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Abstract. In this article we revisit smoothing bounds in parallel between lattices and codes.
Initially introduced by Micciancio and Regev, these bounds were instantiated with Gaussian
distributions and were crucial for arguing the security of many lattice-based cryptosystems.
Unencumbered by direct application concerns, we provide a systematic study of how these
bounds are obtained for both lattices and codes, transferring techniques between both areas.
We also consider multiple choices of spherically symmetric noise distribution.

We found that the best strategy for a worst-case bound combines Parseval’s Identity, the
Cauchy-Schwarz inequality, and the second linear programming bound, and this holds for both
codes and lattices and all noise distributions at hand. For an average-case analysis, the linear
programming bound can be replaced by a tight average count.

This alone gives optimal results for spherically uniform noise over random codes and random
lattices. This also improves previous Gaussian smoothing bound for worst-case lattices, but
surprisingly this provides even better results with uniform ball noise than for Gaussian (or
Bernouilli noise for codes).

This counter-intuitive situation can be resolved by adequate decomposition and truncation
of Gaussian and Bernouilli distributions into a superposition of uniform noise, giving further
improvement for those cases, and putting them on par with the uniform cases.

1. Introduction

1.1. Smoothing bounds. In either a code or a lattice, smoothing refers to fact that, as an er-
ror distribution grows wider and wider, the associated syndrome distribution tends towards a
uniform distribution. In other words, the error distribution, reduced modulo the code or the
lattice, becomes essentially flat. This phenomenon is pivotal in arguing security of cryptosys-
tems [MR07, GPV08, DST19]. In information theoretic literature, it is also sometimes referred to
as flatness [LLBS14]. Informally, by a “smoothing bound” we are referring to a result which lower
bounds the amount of noise which needs to be added so that the smoothed distribution “looks”
flat.

To be more concrete, by a “flat distribution”, we are referring to a uniform distribution over the
ambient space modulo the group of interest. For a (linear) code C ⊆ Fn2 , this quotient space is
Fn2/C; for a lattice Λ ⊆ Rn, it is Rn/Λ. We then consider some “noise” vector e distributed over
the ambient space Fn2 (resp. Rn), and attempt to prove that e mod C (resp. e mod Λ) is “close”
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to the uniform distribution over the quotient space Fn2/C (resp. Rn/Λ). To quantify “closeness”
between distributions, we will use the standard choice of statistical distance.

An important question to be addressed is the choice of distribution for the noise vector e. In lattice-
based cryptography (where such smoothing bounds originated [MR07]), the literature ubiquitously
uses Gaussian distributions for errors, and smoothness is guaranteed for an error growing as the
inverse of the minimum distance of the dual lattice. The original chain [MR07] of argument goes
as follows:

• Apply the Poisson summation formula (PSF);
• Bound variations via the triangle inequality (TI) over all non-zero dual lattice points;
• Bound the absolute sum above via the Banaszczyk tail bound [Ban93] for discrete Gaussian

(BT).

An intermediate quantity called the smoothing parameter introduced by [MR07] before the last
step is also often used in the lattice-based cryptographic literature. Each bounding step is
potentially non-tight, and indeed more recent works have replaced the last step by the follow-
ing [ADRS15]:

• Bound the number of lattice points in balls of a given radius via the Linear Programming
bound [Lev79] (LP) and “sum over all radii” (with care).

With this LP strategy, it is in principle possible to also compute a smoothing bound for spherically
symmetric distributions of errors other than the Gaussian; however, we are not aware of prior work
doing this explicitly. A very natural choice would be uniform distributions over Euclidean balls.

For codes, there are also two natural distributions of errors: Bernoulli noise, i.e. flip each bit
independently with some probability p (a.k.a. the binary symmetric BSCp channel), and a uniform
noise over a Hamming sphere of a fixed radius. The latter is typically preferred for the design of
concrete and practical cryptosystems [McE78, Ale11, MTSB13, DST19], while the former appears
more convenient in theoretical works (1). Cryptographic interest for code smoothing has recently
arisen [BLVW19, YZ21], but results are so far limited to codes with extreme parameters and
specific “balancedness” constraints. However we note that the question is not entirely new in the
coding literature (see for instance [Klø07]). In particular, an understanding of the smoothing
properties of Bernoulli noise is intimately connected to the undetected error probability of a code
transmitted through the BSCp.

In this light, it is interesting to revisit and systematize our understanding of smoothing bounds,
unencumbered by direct application concerns. We find it enlightening to do this exploration in
parallel between codes and lattices, transferring techniques back and forth between both areas
whenever possible.

Furthermore, we keep our arguments agnostic to the specific choice of error distribution, allowing
us to apply them with different error distributions and compare the results. To compare different
(symmetric) distributions, we advocate parametrizing them by the expected weight/norm of a
vector. That is, we quantify the magnitude of a noise vector e by t = E(|e|) (where | · | denotes
either the Hamming weight or the Euclidean norm of the vector). Our smoothing bounds will
depend on this parameter, and we consider a smoothing bound to be more effective if for the
smoothed distribution to be close to uniform we require a smaller lower-bound on t.

(1)A third choice of distribution, described as a discrete-time random walk, also made an appearance for a
complexity theoretic result [BLVW19]. The expert reader may note that the Bernoulli distribution can also be
treated as a continuous-time random walk, and both can be analysed via the heat kernel formalism [Chu97, Chap.
10].
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1.2. Contributions. In this work, we collect the techniques that have been used for smoothing,
both in the code and lattice contexts. We view individual steps as modular components of argu-
ments, and consider all permissible combinations of steps, thereby determining the most effective
arguments. In the following, we outline our systematization efforts, describing the various proof
frameworks that we tried before settling on the most effective argument.

Code smoothing bounds. Given the relative dearth of results concerning code smoothing, it
seems natural to start by adapting the first argument (PSF+TI+BT) to codes following the proof
techniques of [Ban93, MR07]. And indeed, the whole strategy translates flawlessly, with only one
caveat: it leads to a very poor result, barely better than the trivial bound. Namely, smoothness
is established only for Bernoulli errors with parameter very close to p = 1/2.

The adaptation of Banaszczyk tail bound [Ban93] to codes (together with replacing the Gaussian
by a Bernoulli distribution) is rather naïve, and it is therefore not very surprising that it leads to a
disappointing result. Instead, we can also follow the improved strategy for lattices from [ADRS15],
and resort to linear programming bounds for codes [Bas65, MRJW77, ABL01]. Briefly, by an LP
bound we are referring to a result that bounds the number of codewords (resp. lattice vectors)
of a certain weight (resp. norm) in terms of the dual distance (resp. shortest dual vector) of the
code (resp. lattice). In both cases, the results are obtained by considering a certain LP relaxation
of the combinatorial quantities one wishes to bound, hence the name. Even more, the bounds for
codes and lattices are obtained via essentially the same arguments [MRJW77, DL98, CE03]. We
therefore find it natural to apply LP bounds in our effort to develop proof techniques which apply
to both code- and lattice-smoothing.

The strategy (PSF+TI+LP) turns out to give a significantly better result, but it nevertheless still
appears to be far from optimal. We believe that the application of the triangle inequality in the
second step to bound the sum of Fourier coefficients given by the Poisson summation formula
leads to the unsatisfactory bound. Indeed, a common heuristic when dealing with sums of Fourier
coefficients is that, unless there is a good reason otherwise, the sum should have magnitude roughly
the square-root of the order of the group (as is the case for random signs): the triangle inequality
is far too crude to notice this.

Instead, we turn to another common upper-bound on a sum, namely, the Cauchy-Schwarz (CS)
inequality. It is natural to subsequently apply Parseval’s Identity (PI). It turns out that this
strategy yields very promising results, upon which we now elucidate. The upper-bound is described
in terms of the weight distribution of a code, i.e. the number of codewords of weight w for each
w = 1, . . . , n. Unfortunately, it is quite difficult to understand the weight distribution of arbitrary
codes, and the bounds that we do have are quite technical.

Random codes. For this reason, we first apply our proof template to random codes, as it is quite
simple to compute the (expected) weight distribution of a random code. Quite satisfyingly, the
simple two steps arguments (PI+CS) already yields optimal results for this case, but when the
error is sampled uniformly at random from a sphere! That is, we can show that the support size
of the error distribution matches the obvious lower bound that applies to any distribution that
successfully smooths a code: namely, for a code C the support size must be at least ](Fn2/C). Using
coding-theoretic terminology, the weight of the error vector that we need to smooth is given by
the ubiquitous Gilbert-Varshamov bound

ωGV(R) = h−1(1−R)

which characterizes the trade-off between a random code’s rate R and its minimum distance. Here,
h−1 is the inverse of the binary entropy function.

Moreover, as the argument is versatile enough to apply to essentially all spherical error distribu-
tions, we also tried applying it to the Bernoulli distribution, and the random walk distribution
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of [BLVW19]. Comparing them, we were rather surprised that our argument provided better
bounds for the uniform distribution over a Hamming sphere than the other two distributions for
the same average Hamming weight.

However, while the (PI+CS) sequence of arguments is more effective when the noise is sampled
uniformly on the sphere, we can exploit the fact that the Hamming weight of a Bernoulli-distributed
vector is tightly concentrated to recover the same smoothing bound for this distribution. In more
detail, we use a “truncated” argument. First, we decompose the Bernoulli distribution into a convex
combination of uniform sphere distributions. But, by Chernoff’s bound, a Bernoulli distribution
is concentrated on vectors whose weight lies in a width εn interval around its expected weight.
Therefore, outside of this interval, the contribution of the Bernoulli on the statistical distance is
negligible. Then apply the (PI+CS) sequence of arguments to each constituent distribution close
to the expected weight. In this way, we are able to demonstrate that Bernoulli distributions also
optimally smooth random codes.

Arbitrary codes. Next, we turn our attention to smoothing worst-case codes. Motivated by
our success in smoothing random codes, we again follow the (PI+CS) sequence of arguments and
combine this with LP bounds to derive smoothing bounds when the dual distance of the code is
sufficiently large. Again, the sequence of arguments is most effective when the error is distributed
uniformly over the sphere, with one caveat: we are also required to assume that the dual code
is balanced in the sense that it also does not contain any vectors of too large weight. While this
assumption has appeared in other works [BLVW19, YZ21], we find it somewhat unsatisfactory.

Fortunately, this condition is not required if the error is sampled according to the Bernoulli
distribution. But then we run into the same issue that we had earlier with random codes: the
(PI+CS) argument, followed by LP bounds, natively yields a lesser result when instantiated with
Bernoulli noise. Fortunately, we have already seen how to resolve this issue: we pass to the
truncated Bernoulli distribution and decompose it into uniform sphere distributions. This yields a
best-of-both-worlds result: we obtain the strongest smoothing bound we can in terms of the noise
magnitude, while requiring the weakest assumption on the code.

And back to lattices. Having now uncovered this better strategy for codes, we can return to
lattices and apply our new proof template. Indeed, as we outline in Section 2.3, the (PI+CS)
sequence of arguments can be applied in a very broad context; see, in particular, Corollary 2.4.

Random lattices. First, just as we set our expectations for code-smoothing by first studying
the random case, we analogously start here by considering random lattices. However, defining a
random lattice is a non-trivial task. We actually consider two distributions. The first, which is
based on the deep Minkowski-Hlwaka-Siegel (MHS) Theorem, we only abstractly describe. Thanks
to the MHS Theorem, we can very easily compute the (expected value) of our upper-bound.

For the MHS distribution of lattices, we consider two natural error distributions: the Gaussian
distribution (which is used ubiquitously in the literature), as well as the uniform distribution over
the Euclidean ball. And again, perhaps surprisingly (although less so now thanks to our experience
with the code case), we obtain a better result with the uniform distribution over the Euclidean
ball. And moreover, the Euclidean ball result is optimal in the same sense that we had for codes:
the support volume of the error distribution is exactly equal to the covolume of the lattice (2).
We view the value w such that the volume of the n-ball of radius w is equal to the covolume of a
lattice (which is half the quantity that appears in Minkowski bound) as being the lattice-theoretic
analogue of the Gilbert-Varshamov quantity:

wM/2
def
=

n
√
|Λ| Γ(n/2 + 1)√

π
.

(2)That is, for a lattice Λ, the volume of the torus Rn/Λ. We will denote this quantity by |Λ| from now on.
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However, as Gaussian vectors satisfy many pleasing properties that are often exploited in lattice-
theoretic literature, we would like to obtain the same smoothing bound for this error distribution.
Fortunately, our experience with codes also tells us how to recover the result for Gaussian noise
from the Euclidean ball noise smoothing bound: we decompose the Gaussian distribution appro-
priately into a convex combination of Euclidean ball distributions. Together with a basic tail
bound, we recover the same smoothing bound for Gaussian noise that we had for the uniform ball
noise.

We also study random q-ary lattices, which are more concretely defined: following the traditional
lattice-theoretic terminology, they are obtained by applying Construction A to a random code.
This does lead to a slight increase in the technicality of the argument – in particular, we need to
apply a certain “summing over annuli” trick – but the computations are still relatively elementary.
Again, we find that the argument naturally works better when the errors are distributed uniformly
over a ball, but we can still transfer the bound to the Gaussian noise.

Interestingly, the same optimal bound has been recovered in a concurrent work [LLB22, Theorem
1.] for Gaussian distributions. Their arguments are quite unlike ours: [LLB22] uses the Kull-
back–Leibler divergence in combination with other information-theoretic arguments. However,
contrary to our bounds obtained via the (PI + CS) sequence of arguments, [LLB22, Theorem 1]
only holds for random q-ary lattices.

Arbitrary lattices. Next, we address the challenge of smoothing arbitrary lattices. And again, we
follow the (PI+CS) sequence of arguments, and subsequently use the Kabatiansky and Levenshtein
bound [KL78] to obtain a smoothing bound in terms of the minimum distance of the dual lattice.
The Kabatiansky and Levenshtein bound is the lattice-analogue of the second LP bound from
coding theory. We can directly apply the arguments with both of our error distributions of interest,
and again, the uniform ball distribution wins. But the decomposition and tail-bound trick again
applies to yield the same result for the Gaussian distribution that we had for the uniform ball
distribution.

Comparison. We summarize how our work improves on the state of the art in Table 1 for lattices,
and in Table 2 and Figure 1 for codes. For this discussion, we let U(Rn/Λ) (resp. U(Fn2/C)) denote
the uniform distribution over Rn/Λ (resp. Fn2/C), and let ∆ denote the statistical distance.

In the case of lattices (Table 1), we fix the smoothing bound target to exponentially small, that
is we state the minimal value of F > 0 such that the bound over the statistical distance implies
∆(e mod Λ, U(Rn/Λ)) ≤ 2−Ω(n) when the error follows the prescribed distribution and of an
average Euclidean length of E(|e|2) = F n/λ∗1(Λ).(3)

In the case of codes we also fix the smoothing bound target to negligible,(4) but we compare two
cases: smoothing bounds for random codes (in average) and for a fixed code (worst case). In Figure
1 we compare the minimal value F > 0 such that EC (∆(e mod C, U(Fn2/C))) ≤ 2−Ω(n) when the
error e follows the prescribed distribution and with an expectation that is taken over codes of rate
R. In Table 1 we make the same comparison but to reach ∆(e mod C, U(Fn2/C)) ≤ 2−Ω(n) for a
fixed code C such that the minimum distance of its dual C∗ is known.

(3)In fact, the values in this table guarantee exponentially small statistical distance from the uniform distribution.
(4)Again, it is the same if we insist the statistical distance to uniform is exponentially small.
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Distribution Proof strategy smoothing factor F General statement
Gaussian PSF+TI+BT 1/(2π) ≈ 0.15915 Lemma 3.2 [MR07]
Gaussian PSF+TI+LP CKL/(2π

√
e) ≈ 0.12746 Lemma 6.1 [ADRS15]

Gaussian PI+CS+LP CKL/(2π
√

2e) ≈ 0.09013 Theorem 4.18 (this work)
Unif. Euclidean ball PI+CS+LP CKL/(2πe) ≈ 0.07731 Theorem 4.17 (this work)
Gaussian via Unif. + Trunc. CKL/(2πe) ≈ 0.07731 Theorem 4.19 (this work)

Table 1. Comparison of smoothing bounds for various proof strategies and error
distributions. The smoothing constant F is the smallest constant C such that the
bounds proves exponential smoothness when the average norm (over n, the length
of the ambient space) of an error is at least C times the inverse of the minimal
distance of the dual lattice. Here CKL ≈ 20.401 denotes the constant that is
involved in the Kabatiansky and Levenshtein bound [KL78].
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Bernoulli Distribution without Truncating Argument
Discrete-Time Random Walk

Figure 1. Comparison of smoothing constants for random codes as a function
of their rate R for various error distributions. The smoothing constant is the
smallest constant C such that the bounds proves exponential smoothness when
the average Hamming weight of an error is at least Cn.

Distribution smoothing factor F Balanced-code General statement
Bernoulli ≈ 0.24 NO Eq. (17), Prop. 3.11, 3.12
Discrete Rand. Walk ≈ 0.27 YES Theorem 3.14
Unif. Hamming sphere ≈ 0.17 YES Theorem 3.14
Bernoulli + Trunc. ≈ 0.17 NO Theorem 3.16

Table 2. Comparison of smoothing bounds for a code C of length n such that
its dual C∗ has minimum distance 0.11n (which is the typical case for a code
of rate 1/2) for various error distributions. The smoothing constant F is the
smallest constant C such that the bounds proves exponential smoothness when
the average Hamming weight of an error is at least Cn. Furthermore the balanced-
code hypothesis means that we suppose there are no dual codewords c∗ ∈ C∗ of
Hamming weight larger than (1− 0.11)n.
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2. Preliminaries: Notations and Fourier Analysis over Locally Compact Abelian
Group

2.1. General Notation. The notation x def
= y means that x is defined as being equal to y. Given

a set S , its indicator function will be denoted 1S . For a finite set S , we will denote by ]S its
cardinality. Vectors will be written with bold letters (such as x). Furthermore, we denotes by
Ja, bK the set of integers {a, a+ 1, . . . , b}.
The statistical distance between two discrete probability distributions f and g over a same space
S is defined as:

∆(f, g)
def
=

1

2

∑
x∈S

|f(x)− g(x)|.

Similarly, for two continuous probability density functions f and g over a same measure space E ,
the statistical distance is defined as

∆(f, g)
def
=

1

2

∫
E

|f − g|.

2.2. Codes and Lattices. We give here some basic definitions and notation about linear codes
and lattices.

Linear codes. In the whole paper, we will deal exclusively with binary linear codes, namely
subspaces of Fn2 for some positive integer n. The space Fn2 will be embedded with the Hamming
weight | · |, namely

∀x ∈ Fn2 , |x| def
= ] {i ∈ J1, nK : xi 6= 0} .

We will denote by Sw the sphere with center 0 and radius w; its size is given by
(
n
w

)
and we have

1
n log2

(
n
w

)
= h(w/n) + o(1) where h denotes the binary-entropy, namely h(x)

def
= −x log2(x)− (1−

x) log2(1− x).

An [n, k]-code C is defined as a dimension k subspace of Fn2 . The rate of C is k
n . Its minimal

distance is given by

dmin(C)
def
= min {|c− c′| : c, c′ ∈ C and c 6= c′}
= min {|c| : c ∈ C and c 6= 0} .

The number of codewords of C of weight t will be denoted by Nt(C), namely

Nt(C)
def
= ] {c ∈ C and |c| = t} .

The dual of a code C is defined as C∗ def
= {c∗ ∈ Fn2 : ∀c ∈ C, c · c∗ = 0} where · denotes the standard

inner product on Fn2 .
Lattices. We will consider lattices of Rn which is embedded with the Euclidean norm | · |2, namely

∀x ∈ Rn, |x|2
def
=

√√√√ n∑
i=1

x2
i .

We will denote by Bw the ball with center 0 and radius w; its volume is given by

Vn (w)
def
=

πn/2wn

Γ(n/2 + 1)
.

An n-dimension lattice Λ is defined as a discrete subgroup of Rn. The covolume |Λ| def
= vol (Rn/Λ)

of Λ is the volume of any fundamental parallelotope. The minimal distance of Λ is given by
λ1(Λ)

def
= min {|x|2 : x ∈ Λ and x 6= 0} . The number of lattice points of Λ of weight ≤ t will be

denoted by N≤t(Λ), namely
N≤t(Λ)

def
= ] {x ∈ Λ : |x|2 ≤ t} .
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G µ Ĝ µ

Fn2 1
2n ]

Fn2/C
]C
2n ] F̂n2/C ' C∗ ]

C 1
]C ]

Rn λ

Rn/Λ 1
|Λ| λ R̂n/Λ ' Λ∗ ]

Λ ] |Λ|

Figure 2. Some groups G, their duals Ĝ and their associated Haar measures.
Here λ denotes the Lebesgue measure and ] the counting measure.

2.3. Fourier Analysis. We give here a brief introduction to Fourier analysis over arbitrary locally
compact Abelian groups. Our general treatment will allow us to apply directly some basic results
in a code and lattice context, obviating the need in each case to introduce essentially the same
definitions and to provide the same proofs.

Corollary 2.4 at the end of this subsection is the starting point of our smoothing bounds: all of
our results are obtained by using different facts to bound the right hand side of the inequality.

Groups and Their Duals. In what follows G will denote a locally compact Abelian group. Such
a group admits a Haar measure µ. For instance G = R with µ the Lebesgue measure λ, or G = Fn2
with µ the counting measure ].

The dual group Ĝ is given by the continuous group homomorphisms χ from G into the multi-
plicative group of complex numbers of absolute value 1, and it is again a locally compact Abelian
group. In Figure 2 we give groups, their duals as well as their associated Haar measures that will
be considered in this work.

It is important to note that if H ⊆ G is a closed subgroup, then G/H and H are also locally
compact groups. Furthermore, G/H has a dual group that satisfies the following isomorphism

Ĝ/H ' H⊥ def
=
{
χ ∈ Ĝ : ∀h ∈ H, χ(h) = 1

}
.

Norms and Fourier Transforms. For any p ∈ [1,∞[, Lp(G) will denote the space of measurable
functions f : G→ C (up to functions which agree almost everywhere) with finite norm ‖f‖p which
is defined as

‖f‖p
def
= p

√∫
G

|f |pdµ.

The Fourier transform of f ∈ L1(G) is defined as

f̂ : χ ∈ Ĝ 7−→
∫
G

fχdµ.

We omitted here the dependence on G. It will be clear from the context.

Theorem 2.1 (Parseval’s Identity). Let f ∈ L1(G)∩L2(G), then with appropriate normalization
of the Haar measure

‖f‖2 = ‖f̂‖2.

Poisson Formula. Given H ⊆ G and any function f : G → C, its restriction over H is defined
as f|H : h ∈ H 7→ f(h) ∈ C. We define its periodization as follows.
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Definition 2.2 (Periodization). Let H be a closed subgroup of G and f ∈ L1(G). We define the
H-periodization of f as

f |H : (g +H) ∈ G/H 7−→
∫
H

f(g + h)dµH(h) ∈ C

where µH denotes any choice of the Haar measure for H.

There always exists a Haar measure µG/H such that for any continuous function with compact
support f : G→ C the quotient integral formula holds∫

G/H

(∫
H

f(g + h)dµH(h)

)
dµG/H(g +H) =

∫
G

f(g)dµ(g). (1)

Theorem 2.3 (Poisson Formula). Let H ⊆ G be a closed subgroup and f ∈ L1(G), then with
appropriate normalization of the Haar measures,(̂

f |H
)

=
(
f̂
)
|Ĝ/H

.

The following corollary is a simple consequence of the Cauchy-Schwarz inequality, Parseval identity
and the Poisson formula. Our results on smoothing bounds are all based on this corollary.

Corollary 2.4. Let H be a closed subgroup of G. Let a : x ∈ G/H 7→ 1 and f ∈ L1(G) such that∫
G
fdµ = µG/H(G/H). Then with appropriate normalization of the Haar measure,(5)

‖a− f |H‖1 ≤
√
µG/H(G/H)

√∫
Ĝ/H\{χ0}

|f̂ |2 dµ
Ĝ/H

where χ0 denotes the identity element of Ĝ/H.

Proof. We have

‖a− f |H‖1 =

∫
Ĝ/H

|a− f |H |dµG/H

≤
√
µG/H(G/H) ‖a− f‖2 (By Cauchy-Schwarz)

=
√
µG/H(G/H) ‖â− f̂‖2 (By Parseval)

=
√
µG/H(G/H)

√∫
Ĝ/H\{χ0}

|f̂ |H |2dµ
Ĝ/H

(2)

=
√
µG/H(G/H)

√∫
Ĝ/H\{χ0}

|f̂ |2dµ
Ĝ/H

2 (By Poisson)

where in Equation (2) we used the following equalities:

f̂ |H(χ0) =

∫
G/H

f |Hχ0 dµG/H

=

∫
G/H

(∫
H

f(g + h)dµH(h)

)
dµG/H(g +H)

=

∫
G

f (By Equation (1))

= µG/H(G/H) (By assumption on f)

(5)We choose the Haar measures µG, µH ,µG/H and µ̂G/H for which both the Poisson formula and Parseval’s
Identity hold.

9



and

â(χ0) =

∫
G/H

uχ0dµG/H = µG/H(G/H) and ∀χ ∈ Ĝ/H \ {χ0}, â(χ) =

∫
G/H

χdµG/H = 0.

which concludes the proof. �

In this work we will choose G = Rn and H = Λ or G = Fn2 and H = C. Haar measures associated
to G,G/H and Ĝ/H for which the corollary holds are given in Figure 2. Furthermore, we will
use Fourier transforms over Ĝ and Ĝ/H. We describe in Figure 3 these dual groups that we will
consider.

Rn Fn2

R̂n/Λ = {χx : x ∈ Λ∗} F̂n2/C = {χx : x ∈ C∗}

f̂(x) =
∫
Rn f(y)e2iπx·ydy f̂(x) = 1

2n

∑
y∈Fn

2
f(y)(−1)x·y

Figure 3. Dual groups and Fourier transforms that we will consider. We identify
f̂(χx) with f̂(x).

3. Smoothing Bounds: Code Case

Given a binary linear code C of length n, the aim of a smoothing bound is to quantify at which
condition on the noise c + e is statistically close to the uniform distribution over Fn2 when c is
uniformly drawn from C and e sampled according to some noise distribution f . Equivalently, we
want to understand when (e mod C) ∈ Fn2/C is close to the uniform distribution. We will focus
on the case where the distribution of e is radial, meaning that it only depends on the Hamming
weight of e.

Notation 3.1. We will use throughout this section the following notation.

• The uniform probability distribution over the quotient space Fn2/C will frequently recur and
for this reason we just denote it by u. The uniform distribution over the whole space Fn2
is denoted by ufull and the uniform distribution over the codewords of C is denoted by uC.

• We also use the uniform distribution over the sphere Sw which we denote by uw.
• For two probability distributions f and g over Fn2 we denote by f ? g the convolution over
Fn2 : f ? g(x) =

∑
y∈Fn

2
f(x− y)g(y).

It will be more convenient to work in the quotient space and for this we use the following propo-
sition.

Proposition 3.2. Let f be a probability distribution over Fn2 and C be an [n, k]-code. We have

∆(ufull, uC ? f) = ∆(u, fC), where fC(x)
def
= 2k f |C(x) =

∑
c∈C

f(x− c).

10



Proof. Let c and e be distributed according to uC and f . We have the following computation:

∆(ufull, uC ? f) =
1

2

∑
x∈Fn

2

∣∣∣∣ 1

2n
− PuC,f (c + e = x)

∣∣∣∣
=

1

2

∑
x∈Fn

2

∣∣∣∣∣ 1

2n
−
∑
c0∈C

Pf (c + e = x | c = c0)
1

2k

∣∣∣∣∣
=

1

2

∑
x∈Fn

2

∣∣∣∣∣ 1

2n
− 1

2k

∑
c0∈C

f(x− c0)

∣∣∣∣∣
=

1

2

∑
x∈Fn

2 /C

∣∣∣∣∣ 1

2n−k
−
∑
c0∈C

f(x− c0)

∣∣∣∣∣ (3)

=
1

2

∑
x∈Fn

2 /C

∣∣∣∣ 1

2n−k
− fC(x)

∣∣∣∣
where in Equation (3) we used that each term of the sum is constant on x + C. �

As a rewriting of Corollary 2.4 we get the following proposition that upper-bounds ∆(u, fC),
namely:

Proposition 3.3. Let C be an [n, k]-code and f be a radial distribution on Fn2 . We have

∆
(
u, fC

)
≤ 2n

√√√√ n∑
t=dmin(C∗)

Nt(C∗)|f̂(t)|2

where by abuse of notation we denote by f̂(t) the common value of f̂ on vectors of weight t.

Proof. We have that C is a closed subgroup of Fn2 with associated Haar measures:

µFn
2

=
1

2n
] and µFn

2 /C
=

2k

2n
]

for which we can apply Corollary 2.4. Let a def
= 2n−ku and b

def
= 2nf . First, it is clear that

a : x ∈ Fn2/C 7→ 1 and that∫
Fn
2

b dµFn
2

=
1

2n

∑
x∈Fn

2

2nf(x) = 1 = µFn
2 /C

(Fn2/C)

where we used that f is a distribution. Therefore we can apply Corollary 2.4 with functions a and
b. Furthermore, b|C = 2nf |C = 2n−kfC by definition of fC. We get the following computation:

‖a− b|C‖1 = ‖a− 2n−kfC‖1

=
∑

x∈Fn
2 /C

∣∣1− 2n−kfC(x)
∣∣ 1

2n−k

=
∑

x∈Fn
2 /C

∣∣∣∣ 1

2n−k
− fC(x)

∣∣∣∣
= 2 ∆(u, fC) . (4)

To conclude the proof it remains to apply Corollary 2.4 with Equation (4) and then to use that f
is radial and therefore also f̂ . �
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Our upper-bound of Proposition 3.3 involves the weight distribution of the code C∗, namely
(Nt(C

∗))t≥dmin(C∗). To understand how our bound behaves for a given distribution f , we will
start (in the following subsection) with the case of random codes. The expected value for Nt is
well known in this case. This will lead us to estimate our bound on almost all codes and gives
us some hints about the best distribution to choose for our smoothing bound in the worst case
(which is the case that we treat in Subsection 3.2).

3.1. Smoothing Random Codes. The probabilistic model Cn,k that we use for our random
code of length n is defined by sampling uniformly at random a generator matrix G ∈ Fk×n2 for it,
i.e.

C =
{
mG : m ∈ Fk2

}
.

It is straightforward to check that the expected number of codewords of weight t in the dual C∗ is
given by:

Fact 3.4. For C chosen according to Cn,k

EC(Nt(C
∗)) =

(
n
t

)
2k

.

This estimation combined with Proposition 3.3 enables us to upper-bound EC

(
∆(u, fC)

)
.

Proposition 3.5. We have:

EC

(
∆(u, fC)

)
≤ 2n

√√√√∑
t>0

(
n
t

)
2k
|f̂(t)|2. (5)

Proof. By using Proposition 3.3, we obtain:

EC

(
∆(u, fC)

)
≤ EC

2n

√√√√ n∑
t=dmin(C∗)

Nt(C∗)|f̂(t)|2



≤ 2n

√√√√√EC

 n∑
t=dmin(C∗)

Nt(C∗)|f̂(t)|2

 (Jensen’s inequality)

= 2n

√√√√∑
t>0

(
n
t

)
2k
|f̂(t)|2

where in the last line we used the linearity of the expectation and Fact 3.4. �

It remains now to choose the distribution f . A natural choice in code-based cryptography is the
uniform distribution uw over the sphere Sw of radius w centered around 0.

Uniform Distribution over a Sphere. The Fourier transform of uw is intimately connected
to Krawtchouk polynomials. The Krawtchouk polynomial of order n and degree w ∈ {0, . . . , n} is
defined as

Kw(X;n)
def
=

w∑
j=0

(−1)j
(
X

j

)(
n−X
w − j

)
.

To simplify notation, since n is clear here from context, we will drop the dependency on n and
simply write Kw(X). The following fact allows to relate Kw with ûw (see for instance [vL99, Lem.
3.5.1, §3.5])

Fact 3.6. For any y ∈ St, ∑
e∈Sw

(−1)y·e = Kw(t). (6)
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This leads us to

ûw(x) =
1

2n
Kw(|x|)

/(
n

w

)
.

By plugging this in Equation (5) of Proposition 3.5 we obtain

EC

(
∆(u, uCw)

)
≤

√√√√∑
t>0

(
n
t

)
2k

(
Kw(t)(

n
w

) )2

. (7)

The above sum can be upper-bounded by observing that
(
Kw/

√(
n
w

))
0≤w≤n

is an orthonormal

basis of functions f : {0, 1, · · · , n} → C for the inner product 〈f, g〉rad
def
=
∑n
t=0 f(t)g(t)

(
n
t

)
/2n.

It can be viewed as the standard inner product between radial functions over Fn2 . In particular,∑n
t=0

Kw(t)2

(n
w)

(n
t)

2n = 1 [Lev95, Corollary 2.3]. Therefore, for random codes we obtain the following

proposition

Proposition 3.7. We have for random C chosen according to Cn,k

EC

(
∆(u, uCw)

)
≤

√
2n−k

/(
n

w

)
. (8)

In other words, if one wants to smooth a random code with target distance 2−Ω(n) via the uniform
distribution over a sphere, one has to choose its radius w ≤ n/2 such that

(
n
w

)
= 2Ω(n) 2n−k.

It is readily seen that for fixed code rate R def
= k

n , choosing any fixed ratio ω def
= w

n such that
ω > ωGV(R) is enough, where ωGV(R) corresponds to the asymptotic relative Gilbert-Varshamov
(GV) bound

ωGV(R)
def
= h−1(1−R) ,

with h−1 : [0, 1] → [0, 1/2] being the inverse of the binary entropy function h(p) = −p log2(p) −
(1−p) log2(1−p). The GV bound ωGV(R) appears ubiquitously in the coding-theoretic literature:
amongst other contexts, it arises as the (expected) relative minimum distance of a random code
of dimension Rn, or as the maximum relative minimum error weight for which decoding over the
binary symmetric channel can be successful with non-vanishing error probability.

This value of radius nωGV(R) is optimal: clearly, the support size of an error distribution smooth-
ing a code C must exceed ]Fn2/C. Thus, we cannot expect to smooth a code C with errors in the
sphere Sw if its volume is smaller than 2n−k = ]Fn2/C.
Therefore the uniform distribution over a sphere is optimal for random codes. By this, we mean
that it leads to the smallest amount of possible noise (when it is concentrated on a ball) to
smooth a random code. Notice that we obtained this result after applying the chain of arguments
Cauchy-Schwarz, Parseval and Poisson to bound the statistical distance.

About the original chain of arguments of Micciancio and Regev. It can be verified that
by coming back to the original steps of [MR07, ADRS15], namely the Poisson summation formula
and then the triangle inequality, we would obtain

∆
(
u, fC

)
≤ 2n

∑
t≥dmin(C∗)

Nt(C
∗)|f̂(t)|. (9)

By using that a2 +b2 ≤ (a+b)2 (when a, b ≥ 0) we see that our bound (Proposition 3.3) is sharper.
It turns out that our bound is exponentially sharper for random codes (and even in the worst case)
when choosing f as the uniform distribution over a sphere of radius w, namely f = uw. In this
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case the Micciancio-Regev argument yields the following computation

EC

(
∆
(
u, uCw

))
≤ EC

 ∑
t≥dmin(C∗)

Nt(C
∗)
|Kw(t)|(

n
w

)


=
∑
t>0

(
n
t

)
2k
|Kw(t)|(

n
w

) . (10)

To carefully estimate this upper-bound (and to compare with (8)) we are going to use the following
proposition, which gives the asymptotic behaviour of Kw (see for instance [IS98, DT17]).

Proposition 3.8. Let n, t and w be three positive integers. We set τ def
= t

n , ω = w
n and ω⊥ def

=

1/2−
√
ω(1− ω). We assume w ≤ n/2. Let z def

= 1−2τ−
√
D

2(1−ω) where D def
= (1− 2τ)

2− 4ω(1−ω). In
the case τ ∈ (0, ω⊥),

Kw(t) = O
(

2n(a(τ,ω)+o(1))
)

where a(τ, ω)
def
= τ log2(1− z) + (1− τ) log2(1 + z)− ω log2 z.

In the case τ ∈ (ω⊥, 1/2), D is negative, and

Kw(t) = O
(

2n(a(τ,ω)+o(1))
)

where a(τ, ω)
def
=

1

2
(1 + h(ω)− h(τ)).

We let,

ω0
def
= lim

n→∞

{
w

n
:

√
2n(1−R)

/(
n

w

)
≥ 1

}
,

ω1
def
= lim

n→∞

{
w

n
:
∑
t>0

(
n
t

)
2Rn

|Kw(t)|(
n
w

) ≥ 1

}
.

In Figure 4 we compare the asymptotic values of ω0 and ω1 as functions of R. Notice that
ω0 = ωGV(R). We see that ω1 is undefined for a rate R < 1/2. In other words, it is impossible to
show that EC

(
∆(u, uCw)

)
≤ 2−Ω(n) with the standard approach of [MR07, ADRS15] when R < 1/2.

Furthermore, for larger rates (and sufficiently large n), ω0 is much smaller than ω1.

0.2 0.4 0.6 0.8 1
R

0.1

0.2

0.3

0.4

0.5
 

ω0
ω1

Figure 4. ω0 and ω1 as functions of R def
= k

n .
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Bernoulli Distribution. Another natural distribution to consider when dealing with codes is
the so-called “Bernoulli” distribution fber,p, which is defined for p ∈ [0, 1/2] as

∀x ∈ Fn2 , fber,p(x)
def
= p|x|(1− p)n−|x|.

This choice leads to simpler computations compared to the uniform distribution over a sphere.
For instance we have f̂ber,p(x) = 1

2n (1 − 2p)|x|. By plugging this in Equation (5) of Proposition
3.5 we obtain

EC

(
∆(u, fCber,p)

)
≤

√√√√∑
t>0

(
n
t

)
2k

(1− 2p)2t

≤
√

1

2k
(1 + (1− 2p)2)n (11)

Thus, if one wants to smooth a random code at target distance 2−Ω(n) with the Bernoulli dis-
tribution, the above argument says that one has to choose p > p0

def
= 1

2

(
1−
√

2R − 1
)

where
R = k/n. As Efber,p(|x|) = pn, it is meaningful to compare p0 and ω0. It is readily seen that

ω0 = ωGV(R) = h−1(1−R) < 1
2

(
1−
√

2R − 1
)

= p0. In other words, this time the upper-bound
given by Proposition 3.5 does not give what would be optimal, namely the Gilbert-Varshamov
relative distance ωGV(R), but a quantity which is bigger. However, it is expected that the average
amount of noise to smooth a random code is the same in both cases, since a Bernoulli distribution
of parameter p is extremely concentrated over words of Hamming weight pn and that therefore
∆(u, fCber,p) ≈ ∆(u, uCpn). This suggests that Proposition 3.5 is not tight in this case. This is
indeed the case, we can prove that we can smooth a random code with the Bernoulli noise as soon
as p > ωGV(R). This follows from the following proposition.

Proposition 3.9. Let ε > 0 and p ∈ [0, 1/2]. Then,

∆(u, fCber,p) ≤
(1+ε)np∑
r=(1−ε)np

∆(u, uCr ) + 2−Ω(n).

Proof. See Appendix A. �

This proposition shows that if one wants ∆(u, fCber,p) ≤ 2−Ω(n) it is enough to have ∆(u, fCunif,r) ≤
2−Ω(n) for any r ∈ [(1− ε)np, (1 + ε)np]. This can be achieved by choosing ε and p such that
(1− ε)p > ωGV(R).

To summarize this subsection we have the following theorem

Theorem 3.10. Let C be a random code chosen according to Cn,k, R
def
= k

n . Let u (resp. udpne)
be the uniform distribution over Fn2/C (resp. Sw) and fber,p be the Bernoulli distribution over Fn2
of parameter p. We have,

EC

(
∆(u, uCdpne)

)
≤ 2

n
2 (1−R−h(p)+o(1)) and EC

(
∆(u, fCber,p)

)
≤ 2

n
2 (1−R−h(p)+o(1)).

In particular, EC

(
∆(u, uCdpne)

)
≤ 2−Ω(n) and EC

(
∆(u, fCber,p)

)
≤ 2−Ω(n) for any fixed p >

ωGV(R).

3.2. Smoothing a Fixed Code. Our upper-bound on ∆(u, fC) given in Proposition 3.3 involves
the weight distribution of the dual of C, namely the Nt(C∗)’s. To derive smoothing bounds on a
fixed code our strategy will simply consist in using the best known upper bounds on the Nt(C∗)’s.
Roughly speaking, these bounds show that Nt(C∗) ≤

(
n
t

)
2−Kn for some constant K which is
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function of dmin(C∗).

Notation. Let δ ∈ (0, 1/2) and δ ≤ τ ≤ 1,

b(δ, τ)
def
= lim

n→∞
max
C

{
1

n
log2Nbτnc(C)

}
(12)

where the maximum is taken over all codes C of length n and minimum distance ≥ δn.
We recall (or slightly extend) results taken from [ABL01]:

Proposition 3.11. Let δ ∈ (0, 1/2) and δ⊥ def
= 1/2−

√
δ(1− δ). For any δ ≤ τ ≤ 1

b(δ, τ) ≤ c(δ, τ)
def
=

{
h(τ) + h

(
δ⊥
)
− 1 if τ ∈ [δ, 1− δ],

2
(
h(δ⊥)− a(τ, δ⊥)

)
otherwise,

(13)

where a(·, ·) is defined in Proposition 3.8.

Proof. See Appendix B. �

Proposition 3.12 ([ABL01, Proposition 4]). Let δJSB
def
=
(
1−
√

1− 2δ
)
/2 and

τ0
def
= argmin

δJSB≤α≤1/2

1− h(α) +R1(α, δ)

where

R1(τ, δ)
def
= h

(
1

2

(
1−

√
1−

(√
4τ(1− τ)− δ(2− δ)− δ

)2
))

.

For any δ ≤ τ ≤ 1

b(δ, τ) ≤ d(δ, τ)
def
=


h(τ)− h(τ0) +R1(τ0, δ) if τ ∈ (δJSB, 1− δJSB) and τ0 ≤ τ,
R1(τ, δ) if τ ∈ (δJSB, 1− δJSB) and τ0 > τ,

0 otherwise.
(14)

Both of these bounds are derived from “linear programming arguments” which were initially used
to upper-bound the size of a code given its minimum distance. Proposition 3.11 is an extension
of [ABL01, Theorem 3] in the case of linear codes, in particular we give an upper-bound for any
τ ∈ [δ, 1] (and not for only τ ∈ [δ, 1/2]). The proof is in the appendix. The second bound is
usually called the the second linear programming bound. In terms of δ and τ , Proposition 3.11
and 3.12 are among the best (known) upper-bounds on b(δ, τ). In the case where 0 ≤ δ ≤ 0.273,
Proposition 3.12 leads to better smoothing bounds compared to Proposition 3.11.

Remark 3.13. There exist many other bounds on b(δ, τ), like [ACKL05, Theorem 8] which holds
only for linear codes or [ACKL05, Theorem 7]. However for our smoothing bounds, Propositions
3.11 and 3.12 lead to the best results, partly because these are the best bounds on the number of
codewords of Hamming weight close to the minimum distance of the code.

We draw in Figures 5 and 6 the bounds of Propositions 3.11 and 3.12 as function of τ ∈ [δ, 1] for
a couple values of δ.

Equipped with these bounds we are ready to give our smoothing bounds for codes in the
worst case, namely for a fixed code. Our study with random codes gave a hint that the
choice of the uniform distribution over a sphere could give better results than the Bernoulli
distribution. However, as we will show now, the distribution on a sphere forces us to assume
that no codewords of large weight belong to the dual C∗ when we want to smooth C. It
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Figure 5. Bounds of Propositions 3.11 and 3.12 on b(δ, τ) as function of τ ∈ [δ, 1]

for δ = 0.1.

0.4 0.5 0.6 0.7 0.8 0.9 1
τ0

0.1

b(δ, τ)

δ 1− δJSB

Proposition 6
Proposition 7

Figure 6. Bounds of Propositions 3.11 and 3.12 on b(δ, τ) as function of τ ∈ [δ, 1]

for δ = 0.35.

corresponds to the hypothesis of balanced-codes made in [BLVW19] to obtain a worst-to-average
case reduction. We would like to avoid making this assumption as nothing forbids large
weight vectors from belonging to a fixed code. Fortunately, as we will later show, we can avoid
making this hypothesis while still keeping the advantages of the uniform distribution over a sphere.

Impossibility to smooth a code whose dual is not balanced with the uniform
distribution over a sphere. It is readily seen that in the case where the dual code C∗ is
not balanced, meaning that it contains the all-one vector (and therefore that the dual weight
distribution is symmetric: Nw(C∗) = Nn−w(C∗) for any w ∈ {0, · · · , n} when the codelength is
n), then it is impossible to smooth it with the uniform distribution uw over a sphere. Indeed, this
implies that all codewords of C have an even Hamming weight (they have to be orthogonal to
the all-one vector). The parity of the Hamming weights of vectors in a coset (i.e. in the class of
representatives of some element in Fn2/C) will be the same. Therefore, half of the cosets cannot
be reached when periodizing uw over C.
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Difficulty of using Proposition 3.3 for proving smoothness of the uniform distribution
if the dual has large weight codewords. Even in the case where the dual is balanced,
difficulties can arise if we want to use Proposition 3.3 for proving smoothness of the uniform
distribution over a sphere when the dual has large weight codewords. First of all, the fact that
it contains the all-one codeword also reflects in the upper-bound of Proposition 3.3. Recall that
ûw(x) = 1

2nKw(|x|)/
(
n
w

)
and that we have Kw(n) = (−1)w

(
n
w

)
(see Fact 3.6). Therefore, when

the full weight vector belongs to C∗, our upper-bound on ∆(u, uCw) of Proposition 3.3 cannot be
smaller than 1. Furthermore, even if the dual does not contain the all-one codeword, codewords
of weight say t = n − O(log n) also give a non-negligible contribution to the upper-bound of
Proposition 3.3: the contribution is a polynomial n−O(1).

Difficulty of using Proposition 3.3 for proving smoothness of the “discrete walk dis-
tribution” if the dual has large weight codewords. Other meaningful distributions in the
cryptographic context display the same problem as the uniform distribution concerning the diffi-
culty of applying Proposition 3.3 to them if the dual contains large weight codewords. This applies
to the discrete time random walk distribution fRW,t introduced in [BLVW19] for worst-to-average
case reductions. The authors were only able to prove smoothness of this distribution if the dual
code has no small and no large weight codewords. This distribution is given by

∀x ∈ Fn2 , fRW,w(x)
def
= P

(
w∑
i=1

eui
= x

)
where the ui’s are independently and uniformly drawn at random in {1, . . . , n} and ej denotes the
j-th canonical basis vector. Recall that [BLVW19]

̂fRW,w(y) =
1

2n

(
1− 2

|y|
n

)w
.

Therefore, f̂RW,w(y) = 1
2n (−1)w when |y| = n, as for the Fourier transform of the uniform

distribution over a sphere, showing that fRW,w cannot smooth a code when the full weight vector
belongs to its dual. In summary, a direct application of Proposition 3.3 is quite unsatisfactory
for these distributions uw and fRW,w. If we are willing to also make an assumption on the
largest weight of a codeword, then certainly a direct application of Proposition 3.3 is able to
provide meaningful smoothing bounds for them. Indeed, the following theorem is obtained by just
combining Propositions 3.3, 3.11 and 3.12.

Theorem 3.14. Let C be a binary linear code of length n and ω ∈ (0, 1). Suppose that dmin(C∗) =

δ∗n and that C∗ has no element of Hamming weight ≥ βn for some β ∈ (δ∗, 1). We have

1

n
log2 ∆

(
u, uCωn

)
≤ max
δ∗≤τ≤β

{
1

2
min {c(δ∗, τ), d(δ∗, τ)}+ a(ω, τ)

}
− h(ω)

1

n
log2 ∆

(
u, fCRW,ωn

)
≤ max
δ∗≤τ≤β

{
1

2
min {c(δ∗, τ), d(δ∗, τ)}+ ω log2 (1− 2τ)

}
where a(·, ·), c(·, ·) and d(·, ·) are defined respectively in Propositions 3.8, 3.11 and 3.12.

Avoiding making an assumption on the largest dual codeword: the case of the
Bernoulli distribution. Even if the Bernoulli distribution has some drawbacks compared to
the uniform distribution over a sphere, when applying Proposition 3.3 with random codes, it has
however a nice property concerning the large weight codewords: the large weight dual codewords
have a negligible contribution in the upper-bound of Proposition 3.3. To see this let us first recall
that

f̂ber,p(x) =
1

2n
(1− 2p)|x|. (15)
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Therefore, by Proposition 3.3 we have

∆(u, fCber,p) ≤

√√√√ n∑
t=dmin(C∗)

Nt(C∗)(1− 2p)2t. (16)

On the other hand, we have the following lemma which shows that large weight codewords can
only have an exponentially small contribution to the above upper-bound.

Lemma 3.15. Let C be a linear code of length n and let t > n− dmin(C)/2. There is at most one
codeword c of weight t.

Proof. Suppose by contradiction that there exists two distinct codewords c, c′ ∈ C of Hamming
weight t. By using the triangle inequality we obtain (where 1 denotes the all-one vector)

|c− c′| ≤ |c− 1|+ |1− c′|
= 2 (n− t)
< dmin(C)

which contradicts the fact that C has minimum distance dmin(C). �

Therefore, using Lemma 3.15 in Equation (16) gives for p ∈ (0, 1/2],

∆(u, fCber,p) ≤

√√√√√n−dmin(C∗)/2∑
t=dmin(C∗)

Nt(C∗)(1− 2p)2t + 2−Ω(n). (17)

In other words, large weight dual codewords (if they exist) have only an exponentially small
contribution to our smoothing bound with the Bernoulli distribution. In principle, we could plug
in Equation (17) bounds on the Nt(C∗)’s given in Propositions 3.11 and 3.12. We will improve on
the bounds obtained in this way by truncating the Bernoulli distribution, then

(i) prove that by appropriately truncating both distributions have the same smoothness prop-
erty,

(ii) show that the truncated distribution has the same nice properties with respect to large
weights,

(iii) show that we can apply Proposition 3.3 to the truncated distribution and get appropriate
smoothness properties.

We obtain in this way:

Theorem 3.16. Let C be a binary linear code of length n and p ∈ (0, 1/2] such that dmin(C∗) ≥ δ∗n
for some δ∗ ∈ [0, 1]. We have asymptotically,

1

n
log2 ∆

(
u, fCber,p

)
≤ max
δ∗≤τ≤1−δ∗/2

{1

2
min {c(δ∗, τ), d(δ∗, τ)}+

max
(1−ε)p≤λ≤(1+ε)p

{λ log2 p+ (1− λ) log2(1− p) + a(λ, τ)}}+O

(
1

n

)
where a(·, ·), c(·, ·) and d(·, ·) are defined respectively in Propositions 3.8, 3.11 and 3.12.

Proof. See Appendix C. �

Let i ∈ {0, 1} and pi be the smallest p ∈ (0, 1/2] that enables to reach ∆
(
u, fCber,p

)
≤ 2−Ω(n) with

• Theorem 3.16 when i = 0,
• Equation (17) and Propositions 3.11, 3.12 when i = 1.
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Figure 7. Smoothing bounds for a code C as function of δ∗ def
= dmin(C∗)/n via

Theorem 3.16 (for ε = 10−2) and Equation (17) .

In Figure 7 we compare the smallest p that enables one to reach ∆
(
u, fCber,p

)
≤ 2−Ω(n) with

Equation (17) and with Theorem 3.16. As we can see Theorem 3.16 leads to significantly better
bounds. Furthermore, it turns out that p0n is roughly equal to the smallest radius w such that
∆(u, uCw) ≤ 2−Ω(n) if we had supposed that no codewords of weight > n − dmin(C∗) belong to
C∗. In other words, our proof using the tweak of truncating the Bernoulli enables us to obtain a
smoothing bound without the hypothesis of no dual codewords of large Hamming weight which is
as good as with the uniform distribution over a sphere if we had made this assumption.

4. Smoothing Bounds: Lattice Case

Given an n-dimensional lattice Λ the aim of smoothing bounds is to give a non-trivial model of
noise e ∈ Rn for (e mod Λ) ∈ Rn/Λ (namely the reduction of e modulo Λ) to be uniformly
distributed. Following Micciancio and Regev [MR07], the standard choice of noise is given by the
Gaussian distribution, defined via

∀x ∈ Rn, Ds(x)
def
=

1

sn
ρs(x) where ρs(x)

def
= e−π(|x|2/s)2 .

The parametrization is chosen such that s
√
n/2π is the standard deviation of Ds. Micciancio

and Regev showed that when e is distributed according to Ds, choosing s large enough enables e
mod Λ to be statistically close to the uniform distribution.

However, following the intuition from the case of codes we will first analyze the case where e is
sampled uniformly from a Euclidean ball. Interestingly, just as with codes where our methodology
led to stronger bounds when the uniform distribution over a sphere was used to smooth rather than
the Bernoulli distribution, we will obtain better results when we work with the uniform distribution
over a ball. Fortunately, using concentration of the Gaussian measure one can translate results
from the case where e is uniformly distributed over a ball to the case that it is sampled according
to Ds; see Proposition 4.5. This is analogous to the translation from results for the uniform
distribution over a sphere to the Bernoulli distribution for codes elucidated in Proposition 3.9.

For either choice of noise, to obtain a smoothing bound we are required to bound the statistical
distance between the distribution of e mod Λ if e has density g, and the uniform distribution
over Rn/Λ. It is readily seen that e mod Λ has density |Λ|g|Λ which is defined as (see Definition

20



2.2 with the choice of Haar measures given in Table 2)

g|Λ(x) =
1

|Λ|
∑
y∈Λ

g(x + y).

Notation. For any g : Rn → C,
gΛ def

= |Λ| g|Λ.
In the following proposition we specialize Corollary 2.4 to the case of lattices.

Proposition 4.1. Let Λ be an n-dimensional lattice. Let g be some density function on Rn and
v be the density of the uniform distribution over Rn/Λ. We have

∆
(
v, gΛ

)
≤ 1

2

√ ∑
x∈Λ∗\{0}

|ĝ(x)|2 .

We will restrict our instantiations to functions g whose Fourier transforms are radial, that is, ĝ(x)

depends only on the Euclidean norm of x, namely |x|2.

4.1. Smoothing Random Lattices. As with codes, we begin our investigation of smoothing
lattices by considering the random case. However, defining a “random lattice” is much more
involved than the analogous notion of random codes. Fortunately for us, we can apply the Siegel
version of the Minkowski-Hlawka theorem to conclude that there exists a random lattice model
which behaves very nicely from the perspective of “test functions”. We first state the technical
theorem that we require.

Theorem 4.2 (Minkowski-Hlawka-Siegel). On the set of all the lattices of covolume M in Rn

there exists a probability measure µ such that, for any Riemann integrable function g(x) which
vanishes outside some bounded region,(6)

E
Λ∼µ

 ∑
x∈Λ\{0}

g(x)

 =
1

M

∫
Rn

g(x)dx .

As intuition for the above theorem, consider the case that g is the indicator function for a bounded,
measurable subset S ⊆ Rn. Then, Theorem 4.2 promises that the expected number of lattice points
(other than the origin(7)) in S is equal to the volume of S over the covolume of the lattice.

Uniform Distribution over a Ball. Let

uwB
def
=

1Bw

Vn (w)

be the density of the uniform distribution over the Euclidean ball of radius w. Let us recall that
Vn (w) denotes the volume of any ball of radius w. From Theorem 4.2, we may obtain the following
proposition. This should be compared with Proposition 3.7.

Proposition 4.3. On the set of all lattices of covolume M in Rn there exists a probability measure
ν such that, for any w > 0

E
Λ∼ν

(
∆(u, uΛ

wB)
)
≤ 1

2

√
M

Vn (w)
.

In particular, defining

w0
def
=
√
n/2πe M1/n,

(6)This statement holds for a larger class of functions. In particular it holds for our instantiation with the
Gaussian distribution.

(7)Note that as 0 ∈ Λ with certainty, there is really no “randomness” for this event.
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if w > w0 we have

E
Λ∼ν

(
∆(u, uΛ

wB)
)
≤ O(1)

(w0

w

)n/2
.

Proof. We define ν to be the procedure that samples a lattice according to µ of covolumeM−1, then
outputs its dual. In the following chain, we first apply Proposition 4.1; then, Jensen’s inequality;
then, the Minkowski-Hlawka-Siegel (MHS) Theorem (Theorem 4.2) to the function |ûΛ

wB|2; and,
lastly, Parseval’s Identity (Theorem 2.1). This yields:

E
Λ∼ν

(
2∆(u, uΛ

wB)
)
≤ E

Λ∗∼µ

√ ∑
x∈Λ∗\{0}

|ûwB(x)|2

 (Proposition 4.1)

≤

√√√√√ E
Λ∗∼µ

 ∑
x∈Λ∗\{0}

|ûwB(x)|2

 (Jensen’s Inequality)

=

√
1

M−1

(∫
Rn

|ûwB(x)|2dx
)

(MHS Theorem)

=

√
M

∫
Rn

|uwB(x)|2dx (Parseval’s Identity)

=

√
M

Vn(w)2

∫
Rn

1Bw
(x)dx

=

√
M

Vn(w)
.

For the “in particular” part of the proposition, we use Stirling’s estimate to derive

Vn (w) =
πn/2 wn

Γ(n/2 + 1)
=
πn/2 wn(
n
2e

)n/2 (1 + o(1))n

from which it follows that if
w > w0 =

√
n/2πe M1/n,

we have √
M

Vn(w)
≤ O(1)

(
w

w0

)n/2
which concludes the proof. �

It is easily verified that the value of w0 defined in Proposition 4.4 corresponds to the so-called
Gaussian heuristic. We view this condition on w > w0 as the equivalent of the Gilbert-Varshamov
bound for codes as we discussed just below Proposition 3.7. In particular, as we need the support
of the noise to have volume at least M if we hope to smooth a lattice of covolume M , we see that
the uniform distribution over a ball is optimal for smoothing random lattices, just as the uniform
distribution over a sphere was optimal for smoothing random codes.

Gaussian Noise. We now turn to the case of Gaussian noise. Following the proof of Propo-
sition 4.3 to the point where we apply Parseval’s identity, but replacing uwB by Ds, we obtain
that

E
(
∆(u,DΛ

s )
)
≤

√
M

∫
Rn

|Ds(x)|2dx .
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To conclude, one uses the following routine computation∫
Rn

|Ds(x)|2dx =
1

s2n

∫
Rn

e
−2π

(
|x|2
s

)2

dx =
1

s2n

∫
Rn

ρs/
√

2(x)dx =

(
1

s
√

2

)n
.

Thus, we obtain:

Proposition 4.4. On the set of all the lattices of covolume M in Rn there exists a probability
measure ν such that, for any s > 0,

E
Λ∼ν

(
∆(u,DΛ

s )
)
≤ 1

2

√
M(
s
√

2
)n .

In particular, if s > s0
def
= M1/n/

√
2, we have

E
Λ∼ν

(
∆(u,DΛ

s )
)
≤
(s0

s

)n/2
.

To compare Propositions 4.3 and 4.4, we note that a random vector sampled according to Ds has

an expected Euclidean norm given by s
Γ(n+1

2 )
√
πΓ(n

2 )
∼ s
√

n
2π . So, it is fair to compare the effectiveness

of smoothing with a parameter s Gaussian distribution and the uniform distribution over a ball
of radius s

√
n
2π . We note that, if s0 is as in Proposition 4.4 and w0 is the radius of the so-called

Gaussian heuristic, then

s0

√
n

2π
=
M1/n

√
2

√
n

2π
= w0

√
e/2.

Thus, we conclude that the parameter s0 from Proposition 4.4 is larger than what we could hope
by a factor

√
e/2.

4.2. Connecting Uniform Ball Distribution to Gaussian. However, recall that in the code-
case we argued that, as the Hamming weight of a vector sampled according to the Bernoulli
distribution is tightly concentrated, we could obtain the same smoothing bound for the Bernoulli
distribution as we did for the uniform sphere distribution, essentially by showing that we can
approximate a Bernoulli distribution by a convex combination of uniform sphere distributions.
Similarly, we can relate the Gaussian distribution to the uniform distribution over a ball, and
thereby remove this additional

√
e/2 factor.

We state a general proposition that allows us to translate smoothing bounds for the uniform
ball distribution to the Gaussian distribution. It guarantees that if the uniform ball distribution
smooths whenever w > w0, the Gaussian distribution smooths whenever s > w0

√
2π
n . While the

intuition for the argument is the same as that which we used in the code-case, the argument is
itself a bit more sophisticated.

Proposition 4.5. Let Λ be a random lattice of covolume M and let u def
= uRn/Λ be the uniform

distribution over its cosets. Suppose that for all w > w0 there is a function f(n) such that

EΛ

(
∆(u, uΛ

wB)
)
≤ f(n)

(w0

w

)n/2
.

Let s0
def
= w0

√
2π
n . Then, for all s > s0, defining η

def
= 1− s0

s ∈ (0, 1), we have

EΛ

(
∆(u,DΛ

s )
)
≤ exp

(
−η

2

8
n

)
+ f(n)

(s0

s

)n/4
.

Proof. See Appendix D. �

Combining the above proposition with Theorem 4.2, setting f(n) = O(1), we obtain the following
theorem.
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Theorem 4.6. Let Λ be a random lattice of covolume M sampled according to ν, let u def
= uRn/Λ

be the uniform distribution over its cosets, and let

s0
def
= M1/n/

√
e.

Then, for any s > s0, setting η
def
= 1− s0

s ∈ (0, 1), we have

EΛ

(
∆(u,DΛ

s )
)
≤ exp

(
−η

2

8
n

)
+O(1)

(s0

s

)n/4
.

4.3. Smoothing Random q-ary Lattices. While the method of sampling lattices promised by
the Minkowski-Hlawka-Siegel Theorem (Theorem 4.2) is indeed very convenient for computations,
it does not tell us much about how to explicitly sample from the distribution. Furthermore it is
not very relevant if one is interested in the random lattices that are used in cryptography.

For a more concrete sampling procedure that is relevant to cryptography, we can consider the
randomized Construction A (or, more precisely, its dual), which gives a very popular random
model of lattices which are easily constructed from random codes. Specifically, for a prime q and
a linear code C ⊆ (Z/qZ)n we obtain a lattice as follows. First, we “lift” the codewords c ∈ C to
vectors in Rn in the natural way by identifying Z/qZ with the set {0, 1, . . . , q − 1}; denote the
lifted vector as c̃. Then, we can define the following lattice

ΛC
def
= {c̃ : c ∈ C}+ qZn.

In other words: ΛC consists of all vectors in the integer lattice Zn whose reductions modulo q give
an element of C.

Fix integers 1 ≤ k ≤ n, a prime q and a desired covolume M . We sample a random lattice Λ as
follows

• First, sample a random linear code C ⊆ (Z/qZ)n of dimension k (recall this means that
we sample a random k × n matrix G and define C = {mG : m ∈ (Z/qZ)k}),

• Then, we scale ΛC by 1
M1/n

1
q1−k/n ,

• Lastly, we output the dual of 1
M1/n

1
q1−k/n ΛC.

Notice that the scaling is chosen so that, as long as G is of full rank, the lattice Λ we output has
the desired covolume M . We denote this procedure of sampling Λ by νA (the dependence on q, k
and n is left implicit).

The important fact is that, up to an error term (which decreases as q increases), the expected
number of lattice points from Λ∗ in a Euclidean ball of radius r is roughly Vn(r)

M , as one would
hope.

Proposition 4.7 ([Zam14, Lemma 7.9.2]). For every n ≥ 2, 1 ≤ k < n and prime power q, for
Λ ∼ νA the expected number of lattice points from Λ∗ in a Euclidean ball of radius w def

= t
√
n

satisfies

n

√
M EΛ(N≤w(Λ∗))

Vn (w)
= 1± δ/t where δ def

=
1

q1−k/n .

We now turn to bounding the expected statistical distance between u and uΛ
wB, where Λ ∼ νA

and w > 0 is the radius of the Euclidean ball from which the noise is uniformly sampled. First, we
state an explicit formula for the Fourier transform of 1Bw , the indicator function of a Euclidean
ball of radius w, in terms of Bessel functions.

Notation 4.8. For a positive real number µ > 0, we denote by Jµ : R→ R the Bessel function of
the first kind of order µ.
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The important fact concerning Bessel functions that we will use is the following.

Fact 4.9. We have

1̂Bw
(y) =

(
w

|y|2

)n/2
Jn/2(2πw|y|2). (18)

We will refrain from providing an explicit formula for Bessel functions, and instead use the following
upper-bound as a black-box.

Proposition 4.10 ([Kra06]). For any x ∈ R we have

|Jn/2(x)| ≤ |x|−1/3.

Using this proposition, we first prove a technical lemma that will be reused when we discuss
smoothing arbitrary lattices. In order to state the lemma, we introduce the following auxiliary
function.

Notation 4.11. For a real w > 0, we define gw : R→ R via

gw(t)
def
=

1

Vn (w)
1̂Bw

(x)2

where x is any vector in Rn of norm t. Note that as 1̂Bw
(x) depends only on |x|2, this is indeed

well-defined.

The following lemma leverages Proposition 4.10 to upper-bound gw on a closed interval.

Lemma 4.12. For any w > 0 and any 0 ≤ a and b =
(
1 + 1

n

)
a we have, for some constant C > 0

max
a≤t≤b

gw(t) ≤ C

Vn (b)w2/3

1

a2/3
.

Proof. First, we notice that for all t ∈ [a, b]

Vn (t) =

(
t

b

)n
Vn (b) ≥

(a
b

)n
Vn (b) =

(
1 +

1

n

)−n
Vn (b) ≥ 1

C ′
Vn (b)

for some constant C ′ > 0. We now use Proposition 4.10 to derive

max
a≤t≤b

gw(t) ≤ C ′

Vn (b)
max
a≤t≤b

Jn/2(2πwt)2 ≤ C

Vn (b)w2/3

1

a2/3

for an appropriate constant C > 0 which concludes the proof. �

We now provide the main theorem of this section. It demonstrates that to smooth our ensemble
of random q-ary codes (in expectation) with the uniform distribution over the ball of radius w, it
still suffices to choose w > w0

def
=
√
n2π/e M1/n, assuming q is not too small.

Theorem 4.13. Let n > 2 and 1 ≤ k < n. Let q be a prime and set γ def
= n3/2

q1−k/n . Let Λ ∼ νA.
For some constant C > 0, we have

EΛ

(
∆(u, uΛ

wB)
)
≤ C

( n
w

)1/3

eγ/2

√
M

Vn (w)
.

In particular, if w > w0
def
=
√
n2π/eM1/n, we have

EΛ

(
∆(u, uΛ

wB)
)
≤ O

(( n
w

)1/3

eγ/2
)(w0

w

)n/2
.
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Proof. Let tj
def
=
(
1 + 1

n

)j for j ∈ N and

Nj
def
= ]{x∗ ∈ Λ∗ : tj ≤ |x∗|2 < tj+1} ; ϕj

def
= max

tj≤t≤tj+1

gw(t).

Now, we apply Proposition 4.1 and the above definitions to obtain

EΛ

(
2∆(u, uΛ

wB)
)
≤ EΛ

√ ∑
x∈Λ∗\{0}

|ûwB(x)|2



≤

√√√√√ 1

Vn (w)
EΛ

 ∑
x∈Λ∗\{0}

gw(x)

 (Jensen’s inequality)

≤

√√√√√ 1

Vn (w)
EΛ

 ∞∑
j=0

Njϕj


≤

√√√√ 1

Vn (w)

∞∑
j=0

E
(
N≤tj+1

(Λ∗)
)
ϕj .

By Proposition 4.7, we may upper-bound

EΛ

(
N≤tj+1

(Λ∗)
)
≤M Vn (tj+1)

(
1 +

( √
n(

1 + 1
n

)jn
q1−k/n

))n
. (19)

Now, recalling γ = n3/2

q1−k/n we have for any j ≥ 0(
1 +

( √
n(

1 + 1
n

)jn
q1−k/n

))n
≤
(

1 +

( √
n

q1−k/n

))n
≤ en

√
n

q1−k/n = eγ .

Thus, we conclude

EΛ

(
2∆(u, uΛ

wB)
)
≤

√√√√ eγM

Vn (w)

∞∑
j=0

Vn (tj+1))ϕj .

Now, by Lemma 4.12 we have ϕj ≤ C1

Vn(tj+1)w2/3
1

t
2/3
j

for all j ≥ 0. Hence,

∞∑
j=0

Vn (tj+1)ϕj ≤
C1

w2/3

∞∑
j=0

Vn (tj+1)

Vn (tj+1)

1

t
2/3
j

=
C1

w2/3

∞∑
j=0

1

(1 + 1/n)2j/3

=
C1

w2/3

1

1− (1 + 1/n)−2/3

≤ C2 n
2/3

w2/3
,

for an appropriate constant C2 > 0. Thus, putting everything together we derive

EΛ

(
∆(u, uΛ

wB)
)
≤

√
eγM

2Vn (w)

C2n2/3

w2/3
≤ C

( n
w

)1/3

eγ/2

√
M

Vn (w)

for some constant C > 0. The “in particular” part of the Theorem follows analogously to the
corresponding argumentation (Stirling’s estimate) used in the proof of Proposition 4.3. �
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Next, turning to Gaussian noise, we could again prove a smoothing bound “directly,” but this
will lose the same factor of

√
e/2 as we had earlier. Instead, we apply Proposition 4.5 with the

function f(n) = O
((

n
w

)1/3
eγ/2

)
to conclude the following.

Theorem 4.14. Let n > 2 and 1 ≤ k < n. Let q be a prime and set γ def
= n3/2

q1−k/n . Let Λ be a
random q-ary lattice sampled according to νA, let u = uRn/Λ be the uniform distribution over its
cosets, and let

s0
def
= M1/n/

√
e.

Then, for any s > s0, setting η
def
= 1− s0

s ∈ (0, 1), we have

EΛ

(
∆
(
u,DΛ

s

))
≤ exp

(
−η

2

8
n

)
+O(1) (s/s0)n/4 eγ/2.

4.4. Smoothing Arbitrary Lattices. We now turn our attention to the task of smoothing
arbitrary lattices.

Analogously to how we used the minimum distance of the dual code to give our smoothing bound
for worst-case codes, we will use the shortest vector of the dual lattice in order to provide our
smoothing bound for worst-case lattices. The lemma that we will apply is the following where

CKL
def
= 20.401.

Lemma 4.15 ([PS09, Lemma 3]). For any n-dimensional lattice Λ,

∀t ≥ λ1(Λ), N≤t(Λ) ≤ Vn (t)

Vn (λ1(Λ))
C
n(1+o(1))
KL .

Remark 4.16. This lemma is a consequence of the Kabatiansky and Levenshtein’ bound [KL78]
on the size of spherical codes, historically known as the “second linear programming bound”. It is
why we may refer to the aforementioned bound of Lemma 4.15 as the second linear programming
bound.

We begin by considering the effectiveness of smoothing with noise uniformly sampled from the
ball. The following theorem is proved using similar techniques to those we used for Theorem 4.13,
although instead of using Proposition 4.7 to bound the N≤t(Λ∗)’s, we use Lemma 4.15.

Theorem 4.17. Let Λ be an n-dimensional lattice and u def
= uRn/Λ be the uniform distribution

over its cosets. Then, it holds that

∆
(
u, uΛ

wB

)
≤

√
C
n(1+o(1))
KL

Vn (λ1(Λ∗)) Vn (w)
.

In particular, setting

w0
def
= n

C
1+o(1/n)
KL

2π e λ1(Λ∗)

for all w > w0, it holds that
∆
(
u, uΛ

wB

)
≤ O(1)(w0/w)n/2.

Proof. Define

t0
def
= λ1(Λ∗), tj+1

def
=
(
1 + 1

n

)
tj and ϕj

def
= max

tj≤t≤tj+1

{gw(t)} for j ≥ 0,
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where we recall the definition of gw(t) = 1
Vn(w) 1̂Bw(x)2 with |x|2 = t (see Notation 4.11). We also

define
Nj

def
= ]{x∗ ∈ Λ∗ : tj ≤ |x∗|2 ≤ tj+1} .

With this notation and Proposition 4.1 we have

2∆
(
u, uΛ

wB

)
≤
√ ∑

x∈Λ∗\{0}

|ûwB(x)|2

≤

√√√√ 1

Vn (w)

∑
x∈Λ∗\{0}

gw(x)

≤

√√√√ 1

Vn (w)

∞∑
j=0

Njϕj

≤

√√√√ 1

Vn (w)

∞∑
j=0

N≤tj+1
(Λ∗)ϕj . (20)

By Lemma 4.12, for some constant C1 > 0, we obtain

ϕj ≤
C1

Vn(tj+1)w2/3

1

t
2/3
j

.

Combining this with the upper-bound on N≤tj+1
(Λ∗) provided by Lemma 4.15 (note that tj+1 ≥

λ1(Λ∗) for all j ≥ 0), we find
∞∑
j=0

N≤tj+1
(Λ∗)ϕj ≤

∞∑
j=0

Vn(tj+1)

Vn(λ1(Λ∗))
C
n(1+o(1))
KL

C1

Vn(tj+1)w2/3

1

t
2/3
j

=
C
n(1+o(1))
KL

Vn(λ1(Λ∗))w2/3

∞∑
j=0

1

t
2/3
j

=
C
n(1+o(1))
KL

Vn(λ1(Λ∗))w2/3

∞∑
j=0

1

λ1(Λ∗)2/3
(
1 + 1

n

)2j/3
≤

C
n(1+o(1))
KL

Vn(λ1(Λ∗))w2/3

(
n

wλ1(Λ∗)

)2/3

.

In the above, all necessary constants were absorbed into the Co(n)
KL term. Combining this with

(20), we obtain the first part of the theorem. The “in particular” part again follows using Stirling’s
approximation. �

Next, we can consider the effectiveness of smoothing with the Gaussian distribution. As usual,
we could follow the steps of the proof of Theorem 4.17 and obtain the same result, but with an
additional multiplicative factor of

√
e
2 . That is, we obtain

Theorem 4.18. Let Λ be an n-dimensional lattice and u def
= uRn/Λ be the uniform distribution

over its cosets. Then, it holds.

∆
(
u,DΛ

s

)
≤

√√√√√ C
n(1+o(1))
KL

Vn (λ1(Λ∗)) Vn

(
s
√
n/(2π)

) (e
2

)n/2
.

In particular, setting

s0
def
=
√
n

C
1+o(1/n)
KL

2
√
πe λ1(Λ∗)

,
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it holds for any s > s0 that ∆
(
u,DΛ

s

)
≤ O(1) (s0/s)

n/2.

However, as usual it is more effective to combine the bound for the uniform ball distribution
and decompose the Gaussian as a convex combination of uniform ball distributions, i.e. to apply
Proposition 4.5. In this way, we can obtain the following theorem, improving the smoothing
bound s0 by another

√
e/2 factor. In the following theorem, we are setting the f(n) function of

Proposition 4.5 with the O(1) term in the bound of Theorem 4.17.

Theorem 4.19. Let Λ be an n-dimensional lattice, u def
= uRn/Λ the uniform distribution over its

cosets, and

s0
def
=
√
n

C
1+o(1/n)
KL√

2π e λ1(Λ∗)
.

Then, for any s > s0 and letting η def
= = 1− s0

s ∈ (0, 1), it holds that

∆
(
u,DΛ

s

)
≤ exp

(
−η

2

8
n

)
+O(1)

(s0

s

)n/4
.
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Appendix A. Proof of Proposition 3.9

Our aim in this section is to prove the following proposition

Proposition 3.9. Let ε > 0 and p ∈ [0, 1/2]. Then,

∆(u, fCber,p) ≤
(1+ε)np∑
r=(1−ε)np

∆(u, uCr ) + 2−Ω(n).

Roughly speaking, this proposition is a consequence of the fact that a Bernoulli distribution
concentrates Hamming weights over a small number of slices close to the expected weight (here
np) and, on each slice the Bernoulli distribution is uniform. Let us introduce the truncated
Bernoulli distribution over words of Hamming weight [(1− ε)pn, (1 + ε)pn] for some ε > 0, namely

ftruncBer,p(x)
def
=

{
1
Z fber,p(x) if |x| ∈ [(1− ε)pn, (1 + ε)pn]

0 otherwise.
(21)

where

Z
def
=

(1+ε)np∑
|y|=(1−ε)np

fber,p(y) (22)

is the probability normalizing constant.

Proposition 3.9 is a consequence of the following lemmas.
30



Lemma A.1. Let ε > 0. We have

∆ (fber,p, ftruncBer,p) = 2−Ω(n).

Proof. By Chernoff’s bound

1− Z =
∑
y:

|y|/∈[(1−ε)np,(1+ε)np]

fber,p(y) ≤ 2e−ε
2n = 2−Ω(n). (23)

Therefore for any |x| ∈ [(1− ε)np, (1 + ε)np],

ftruncBer,p(x) =
1

1− 2−Ω(n)
fber,p(x)

=
(

1 + 2−Ω(n)
)
fber,p(x). (24)

We have now the following computation:

2∆ (fber,p, ftruncBer,p) =
∑
x∈Fn

2

|fber,p(x)− ftruncBer,p(x)|

=
∑

|x|∈[(1−ε)np,(1+ε)np]

|fber,p(x)− ftruncBer,p(x)|+
∑

|x|/∈[(1−ε)np,(1+ε)np]

|fber,p(x)|

= 2−Ω(n)

 ∑
|x|∈[(1−ε)np,(1+ε)np]

|fber,p(x)|

+ 2−Ω(n) (Equations (23) and (24))

= 2−Ω(n)

where in the last line we used that fber,p is a probability distribution. �

Lemma A.2. We have

∆
(
u, fCber,p

)
≤ ∆

(
u, fCtruncBer,p

)
+ 2−Ω(n).

Proof. By the triangle inequality,

∆
(
u, fCber,p

)
≤ ∆

(
u, fCtruncBer,p

)
+ ∆

(
fCber,p, f

C
truncBer,p

)
.

Focusing on the second term now

∆
(
fCber,p, f

C
truncBer,p

)
=

1

2

∑
y∈Fn

2 /C

∣∣fCber,p(y)− fCtruncBer,p(y)
∣∣

=
1

2

∑
y∈Fn

2 /C

∣∣∣∣∣∑
c∈C

fber,p(c + y)−
∑
c∈C

ftruncBer,p(c + y)

∣∣∣∣∣
≤ 1

2

∑
y∈Fn

2 /C

∑
c∈C

|fber,p(c + y)− ftruncBer,p(c + y)|

= ∆ (fber,p, ftruncBer,p) .

which concludes the proof by Lemma A.1. �

The following lemma is a basic property of the statistical distance.

Lemma A.3. For any distribution f and (gi)1≤i≤m we have

∆

(
f,

m∑
i=1

λigi

)
≤

m∑
i=1

λi ∆(f, gi)

where the λi’s are positive and sum to one.
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We are now ready to prove Proposition 3.9.

Proof of Proposition 3.9. First, by Lemma A.2 we have

∆
(
u, fCber,p

)
≤ ∆

(
u, fCtruncBer,p

)
+ 2−Ω(n). (25)

To upper-bound ∆
(
u, fCtruncBer,p

)
we are going to use Lemma A.3. Notice that

fber,p =

n∑
r=0

(
n

r

)
pr(1− p)n−rur.

Therefore it is readily seen that

ftruncBer,p =

(1+ε)np∑
r=(1−ε)np

λr ur where λr
def
=

1

Z

(
n

r

)
pr(1− p)n−r.

By using Lemma A.3 we obtain:

∆
(
u, fCtruncBer,p

)
≤

(1+ε)np∑
r=(1−ε)np

λr ∆
(
u, uCr

)

≤
(1+ε)np∑
r=(1−ε)np

∆
(
u, uCr

)
(26)

where in the last line we used that the λr’s are smaller than one. To conclude the proof we plug
Equation (26) in (25). �

Appendix B. Proof of Proposition 3.11

Our aim in this section is to prove the following proposition which is an extension of [ABL01,
Theorem 3] for τ ∈ [δ, 1] ([ABL01, Theorem 3] only applied for τ ∈ [δ, 1/2].)

Proposition 3.11. Let δ ∈ (0, 1/2) and δ⊥ def
= 1/2−

√
δ(1− δ). For any δ ≤ τ ≤ 1

b(δ, τ) ≤ c(δ, τ)
def
=

{
h(τ) + h

(
δ⊥
)
− 1 if τ ∈ [δ, 1− δ],

2
(
h(δ⊥)− a(τ, δ⊥)

)
otherwise,

(13)

where a(·, ·) is defined in Proposition 3.8.

Our proof is mainly a rewriting of the proof of [ABL01, Theorem 3] which relies on the following
proposition.

Proposition B.1 ([ABL01, Proposition 2 with d′ = 0]). Let C be a binary code of length n such
that dmin(C) = Ω(n). Let t def

= n
2 −

√
dmin(C)(n− dmin(C)) and a be such that

x
(t+1)
1 < a < x

(t)
1 ;

Kt(a)

Kt+1(a)
= −1

where x(µ)
1 denotes the first root of the Krawtchouk polynomial of order µ, namely Kµ.

When 0 ≤ w < t ≤ n/2, we have∑
c∈C\{0}

Kw(|c|)2 ≤ t+ 1

2a

(
n
w

)(
n
t

) (( n

t+ 1

)
+

(
n

t

))2

(27)
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The approach is to optimize on the choice of w in Proposition B.1 to give an upper-bound on
N`(C). More precisely we observe that

N`(C) ≤ 1

Kw(`)2

∑
c∈C\{0}

Kw(|c|)2 ≤ 1

Kw(`)2

t+ 1

2

(
n
w

)(
n
t

) (( n

t+ 1

)
+

(
n

t

))2

(28)

and then choose w to minimize (n
w)

Kw(`)2 .

Proof of Proposition 3.11. It will be helpful to bring in the following map:

x ∈ [0, 1] 7→ x⊥
def
=

1

2
−
√
x(1− x).

It can be verified that this application is an involution, is symmetric (1−x)⊥ = x⊥ and decreasing
on [0, 1

2 ].

Let C be a binary code of length n such that dmin(C) = δn where δ ∈ (0, 1/2] and t be defined as
in Proposition B.1. Let ω def

= w
n , λ

def
= `

n and δ⊥ def
= 1/2−

√
δ(1− δ). Then by Proposition B.1 we

have (see Equation (28))

log2N`(C)

n
≤ h(ω) + h(δ⊥)− 2 log2 |Kw(`)|

n
+ o(1). (29)

Case 1: λ ∈ [δ, 1− δ].
It is optimal to choose in this case w such that ω = λ⊥ − ε where ε > 0 and ε = o(1) as n tends
to infinity. Let us first notice that λ ∈ [δ, 1− δ] implies that λ⊥ ≤ δ⊥ which together with ω < λ⊥

implies that ω < δ⊥ which in turn is equivalent to the condition w < t for being able to apply
Proposition B.1. Moreover ω < λ⊥ also implies λ < ω⊥ and by using Proposition 3.8 we obtain

2 log2 |Kw(`)|
n

≤ h(ω) + 1− h(λ) + o(1).

Therefore

log2N`(C)

n
≤ h(ω) + h(δ⊥)− h(ω)− 1 + h(λ) + o(1) = h(δ⊥) + h(λ)− 1 + o(1).

Case 2: λ ∈ (1− δ, 1].
In that case, let ω = δ⊥ − ε with ε > 0 and ε = o(1) as n tends to infinity. Here we can write

2 log2 |Kw(`)|
n

=
log2(Kw(`)2)

n
=

log2(Kw(n− `)2)

n
.

Since λ > 1− δ, we have 1− λ < δ. On the other hand, ω < δ⊥ implies δ < ω⊥. We deduce from
these two inequalities that 1− λ < ω⊥. By using Proposition 3.8 again, we get

log2(Kw(n− `)2)

n
= 2a(1− λ, δ⊥) + o(1) = 2a(λ, δ⊥) + o(1).

By plugging this estimate in (29) we get

log2N`(C)

n
≤ 2h(δ⊥)− 2a(λ, δ⊥).

This concludes the proof. �
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Appendix C. Proof of Theorem 3.16

Our aim in this appendix is to prove the following theorem.

Theorem 3.16. Let C be a binary linear code of length n and p ∈ (0, 1/2] such that dmin(C∗) ≥ δ∗n
for some δ∗ ∈ [0, 1]. We have asymptotically,

1

n
log2 ∆

(
u, fCber,p

)
≤ max
δ∗≤τ≤1−δ∗/2

{1

2
min {c(δ∗, τ), d(δ∗, τ)}+

max
(1−ε)p≤λ≤(1+ε)p

{λ log2 p+ (1− λ) log2(1− p) + a(λ, τ)}}+O

(
1

n

)
where a(·, ·), c(·, ·) and d(·, ·) are defined respectively in Propositions 3.8, 3.11 and 3.12.

Sketch of proof. We will use the following proof strategy

1. By Lemma A.2 we know that on one hand

∆
(
u, fCber,p

)
= ∆

(
u, fCtruncBer,p

)
+ 2−Ω(n). (30)

This is actually a consequence of Chernoff’s bound. This argument can also be used to
show that the Fourier transforms are also close to each other pointwise

∀x ∈ Fn2 , 2n
∣∣∣ ̂ftruncBer,p(x)− f̂ber,p(x)

∣∣∣ = 2−Ω(n). (31)

2. Equation (31) together with Lemma 3.15 are then used to show that:

∆
(
u, fCtruncBer,p

)
≤ 2n

√√√√√n−dmin(C∗)/2∑
t=dmin(C∗)

Nt(C∗) ̂, ftruncBer,p(t)2 + 2−Ω(n). (32)

3. We use the two previous points to upper-bound ∆
(
u, fCber,p

)
as in the equation above and

conclude by using bounds of Propositions 3.11 and 3.12.

Proof of Step 1. As we explained above (30) is just Lemma A.2. Let us now prove that

Lemma C.1. We have

∀x ∈ Fn2 , 2n
∣∣∣ ̂ftruncBer,p(x)− f̂ber,p(x)

∣∣∣ = 2−Ω(n).

Proof. Recall that Z =
(1+ε)np∑
|y|=(1−ε)np

fber,p(y) where by Chernoff’s bound, we have

Z = 1− 2−Ω(n). (33)

Notice now that,

fber,p =

n∑
r=0

(
n

r

)
pr(1− p)n−rur and ftruncBer,p =

1

Z

(1+ε)pn∑
r=(1−ε)pn

(
n

r

)
pr(1− p)n−rur/
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Let I
def
= J(1 − ε)pn, (1 + ε)pnK. Notice that Z =

∑
r∈I

(
n
r

)
pr(1 − p)n−r. By linearity of the

Fourier transform we obtain the following computation:∣∣∣ ̂ftruncBer,p(x)− f̂ber,p(x)
∣∣∣ =

(
1

Z
− 1

)∑
r∈I

(
n

r

)
pr(1− p)n−r |ûr(x)|

+
∑
r/∈I

(
n

r

)
pr(1− p)n−r |ûr(x)|

= 2−Ω(n)
∑
r∈I

(
n

r

)
pr(1− p)n−r |ûr(x)|+ 2−Ω(n) max

r
|ûr(x)| (34)

where in the last line we used Equation (33). Recall now that by definition of the Fourier transform
for functions over Fn2 we have:

|ur(x)| =

∣∣∣∣∣∣ 1

2n

∑
y:|y|=r

(−1)x·y(
n
r

)
∣∣∣∣∣∣ ≤ 1

2n
.

By plugging this in Equation (34) we get:∣∣∣ ̂ftruncBer,p(x)− f̂ber,p(x)
∣∣∣ ≤ 2−Ω(n)

2n

∑
r∈I

(
n

r

)
pr(1− p)n−r︸ ︷︷ ︸
≤1

+
2−Ω(n)

2n

=
2−Ω(n)

2n

which concludes the proof. �

Proof of Step 2. This corresponds to proving the following lemma.

Lemma C.2.

∆
(
u, fCtruncBer,p

)
≤ 2n

√√√√√n−dmin(C∗)/2∑
t=dmin(C∗)

Nt(C∗) ̂, ftruncBer,p(t)2 + 2−Ω(n).

Proof. By applying Proposition 3.3 to ftruncBer,p we obtain

∆
(
u, fCtruncBer,p

)
≤ 2n

√√√√ n∑
t=dmin(C∗)

Nt(C∗)| ̂ftruncBer,p(t)|2 (35)

where ̂ftruncBer,p(t) denotes the common value of the radial function ̂ftruncBer,p on vectors of
Hamming weight t. Recall now that f̂ber,p(x) = 1

2n (1 − 2p)|x| and by Lemma C.1 that

2n
∣∣∣ ̂ftruncBer,p(x)− f̂ber,p(x)

∣∣∣ = 2−Ω(n). Therefore,

∀x ∈ Fn2 , |x| ≥ n−
dmin(C∗)

2
: 2n

∣∣∣ ̂ftruncBer,p(x)
∣∣∣ = 2−Ω(n).

By plugging this in Equation (35) we obtain (as there is at most one dual codeword of weight `
for each ` > n− dmin(C∗)/2, see Lemma 3.15)

∆
(
u, fCtruncBer,p

)
≤ 2n

√√√√√n−dmin(C∗)/2∑
t=dmin(C∗)

Nt(C∗)| ̂ftruncBer,p(t)|2 + 2−Ω(n) (36)

which concludes the proof. �
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Proof of Step 3. We finish the proof of Theorem 3.16 by noticing that

ftruncBer,p =
1

Z

(1+ε)pn∑
`=(1−ε)pn

(
n

`

)
p`(1− p)n−`u`

where Z def
=

(1+ε)np∑
|y|=(1−ε)np

fber,p(y) = 1− 2−Ω(n) by Chernoff’s bound. Therefore,

̂ftruncBer,p =
(

1 + 2−Ω(n)
) (1+ε)pn∑
`=(1−ε)pn

(
n

`

)
p`(1− p)n−` û`.

By plugging this in Equation (36) and using û` = 1
2n

K`

(n
`)

we obtain

∆
(
u, fCtruncBer,p

)
≤
(

1 + 2−Ω(n)
) √√√√√n−dmin(C∗)/2∑

t=dmin(C∗)

Nt(C∗)

 (1+ε)pn∑
`=(1−ε)pn

p`(1− p)n−`K`(t)

2

+ 2−Ω(n).

We then use in the righthand term, Propositions 3.11, 3.12 which give bounds on the
1
n log2N`(C

∗)’s (where dmin(C∗) ≥ δ∗n) and Proposition 3.8 which gives an asymptotic expansion
of Krawtchouk polynomials to upper-bound ∆

(
u, fCtruncBer,p

)
. We finish the proof of the theorem

by using this upper-bound in the righthand term of (30).

Appendix D. Proof of Proposition 4.5

Our aim in this section is to prove the following proposition.

Proposition 4.5. Let Λ be a random lattice of covolume M and let u def
= uRn/Λ be the uniform

distribution over its cosets. Suppose that for all w > w0 there is a function f(n) such that

EΛ

(
∆(u, uΛ

wB)
)
≤ f(n)

(w0

w

)n/2
.

Let s0
def
= w0

√
2π
n . Then, for all s > s0, defining η

def
= 1− s0

s ∈ (0, 1), we have

EΛ

(
∆(u,DΛ

s )
)
≤ exp

(
−η

2

8
n

)
+ f(n)

(s0

s

)n/4
.

It will be a consequence of the following lemmas. We begin with the following result decomposing
the Gaussian as a convex combination of balls.

Lemma D.1. The Gaussian distribution in dimension n of parameter s is the following convex
combination of uniform distributions over balls:

Ds =
1

s

∫ ∞
0

Gn(w/s) uwB dw

where Gn(x) = xn+1 Vn (1) 2π exp
(
−πx2

)
≥ 0. Furthermore, we have 1

s

∫∞
0
Gn(w/s) dw = 1.

Proof. First, let gs(w)
def
= 1

sn exp
(
−πw

2

s2

)
(i.e. the value the probability density function Ds

takes on vectors of weight w) and denote hs(w) = −g′s(w) = 2πw
sn+2 exp

(
−πw

2

s2

)
. For any x ∈ Rn,

setting u = |x|2, as limw→∞ gs(w) = 0 we have

Ds(x) = gs(u) =

∫ ∞
u

hs(w) dw =

∫ ∞
0

hs(w) 1{u ≤ w} dw =

∫ ∞
0

hs(w) 1Bw(x) dw .

Above, we denoted by 1{u ≤ w} the function which takes value 1 on input w if u ≤ w, and 0

otherwise. To conclude, note that 1
s Gn(w/s) = hs(w) Vn (w) and recall uwB =

1Bw

Vn(w) .
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For the “furthermore” part of the lemma, we compute

1

s

∫ ∞
0

Gn(w/s) dw =
1

s

∫ ∞
0

(w/s)n+1 Vn (1) 2π exp
(
−π(w/s)2

)
dw . (37)

We make the substitution t = π
(
w
s

)2, which means dw = s2 dt
2πw = s

2
√
tπ
dt. Also, we recall

Vn (1) = πn/2

Γ(n/2+1) . Thus,

1

s

∫ ∞
0

Gn(w/s) dw =
1

s

πn/2

Γ(n/2 + 1)

∫ ∞
0

(
t

π

)(n+1)/2

2π e−t
s

2
√
tπ
dt

=
1

Γ(n/2 + 1)

∫ ∞
0

tn/2 e−t dt =
Γ(n/2 + 1)

Γ(n/2 + 1)
= 1

which concludes the proof. �

We now quote the following bound, which makes precise the intuition that it is exponentially
unlikely that a random Gaussian vector has norm (1− η) factor smaller than its expected norm.
This result provides the analogy for the Chernoff bound that we used for the code-case.

Lemma D.2 ([Wai19, Example 2.5]). Let X be a random Gaussian vector of dimension n and
parameter 1. Let 0 < η < 1. Then

P
(
|X|22 ≤ (1− η)

n

2π

)
≤ exp

(
−η

2

8
n

)
.

This lemma allows us to prove the following lemma bounding 1
s

∫ w
0
Gn(w/s)dw when w <

s
√
n/(2π).

Lemma D.3. Let η ∈ (0, 1) and w =
√

1− η s
√
n/(2π). Then

1

s

∫ w

0

Gn(w/s)dw ≤ exp

(
−η

2

8
n

)
.

Proof. Let u def
=
√

1− η
√
n/(2π). By Lemma D.2, if X denotes a random Gaussian vector of

dimension n and parameter 1, we have∫
0≤|x|2≤u

exp
(
−π|x|22

)
dx = P

(
|X|22 ≤ (1− η)

n

2π

)
≤ exp

(
−η

2

8
n

)
. (38)

To compute this last integral, note that∫
0≤|x|2≤u

exp
(
−π|x|22

)
dx =

∫ u

0

∫
uS n−1

e−πu
2

dAdu , (39)

where uS n−1 denotes the Euclidean sphere of radius u and dA is the area element. If An−1(u)

denotes the surface area of uS n−1, then An−1(u) = un−1An−1(1) and thus∫ u

0

∫
uS n−1

e−πu
2

dAdu = An−1(1)

∫ u

0

un−1 exp
(
−πu2

)
du . (40)

Further, it is known that An−1(1) = 2πn/2

Γ(n/2) . Therefore, plugging Equations (39) and (40) into (38)
leads to ∫ u

0

un−1 exp
(
−πu2

)
du ≤ 1

An−1(1)
exp

(
−η

2

8
n

)
. (41)
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Now, we look at the left-hand side of the inequality we wish to prove. We begin by making the
substitution u = w/s. So then dw = s du. Moreover, let u def

=
√

1− η
√
n/(2π) and note that

when w = w we have u = w/s =
√

1− η
√
n/(2π) = u.

1

s

∫ w

0

Gn(w/s) dw =

∫ u

0

Gn(u) du

= Vn (1) 2π

∫ ū

0

un+1 exp
(
−πu2

)
du

≤ Vn (1) 2πū2

∫ ū

0

un−1 exp
(
−πu2

)
du .

Plugging this last inequality with (41) yields

1

s

∫ w

0

Gn(w/s) dw ≤ Vn (1) 2π u2

An−1(1)
exp

(
−η

2

8
n

)
.

To conclude the proof, note that Vn(1) =
∫ 1

0
An−1(u)du =

∫ 1

0
un−1An−1(1)du = An−1(1)

n and
therefore

Vn (1) 2π u2

An−1(1)
=

2π(1− η)n

2πn
= 1− η ≤ 1.

It concludes the proof. �

We are now ready to prove Proposition 4.5.

Proof of Proposition 4.5. By Lemma D.1, Ds is a convex combination of uniform distribution over
balls, namely Ds = 1

s

∫∞
0
Gn(w/s) uwB dw. Therefore (we use here the analogue of Lemma A.3

in the context of the statistical distance between two probability density functions)

EΛ

(
∆(u,DΛ

s )
)
≤ 1

s

∫ ∞
0

Gn(w/s) EΛ

(
∆(u, uΛ

wB)
)
dw.

We split the integral in two parts at radius w =
√

1− η s
√
n/(2π). For the first part w ≤ w, we

use the trivial bound EΛ

(
∆(u, uΛ

wB)
)
≤ 1 which gives:

1

s

∫ w

0

Gn(w/s) EΛ

(
∆(u, uΛ

wB)
)
dw ≤ 1

s

∫ w

0

Gn(w/s)dw.

We then apply Lemma D.3, which bounds this part by exp
(
−η

2

8 n
)
.

For the second part w ≥ w, we use the trivial bound 1
s

∫∞
w
Gn(w/s)dw ≤ 1 and, noting

w ≥ w =
√

1− η s
√
n/(2π) =

1√
1− η

s0

√
n/(2π) > s0

√
n/(2π) = w0,

we may apply the assumption of the proposition, yielding

EΛ

(
∆(u, uΛ

wB)
)
≤ f(n)

(w0

w

)n/2
≤ f(n)

(w0

w

)1/2

= f(n)
(√

1− η
)n/2

= f(n)
(s0

s

)n/4
.

Adding these bounds yields the proposition. �
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