
Balisage: The Markup Conference

https://www.balisage.net/

Invisible XML coming into focus
Status report from the community group

Tomos Hillman
eXpertML Ltd
<tom@expertml.com>

John Lumley
<john@johnlumley.net>

Steven Pemberton
Centrum Wiskunde & Informatica (CWI)

C. M. Sperberg-McQueen
Black Mesa Technologies LLC
<cmsmcq@blackmesatech.com>

Bethan Tovey-Walsh
Swansea University
<bytheway@linguacelta.com>

Norm Tovey-Walsh
Senior Software Developer
Saxonica
<ndw@nwalsh.com>

Balisage: The Markup Conference 2022

August 1 - 5, 2022

“Invisible XML coming into focus” copyright © 2022 by Tomos Hillman
and others is licensed under CC BY-NC-SA 4.0.

How to cite this paper
Hillman, Tomos, John Lumley, Steven Pemberton, C. M. Sperberg-McQueen, Bethan

Tovey-Walsh and Norm Tovey-Walsh. "Invisible XML coming into focus." Presented at:
Balisage: The Markup Conference 2022, Washington, DC, August 1 - 5, 2022. In

mailto:tom@expertml.com
mailto:john@johnlumley.net
mailto:cmsmcq@blackmesatech.com
mailto:bytheway@linguacelta.com
mailto:ndw@nwalsh.com
https://creativecommons.org/licenses/by-nc-sa/4.0/deed.en_US

Proceedings of Balisage: The Markup Conference 2022. Balisage Series on Markup
Technologies vol. 27 (2022). https://doi.org/10.4242/BalisageVol27.Eccl01.

Abstract
Invisible XML has had a long incubation process, but in
the last year
things have heated up. A W3C Community Group has
been formed, the
spec has been improved, and implementations have been released or are
in various stages of
development. This paper gives an overview of iXML
in its stable version 1.0 form, with
discussion of some of the design
decisions that have shaped it, and accounts from implementors
of their
practical experiences with iXML.

Balisage: The Markup Conference

Invisible XML coming into focus
Status report from the community group

Table of Contents

Title Page
Introduction
About iXML

Abstractions
What iXML does
Processing
A Simple Example: Dates
Attributes
Ambiguity

What's New
Significant changes
Updates to the specification
Infrastructure
What next?

Implementations
ixampl
JayParser
Hywel
Aparecium
jωiXML

The XPath3.1 grammar
NineML

CoffeeGrinder
CoffeeFilter
CoffeePot
CoffeeSacks
CoffeePress

About the Authors

Invisible XML coming into focus
Status report from the community group

Introduction

“What if you could see everything as XML?” (Pemberton 2013). This
question, posed by Steven Pemberton at the Balisage conference in 2013,
marked the first
public appearance of Invisible
XML (iXML). Pemberton
proposed that documents authored in non-XML formats could be brought
into the XML ecosystem via an intermediary technology capable of
recognizing the explicit or
implicit structure of those documents. This
would offer the substantial advantages of the XML
stack for data
processing without
requiring that all documents, under all circumstances, be
authored in XML.

Since that initial talk, the ideas of invisible XML have
been refined and
elaborated (e.g., Pemberton 2016a, Pemberton 2016b, Pemberton 2017, Tovey-Walsh
2022a, Tovey-Walsh 2022b),
and scattered reports of prototype implementations
soon appeared.
Interest in iXML grew slowly but steadily, and in 2021 an
iXML
Community Group (CG), hosted by the World Wide Web
Consortium, was
formed. The main task of the CG has been to collaborate
on an
official version of the language in the form of a published
specification. In June 2022, iXML version 1.0 was formally
released on
invisiblexml.org. The
CG also aimed to encourage implementation and
uptake. At the time
of writing there are six known implementations, in
various stages
of completeness.

The release of version 1.0 marks a significant step forward
for iXML. The
existence of an official specification offers
implementors a stable target for
implementation, and
offers users assurance that they can use the current
version of
iXML without fear of arbitrary changes. In this paper
the
members of the iXML community group present the completed iXML
version 1.0 to the larger XML community.

We begin with an overview of what iXML is, what it does, and
how it does
it. Some of this may be familiar to those who have
been following the
development of iXML, but there will be at least
a few new details here for
everyone, reflecting the recent work of
the iXML CG. We will then report
on some of the new features
recently added to iXML in preparation for the
release of version
1.0. Finally, implementors will offer insights into their

http://invisiblexml.org/

practical experiences with iXML, including some which helped to
shape
their contributions to the iXML 1.0 specification.

About iXML

Abstractions

One of the key insights which led to the development of iXML was that, in
basic terms,
data exists as an abstraction distinct from the form in which it
is represented. To
illustrate this distinction, Pemberton (Pemberton 2016a)
uses the
example of the number three. Numbers are entirely abstract. They
have
no concrete existence per se. (The abstraction three is a property of a
group of three sheep and of a group of three books, but neither of these
groups is "a
three".) A numerical abstraction such as "three" can be
represented in a variety of ways,
depending on linguistic and cultural
contexts:

3, III, 0011, ㆔, ३, ፫, ૩, ੩, 〣, ೩, ៣, ໓, Ⅲ, ൩, ၃, ႓, trois, drie.

One might choose Roman numerals for the volume number of a book,
binary notation in a
mathematical context, "trois" when writing in French,
and so on. In each case, however, the
basic denotational content is the same:
the underlying numerical abstraction
three is shared by all of these
representations.

This distinction can be applied to all kinds of data, not only to pure
mathematical
abstractions; the abstraction is simply what remains constant
regardless of the concrete
details of the representation. We may be obliged
or encouraged to represent data in a
particular way. An American textbook
is likely to use the representation "32℉" to
refer to the freezing point of
water where a British textbook would use "0℃", but the
temperature in
question
is the same. An author might choose to represent a temperature in
JSON:

{"temp": {"value": 32; "units": "fahrenheit"}}

or in XML:

<temp value="32" scale="fahrenheit"/>

or

<temp>

 <value>32</value>

 <scale>fahrenheit</scale>

</temp>

or, indeed, in plain text

temp: 32℉

The underlying abstraction is the element which remains constant in all of
these
representations.

What iXML does

iXML takes some input data (an iXML input
stream) and a formal
description of the implicit
structure of that data (an iXML input
grammar).
It uses the grammar to create an internal
representation of the data, with the
structure made
explicit. This internal representation can then in principle be
used for multiple purposes, including creating an external
representation by
serializing to a particular markup format.
In this process, the iXML notation
plays multiple roles: it
describes the syntax of the input, it describes how
the abstract
document that results from parsing should be serialized to
XML,
but it also serves as a schema for the abstract document,
describing
its structure. What this means is that the abstract
document can be used in
different ways, in addition to being
serialized to XML. For instance, it can
be converted internally
in memory to the form needed by the parser, or
converted
internally into an XDM (Walsh et al., 2017). Nonetheless, after
much discussion, the
CG decided that one feature which must be shared by
all
conforming iXML processors is that they serialize their output
to XML.
This ensures that users can always expect to receive an
XML document as
output from any processor they choose, even if
the implementor offers other
representations in addition to an
XML serialization. This decision was
based on many factors,
including the particular merits of XML as an
external
representation format. Most evidently, anyone with access to an

XML document and tools for processing XML can process it as they
choose, or convert the XML into other forms; this is not true in
the same
way for the internal representation of the document,
which is accessible
only to the programmer who wrote the
iXML processor in question.

External representation formats vary in representational power; more
powerful
representation formats are able to represent the features of the
underlying abstraction in
more detail than less powerful ones. This means
that a conversion from a more powerful
representation format to a less
powerful one will often entail a loss of information.The
initial task of an
iXML processor is to separate data abstractions from their
representations,
whether those representations are already explicitly structured (e.g., in a
format such as CSV) or only implicitly structured (e.g., using punctuation
conventions and
natural-language syntax). The second task is to re-
represent the data abstractions, using
the structural information provided by
the grammar to externalize implicit structure. It
makes sense to perform this
re-representation using a powerful representational format, in
order that the
final representation is as rich as possible in its encoding of the structures
implicit in the input.

Although it is by no means the only powerful representation format
available, XML has
unique features which make it particularly appropriate
for the purposes of iXML. The
richness and sophistication of XML are
widely acknowledged, including by some who ultimately
choose to use
alternative representation formats such as JSON (e.g., Shatnawi et al., 2021,
Bahta et al., 2019). Even detractors’ criticisms of XML as
“utterly verbose”
(Lee et al., 2021) only serve to emphasize one of the main
attractions of XML
for re-encoding data representations into a more powerful format: XML
privileges detail and informativity over the compactness which makes
JSON an appealing
alternative in some other contexts. XML and JSON
each have strengths and weaknesses in
different areas, meaning that neither
can be called the outright best choice for all
possible uses (Bourhis et al.,
2020). However, XML is a particularly good choice when the
aim is to
maximize the depth of information represented, and also benefits from a
particularly mature and stable ecosystem of supporting technologies
(Dou et
al., 2020).

Processing

A conforming iXML processor always produces an XML document as
output
(Pemberton 2022).
We have already mentioned that an iXML processor
takes two inputs: the
iXML input stream and the iXML input grammar ,
the
latter of which describes the expected structure of the former. If the input
grammar
successfully describes the structure of the input stream, the XML
document output by the
processor will be a representation of the input data
in XML format, with element names and
attributes as defined by the input
grammar. If the input grammar does not successfully
describe the input
stream, the processor will output an XML document containing a failure
report. The basic flow of this process is illustrated in fig. 1.

Figure 1: Invisible XML process

The input grammar is a structured representation in the iXML format,
which is described
in the iXML specification. In order to generate this
structured representation, an iXML
processor will normally first accept a
grammar as a character stream and parse it against the iXML
specification
grammar. This process treats a grammar description like any other input
stream, parsing its characters and (provided that the characters form a valid
grammar in
iXML format) outputting a structured representation of the
grammar which can then be used to
parse the main input stream, as
illustrated in fig. 2. The major difference between this
process and the

parsing of the iXML input stream proper is that no XML serialization needs
to be produced. The output of this step is an internal representation of the
input grammar.

Figure 2: Invisible XML process (continued)

The upshot of this is that iXML is, itself, represented using the syntax of
iXML. For instance,
here is the rule for rule:

rule: (mark, s)?, name, s, -["=:"], s, -alts, -".".

which comes out as XML

<rule name='rule'>

 <alt>

 <option>

 <alts>

 <alt>

 <nonterminal name='mark'/>

 <nonterminal name='s'/>

 </alt>

 </alts>

 </option>

 <nonterminal name='name'/>

 <nonterminal name='s'/>

 <inclusion tmark='-'>

 <member string='=:'/>

 </inclusion>

 <nonterminal name='s'/>

 <nonterminal mark='-' name='alts'/>

 <literal tmark='-' string='.'/>

 </alt>

</rule>

The entire processing cycle includes a bootstrap phase which produces the
structured
representation of iXML:

Figure 3: Invisible XML bootstrapped process

A Simple Example: Dates

To illustrate the basic functioning of iXML with a necessarily simple
example, imagine
the input stream is a date of the form

29 June 2022

We describe the format as a series of rules in iXML. Some rules have only
one form,
with items separated by commas. Some rules have several
alternative forms, separated by
semicolons.

date: day, " ", month, " ", year.

day: digit, digit?.

month: "January"; "February"; "March"; "April";

 "May"; "June"; "July"; "August";

 "September"; "October"; "November"; "December".

year: digit, digit, digit, digit.

digit: ["0"-"9"].

Processing the input using this description and serializing it to XML gives:

<date>

 <day>

 <digit>2</digit>

 <digit>9</digit>

 </day>

 <month>June</month>

 <year>

 <digit>2</digit>

 <digit>0</digit>

 <digit>2</digit>

 <digit>2</digit>

 </year>

</date>

What you can see is that the rules define XML elements whose contents are
one of the
alternatives contained in the rule.

In this case we are not interested in the digit elements, so we change that
one rule to exclude it from the serialization:

-digit: ["0"-"9"].

Processing the input with this new description gives:

<date>

 <day>29</day>

 <month>June</month>

 <year>2022</year>

</date>

We will now add a date format option of the following style:

29/06/2022

A rule is added to the description:

date: day, " ", month, " ", year;

 day, "/", nmonth, "/", year.

day: digit, digit?.

month: "January"; "February"; ...; "December".

nmonth: digit, digit?.

year: digit, digit, digit, digit.

-digit: ["0"-"9"].

Note that since a month in the new format has a different syntax from a
month in the original one, it has to have a different name. Processing the
input with this description gives:

<date><day>29</day>/<nmonth>06</nmonth>/<year>2022</year></date>

As this shows more clearly, all characters in the input end up in the
serialization by
default, and tags are effectively just placed around parts of
the input to expose structure.
However, characters which do not interest us
can be omitted from the serialization in the
same way as rules:

date: day, -" ", month, -" ", year;

day, -"/", nmonth, -"/", year.

We can specify that the input consists of one or more dates:

dates: date+.

but in this case they have to be right next to each other, with no intervening
spaces.
Better, then, to allow any number of spaces after a date:

dates: (date, " "*)+.

Another possibility is specifying a separator, in this case
consisting of a
comma and a single space:

dates: date++", ".

for input like:

29/06/2022, 31 December 2022, 1/1/2023

For input consisting of dates on separate lines, you can use

dates: (date, cr?, lf)+.

-cr: -#d.

-lf: -#a.

Attributes

Rules can be specified as producing attributes rather than elements. In this
case, the
text resulting from application of the rule becomes the value of the
attribute:

date: day, -" ", month, -" ", year;

day, -"/", nmonth, -"/", year.

@day: digit, digit?.

@month: "January"; "February"; ...; "December".

@nmonth: digit, digit?.

@year: digit, digit, digit, digit.

-digit: ["0"-"9"].

Processing with input

29/6/2022

gives

<date day="29" nmonth="6" year="2022"/>

Ambiguity

We might want to restrict a day to be in the range 1-31, and an
nmonth to
the range 1-12:

day: "0"?, ["1"-"9"];

 ["12"], ["0"-"9"];

 "3", ["01"].

nmonth: "0"?, ["1"-"9"];

 "1", ["012"].

We might also find it necessary to allow both month-day and day-month
date
formats:

date: world; us.

us: nmonth, -"/", day, -"/", year

world: day, -"/", nmonth, -"/", year.

It is now possible that an input will satisfy the grammar in more than one
way.
Processing the input 04/10/2022, for example, offers two valid parses:

<date>

 <us>

 <nmonth>04</nmonth>

 <day>10</day>

 <year>2022</year>

 </us>

</date>

and:

<date>

 <world>

 <day>04</day>

 <nmonth>10</nmonth>

 <year>2022</year>

 </world>

</date>

A conforming iXML processor must serialize one valid parse to XML as
output, and must
also report that the parse was ambiguous. For example,
processing the input
04/10/2022 using Pemberton’s ixampl implementation
produces:

<!-- AMBIGUOUS

The input from line.pos 1.1 to 1.11 can be interpreted as 'date' in 2 different

ways:

1: us[:1.11]

2: world[:1.11]

-->

<date ixml:state="ambiguous" xmlns:ixml="http://invisiblexml.org/NS">

<us>

<nmonth>04</nmonth>

<day>10</day>

<year>2022</year>

</us>

</date>

The CG chose not to specify how processors should choose
which parse
tree is represented in the output. This decision was
largely motivated by a
desire to avoid interfering
unnecessarily with implementation choices. In
very simple
terms, the recognition of ambiguities may vary depending on
the
parsing technique used. A fuller discussion of the difficulties
with
ambiguity is given below, explaining in detail the
reasoning behind the
CG's decision.

What's New

Significant changes

In the last year, the working group has mostly been polishing the
language
and improving the specification. However, there have also been
three
significant changes to the language.

Firstly, the syntax for separators has changed from

date+", "

to

date++", "

This change was made to improve usability. Given the prior syntax, if an
author
accidentally omitted a comma, turning

input: word+, "!".

into

input: word+ "!".

the result was still syntactically valid. This kind of mistake was felt to be
difficult to locate, particularly in large grammars.

The second major change is the introduction of a method for inserting text.
While it was
previously possible to exclude characters that were
part of the
input from the XML output (using
-"..."), there is now a symmetrical
notation for adding new characters to the output, using +"...".

For instance

number: pos; neg.

-pos: +"+", digit+.

-neg: +"-", -"(", digit+, -")".

would serialize numbers like 123 as
+123, and numbers like (123)
as -123.

The third change deals with character sets. The notation ["0"-"9"] matches
any
single character in the range. Similarly, the notation
~["0"-"9"]
matches any
single character not in the range. Originally such a character
set
was not allowed to be empty, since this was thought
to have no useful

purpose, so
[] was disallowed. However we realized that
~[] did have a
useful meaning ("match any
single character"), and consequently empty
character sets
are now allowed.

Updates to the specification

Changes to the spec since the community group began its
work have tended
to make the text more explicit and
complete. The specification now
mentions several possible parsing
algorithms, for example, in addition to
Earley parsing. Most prominently, perhaps, the group has added explicit
rules for conformance of grammars and processors, a few of which have
already been mentioned
above.

Conforming grammars must match the iXML
specification grammar.

In addition, various non-structural requirements are
imposed.

Nonterminals which are to be serialized as XML
element or attribute
names must be legal XML names.

Character data to be written to the output must be
legal XML
characters (although the input may include
non-XML characters).

Hexadecimal numbers used for encoded literals must
fall within the
Unicode character range.

Character classes used in character-set expressions must
be classes
defined by Unicode.

Character ranges must be well formed (that is, their
starting point must
not follow their ending point).

The output to be produced must be
well-formed XML.

Note that it is not always feasible to prove that a
grammar will produce
well-formed output for all possible
inputs; some errors may be
detected only dynamically, in
the presence of input which would cause
ill-formed output
if serialized in the normal way.

Explicit rules for conformance of grammars have also been
added.
Processors must accept all conforming grammars, detect
errors in non-
conforming grammars, produce a parse tree for any
input stream which is

recognized by the supplied input grammar,
not produce parse trees for input
streams which do not match, and
so on.

Some effort has gone into clarifying the behavior of
processors in cases
where the input is ambiguous; to our surprise,
a crisp definition of
ambiguity
in the iXML context has proven elusive: depending on the
internal
structure of the processor, ambiguity may or may not be flagged
for
a given input grammar and input stream.[1]

Infrastructure

In addition to the specification, the community group
is working to develop
infrastructure useful to implementors
and users of iXML. A collection of
sample iXML grammars has been started on the
community group's github
site (Invisible XML CG, eds., 2022) and the group plans to use it to
provide
iXML grammars representing published notations. This repository can
serve
both as a library of useful grammars, for notations of broad
interest,
and as illustrations of iXML usage. Among the
grammars currently
available are:

XPath 3.1.

URI and IRI.

ISO 8601 dates.

The Oberon programming language.

ABNF (Augmented BNF for Syntax Specifications),
the grammar
notation defined by RFC 5234 and used in IETF
specifications.

ISBN (International Standard Book Number); the
grammar checks the
correct calculation of the check digit in
ISBN-13 numbers.

For implementors, test cases are needed. So far, a collection
of a few
hundred test cases has been built, ranging from toy
grammars describing
fragments of CSS or other well known notations,
to larger grammars, to
very small grammars aimed at finding
and exposing errors in the logic of
pursuers. The test cases can be browsed
on the Web.

http://invisiblexml.org/test-catalog/

Some stylesheets for manipulating iXML grammars may be found
in the
Gingersnap
project; they have been used, inter alia, to generate test
cases
for iXML, to measure test suite coverage, and to generate
Relax NG
schemas describing the XML documents generated by iXML
grammars.

What next?

With the publication of the 1.0 specification of iXML this
past June, iXML
has passed a major milestone. The availability of
useful iXML processors
allows people outside the community group
to experiment with iXML to
solve real-life problems and to build
applications using iXML.

If you have been waiting for iXML to mature a bit before
looking into it,
then: the time is now.

Implementations

The progress of
iXML implementations is possibly the most important
practical development we can report. There
are now several publicly
available implementations of iXML
1.0, as well as others announced as
being in development (Invisible XML CG, eds., 2022). Two
of these, JayParser
and Aparecium, are prototype or proof-of-concept implementations. They
have served the purpose of demonstrating that iXML is implementable
within the
standard XML technology stack, but they both share a common
characteristic of prototype
implementations: they tend to be resource
intensive. That is to say, they run slow and take a
lot of memory. Both
implementors have hopes of improving the situation, but for now these
implementations are useful mostly for demonstrating what might be
possible. For practical
work, less resource-intensive implementations are
needed. Fortunately, there are currently
three of these, which run two or
three orders of magnitude faster than the proof-of-concept
implementations.

The following sections are authored by individual implementors.
Some are
brief introductions to implementations released or in development;
others
are longer and more substantive.
All six implementors have also been
involved in the CG, and
found that practical experience of implementing
iXML was a
significant asset in the work of refining the
specification.

ixampl

https://github.com/cmsmcq/gingersnap

The first implementation of iXML was created by Steven
Pemberton to
support the development of the language; it is
further described in Pemberton
2016b
and Pemberton 2022b.

It is written in the interpreted Very High Level
Language ABC (Guerts et al.,
1990). It is offered as a
RESTful web-service application, by submitting a
grammar and
input either via (a
webpage) or via a command-line interface.

Details of how to access the web service are kept up to date in
the iXML
tutorial (Pemberton 2022c).

It was deployed successfully at Declarative Amsterdam
2021 with multiple
simultaneous users, and has been used on
grammars the size of the XPath
grammar.

JayParser

Tomos Hillman's JayParser (Hillman 2020) implements an Earley parser in
XSLT, with the goal of making it easy to integrate ixml
processing in an
XSLT work flow. Its current main challenge is that it makes exuberant use
of memory, which means that it is limited to using small sample
grammars
to parse very very small inputs.

Hywel

Hywel is a Python implementation of iXML being developed by Bethan
Tovey-Walsh. There
is, as yet, no publicly available version of Hywel,
although a version 1.0 is tentatively
promised for late 2022. The
implementation aims to be of particular use for linguistic tasks
such as part-
of-speech tagging. Optimizing Hywel for use with large inputs and large
grammars is therefore currently the primary
obstacle to its release as a
useful tool. The pragma syntax developed by Hillman
and Sperberg-
McQueen (Hillman et al., 2022), will form an
integral part of Hywel's natural-
language-processing architecture.

Aparecium

Aparecium (Sperberg-McQueen 2019) provides an XQuery
implementation
callable as a library function: a call to
aparecium:parse-string($input,
$grammar) takes a
string to be parsed and a string containing an ixml

https://www.cwi.nl/~steven/ixml/tutorial/run.html

grammar and
returns the parse tree in XML (or, in cases of failure, an XML
document describing the failure). Alternative functions in the
API allow the
input and grammar to be given as URIs instead of
strings.

Using Aparecium to load a non-XML resource for
processing in an XQuery
module is almost as simple as calling
the doc() function to load an XML
resource. If you
want to query a collection of electronic business cards in
vCard
format, for example, and return all the cards of your contacts
at
Amalgamated Interkludge, the module might look something like
this:[2]

import module namespace aparecium

 = "http://blackmesatech.com/2019/iXML/Aparecium"

 at "my-lib/ap/Aparecium.xqm";

let $cardfile := "contacts/work.vcf",

 $grammar := "my-lib/grammars/vcard.ixml",

 $cards := aparecium:parse-resource($cardfile, $grammar)

return $cards//property[@name="ORG"]

 [contains(value,"Amalgamated Interkludge")]

Aparecium is usable for inputs of a few tens or hundreds
of characters but
currently suffers from non-linear performance
even on deterministic
grammars: doubling the size of the input
quadruples the time required to
parse the input (or worse).
This is not inherent in the Earley parsing
algorithm used, so
the developer hopes to improve the situation by focused
attention to performance issues, sometime in the near
future. Real soon
now.

jωiXML

jωiXML is An InvisibleXML processor for a
JavaScript/SaxonJS
environment. The impetus for its development was
that, being involved in
the InvisibleXML community group, I felt
that I didn't understand some of
the issues sufficiently to make
good contributions, particularly those
associated with
ambiguity. And in such a circumstance a tactic I often use is
to
learn by building my own implementation. I had some experience in
building hand-written parsers when further developing the XPath
expression compiler for SaxonJS (Lumley 2017a). I
also value highly using an
environment where I can see a lot of the
'innards working', with my

preference being to use SaxonJS in the
browser to provide the interface for
control and display with an
additional JavaScript module to contain the
main code. The Chrome
browser has a sufficiently useful Javascript
debugger to be able to
focus on areas of concern.

The overall architecture would be a parser written in JavaScript
consisting
of three main parts —; a set of classes representing the
main productions of
the iXML grammar
(Rule, NonTerminal, Charset
etc.), a parser that would
take the text of an input grammar and
construct the internal 'parse tree' from
linked instances of those
classes and a 'grammar' object which, loaded with
a set of rules from
such a parse tree, can then parse input text strings and, if
the parse
is successful, generate the declared XML result tree. This
JavaScript
would be loaded into a web page whose dynamic activity was
controlled
by an XSLT program compiled for SaxonJS execution. Thus all
the
complexity of detailed display, control, loading grammars, running
test
suites and so forth is handled at a high level, using the XSLT
mechanisms
we are comfortable with.

Communication from the XSLT with the parser was handled by two
actions
— jwl:compileGrammar($grammarSource as xs:string)
which invokes
the JavaScript-defined 'grammar factory' and
parses/compiles the supplied
iXML (or also XML form) grammar,
returning a Grammar JavaScript object.
Parsing an input
then involves invoking the parse() method of that
Grammar, by the SaxonJS invocation function
ixsl:call($grammar,$input
as xs:string) and currently the
return value is a map containing parsing
success, result trees, timing
information and the internal parsing states (used
for debugging —; see
below).

One approach for designing the 'grammar parser' of an iXML
processor is
via a bootstrap, using the XML version of the iXML
specification grammar,
parsable with current XML readers, to
initialize the parsing engine to accept
an iXML grammar. This is then
used to parse the application grammar,
which being collected, is used
to re-initialize the engine to parse future
selected application
inputs.

Two drawbacks of this process are that firstly it requires a
moderately
performing parsing engine (e.g., an Earley parser) to run
before anything
concrete can happen and secondly parsing an iXML
grammar with a
generic engine will perforce be slower, though more
flexible, than one

purpose-written. For these reasons I chose to write
my iXML parser directly
in JavaScript, generating the internal class
tree describing productions. In
fact this was probably the easiest
part of the whole development, aided by
the fact that the changes made
to the iXML specification over this period
were relatively
modest.

I then turned to writing the Earley parser, choosing to 'build
my own' rather
than taking an off-the-shelf version, partly as a
learning exercise. To do this,
the example given in the Wikipedia
article
(https://en.wikipedia.org/wiki/Earley_parser#Example)
which parses an
arithmetic expression against a simple grammar was my
first target. This
was exceptionally useful as I had a view of the
expected internal states
through the Earley parse of a simple
arithmetic expression and could ensure
that my implementation
generated similar information, as shown below:

Figure 4: Wikipedia Earley states

https://en.wikipedia.org/wiki/Earley_parser#Example

Figure 5: jωiXML Earley states

Once this example was working and all the parse states seemed to
correspond, I turned to generating the resulting parse tree, which
involved i)
adding 'derivation pointers' between the Earley states and
ii) building a
'bottom-up' traversal from the completion states
through the derivation tree,
generating sequences of text, attribute
and element nodes (in a browser-
supported DOM tree) according to the
'mark' properties of the non-terminal
rules and references and
attaching them to parent elements on the return.

This simple example did not handle any optional or multiple
constructs
(?,*,++Sep etc.), so
the next step was to transform the supplied grammar,
canonicalizing
any such forms using the substitution rules described in the
iXML
specification —; this was not tricky, but the browser interface was

expanded to be able to view the compiled grammar in various formats.
However this opened a Pandora's box of plentiful opportunity for
ambiguity, which required complex (and hard-to-debug) code to
back-
propagate and combine ambiguities — even now there are occasional
internal errors triggered by incorrect combination. And there were
also
possible infinite ambiguities to be handled :-(.

Working this up through a series of increasingly larger and more
complex
cases, a significant landmark was the first time it was
possible to parse the
iXML grammar with itself — taking around
250–300ms it was reasonably
quick. At this point it was worthwhile
starting to do some more systematic
testing so a testdriver, again
operating in the browser, written in XSLT and
driven from the
test-suite files in the InvisibleXML repository was
constructed.

The next step was to make the engine more easily usable, so the
design
expanded to allow grammars and input to be loaded and edited
(entirely
within the browser) through editable text areas, drop-down
selectors that
could load tests and samples from the InvisibleXML
repository and
selectors from the user's local filestore. Finally it
was placed publicly at
https://johnlumley.github.io/jwiXML.xhtml

Figure 6: jωiXML processor browser interface

The XPath3.1 grammar

One of the goals of the InvisibleXML Community Group is to show
that the
technology can have a role as a lightweight front-end parser
for XML
workflows even on an industrial scale and as such various
larger and more

https://johnlumley.github.io/jwiXML.xhtml

complex grammars have been constructed and tested. One
that I have had
much experience of is that of XPath 3.1, used
extensively within an XSLT
compiler, so it was natural to see how a
modification of the EBNF
(https://www.w3.org/TR/xpath-31/#id-grammar) into iXML
would work.

Generally the transcription was fairly straightforward, with a
few additional
pseudo-productions needing to be added. For example, to
allow (variable)
operators to be projected as attributes in the
resulting parse tree (e.g.,
("+"|"-") becoming
@AddOp: s?,'+',s?; s,'-',s.) This worked pretty
well and
the resultant grammar parsed sample XPath expressions of
moderate
complexity successfully.

One of the problems with the XPath grammar is its
depth —; the production
for a simple integer has
to go though 21 earlier productions to be reached
and hence for many
minor expressions the full parse tree is very large but
with large
sections that are very thin. One of the
techniques to reduce these
trees is to mark some rules such that if
the element generated would only
have one child, and no attributes,
then ignore it in the serialization. Using a
pragma mechanism to mark
such rules, a simple parse of the grammar to its
XML form, followed by
an XSLT transform to change such rules (and
references) and final
serialization back to iXML can achieve this, making it
a much more
practical tool.

The next stage was to stress-test it by attempting to parse all
the ~22,000
XPath expressions contained in the QT3 test-suite. A
simple XSLT program
was written and ran successfully, taking around 10
minutes to complete the
task, finding initially a few hundred failures
and then finally only 11. But in
that process of refining the grammar
against the samples, some possibly
significant constraints to avoid
extensive (and potentially exponential)
ambiguity propagation have
arisen, illustrating the limitations of the
context-free grammar
supported by iXML. These include:

XPath defines some (binary) operators the character
sequences of
which could occur in a name (an
NCName), such as eq or div
and do not
require to be surrounded by
whitespace in situations in which they are
unambiguously
(according to XPath rules) acting as operators, such as
5div6 .

https://www.w3.org/TR/xpath-31/#id-grammar

Such rules rely on having a tokenizer or lexical scanner
upstream of
the parser (where rules like “if it can be part
of a name, make it part of
the name” are easy to
implement). Invisible XML, by contrast, does
not require or assume
a separate lexical scanner, and in writing an
iXML grammar we must
make whitespace before and after such
operators either optional or
required; we cannot, when writing a
context-free grammar, make the choice
depend on the context. If we
make the whitespace around such
operators optional, we are likely to
encounter the ambiguity of
“It this an operator or part of a name?”.
The worst
culprit is - (minus/hyphen) which whilst not a
letter, can
appear within NCNames and letting that
have both roles typically causes
exponential ambiguity growth with
many large XPath expressions.

To remove ambiguity, XPath also mandates some
extra-grammatical
constraints, which again are out of scope
for iXML.

Some names for function calls (element,
if) are reserved as they
conflict with node types or
language construct keywords. Occurrence
indicators
(?,*,+) in possibly ambiguous cases have to bind to
the
closest SequenceType production rather than acts
as possible
arithmetic operators — there are a few other similar
restrictions. Such
extra-grammatical constraints are, in the
nature of the case, outside the
scope of an invisible XML grammar.

Another area requiring care (applicable to other grammars) is to
ensure that
optional whitespace doesn't get “double
accounted”, such as being defined
both in a non-terminal
production and in the reference to it. But all these
restrictions
aside, this has demonstrated that large and complex grammars
can be
supported with iXML.

NineML

NineML is a family of grammar parsing tools (and related
projects). The
number "Nine" in the name is a play
on the "ix" of "ixml" reinterpreted as a
Roman numeral; another illustration of Pemberton's (Pemberton 2016a) point
about the numerical abstractions behind written numeral formats. Initial
development of NineML has focused on a set of tools designed
to run on
the Java Virtual Machine (JVM). It currently consists of
five related
projects.

CoffeeGrinder A JVM API for building a grammar parser.

CoffeeFilter A JVM API for processing Invisible XML documents.

CoffeePot A command-line tool for parsing documents with Invisible XML grammars.

CoffeeSacks A set of Saxon extension functions that make Invisible XML processing
possible
within XSLT or XQuery transformations.

CoffeePress A set of XProc 3.0 steps that make Invisible XML processing
possible with
XProc pipelines.

(It’s Java-based. There are coffee puns. That’s just how it is.)

CoffeeGrinder

CoffeeGrinder is a Java API for building grammars and using
those
grammars to parse inputs. A grammar is constructed with API calls to a
SourceGrammar object:

ParserOptions options = new ParserOptions();

SourceGrammar grammar = new SourceGrammar(options);

NonterminalSymbol S = grammar.getNonterminal("S");

NonterminalSymbol A = grammar.getNonterminal("A");

NonterminalSymbol B = grammar.getNonterminal("B");

TerminalSymbol a = new TerminalSymbol(TokenCharacter.get('a'));

TerminalSymbol b = new TerminalSymbol(TokenCharacter.get('b'));

grammar.addRule(S, A);

grammar.addRule(S, B);

grammar.addRule(A, a);

grammar.addRule(B, b);

This grammar is equivalent to the following Invisible XML grammar:

S = A | B.

A = 'a'.

B = 'b'.

At this level in the NineML stack, a SourceGrammar is
a much simpler
abstraction than an Invisible XML grammar. There are no
built-in features
for repetition or separators, for example, and alternatives
have to be spelled
out explicitly as the example shows for S.
The grammar does support
character classes and ranges, so it isn’t necessary
to spell out every possible
matching terminal literally.

To parse an input, create a parser and call parse() on
the input:

GearleyParser parser = grammar.getParser(options, S);

String input = "a";

GearleyResult result = parser.parse(input);

if (result.succeeded()) {

 System.err.printf("\"%s\" matches the grammar", input);

} else {

 System.err.printf("\"%s\" does not match the grammar", input);

}

The output from a parse is a “parse forest”. The parse forest is
a data
structure that represents all of the possible parses of the input with the
grammar. This includes all of the ambiguous parses and even
“infinitely
ambiguous” parses in the case of grammars that contain
loops.

There are a variety of APIs for walking the forest to extract
one of the
parses.

By default, CoffeeGrinder uses an Earley parser (Scott 2008). It is in the
nature of Earley parsers that for
some grammars and some inputs they make
a very large number of predictions that are
ultimately unused. This can
cause memory and performance issues.

Recently, a GLL parser (Scott 2019) has also
been added. (Credit to Dimitre
Novatchev for suggesting that a GLL
parser might have better
performance.)
Unlike an Earley parser which applies a particular “predict,
scan, complete” algorithm to its input, the GLL parser begins by
compiling
the grammar into a “program” that is then executed to parse
the input.

The GLL parser is orders of magnitude faster than the Earley
parser for
some inputs, but for most cases where the results are
comparable, the GLL
parser seems to be a little bit slower. The GLL
parser does generally
produce a smaller parse forest, but it is less
well tested and has a few small
issues with particular kinds of
ambiguous grammars.

It’s worth pointing out that no effort has been made to optimize
the GLL
parser and there are several interesting avenues to explore,
including the
possibility that the grammar might be “compiled down” to
Java bytecode so
that the JVM’s “hotspot” compiler could optimize
it.

CoffeeFilter

Like CoffeeGrinder, CoffeeFilter is a JVM API. Typical use would
look
something like this:

ParserOptions options = new ParserOptions();

InvisibleXml ixml = new InvisibleXml(options);

String grammar = "S = A|B. A = 'a'. B = 'b'.";

InvisibleXmlParser parser = ixml.getParserFromIxml(grammar);

String input = "b";

InvisibleXmlDocument document = parser.parse(input);

String xml = document.getTree();

System.out.println(xml);

The InvisibleXml object provides a parser, this step transforms
the
Invisible XML grammar into a grammar that can be understood by
CoffeeGrinder. This process introduces new rules and new
nonterminals
(along the lines suggested in the “Hints for Implementors” in the
Invisible
XML specification).

A parser can, in turn, be applied to an input, returning a
document. Methods
on the document allow you to retrieve one or more
trees in a variety of
ways.

CoffeePot

CoffeePot is a command-line tool. It reads an Invisible XML
grammar and
an input and produces a serialized result. It will accept
grammars in either
text or XML form. It can be configured to cache
parsed grammars which
makes the process run a little faster. The input
to be parsed can be provided
directly on the command line or via a
file or URI reference.

Consider the following small data file, capitals.txt,
describing the
latitude and longitude of some capital cities.

Dublin, Ireland: 53.35N 6.27W

Cardiff, Wales: 51.48N 3.18W

Edinburgh, Scotland: 55.95N 3.19W

Belfast, Northern Ireland: 54.61N 5.93W

You might write the following Invisible XML grammar,
capitals.ixml, to
parse it:

CityInfo = data++NL, NL*.

data = Capital, comma, Country, colon, Latitude, space, Longitude.

Capital = name.

Country = name.

Latitude = -north | -south.

Longitude = -east | -west.

north = decimal, -'N'.

south = +'-', decimal, -'S'.

east = decimal, -'E'.

west = +'-', decimal, -'W'.

-decimal = ['+' | '-']?, ['0'-'9']+, ('.', ['0'-'9']+)?.

-comma = -',', -' '*.

-colon = -':', -' '*.

-space = -' '+.

-sep = -',', -' '*.

-name = [L], ~[',' | #a]*.

-NL = -#a.

You can then convert the data to XML with CoffeePot:

$ coffeepot -g:capitals.ixml -i:capitals.txt --pretty-print --log:info

I: Parsing UTF-8 ixml grammar from

file:/Volumes/Projects/nineml/pot/scraps/capitals.txt

I: Parsing 163 tokens with Earley parser.

I: Parse succeeded, 163 tokens in 0.04s (4289.5 tokens/sec)

<CityInfo>

 <data>

 <Capital>Dublin</Capital>

 <Country>Ireland</Country>

 <Latitude>53.35</Latitude>

 <Longitude>-6.27</Longitude>

 </data>

 <data>

 <Capital>Cardiff</Capital>

 <Country>Wales</Country>

 <Latitude>51.48</Latitude>

 <Longitude>-3.18</Longitude>

 </data>

 <data>

 <Capital>Edinburgh</Capital>

 <Country>Scotland</Country>

 <Latitude>55.95</Latitude>

 <Longitude>-3.19</Longitude>

 </data>

 <data>

 <Capital>Belfast</Capital>

 <Country>Northern Ireland</Country>

 <Latitude>54.61</Latitude>

 <Longitude>-5.93</Longitude>

 </data>

</CityInfo>

Using --pretty-print makes the output easier to read; using
--log:info
tells us a little bit about the processing. Default values for
both of these
options (and many others) can be specified in a configuration file.
In
practice, you’d probably also use -o: (or --output:) to
write the XML into
a file.

Conformant behavior for an Invisible XML processor is to produce XML.
In some environments, at least for simple data like this, JSON may be a
more convenient
format. CoffeePot will do that for you:

$ coffeepot -g:capitals.ixml -i:capitals.txt --format:json | jq .

{

 "CityInfo": {

 "data": [

 {

 "Capital": "Dublin",

 "Country": "Ireland",

 "Latitude": 53.35,

 "Longitude": -6.27

 },

 {

 "Capital": "Cardiff",

 "Country": "Wales",

 "Latitude": 51.48,

 "Longitude": -3.18

 },

 {

 "Capital": "Edinburgh",

 "Country": "Scotland",

 "Latitude": 55.95,

 "Longitude": -3.19

 },

 {

 "Capital": "Belfast",

 "Country": "Northern Ireland",

 "Latitude": 54.61,

 "Longitude": -5.93

 }

]

 }

}

In fact, this data is clearly tabular so perhaps CSV would be better:

$ coffeepot -g:capitals.ixml -i:capitals.txt --format:csv

"Capital","Country","Latitude","Longitude"

"Dublin","Ireland",53.35,-6.27

"Cardiff","Wales",51.48,-3.18

"Edinburgh","Scotland",55.95,-3.19

"Belfast","Northern Ireland",54.61,-5.93

Producing different output formats is intended to emphasis the fact that
Invisible XML is about data abstractions. There are no plans to support any
sort
of arbitrary transformations of the output (move these columns around,
for example).
We have better tools for that.

CoffeeSacks

CoffeeSacks provides a library of functions that you can call
from XPath
using Saxon. The functions allow you to parse a grammar, parse
an input
against the grammar, and manage the environment in which
the functions
operate. Basic usage is:

java -cp …:CoffeeSacks-ver.jar \

 net.sf.saxon.Transform \

 -init:org.nineml.coffeesacks.RegisterCoffeeSacks \

 your transformation options

The RegisterCoffeeSacks function makes the functions available
from
XPath. You can then call cs:grammar() to parse the grammar
and
cs:parse-uri() (or cs:parse-string()) to parse
the input against the
grammar.

Like CoffeePot, the default output is XML, but it is possible to persuade
the
parse functions to return a map{} analogous to JSON.

Here’s an example stylesheet:

<xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform"

 xmlns:cs="http://nineml.com/ns/coffeesacks"

 xmlns="https://nwalsh.com/ns/country-list"

 exclude-result-prefixes="#all"

 version="3.0">

<xsl:output method="xml" encoding="utf-8" indent="yes"/>

<xsl:strip-space elements="*"/>

<xsl:param name="ixml" select="resolve-uri('capitals.ixml', static-base-uri())"/>

<xsl:param name="txt" select="resolve-uri('capitals.txt', static-base-uri())"/>

<xsl:template name="xsl:initial-template">

 <xsl:variable name="grammar" select="cs:grammar($ixml)"/>

 <xsl:apply-templates select="cs:parse-uri($grammar, $txt)"/>

</xsl:template>

<xsl:template match="CityInfo">

 <CountryList>

 <xsl:apply-templates select="data">

 <xsl:sort select="Country"/>

 </xsl:apply-templates>

 </CountryList>

</xsl:template>

<xsl:template match="data">

 <Country>

 <xsl:apply-templates select="Country, *[not(self::Country)]"/>

 </Country>

</xsl:template>

<xsl:template match="Country">

 <Name>

 <xsl:apply-templates/>

 </Name>

</xsl:template>

<xsl:template match="*">

 <xsl:element name="{local-name(.)}" namespace="https://nwalsh.com/ns/country-

list">

 <xsl:apply-templates/>

 </xsl:element>

</xsl:template>

</xsl:stylesheet>

This will parse the same capitals.txt file with the
Invisible XML
grammar and produce a transformed result. A namespace has been
added,
the rows have been sorted, and some elements have been renamed:

<CountryList xmlns="https://nwalsh.com/ns/country-list">

 <Country>

 <Name>Ireland</Name>

 <Capital>Dublin</Capital>

 <Latitude>53.35</Latitude>

 <Longitude>-6.27</Longitude>

 </Country>

 <Country>

 <Name>Northern Ireland</Name>

 <Capital>Belfast</Capital>

 <Latitude>54.61</Latitude>

 <Longitude>-5.93</Longitude>

 </Country>

 <Country>

 <Name>Scotland</Name>

 <Capital>Edinburgh</Capital>

 <Latitude>55.95</Latitude>

 <Longitude>-3.19</Longitude>

 </Country>

 <Country>

 <Name>Wales</Name>

 <Capital>Cardiff</Capital>

 <Latitude>51.48</Latitude>

 <Longitude>-3.18</Longitude>

 </Country>

</CountryList>

CoffeePress

CoffeePress is an extension step for XML Calabash 3.0 to process
Invisible
XML documents in XProc pipelines.

<p:declare-step xmlns:p="http://www.w3.org/ns/xproc"

 xmlns:cx="http://xmlcalabash.com/ns/extensions"

 xmlns:xs="http://www.w3.org/2001/XMLSchema"

 exclude-inline-prefixes="cx xs" version="3.0">

<p:output port="result"/>

<p:declare-step type="cx:invisible-xml">

 <p:input port="grammar" sequence="true" content-types="any"/>

 <p:input port="source" primary="true" content-types="any"/>

 <p:output port="result" content-types="any"/>

 <p:option name="parameters" as="map(xs:QName, item()*)?"/>

 <p:option name="fail-on-error" as="xs:boolean" select="true()"/>

</p:declare-step>

<cx:invisible-xml>

 <p:with-input port="grammar">

 <p:document href="capitals.ixml" content-type="text/plain"/>

 </p:with-input>

 <p:with-input port="source">

 <p:document href="capitals.txt" content-type="text/plain"/>

 </p:with-input>

</cx:invisible-xml>

<!-- more steps here -->

</p:declare-step>

Of the various libraries, it’s currently the least well developed.

References

[Bahta et al., 2019] Bahta, Rahwa and Mustafa Atay.
“Translating JSON
Data into Relational Data Using
Schema-oblivious Approaches”.
doi:https://doi.org/10.1145/3299815.3314467. At ACM Southeast
Conference – ACMSE 2019 – Session 2: Short Papers. Kennesaw, GA,
USA. April 18-20, 2019. ISBN: 978-1-4503-6251-1.

[Bourhis et al., 2020] Bourhis, Pierre, et al.
“JSON: Data model and query
languages”.
Information Systems. Volume 89 (2020). ISSN 0306-4379.
doi:https://doi.org/10.1016/j.is.2019.101478.

[Dou et al., 2020] Dou, T., Kaszubowski Lopes, Y., Rockett, P. et al.
“GPML: an XML-based standard for the interchange of genetic

https://doi.org/10.1145/3299815.3314467
https://doi.org/10.1016/j.is.2019.101478

programming
trees”. Genet Program Evolvable Mach 21, 605–627
(2020).
doi:https://doi.org/10.1007/s10710-019-09370-4.

[Grune/Jacobs 1990/2008] Grune, Dick, and Ceriel J. H. Jacobs.
1990/2008.
Parsing techniques: a practical guide.
First edition New York et al.: Ellis
Horwood, 1990.
Second edition [New York]: Springer, 2008.

[Guerts et al., 1990] Geurts, Leo et al.
The ABC Programmer's Handbook.
Prentice-Hall, 1990. ISBN: 0-13-000027-2.
https://www.cwi.nl/~steven/abc/programmers/handbook.html

[Hillman 2020] Hillman, Tomos.
“XSLT Earley: First Steps to a Declarative
Parser Generator”.
Presented at XML Prague, 2020, Prague, Czech
Republic.
In
XML Prague 2020 Conference Proceedings, pp. 231-249
(2020). [online] https://archive.xmlprague.cz/2020/files/xmlprague-2020-
proceedings.pdf#d6e8096

[Hopcroft/Ullman 1979] Hopcroft, John E., and Jeffrey D. Ullman.
1979.
Introduction to automata theory, languages, and computation.
Reading,
Mass.: Addison-Wesley, 1979.

[Hillman et al., 2022] Hillman, Tomos, et al.
“Pragmas in Invisible XML as
an extensibility mechanism”.
Presented at Balisage: The Markup
Conference 2022,
Washington, DC (Virtual Event), August 1–5, 2022.
In
Proceedings of Balisage: The Markup Conference 2022. Balisage Series
on Markup Technologies, vol. 27 (2022).
doi:https://doi.org/10.4242/BalisageVol27.Sperberg-McQueen01.

[Invisible XML CG, eds., 2022] Invisible XML CG, eds.
Sample Invisible
XML Grammars.
https://github.com/invisibleXML/ixml/tree/master/samples

[Invisible XML CG, eds., 2022] Invisible XML CG, eds.
The Invisible XML
Homepage
. https://invisiblexml.org/

[Lee et al., 2021] Lee, Junhee, et al.
“SJSON: A succinct representation for
JSON documents”.
Information Systems. Volume 97 (2021). ISSN 0306-
4379.
doi:https://doi.org/10.1016/j.is.2020.101686.

[Lumley 2017a] Lumley, John, Debbie Lockett, and Michael Kay.
“XPath
3.1 in the Browser”.
In Proceedings of XML Prague 2017, pp. 1-18

https://doi.org/10.1007/s10710-019-09370-4
https://www.cwi.nl/~steven/abc/programmers/handbook.html
https://archive.xmlprague.cz/2020/files/xmlprague-2020-proceedings.pdf#d6e8096
https://doi.org/10.4242/BalisageVol27.Sperberg-McQueen01
https://github.com/invisibleXML/ixml/tree/master/samples
https://invisiblexml.org/
https://doi.org/10.1016/j.is.2020.101686

(2017). [online] http://archive.xmlprague.cz/2017/files/xmlprague-2017-
proceedings.pdf

[Pemberton 2013] Pemberton, Steven.
“Invisible XML”.
Presented at
Balisage: The Markup Conference 2013,
Montréal, Canada, August 6–9,
2013.
In
Proceedings of Balisage: The Markup Conference 2013.
Balisage Series on Markup Technologies, vol. 10 (2013).
doi:https://doi.org/10.4242/BalisageVol10.Pemberton01.
On the
web at
http://www.balisage.net/Proceedings/vol10/html/Pemberton01/BalisageV
ol10-Pemberton01.html.
Revised version (January 2014) at
https://homepages.cwi.nl/~steven/Talks/2013/08-07-invisible-
xml/invisible-xml-3.html

[Pemberton 2016a] Pemberton, Steven.
“Data Just Wants to Be Format-
Neutral”.
Presented at XML Prague, 2016, Prague, Czech Republic.
In
XML Prague 2016 Conference Proceedings, pp. 109-20 (2016). [online]
https://archive.xmlprague.cz/2016/files/xmlprague-2016-
proceedings.pdf#d6e2656. On the web at
https://homepages.cwi.nl/~steven/Talks/2016/02-12-prague/data.html

[Pemberton 2016b] Pemberton, Steven.
“Parse Earley, Parse Often: How to
Parse Anything to XML”.
Presented at XML London, 2016, University
College London, London, UK, 4-5 June 2016.
In
XML London 2016
Conference Proceedings, pp. 120-126 (2016) [online]
https://xmllondon.com/2016/xmllondon-2016-
proceedings.pdf#page=120. On the web at
https://homepages.cwi.nl/~steven/Talks/2016/06-05-london/xml-
london.html

[Pemberton 2017] Pemberton, Steven.
“On the Descriptions of Data: The
Usability of Notations”.
Presented at XML Prague, 2017, Prague, Czech
Republic.
In
XML Prague 2017 Conference Proceedings, pp. 143-159.
[online] https://archive.xmlprague.cz/2017/files/xmlprague-2017-
proceedings.pdf#page=155

[Pemberton 2022] Pemberton, Steven. “Invisible XML Specification”.
Published by the Invisible Markup Community Group
on the web at
https://invisiblexml.org/1.0/

http://archive.xmlprague.cz/2017/files/xmlprague-2017-proceedings.pdf
https://doi.org/10.4242/BalisageVol10.Pemberton01
http://www.balisage.net/Proceedings/vol10/html/Pemberton01/BalisageVol10-Pemberton01.html
https://homepages.cwi.nl/~steven/Talks/2013/08-07-invisible-xml/invisible-xml-3.html
https://archive.xmlprague.cz/2016/files/xmlprague-2016-proceedings.pdf#d6e2656
https://homepages.cwi.nl/~steven/Talks/2016/02-12-prague/data.html
https://xmllondon.com/2016/xmllondon-2016-proceedings.pdf#page=120
https://homepages.cwi.nl/~steven/Talks/2016/06-05-london/xml-london.html
https://archive.xmlprague.cz/2017/files/xmlprague-2017-proceedings.pdf#page=155
https://invisiblexml.org/1.0/

[Pemberton 2022b] Pemberton, Steven.
“A Pilot Implementation of ixml”.
In Proc. XML Prague 2022. 2022. Pgs 41-50.
[online]
https://archive.xmlprague.cz/2022/files/xmlprague-2022-
proceedings.pdf#page=51

[Pemberton 2022c] Pemberton, Steven.
Hands On iXML. CWI. 2022.
http://www.cwi.nl/~steven/ixml/tutorial/

[Scott 2019] Scott, Elizabeth,
Adrian Johnstone, and L. Thomas Van
Binsbergen. “Derivation representation
using binary subtree sets”.
Science of Computer Programming 175, 63-84 (2019).
doi:https://doi.org/10.1016/j.scico.2019.01.008.

[Scott 2008] Scott, Elizabeth.
“SPPF-Style Parsing From Earley
Recognizers”.
Electronic Notes in Theoretical Computer Science 203, 53-
67 (2008). doi:https://doi.org/10.1016/j.entcs.2008.03.044.

[Shatnawi et al., 2021] Shatnawi, Hazim and H. Conrad Cunningham.
“Encoding Feature Models Using Mainstream JSON Technologies”.
doi:https://doi.org/10.1145/3409334.3452048. At ACM Southeast
Conference – ACMSE 2021 – Session 1: Full Papers.
Virtual Event,
USA. April 15-17, 2021. ISBN: 978-1-4503-8068-3.

[Sperberg-McQueen 2019] Sperberg-McQueen, C. M.
“Aparecium: An
XQuery / XSLT library for invisible
XML”.
Presented at Balisage: The
Markup Conference 2019, Washington,
DC, July 30 – August 2, 2019.
In
Proceedings of Balisage: The
Markup Conference 2019.
Balisage Series
on Markup Technologies,
vol. 23
(2019).
doi:https://doi.org/10.4242/BalisageVol23.Sperberg-McQueen01.

[Tovey-Walsh 2022a] Tovey-Walsh, Norm. “Invisible XML”. On the web at
https://www.xml.com/articles/2022/03/01/invisible-xml/

[Tovey-Walsh 2022b] Tovey-Walsh, Norm. “Writing Invisible XML
Grammars”. On the web at
https://www.xml.com/articles/2022/03/28/writing-invisible-xml-
grammars/

[Walsh et al., 2017] Walsh, Norman, et al. (eds). XQuery and XPath Data
Model 3.1.
https://www.w3.org/TR/xpath-datamodel/

https://archive.xmlprague.cz/2022/files/xmlprague-2022-proceedings.pdf#page=51
http://www.cwi.nl/~steven/ixml/tutorial/
https://doi.org/10.1016/j.scico.2019.01.008
https://doi.org/10.1016/j.entcs.2008.03.044
https://doi.org/10.1145/3409334.3452048
https://doi.org/10.4242/BalisageVol23.Sperberg-McQueen01
https://www.xml.com/articles/2022/03/01/invisible-xml/
https://www.xml.com/articles/2022/03/28/writing-invisible-xml-grammars/
https://www.w3.org/TR/xpath-datamodel/

[1] The technical background may be summarized briefly.

In the case of grammars in Backus / Naur Form (BNF) or
similar notations,
formal language theory defines ambiguity as the
existence of more than one
leftmost (or rightmost) derivation of a
sentence; sometimes it is defined as
the existence of more than
one production tree, which amounts to the same
thing. Extended BNF notations like
the one used by Invisible XML
generate the same set of languages
as BNF grammars, but derivation works
differently, and the
authorities we have consulted define neither derivation
nor
ambiguity with respect to EBNF grammars.

Note also that ambiguity is a property of a sentence parsed
with a given
grammar; the same sentence might be unambiguous with
respect to a
different grammar for the same language. Some iXML
processors work by
translating the input grammar into an
equivalent BNF grammar and then
using algorithms defined for BNF
grammars to parse the input. In many
cases, more than one BNF
grammar will be equivalent to the input iXML
grammar; a sentence
may be ambiguous against one of those grammars but
not against
another.

We do not wish to require a particular translation from EBNF
to an
equivalent BNF, and so we face the situation that some
implementations
will encounter ambiguity in the raw parse trees of
a sentence where others
do not. We have therefore found ourselves
obliged to allow some variation
in results among conforming
processors as regards the detection of
ambiguity.

For a formal definition of ambiguity, see Hopcroft/Ullman 1979 section 4.3, or
Grune/Jacobs 1990/2008 section 3.1.2.
Of particular interest here is the
discussion of extended
notations for context-free grammars in section
2.3.2.4 of Grune/Jacobs 1990/2008.
[2] The example assumes an ixml grammar like
the one for parsing vcards
which was posted earlier this year on
the xsl-list mailing list.

Balisage: The Markup Conference

Invisible XML coming into focus
Status report from the community group

Tomos Hillman
eXpertML Ltd
<tom@expertml.com>

Tom Hillman has worked as an XML practitioner and
consultant for
fifteen years, doing everything from
documentation to IT support and
administration to workflows
for digital publishing to conference
organization to XML
database management and consultancy.

John Lumley
<john@johnlumley.net>

A Cambridge engineer by background, John Lumley created
the AI
group at Cambridge Consultants in the early 1980s and
then joined
HPLabs Bristol as one of its founding members. He
worked there for 25
years, managing and contributing in a
variety of software/systems fields,
latterly specialising in
XSLT-based document engineering, in which he
subsequently
gained a PhD in early retirement. Rarely happier than when
writing XSLT to write XSLT to write XSLT, he spent the next
several
years helping develop the Saxon XSLT processor for
Saxonica, including
developing the XSLT-based XSLT compiler
now used in SaxonJS. Now
in proper retirement for a couple of
years he still likes to 'potter' with
XSLT and is currently
working on a JavaScript-based processor for
Invisible XML to
attach to SaxonJS.

Steven Pemberton
Centrum Wiskunde & Informatica (CWI)

Steven Pemberton is a researcher, author, public
speaker, and occasional
broadcaster, affiliated with the CWI,
The Dutch National Research
Centre for Mathematics and
Informatics. His research is broadly in
interaction, and how
the underlying software architecture can better

mailto:tom@expertml.com
mailto:john@johnlumley.net

support users.
He is the chair of the W3C Community Group on Invisible
XML.

C. M. Sperberg-McQueen
Black Mesa Technologies LLC
<cmsmcq@blackmesatech.com>

C. M. Sperberg-McQueen is the founder of Black Mesa Technologies
LLC,
a consultancy specializing in the use of descriptive markup to help
memory institutions preserve cultural heritage information. He co-edited
the XML 1.0 specification, the Guidelines of the Text Encoding
Initiative, and the XML Schema Definition Language (XSDL) 1.1
specification.

Bethan Tovey-Walsh
Swansea University
<bytheway@linguacelta.com>

Bethan Tovey-Walsh is a PhD student in Applied Linguistics and Welsh
at Swansea
University. She is funded by the CorCenCC corpus of
modern Welsh, and created the Welsh
part-of-speech tagger now used by
the project. She previously worked for OUP as a content
architect and as
a researcher for the Oxford English Dictionary.

Norm Tovey-Walsh
Senior Software Developer
Saxonica
<ndw@nwalsh.com>

Norm Tovey-Walsh is currently a senior software developer at Saxonica
Ltd, working
from his home in Swansea, Wales. Previously, he was
employed by MarkLogic Corporation, Sun
Microsystems, Arbortext, and
O’Reilly Media (then O’Reilly & Associates).

Balisage: The Markup Conference

mailto:cmsmcq@blackmesatech.com
mailto:bytheway@linguacelta.com
mailto:ndw@nwalsh.com

	Title Page
	Introduction
	About iXML
	Abstractions
	What iXML does
	Processing
	A Simple Example: Dates
	Attributes
	Ambiguity

	What's New
	Significant changes
	Updates to the specification
	Infrastructure
	What next?

	Implementations
	ixampl
	JayParser
	Hywel
	Aparecium
	jωiXML
	The XPath3.1 grammar

	NineML
	CoffeeGrinder
	CoffeeFilter
	CoffeePot
	CoffeeSacks
	CoffeePress

	About the Authors

