] categorized four types of burrs: Poisson burrs, roll-over burrs, cutoff 

burrs, and tear burrs. Poisson burrs are due to lateral extrusion, which occurs when high 

localized pressures at the tool cutting-edge cause compressive plastic deformation and 

material bulges at the sides of the tool where it is pushed over the edge [79, 80]. However, 

it is well known that the Poisson effect refers to out-of-plane elastic deformation, despite 

side burrs being a form of plastic deformation. Nevertheless, roll-over burrs are caused by 

the bending of the chip at the workpiece exit, where material is ‘pushed out’ of the tool’s 

path and over the edge, leaving behind a ‘positive’ exit burr [79, 81]. Cutoff burrs are when 

material separates from the workpiece before the cut is complete, leaving behind a 

‘negative’ exit burr [15]. Finally, tear burrs are as the name implies: material is ‘torn off’ 

rather than complete shearing [5, 79]. Poisson, roll-over, and cutoff (fracture) burrs are the 

most prevalent and have received the most attention in literature; they are also the focus of 

this work. Roll-over and cutoff burrs are similar in that they both form at the exits of a 

workpiece. Moreover, later authors would adopt a more simplistic nomenclature for 

Poisson and roll-over/cutoff burrs based on their location along the workpiece, that being 

side and exit burrs, respectively. The present work also uses this terminology. 

Research on the exit burr formation mechanism would be continued by later 

researchers, namely Ko and Dornfeld [82], who built upon the work by Gillespie [79] by 

identifying three key stages for the formation of exit burrs: initiation, development, and 

final formation. These stages are visualized in Figure 2-15, which comprises of frames of 



 

27 

 

ultra-high-speed video captured on the custom-built in-situ testbed. Figures 2-15a and 2-

15b are during the cut itself (loaded condition), representing initiation and development, 

respectively. Figure 2-15c was taken after the cut with the tool passing over the workpiece 

where there was no contact (unloaded condition), representing final burr formation.  

 

Figure 2-15. High-speed in-situ images of positive exit burr (a) initiation; (b) development; 

(c) final formation (after cut) at 𝑉𝐵 = 0 μm, ℎ = 80 μm, 𝑣𝑐 = 6 m/min. 

Initiation starts at a transition point as the tool approaches an exit of the workpiece 

where the energy for steady state chip formation is transformed completely into energy for 

burr formation and is indicated by the appearance of a negative shear plane first introduced 

by Pekelharing [83] (not to be confused with the primary shear plane in chip formation) 

[81, 82, 84, 85]. The initial negative shear plane (negative shear plane at initiation) is 

correspondingly represented by an initial negative shear angle (𝛽0) that runs from the tool 

tip to a plastic hinge, known as the burr root, where the burr pivots about during 

development—this burr root was identified by numerous authors [79, 82, 86]. An 

illustration of this process is shown in Figure 2-16. Once the tool passes over the edge, the 

exit burr left behind can either be ‘positive’ or ‘negative’. As described earlier, a positive 

burr is when the material extruded over the edge remains attached to the workpiece, 

forming a sharp point (this type is shown in Figure 2-15c). Furthermore, besides 𝛽0, Ko 

and Dornfeld [82] presented a number of metrics for measuring positive exit burrs first 

introduced by Schäfer [87]. These metrics are summarized in Table 2-1 and can be 

visualized in Figure 4-1 but will also be discussed in greater detail in Section 4.1. 
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Figure 2-16. Schematic of exit burr development [82]. 

Table 2-1. Positive Exit Burr Metrics Proposed by Ko and Dornfeld [82]. 

Metric Symbol Definition 

𝑏𝑡 Exit burr thickness 

𝑏ℎ Exit burr height 

𝜓 Inclination angle 

𝜔 Initiation distance 

𝛽0 Initial negative shear angle 

Negative exit burrs form whenever the burr is sheared off the workpiece along with 

the chip, forming a chip in the shape of a ‘shoe’ or ‘foot’ [81]; the material that was fractured 

off leaves behind a ‘breakout’ on the workpiece. Figure 2-17 shows ultra-high-speed frames 

of a negative burr forming. As established previously, exit formation consists of bending of 

the chip and shearing in the negative shear plane. Thus, exit burr fracture is caused by plastic 

bending and shear deformation [81, 85]. Compared to positive burrs, negative burrs are 

relatively rare, as they only seem to occur under certain circumstances. Many authors have 

proposed different theories, such as Hashimura et al. [88], who state that it has to do with 

the ductility of the material—it is true that the mode of fracture behavior can either be brittle 
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or ductile depending on the material ductility [89, 90]. Ko and Dornfeld [85] demonstrated 

that negative burrs are dependent on the fracture strain of the material—in their study, it 

was difficult to obtain fracture in ductile materials (pure copper and aluminum) but easier 

in the case of more brittle materials (Al 6061-T6 and Al 2024-T4). Furthermore, material 

ductility has been explored to some extent by other authors, who found that ductile materials 

generated larger positive burrs compared to brittle materials [11, 91, 92]. However, the 

present work showed that positive and negative burrs are not exclusive to ductile and brittle 

materials but instead more tied to the cutting parameters. 

 

Figure 2-17. Process of fracture in negative exit burr formation (𝑉𝐵 = 0 μm, ℎ = 80 μm, 𝑣𝑐 

= 60 m/min).  

Like with all machining phenomena, the material response (in this case, the burr 

formation), is largely driven by the cutting parameters. In virtually all studies, it was found 

that the uncut chip thickness (ℎ) had the biggest effect on burr formation in general, be it 

exit or side burr. Regarding negative burrs, Régnier et al. [93, 94] observed that exit burr 

size was proportional to ℎ, and that negative burrs were far more likely to occur when ℎ was 

large in the orthogonal machining of AlSi alloy. Nakayama and Arai [95] obtained the same 

result in their orthogonal machining study on 65-35 brass. Another equally important 

parameter is the cutting speed, as the threshold for negative burr fracture is dictated by the 

intensity of strain in the negative shear zone [84]. Thus, a faster cutting speed should 

facilitate easier negative burr formation.  

However, Nakayama and Arai [95] saw the opposite effect, where a lower cutting 

speed favored negative burr formation. The rake angle (i.e., tool orientation) has also been 

shown to have a significant influence on the development of negative burrs, although 

findings on the effect of rake angle are contradictory: Régnier et al. [96] found that a positive 

rake angle could produce negative burrs, but a negative rake angle could not. On the 
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contrary, Nakayama and Arai [95] only saw that a smaller rake angle was desirable for 

negative burr formation. It should be noted that the rake angle was not a control variable in 

this study, as it was kept constant at zero degrees. Furthermore, the causation of rake angle, 

along with other machining parameters on negative burrs is not well understood—this study 

presents preliminary findings on the factors affecting the negative burr phenomena in 

Chapter 6. 

2.3.2 Effects of Cutting Conditions on Burrs 

It has already been made clear that tooling is heavily influential on other categories 

of surface integrity (surface roughness, RS, and microstructure); worn tools are generally 

undesirable because of their negative side effects, and this is no different for burr formation. 

While there is very little work on the correlation between tool-wear and burr formation, 

some researchers have observed that worn tools result in larger burrs [97-101]. As stated 

earlier, micro-machining is one of the most common operations employed in burr formation 

research. Burrs are especially problematic for micro-machining operations because the 

deburring process is more difficult than in macro-machining, where removing micro-burrs 

requires even higher accuracy to avoid damaging the small features of the part [102]. In 

their study comparing different lubrication methods in the micro-milling of Inconel 718 

with coated WC inserts, Aslantas et al. [97] found that tool-wear had a significant effect on 

burr formation: as the end mills became more blunted because of wear, this resulted in 

bigger burrs because worn tools tend to plough instead of cut. This ploughing effect was 

also observed by Wu et al. [101] in their micro-planing experiments on copper with PCD 

tools. In fact, burr formation and tool-wear are so closely related that burrs are used as an 

indicator of tool condition (i.e., when the tool needs to be changed) [4]. This is supported 

by Lee and Dornfeld [100] in their micro-drilling study with WC mills on stainless steel 

304. The authors found that there was a dramatic spike in burr height due to catastrophic 

failure in the tool after a certain number of holes were drilled (see Figure 2-18). Thus, it can 

be implied that less burr formation means longer tool life, and therefore, increased 

productivity [4].  
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Figure 2-18. Change in burr height with number of holes drilled for stainless steel 304 

(reproduced from [100] with permission of Elsevier, License Number 5427980351490). 

Besides tool-wear, there are other aspects regarding tooling that have profound 

effects on burr formation, namely tool orientation and tool path (for milling). Multiple 

studies concluded that rake angle has a clear effect on exit burr formation [82, 95, 96, 98]. 

Ko and Dornfeld [82] and Nakayama and Arai [95] found that burr height decreases with 

increasing rake angle, which is because of the lower shear strain undergone by the chip [95]. 

A very important parameter that is pertinent to milling is tool path, which is rarely explored 

in literature. Dornfeld and Min [4] demonstrated this with a case study on an automotive 

engine block. By optimizing the tool path, the engine block went from having excessive 

burrs to having no burrs at all. While tool path was much longer (more than double), they 

were able to increase the feed rate with no consequences which resulted in the same milling 

time. Tool path optimization for burr minimization is a matter of avoiding geometric 

extremities like tool exits and maintaining a constant force on the tool [4]. István Poór et al. 

[77] reviewed novel drill head designs proposed by several authors that are aimed 
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specifically for burr control in carbon fiber reinforced polymer (CFRP) composites. One 

key design attribute in milling and drilling tools is the helix angle, which has been shown to 

influence burr formation greatly in the machining of CFRPs [103]. A larger helix angle has 

been shown to increase the exit burr size (both thickness and height) in the drilling of Ti-

6Al-4V [104]. The drill point style and point angle also play a major role in exit burr 

formation—Dornfeld et al. [104] saw that helical point drills created substantially smaller 

burrs than split point drills and that a larger point angle results in smaller exit burr size. 

Thus, developing new tool designs for burr suppression in metal machining could prove 

promising. 

The most influential cutting parameter on burr formation is the uncut chip thickness 

(ℎ), as this was the most consistent relationship found among numerous researchers [82, 86, 

95, 98, 102]. Generally, a higher uncut chip thickness will result in bigger burrs [82, 86, 95, 

98]. Chern and Dornfeld [86] observed that exit burr height increases proportionally with 

uncut chip thickness in their dry orthogonal cutting experiments on copper, Al 2024-T4, and 

Al 6061-T6. This was validated with their burr formation model based on bending and 

shearing work, and results show excellent agreement. Wang and Zhang [98, 105] obtained 

similar results in their dry milling experiments on 6-4 brass when analyzing side burrs. On 

the contrary, low uncut chip thickness can still lead to large side burr formation if the uncut 

chip thickness to tool nose radius ratio is low, i.e., ploughing (rather than cutting) becomes 

dominant [98, 101, 106]. This again points back to the importance of tooling, as worn tools 

will exacerbate burr formation in relation to the uncut chip thickness. When the cutting-

edge radius is larger than the uncut chip thickness, the maximum stress area is shifted to the 

bottom corner of the cutting-edge arc—this stress distribution heavily favors side burr 

formation [101]. Wu et al. [101] confirmed this in their micro-planing experiments on 

copper with diamond tools. As the uncut chip thickness approached the tool nose radius, the 

side burr height decreased until it reached a minimum value, after which it began steadily 

rising with uncut chip thickness—this concurs with the results of the previously mentioned 

studies.  

The influence of feeds and speeds on burr formation is less conclusive than that of 

uncut chip thickness as there are conflicting results. Some researchers report that a higher 

feed rate escalates burr formation [100, 107]. Lee and Dornfeld [100] found that burr height 
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is linearly proportional to feed rate (see Figure 2-19), likely due to increased tool-wear, 

which has already been explained to have a negative effect on burr formation. Biermann 

and Hartmann [108] also saw a rise in burr height with increasing feed rate in their drilling 

experiments on steel alloy 34CrNiMo6 and aluminum alloy AlMgSi1. In addition to the 

depth of cut, Piquard et al. [109] state they found a strong dependency on feed per tooth for 

both burr height and burr thickness in the micro-milling of austenitic and martensitic NiTi. 

However, Kumar and Bajpai [110] state that a higher feed rate corresponded to a lower burr 

height in both up and down-milling. Cedergren et al. [111] analyzed the influence of feed 

rate with respect to grain size, which has been very scarcely explored. They performed wet 

turning experiments on Alloy 718 with uncoated WC inserts. Their results are quite telling, 

as grain size in tandem with feed rate had vastly different outcomes, as shown in Figure 2-

20. With large grains (d ~ 127 μm), a lower feed rate resulted in the extreme buildup of 

burrs and increasing the feed rate caused the burrs to decrease heavily. With small grains (d 

~ 16 μm), virtually no burrs were observed at the lower feed rate, but burrs appeared when 

increasing the feed rate. Other work has shown that grain orientation has a major effect on 

burr formation because some grains may behave in a ductile manner while others may 

behave in a brittle manner [112]. Hence, it is safe to assume that grain size also plays a 

considerable role in burr formation, which was found to be the case in the present work (to 

be discussed in Section 6.3). Muhammad et al. [102] deemed feed rate to be insignificant in 

their micro-milling experiments on Inconel 718 with coated WC inserts, as no trend could 

be attained. As mentioned earlier, the direction of the milling cutter has a major effect on 

burr development, and this has been corroborated in literature. Piquard et al. [109] showed 

that up-milling creates taller burrs (larger height) but down-milling creates thicker burrs 

(larger thickness). This was later confirmed by Kumar and Bajpai [110], who obtained a 

120% increase in burr height when up-milling compared to a 50% decrease when down-

milling. 
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Figure 2-19. Effect of (a) feed rate and (b) cutting speed on burr height for stainless steel 

304 (reproduced from [100] with permission of Elsevier, License Number 

5427980351490). 

 

Figure 2-20. Effect of grain size and feed rate on burr formation for wrought Alloy 718 

(reproduced from [111] with permission of Springer Nature, License Number 

5427980508001). 

Findings regarding the effect of cutting speed on burr formation are also mixed or 

unclear. Muhammad et al. [102] saw that increasing the cutting speed created a substantial 

rise in burr size, which they attribute to thermal softening causing easier plastic deformation. 

This is logical, as burr formation is proportional to the ductility of the material [95, 101]. 
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On the contrary, Pilný et al. [107] saw a linear decline in exit burr height with increasing 

cutting speed during their drilling experiments on aluminum. Pramanik et al. [113] observed 

that burr height decreased with increasing cutting speed at minimum feed rate and tool point 

angle, but first increases then decreases with increasing cutting speed at maximum feed rate 

and point angle. A very similar effect was illustrated by Lee and Dornfeld [100]: they saw 

that burr height decreased with increasing cutting speed at a lower feed rate, but slightly 

increased at higher feed rates. They state that the former happens because of a combination 

of better tool life due to built-up edge (BUE) forming a protective layer on the tool, and 

laminar material flow (possibly due to thermal softening), which causes smaller burrs. 

Biermann and Steiner [114] tested various cutting speeds, feed rates, and lubrication 

conditions in the micro-milling of austenitic stainless steel X5CrNi18-10 with coated WC 

inserts. In most cases, they saw that top burr height increased with increasing cutting speed 

due to higher strain rate hardening. However, this was not the case at certain feed rates and 

lubrication conditions, where the burr height can be seen to increase then decrease with 

increasing cutting speed. The lubrication/cooling method can have a noticeable impact on 

burr formation, as was shown by Biermann and Hartmann [108], where they observed a 

slightly smaller burr height in cryogenic drilling of steel alloy 34CrNiMo6. Moreover, they 

stated that dry drilling resulted in significantly larger heights because of the lack of thermal 

softening. Additionally, whenever the burr height would increase with cutting speed, the 

trend was never consistent and would vary widely. Other authors, however, noticed the 

opposite effect. Like feed rate, there is no clear relationship between burr formation and 

cutting speed based on current literature.  
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CHAPTER 3. EXPERIMENTAL SETUP AND MEASUREMENT 

3.1 In-Situ Testbed for High-Speed Imaging of Orthogonal Cuts 

Experiments were carried out on a custom-built, state-of-the-art in-situ testbed, 

shown in Figure 3-1. The testbed is contained within a welded, steel frame housing and sits 

on a ~2-ton granite surface filled with sandbags for vibration-dampening. The testbed 

mechanism consists of a table capable of moving in the x and y-directions for 2D-motion, 

which is powered by a Yaskawa experimental series SLGFW2 linear servo motor that 

allows it to reach speeds of 252 m/min with 5 Gs of acceleration. The workpiece sample is 

secured by a 0.25-inch (6.35 mm) screw and two 0.25-inch dowel pins within a vice sitting 

atop the table; the vice is equipped with Kistler Type 9047C piezoelectric force sensors 

with a force capacity of 30 kN. The cutting tool is secured in a rigid fixture that moves 

vertically (z-direction) via a carriage mechanism for controlling the desired depth of cut. 

The tool fixture is designed to hold K68 WC inserts. Prior to each cut, the z-axis is held 

steady with two clamps to prevent tool displacement. A micro-mill was installed for 

deburring the workpiece edges following each experiment, which would be accomplished 

using an automatic program in the machine. Focusing on the tool-workpiece interface is an 

ultra-high-speed Photron FASTCAM SA-Z 2100k camera capable of capturing video up 

to 2.1 million fps: the camera features a microscope containing a high-intensity, co-axial 

5000 lumen LED light source for illuminating the cuts. There are additional 4000 lumen 

LEDs delivered via a bifurcated light guide for illuminating the chip during cutting that are 

connected to an external HelioLux power source. A Mitutoyo M Plan APO 10X 

magnification objective was used as the microscope lens on the Photron camera. There was 

an additional Vieworks VC-25M digital camera constructed from Thorlabs components 

attached to the vertical z-carriage also utilizing the same Mitutoyo M Plan APO 10X 

objective for photographing the machined surface before and after cuts. 
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Figure 3-1. In-situ testbed used for physics-informed and data-driven characterization of 

machining processes. 

 The objective of this study was to gain a comprehensive understanding of burr 

initiation and formation by analyzing how these aspects differ with respect to various 

process parameters. The key factors of interest that were modified in the experiments are 

the uncut chip thickness, tool-wear, and cutting speed. Four levels of uncut chip thickness 

(ℎ) were measured: 10, 20, 40, and 80 μm (increasing by factors of two). Three tool flank-

wear (𝑉𝐵) conditions were used: 0 μm (i.e., sharp), 50 μm, and 150 μm. Finally, the cutting 

speed (𝑣𝑐) ranged from 6 to 60 m/min. These levels were carefully chosen based on their 

expected influence on the burr formation and relevance in finish machining. It was highly 
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anticipated that the uncut chip thickness would be the driving factor, which is why it has 

the most settings. Additionally, 10-80 μm would cover the entire range seen in finish 

milling. The highest flank-wear condition was selected as 150 μm because typically the 

most extreme level that would be seen in practice; it was scaled down by factors of a third 

from there. The cutting speed was not expected to have a notable effect, which is why it 

was only tested at two settings. The higher speed of 60 m/min was chosen because it is the 

industry standard for cutting Inconel 718 with uncoated WC. Further, the two cutting speed 

settings differed by a factor of 10 to ensure that any significant effects of cutting speed 

would still be revealed. The experimental matrix for the in-situ trials is displayed in Table 

3-1. 

Table 3-1. Experimental matrix for in-situ trials. 

Cutting Speed (𝒗𝒄) [m/min] Flank-Wear (𝑽𝑩) [μm] Uncut Chip Thickness (𝒉) [μm] 
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3.2 Sample and Tool Preparation 

3.2.1 Sample Polishing and Etching 

The Inconel 718 workpiece sample used was in the quenched and age-hardened 

condition of 46 +/- 2 HRC with a bimodal grain distribution ranging from average grain 

sizes of 3-8 μm to 50-500 μm. According to manufacturer data sheets, it has a yield shear 

stress (i.e., flow stress) of 640 MPa, an Elastic Modulus of 205 GPa, and a Poisson’s ratio 

of 0.28. The workpiece was cut from the ingot using wire electrical discharge machining 

(EDM) and milled into a rectangular geometry of dimensions of about 50 mm x 40 mm x 

6 mm. A step was milled on both sides to form cutting widths of 3 mm to ensure plane 

strain conditions. Additionally, five ‘castellations’ (i.e., ‘edges’) with spacing of 8, 7, 6, 5, 

and 4 mm were milled out on one side for a discontinuous cutting stroke to facilitate burr 

formation and to allow for five data points to be collected with each trial. The in-situ 

workpiece and its microstructure are shown in Figure 3-2. 

 

Figure 3-2. Images of (a) geometry and (b) microstructure of slotted and polished Inconel 

718 in-situ workpiece sample. 

To reveal the microstructure and obtain the necessary reflective finish in the high-

speed video for digital image correlation (DIC) measurements, the workpiece underwent a 

thorough polishing and etching process. Several sandpaper and diamond pads were used 

for polishing—the sample was fastened to a holder and pressed down with even pressure 

onto the pads spinning on a Struers RotoPol-22 polishing machine. The polishing recipe 
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used is a modified version of the standard recipe provided by Pace Technologies and is 

shown in Table 3-2. After polishing, the workpiece was etched for ~1 min using a custom 

mixed chemical formula: 100 mL methanol, 100 mL HCl, 5 mL HNO3, and 10 g of Cu3Cl2. 

The polishing and etch quality were checked on a Nikon Epiphot 300 microscope before 

experiments were run. After the exit burrs were grinded off the workpiece with the micro-

mill, the sample underwent Steps 5-9 of the polishing recipe again to remove the side burrs 

from the previous cut—this would yield a “burr-free” workpiece for the following trial. 

Table 3-2. Polishing recipe for Inconel 718 in-situ workpiece. 

Step Abrasive Pad Speed 

1 120 grit SiC paper with water 150 rpm 
2 240 grit SiC paper with water 150 rpm 

3 360 grit SiC paper with water 150 rpm 

4 600 grit SiC paper with water 150 rpm 

5 9 μm DIAMAT diamond liquid on POLYPAD polishing pad 300 rpm 

6 9 μm DIAMAT diamond liquid on TRICOTE polishing pad 300 rpm 

7 6 μm DIAMAT diamond liquid on TRICOTE polishing pad 300 rpm 

8 1 μm DIAMAT diamond liquid on TRICOTE polishing pad 300 rpm 

9 0.5 μm DIAMAT diamond liquid on TRICOTE polishing pad 300 rpm 

3.2.2 Tool Sharpening and Imposition of Flank-Wear 

The cutting tools used in all experiments were K68 uncoated WC from Kennametal, 

which were prepared by following a multi-step grinding recipe. First, the flank face of the 

as-received tool blanks was ground along the flank face at a 5° clearance angle (to match 

the alignment of the in-situ testbed fixture) against a ~30 μm abrasive vitrified bond 

diamond wheel (150 mm diameter) spinning on a Taig Tools 4019 DSLS CNC Lathe to a 

flank clearance facet width of about 2 mm. Next, the tool would be placed into a handheld 

grinding fixture (also calibrated to a 5° angle) used on precision granite surface plates to 

ensure flatness and repeatability, where the flank would be rubbed against various lapping 

film pads embedded with diamond abrasive grains from McMaster-Carr: 30, 9, and 3 μm 

pads were used. The flank would be lowered on the spindle of the fixture until it was just 

pinching the pad against the granite plate’s surface, then it would be ground in a back and 

forth, linear motion until a uniform finish was achieved, after which it would proceed to 

the next diamond abrasive pad. For sharp tools, the flank would first be polished on the 30 
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μm pad, followed by the 9 μm, and finally the 3 μm until a ‘shiny’ finish was achieved. 

Lastly, the sharpness of the tool would be checked on the Nikon Epiphot 300 microscope. 

This same procedure was done manually by hand for the rake face as well and for both 

sides of every tool.  

A more complicated process was required for worn tools: one side would be ground 

sharp as described above, but the other side would be made worn. For the worn side, 

following the initial grinding on the lathe, the tool was first polished on the 30 μm abrasive 

pad in the 5° holder on the handheld fixture, but would then be switched over to a special 

flank-wear holder that is at an angle of 0° to induce a controlled wear flat/facet on the flank 

face, parallel to the workpiece surface. Once the tool was in the flank-wear holder, it would 

pressed down until it was barely making contact on the 3 μm abrasive pad. Then, the fixture 

would be stroked backwards and carefully abraded to impose the flank-wear. Assuming 

the stroke was uniform and straight, a thin strip of flank-wear should have been added. The 

accuracy of the flank-wear would be verified by placing the tool under the Nikon Epiphot 

300 microscope. The wear was then measured at three different points along the flank face 

to ensure that it was within tolerance. If the flank-wear contour was not adequate, the tool 

would be placed back into the 5° holder, polished on the 30 μm abrasive pad until the wear 

from the 3 μm was removed, then returned to the wear holder and the process would repeat 

until the wear was within a sufficient tolerance of the target value (50 or 150 μm). After 

adding the flank-wear, the tool would be honed to a certain radius by grinding the cutting 

edge (i.e., where the flank and rake faces meet) on a 150 mm diameter buffing wheel 

charged with 1 μm diamond abrasive, spinning on a DeWALT DW758 bench grinder. The 

hone, verified using a Zygo NewView 7300 scanning white light interferometer, was a 

uniform radius of 20 μm for tools with 50 μm of flank-wear and a radius of 30 μm for tools 

with 150 μm of flank-wear. These hone values were established based on previous 

measurements of the relationship between of edge radius increase with progressive flank 

wear in turning and milling of Inconel 718 (unpublished data, Schoop Research Group). 

The flank-wear can be seen in Figure 3-3.  
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Figure 3-3. Flank-wear (𝑉𝐵 = 150 μm) and hone (𝑟𝛽 ~ 30 μm) for a worn tool. 

3.3 Force Measurement 

Force data was captured using the Kistler Type 9047C piezoelectric sensors 

encased in the vice holding the workpiece on the in-situ testbed. There were two sensors 

(one for each force component in the cutting and feed directions), each wired to a Kistler 

Type 5010 dual-mode amplifier that output the forces as voltages on separate channels. 

The voltage readings were displayed and captured using MATLAB’s Analog Input 

Recorder at a rate of 333,333 scans/second. The duration of the recording would be set to 

30 seconds for the slow-speed (6 m/min) cuts and 10 seconds for the high-speed (60 m/min) 

cuts to give ample time to capture the entire length of the sample.  

Since force data was captured in volts, a conversion factor was necessary. The 

conversion factor of force units per volt was determined based on the NIST-traceable 

laboratory calibration certificates for the Kistler triaxial load cells. These conversion 

factors were 2999 N/volt and 2996 N/volt for the cutting and feed forces, respectively. The 

voltage readings were then analyzed using a MATLAB script (shown in Figure A1 of the 

Appendix) to calculate the average cutting and feed forces. The script searched for the 

number of ‘change points’ (ten total, two per castellation), which is essentially whenever 

cutting was taking place, as the plot would jump up during contact with the tool then drop 

down when the tool left the workpiece. There were ten total change points per data set (two 
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per each of the five castellations), that would each be averaged. The script would then 

calculate the mean of those five averages and would furthermore yield the forces of the cut. 

This process is illustrated in Figure 3-4. 

 

Figure 3-4. Calculation of force averages in MATLAB. 

3.4 Displacement Measurement 

The subsurface displacement fields (i.e., strain fields) were characterized using the 

non-contact DIC technique, which requires ‘reference’ and ‘current’ frames to generate the 

degree of displacement for the grains. To do this, the sample was recorded twice: once 

before the cut and once during the cut. The recording before is simply a ‘fly-over’—the 

sample is being moved in front of the camera where there is a gap between the top surface 

and the tool, so no cutting is taking place. The images captured here served as the reference 

frames for the DIC analysis. Then, there was of course recordings during the cut itself, 

which served as the current frames for the DIC analysis. Finally, the two frames could be 

fed into open-source DIC software, Ncorr, which would generate the displacement field by 

finding the relative displacement between the pixels. This procedure is illustrated in Figure 

3-5. 
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Figure 3-5. In-situ imaging procedure for conducting subsurface analysis with DIC 

(reproduced from [115] with permission of Springer Nature, License Number 

5427980654590). 

Once the cutting tool was resting in the fixture, the camera would be moved to bring 

the tool tip into view. Once the tool was positioned in the upper right-hand corner of the 

frame, the camera would be adjusted to focus on the cutting tool. Next, the table would 

jogged over in front of the camera and the tool would be lowered carefully until the 

workpiece came into frame. Once the tool and workpiece subsurface were clearly visible 

in view of the camera, the sample would be jogged in the y-direction until it was also in 

focus—this was an indicator that the tool and workpiece were in the sample plane. Finally, 

the workpiece would be moved back in the positive y-direction by 30 μm to create a 

sufficient overhang of the tool to prevent side flow around the tool (as well as allow for 

side burrs to emerge). The camera would then be adjusted one more time to focus on the 

sample (of which the tool would go out of focus, as expected).  

The FASTCAM SA-Z camera settings had to be adjusted properly before each 

recording, which was done using the Photron FASTCAM Viewer (PFV) Version 3.6.9.1 

software. The resolution was set to 640 x 640 pixels and the frame rate was set to 4,500 

and 45,000 for the 6 and 60 m/min cuts, respectively—the exposure was constant at 

1/4032000 s throughout to eliminate motion blur during high-speed cuts and maintain 

constant image brightness across all conditions. These settings were developed internally 

at the Integrated Computational & Experimental Manufacturing Engineering (ICEME) 

Laboratory at the University of Kentucky to balance maximum field of view with 

sufficiently high frame rate to observe dynamic events such as chip serrations and burr 

formation. A shading correction was applied periodically to eliminate noise.   
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After each experiment, individual frames for the fly over and cut had to be selected 

from the ~1,800 frames captured per pass. This required close attention to select the most 

optimal frames to yield the best results for DIC. Ideal frames were first and foremost 

perfectly in focus, contained few surface defects like scratches, and had the correct level 

of contras. Improper selection of the reference and current frames results in poor 

displacement fields after DIC analysis. Thus, the three best pairs were identified for each 

experimental condition—that is, three different groups of frames (each containing one fly 

over and one cut frame) were chosen and ranked in order of preference. Once the best 

frames were chosen, they were analyzed via open-source DIC software, Ncorr, for 

comparison. 

Ncorr was run via MATLAB Version R2021b. The first step to performing the DIC 

analysis was to draw the region of interest which was as a rectangle over the workpiece 

subsurface. For the DIC parameters under the “Analysis” tab, the subset radius was set to 

10 with subset spacing of 1. The iterative solver options were kept at the default settings 

of 1 × 10−6 for the diff. norm C/O and 50 for the iteration # C/O. Single threading was 

used. Step analysis was enabled with auto seed propagation at a step # of 5. Subset 

truncation was enabled for discontinuous analysis. After the analysis was complete, the 

displacements were formatted by applying a unit conversion (calibration factor) of 2 

microns/pixel and the maximum correlation-coefficient cutoff was used. These various 

settings were iteratively determined to yield the optimum signal to noise ratio in the 

calculated displacement plots, without requiring excessive computational time. The plots 

of interest were the v-displacement plots, which were always viewed using the Eulerian 

description. To form the final plot, the upper and lower bounds were adjusted to yield the 

most refined displacement field with distinct transitions between regions by fixing the 

upper bound (typically red/maroon color in MATLAB ‘jet’ color scale) approximately 

equal to the region of plastic deformation.  
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3.5 Optical Microscopy for Capturing Burrs 

A Keyence VHX-7000 digital microscope (shown in Figure 3-6) was used for 

analyzing burr geometry. The machined workpiece would be placed under the microscope 

and scanned at each castellation after each trial. First, high definition 2D images of each of 

the five exit burrs were taken using the ‘z-depth up’ feature; the ‘remove reflection’ option 

was enabled to eliminate glare. Objectives ranged from 400X to 1500X depending on the 

size of the burr. The exit burrs were then scanned from a vertical top view using the ‘3D 

image-stitching’ feature at 400X magnification (the sample was propped up vertically 

under the microscope for this procedure). Finally, the side burrs were also captured using 

the 3D image-stitching feature at 200X magnification—2D and 3D images of the image-

stitch were saved for each castellation. The sample was propped at an upward angle so that 

the side burrs would be visible under the microscope lens. Additionally, the vertical 

microscope installed on the in-situ testbed was used for capturing images of the side burrs 

from above (images were automatically taken by the camera using a MATLAB script, 

shown as Figure A2 of the Appendix). All images were saved as TIFF (tag image file 

format) files for maximum quality.  

 

Figure 3-6. Keyence VHX-7000 digital microscope used for scanning and measuring burrs.
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CHAPTER 4. CHARACTERIZATION OF BURR GEOMETRY 

4.1 Exit Burr Development 

This section presents the in-situ profiles for positive exit burrs and discusses the 

significance of the three cutting parameters on a variety of different exit burr metrics 

(negative exit burrs will be discussed in Chapter 6). Following the discussion of the exit 

burr formation mechanism in Section 2.3.1, once the tool passes over the edge, if no 

fracture occurred, then a ‘positive’ exit burr is left. This is given by a sharp, pointy shape 

of material that has extruded outward—the process of positive exit burr development was 

shown in Figure 2-15. Furthermore, for the purpose of characterizing the burr, there are 

several metrics that were first introduced by Schäfer [87] and later expanded upon by Ko 

and Dornfeld [82]. A schematic of these parameters is shown in Figure 4-1. 

 

Figure 4-1. Schematic representation of exit burr parameters: (a) thickness (𝑏𝑡); (b) height 

(𝑏ℎ); (c) initiation distance (𝜔); (d) inclination angle (𝜓); (e) initial negative shear angle 

(𝛽0); (f) initiation angle (𝜂). 

The two most pertinent metrics are the exit burr thickness (𝑏𝑡) and exit burr height 

(𝑏ℎ), as they are the most indicative of the overall size. As can be seen in Figure 4-1a, 𝑏𝑡 

is the depth from the top of the exit burr down to the burr root (i.e., from Figure 2-16). 

From Figure 4-1b, 𝑏ℎ is the distance that the exit burr extrudes outward from the vertical 

edge of the workpiece. Figure 4-1d shows the inclination angle (𝜓), which is a measure of 
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the acuteness of the exit burr. Figure 4-1f shows a previously unidentified angle that is 

coined as the initiation angle (𝜂) in the present work. This angle was observed on the 

workpiece after each machining trial as a shallow, acute angle beginning from the top of 

the machined surface and leading down to the tip of the exit burr. Previous studies, like 

that of Ko and Dornfeld [82], never noted this angle, as they depicted the top of the 

workpiece as being flat. The present work found this not to be the case, and that 𝜂 is actually 

a very important parameter for distinguishing the burr initiation point, which is what 

allowed for the initial negative shear angle (𝛽0) and initiation distance (𝜔) to be measured 

optically. Besides 𝜂, there are no other visual indicators for when exit burr formation starts 

relative to the vertical edge of the workpiece. Further, the initiation point (beginning of 𝜂) 

clearly shows the transition between steady state chip formation and exit burr formation 

when viewing the sample from above, as shown in Figure 4-2.  

 

Figure 4-2. Visual of burr initiation point from a vertical view of the machined surface. 

Figures 4-3-4-8 display the measured profiles for the metrics from Figure 4-2. Their 

variation with respect to the cutting parameters of true uncut chip thickness (ℎ𝑡𝑟𝑢𝑒), tool-

wear (𝑉𝐵), and cutting speed (𝑣𝑐) are discussed in the subsequent sections (4.1.1-4.1.3). 

All data was analyzed with respect to ℎ𝑡𝑟𝑢𝑒 instead of the programmed uncut chip thickness 

(ℎ) because of the well-known minimum uncut chip thickness or ploughing effect, as well 

as the finite stiffness of the machine, which resulted in the cutting tool being ‘pushed out’ 

of the cut. Values for ℎ𝑡𝑟𝑢𝑒 were measured optically via the high-speed video by calculating 

the difference in height between the machined and pre-machined surfaces.  
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Figure 4-3. Average profiles for exit burr thickness (𝑏𝑡) at (a) 𝑣𝑐 = 6 m/min (significant 

effect of tool-wear) and (b) 𝑣𝑐 = 60 m/min (no significant effect of tool-wear). 

 

Figure 4-4. Average profiles for exit burr height (𝑏ℎ) at (a) 𝑣𝑐 = 6 m/min and (b) 𝑣𝑐 = 60 

m/min. No significant effect of tool-wear. 

 

Figure 4-5. Average profiles for inclination angle (𝜓) at (a) 𝑣𝑐 = 6 m/min and (b) 𝑣𝑐 = 60 

m/min. No significant effect of tool-wear. 
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Figure 4-6. Average profiles for initiation distance (𝜔) at (a) 𝑣𝑐 = 6 m/min and (b) 𝑣𝑐 = 60 

m/min. Significant effect of tool-wear. 

 

Figure 4-7. Average profiles for initial negative shear angle (𝛽0) at (a) 𝑣𝑐 = 6 m/min and 

(b) 𝑣𝑐 = 60 m/min. No significant effect of tool-wear. 

 

Figure 4-8. Average profiles for initiation angle (𝜂) at (a) 𝑣𝑐 = 6 m/min and (b) 𝑣𝑐 = 60 

m/min. No significant effect of tool-wear. 

4.1.1 Effects of Uncut Chip Thickness on Exit Burrs 

The true uncut chip thickness (ℎ𝑡𝑟𝑢𝑒) was the single most influential parameter 

having a statistical significance on the 95% confidence interval for nearly all the profiles. 

All trends showed an increase as ℎ𝑡𝑟𝑢𝑒 increased. Regarding the overall burr size, which 

as stated previously, is indicated by exit burr thickness (𝑏𝑡) and exit burr height (𝑏ℎ), all 

curves always increased considerably with ℎ𝑡𝑟𝑢𝑒. This is to be expected, as it is reasonable 

to assume that larger cuts will result in larger burrs. This was also the conclusion of 

numerous authors [82, 86, 95, 98, 102]. Moreover, the inclination angle (𝜓) increased 

slightly with ℎ𝑡𝑟𝑢𝑒. 

The exit burr initiation distance (𝜔) exhibited a major increase with ℎ𝑡𝑟𝑢𝑒, which 

is in line with the theory that larger cuts will result in larger burrs and thus initiation will 



 

51 

 

start sooner; this is supported by other works [82, 96]. As a side note, despite not being a 

variable of interest in this study, Régnier et al. [96] found that a positive rake angle resulted 

in a higher 𝜔, whereas a negative rake angle resulted in a lower 𝜔. This is an interesting 

observation that could be undertaken with another in-situ study in the future. Interestingly, 

the initial negative shear angle (𝛽0) was almost constant with ℎ𝑡𝑟𝑢𝑒, increasing at very low 

ℎ𝑡𝑟𝑢𝑒 to a steady state between 30-35°, where the regression exhibited a cubic trend. This 

average is considerably different than in the work of Ko and Dornfeld [85], who saw that 

𝛽0 was constant at 20° for both copper and aluminum. As stated earlier, the newly identified 

initiation angle (𝜂) is a very shallow angle, and the regression analysis revealed it to range 

between 2-5°. There was no statistical significance of ℎ𝑡𝑟𝑢𝑒 on 𝜂, however at the highest 

programmed uncut chip thickness (ℎ = 80 μm) and highest cutting speed (𝑣𝑐 = 60 m/min), 

𝜂 would decrease to as little as < 1° because of a cavity that formed (see Figure 4-9). 

Régnier et al. [93] also saw this cavity and attributed it to the stress triaxiality, which could 

be used for modeling efforts in burr formation as it characterizes the strain at fracture [116]. 

 

Figure 4-9. Side view of cavity at the top of exit burrs observed at high uncut chip thickness 

(ℎ = 80 μm) and high cutting speed (𝑣𝑐 = 60 m/min). 
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4.1.2 Effects of Tool-Wear on Exit Burrs 

Interestingly, tool-wear did not have a major effect on the exit burr formation for 

most of the metrics. For the exit burr thickness (𝑏𝑡) and exit burr height (𝑏ℎ), tool-wear 

only had a statistical significance on 𝑏𝑡 at the low cutting speed (Figure 4-3a). This is likely 

due to the lack of thermal softening, and therefore excessive amount of cold work and 

strain hardening associated with cutting at low speeds with worn tools. It is believed that 

the thermal softening at high cutting speed counteracts these effects, and therefore 

mitigates heightened plastic deformation in the subsurface of the workpiece, which would 

control the exit burr thickness. However, 𝑏𝑡 at high cutting speed, 𝑏ℎ, the initial negative 

shear angle (𝛽0) and the inclination angle (𝜓) were all insensitive to tool-wear. While there 

is no literature investigating the influence of 𝑉𝐵 specifically, there have been studies that 

have attempted to define the correlation between tool-wear and burr formation. Lee and 

Dornfeld [100] showed that 𝑏ℎ only increased dramatically when there was catastrophic 

tool-wear in micro-drilling (Figure 2-18). Several authors observed that a higher tool nose 

radius results in a higher 𝑏ℎ because of material side-flow due to ploughing [98, 99, 117]. 

Wang and Zhang [105] showed that 𝑏𝑡 also increases with nose radius in face milling. 

While the exit burr geometry appeared to be independent of tool-wear, the initiation 

distance (𝜔), was not. As can be observed in Figure 4-6, there was statistical significance 

at both cutting speeds, which means that exit burr initiation started sooner for increasing 

levels of wear. There seems to be a connection between 𝑏𝑡 at low cutting speed and 𝜔 

regarding tool-wear, as both increased for higher values of 𝑉𝐵. This can be explained by 

the fact that worn tools create a larger mechanical stress field in the workpiece subsurface 

in front of the tool [118]—this is a direct result of the increased contact area between tool 

and workpiece due to the added flank-wear. A larger stress field in turn means deeper 

deformation, thus resulting in a larger 𝑏𝑡 at the exit because the burr root would be shifted 

downward. A much more detailed analysis of the subsurface displacement and stress was 

undertaken using DIC, and the results will be discussed in Chapter 5. 
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4.1.3 Effects of Cutting Speed on Exit Burrs 

An illuminating result of the present work is that the cutting speed did exhibit a 

considerable effect on exit burr development, as its influence was found to be unclear based 

on other studies [100, 102, 107, 114]. For instance, from Figure 4-3, the exit burr thickness 

(𝑏𝑡) was on average 30% higher at the low cutting speed compared to the high cutting 

speed. Also, as stated earlier, the effect of tool-wear on 𝑏𝑡 became prevalent at low cutting 

speed because of increased cold work and strain hardening, which causes deeper subsurface 

deformation (and therefore a lower burr root). However, the thermal softening at high 

cutting speed counteracted this, and rendered 𝑉𝐵 insignificant. Again, speaking to the 

effect of cold working, the low cutting speed produced 36% higher values of initiation 

distance (𝜔), indicating that exit burr formation starts sooner under low cutting speed 

conditions. Exit burr height (𝑏ℎ) was deemed constant across cutting speeds in the present 

work, but again, literature results are inconclusive. Lee and Dornfeld [100] and Nakayama 

and Arai [95] saw that 𝑏ℎ decreased with increasing cutting speed when the uncut chip 

thickness was small, but it began increasing with increasing cutting speed after a certain 

point. On the contrary, Pilný et al. [107] only observed a decreasing trend as the cutting 

speed was increased. Moreover, inclination angle (𝜓), initial negative shear angle (𝛽0), and 

initiation angle (𝜂) were all independent of cutting speed. The consistency of 𝛽0 across all 

conditions indicates that it behaves very much like the primary shear angle, which is also 

generally independent from the same cutting parameters. As was stated earlier, the rake 

angle has been shown to have a heavy influence on burr formation; it is well known to 

directly affect the primary shear angle, so an investigation on its effect for 𝛽0 may be of 

interest in a future study. 

4.2 Side Burr Development 

This section presents the in-situ profiles for side burrs and discusses the 

significance of the three cutting parameters on the side burr thickness (𝑠𝑏𝑡) and side burr 

height (𝑠𝑏ℎ). The profiles for 𝑠𝑏𝑡 are shown in Figure 4-10; they are complemented with 

high-resolution digital microscope images in Figure 4-11. While 𝑠𝑏𝑡 could easily be 

measured with optical microscopy, 𝑠𝑏ℎ was much more difficult due to the 
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intermittent/inconsistent morphology of the serrations, so a trend could not be formulated. 

Still, 𝑠𝑏ℎ is shown qualitatively via high-resolution vertical microscopic images in Figure 

4-12.  

 

Figure 4-10. Average profiles for side burr thickness (𝑠𝑏𝑡) at (a) 𝑣𝑐 = 6 m/min and (b) 𝑣𝑐 

= 60 m/min. Significant effect of tool-wear. 

 

Figure 4-11. Overview of side burr thickness (𝑠𝑏𝑡) images at (a) 𝑣𝑐 = 6 m/min and (b) 𝑣𝑐 

= 60 m/min. 
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Figure 4-12. Overview of side burr height (𝑠𝑏ℎ) images at (a) 𝑣𝑐 = 6 m/min and (b) 𝑣𝑐 = 

60 m/min. 

4.2.1 Effects of Uncut Chip Thickness on Side Burrs 

As expected, like with exit burrs, the true uncut chip thickness (ℎ𝑡𝑟𝑢𝑒) was the most 

influential factor on side burr size. From the profiles in Figure 4-10, side burr thickness 

(𝑠𝑏𝑡) increased with ℎ𝑡𝑟𝑢𝑒 at both cutting speeds. However, the rise was not as substantial 

as with exit burr thickness (𝑏𝑡), so it appears that 𝑏𝑡 may be more sensitive to ℎ𝑡𝑟𝑢𝑒 than 

𝑠𝑏𝑡. Moreover, the worn tools produced higher values of 𝑠𝑏𝑡 at low ℎ𝑡𝑟𝑢𝑒, which is likely 

because of the higher compressive stress caused by the flank-wear—it has been reported 

that low uncut chip thickness leads to more compressive stress at the cutting area, which 

further causes material to bulge (and subsequently leads to more side burr formation) [109, 

110]. As stated previously, 𝑠𝑏ℎ could not be quantified, but from observing the vertical 

microscope images in Figure 4-12, 𝑠𝑏ℎ does indeed seem to increase with ℎ𝑡𝑟𝑢𝑒. Moreover, 

it was found that the serration frequency increased with uncut chip thickness for all the 
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cuts, although it was noticeably more pronounced with sharp tools. The side burr serration 

frequency is hypothesized to be the result of a combination of anisotropic microstructural 

effects (varying grains/phases) and cyclical process effects (serrated chip formation). 

Indeed, in-situ video of cuts with sharp tools clearly show a wavy/serrated side burr being 

formed due to both the cyclical chip formation mechanism, as well as the anisotropic 

response of differently oriented grains and other phases within the microstructure of 

Inconel 718 (𝛾′ and 𝛾′′ precipitates and 𝛿-phase particles/carbide). 

4.2.2 Effects of Tool-Wear on Side Burrs 

The most striking distinction between exit and side burr development is the 

sensitivity to tool-wear. As was seen in Figures 4-3-4-8, tool-wear had a statistically 

insignificant influence on exit burr parameters in most cases, but this was not the case for 

the side burrs. For the side burr thickness (𝑠𝑏𝑡) in Figure 4-10, the tool-wear was found to 

generally increase the thickness, which implies deeper plastic deformation. However, the 

trend was not consistent between cutting speeds. At low cutting speed, 𝑠𝑏𝑡 was 

considerably higher for the worn tools, although it was statistically identical between the 

two flank-wear levels. This makes sense considering 𝑉𝐵 is a measure of wear on the flank 

face, which lies behind the cutting-edge, so it should not have an impact on the severity of 

ploughing ahead of the tool (the lateral extrusion of material will be the same). Instead, it 

is the cutting-edge radius (𝑟𝛽) that is the driving factor of the ploughing effect, of which it 

was comparable for the two worn tools (𝑟𝛽 ≈ 20 μm and 30 μm for 𝑉𝐵 = 50 μm and 150 

μm, respectively); it was discussed previously that ploughing is the main contributor to 

side burr formation [97, 101]. There was a considerable difference in the tool-wear effect 

at high cutting speed, however. For one, the worn tools only produced a higher 𝑠𝑏𝑡 at low 

true uncut chip thickness (ℎ𝑡𝑟𝑢𝑒), after which the sharp tool became dominant. This is likely 

due to the heightened stress localization and thermal softening at high uncut chip 

thicknesses and cutting speeds, respectively—the combination of these two effects has 

been shown to increase plastic deformation in the subsurface [17]. It is the opposite effect 

with worn tools, where thermal softening at high ℎ𝑡𝑟𝑢𝑒 decreases the ploughing effect. 

Additionally, the peak hydrostatic stress is larger when cutting with sharp tools because of 
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the localized cutting effect at the tool edge. Regardless, the high values of 𝑠𝑏𝑡 with worn 

tools at low ℎ𝑡𝑟𝑢𝑒 is due to the low uncut chip thickness to cutting-edge radius ratio, 

because it shifts the maximum stress distribution to the bottom of the cutting edge arc, 

further exacerbating lateral extrusion [98, 101, 106]. Moreover, there was statistical 

significance between 𝑉𝐵 = 50 μm and 𝑉𝐵 = 150 μm at high cutting speed, which was not 

the case at low cutting speed. 

The side burr height (𝑠𝑏ℎ) for the worn tools at low uncut chip thickness (ℎ = 10 μm 

and 20 μm) appears to be negligible if not zero—this contrasts with 𝑠𝑏𝑡, which was still 

considerable even at low uncut chip thickness, as was shown in Figures 4-10 and 4-11. 

Clearly, the relative stress intensity of the hydrostatic (into the plane) stress during 

orthogonal cutting varies significantly with process parameters. While 𝑠𝑏ℎ appeared 

relatively equivalent at the high cutting speed between tool conditions, the sharp tools 

induced taller side burrs than the worn tools at low cutting speed. This contradicts the 

findings of Wu et al. [101], who saw a steady rise in 𝑠𝑏ℎ when increasing 𝑟𝛽 from 5 μm to 

20 μm during cutting of copper. The present work found that 𝑠𝑏ℎ only decreased when 

going from 𝑟𝛽 ≈ 5 μm to 30 μm (i.e., from a flank-wear of 0 μm to 150 μm). However, 

important to note is that Wu et al. [101] conducted their experiments at a constant cutting 

speed of 300 m/min, whereas the present work saw 𝑠𝑏ℎ decrease with increasing 𝑟𝛽 at a 

much lower cutting speed of 6 m/min. Moreover, the difference in 𝑠𝑏ℎ between cutting-

edge radii dissipated at 𝑣𝑐 = 60 m/min. Thus, the observation by Wu et al. [101] may be 

valid for very high speeds. 

4.2.3 Effects of Cutting Speed on Side Burrs 

Like the exit burr thickness (𝑏𝑡), the side burr thickness (𝑠𝑏𝑡) also yielded higher 

values at low cutting speed because of increased strain hardening due to lack of thermal 

softening. However, according to Muhammad et al. [102] another perspective is that higher 

cutting speeds will produce larger side burrs because the thermal softening facilitates easier 

plastic deformation. Perhaps this is the case in 3D machining, since Muhammad et al. [102] 

performed micro-milling on Inconel 718, whereas the present work is under 2D conditions. 

Additionally, they used coated WC inserts whereas this study used uncoated WC—coated 
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tools typically have a higher friction coefficient than uncoated tools, which means more 

heat is generated at the cutting interface, amplifying the thermal softening and assisting in 

side burr formation [102, 119]. Furthermore, future work will have to further investigate 

the effect of cutting speed on side burr development. The present work only employed two 

cutting speed settings, so testing more cutting speeds may reveal the true correlation 

between 𝑣𝑐 and 𝑠𝑏𝑡. It may also be helpful to study the side burr formation mechanism on 

less microstructurally anisotropic materials such as steel or aluminum alloys, as opposed 

to very anisotropic Ni-alloys like Inconel 718. 

A significant difference for the side burr height (𝑠𝑏ℎ) is that the low cutting speed 

produced consistently larger burrs. This is not unexpected, as it is commonly known that 

cutting tools have more difficulty removing material at low speeds than high speeds, 

primarily due to a lack of thermal softening effects. For many of the low-speed cuts, 

especially those at high uncut chip thickness, the machined surface was found to be 

noticeably wavy. This effect was determined to be caused by a lack of stabilizing inertial 

forces at low speeds, i.e., the cutting forces were not smoothly delivered by the inertia of a 

fast-moving carriage accelerated prior to tool-workpiece contact (see in-situ testbed in 

Figure 3-1) but instead had to be delivered directly by the servo motors during the entire 

low speed cut without any smoothing effects of prior acceleration and associated stored 

kinetic energy.  
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CHAPTER 5. DISPLACEMENT AND STRESS ANALYSIS 

5.1 Subsurface Displacement at Exit Burr Root 

Using the frames of the ultra-high-speed video of the sample before and during the 

cut, the non-contact DIC method was used to calculate the strain in the subsurface. The 

steady-state vertical (𝑣) displacement field was generated following the procedure outlined 

in Section 3.4 for the 24 experimental trials. The objective of this approach was to use DIC 

to find the subsurface displacement field at exit burr initiation, which would be when the 

stress/strain field is at steady state. It would be problematic to compute the displacement 

field during exit burr development because of the severe plastic strain occurring as the exit 

burr pivots about the plastic hinge. Additionally, it would be impossible to acquire a 

suitable reference frame from before the cut. Instead, with the initiation distance (𝜔) and 

exit burr thickness (𝑏𝑡) known from Figures 4-3 and 4-6, the displacement at the burr root 

could easily be determined by measuring relative to the tool tip on the DIC-generated 

steady state displacement field. The end goal was to calculate the stress at the burr root, 

which is discussed in Section 5.2. Nevertheless, the vertical displacement results are plotted 

in Figure 5-1. As can be observed, there is much scatter, likely due to the significant 

uncertainty in the reference/zero displacement value within the field of view of each trial. 

Since the depth of the stress, and corresponding displacement field, increases with higher 

uncut chip thickness and tool-wear, it is expected that no true ‘zero displacement’ condition 

could be observed for many conditions. Thus, the large scatter in the worn tool data, as 

well as with increasing uncut chip thickness (ℎ), is a direct result of the experimental 

limitations with respect to field of view, which had to be balanced against the frame rate 

based on available high-speed camera performance.   
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Figure 5-1. Vertical displacement (𝛿𝑣) calculated at exit burr root from DIC displacement 

fields.  

The only other work to use DIC for modeling burr formation is Régnier et al. [96], 

who studied cast aluminum alloy ENAC-AlSi7Mg0.3 with 0.5% Cu. As opposed to 

measuring 𝜔, 𝑏𝑡, and 𝛽0 first empirically then using those values to find the displacement 

at the burr root after the DIC analysis, they instead found 𝜔 and 𝛽0 directly via DIC. Using 

the horizontal (𝑢) DIC displacement field, they observed the appearance of an intense 

compression zone at the workpiece exit, which was characterized by a distinct contour that 

resembles the negative shear plane. Régnier et al. [96] believed this to be the initial negative 

shear angle (𝛽0), but this was likely one of the many variable negative shear angles (𝛽) that 

are present during exit burr development, which is after initiation.   

5.2 Subsurface Stress at Exit Burr Root 

Following the displacement analysis in Section 5.1, further investigation was 

necessary for determining the state of stress at the exit burr root. The stress could not be 

extracted directly from the DIC displacement fields because strain is only proportional to 

stress within the elastic limit (i.e., Hooke’s law is valid), and it is well known that both 

elastic and plastic strains are present during machining; modeling the loading in the plastic 

regime is difficult because of the nonlinearity. Thus, a semi-analytical approach utilizing 
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the tractional Hertzian contact model by Johnson and co-workers [120, 121] was used for 

calculating the stress. This approach was first invented by Platt et al. [119] for predicting 

machining-induced RS, and later modified by Schoop et al. [115] for use with in-situ-

characterized subsurface analysis. The semi-analytical model by Schoop et al. [115] 

consists of using the DIC displacement fields to calibrate the contact width (2𝑎) and 

correspondingly the half-width of contact (𝑎) through pattern-matching with the model-

generated von Mises plots. This procedure is shown in Figure 5-2.  

 

Figure 5-2. Schematic illustration of the process for calibrating contact width (2𝑎): (a) 

modeling results of von Mises stress; (b) DIC displacement field (reproduced from [115] 

with permission of Springer Nature, License Number 5427980654590). 

Once 2𝑎 and 𝑎 are known, the peak normal contact pressure was calculated by 

Equation 1. This equation is a modified version of the default Hertzian peak contact stress 

(𝑝0) equation for a cylinder-on-plane because the latter assumes perfectly elastic and non-

adhesive contact conditions, which is not realistic for machining processes. Thus, 

modifications were necessary to determine the ‘effective/equivalent peak Hertzian contact 

pressure in machining’, namely with the addition of a calibration factor, 𝑏.  

𝑝0 =
𝐹𝑓

𝑤𝑎𝑏
  [1] 

where 𝐹𝑓 is the measured feed force, 𝑤 is the sample width (in this case, 3 mm), and 𝑏 is 

the calibration factor based on experimental residual stress data determined empirically to 
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be 1.88 (+/- 20%, based on subsurface residual stress data). Furthermore, the normalized 

contact pressure (
𝑝0

𝑘
) can be calculated by simply dividing 𝑝0 by the flow stress of the 

material (𝑘), which was given earlier as 640 MPa. Next, the model-generated von Mises 

stress plots were overlayed and aligned with the DIC displacement fields to find which 

contour intersected with the burr root, as shown in Figure 5-3. As can be seen, the burr root 

location changes considerably between the low and high cutting speed, but the initial 

negative shear angle (𝛽0) appears constant, as expected. 

 

Figure 5-3. Vertical displacement field from DIC analysis overlaid on in-situ optical 

micrographs for (a) 𝑣𝑐 = 6 m/min and (b) 𝑣𝑐 = 60 m/min; Model-generated von Mises (𝜎𝑉𝑀) 

stress fields overlaid on DIC vertical displacement fields for (c) 𝑣𝑐 = 6 m/min and (d) 𝑣𝑐 = 

60 m/min. 
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The von Mises stress contours in Figures 5-3c and 5-3d signify the percentage of 

the flow stress at that location. Once the contour of the burr root was found, the effective 

normalized stress (
𝜎𝑉𝑀

𝑘
) could easily be calculated by multiplying the contour decimal with 

𝑝0

𝑘
. This process was completed for nine conditions (DIC plots of sufficient quality were 

required, as well as accurate force data) at the high cutting speed. 

 

Figure 5-4. Model-analyzed normalized stress at exit burr root. 

As can be observed in Figure 5-4, the average normalized stress at the exit burr root 

is 98% ± 12% of the flow stress once again based on a 95% confidence interval. This 

finding reveals that exit burr initiation begins when the stress field contour corresponding 

to 100% of the flow stress intersects the vertical exit edge of the workpiece (the intersection 

point is the burr root). Considering that the exit burr formation process is the workpiece 

material undergoing SPD, it is plausible to conclude that the exit burr development begins 

with plastic deformation at the burr root. From this successful modeling result, it is believed 

that more burr parameters could be predicted by matching the measured DIC displacement 

fields with the analytical von Mises stress contour plots. By finding the outermost point of 

the stress field where the minimum stress is the flow stress, the region encapsulating plastic 

deformation can be determined.  
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Regarding the negative shear plane, it has long been thought to be straight by many 

researchers [79, 82, 86, 95, 122]. However, later works found that it is slightly curved with 

a radius 𝑅, and that negative burr fracture occurs along this convex profile, even being 

referred to as a ‘slip-line’, not unlike the primary shear plane and slip-line involved in chip 

formation [84, 93, 123, 124]. This was confirmed to be the case in the negative exit burr 

analysis of the present work (to be discussed in Chapter 6), where exit burr fracture always 

exhibited a defined curvature, as shown in Figures 6-2 and 6-4. Furthermore, it was 

hypothesized that the negative shear plane corresponded to the contours of the von Mises 

stress field. As can be seen in Figure 5-3, the burr root falls on this negative shear slip-

line, which intersects the stress contours at a 90° angle. The complete shape of the slip-

line could not be drawn because Saint-Venant’s principle dictates that models such as the 

Hertzian contact model are only valid below a depth of 20% of the half-width of contact 

(𝑎). Thus, the model-predicted slip lines in Figure 5-3 do not go up to the tool tip because 

the profile is unknown in that domain.  
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CHAPTER 6. EXIT BURR FRACTURE ANALYSIS 

One of the core objectives of the present work was to investigate the previously 

discussed ‘negative exit burrs’ from Section 2.3.1. As was made clear from literature 

review, the negative burr fracture mechanism is not yet fully understood, with authors 

arriving at conflicting results regarding the effects of various cutting parameters. However, 

this study presents strong evidence that negative burrs are a function of three different 

factors: (i) strain rate, (ii) the uncut chip thickness size effect, and (iii) a microstructural 

effect due to intergranular fracture.  

6.1 Effects of Cutting Parameters on Exit Burr Fracture 

The two studied cutting parameters were the cutting speed (𝑣𝑐) and uncut chip 

thickness (ℎ), both of which were crucial to determining the onset of negative burr fracture. 

The cutting speed was defined as the controlling parameter because no negative burrs were 

obtained at the low cutting speed with all under conditions remaining the same (same ℎ, 

same 𝑉𝐵). Thus, this solidified the strain rate being a dominant factor. Evidence also 

pointed to a geometric size effect because complete fracture would only occur above a 

certain value for true uncut chip thickness (ℎ𝑡𝑟𝑢𝑒), indicating the existence of a critical 

uncut chip thickness (ℎ𝑐𝑟𝑖𝑡). This theory is supported by the literature, as a higher uncut 

chip thickness corresponds to a more tensile stress in the shear zone ahead of the tool, 

which facilitates fracture (i.e., less strain) much easier than the compressive stress obtained 

at low uncut chip thickness [93, 125]. Furthermore, negative burrs only formed at the high 

cutting speed of 𝑣𝑐 = 60 m/min with the highest programmed uncut chip thickness of ℎ = 

80 μm, so the mechanism is a combination of both these factors. 

However, even at the condition of 𝑣𝑐 = 60 m/min and ℎ = 80 μm, complete fracture 

did not occur at all exits: the first exit would have complete fracture (full negative burr) 

followed by partial fracture (mix between positive and negative burrs) on the four 

subsequent exits. This sequence for the sharp tool condition is illustrated in Figures 6-1 

and 6-2a. Even for the first exit, where there was a full negative burr, there was still a minor 

positive burr at the burr root, which was also identified by Chern [81]. The ℎ𝑡𝑟𝑢𝑒 values 
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measured from the videos of the cuts is also displayed in the figures. As discussed before, 

the cutting tool would be increasingly ‘pushed out’ of the cut with each interruption, which 

resulted in a further reduction in ℎ𝑡𝑟𝑢𝑒 from the programmed uncut chip thickness (ℎ). 

ℎ𝑡𝑟𝑢𝑒 was accurately determined based on in-situ images obtained during each cut, 

effectively eliminating the typically uncertain effect of compliance/deflection due to 

cutting forces on ℎ𝑡𝑟𝑢𝑒. 

 

Figure 6-1. Positive to negative exit burr transition for 𝑉𝐵 = 0 μm, ℎ = 80 μm, 𝑣𝑐 = 60 

m/min. 

The fact that there was not complete fracture across all exits is a particularly notable 

development—at ℎ𝑡𝑟𝑢𝑒 = 70 μm (Exit 1) there was complete fracture, and the burr was 

fully negative, but at ℎ𝑡𝑟𝑢𝑒 = 53-59 μm (Exits 2-4) there was only partial fracture. Finally, 

at ℎ𝑡𝑟𝑢𝑒 = 35 μm (Exit 5), there was zero fracture, and the exit burr was fully positive. This 

can be observed from the vertical images of the exits in Figure 6-2a. Thus, it is evident that 

there exists a critical value between 59 μm and 70 μm for ℎ𝑡𝑟𝑢𝑒 where complete fracture 

occurs. The conditions for this experiment (𝑉𝐵 = 0 μm, ℎ = 80 μm, 𝑣𝑐 = 60 m/min) were 

repeated and the same pattern was observed in Figure 6-2b. As can be seen, ℎ𝑡𝑟𝑢𝑒 was 

considerably smaller for Exits 2-4 than Trial 1, and the transition likewise shifted to the 

right, resulting in a smaller partial negative burr. Additionally, there is a distinct 

morphology on the fractured surfaces: Chern [81] saw these same ‘elongated dimples’ in 
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the orthogonal machining of aluminum and copper, which he states is evidence of shear 

rupture.  

 

Figure 6-2. Vertical view of positive to negative exit burr transition at 𝑉𝐵 = 0 μm, ℎ = 80 

μm, 𝑣𝑐 = 60 m/min for (a) Trial 1 and (b) Trial 2. 

Additionally, Figure 6-2 shows that the point of transition along the width of the 

workpiece was very similar across both trials—this indicates a definite relationship 

between ℎ𝑡𝑟𝑢𝑒  and the fraction of positive/negative burr formation. This result was also 

obtained by Régnier et al. [94], which they cite as being due to microstructural effects. 

They also support the finding that the percentage of negative burr fracture is controlled by 

the uncut chip thickness. Nevertheless, the percentage of negative burr formation for each 

edge across both trials was calculated by measuring the corresponding fraction of the 

workpiece width and the results are plotted in Figure 6-3 with respect to ℎ𝑡𝑟𝑢𝑒 and exit burr 

thickness (𝑏𝑡). As can be observed, the degree of negative burr formation with respect to 

both parameters exhibits a linear relationship. The regression indicates that partial fracture 

will occur at ℎ𝑡𝑟𝑢𝑒 = 21 μm (x-intercept of the trend line in Figure 6-3a). After reviewing 

the results at the lower programmed uncut chip thicknesses (10, 20, 40 μm), this indeed 

seems to be the case, as none of the values for ℎ𝑡𝑟𝑢𝑒 at the lower settings were above 21 

μm (apart from ℎ𝑡𝑟𝑢𝑒 = 23.96 μm when ℎ = 40 μm), but this is likely within the margin of 

error. Correspondingly, partial fracture begins when 𝑏𝑡 = 80 μm. 
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Figure 6-3. Negative burr formation development at 𝑉𝐵 = 0 μm, ℎ = 80 μm, 𝑣𝑐 = 60 m/min 

with (a) true uncut chip thickness (ℎ𝑡𝑟𝑢𝑒) and (b) exit burr thickness (𝑏𝑡). 

6.2 Effects of Tool-Wear on Exit Burr Fracture 

In addition to the strain rate (𝑣𝑐) and geometric size effect (ℎ𝑡𝑟𝑢𝑒), results showed 

that exit burr fracture was also a function of tool-wear (𝑉𝐵). The high-resolution vertical 

images from the digital microscope for the worn tool conditions are shown in Figure 6-4, 

and there is a clear distinction between the ℎ𝑐𝑟𝑖𝑡 threshold compared to the sharp tool 

condition. Namely, for 𝑉𝐵 = 50 μm in Figure 6-4a, complete fracture occurred when ℎ𝑡𝑟𝑢𝑒 

was as low as 46 μm, which is much lower than the range of complete fracture 𝑉𝐵 = 0 μm 

(66-70 μm). Partial fracture was observed for ℎ𝑡𝑟𝑢𝑒 = 36 μm and complete fracture was 

observed for ℎ𝑡𝑟𝑢𝑒 = 44 μm, meaning that ℎ𝑐𝑟𝑖𝑡 is between 36-44 μm. From this observation 

alone, one would be inclined to think that higher tool-wear would result in a lower ℎ𝑐𝑟𝑖𝑡, 

however this outcome did not occur for 𝑉𝐵 = 150 μm in Figure 6-4b, where there was little 

to no fracture for higher values of ℎ𝑡𝑟𝑢𝑒. 

The fracture behavior for 𝑉𝐵 = 150 μm was very inconsistent, where there was 

minimal fracture for ℎ𝑡𝑟𝑢𝑒 = 44 μm and 50 μm on Exits 1 and 3, but zero fracture for ℎ𝑡𝑟𝑢𝑒 

= 48 μm and 50 μm on Exits 2, 4, and 5. Additionally, the highest tool-wear setting 

exhibited fracture at both ends of the workpiece on Exit 1 (Figure 6-4b), as opposed to 

being restricted to the right side like in all other cases. Regardless, given the negligible 

fracture, it is evident that ℎ𝑐𝑟𝑖𝑡 is much higher for 𝑉𝐵 = 150 μm than 𝑉𝐵 = 50 μm. This 

suggests that the relationship between negative burr formation and tool-wear is nonlinear, 

since the threshold seemed to decrease when going from 𝑉𝐵 = 0 μm to 𝑉𝐵 = 50 μm, but 

then increase significantly when going from 𝑉𝐵 = 50 μm to 𝑉𝐵 = 150 μm. Conducting an 
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in-depth analysis of the effect of tool-wear on the exit burr fracture mechanism was beyond 

the scope of this study, but will be of great interest in future work. 

 

Figure 6-4. Vertical view of positive to negative exit burr transition at ℎ = 80 μm, 𝑣𝑐 = 60 

m/min for (a) 𝑉𝐵 = 50 μm and (b) 𝑉𝐵 = 150 μm. 

6.3 Effects of Microstructure on Exit Burr Fracture 

In addition to the geometric size effect of uncut chip thickness from Section 6.2, it 

was hypothesized that there is also a microstructural size effect. That is, exit burr fracture 

is due to intergranular cracking along the boundaries of the grain colonies. Complete 

fracture would occur whenever the exit burr thickness (𝑏𝑡), which represents the depth of 

plastic deformation in the subsurface, is equal to the grain colony size. As was seen in 

Figure 3-2b, the Inconel 718 workpiece used in this study bimodal, containing both fine 

grains and grain colonies (i.e., clusters of larger grains). Thus, intergranular cracking was 

heavily anticipated to be the mode of failure because it requires much less energy to yield 

at the brittle grain boundaries compared to transgranular fracture, which involves 

penetrating the grain matrix itself. Literature has shown that crack propagation occurs 

along coarse slip bands for single crystals of polycrystalline materials during tensile 

testing, with no holes or micro-cracks [89]. Furthermore, it was first hypothesized and 

subsequently observed that the negative burr size (𝑏𝑡) was proportional to the grain colony 

size (i.e., for fracture to occur, the burr would have to be equal to or larger than the grain 

colonies). To confirm this hypothesis, the grain colony sizes were measured across the 

workpiece subsurface, and the statistical distribution was calculated. Next, the cumulative 
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distribution was plotted alongside the negative exit burr thickness data from Figure 6-3b, 

as shown in in Figure 6-5. 

 

Figure 6-5. Relationship between and grain size (𝑑𝑣) and negative exit burr size (𝑏𝑡). 

As can be observed, the cumulative fracture percentages for the exit burr thickness 

(𝑏𝑡) and the grain colony height (𝑑𝑣) closely match, so the hypothesis of a microstructural 

size effect between these two variables is confirmed. Moreover, this result further validates 

the observation by Cedergren et al. [111] that grain size affects burr formation. This 

correlation between the burr fracture mechanism and microstructural features of the 

workpiece implies that for an identical material with a different microstructure condition 

(e.g., an Inconel 718 sample with different grain size distribution due to differing heat 

treatment), there would be a different threshold for fracture to occur. A potential avenue 

for future work would be analyzing how the onset of negative burr fracture changes with 

the microstructure.  
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CHAPTER 7. CONCLUSIONS AND OUTLOOK 

7.1 Summary of Findings 

Improving the fundamental understanding and model-based approaches towards 

the longstanding issue of burr formation is essential for achieving more sustainable 

machining processes. Burrs are very harmful to many aspects of the TBL because of their 

implications on surface integrity and personnel health, as well as the life-cycle performance 

of machined products. Thus, the aim of this study was to provide physics-informed and 

data-driven insights on how burrs develop under different conditions with the hopes that 

the results will help in burr mitigation strategies. Utilizing a novel in-situ approach, the 

burr formation in Inconel 718 superalloy was studied at the fundamental level and several 

notable results were observed. 

Firstly, the variation in burr geometry with respect to the cutting parameters (tool-

wear, uncut chip thickness, and cutting speed) was analyzed via optical microscopy 

following each experiment. After performing a statistical analysis of the measured burr 

dimensions, the following conclusions were drawn: 

• As expected, the true uncut chip thickness (ℎ𝑡𝑟𝑢𝑒) had the largest effect on exit and 

side burr development. The metrics pertaining to the overall burr size, exit burr 

thickness and exit burr height (𝑏𝑡 and 𝑏ℎ, respectively), as well as side burr 

thickness and side burr height (𝑠𝑏𝑡 and 𝑠𝑏ℎ, respectively) all increased considerably 

with ℎ𝑡𝑟𝑢𝑒. Another metric that increased with ℎ𝑡𝑟𝑢𝑒 is the exit burr initiation 

distance (𝜔), indicating that a bigger depth of cut means exit burr formation begins 

earlier. ℎ𝑡𝑟𝑢𝑒 had a very minor effect on the inclination angle (𝜓), but the initial 

negative shear angle (𝛽0) and initiation angle (𝜂) were independent of ℎ𝑡𝑟𝑢𝑒. 

• Tool-wear was found to have no influence on exit burr formation in most cases but 

a strong influence on side burr formation. For the exit burrs, tool-wear only had a 

significant effect on 𝑏𝑡 at the low cutting speed, and this is hypothesized to be 

because of cold work and strain hardening, which are expected when machining at 

low speeds, and especially for worn tools. For the side burrs, tool-wear had a 
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significant effect on 𝑠𝑏𝑡 at both cutting speeds, but the difference between the flank-

wear (𝑉𝐵) conditions varied considerably between the speeds. It is unknown why  

𝑠𝑏𝑡 is identical between 𝑉𝐵 = 50 μm and 150 μm at low cutting speed, but worn 

tools likely produce a noticeably higher 𝑠𝑏𝑡 because of the low uncut chip thickness 

to cutting-edge ratio effect. Additionally, it is hypothesized that sharp tools generate 

higher values of 𝑠𝑏𝑡 at high cutting speed because of the larger peak hydrostatic 

stress at the cutting-edge.  

• A significant observation was made for the previously inconclusive relationship 

(based on comparison of the literature) between exit burr geometry and cutting 

speed. It was found that 𝑏𝑡 and 𝜔 were 30% and 36% higher, respectively, at the 

low cutting speed, which is due to the cold work and strain hardening effects. 

However, the remaining metrics were all observed to be insensitive of cutting 

speed. 

The second stage of this work involved studying the subsurface strain and stress 

using DIC analysis, specifically at the exit burr root location. This involved a semi-

analytical approach, combining experimental DIC data with a physics-based model, and 

the results are as follows: 

• After analyzing the DIC vertical displacement fields at the exit burr root location 

(using the values of 𝑏𝑡 and 𝜔), the average displacement was found to be 1.45 μm 

+/- 0.18 μm. No trend for the displacement with respect to the cutting parameters 

could be extracted due to the high variability in the data. 

• After finding the flow stress contour that intersects the exit burr root at initiation, a 

modified Hertzian contact model was used to calculate the average normalized 

stress at the exit burr location, which was found to be 98% +/- 12% of the flow 

stress of the material. Thus, exit burr development is initiated when the vertical 

edge of the workpiece intersects the flow stress contour. 

Finally, the present work addressed the phenomenon of negative exit burrs. It was 

theorized that fracture was due to intergranular cracking—after analysis of the cutting 

conditions during fracture and the grain colony size, the following observations were made: 
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• Analysis of the cutting parameters supported the prior findings by other researchers 

that fracture is contingent upon a strain rate (cutting speed) and geometric size 

effect (uncut chip thickness). Strain rate was determined to be the controlling factor 

since no negative burrs were obtained at the low cutting speed. The geometric size 

effect was evident because in the case of sharp tools, fracture would only occur 

above a certain threshold, revealing the presence of a critical uncut chip thickness 

(ℎ𝑐𝑟𝑖𝑡) for a given cutting speed. This was revealed to be ℎ𝑐𝑟𝑖𝑡 = ~21 μm (or 𝑏𝑡 = 

~80 μm) for the sharp tool condition. Given the limitations of the study, a detailed 

analysis of the effects of tool-wear on negative burr development could not be 

conducted, but it was revealed that there was a substantial difference in the onset 

of fracture compared to sharp tools.  

• A previously unreported condition for exit burr fracture is the microstructural size 

effect, which refers to intergranular cracking along the boundaries of grain colonies. 

The heights of the grain colonies (𝑑𝑣) in the bimodal workpiece were measured and 

analyzed alongside the exit burr thickness (𝑏𝑡) fracture data. It was shown that the 

trend of 𝑑𝑣 closely matched 𝑏𝑡, confirming the hypothesis.  

7.2 Future Work 

Given that the state of academic work on burr formation is still in its infancy, there 

are many possible avenues for future work. Most importantly, future work should consider 

expanding the proposed model-based analysis and prediction of burr parameters based on 

DIC analysis of in-situ optical data and semi-analytical modeling. This physics-informed 

and data-driven approach may enable rapid prediction of relationships between process 

parameters and burr parameters without the need for extensive experimental testing, which 

could be particularly relevant in novel metallic alloys (e.g., high entropy alloys or next-

generation nickel or cobalt-based turbine superalloys). 

Moreover, there are many cutting parameters that were not a part of this study. 

Namely, the rake angle, which has been shown in prior works to have a major impact on 

burr formation, should be explored further. Other characteristics of the tool condition, such 

as the material and coatings could also be considered. The lubrication condition, cutting-
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edge radius, and cutting length are all other examples of factors that could potentially have 

a significant effect on burr development. Moreover, determining the exact onset of exit 

burr fracture for different settings of strain rate, feed, microstructure, and tool-wear will be 

necessary for future studies on burr formation will be of great interest moving forward.  

Finally, the present work studied burr formation mechanisms under 2D 

(orthogonal) conditions. Industrial applications of machining are typically 3D operations, 

meaning that for integrated computational and experimental materials engineering (ICME), 

future modeling efforts to translate the 2D results into 3D will be necessary. Based on 

recent advances in leveraging 2D in-situ data for accurate prediction of residual stresses in 

the 3D process of turning with nose radius tools, similar kinematic/geometric approaches 

are envisioned to enable translation of the present thesis work to a wide variety of different 

3D machining processes. 
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APPENDIX 

Figure A1. MATLAB script for force average calculation. 
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Figure A2. MATLAB script for automatic image capture using in-situ testbed vertical 

microscope. 
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