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A B S T R A C T

With the emergence of energy communities, where a number of prosumers invest in shared generation and
storage, the issue of fair allocation of benefits is increasingly important. The Shapley value has attracted
increasing interest for redistribution in energy settings — however, computing it exactly is intractable beyond a
few dozen prosumers. In this paper, we first conduct a systematic review of the literature on the use of Shapley
value in energy-related applications, as well as efforts to compute or approximate it. Next, we formalise the
main methods for approximating the Shapley value in community energy settings, and propose a new one,
which we call the stratified expected value approximation. To compare the performance of these methods, we
design a novel method for exact Shapley value computation, which can be applied to communities of up to
several hundred agents by clustering the prosumers into a smaller number of demand profiles. We perform
a large-scale experimental comparison of the proposed methods, for communities of up to 200 prosumers,
using large-scale, publicly available data from two large-scale energy trials in the UK (UKERC Energy Data
Centre, 2017, UK Power Networks Innovation, 2021). Our analysis shows that, as the number of agents in
the community increases, the relative difference to the exact Shapley value converges to under 1% for all the
approximation methods considered. In particular, for most experimental scenarios, we show that there is no
statistical difference between the newly proposed stratified expected value method and the existing state-of-
the-art method that uses adaptive sampling (O’Brien et al., 2015), although the cost of computation for large
communities is an order of magnitude lower.
1. Introduction

Recent years have seen a shift towards decentralised energy systems,
in which communities of prosumers (consumers with their own local
renewable generation capacity and storage) satisfy more of their own
energy needs from renewable energy generated from local sources. A
number of regions, such as the European Union [1] and the United
Kingdom [2] are providing supportive regulations to encourage com-
munities of consumers to shift away from the dependence on cen-
tralised energy generation, and towards more decentralised and local
energy generation and storage systems.

One significant recent trend are transactive energy models that aim
to achieve better coordination between production and consumption
in local energy systems by use of market-based mechanisms that allow
energy exchanges between energy end users and prosumers. In broad

∗ Correspondence to: Centrum Wiskunde & Informatica, Science Park 123, 1098 XG Amsterdam, The Netherlands.
E-mail address: sho.cremers@cwi.nl (S. Cremers).

lines, there are two main models of organisation for local transactive
energy systems [3]. One is peer-to-peer (P2P) energy trading systems,
in which prosumers invest in their own energy assets (such as solar PV
panels, wind turbine, and or battery storage) and buy and sell energy
with their neighbours directly, based on their individually-owned as-
sets [4–7]. In this scenario, each prosumer is metered separately and
pays the value of its net metered electricity demand (demand after
using its generation and storage capacity). Another is the formation
of energy communities, where prosumers group together and buy a
shared generation resource (such as a community wind turbine) and
or a shared community battery. Here, the whole community is ‘‘behind
the meter’’, i.e. pays for the net demand of the entire community
over the billing period. The differences between the two models are
illustrated in Fig. 1. Each prosumer in Fig. 1(a) owns energy sources
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Nomenclature

Subscripts and sets

𝑖 For agents (households)
𝑘 For classes (clusters)
 Set of agents in the community
 For subcoalitions formed by agents in community

Parameters

𝑆𝑜𝐶max Maximum battery 𝑆𝑜𝐶 [%]
𝑆𝑜𝐶min Minimum battery 𝑆𝑜𝐶 [%]
𝑝𝑏𝑎𝑡,max Maximum (dis)charging power of battery [kW]
𝜏𝑠(𝑡) Export tariff at time 𝑡 [pence/kWh]
𝜏𝑏(𝑡) Import tariff at time 𝑡 [pence/kWh]
𝜂𝑐 Charging efficiency of battery
𝜂𝑑 Discharging efficiency of battery
𝛽 and 𝛾 Parameters for sigmoid function
𝑁DoD,max

𝑐𝑦𝑐𝑙𝑒𝑠 Maximum number of cycles allowed at specific
DoD, provided from manufacturer specification

Variables

𝑁 Number of agents
𝑇 Number of time steps
𝑡 For time steps
𝑗 For strata
𝑑𝑖(𝑡) Power demand of agent 𝑖 at time 𝑡 [kW]
𝑑 (𝑡) Power demand of community  at time 𝑡 [kW]
𝑔(𝑡) Power generated by community RES (wind tur-

bine) at time 𝑡 [kW]
𝑝bat(𝑡) Power of community battery at time 𝑡 [kW], nega-

tive when charging and positive when discharging
𝑝grid(𝑡) Power to/from utility grid at time 𝑡 [kW], negative

when selling and positive when buying
𝑆𝑜𝐶(𝑡) Battery state of charge at time 𝑡 [%]
𝑒𝑏(𝑡) Imported energy at time 𝑡 [kWh]
𝑒𝑠(𝑡) Exported energy at time 𝑡 [kWh]
𝑐grid
𝑇 ( ) Annual cost of community  importing energy

from utility grid, with 𝑇 = 1 year [£]
𝑐wind
𝑇 ( ) Annual cost of wind turbine of community  , with

𝑇 = 1 year [£]
𝑐bat
𝑇 ( ) Annual cost of battery of community  , with 𝑇 =

1 year [£]
DF Depreciation factor of battery
𝑐𝑇 ( ) Total annual energy cost of community  , with

𝑇 = 1 year [£]
𝑐( ) Cost function, equivalent to 𝑐𝑇 ( )
𝜙𝑖 Annual cost of agent 𝑖 according to Shapley value

[£]
𝑀𝐶𝑖 Annual cost of agent 𝑖 according to last marginal

contribution (unnormalised) [£]
𝑀𝐶 𝑖 Annual cost of agent 𝑖 according to normalised last

marginal contribution [£]

and a battery, and individually interacts with the central power grid,
in which the net demand is counted. It can be seen that the power flow
between a prosumer and the utility grid is bidirectional, and any excess
generation by the prosumer is sold to the grid. Furthermore, a P2P
trading scheme makes buying and selling energy among peers possible,
2

which is represented by dotted arrows in Fig. 1(a). On the contrary, the
𝑑𝑝−𝑖 (𝑡) Average power demand of the community without
agent 𝑖 at time 𝑡 [kW]

𝑆𝐸𝑉𝑖 Annual cost of agent 𝑖 according to stratified
expected value (unnormalised) [£]

𝑆𝐸𝑉 𝑖 Annual cost of agent 𝑖 according to normalised
stratified expected value [£]

𝑀 Number of samples of marginal contributions per
agent (for adaptive sampling)

𝑅𝐿𝑖 Annual cost of agent 𝑖 according to adaptive
sampling [£]

𝐾 Number of classes of unique demands in the
community

𝑁𝑘 Number of agents that belongs to class 𝑘
𝑃 () Multivariate hypergeometric distribution
𝜙̂𝑘 Cost redistributed to class 𝑘 by certain redistribu-

tion method (𝑀𝐶𝑘, 𝑆𝐸𝑉 𝑘, or 𝑅𝐿𝑘) [£]
𝑅𝐷𝜙(𝜙̂𝑘) Relative difference of a redistributed cost to the

Shapley value for class 𝑘 [%]
𝑅𝐷𝜙(𝜙̂) Average relative difference of a redistribution

method to the Shapley value [%]
𝛥𝑡 Duration of time period 𝑡 [hour]
DoD Depth of discharge of battery [%]
DFregular Depreciation factor by regular cycles
DFirregular Depreciation factor by irregular cycles
𝑛DoD,regular
𝑐𝑦𝑐𝑙𝑒𝑠 Number of regular cycles at specific DoD
𝑆𝑜𝐶𝑠𝑡𝑎𝑟𝑡∕𝑒𝑛𝑑

𝑙 Starting/ending SoC of cycle 𝑙 [%]
𝜋𝑖,𝑗 (𝑚) Probability of sampling stratum 𝑗 for agent 𝑖 at

sample 𝑚
𝜖(𝑚) Sigmoid function
𝜎̂𝑖,𝑗 Estimated standard deviation expected marginal

contribution of stratum 𝑗 for agent 𝑖
𝜇̂𝑖,𝑗 Estimated expected marginal contribution of agent

𝑖 at stratum 𝑗 in adaptive sampling
𝜎̂𝑖,𝑗 Estimated standard deviation of expected marginal

contribution of agent 𝑖 at stratum 𝑗 in adaptive
sampling

ℎ𝑖,𝑗 Count of agent 𝑖 sampling from stratum 𝑗 in
adaptive sampling

𝑚2𝑖,𝑗 Sum of squared differences from mean of stratum
𝑗 for agent 𝑖 in adaptive sampling

𝑚𝑐 Sampled marginal contribution in adaptive sam-
pling

𝛥 Difference between the sampled value and the
mean in adaptive sampling

𝑑𝑘(𝑡) L2-normalised power demand of class 𝑘 at time 𝑡

Abbreviations

DF Depreciation Factor
DoD Depth of Discharge
P2P Peer-to-Peer
RES Renewable Energy Source
SoC State of Charge

energy community in Fig. 1(b) presents a group of consumers sharing
energy assets and interacting with the utility grid as a single entity.
Net demand is computed for the whole community. These ‘‘behind
the meter’’ models rely on a community aggregator, which controls
the energy assets and distributes the generated/discharge power to
the households in the community. The aggregator is also in charge

of receiving energy from the utility grid whenever there is a deficit
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Fig. 1. Two different configurations of a community of prosumers, where (a) prosumers with their own energy assets are connected to the central grid individually, and (b)
prosumers with jointly-owned assets interact with the grid as a whole through the aggregator.
and sending back energy to the grid when there is a surplus in the
community.

This coalitional model around shared assets is increasingly pop-
ular, not just in academic research – for example, in Scotland, UK,
Community Energy Scotland1 identified 300+ energy communities that
formed around a shared energy asset – typically a wind turbine, but
similar examples exist all over the world. Such energy communities
can consist of anywhere between several dozens to several hundred
houses (e.g. a village or a city neighbourhood), often located on the LV
network behind a local transformer. The prosumers share the outputs of
jointly-owned energy assets, as well as the energy bill for the aggregate
residual demand, i.e. the part of the demand not covered by the local
generation and storage assets. Therefore, the community aggregator is
not only responsible for the control and distribution of energy in the
community but also for allocating any revenues from exporting energy
and the bills of the residual demand. Clearly, one of the key challenges
in this setting is the redistribution of such costs and benefits to the
prosumers in a fair way.

Coalitional game theory has long studied such redistribution prob-
lems in a wide variety of systems [8]. A key concept is the Shapley
value, first proposed by the Nobel prize-winning economist Lloyd Shap-
ley [9]. The Shapley value has recently begun getting substantial
attention in the energy applications — with a rapid increase in the
number of papers using Shapley value in energy systems in recent years
(see Section 2). However, a key challenge with the Shapley value is
that computing it is exponential in the number of agents, making exact
computation intractable beyond a small number of agents.

The prior papers dealt with this in several ways. Most consider
experimental models with up to a maximum of ∼10-20 agents, to
keep computations tractable. Another approach is to use some simpler
heuristics for cost redistribution (e.g. [10]), but it is not clear how close
these are to the exact Shapley value.

Yet another approach is to use sampling. Sampling-based approaches
do have merit, and in this paper, we implemented the most advanced
sampling-based method we are aware of, that of O’Brien et al. [11],
which uses reinforcement learning techniques to perform adaptive
sampling to calculate the Shapley value. However, they also have
disadvantages: for larger settings, a very large number of samples may
be needed to get a reasonable approximation of the true Shapley value,

1 https://communityenergyscotland.org.uk/
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which increases the computation cost considerably. Also, in community
energy applications, sampling-based methods have the disadvantage
that they may not produce a consistent result if they need to be
rerun for verification purposes. Community energy schemes rely on
the distributed trust of the prosumers in the community, and hence
on the ability to sometimes rerun the calculations of the coalition
coordinator, if they wish. But, as the calculation at each run depends
on which random samples are drawn, results will be slightly different,
even on the same data. Hence, there is an important knowledge gap
about approximating the Shapley value in larger settings, which our
paper aims to address. Specifically, we study both sampling-based
and deterministic methods for approximating Shapley, compare their
performance w.r.t. the true, exact Shapley value, and derive their com-
putation costs. As one of the contributions of this paper, we introduce a
novel redistribution method that approximates the Shapley value well
within polynomial time, and compare it to existing methods.

A key open challenge in this space remains determining the ‘‘ground
truth’’, i.e. computing the exact, true Shapley value to compare other
methods to, especially for larger realistically-sized communities (e.g.
dozens to several hundred prosumers). Prior approaches, like O’Brien
et al. [11] use a setting of only 20 agents as a ‘‘ground truth’’ to com-
pute the exact Shapley, as they naturally find larger settings unfeasible
to compute with unique agents. Yet, as we show in our experiments, an
approximation method that does poorly for a small number of agents
(e.g. 5–20) may actually do well for a realistically sized setting of 100–
200 agents. Another important contribution of this paper is that we
develop a method to compute the exact Shapley value for larger com-
munities, up to 200 agents. Intuitively, the core idea behind the method
(see Section 4.2) is to cluster the agents in a much smaller number
of consumption profiles, and use the symmetry of the combinations of
agents to greatly reduce the cost of exact Shapley calculation.

Finally, as part of our contributions, we implemented our method in
realistic community case studies, both in terms of demand, generation
and battery data used, and in terms of size (up to 200 households),
granularity and duration (half-hourly data over a whole year). We used
two different datasets, both containing household energy consumption
data in the UK and the corresponding wind generation and battery
data. One draws data from the Thames Valley vision trial [12] while
the other draws data from the Low Carbon London project [13]. This
provides a highly realistic case study to provide confidence in the
robustness of our experimental comparison results.

https://communityenergyscotland.org.uk/
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The rest of the paper is organised as follows. First, a review of
the literature is provided in Section 2. Section 3 presents the commu-
nity energy model used. Section 4 introduces the Shapley value and
its computation methods. Then, Section 5 presents the experimental
comparison across a number of scenarios. Finally, Section 6 concludes
the paper with a discussion.

2. Literature study

This Section presents our systematic study of the literature on
Shapley value computation and energy systems. We note that the
distribution of benefits and costs in smart energy systems is a broad
one, and Shapley value is just one of the possible solution concepts. It
is, however, the most widely used concept and broadly applicable to
a variety of settings — with many of the alternatives only applicable
in specific settings. Also, Shapley value has a very strong foundation in
coalitional game theory, and has had a wide impact in many fields, ever
since it was proposed by Nobel-prize winning economist Lloyd Shapley.
However, a key problem with applying the Shapley value (especially
in the case we study, i.e. energy communities settings with a sizeable
number of prosumers) is that it is not computable exactly in settings
beyond a few dozen agents, as the computational cost of exact Shapley
computation is combinatorial. As highlighted by the introduction and
our systematic review below, our work helps to close this important
knowledge gap by providing and validating computationally-efficient
tools to approximate Shapley, with validation in a highly realistic case
study of a community energy setting.

The literature study section is divided into two subsections: first, in
Section 2.1, we provided a systematic overview of previous works that
use Shapley value concept in energy applications, while in Section 2.2
we discuss existing state-of-the-art techniques for Shapley approxima-
tion. Our review is enhanced by providing a systematic table that
captures and summarises the prior literature related to the application
of Shapley values in energy settings, along four key dimensions: the par-
ticular sub-area of energy where a referenced paper applied the Shapley
value, the computational techniques employed, the type of approach
to computing Shapley (whether exact, or approximation based under
some assumptions, or both), and finally the number of agents (be it
prosumers, households, participants, etc.) that the experimental part
of the paper considers. We argue that providing such a table of prior
works is important to highlight the current state-of-the-art in the field
and make the contribution of this work clearer to the reader.

2.1. Use of shapley values in energy applications

Energy communities are an increasingly important topic of research
in energy systems, and a notable number of recent papers consider
using the Shapley value as an underlying redistribution method. Chiş
and Koivunen [14] propose a coalitional cost-game optimisation of
a portfolio of energy assets using Shapley value as the underlying
redistribution method, modelling a realistic case study of 9 households.
Safdarian et al. [15] use the Shapley value for coalition-based value
sharing in energy communities, modelling an energy community in
southern Finland with up to 24 apartments. Vespermann et al. [16]
study the market design of a local energy community with shared stor-
age and consider a number of solution concepts such as the nucleolus
and Shapley values. Their numerical simulations study communities
ranging in size from 4 up to 16 prosumers. Robu et al. [17] consider
a cooperative coalitional game for energy group buying. While they
discuss Shapley value as a solution concept, their focus is on other
coalition properties.

There are also works that study variations of energy communi-
ties. Vinyals [18] explores a model in which the community consists
of prosumers with assets and pure consumers, and the excess energy
generated is shared among the community members. Although the
work focuses on the energy distribution model that minimises the total
4

cost of the community while meeting regulatory restrictions, it also
presents an individually rational cost redistribution scheme. Long et al.
[19] propose a method for energy trading of excess generation by the
prosumers and individual cost calculation based on coalitional game
theory and the Shapley value, and tests on a community that consists
of 5 prosumers with solar PV generation and energy storage, and 5 con-
sumers with no assets. Similarly, Hupez et al. [20] compare the use of
Nash versus Shapley value concepts in an LV energy community model
in which the excess energy of the prosumers is shared among other
consumers with a case study of 3 prosumer nodes. Singh et al. [21]
present the use of Shapley value for energy trading among microgrids,
using a case study of 3 microgrids. Zhang et al. [22] consider the use of
Shapley value to divide gains in alliances among retailers in the Chinese
energy settlement market, considering alliances up to a size of 9 agents.

In addition to the above, applications of Shapley value can be found
in many domains within energy systems. The most relevant previous
works identified (after a systematic search) on the use of Shapley value
in energy application are summarised on Table 1. It reviews 40 selected
papers that the authors found to be relevant both to the energy domain
and Shapley value computation. It classifies them based on four criteria.
The first is regarding the energy application domain in which the
Shapley value is applied. The second is techniques used in the work,
which could be for computing the Shapley value, but also for solving
the underlying problem. The third criterion is how the Shapley value is
computed. Most papers compute the exact Shapley value, but there are
also many works that make use of approximation methods. Finally, the
maximum number of agents used for computing Shapley value in their
experimental analyses is given. Some works that apply approximation
methods also compute the exact Shapley value as a benchmark. In such
cases, the corresponding maximum number of agents for both methods
is listed.

From this analysis, we observe that community energy/P2P trading
was the most popular application of the Shapley value, but they were
also common in other domains, such as the allocation of distribution
loss [30,32,33] and congestion cost [39–41], as well as profit dis-
tribution in virtual power plants (VPPs) [42–44]. There were some
less obvious applications, namely, cost allocation of net loss vari-
ability [50] and coordinated operation of existing facilities and the
emerging power-to-gas technology [51,52]. The range of techniques
used by the authors was very broad, ranging from machine learning
techniques (e.g., reinforcement learning, K-means clustering), optimi-
sation techniques (e.g., mixed-integer linear programming, particle
swarming), to comparison to other allocation methods (e.g., nucleolus,
Nash equilibrium).

We found it especially important to provide a classification of
Shapley value computation methods and the maximum number of
agents considered. Crucially, for exact Shapley computation methods,
the number of agents is always kept low to keep the computation
tractable, usually to less than 10 agents. There are few papers that
take into account more agents, such as Alam et al. [28] and previous
work by some of the co-authors of this paper (Norbu et al. [10,24]), but
these studies do not attempt to compute the Shapley value exactly for
a large number of agents and instead use approximation methods like
the simple marginal contribution method also used in this study. The
complexity of computing Shapley often restricts studies to experimental
simulations with small numbers of agents — yet, in practice, larger
settings appear frequently. Realistically sized energy communities have
more members, e.g., there are usually 50–200 consumers behind a
substation/LV transformer in Europe [54], or potentially even more
sharing an asset such as a large community wind turbine. Hence
Shapley approximation methods are needed — yet, the understanding
of what is a good approximation for large settings is still lacking. Our
work aims to fill this knowledge gap.
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Table 1
Summary of published studies on the use of Shapley value in energy applications.

Reference Energy application area Techniques used Type of Shapley Max No.
computation of agents

Norbu et al. [10,23,24] Energy community Systematic comparison, Marginal contribution 200 prosumers
Data-driven approach

Chiş & Koivunen [14] Energy community Cost minimisation Exact 9 households
under constraints

Safdarian et al. [15] Energy community K-means clustering Random sampling 24 apartments
Han et al. [25] Energy community Sample allocation with Exact 16 prosumers

estimated variance Stratified sampling 50 prosumers

Kulmala et al. [26] & Energy community Comparison of cost Exact & approximation 6 households
Baranauskas et al. [27] redistribution methods

Long et al. [19] Energy community/P2P trading Fairness analysis Exact 10 households
Alam et al. [28] Energy community/P2P trading Utility maximisation Exact 10 prosumers

under constraints Random sampling 100 prosumers

Hupez et al. [20] Energy community/P2P trading Shapley and Exact 3 nodes
Nash equilibrium analysis

Vespermann et al. [16] Storage in energy communities Shapley and Exact 16 prosumers
nucleolus analysis

Singh et al. [21] Trading between microgrids Decentralised Exact 3 microgrids
coordinated scheduling

Jia et al. [29] Trading between microgrids Cost minimisation Exact 3 microgrids
under constraints

Zhang et al. [22] Coordination of electr. retailers Transaction cost, Bilateral Shapley value 9 retailers
Resource dependence theory

Sharma & Loss allocation in distribution Exploitation of Exact 24 participants
Abhyankar [30,31] network topology Sequential Shapley 68 participants

Amaris et al. [32] Loss allocation in distribution Circuit laws, Aumann–Shapley value 35 units
Systematic comparison

Pourahmadi & Loss allocation in distribution Benchmarking, Exact 15 units
Dehghanian [33] Systematic comparison
Azad-Farsani et al. [34] Allocation of loss reduction Point estimation, Exact 15 units

in distribution stochastic iterative algorithm

Yu et al. [35] Allocation of loss reduction Approximation of Aumann–Shapley value 12 units
in distribution Shapley value and nucleolus

Vicente-Pastor et al. [36] Network coordination Mechanism design Exact 3 stakeholders
Azuatalam et al. [37] Network cost allocation SD estimation Stratified sampling 25 customers
O’Brien et al. [11] Demand-side response Reinforcement Learning Adaptive sampling 20 participants
Maleki et al. [38] Coordination of cooling loads Bounded rational reasoning, Bounded rational 15 apartments

Dynamic programming Shapley value

Singh et al. [39] Congestion cost allocation Comparison to Shapley Exact 3 nodes
Xiao and Li [40] Congestion cost allocation Pool-based model Exact 6 lines
Voswinkel et al. [41] Congestion cost allocation Constraint optimisation Exact & approximation 11 congestions
Cheng et al. [42] Profit distribution in VPP Coalition and core analysis Marginal contribution 3 participants
Wang et al. [43] Profit distribution in VPP Real-world feasibility study Exact 2 participants
Dabbagh & Profit distribution in VPP Risk aversion degree Exact 6 participants
Sheikh-El-Eslami [44]

Fang et al. [45] Profit distribution in CHP-VPP Particle swarm Exact (modified) 4 stakeholders
Chattopadhyay [46] Profit distribution Linear programming Exact 3 participants

in emission trading

Liao et al. [47] Allocation of emission allowance Systematic comparison Exact 3 power plants
Zhou et al. [48] Carbon obligation allocation Systematic comparison Exact 3 DSOs

Aumann–Shapley value 20 DSOs

Zhang et al. [49] Allocation of emission allowance Entropy, gravity model Exact 8 regions
Mays [50] Net load variability Consumption behaviour Exact 9 profiles

profiling

Zhang et al. [51] Coordinated bidding of wind Shapley and Exact 3 participants
farms and P2G facilities nucleolus analysis

Li et al. [52] Coordinated operation of Risk aversion degree, MILP Exact 2 parties
NGG and P2G facilities

Churkin et al. [53] Transmission expansion planning Shapley and Exact 5 countries
nucleolus analysis
r
w

2.2. Approximation methods for Shapley values

Due to the large runtime of the Shapley value computation, it has
received strong interest in efficient approximation methods since its
introduction. Currently, many approximation methods compute the
expected marginal contribution of an agent to the sampled coalitions,
5

b

initially suggested by Mann and Shapley [55]. Furthermore, the seminal
work of Castro et al. [56,57] proposes a polynomial calculation method
which highlights the concept of stratified sampling, which has been
efined in other works [25,28], and is a key concept in the method
e develop as well. Many recent works also provide theoretical error
ound of sampling-based approximation methods [58–62].
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A major obstacle to approximating the Shapley value is that there
does not exist a general deterministic approximation method that is
a fully polynomial-time approximation scheme (FPTAS), and a fully
polynomial-time randomised approximation scheme (FPRAS) is the best
one can achieve when approximating the Shapley value [58]. Yet,
deterministic methods have desirable characteristics for cost redistri-
butions of consumers. Such methods produce the same results after
every run given the same inputs, allowing consumers to verify the
calculated cost themselves, in contrast to random sampling methods
where the redistributed cost can differ depending on the samples
drawn. Furthermore, deterministic methods would also guarantee the
same cost redistributed to consumers with the exact same demand
profile. Such properties can provide consumers with additional trust
in the model. Bhagat et al. [63] provides a deterministic Shapley
approximation method to their newly proposed budgeted games. Their
method is theoretically proven to approximate the Shapley value with a
constant additive error by replacing the value function with a relaxed
function. However, theoretical analyses of deterministic methods are
especially difficult in many real-world energy applications, in which the
cost function results from a control procedure over the energy assets
over a long time horizon rather than in closed form. Hence, many
recent studies in the energy communities have performed empirical
analyses to evaluate the performances of the approximation methods
(e.g. [14–16]).

The publications closest to this work are O’Brien et al. [11] and
Norbu et al. [10]. O’Brien et al. [11] propose an enhancement of the
methods first outlined by Castro et al. that uses reinforcement learning
to do the stratified sampling in an adaptive way. Their method is one
of the methods used as a benchmark in this paper. However, a key
limitation of [11] is that they still use a comparison benchmark of
only 20 agents, while we develop a way to compute it exactly for
much larger communities. Moreover, we wanted to develop and test
some deterministic methods of Shapley value approximation that do
not depend on the number of samples and can be reproduced to give
the same result. Finally, the work of Norbu et al. [10] considers redis-
tribution in realistic community energy settings, starting from marginal
value principles, but they do not approximate Shapley value as such.
However, with their support, we use the same demand/generation
dataset of a community of 200 prosumers in the UK, as it provides
a realistic experimental case study to test the methods we develop.
Additionally, we also look at a different dataset with a larger number of
households to further provide confidence within our methods. This pa-
per is a considerably extended and revised version of preliminary work
presented in a poster at the the ACM 2022 E-Energy conference [64].

3. Community energy model

Consider an energy community  consisting of a set of | | = 𝑁
prosumers, a shared battery and renewable energy source (RES). In this
study, a lithium-ion battery and Enercon E-33 wind turbines [65] with
a rated power of 330 kW were considered as the community’s energy
storage system and RES, respectively. Each prosumer in the community
has a half-hourly power demand profile represented as 𝑑𝑖(𝑡) for the
power demand of agent 𝑖 at time step 𝑡. The final time step of the
operation of the system is denoted as 𝑇 . In this study, the data consists
of half-hourly demands and generation during a 1 year period, and
hence 𝑇 = 365 × 48 = 17520.

The demand of the community at time 𝑡, 𝑑 (𝑡), is simply the sum
of the demands of the agents in the community at 𝑡, described as the
following.

𝑑 (𝑡) =
∑

𝑖∈
𝑑𝑖(𝑡), ∀𝑡 ∈ {1,… , 𝑇 } (1)

Furthermore, a community has a generation profile, 𝑔(𝑡), by the jointly
owned local renewable energy generation, and the power of the bat-

bat bat
6

tery, 𝑝 (𝑡). The battery is considered charging when 𝑝 (𝑡) is negative
and discharging when 𝑝bat(𝑡) is positive. Finally, a community is re-
quired to buy power from the utility grid if the community assets do not
provide enough power for the demand. If there is a surplus of power,
on the other hand, a community can sell excess power to the grid.
The power of the utility grid is denoted as 𝑝grid(𝑡), where the value is
positive when power is bought from the grid and negative when power
is sold to the grid.

Given these variables, the following constraint needs to be satisfied
at every time step.

𝑑 (𝑡) = 𝑝grid(𝑡) + 𝑝bat(𝑡) + 𝑔(𝑡), ∀𝑡 ∈ {1,… , 𝑇 } (2)

The constraint assures that the community power demand is met from
the power sources. Additionally, when the generation is greater than
the demand, all of the energy from the excess power is stored in the
battery and or sold to the utility grid.

3.1. Battery control algorithm

The use of battery was regulated at each time point using the
heuristic-based battery control algorithm from Norbu et al. [10]. The
battery keep tracks of its state of charge (SoC), so that the battery
capacity is not exceeded. The algorithm first looks at whether the
community’s demand, 𝑑 (𝑡), is smaller than the generation of the
local RES, 𝑔(𝑡). If the generation is greater than the demand, the
battery is charged as long as it has not reached the maximum battery
capacity, 𝑆𝑜𝐶max. If the battery has reached the maximum capacity or
the surplus power is larger than the maximum (dis)charging power of
the battery, 𝑝bat, max, then the remaining energy is sold to the utility
grid. The energy is sold with the price of 𝜏𝑠(𝑡) (pence/kWh), also known
as the export tariff. If the community power demand is greater than
generation, the battery is discharged if it has not reached the minimum
battery capacity, 𝑆𝑜𝐶min. If the battery has reached the minimum
capacity or the power deficit is larger than 𝑝bat, max, then energy is
bought from the grid to meet demand. The import tariff, or the price
of buying energy from the grid at 𝑡 (in pence/kWh), is denoted as
𝜏𝑏(𝑡). More details about the battery control algorithm can be found
in Appendix A.

Note that, in the heuristic-based battery control algorithm above,
we considered flat import/export tariffs (in which the price remains
the same throughout the time period of the operation), and moreover,
importing or exporting energy to the grid is always worse price-wise
than consuming/storing it locally, when possible. This is a realistic
assumption in the current climate, when import prices are high, and
so-called feed-in tariffs (i.e. tariffs paid to very small renewable gen-
erators) are being phased out. It is possible to have more advanced
control heuristics in case of dynamic or time-of-use prices from the grid
that include, e.g. a price prediction component. However, the Shapley
computation methods proposed in this paper can also be combined with
more complex control cases. This is because the methods we develop
apply to the overall cost function, working to minimise the times of
iterations needed to recompute it — but are independent of how the
control is performed.

3.2. Community cost calculation

A cost function is a key attribute of a coalitional game. Here, energy
cost calculation of the community (or any subset of prosumers) is
explained. The community energy cost calculation can be seen as the
cost function in this study, and it is required for redistribution methods
described in Section 4.1.

The community energy cost is composed of three components. The
first is the cost of energy bought from the grid, subtracted by the
revenue of energy sold to the grid during the time period. The energy

𝑏 𝑠
bought and sold at each time point, 𝑒 (𝑡) and 𝑒 (𝑡) respectively, are
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determined by the battery control algorithm explained in Section 3.1.
The cost 𝑐grid

𝑇 ( ) is computed as the following.

grid
𝑇 ( ) =

𝑇
∑

𝑡=1
𝑒𝑏(𝑡)𝜏𝑏(𝑡) −

𝑇
∑

𝑡=1
𝑒𝑠(𝑡)𝜏𝑠(𝑡) (3)

The second component of the cost for installing and operating the
wind turbine, 𝑐wind

𝑇 ( ). The annual cost is calculated as the following.

𝑐wind
𝑇 ( ) =

WT generation capacity ∗ cost per kW
Lifetime (in years) (4)

he wind turbine generation capacity is calculated as the maximum
eceiving power from the wind turbine in one time step. The receiving
ower from the wind turbine was chosen to be 0.006 × 𝑁 times the
ower output of one wind turbine. The maximum capacity of the
ind turbine increases linearly with the number of prosumers in the

ommunity, and hence the cost also increases linearly with the size.
he cost of the wind turbine was set to 1072 £(GB pounds)/kW and

ifetime to 20 years, which is realistic for current technologies in the
K market [10].

The last component of the cost is the battery. The cost of the battery,
bat
𝑇 ( ) is computed as the following.

bat
𝑇 ( ) =

battery capacity ∗ cost per kWh

max
(

Lifetime (in years) , 1
DF

) (5)

In this study, the community battery capacity is set to be 5 ×𝑁 kWh.
Similarly to the wind turbine, the battery capacity increases linearly
with the community size, and therefore the community battery cost
also increases linearly with the community size. The cost of battery
per kWh was set to 150 £/kWh and the lifetime of the battery to
20 years. The variable DF is the depreciation factor of the battery
determined by the battery degradation model from Norbu et al. [10].
Although the battery is given a lifetime, the lifetime can be shortened
or additional maintenance costs may be required depending on the
number of charge cycles and depth of discharge (DoD). Hence, using
a battery degradation model can give a better assessment of the annual
battery cost. The details of the battery degradation model are presented
in Appendix B.

The total cost of the community, 𝑐𝑇 ( ) is the sum of the three
components, which is the following.

𝑐𝑇 ( ) = 𝑐grid
𝑇 ( ) + 𝑐wind

𝑇 ( ) + 𝑐bat
𝑇 ( ) (6)

The community cost can be computed for any subset of agents, and
thus the cost contribution of an agent to a group can be determined
by comparing the cost of the group with and without the agent.
Specifically, every agent in the group contributes equally to the cost
of the wind turbine and the battery (from Eq. (4) and (5)), but it does
not mean the usage of the assets are equal among agents. For exam-
ple, agents with demand profiles that are well-aligned to the energy
generation of the wind turbine will make better use of the community
generation assets, resulting in requiring less imported energy from the
utility grid to match their demand. On the other hand, agents with
demand profiles that are poorly aligned with the generation will put
greater pressure on the community battery capacity and equivalently
cause more energy to be imported. Therefore, the marginal value with
which each prosumer causes the total cost to rise is a key factor to
consider.

The community energy cost calculation can be seen as a cost func-
tion for a set of prosumers with demands. The notation of the commu-
nity cost is simplified to 𝑐( ) w.l.o.g., because time horizon 𝑇 = 1 year
7

is used to compute costs in the rest of the paper. f
4. Shapley value computation

The redistribution of costs or benefits in a game using the Shapley
values is considered to be fair in the literature [9,66]. The cost of
prosumer 𝑖 according to the Shapley value, 𝜙𝑖, is computed as the
following.

𝜙𝑖 =
∑

⊆∖{𝑖}

||!(𝑁 − || − 1)!
𝑁!

(𝑐( ∪ {𝑖}) − 𝑐()) (7)

he marginal contribution of prosumer 𝑖 to the subcoalition of pro-
umers , denoted as 𝑐(∪{𝑖})−𝑐(), is how much the prosumer adds to
he cost by joining the subcoalition. Then, the Shapley value of agent
can be seen as the mean marginal contribution of 𝑖 for all possible

ubcoalitions in the community and all possible permutations of these
ubcoalitions.

An alternative way to write the Shapley equation that is particularly
seful for our approach is through using the concept of stratum, given
s the following.

𝑖 =
1
𝑁

𝑁−1
∑

𝑗=0

∑

⊆∖{𝑖},
||=𝑗

𝑗!(𝑁 − 1 − 𝑗)!
(𝑁 − 1)!

(𝑐( ∪ {𝑖}) − 𝑐()) (8)

t can be seen that the marginal contribution of agent 𝑖 to a subcoali-
ion  is computed as in Eq. (7). Then, the marginal contribution is
ultiplied by the relative frequency of  in the stratum. A stratum 𝑗 is
set of all possible subcoalition  with || = 𝑗. From this, the expected

marginal contribution of agent 𝑖 to a stratum 0 (empty subcoalition) up
to stratum 𝑁−1 (subcoalition of the whole community except 𝑖) can be
computed. Then, the Shapley value of agent 𝑖 is equivalent to averaged
expected marginal contributions over the strata.

Yet, computing Shapley exactly from these equations has a very
large time complexity (exponential to the number of agents in the
community, as the marginal contributions to every subcoalition of the
community is needed), which makes it intractable very quickly as the
community size increases.

4.1. Methods for determining approximate Shapley values

In this subsection, we present 3 key methods for computing the
Shapley values, starting from the simplest one (last marginal contri-
bution), to increasingly more complex ones such as stratified expected
value and adaptive sampling. In Section 4.2 we will present a method
for exact Shapley computation in the case of a restricted number of
types, while in Section 4.3 we discuss the computational properties of
these methods.

4.1.1. Last marginal contribution
While computing Shapley value directly requires exponential num-

ber of steps, it is possible to use the marginal contribution principle to
design a much simpler scheme that considers the marginal contribution
of each agent w.r.t. the other 𝑁 − 1 [10,26]. Formally, let the cost of
n agent 𝑖 in the community  be simply the marginal contribution of
gent 𝑖 to the rest of the community, defined as the following.

𝐶𝑖 = 𝑐( ) − 𝑐( ⧵ {𝑖}) (9)

The annual energy cost 𝑀𝐶𝑖 of agent 𝑖 uses the same intuition
s Eq. (7) in Shapley value calculation. But, whereas the Shapley value
akes the mean marginal contribution of agent 𝑖 for every possible
ubcoalition in the community, this method computes the cost by
nly looking at the last marginal contribution, making it a much
ore time-efficient method. However, costs based on the last marginal

ontributions do not hold the same property of the Shapley values in
hich the sum of individual cost is equivalent to the total community

ost [9]. Hence, the last marginal cost needs to be normalised. The
𝑀𝐶 of agent 𝑖 according to the normalised last
inal redistributed cost 𝑖
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marginal contribution (simply the marginal contribution method from
now on) is given as:

𝑀𝐶 𝑖 = 𝑐( )
𝑀𝐶𝑖

∑

𝑞∈ 𝑀𝐶𝑞
(10)

The time complexity of the marginal contribution method is (𝑁),
o, while simple, it is a very computationally efficient method.

.1.2. Stratified expected value
The last marginal contribution method only takes into account the

arginal contribution of the last stratum. Starting from this observa-
ion, we propose a novel Shapley redistribution scheme that goes a
tep further and considers the expected marginal contribution for every
tratum, while still avoiding the huge combinatorial cost of the exact
hapley method. We call this the stratified expected values method.

Formally, for agent 𝑖, an agent profile 𝑝−𝑖 that has average energy
emands from the rest of the agents in the community is created. The
emand of the agent profile 𝑝−𝑖 at time 𝑡 is calculated as:

𝑝−𝑖 (𝑡) =
∑

𝑞∈⧵{𝑖} 𝑑𝑞(𝑡)

𝑁 − 1
, ∀𝑡 ∈ {1,… , 𝑇 } (11)

The main idea of the method is that since 𝑝−𝑖 has the average
emand of the rest of the community for every time step, computing
he marginal contribution from a set of agents with such a demand
rofile can approximate the expected marginal contribution of that
tratum. Since the Shapley value can also be seen as the mean of
xpected marginal contribution of every stratum, taking the mean of
pproximated marginal contribution of every stratum should give an
verage ‘‘in expectation’’ value that approximates the Shapley value.
ence, the cost of agent 𝑖 based on the stratified expected values
ethod 𝑆𝐸𝑉𝑖 is calculated as the following.

𝐸𝑉𝑖 =
1
𝑁

𝑁−1
∑

𝑗=0
𝑐({1,… , 𝑗} ∪ {𝑖}) − 𝑐({1,… , 𝑗}),

such that 𝑑1 = ⋯ = 𝑑𝑗 = 𝑑𝑝−𝑖 (12)

Similarly to the marginal contribution method, the sum of indi-
vidual energy costs does not equal the community’s total cost since
this method uses fictitious agents with demand profiles 𝑑𝑝−𝑖 . Hence, a
normalisation step is required, given as follows.

𝑆𝐸𝑉 𝑖 = 𝑐( )
𝑆𝐸𝑉𝑖

∑

𝑞∈ 𝑆𝐸𝑉𝑞
(13)

The time complexity of computing the individual costs with this method
is (𝑁2) since for each agent, it requires to calculate the average
marginal contribution once for every stratum, ranging from 0 to 𝑁 −1.
While this is obviously more than the (𝑁) computation of the last
marginal value method, it is still much less than the exponential cost of
computing the Shapley values, and still very tractable for medium and
relatively large community sizes . The stratified expected value method
uses the same intuition as the last marginal contribution method: it
considers the last marginal contribution with respect to the expected
demand value of the other agents (thus ignoring the combinatorial
explosion of computing all orders) — but it does so for every stratum,
taking an average among them. Thus, it is intuitive to formulate a hy-
pothesis that the stratified expected value method should give a better
estimation of the Shapley value than the simpler marginal contribution
method, which ignores the strata structure. We explore this hypothesis
in Section 5.

4.1.3. Adaptive sampling Shapley approximation
The previous redistribution methods were deterministic, providing

the same numerical results every time the redistributed costs are cal-
culated, given the demands of the agents remain the same. We also
compared the performance of a state-of-the-art, random sampling Shap-
ley approximation method. Specifically, we implemented the adaptive
8

sampling method using reinforcement learning introduced by O’Brien
et al. [11]. For each agent 𝑖, this method samples a subcoalition ran-
domly from a stratum and computes the marginal contribution of agent
𝑖 to the subcoalition, repeating this step for 𝑀 samples predetermined
by the user. After every sample, the expected marginal contribution
and its estimated standard deviation (SD) of the stratum are updated.
The selection of the stratum at the next sample is dependent on the
estimated SDs of the strata, where strata with larger spread are more
likely chosen. Such a procedure allows to sample more from strata with
larger uncertainty, hence sampling more efficiently. Finally, the mean
of all expected marginal contributions of the strata is computed as the
cost. The details of the algorithm are given in Appendix C.

The time complexity of this redistribution scheme is (𝑁 ⋅𝑀). Note
that, in principle, the number of samples required to approximate the
Shapley value well increases faster as the community size increases,
hence 𝑀 is set to a value that is 𝑀 ≫ 𝑁 . For this study, 𝑀 was set to
000 when running this method to assure multiple samples are taken
rom each stratum.

.2. Exact computation of Shapley values with k classes

Given the above redistribution methods, what is really needed is
he ‘‘ground truth’’ consisting of the exact Shapley values, to compare
he performance of these approximation methods for a realistic size
ommunity (e.g. 𝑁 = 200 prosumers behind a transformer). Prior works
hat do this, like O’Brien et al. [11], reduce the number of prosumers
o 𝑁 = 20 to compute the exact Shapley, but we argue this method is
ot really a satisfactory way to proceed. This is because, crucially, the
uality of an approximation for a larger community (e.g. 𝑁 = 50, 100
r 200 agents) can be very different than for a very small number of
gents, up to 20 (we clearly show this effect in our experiments as well).

The key intuition is that, while computing the Shapley values of
unique agents requires a time complexity that is exponential to 𝑁 ,

the computation time can be significantly reduced if the community
consists of a limited number of classes of agents, where agents in the
same class have the same demand profile.

Let the new model be defined as the following. A community 
still consists of 𝑁 agents, with now 𝐾 classes of demand profiles in
the community such that every agent belongs to one class, and all the
agents in the same class have equal half-hourly demands. We assume
w.l.o.g. that classes are ordered by size, i.e.

𝑁 ≥ 𝑁1 ≥ ⋯ ≥ 𝑁𝐾 ≥ 1 (14)

where 𝑁𝑘 is the size of the class 𝑘. Then, the number of all possible
energy costs of subcoalition in the community is (𝑁1+1)×⋯×(𝑁𝐾 +1),
ince from each class 𝑘 you can have 0 to 𝑁𝑘 agents being part of the
ubcoalition. This is important to note because computing the annual
osts of subcoalitions (the cost function) is the most computationally
xpensive part of computing the redistributed costs, since it has to
un through one year of half-hourly demands datapoints every time
he cost function is called. The energy costs of every subcoalition
ay be used multiple times to compute the marginal contribution in

hapley calculation, hence storing the values in a table of the dimension
𝑁1 + 1) × ⋯ × (𝑁𝐾 + 1) can be time-saving. Algorithm 1 shows the
reation of the table storing the costs of all possible subcoalitions in a
ommunity.

The table containing costs of every subcoalition can also be repre-
ented as a hyperrectangle of 𝐾 dimensions and the size 𝑁1 ×⋯×𝑁𝐾 .
ach axis represents the number of agents in the class. A stratum can be
epresented in such a hyperrectangle as a hyperplane cutting through
n which the sum of axes equals the size of the stratum. Hence, strata
orrespond to planes parallel to each other. Fig. 2 shows an example
ase where 𝐾 = 3 with 𝑁1 = 7 (𝑥-axis), 𝑁2 = 4 (𝑦-axis), and 𝑁3 = 2
𝑧-axis). Stratum 5 is represented by the plane, where 𝑥 + 𝑦 + 𝑧 = 5.

Once the energy costs of all possible subcoalitions have been com-
uted, the Shapley values of the agents, which is the energy cost the
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Algorithm 1 Create a table containing energy costs of every possible combinations of number of classes
Input: Number of prosumers in community, 𝑁 . Number of classes, 𝐾. Number of prosumers in each class, 𝑁1, 𝑁2, ..., 𝑁𝐾 with 𝑁1+𝑁2+...+𝑁𝐾 = 𝑁

and 𝑁1 ≥ 𝑁2 ≥ ... ≥, 𝑁𝐾 ≥ 1. Demands of the classes, 𝑑1, 𝑑2, ..., 𝑑𝐾 , where each 𝑑 contains half hourly demands during time period of T (1 year).
Output: Table containing costs of all possible subcoalition combinations, 𝐶𝑆.

1: function CreateTable_AllSubcoaltionCosts(𝑁,𝑁1, ..., 𝑁𝐾 , 𝑑1, ..., 𝑑𝐾 )
2: for all (𝑛1, 𝑛2, ..., 𝑛𝐾 ) ∈

∏𝐾
𝑘=1{0, 1, ..., 𝑁𝑘} do ⊳ Cartesian product

3:  =
⋃𝐾

𝑘=1{1, ..., 𝑛𝑘} with demands 𝑑𝑘 ⊳ Union of sets with 1, ..., 𝑛𝑘 having the same demand 𝑑𝑘
4: 𝐶𝑆[𝑛1, 𝑛2, ..., 𝑛𝐾 ] = 𝑐() ⊳ Cost of subcoalition, Eq. (6)
5: end for
6: return 𝐶𝑆
7: end function
Algorithm 2 Compute Shapley Exact values of 𝐾 classes
Input: 𝑁 , 𝑁1, ..., 𝑁𝐾 . Table of energy costs of subcoalitions, 𝐶𝑆
Output: Array of Shapley values (redistributed cost) for agents in each class, 𝑆ℎ𝑎𝑝

1: function ComputeExactShapley(𝑁,𝑁1, ..., 𝑁𝐾 , 𝐶𝑆)
2: for 𝑘 ← 2 to 𝐾 do ⊳ Iterate through every class except the first one
3: 𝑆ℎ𝑎𝑝𝑘 ← 0
4: for 𝑗 ← 0 to 𝑁 − 1 do ⊳ Iterate through every stratum
5: for all (𝑛1, 𝑛2, ..., 𝑛𝐾 ) ∈ {0, 1, ...,max(𝑗,𝑁𝑘 − 1)} ×

∏𝐾
𝑖=1,𝑖≠𝑘{0, 1, ...,max(𝑗,𝑁𝑖)} do

6: if 𝑗 = ∑𝐾
𝑖=1(𝑛𝑖) then

7: 𝑟𝑒𝑙_𝑓 ← 𝑃 ({𝑛1, ..., 𝑛𝐾}, {𝑁1, ..., 𝑁𝑘 − 1, ..., 𝑁𝐾}, 𝑁, 𝑗) ⊳ Hypergeometric function
8: 𝑚𝑐 ← 𝐶𝑆[𝑛1, 𝑛2, ..., 𝑛𝑘 + 1, ..., 𝑛𝐾 ] − 𝐶𝑆[𝑛1, 𝑛2, ..., 𝑛𝑘, ..., 𝑛𝐾 ] ⊳ Marginal contribution
9: 𝑆ℎ𝑎𝑝𝑘 ← 𝑆ℎ𝑎𝑝𝑘 + 𝑟𝑒𝑙_𝑓 ∗ 𝑚𝑐

10: end if
11: end for
12: end for
13: 𝑆ℎ𝑎𝑝𝑘 ← 1

𝑁 𝑆ℎ𝑎𝑝𝑘
14: end for
15: 𝑆ℎ𝑎𝑝1 ←

1
𝑁1

(𝐶𝑆[𝑁1, 𝑁2, ..., 𝑁𝐾 ] −
∑𝐾

𝑖=2 𝑁𝑖 ∗ 𝑆ℎ𝑎𝑝𝑖)
16: return 𝑆ℎ𝑎𝑝
17: end function
Fig. 2. A representation of all possible subcoalitions in a community of 𝐾 = 3 classes
with 𝑁1 = 7, 𝑁2 = 4, and 𝑁3 = 2.

agent owes to the community, can be found. Because of the symmetry
axiom [9], the Shapley values of agents in the same class (same energy
demands) are equal, and hence it is only required to calculate the
Shapley values once for each class. Algorithm 2 is used to determine
the Shapley values when the community consists of 𝐾 classes of agents.
The algorithm first loops over the number of classes starting from 𝑘 = 2
(Line 2, Algorithm 2). Class 1, the largest of the classes, is skipped
for efficiency since it can be computed after the Shapley values of all
9

other classes are determined. Then, for each class, it will iterate through
the strata from 0 to 𝑁 − 1 (Line 4, Algorithm 2). Between Line 5 and
12, the Shapley value of the iterating class is updated by adding the
marginal contribution. Line 5 of Algorithm 2 shows that it will iterate
through every possible subcoalition of the size of the stratum. As shown
in Eq. (7), the marginal contribution of an agent in a community is
described as 𝑐( ∪ {𝑖}) − 𝑐(). Hence, it can be seen in Line 5 that the
maximum number of agents from the iterating class 𝑘 is one less than
𝑁𝑘, so that the marginal contribution can be computed. Line 6 assures
that the formed subcoalition is from stratum 𝑗.

What makes it possible to compute the Shapley values efficiently
for limited number of classes is the (multivariate) hypergeometric dis-
tribution [67]. The probability mass function of the multivariate hy-
pergeometric distribution 𝑃 ({𝑛1,… , 𝑛𝐾}, {𝑁1,… , 𝑁𝐾}, 𝑁, 𝑛) computes
the relative frequency of selecting 𝑛1 agents from class 1 with the size
of 𝑁1, 𝑛2 agents from class 2 of size of 𝑁2, and repeating until class
𝐾, in a community of 𝑁 agents. The function is formulated as the
following.

𝑃 ({𝑛1,… , 𝑛𝐾}, {𝑁1,… , 𝑁𝐾}, 𝑁, 𝑛) =

∏𝐾
1
(𝑁𝑘
𝑛𝑘

)

(𝑁
𝑛

)
(15)

where ∑𝐾
1 𝑁𝑘 = 𝑁 and ∑𝐾

1 𝑛𝑘 = 𝑛. The hypergeometric distribution
allows to compute the probability of certain set of agents to be selected
ahead over the chosen agent at the specific stratum. Line 7 in Algorithm
2 shows the step where the probability of the set of agents being ahead
at stratum 𝑠 is computed. (The Shapley value of an agent can then
be computed by replacing the relative frequency of a subcoalition in
Eq. (8), with the hypergeometric function.)
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Table 2
Time complexity per algorithm.

Time Complexity

Algorithm Unique 𝐾 Classes

Exact Shapley (2𝑁 ⋅ (𝑁 − 1)) (𝑁𝐾 ⋅ (𝐾 − 1))a

Marginal contribution (𝑁) (𝐾)
Stratified expected values (𝑁2) (𝐾 ⋅𝑁)
Approx. Shapley RL (𝑁 ⋅𝑀) (𝐾 ⋅𝑀)

aUpper bound time complexity.

Line 8 in Algorithm 2 computes the marginal contribution of the
agent from class 𝑘 using the table containing costs of subcoalitions from

lgorithm 1. The marginal contribution in Line 9 is added with the
actor of the relative frequency of the subcoalition from stratum 𝑗. After

iterating through every strata and subcoalitions, the value is divided
by the total number of strata, which is 𝑁 (Line 13). It can be seen that
computation steps of Lines 8, 9, and 13 are equivalent to Eq. (8), with
the only difference being the relative frequency is computed using the
hypergeometric function.

Line 15 computes the Shapley value of agents in class 1. Since the
values of agents of all the other classes are known and the sum of
Shapley values of all agents must equal to the community cost, the
Shapley value of class 1 is equal to the remaining cost after subtracting
the cost distributed to agents in class 2 to 𝐾 from the community cost,
then equally divide it by the agents from class 1, by the efficiency
property [9].

4.3. Complexity of shapley value computation

Table 2 shows the time complexities of exact Shapley values and
the three approximation methods used in this study for two scenarios;
when the community of size 𝑁 consists of unique demand profiles and
when the number of demand profiles is limited to 𝐾 classes.

In the case of 𝑁 unique demands, it was explained previously that it
requires 2𝑁 steps to compute the Shapley value of an agent. To compute
the Shapley values of the whole community, it is required for 𝑁 − 1
agents since the value of the last agent can be determined by simply
subtracting the sum of the rest of the agents’ values from the total cost.
This is due to the efficiency property of the Shapley value, in which the
sum of the redistributed values equals the total value [9]. Hence, the
time complexity of a community of unique agents is (2𝑁 ⋅ (𝑁 − 1)).

When the community is restricted to 𝐾 classes, the number of times
the cost function needs to be computed by Algorithm 1 is equal to the
number of all possible combinations of agents which is (𝑁1 + 1) ×⋯ ×
(𝑁𝐾 + 1) (illustrated in Fig. 2). Considering w.l.o.g that the classes
are ordered by the size, i.e., 𝑁1 ≥ 𝑁2 ≥ ⋯ ≥ 𝑁𝐾 , and assuming
there are at least two non-empty classes, i.e. 𝐾 ≥ 2, then it holds that
𝑁𝑖 + 1 ≤ 𝑁, ∀𝑖 = 1,… , 𝐾. The number of cost function calculations
is hence upper bounded by 𝑁𝐾 . Due to the symmetry property of the
Shapley value [9], it is only required to be computed once per class.
Furthermore, it is required to compute 𝐾 − 1 times with the same
reasoning as in the unique demand profiles scenario. Therefore, it gives
the time complexity of (𝑁𝐾 ⋅(𝐾−1)). While it seems that (𝑁𝐾 ⋅(𝐾−1))
(for 𝐾 classes) is large, in fact, for a large 𝑁 and a small number of
classes 𝐾 this is much smaller than 2𝑁 , hence in practice, exact Shapley
computation with 𝐾 classes has a much lower computation cost than
unique agents.

For the marginal contribution method (Section 4.1.1), the complex-
ity was determined to be (𝑁) for a community of 𝑁 agents, as it
requires to compute the marginal contribution once for every agent.
With 𝐾 classes, however, this is reduced to (𝐾). Since agents with
the same energy demands are assigned the same cost, Eq. (9) and (10)
are only required to be computed once for each class.

The time complexity of stratified expected values method (Sec-
2
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tion 4.1.2) is (𝑁 ) for 𝑁 unique agents, but it can be reduced to
(𝐾 ⋅𝑁) for 𝐾 classes. Similarly to the marginal contribution method,
it is only required to compute Eq. (12) once per class.

Finally, RL-based Shapley approximation method (Section 4.1.3)
has the time complexity reduced from (𝑁 ⋅ 𝑀) to (𝐾 ⋅ 𝑀), where
𝑀 is the number of samples per agent chosen by the user, by the same
reasoning as the marginal contribution and stratified expected values
methods.

5. Experimental comparison

For the experimental comparison, the energy demands of 200 house-
holds in a realistically-sized energy community in the UK sharing a
community wind turbine and battery were used. In this study, ex-
periments are carried out on two scenarios. Section 5.1 presents the
experimental setup of the first scenario. Here, agents of the community
are grouped into two classes based on their annual consumption size
(large vs. small energy consumers). The performance of the redistribu-
tion methods is tracked with increasing community size, keeping the
ratio of large to small consumers constant. Section 5.2 presents the
experimental setup of the second scenario. Here, agents are grouped
into four classes based on their consumption profile throughout a
typical day. Again, the performances of the redistribution methods
are compared with increasing community size. Finally, Section 5.3
provides discussions on the results from the two scenarios. All of the
experimental code was written in and run with Python 3 (version
3.8.5).

5.1. Scenario 1: Large and small consumers

Dataset and parameters. For the first experimental comparison,
the energy demands of 200 households in a realistically-sized energy
community in the UK sharing a community wind turbine and battery
were used, using the case study from Norbu et al. [10] (with the kind
permission of the authors). The energy demands of the households
are provided for every 30 min during one calendar year, which was
largely collected in a well-known smart energy demonstrator project in
the UK, the Thames Valley Vision project [12]. The half-hourly power
generated by the wind turbine was calculated based on the power curve
of the Enercon E-33 wind turbines [65] and real wind data of the
Kirkwall airport weather station in Orkney, Scotland from the UK Met
Office Integrated Data Archive System (MIDAS) [68] provided by the
British Atmospheric Data Centre (BADC). Furthermore, an import tariff
of 16 UK pence/kWh and an export tariff of 0 pence/kWh were used.

Demand profiles. Two-hundred prosumers are grouped into two
classes of small consumers or large consumers according to the annual
energy consumption. Small consumer and large consumer profiles are
made from the average half-hourly demands of each group. In this
study, two cases are tested; groups split into the 90% smallest and
10% largest consumers by total annual demand, respectively, and
80% smallest and 20% largest in the second test. The community
consists of agents that had small and large consumer profiles, with the
corresponding ratios (9:1 or 8:2).

Setup and performance measure. Communities with small and
large consumer profiles are used to compare how well the redistribution
methods approximate the Shapley values. In the first setting, the ratio
of the community is kept to 9:1, and the approximation performances
are measured for varying community size of 𝑁 = 10 up to 𝑁 = 200.
Similarly, the ratio is kept constant to 8:2 in the second setting, and
performances of varying community size is tested.

The redistribution methods are compared to the exact Shapley
values (the ground truth) of small and large agent profiles. The relative
difference to the exact Shapley values was used for the comparison. The
percentage relative difference of a cost to the Shapley value is defined
as the following.

𝑅𝐷𝜙(𝜙̂𝑘) =
|𝜙̂𝑘 − 𝜙𝑘| × 100 (16)
𝜙𝑘
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Fig. 3. Relative differences of the small and large consumer agent profiles to the exact Shapley values for the redistribution methods with increasing size of the community.
where 𝜙̂𝑘 is the energy cost of agent of class 𝑘 (in this simulation,
either small or large consumer profile) from a particular redistribution
method, which are 𝑀𝐶𝑘, 𝑆𝐸𝑉 𝑘, and 𝑅𝐿𝑘. The variable 𝜙𝑘 is the cost
redistributed to class 𝑘 according to the Shapley value. The relative
difference does not only take the magnitude of difference between the
approximation method and the exact value, but also considers how
large the exact value is. This provides a fairer evaluation between
different demand profiles, as demand profiles with naturally large
energy cost could have significant approximation error in terms of
magnitude only from slight deviation.

Results. We investigated whether the size of the community influ-
ences how well the redistribution methods approximate the Shapley
values. Fig. 3 shows the change in relative difference to the exact Shap-
ley values of the redistribution methods with increasing community size
up to 200 households while keeping the same ratio of small and large
agent profiles. In Fig. 3(a), the ratio of small consumer agents and large
consumer agents were kept to 9:1, while Fig. 3(b) used the ratio of 8:2.

5.2. Scenario 2: Different consumption profiles

Dataset and parameters. In the second case study, the demands
and the wind data were taken from a dataset in Kaggle,2 a ML data plat-
form. The half-hourly demands of 5567 households in the London area,
UK, between November 2011 and February 2014 were recorded by the
UK Power Networks during the Low Carbon London project [13]. The
corresponding London weather data was provided by Dark Sky [69],
and the generated power by the wind turbine was calculated using the
same method as Norbu et al. [10].

Both the demands and wind power data were aggregated to gen-
erate an averaged half-hourly data points for one year, aligned by the
calendar weeks. From the demand data, households were removed if
less than 95% of the data points from the year were missing, resulting
in 5251 households left. The remaining miss data points were filled
using linear interpolation.

Similarly to the first case study, an import tariff of 16 UK pence/kWh
and an export tariff of 0 pence/kWh were used.

Demand profiles. In the second case, the agents were grouped not
by their total demands but rather by their consumption profiles over
a day (24 h). Clustering energy consumers into a number of classes,
according to their daily consumption profile, is a well-established
practice in energy demand modelling [70–72], used both in research

2 https://www.kaggle.com/datasets/jeanmidev/smart-meters-in-london
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and practice, by energy suppliers. Identifying consumption patterns
of customers can help the energy provider to provide customers with
recommendation as well as managing energy loads.

The 5251 agents are clustered using K-means clustering from the
energy consumption of the winter months. From the resulting clusters,
four groups showing distinct behaviours were chosen as consumption
classes, and is presented in Fig. 4.

Fig. 4 shows the daily consumption behaviours of the four selected
clusters. The first cluster on the left shows a increase in demand in
the morning, then a large peak in the evening, thus named ‘‘evening
peaker’’. The second cluster from the left has energy demands increased
in the morning and stay high during the day. There is a small evening
peak, but has relatively even consumption throughout the day. This
group is called ‘‘stay at home’’, as it requires certain energy consump-
tion during the day such as heating, computers, and kitchen appliances.
The third cluster shows a large peak in the morning followed by a
decreased consumption during the day, and a final large peak in the
evening. It can be seen that the morning and evening peaks are roughly
the same size, and therefore it is named ‘‘M-shaped’’ consumers. The
fourth cluster had almost no energy demand during the day, but had
high demand overnight. Such behaviour is also observed in [70], a
study on clustering consumers on demand profiles. This group was
named ‘‘night owl’’, and it is more of a rare case, having less than 1%
of the households classified in this study.

In 2020, due to COVID-19, working from home became the norm,
thus it would be of interest to look at a change of behaviour from work-
ing at the office to home. Hence looking at consumption behaviours
of classes like ‘‘evening peak’’ and ‘‘stay at home’’ were chosen for
this study. Furthermore, to add more variety and create a realistic
community, we have included classes with distinct behaviours such
as ‘‘M-shape’’ and ‘‘night owl’’ classes. From grouped agents, the half-
hourly energy demands are created for four consumer profiles. The
details of clustering and the production of demand profiles are given
in Appendix D.

Setup and performance measure. Communities with four con-
sumer profiles are used to perform experiments. In this case study, we
perform two experiments. In the first experiment, the ratio of the com-
munity was kept constant, and the performances of the redistribution
methods were tested for community sizes of 𝑁 = 10 to 𝑁 = 200. We
tested two scenarios; one in which the community is concentrated to
one class, and one in which the community is more evenly spread out
between the classes. In the second setting, the community size is kept
constant, but the composition (ratios) of the consumer classes in the
community changes.

https://www.kaggle.com/datasets/jeanmidev/smart-meters-in-london
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Fig. 4. Average daily energy demands of consumer profiles, evening peaker, stay at home, M-shape, and night owl.
Fig. 5. Average relative differences to the exact Shapley values for the redistribution methods with increasing community size in a community with four consumption profiles.
To compare the performance of the redistribution methods, we used
the average relative difference to the exact Shapley values. The relative
difference to the exact Shapley values is as defined in Eq. (16). The
average relative difference to the Shapley value of a redistribution
method is the mean relative difference of the community:

𝑅𝐷𝜙(𝜙̂) =
1
𝑁

𝐾
∑

𝑘
𝑁𝑘 ⋅ 𝑅𝐷𝜙(𝜙̂𝑘) (17)

where 𝜙̂ is a redistribution method with costs 𝜙̂1,… , 𝜙̂𝐾 assigned to 𝐾
classes.

Results. Fig. 5 shows the change in average relative differences
with increasing community size, starting from 𝑁 = 10 up to 𝑁 = 200.
Fig. 5(a) presents the result of the community with compositions of
70% ‘‘evening peak’’, 10% ‘‘stay at home’’, 10% ‘‘M-shape’’, and 10%
‘‘night owl’’, and Fig. 5(b) with compositions of 30% ‘‘evening peak’’,
30% ‘‘stay at home’’, 30% ‘‘M-shape’’, and 10% ‘‘night owl’’. Fig. 6
shows the change in average relative differences of redistribution meth-
ods with change in the composition of the community. The community
size was set to 200, and the ratios of ‘‘M-shape’’ and ‘‘night owl’’ agents
were also kept constant to 20% and 10% respectively. Initially, the
‘‘evening peak’’ class is set to be 65% of the community and ‘‘stay
at home’’ class to 5%. After every run, the ratio of ‘‘evening peak’’ is
reduced by 5% and ‘‘stay at home’’ increased by 5%, until the ‘‘stay at
home’’ makes up 65% of the community and ‘‘evening peak’’ with only
5%. Detailed results showing the breakdown of the performance across
the different consumer profiles are presented in Appendix E.

5.3. Discussion

Figs. 3, 5 and 6 showed that all the tested redistribution methods
approximated Shapley values well for a large community. Although the
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marginal contribution method yielded high errors for small community
size (for example, 5% difference with exact Shapley for large consumer
profile in 90/10 split scenario, Fig. 3(a)), for community size of over
100 prosumers, all methods were below 1% difference with the exact
Shapley in all scenarios. We attribute the smaller difference to the
exact Shapley in larger communities to a smoothing effect that a large
number of agents have to individual variations. In a large community,
the Shapley calculation is dominated by marginal contributions of
the agent to already large-sized subcoalitions. Variations in marginal
contributions to large subcoalitions are often small, making it possible
for less complex methods to approximate well for large communities.

The stratified expected values method outperforms the simpler
marginal contribution method in all cases and all scenarios, hence
the intuitive hypothesis we formulated in Section 4.1.2 clearly holds.
Furthermore, there is a minimal difference in the performances be-
tween the stratified expected values and the adaptive sampling methods
in most cases. The number of samples per agent was set to 1000
for the adaptive sampling method, meaning that for a case of 100
prosumers community, the adaptive sampling method had a time
complexity ten times higher than the stratified expected values method
(from Table 2). Yet the figures show that the stratified expected values
method outperform the adaptive sampling method in many scenarios
and perform comparatively overall. In fact, paired two-sample t-tests
on 2 class experiments with 0.05 significance level showed that the
stratified expected values method (90/10 split: 𝑀 = 0.0339, 𝑆𝐷 =
0.0520. 80/20 split: 𝑀 = 0.0285, 𝑆𝐷 = 0.0471) had a smaller average
relative difference to true Shapley values compared to RL-based adap-
tive sampling method (90/10 split: 𝑀 = 0.1110, 𝑆𝐷 = 0.0496. 80/20
split: 𝑀 = 0.0934, 𝑆𝐷 = 0.0444) for both 90/10 split(𝑡(19) = −3.919,
𝑝 < 0.001) and 80/20 split (𝑡(19) = −4.236, 𝑝 < 0.001). Furthermore, in
the 4 class case with community concentrated to 1 class (Fig. 5(a)), the
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Fig. 6. Average relative differences to the exact Shapley values for the redistribution
methods of different community compositions with 𝑁 = 200.

stratified expected values (𝑀 = 0.0071, 𝑆𝐷 = 0.0070) outperformed the
adaptive sampling method (𝑀 = 0.0254, 𝑆𝐷 = 0.0114) (𝑡(19) = −5.376,
𝑝 < 0.001). Only in the case of evenly spread 4 class community
(Fig. 5(b)), the adaptive sampling method (𝑀 = 0.0283, 𝑆𝐷 = 0.0062)
outperformed the stratified expected values (𝑀 = 0.0341, 𝑆𝐷 = 0.0048)
(𝑡(19) = 3.173, 𝑝 = 0.005). Hence from these results, it seems that
the stratified expected values method does well approximating the
Shapley values when the community is concentrated to one class, and
outperforms the state-of-the-art sampling method.

When looking at how the composition of the community affects the
performances of the redistribution methods in Fig. 6, all three methods
approximate Shapley values well (all methods in every scenario less
than 0.15% difference), as the community size is large already. Still, the
stratified expected values and the RL-based adaptive sampling methods
outperform the marginal contribution method. A paired t-test with
0.05 significance level showed that there is no significant difference
between the stratified expected values (𝑀 = 0.0199, 𝑆𝐷 = 0.0114)
and the adaptive sampling (𝑀 = 0.0220, 𝑆𝐷 = 0.0056) methods on
their average relative differences to the Shapley values (𝑡(12) = −0.660,
𝑝 = 0.52). Yet it can be seen from Fig. 6 that the stratified expected
values method has smaller difference to true Shapley values when the
community is concentrated on one class, and shows larger errors when
the community is more even. This in line with the findings from Fig. 5.
It can be seen in Appendix D that most consumers had a ‘‘evening
peak’’ and made up 60% of the households studied. Hence it is common
to have a community that contains majority of the same consumption
behaviour class, making the stratified expected values method desirable
in real-world scenarios.

Although it approximates the exact Shapley values very well, a
potential disadvantage of the RL-based method (and any method using
random sampling) is that the redistributed values can vary every time
the algorithm is run. The fluctuating performance of the RL-based
method can be seen in Figs. 3 and 5. In practice, the random output
of the method can have an undesirable effect on the perceived fairness
of the redistribution, as prosumers with the same demand profile can
result in being assigned slightly different costs.

6. Conclusions & further work

While the use of the Shapley value is increasingly popular in energy
systems, previous works often sidestep the issue of how it can be
efficiently computed in large, realistically-sized settings. The issue is
made more pressing by the increasing popularity of community energy
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projects, where prosumers share joint renewable generation and storage
assets and costs.

This paper aims to close this gap by proposing a new method to
efficiently approximate the Shapley value, and characterising both their
computational complexity and performance (in terms of distance to
the exact Shapley value), using large-scale, realistic case studies of
energy communities in the UK. We compare the performance of the
new method with an already-existing deterministic method and a non-
deterministic, state-of-the-art sampling method. Moreover, in order to
develop a ‘‘ground truth’’ benchmark to compare these approximations,
we propose a novel method to compute the Shapley value exactly even
for large population sizes by clustering agents into a smaller number of
consumption profiles or classes.

Our experimental analysis shows that the relative difference to the
true Shapley (while large for a few agents) converges to under 1% for
larger scenarios, basically for all methods considered. In particular, in
almost all scenarios studied, the newly proposed stratified expected
value method and the state-of-the-art adaptive sampling method per-
form extremely close to true Shapley values. Interesting to observe
that the stratified expected value method performs similarly to the
adaptive sampling method [11] for large populations, although its
computational cost is often much lower. In fact, the stratified expected
values method outperformed the adaptive sampling method when the
community was concentrated to one class, showing a high potential for
application in real-world energy communities.

There are a number of directions we find promising to explore in
future work. An interesting question to explore is the case when the
local distribution network, where the energy community is based is
subject to physical capacity constraints (voltage, power) [24]. Such
constraints could potentially restrict all prosumers to participate in the
scheme equally at certain times, and would lead to changes in the
coalitional game, as well as in the computation of fair redistribution
payments based on the Shapley value. Another possible improvement
on our current model can be made by providing a more detailed cost
calculation of the assets, such as in [73]. Although our model takes
into account battery degradation for a more accurate annual cost of the
battery, a better overall cost estimation can be achieved by considering
a longer period of time and taking into account the investment and
maintenance costs of these assets, as well as economic factors such as
the inflation rate.

We are also considering extending this work, by implementing our
redistribution strategies in a blockchain-enabled smart contract (such as
in [74,75]), which would commit the members of the energy commu-
nity to a protocol to share the benefits and costs. Based on systematic
reviews on blockchains in energy systems [75,76], smart contracts
should allow a more decentralised energy system, while preserving
the privacy of individual prosumer data, such as demand data. The
marginal contribution and stratified expected values methods used in
this study already do have favourable characteristics for preserving
privacy, as they do not require other prosumers’ individual consump-
tion information, only the aggregate consumption of the community.
The use of smart contracts could further strengthen the protection of
sensitive information and a more secure asset monitoring.

Finally, while this paper focuses on the key topic of Shapley value
computation, there are many other fairness concepts that could be
explored in energy applications, and it would be relevant to compare
their outcome to Shapley values. Conversely, there are many promising
concepts proposed in coalitional game theory literature [8] that – to
our knowledge, have been explored much less in energy applications –
such as the least-core [77] or the nucleolus [16]. The application and
adaptation of such fairness concepts in energy could be a fruitful area,
for both research and practice, providing energy communities with the
computational tools to make best use of shared energy assets.
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ppendix A. Battery control algorithm equations

The battery keeps track of its SoC level and the power of the battery,
bat(𝑡). The power of the battery is negative when charging and positive
hen discharging. While the battery is charging, the SoC level needs

o remain below or equal to the maximum battery capacity, 𝑆𝑜𝐶max.
n addition, the magnitude of 𝑝bat(𝑡) cannot exceed the maximum
dis)charging power of the battery, 𝑝bat, max. These constraints are
xpressed as the followings.

𝑜𝐶(𝑡) ≤ 𝑆𝑜𝐶max (A.1)

|

|

|

𝑝bat(𝑡)||
|

≤ 𝑝bat, max (A.2)

When discharging the battery, similar constraints apply. First, the
SoC level cannot go below the minimum battery capacity, 𝑆𝑜𝐶min. Sec-
ond, the magnitude of the battery power may not exceed the maximum
discharging power. These constraints are represented as the following.

𝑆𝑜𝐶(𝑡) ≥ 𝑆𝑜𝐶min (A.3)

|

|

|

𝑝bat(𝑡)||
|

≤ 𝑝bat, max (A.4)

The heuristic-based battery control algorithm is described as the
following. When the generated power from the RES is greater than
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the demand (𝑔(𝑡) > 𝑑(𝑡)), the excess power can be used to charge the D
battery. However, if the battery is already full or the power exceeds the
maximum charging power 𝑝bat, max, not all the energy can be stored in
the battery, and the surplus power will be sold to the utility grid. The
updated 𝑝bat(𝑡), the SoC level, and the exported energy to the utility
grid (𝑒𝑠(𝑡)) are determined as the following:

bat(𝑡) = −min(min((𝑔(𝑡) − 𝑑(𝑡)), 𝑝bat, max),
𝑆𝑜𝐶max − 𝑆𝑜𝐶(𝑡 − 1)

𝜂𝑐𝛥𝑡
) (A.5)

𝑜𝐶(𝑡) = 𝑆𝑜𝐶(𝑡 − 1) − 𝜂𝑐𝑝bat(𝑡)𝛥𝑡 (A.6)

𝑠(𝑡) = (𝑔(𝑡) − 𝑑(𝑡) + 𝑝bat(𝑡))𝛥𝑡 (A.7)

here 𝜂𝑐 is the charging efficiency and 𝛥𝑡 is the duration of time step
in hours. The profit from exporting the energy to the grid can be
xpressed as the product of the energy exported, 𝑒𝑠(𝑡), and the export
ariff, 𝜏𝑠(𝑡).

Similarly, if the demand is greater than the generated power from
ES (𝑔(𝑡) < 𝑑(𝑡)), the battery is discharged to meet the demand. If the
ower supplied from discharging the battery is still not enough to meet
he demand, energy needs to be imported from the utility grid, denoted
s 𝑒𝑏(𝑡). The followings are the updated 𝑝bat(𝑡), SoC levels, and 𝑒𝑏(𝑡) in
ase of shortage of power:

bat(𝑡) = min(min((𝑑(𝑡) − 𝑔(𝑡)), 𝑝bat, max),
𝜂𝑑

𝛥𝑡
(𝑆𝑜𝐶(𝑡 − 1) − 𝑆𝑜𝐶min)) (A.8)

𝑆𝑜𝐶(𝑡) = 𝑆𝑜𝐶(𝑡 − 1) −
𝑝bat(𝑡)
𝜂𝑑

𝛥𝑡 (A.9)

𝑏(𝑡) = (𝑑(𝑡) − 𝑔(𝑡) − 𝑝bat(𝑡))𝛥𝑡 (A.10)

here 𝜂𝑑 is the discharging efficiency. Again, the cost of importing
nergy from the grid at time 𝑡 is the product of imported energy, 𝑒𝑏(𝑡),
nd the import tariff, 𝜏𝑏(𝑡).

ppendix B. Battery degradation model

In this section, the battery degradation model used in this study and
eveloped by Norbu et al. [10] is described.

Acceleration of battery degradation caused by frequent charging
nd discharging operations as well as deep discharging may shorten the
attery lifetime to be less than the one specified by the manufacturer.
ith shortened lifetime, the community needs to replace the battery

arlier, incurring additional costs to the households. Hence, the battery
egradation model takes this factor into account when calculating the
nnual cost of the battery for a more accurate representation of the
eal-world simulation.

The number of cycles and depth of discharge (DoD) influences
attery degradation. A full cycle is defined as SoC returning to the
tarting value after a discharging and charging phase. On the other
and, a half cycle is defined to be simply the charging or discharging
hase. Furthermore, a cycle can be classified as regular or irregular.

regular cycle starts the cycle with the SoC of 100%, whereas an
rregular cycle has the starting SoC to be other than 100%. Although
egular and irregular can have the same DoD (for example, a regular
ycle of SoC 100% discharged to 50% and charged to 100%, and an
rregular cycle of SoC starting at 80%, discharged to 30% and charged
o 80% both have a DoD of 50%), the battery is depreciated differently.
n this study, the rainflow cycle counting algorithm [78] is used to
ount the number of full and half cycles as well as identify whether
he cycle is regular or irregular.

By counting the number of cycles during the time period, the
epreciation factor (DF) of the battery is computed to estimate the
attery useful lifetime. As mentioned before, regular and irregular
ycles influence the depreciation factor differently. Hence, DF can be
efined as the following.

regular irregular
F = DF + DF (B.1)
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where DFregular and DFirregular are the depreciation factors of regular
nd irregular cycles respectively. The depreciation factor of regular
ycles is determined as follows,

Fregular =
100%
∑

𝐷𝑜𝐷=0%

𝑛DoD,regular
𝑐𝑦𝑐𝑙𝑒𝑠

𝑁DoD,max
𝑐𝑦𝑐𝑙𝑒𝑠

(B.2)

here 𝑛DoD,regular
𝑐𝑦𝑐𝑙𝑒𝑠 is the number of regular cycles at a certain DoD value

uring the time period, and 𝑁DoD,max
𝑐𝑦𝑐𝑙𝑒𝑠 is the lifetime of the battery in

umber of cycles for that DoD value given by the manufacturer. This
tudy used the battery cycle life data of a lithium battery from the work
f Xu et al. [79]. The depreciation factor of irregular cycles is expressed
s the following.

Firregular =
∑

𝑙∈𝐿
n𝑙 ×

|

|

|

|

|

|

|

|

1

𝑁
DoD𝑒𝑞 (𝑆𝑜𝐶𝑆𝑡𝑎𝑟𝑡

𝑙 ),𝑚𝑎𝑥
𝑐𝑦𝑐𝑙𝑒𝑠

− 1

𝑁
DoD𝑒𝑞 (𝑆𝑜𝐶𝐸𝑛𝑑

𝑙 ),𝑚𝑎𝑥
𝑐𝑦𝑐𝑙𝑒𝑠

|

|

|

|

|

|

|

|

(B.3)

where 𝐿 is the set of all irregular cycles, and cycle 𝑙’s starting and
ending SoC levels, 𝑆𝑜𝐶𝑆𝑡𝑎𝑟𝑡

𝑙 and 𝑆𝑜𝐶𝐸𝑛𝑑
𝑙 respectively. The value of n𝑙

is determined by whether the cycle 𝑙 is full or half, defined as the
following.

n𝑙 =

{

1
2 , if 𝑙 is a half cycle
1, if 𝑙 is a full cycle

(B.4)

Finally, 𝑁
DoD𝑒𝑞 (𝑆𝑜𝐶𝑆𝑡𝑎𝑟𝑡

𝑙 ),𝑚𝑎𝑥
𝑐𝑦𝑐𝑙𝑒𝑠 is the lifetime in number of cycles for

oD𝑒𝑞(𝑆𝑜𝐶𝑆𝑡𝑎𝑟𝑡
𝑙 ), a DoD of a cycle equivalent to starting at 100% SoC

nd ending at the value of 𝑆𝑜𝐶𝑆𝑡𝑎𝑟𝑡
𝑙 . DoD𝑒𝑞(𝑆𝑜𝐶𝑆𝑡𝑎𝑟𝑡

𝑙 ) is computed as the
ollowing.

oD𝑒𝑞(𝑆𝑜𝐶𝑆𝑡𝑎𝑟𝑡
𝑙 ) = 100 −

(

𝑆𝑜𝐶𝑆𝑡𝑎𝑟𝑡
𝑙

𝑆𝑜𝐶max × 100

)

(B.5)

DoD𝑒𝑞(𝑆𝑜𝐶𝐸𝑛𝑑
𝑙 ) and 𝑁

DoD𝑒𝑞 (𝑆𝑜𝐶𝐸𝑛𝑑
𝑙 ),𝑚𝑎𝑥

𝑐𝑦𝑐𝑙𝑒𝑠 are similarly computed.
DF resulting from the former calculation is used in Eq. (5) for

omputing the cost of battery during the time period.

ppendix C. Full algorithm of adaptive sampling shapley approx-
mationx

In this section, the details of the RL-based Shapley approximation
lgorithm by O’Brien et al. [11] from Section 4.1.3 are described.

Prior to running the algorithm, the number of samples per agent,
, is predefined by the user. Then, for each agent 𝑖, the estimated

expected marginal contributions of stratum 𝑗, 𝜇̂𝑖,𝑗 is initialised to 0.
Similarly, the count of how many times stratum 𝑗 was visited, ℎ𝑖,𝑗 , and
the sum of squared differences from the current mean of stratum 𝑗,
𝑚2𝑖,𝑗 , are initialised to 0. Finally, the estimated standard deviation of
the marginal contributions of stratum 𝑗, 𝜎̂𝑖,𝑗 is initialised to a very large
value (here, 10,000).

For every sample of agent 𝑖, the stratum 𝑗 is selected according to
the probabilities of each stratum at the certain sample. The probability
of stratum 𝑗 being selected for agent 𝑖’s 𝑚th sample 𝜋𝑖,𝑗 (𝑚) is given as
the following.

𝜋𝑖,𝑗 (𝑚) =
𝜖(𝑚)
𝑁

+ (1 − 𝜖(𝑚))
𝜎̂𝑖,𝑗

∑𝑁−1
𝑠=0 𝜎̂𝑖,𝑠

(C.1)

here 𝜖(𝑚) is a double sigmoid function which helps exploration at
he beginning (small 𝑚 value) and exploitation near the end (large 𝑚),

defined as the following.

𝜖(𝑚) = 1 + 1

1 + 𝑒
𝛾
𝛽
− 1

1 + 𝑒−
𝑚−𝛾𝑀
𝛽𝑀

(C.2)

he parameters 𝛽 and 𝛾 were set to 0.075 and 0.2 respectively during
he experiment since it was found that the sigmoid function with
hese parameter setting to approximate ideal sampling well [11]. To
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pproximate the Shapley value well, more samples may be required
rom certain strata in which the marginal contribution values can vary
ighly. On the other hand, if the marginal contributions are similar
ithin a stratum, such strata would not need large samples to be
pproximated. Eq. (C.1) helps to distribute the samples in such a way.

Once a stratum is chosen, a subcoalition  is chosen randomly from
he selected stratum (i.e., || = 𝑗), and the marginal contribution of
gent 𝑖 to the subcoalition is computed as 𝑚𝑐 = 𝑐(∪{𝑖})−𝑐(). The dif-
erence between the sampled marginal contribution and the estimated
xpected marginal contribution, 𝛥 = 𝑚𝑐 − 𝜇̂𝑖,𝑗 is also calculated. Then,
he variables are updated after each sample as followings.

𝑖,𝑗 ← ℎ𝑖,𝑗 + 1 (C.3)

̂𝑖,𝑗 ← 𝜇̂𝑖,𝑗 +
𝛥
ℎ𝑖,𝑗

(C.4)

𝑚2𝑖,𝑗 ← 𝑚2𝑖,𝑗 + 𝛥(𝑚𝑐 − 𝜇̂𝑖,𝑗 ) (C.5)

urthermore, 𝜎̂𝑖,𝑗 is also updated if the stratum has been visited more
han once by agent 𝑖, as the following.

𝜎̂𝑖,𝑗 ←

√

𝑚2𝑖,𝑗
ℎ𝑖,𝑗 − 1

(C.6)

Once all the variables are updated, it moves on to the next sample.
fter 𝑀 samples are taken for agent 𝑖, the redistributed energy cost ac-

cording to RL-based Shapley Approximation method, 𝑅𝐿𝑖 is calculated
by taking the mean of expected marginal contributions over the strata,
i.e.,

𝑅𝐿𝑖 =
1
𝑁

𝑁−1
∑

𝑗=0
𝜇̂𝑖,𝑗 (C.7)

A difference from the original work is that strata 0 and 𝑁 − 1 are
nly chosen once each since no matter how many times these strata are
ampled, they will always have the same marginal contributions (since
here is only 1 possible subcoalition). By doing so, more samples can be
sed in different strata, allowing the algorithm to make use of samples
lightly more efficiently.

ppendix D. Clustering & consumer profiles

For the experiments from Section 5.2, the 5251 consumers from
he Kaggle dataset are clustered with the following steps. The half-
ourly energy demands were normalised using L2 normalisation for
ach agent. From the normalised dataset, only the winter months of
he UK were kept, which were January, February, November, and
ecember. This is because the energy consumption is larger during
inter, and hence clearer consumption patterns should be observable.
rom the remaining data, the days on and near Christmas and new year
ere also removed, which were January 1st to 6th and December 22nd

o 31st. This is because many households would likely have abnormal
onsumption behaviour, such as being absent from home during these
ays or not working. Finally, only weekdays (from Monday to Thurs-
ay) were kept so that working days are what is being clustered. The
emaining data consisted of 60 days×48 normalised demands per day =
2880 datapoints per agent. The new dataset is aggregated so that it
contains averaged half-hourly normalised demands of each agent (48
datapoints per agent). Then, K-means clustering is used to group the
agents on winter days’ energy consumption. The elbow method was
used to determine the number of clusters to be 9.

The average daily demands and the sizes of the 9 resulting clusters
are presented in Fig. D.7. It can be seen from the figure that although
the detailed consumption behaviours are unique, many classes shows
similarity in terms of having a small morning peak in the morning and
a evening peak. The cluster classes 1, 2, 3, 7, and 9 shows variations of
such behaviour, and it makes up more than 60% of the 5251 consumers.

Note that the data is before the onset of COVID-19 pandemic, and
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Fig. D.7. Daily energy demands and the relative sizes of the 9 consumption clusters.
Fig. E.8. Individual relative differences to the exact Shapley values for the redistribution methods of four consumer profiles (70% ‘‘evening peak’’, 10% ‘‘stay at home’’, 10%
‘‘M-shape’’, and 10% ‘‘night owl’’) with increasing size of the community.
therefore working from the office during the day was common, making
the consumption during the day low. We have chosen the ‘‘evening
peak’’ class and used the demand profile of class 7 as the representative
as it is the largest class out of the evening peaking classes. Next, class 5
16
shows a high and constant consumption during the day. This behaviour
can be thought of as the household working at home as staying at
home requires certain energy consumption during the day such as for
heating, computers, and kitchen appliances, resulting in an overall high
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Fig. E.9. Individual relative differences to the exact Shapley values for the redistribution methods of four consumer profiles (30% ‘‘evening peak’’, 30% ‘‘stay at home’’, 30%
‘‘M-shape’’, and 10% ‘‘night owl’’) with increasing size of the community.
consumption that is not too concentrated in the evening. We suspect
that consumers with such consumption behaviour has increased since
the outbreak of COVID-19, and hence class 5 was chosen as the ‘‘stay at
home’’ class to see the impact of such a behaviour in the community.
Classes 4 and 6 are unique from the rest of the classes as they both
have two almost equal peaks in the morning and in the evening, though
the morning peak is slightly larger. This behaviour is a minority in the
community, yet 17.5% of the consumers belong in these groups. Hence,
these consumers needs to be represented in the community as well, and
the demand profile of class 4 is used for the ‘‘M-shaped’’ class in this
paper as it shows the behaviour more clearly. Finally, one clear outlier
cluster is class 8. Although only 1% of the consumers belongs to this
class, it has the most distinct behaviour from the rest of the classes. This
class has a very high demand during the night, yet very little demand
during the day. This ‘‘night owl’’ class was chosen as the fourth class
for this study as the outliers of the community.

Once the clustering is done and consumption behaviours are iden-
tified, half-hourly energy demands for 1 year for the four consumer
profiles need to be identified. For each class, the L2 normalised half-
hourly demands of the year (no days removed and not aggregated)
were averaged over the agents belonging in that cluster. The yearly
demand of the community of these agents is kept equal to 𝑁 times
the average yearly consumption of the 5251 agents from the original
dataset. Given the sizes of the four classes 𝑁𝑒𝑝, 𝑁𝑠ℎ, 𝑁𝑚𝑠, and 𝑁𝑛𝑜 and
𝑁 = 𝑁 +𝑁 +𝑁 +𝑁 , the restriction is represented as the following.
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𝑒𝑝 𝑠ℎ 𝑚𝑠 𝑛𝑜
𝑁
200

200
∑

𝑖=1

𝑇
∑

𝑡=1
𝑑𝑖(𝑡) =

∑

𝑘∈{𝑒𝑝,𝑠ℎ,𝑚𝑠,𝑛𝑜}

𝑇
∑

𝑡=1
𝑁𝑘𝑑𝑘(𝑡) (D.1)

From the restriction, the demand profiles of each class can be
computed as the following, given 𝑑𝑘(𝑡), the normalised demand of class
𝑘 at time step 𝑡.

𝑑𝑘(𝑡) = 𝑑𝑘(𝑡) ⋅
𝑁
200

∑200
𝑖=1

∑𝑇
𝑡=1 𝑑𝑖(𝑡)

∑

𝑞∈{𝑒𝑝,𝑠ℎ,𝑚𝑠,𝑛𝑜}
∑𝑇

𝑡=1 𝑁𝑞𝑑𝑞(𝑡)
,

∀𝑘 ∈ {𝑒𝑝, 𝑠ℎ, 𝑚𝑠, 𝑛𝑜},∀𝑡 ∈ {1,… , 𝑇 }

(D.2)

Appendix E. Additional experimental results

Additional experimental results are presented here, in particular
in terms of the performance of the Shapley approximations for the
different types of consumer classes in Section 5.2.

First, Table E.3 shows the comparison of redistributed yearly energy
costs of a small and large consumer agent for both 90/10 and 80/20
splits of 200 households community from Section 5.1. It can be seen
that, for both splits, the energy costs of the small consumer agent
are very close across the four redistribution methods, although the
redistributed costs based on the marginal contribution are slightly
higher than the other methods. On the other hand, the marginal contri-
bution method is lower than the other methods for the large consumer
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Fig. E.10. Individual relative differences to the exact Shapley values for the redistribution methods of four consumer profiles of different community compositions with 𝑁 = 200.
Table E.3
Redistributed costs of small and large consumer agents in a community of 200 agents.

Split 90/10 80/20

Agent class Small Large Small Large

Shapley 245.30 674.88 221.78 554.18
Marginal contribution 245.71 671.19 222.07 553.02
Stratified expected values 245.33 674.64 221.78 554.16
Approx. Shapley RL 245.50 674.47 222.04 553.65
agent. The values for the large consumer agent are still similar across
the methods, but the difference between the marginal contribution
methods and the Shapley value is more significant compared to the
small consumer agent.

Similarly, Table E.4 shows the comparison of redistributed costs
of four consumption profiles in a community of 200 agents from
Section 5.2. All methods approximate the Shapley value well for every
consumption profile. Especially, the differences between the Shapley
values for ‘‘evening peaker’’, ‘‘stay at home’’, and‘‘M-shape’’ agents are
very small. For the ‘‘night owl’’ agent, the difference is slightly larger
for marginal contribution method, but the difference is still only about
0.6% for the 70/10/10/10 composition and 0.5% for the 30/30/30/10
composition.

Fig. E.8 contains the relative differences to the exact Shapley values
of the redistribution methods for each consumer profile (‘‘evening
peak’’, ‘‘stay at home’’, ‘‘M-shaped’’, and ‘‘night owl’’) with increasing
community size and the composition of 70/10/10/10 (concentrated
18
community), from Section 5.2. It can be seen that for all classes, the
marginal contribution method has similar performance curve, where
the error is very large for small community size but decreases quickly
as the community size increases. Still, the error value is significantly
larger for ‘‘night owl’’ class (Fig. E.8(d)) than the other three. However,
it is also noticeable for ‘‘stay at home’’ agent (Fig. E.8(b)) that it out-
performs the state-of-the-art adaptive sampling method from medium-
sized communities (𝑁 ≥ 70). Stratified expected values method, on
the other hand, shows high similarity to the exact Shapley values for
any community size, and outperforms the simpler marginal contribu-
tion method in every scenario. Furthermore, it also outperforms the
computationally larger adaptive sampling method in most scenarios,
especially for ‘‘evening peak’’ (Fig. E.8(a)), ‘‘stay at home’’ (Fig. E.8(b)),
and ‘‘M-shape’’ (Fig. E.8(c)) agents. The RL-based adaptive sampling
method also showed high performance regardless of the community
size. Yet, it can be seen from all classes that the performance can
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Table E.4
Redistributed costs of four consumer profiles (‘‘evening peak’’:EP, ‘‘stay at home’’:SH, ‘‘M-shaped’’:MS, and ‘‘night owl’’:NO) in a community of 200 agents with two different
compositions.

Split 70/10/ 10/10 30/30/30/10

Agent class EP SH MS NO EP SH MS NO

Shapley 341.55 369.41 325.76 239.86 334.90 364.49 321.34 234.65
Marginal contribution 341.70 369.45 325.84 238.65 335.04 364.71 321.47 233.18
Stratified expected values 341.56 369.41 325.77 239.72 334.92 364.61 321.35 234.19
Approx. Shapley RL 341.59 369.48 325.81 239.73 334.96 364.62 321.40 234.62
significantly vary between runs or scenarios due to the random nature
of the method.

Similarly, Fig. E.9 shows the relative differences of each class with
increasing community size and community composition of 30/30/30/10
(even community) from Section 5.2. Again, the marginal contribution
method shows fast improvement in performances as the community size
grow for every class. Still, it is outperformed by the stratified expected
values and the adaptive sampling methods. The stratified expected
values does not perform as well as in Fig. E.8, only outperforming the
adaptive sampling method on ‘‘M-shape’’ class (Fig. E.9(c)). Although
there seems little difference in the overall performances between the
two methods for ‘‘evening peak’’ (Fig. E.9(a)) and ‘‘stay at home’’
(Fig. E.9(b)) classes, the adaptive sampling outperforms the stratified
expected values for ‘‘night owl’’ class (Fig. E.9(d)) with relatively larger
values. In fact, the ‘‘night owl’’ class is the main contributor of the
overall error of the stratified expected values method in Fig. 5(b).

Finally, Fig. E.10 shows the relative differences of each class with
changing community composition from Section 5.2. Again, the marginal
contribution method shows higher error than the other two redistri-
bution methods. It is also noticeable that the trends of the lines of
the marginal contribution and the stratified expected values methods
are almost identical between Fig. 6 and Fig. E.10(d), displaying that
the error caused by the ‘‘night owl’’ class is the main contribution of
the overall error of these two methods. Overall, this shows that the
precision of the estimation methods is sensitive to more unusual, rarer
demand profiles.
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