
Suppose You Had Blocks within a Notebook

Mauricio Verano Merino
m.verano.merino@vu.nl

Vrije Universiteit Amsterdam

Amsterdam, The Netherlands

Juan Pablo Sáenz
juan.saenz@polito.it

Politecnico di Torino

Turin, Italy

Ana María Díaz Castillo
anamdiaz9328@gmail.com

Teach for All

Bogotá, Colombia

Abstract

Computational notebooks have been gaining prominence as

a development environment suitable for non-experienced

developers. However, it requires proficiency in writing syn-

tactically and semantically correct code. In this article, we

propose integrating a block-based approach into compu-

tational notebooks to prevent syntactical errors and ease

the non-expert developers’ adoption. Furthermore, we rely

on two tools previously implemented (Bacatá and Kogi) to

(i) create a computational notebook for Domain-Specific

Languages and (ii) generate a block-based representation

upon the language definition. Consequently, our approach

does not exclusively focus on integrating a block-based en-

vironment into computational notebooks but on enabling

the creation and integration of domain-specific block-based

environments into notebooks. Future work concerns the

evaluation of our proposal through a user study.

CCS Concepts: · Software and its engineering→ Visual

languages; Domain specific languages; Graphical user

interface languages; Syntax.

Keywords: Block-based languages, Scratch, Computational

notebook, Documentation, Jupyter, DSLs, Blockly

ACM Reference Format:

Mauricio Verano Merino, Juan Pablo Sáenz, and Ana María Díaz

Castillo. 2022. Suppose You Had Blocks within a Notebook. In

Proceedings of the 1st ACM SIGPLAN International Workshop on

Programming Abstractions and Interactive Notations, Tools, and En-

vironments (PAINT ’22), December 05, 2022, Auckland, New Zealand.

ACM, New York, NY, USA, 6 pages. https://doi.org/10.1145/3563836.

3568728

1 Introduction

End-User Programming (EUP) is a field of theHuman-Computer

Interaction (HCI) domain that studies the methods and tech-

nologies that enable people to customize their software [18].

Such customization can be achieved at different levels and

PAINT ’22, December 05, 2022, Auckland, New Zealand

© 2022 Copyright held by the owner/author(s).

ACM ISBN 978-1-4503-9910-4/22/12.

https://doi.org/10.1145/3563836.3568728

involve diverse artifacts such as programming languages,

Integrated Development Environments (IDEs), Read-Eval-

Print Loop (REPLs), development frameworks, Tangible User

Interfaces (TUIs), and Graphical User Interfaces (GUIs).

Domain-Specific Languages (DSLs) are small languages

tailored to specific problems in a concrete domain. They use

domain concepts rather than programming concepts [21, 32].

In this manner, DSLs provide domain experts with a higher

level of abstraction that enable them to write their software.

Due to this, DSLs have been gaining prominence [5], increas-

ing the number of non-programmers that are developing

software [27]. DSLs and their tooling are created by language

engineers through LanguageWorkbenches (LWB) [8, 9], while

computational notebooks have allowed non-experienced de-

velopers to write, document, and execute their code within

a single document. For this reason, they have gained popu-

larity among data scientists, journalists, and statisticians.

In this scenario, this paper presents Noteblocks, a compu-

tational notebook that uses block-based syntax as a graph-

ical input to write code. The advantages of Block-based-

environments are well known (e.g., preventing syntax er-

rors and reducing implementation times). Taking that into

account, our proposal’s novelty lies in generating the block-

based representation of a DSL and integrating it into a com-

putational notebook environment. This will be done almost

for free and will rely entirely in the language definition.

2 Context

This section briefly describes computational notebooks and

Block-based environments. It presents two tools regarding

DSLs, one that integrates them with computational note-

books, and other one that generates a block-based interface

for them.

2.1 Computational Notebooks

Computational notebooks are cell-based documents that al-

low users to interleave documentation and code. Figure 1

shows an example of a notebook in which the first cell (doc-

umentation cell) contains prose written in Markdown; the

second cell (code cell) contains executable Python code, and

below the code cell it shows the corresponding result (out-

put cell) of running the code. In general, notebooks have

lowered the entry barrier to programming for novices [28].

Nowadays there are more than 60 notebook platforms [17]

and one of the most popular is the Jupyter project [16] with

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0

International License.

57

http://creativecommons.org/licenses/by-sa/4.0/
https://orcid.org/0000-0003-2278-1365
https://orcid.org/0000-0003-0928-3089
https://orcid.org/0000-0001-5702-0764
https://doi.org/10.1145/3563836.3568728
https://doi.org/10.1145/3563836.3568728
https://doi.org/10.1145/3563836.3568728


PAINT ’22, December 05, 2022, Auckland, New Zealand M. Verano et al.

millions of users [29]. Computational notebooks have be-

come a prominent End-user programming tool where users

can quickly run and test their prototypes using code in an

exploratory programming setting. However, most notebook

platforms have built-in support for popular general-purpose

languages (e.g., Python, JavaScript, and R, among others),

and adding support for new languages in them, even if pos-

sible, is time-consuming and cumbersome.

Figure 1. Example of a cell execution in Jupyter computa-

tional notebook

2.2 Block-Based Environments

Block-based environments are visual programming envi-

ronments that use jigsaw-like elements to represent lan-

guage constructs; in them, code constructs are manipulated

as pieces of a puzzle. One of the most popular and successful

Block-based environments is Scratch [26], an educational

tool for teaching children how to program. Indeed, thanks

to their friendly, intuitive graphical interface and interaction

design, they have become a prominent alternative to lower

the entry barrier to programming [2]. They offer a what-you-

see-is-what-you-get (WYSIWYG) experience, which means

that the developer or the end-user does not need to know

the complete syntax of the language in order to program. Al-

though these environments require some knowledge of the

code constructs to build a program, such knowledge is less

specialized and more suitable for non-technical users [1, 6].

Nevertheless, for the computational notebooks, supported

languages are limited, and creating new block-based environ-

ments requires significant effort and technical proficiency.

For DSLs, it is even more challenging due to the small de-

velopment teams. Figure 2 shows a block-based language

developed with Google Blockly, a client-side library for cre-

ating block-based environments.

2.3 Kogi and Bacatá

Kogi and Bacatá are tools that allow language engineers

to reuse existing language definitions to generate program-

ming environments for DSLs in a generic fashion. On the one

hand, Kogi [34] is a tool for describing and deriving block-

based environments from context-free grammars using the

Rascal [15] Language Workbench (LWB) and Blockly. Kogi

performs five operations: takes a DSL written in Rascal’s

built-in grammar formalism; preprocesses it to eliminate

disambiguation constructs and inline chain rules; maps the

Figure 2. Block-based editor created using Google Blockly

grammar to the constructs available in the Blocky environ-

ment; customizes the appearance of the Blocks based on the

preferences defined by the language engineer; and generates

the corresponding Blocky representation. One of Kogi’s key

strengths is that it reuses existing language definitions to

offer a new UI for the language almost for free.

On the other hand, Bacatá [20] is a language-parametric

tool for generating notebook interfaces for DSLs. It takes

as input the syntax definition of the language expressed as

context-free grammar and a Read-Eval-Print Loop (REPL) in-

terpreter definition to generate a Jupyter kernel. This kernel

is generated by reusing existing language components such

as syntaxes (concrete and abstract), parsers, type checkers,

code generators, and interpreters. In this manner, Bacatá

allows language engineers to offer their users the possibility

to use their DSL within a Jupyter notebook, using code cells

or command line scripts managed by the REPL.

These two approaches are possible by using meta- pro-

gramming tools and techniques [23], and are part of an ex-

isting research topic on programming environment genera-

tion [3, 7, 13, 25, 31]. When used together, Kogi and Bacatá

give rise to Noteblocks, which is our approach to generate a

block-based interface for a DSL that can be executed within

a computational notebook environment. In the next section,

we will describe the Noteblocks architecture and implemen-

tation in detail.

3 Noteblocks

As mentioned in the previous section, Computational note-

books have become a prominent End-user programming tool

where users can quickly run and test their code prototypes in

an exploratory programming setting. However, using them

requires semantically and syntactically proficiency in the

chosen programming language. Additionally, just a small set

of general purpose programming languages are supported,

and integrating a language is technically challenging and

time spending.

Visual languages, as block-based environments, provide

a friendly and intuitive graphical interface through which

users can implement code without facing syntax issues. One

of their major benefits is that developers do not need to

58



Suppose You Had Blocks within a Notebook PAINT ’22, December 05, 2022, Auckland, New Zealand

memorize the language’s syntax since they are always avail-

able in the block-based editor toolbox. Consequently, this

characteristic has significantly lowered the entry barriers to

programming.

In this scenario, our proposal aims to merge the best of

both worlds which is to create a cost-efficient tool to support

using DSLs in a widely adopted exploratory programming

setup. For this purpose, Noteblocks proposes a generative ap-

proach that builds upon previous work where the language

definition is used as input to generate and reuse existing

language components. In this section, we describe our solu-

tion architecture and how the integration with the Jupyter

front-end was implemented. Then we illustrate a running

example.

3.1 Overall Architecture

Noteblocks has three main components: Kogi, Bacatá, and

a Jupyter front-end extension. While Kogi and Bacatá are

implemented using Rascal, the front-end extension is imple-

mented within the Jupyter development environment using

JavaScript. Figure 3 shows Noteblocks’s general architecture.

As outlined in the previous section, the initial input ar-

tifacts are the language definition (grammar) and a REPL

interpreter. Kogi takes the language definition to derive a

Block-Based Editor (marked as BBE in Figure 3). Bacatá, apart

from the definition, uses the definition of an interpreter, ex-

pressed as a REPL interface, to generate the Jupyter Kernel.

In this regard, language engineers can reuse an existing in-

terpreter or develop a new one1. Also, sequential languages 2

are preferred to generate the kernel.

Figure 3. Noteblocks’s architecture

The Blocks2text module transforms the block-based pro-

grams into a textual representation suitable to be parsed by

the corresponding language parser. Without this transfor-

mation, communication between Kogi and Bacatá would not

be possible.

3.2 Jupyter’s Notebook Front-End Extension

The implementation of Noteblocks was achieved upon cus-

tomizing the Jupyter notebook front-end in two ways: first,

1Development of REPL-interfaces is part of the language design, and there

are some crucial considerations when deriving a REPL interpreter [30]
2A sequential language is a language in which the concatenation of two

valid programs is also a valid program [30]

Figure 4. Block-based editor being enabled within a Jupyter

notebook using Noteblocks

by adding block-based support, and second, by executing

block-based programs. To that end, a Jupyter extension was

developed in which a button called Tile view (as shown in

Figure 4) was graphically added on top of code cells. By

clicking that button, the representation of the code in the

cell switches from text-based to block-based and vice-versa.

From the development point of view, the block-based editing

support was implemented through Google Blockly [10], em-

bedding it into the Jupyter notebook code cell view. These

changes allowed Noteblocks to read Kogi’s generated block-

based environment and render it as part of the input cell

within a notebook.

As described in the previous subsection, the Blocks2text

module is fundamental in transforming the block-based pro-

grams into text, so that the language’s interpreter can be

completely reused. In this way, the text is sent back to the

language’s interpreter in Rascal, that knows how to execute

the code snippet and what to retrieve back to the graphical

interface. This feature is interesting because language engi-

neers do not need to have different versions of the interpreter

depending on the front-end (text-based or block-based); a

single interpreter works for both UIs.

3.3 Running Example: Pico

To evaluate our approach, we used Pico: a small program-

ming language (similar to the While language [22]) com-

monly used to teach programming languages semantics.

Therefore, we reused an existing Rascal implementation of

Pico [24]. Based on this implementation, Noteblocks received

the grammar as input, and Kogi generated the block-based

environment. Then, using the grammar and the REPL, Bacatá

generated the Jupyter kernel. In this process, Noteblocks was

responsible for loading the block-based environment into

Jupyter when the notebook started. Technically speaking,

the block-based environment is a JavaScript file containing

the definition of the blocks and their associated toolbox.

Once the components were deployed and executed, a Pico

notebook was opened. In the Jupyter default front-end inter-

face, a code cell was added to every code cell, as described

in the previous subsection. Figure 5 shows the Pico program

implemented using the block-based notation within a code

cell in the Jupyter computational notebook. Additionally, a

full video on how the environment looked like is available

online 3. After the users executed the code cell, the output

3https://surfdrive.surf.nl/files/index.php/s/UVzhV2QcEfj4Lf6

59

https://surfdrive.surf.nl/files/index.php/s/UVzhV2QcEfj4Lf6


PAINT ’22, December 05, 2022, Auckland, New Zealand M. Verano et al.

was displayed in the default output cell as when executing

text-based code snippets.

Figure 5. Block-based program implemented within a

Jupyter notebook using Noteblocks

4 Discussion and Future Work

End-user programminghas received much attention in the

last decade for empowering non-technical people (e.g., end-

users and novice users) from different domains and back-

grounds to develop software. Since the number of end-users

significantly outnumber professional programmers [27], the

impact of EUP could be huge.

Block-based environments provide a good interface for

end-users to experiment with a language and to focus on

what their programs should do, instead of their syntax. How-

ever, Block-based interfaces might not be effective for ex-

perienced users. Also, this metaphor might not be suited

for all languages as discussed by Verano et al.[33], but more

research is needed to determine what languages are the most

appropriate to offer this type of interface. One important

element is that thanks to the use of language workbenches,

Noteblocks offers an alternative programming environment

to the traditional textual IDE settings. This means, that lan-

guage engineers have a single language definition and they

obtain almost for free notebooks with block-based notation.

If the block-based notation is not suitable for the language,

engineers can use only Bacatáto obtain a notebook environ-

ment.

One of the limitations of the current approach is that each

code cell contains a block-based workspace, which might

have consequences in terms of browser’s performance when

the number of code cells increases. Moreover, from the us-

ability point of view, the current approach is not optimal

since the visual nature of the block-based editors requires

more space than text-based code editors. Therefore, further

research is required to evaluate the current approach and

find solutions to address this issue without redesigning the

whole notebook experience.

5 Related Work

Computational notebooks involve diverse domains such as

end-user programming, exploratory programming, live pro-

gramming, and literate computing. This section presents re-

search on the customization and adoption of computational

notebooks in diverse domains and contexts.

Kery et al. [14] extended computational notebooks with a

new API that enables new forms of interactive graphical data

tools that seamlessly translate to code. Therefore, these tools

can represent themselves as both code and GUI as needed.

Specifically, the authors implemented six example notebook

widgets (table, plot, image, confusion, api, datasplit,

and save) to support data scientists on tasks ranging from

machine learning to visualization support. This approach

aims to provide richer interactions and more context-aware

support tailored to a data analyst’s specific workflow. Fur-

thermore, a study conducted with nine professionals ev-

idenced that the GUI makes suggested operations under-

standable to novice users, who may not yet be familiar with

machine learning best practices. This work is particularly

relevant to our proposal because it integrates the hybrid edi-

tor concept into the computational notebook environment.

Indeed, Noteblocksis partially motivated by the author’s will-

ingness to see more HCI systems work in these intersections

to support data workers and programmers in the coming

years.

In the context of the Jupyter framework, Verano et al. [35]

developed a language parametric notebook generator for

Domain-Specific Languages (DSL). The authors aimed to

enable language engineers to quickly implement Jupyter lan-

guage kernels for their DSLs by reusing, as much as possible,

existing language components, such as parsers, code gen-

erators, and Read-Eval-Print Loops (REPLs). By providing

generic hooks for registering language services, the authors

could hide the low-level complexity of Jupyter’s wire pro-

tocol. Thus, implementing a notebook interface for a DSL

becomes a matter of writing a few lines of code. In the same

vein, Verano et al. [19] has recently discussed the possibility

of defining widgets within computational notebooks to pro-

vide direct insights into the program state graphically. The

authors present an execution graph widget and a variable

watcher widget. The first widget enables users to navigate

the results (configurations) obtained after executing the note-

book cells, and the second enables them to reveal the entire

execution state and history to the user.

Head et al. [11] introduce a set of code gathering tools and

extensions to computational notebooks aimed for helping an-

alysts to find, clean, recover, and compare versions of code in

cluttered inconsistent notebooks. After conducting a qualita-

tive usability study with 12 experienced analysts, the authors

60



Suppose You Had Blocks within a Notebook PAINT ’22, December 05, 2022, Auckland, New Zealand

determined that their presented tools were found helpful in

cleaning notebooks and generating personal documentation

and lightweight versioning.

Yin et al. [36] describes CyberGIS-Jupyter, a framework for

performing data-intensive, reproducible, and scalable geospa-

tial analytics using the Jupyter Notebook. The authors’ goal

was to reach agility and reproducibility in geospatial analyt-

ics. In their proposal, instead of developing customized and

web-based GUI interfaces that require professional skills,

the authors relied on using a Jupyter notebook as a GUI

development platform. Specifically, they developed a set of

utilities to support CyberGIS operations, using a Jupyter

Interactive Widgets library. Furthermore, the authors used

container virtualization technologies to record and repro-

duce computational environments with the exact versions

of all external libraries. This way, the framework allows

researchers to share and build on each other’s work in a

large-scale geospatial analytics setup.

Chen et al. [4] presents an approach of mixing graphi-

cal user interfaces for defining image processing pipelines

with computational notebooks. This approach uses node di-

agrams as visual input for the code cells of the notebook.

However, this approach does not offer a generic solution

for other languages to use this notation. Similarly, Homer

and Noble [12] introduced Tiled Grace, a hybrid editor that

allows users to edit their programs using blocks or text in the

same environment; however, this approach is not integrated

within a computational notebook setting nor offers a generic

mechanism to be reused by other languages.

6 Conclusion

Noteblocks shows that it is possible tomerge both approaches,

namely computational notebooks, and block-based environ-

ments. The result is a single language parametric tool that

aims to improve the end-users experience; all this with a

low effort for developers, thanks to the generative approach.

Also, as shown in this article, Noteblocks allows language en-

gineers to quickly prototype and test new tools. This allows

DSLs to keep the pace of new tooling commonly developed

only for popular General Purpose Programming Languages

(GPLs). Thanks to the generative approach, developers can

get a notebookwith blocks as input almost for free. The effort

required to use Noteblocks is minimal if the language’s defi-

nition and its interpreter are already defined, and the latter

belongs to the class of sequential languages. Finally, offering

more friendly tooling for end-users not only improves the

productivity of end-users but also improves the adoption of

DSLs by offering popular tools commonly available only for

popular GPLs that have proven to reduce the entry barrier

to programming for DSLs.

Computational notebooks are popular among different

communities, such as professional developers, data scien-

tists, domain experts, and novice programmers, because they

have lowered the entry barrier to programming compared to

traditional programming environments (professional IDEs)

requiring a compile-edit-run loop. However, it is still pos-

sible to enrich the end-user’s programming experience by

enabling different notations for creating programs (e.g., us-

ing GUIs together with code). Moreover, it is crucial to help

users create programs, but it is also essential to help users

understand their program execution cycles. Therefore, in fu-

ture work, we want also to study how to offer better feedback

to end-users so that they can achieve their tasks and reduce

their cognitive load by revealing the underlying system’s

state.

References
[1] Austin Cory Bart, Javier Tibau, Dennis Kafura, Clifford A. Shaffer, and

Eli Tilevich. 2020. Design and Evaluation of a Block-based Environ-

ment with a Data Science Context. IEEE Transactions on Emerging

Topics in Computing 8, 1 (2020), 182ś192. https://doi.org/10.1109/TETC.

2017.2729585

[2] David Bau, Jeff Gray, Caitlin Kelleher, Josh Sheldon, and Franklyn

Turbak. 2017. Learnable Programming: Blocks and Beyond. Commun.

ACM 60, 6 (2017), 72ś80. https://doi.org/10.1145/3015455

[3] Philippe Charles, Robert M. Fuhrer, Stanley M. Sutton, Evelyn Duester-

wald, and Jurgen Vinju. 2009. Accelerating the Creation of Cus-

tomized, Language-Specific IDEs in Eclipse. 44, 10 (2009), 191ś206.

https://doi.org/10.1145/1639949.1640104

[4] Fei Chen, Philipp Slusallek, Martin Muller, and Tim Dahmen. 2022.

Chaldene: Towards Visual Programming Image Processing in Jupyter

Notebooks. In 2022 IEEE Symposium on Visual Languages and Human-

Centric Computing (VL/HCC). 1ś3. https://doi.org/10.1109/VL/

HCC53370.2022.9832910

[5] Thomas Cleenewerck and Ivan Kurtev. 2007. Separation of Concerns in

Translational Semantics for DSLs in Model Engineering. In Proceedings

of the 2007 ACM Symposium on Applied Computing (Seoul, Korea)

(SAC ’07). Association for Computing Machinery, New York, NY, USA,

985ś992. https://doi.org/10.1145/1244002.1244218

[6] Martin Cápay and Nika Klimová. 2019. Engage Your Students via

Physical Computing!. In 2019 IEEE Global Engineering Education Con-

ference (EDUCON). 1216ś1223. https://doi.org/10.1109/EDUCON.2019.

8725101

[7] Söderberg Emma and Hedin Görel. 2011. Building Semantic Editors

Using JastAdd: Tool Demonstration. (2011), 6 pages. https://doi.org/

10.1145/1988783.1988794

[8] S. Erdweg, T. v. d. Storm, M. Volter, L. Tratt, R. Bosman, W. R. Cook,

A. Gerritsen, A. Hulshout, S. Kelly, A. Loh, G. Konat, P. J. Molina, M.

Palatnik, R. Pohjonen, E. Schindler, K. Schindler, R. Solmi, V. Vergu, E.

Visser, K. v. d. Vlist, G. Wachsmuth, and J. v. d. Woning. 2015. Eval-

uating and comparing language workbenches: Existing results and

benchmarks for the future. Computer Languages, Systems & Structures

44 (2015), 24ś47. https://doi.org/10.1016/j.cl.2015.08.007

[9] Martin Fowler. 2015. Language Workbenches: The Killer-App for

Domain Specific Languages? https://bit.ly/32YuhJT. [Online, accessed

11 August 2021].

[10] Google. 2020. Blockly. https://developers.google.com/blockly. https:

//developers.google.com/blockly [Online, accessed 25 July 2022].

[11] Andrew Head, Fred Hohman, Titus Barik, Steven M. Drucker, and

Robert DeLine. 2019. Managing Messes in Computational Notebooks.

In Proceedings of the 2019 CHI Conference on Human Factors in Com-

puting Systems (Glasgow, Scotland Uk) (CHI ’19). ACM, New York, NY,

USA, Article 270, 12 pages. https://doi.org/10.1145/3290605.3300500

61

https://doi.org/10.1109/TETC.2017.2729585
https://doi.org/10.1109/TETC.2017.2729585
https://doi.org/10.1145/3015455
https://doi.org/10.1145/1639949.1640104
https://doi.org/10.1109/VL/HCC53370.2022.9832910
https://doi.org/10.1109/VL/HCC53370.2022.9832910
https://doi.org/10.1145/1244002.1244218
https://doi.org/10.1109/EDUCON.2019.8725101
https://doi.org/10.1109/EDUCON.2019.8725101
https://doi.org/10.1145/1988783.1988794
https://doi.org/10.1145/1988783.1988794
https://doi.org/10.1016/j.cl.2015.08.007
https://bit.ly/32YuhJT
https://developers.google.com/blockly
https://developers.google.com/blockly
https://developers.google.com/blockly
https://doi.org/10.1145/3290605.3300500


PAINT ’22, December 05, 2022, Auckland, New Zealand M. Verano et al.

[12] Michael Homer and James Noble. 2014. Combining Tiled and Textual

Views of Code. In 2014 Second IEEE Working Conference on Software

Visualization. 1ś10. https://doi.org/10.1109/VISSOFT.2014.11

[13] Heering Jan and Klint Paul. 2000. Semantics of Programming Lan-

guages: A Tool-oriented Approach. SIGPLAN Not. 35, 3 (2000), 39ś48.

https://doi.org/10.1145/351159.351173

[14] Mary Beth Kery, Donghao Ren, Fred Hohman, Dominik Moritz, Kanit

Wongsuphasawat, and Kayur Patel. 2020. Mage: Fluid Moves Between

Code and Graphical Work in Computational Notebooks. In Proceedings

of the 33rd Annual ACM Symposium on User Interface Software and

Technology (Virtual Event, USA) (UIST ’20). Association for Computing

Machinery, New York, NY, USA, 140ś151. https://doi.org/10.1145/

3379337.3415842

[15] Paul Klint, Tijs van der Storm, and Jurgen J. Vinju. 2009. RASCAL: A

Domain Specific Language for Source Code Analysis andManipulation.

InNinth IEEE International Working Conference on Source Code Analysis

and Manipulation (SCAM). IEEE Computer Society, 168ś177. https:

//doi.org/10.1109/SCAM.2009.28

[16] Thomas Kluyver, Benjamin Ragan-Kelley, Fernando Pérez, Brian

Granger, Matthias Bussonnier, Jonathan Frederic, Kyle Kelley, Jessica

Hamrick, Jason Grout, Sylvain Corlay, Paul Ivanov, Damián Avila, Safia

Abdalla, Carol Willing, and Jupyter development team. 2016. Jupyter

Notebooks - a publishing format for reproducible computational work-

flows. In Positioning and Power in Academic Publishing: Players, Agents

and Agendas, Fernando Loizides and Birgit Scmidt (Eds.). IOS Press,

Netherlands, 87ś90.

[17] S. Lau, I. Drosos, J. M. Markel, and P. J. Guo. 2020. The Design

Space of Computational Notebooks: An Analysis of 60 Systems in

Academia and Industry. In 2020 IEEE Symposium on Visual Languages

and Human-Centric Computing (VL/HCC). 1ś11. https://doi.org/10.

1109/VL/HCC50065.2020.9127201

[18] Henry Lieberman, Fabio Paternò, Markus Klann, and VolkerWulf. 2006.

End-User Development: An Emerging Paradigm. Springer Netherlands,

1ś8. https://doi.org/10.1007/1-4020-5386-X_1

[19] M. Verano Merino, L. Thomas van Binsbergen, and M. Seraj. 2022.

Making the Invisible Visible in Computational Notebooks. In 2022

IEEE Symposium on Visual Languages and Human-Centric Computing

(VL/HCC). IEEE Computer Society, Los Alamitos, CA, USA, 1ś3. https:

//doi.org/10.1109/VL/HCC53370.2022.9833148

[20] Mauricio Verano Merino, Jurgen J. Vinju, and Tijs van der Storm. 2020.

Bacatá: Notebooks for DSLs, Almost for Free. CoRR abs/2002.06180

(2020). arXiv:2002.06180 https://arxiv.org/abs/2002.06180

[21] Marjan Mernik, Jan Heering, and Anthony M. Sloane. 2005. When and

How to Develop Domain-specific Languages. ACM Computing Surveys

(CSUR) 37, 4 (2005), 316ś344. https://doi.org/10.1145/1118890.1118892

[22] Hanne Riis Nielson and Flemming Nielson. 2007. Semantics with

Applications: An Appetizer. Springer London. https://doi.org/10.1007/

978-1-84628-692-6

[23] Klint Paul. 1993. A Meta-Environment for Generating Programming

Environments. ACM Transactions on Software Engineering and Method-

ology (TOSEM) 2, 2 (1993), 176ś201. https://doi.org/10.1145/151257.

151260

[24] Rascal. 2017. Pico. https://tutor.rascal-mpl.org/Recipes/Recipes.html#

/Recipes/Languages/Pico/Pico.html. https://tutor.rascal-mpl.org/

Recipes/Recipes.html#/Recipes/Languages/Pico/Pico.html [Online,

accessed 1 September 2022].

[25] Thomas Reps and Tim Teitelbaum. 1984. The Synthesizer Generator.

(1984), 42ś48. https://doi.org/10.1145/800020.808247

[26] Mitchel Resnick, John Maloney, Andrés Monroy-Hernández, Natalie

Rusk, Evelyn Eastmond, Karen Brennan, Amon Millner, Eric Rosen-

baum, Jay Silver, Brian Silverman, and Yasmin Kafai. 2009. Scratch:

Programming for All. Commun. ACM 52, 11 (nov 2009), 60ś67.

https://doi.org/10.1145/1592761.1592779
[27] Daniel J. Rough and Aaron Quigley. 2020. End-User Development

of Experience Sampling Smartphone Apps -Recommendations and

Requirements. Proceedings of the ACM on Interactive, Mobile, Wearable

and Ubiquitous Technologies 4, 2 (June 2020), 1ś19. https://doi.org/10.

1145/3397307

[28] Adam Rule, Aurélien Tabard, and James D. Hollan. 2018. Exploration

and Explanation in Computational Notebooks. In Proceedings of the

2018 CHI Conference on Human Factors in Computing Systems (Montreal

QC, Canada) (CHI ’18). ACM, New York, NY, USA, Article 32, 12 pages.

https://doi.org/10.1145/3173574.3173606

[29] Adam Rule, Aurélien Tabard, and James D. Hollan. 2018. Exploration

and Explanation in Computational Notebooks. In Proceedings of the

2018 CHI Conference on Human Factors in Computing Systems (Montreal

QC, Canada) (CHI ’18). Association for Computing Machinery, New

York, NY, USA, 1ś12. https://doi.org/10.1145/3173574.3173606

[30] L. Thomas van Binsbergen, Mauricio Verano Merino, Pierre Jeanjean,

Tijs van der Storm, Benoit Combemale, and Olivier Barais. 2020. A

Principled Approach to REPL Interpreters. In Proceedings of the 2020

ACM SIGPLAN International Symposium on New Ideas, New Paradigms,

and Reflections on Programming and Software (Virtual, USA) (Onward!

2020). Association for Computing Machinery, New York, NY, USA,

84ś100. https://doi.org/10.1145/3426428.3426917

[31] Mark G.J. van den Brand, Arie van Deursen, Jan Heering, Hayco A.

de Jong, Merijn de Jonge, Tobias Kuipers, Paul Klint, Leon Moonen,

Pieter A. Olivier, Jeroen Scheerder, Jurgen J. Vinju, Eelco Visser, and

Joost Visser. 2001. The ASF+SDF Meta-Environment: A Component-

Based Language Development Environment. Electronic Notes in The-

oretical Computer Science 44, 2 (2001), 3ś8. https://doi.org/10.1016/

S1571-0661(04)80917-4 LDTA’01, First Workshop on Language De-

scriptions, Tools and Applications (a Satellite Event of ETAPS 2001).

[32] Arie van Deursen, Paul Klint, and Joost Visser. 2000. Domain-Specific

Languages: An Annotated Bibliography. SIGPLAN Not. 35, 6 (2000),

26ś36. https://doi.org/10.1145/352029.352035

[33] Mauricio Verano Merino, Tom Beckmann, Tijs van der Storm, Robert

Hirschfeld, and Jurgen J. Vinju. 2021. Getting Grammars into Shape

for Block-Based Editors. In Proceedings of the 14th ACM SIGPLAN

International Conference on Software Language Engineering (Chicago,

IL, USA) (SLE 2021). Association for Computing Machinery, New York,

NY, USA, 83ś98. https://doi.org/10.1145/3486608.3486908

[34] Mauricio Verano Merino and Tijs van der Storm. 2020. Block-Based

Syntax from Context-Free Grammars. In Proceedings of the 13th ACM

SIGPLAN International Conference on Software Language Engineering

(Virtual, USA) (SLE 2020). Association for Computing Machinery, New

York, NY, USA, 283ś295. https://doi.org/10.1145/3426425.3426948

[35] Mauricio Verano Merino, Jurgen Vinju, and Tijs van der Storm. 2018.

Bacatá: A Language Parametric Notebook Generator (Tool Demo).

In Proceedings of the 11th ACM SIGPLAN International Conference on

Software Language Engineering (Boston, MA, USA) (SLE 2018). ACM,

New York, NY, USA, 210ś214. https://doi.org/10.1145/3276604.3276981

[36] Dandong Yin, Yan Liu, Anand Padmanabhan, Jeff Terstriep, Johnathan

Rush, and Shaowen Wang. 2017. A CyberGIS-Jupyter Framework

for Geospatial Analytics at Scale. In Proceedings of the Practice and

Experience in Advanced Research Computing 2017 on Sustainability,

Success and Impact (New Orleans, LA, USA) (PEARC17). ACM, New

York, NY, USA, Article 18, 8 pages. https://doi.org/10.1145/3093338.

3093378

Received 2022-09-01; accepted 2022-10-02

62

https://doi.org/10.1109/VISSOFT.2014.11
https://doi.org/10.1145/351159.351173
https://doi.org/10.1145/3379337.3415842
https://doi.org/10.1145/3379337.3415842
https://doi.org/10.1109/SCAM.2009.28
https://doi.org/10.1109/SCAM.2009.28
https://doi.org/10.1109/VL/HCC50065.2020.9127201
https://doi.org/10.1109/VL/HCC50065.2020.9127201
https://doi.org/10.1007/1-4020-5386-X_1
https://doi.org/10.1109/VL/HCC53370.2022.9833148
https://doi.org/10.1109/VL/HCC53370.2022.9833148
https://arxiv.org/abs/2002.06180
https://arxiv.org/abs/2002.06180
https://doi.org/10.1145/1118890.1118892
https://doi.org/10.1007/978-1-84628-692-6
https://doi.org/10.1007/978-1-84628-692-6
https://doi.org/10.1145/151257.151260
https://doi.org/10.1145/151257.151260
https://tutor.rascal-mpl.org/Recipes/Recipes.html#/Recipes/Languages/Pico/Pico.html
https://tutor.rascal-mpl.org/Recipes/Recipes.html#/Recipes/Languages/Pico/Pico.html
https://tutor.rascal-mpl.org/Recipes/Recipes.html#/Recipes/Languages/Pico/Pico.html
https://tutor.rascal-mpl.org/Recipes/Recipes.html#/Recipes/Languages/Pico/Pico.html
https://doi.org/10.1145/800020.808247
https://doi.org/10.1145/1592761.1592779
https://doi.org/10.1145/3397307
https://doi.org/10.1145/3397307
https://doi.org/10.1145/3173574.3173606
https://doi.org/10.1145/3173574.3173606
https://doi.org/10.1145/3426428.3426917
https://doi.org/10.1016/S1571-0661(04)80917-4
https://doi.org/10.1016/S1571-0661(04)80917-4
https://doi.org/10.1145/352029.352035
https://doi.org/10.1145/3486608.3486908
https://doi.org/10.1145/3426425.3426948
https://doi.org/10.1145/3276604.3276981
https://doi.org/10.1145/3093338.3093378
https://doi.org/10.1145/3093338.3093378

	Abstract
	1 Introduction
	2 Context
	2.1 Computational Notebooks
	2.2 Block-Based Environments
	2.3 Kogi and Bacatá

	3 Noteblocks
	3.1 Overall Architecture
	3.2 Jupyter's Notebook Front-End Extension
	3.3 Running Example: Pico

	4 Discussion and Future Work
	5 Related Work
	6 Conclusion
	References

