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Abstract A communication protocol is realisable if it can be faithfully
implemented in a distributed fashion by communicating agents. Pomsets
offer a way to compactly represent concurrency in communication proto-
cols and have been recently used for the purpose of realisability analysis.
In this paper we focus on the recently introduced branching pomsets,
which also compactly represent choices. We define well-formedness con-
ditions on branching pomsets, inspired by multiparty session types, and
we prove that the well-formedness of a branching pomset is a sufficient
condition for the realisability of the represented communication protocol.

Keywords: Realisability · Pomsets · Choreographies

1 Introduction

Designing and implementing distributed systems is difficult. They are becom-
ing ever more important, and yet the complexity resulting from combinations of
inter-participant concurrency and dependencies makes the process error-prone
and debugging non-trivial. As a consequence, much research has been dedicated
to analysing communication patterns, or protocols, in distributed systems. Ex-
amples of such research goals are to show the presence or absence of certain
safety properties in a given system, to automate such analysis or to guaran-
tee the presence of desirable properties by construction. We are interested in
particular in the realisability property, i.e., whether a global specification of a
protocol can be faithfully implemented in a distributed fashion in the first place.
This problem has been well-studied in the last two decades in a variety of set-
tings [16,2,25,3,32].

A recent development has been the use of partially ordered multisets, or
pomsets, for the purpose of realisability analysis [18]. Guanciale and Tuosto use
pomsets as a syntax-oblivious specification model for communication protocols
and define conditions that ensure realisability directly over pomsets. Pomsets
offer a way to compactly represent concurrent behaviour. By using a partial order
to explicitly capture causal dependencies between pairs of actions, they avoid the
exponential blowup from finite state machines. However, a single pomset does
not offer any means to represent choices. Instead, a choice is represented as a set
of pomsets, one for each possible branch. Multiple choices result in one pomset
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for each possible combination of branches, which can yield an exponentially large
set of pomsets. Recent work by the authors and Proença and Cledou introduces
branching pomsets [13]. These extend pomsets with a branching structure to
compactly represent both concurrency and choices, avoiding both exponential
blowups. In this paper we present a first step in the analysis of the realisability
of these branching pomsets.

We consider distributed systems using asynchronous message passing and
ordered buffers (FIFO queues) between (ordered pairs of) participants. In the
aforementioned paper ([18]) Guanciale and Tuosto consider systems with un-
ordered (non-FIFO) buffers. Using the work by Guanciale and Tuosto as a basis
for our analysis would require first adapting their work to a FIFO setting and
then adapting it further to branching pomsets. Instead, we choose to draw in-
spiration from multiparty session types (MPST) [20], which already use FIFO
buffers, and thus use MPST as a basis for our analysis. Through its syntax and
projection operator, MPST defines a number of well-formedness conditions on
global types which ensure realisability. We define similar well-formedness con-
ditions on branching pomsets and prove that they ensure realisability as well.
These conditions are sufficient but not necessary, i.e., a protocol may be real-
isable without being well-formed. We discuss some possible relaxations of the
conditions at the end of the paper.

Outline We recall the concept and definition of branching pomsets in Section 2.
In Section 3 we define our notion of realisability, we define our well-formedness
conditions in Section 4 and we prove in Section 5 that, if a branching pomset
is well-formed, then the corresponding communication protocol is realisable. In
Section 6 we briefly discuss two examples. Finally, we discuss related work in
Section 7 and we end the paper with our conclusions and a discussion in Section 8.

We omit a number of technical lemmas and the majority of proofs in favour
of more informal proof sketches or highlights. All omitted content can be found
in a separate technical report [12].

2 Preliminaries on branching pomsets

In this section we recall the concept and definitions of branching pomsets. This
section is heavily based on the original introduction of branching pomsets [13];
a more thorough explanation can be found in that paper.

Notation Let A = {a, b, . . .} be the set of participants (or agents). Let X =
{x, y, . . .} be the set of message types. Let L =

⋃
a,b∈A,x∈X {ab!x, ab?x} be the

set of labels (actions), ranged over by `, where ab!x is a send action from a to b
of a message of type x, and ab?x is the corresponding receive action by b. The
subject of an action `, written subj(`), is its active agent: subj(ab!x) = a and
subj(ab?x) = b.

A partially ordered multiset [28], or pomset for short, consists of a set of
nodes (events) E, a labelling function λ mapping events to a set of labels (e.g.,
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ab!x ab?x
bc!x bc?x

bd!x bd?x
ac!y ac?y

Choice

ab!x ab?x
bc!x bc?x

bd!x bd?x
ac!y ac?y

Figure 1: A pomset (left) and a branching pomset (right) depicting simple com-
munication patterns.

send and receive actions), and a partial order ≤ defining causal dependencies
between pairs of events (i.e., an event, or rather its corresponding action, can
only fire if all events preceding it in the partial order have already fired). Its
behaviour is the set of all sequences of the labels of its events that abide by ≤.

An example pomset is shown graphically in Figure 1 (left), depicting a
simple communication pattern between four agents Alice (a), Bob (b), Carol
(c) and Dave (d). Alice first sends a message of type x to Bob, who then sends
a message of type x to both Carol and Dave. In parallel, Alice sends a mes-
sage of type y to Carol. The graphical pomset representation shows the labels
of the events and the arrows visualising the partial order: an event precedes
any other event to which it has an outgoing arrow, either directly or transit-
ively. Formally, E = {e1, . . . , e8}, λ is such that e1, . . . , e8 map to respectively
ab!x, ab?x, bc!x, bc?x, bd!x, bd?x, ac!y, ac?y, and ≤ = {(ei, ej) | i ≤ j ∧ (i, j ∈
{1, 2, 3, 4} ∨ i, j ∈ {1, 2, 5, 6} ∨ i, j ∈ {7, 8})}.

Branching pomsets extend pomsets with a branching structure, which is a
tree structure containing events and (binary) choices. Formally, the branching
structure is defined below as a tree with root node B, whose children C are either
a single event e or a choice node with children B1,B2. All leaves are events.

B ::= {C1, . . . , Cn}
C ::= e | {B1,B2}

We write B1 � B2 if B1 is a subtree of B2, and B1 ≺ B2 if B1 is a strict
subtree of B2, i.e., if B1 � B2 and B1 6= B2. We use the same notation for Cs, es
(a special case of Cs) and combinations of all the aforementioned.

We formally define branching pomsets in Definition 1.

Definition 1 (Branching pomset [13]). A branching pomset is a four-tuple
R = 〈E,≤, λ,B〉, where:

– E is a set of events;
– ≤ ⊆ E × E is a causality relation on events such that ≤? (the transitive

closure of ≤) is a partial order on events;
– λ : E 7→ L is a labelling function assigning an action to every event; and
– B is a branching structure such that the set of leaves of B is E and no event

in E occurs in B more than once.

We use R.E, R.≤, R.λ and R.B to refer to the components of R. We generally
omit the prefix if doing so causes no confusion. We also write e1 < e2 if e1 ≤ e2
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and e1 6= e2. We say that two events e1 and e2 are causally ordered if either
e1 ≤ e2 or e2 ≤ e1. We say that two events e1 and e2 are mutually exclusive if
there exists some C = {B1,B2} ≺ R.B such that e1 ≺ B1 and e2 ≺ B2.

An example branching pomset is shown graphically in Figure 1 (right). It
depicts the same communication pattern as that in the pomset on the left, ex-
cept that now Bob sends a message of type x to either Carol or Dave instead
of to both. This is visualised as a choice box containing two branches. Form-
ally, E, λ and ≤ are the same as before. New is B = {e1, e2, e7, e8, C}, where
C = {{e3, e4}, {e5, e6}} is Bob’s choice between the events corresponding to
Carol and Dave. The choice can be resolved by picking one of the branches,
e.g., Carol’s ({e3, e4}), and merging it with C’s parent, B, resulting in B′ =
{e1, e2, e3, e4, e7, e8}.

Informally, to fire an event whose ancestor in the branching structure is a
choice, first the choice must be resolved: it is replaced by one of its children
(branches). The other child is discarded and the branching pomset is updated
accordingly: the events contained in the discarded subtree are removed, as well
as the related entries in the causality relation and the labelling function.

Formally, the semantics of branching pomsets are defined using a refinement
relation on the branching structure. A structure B can refine to B′, written
B w B′, by resolving a number of choices as above. We write B = B′ to specify
that B 6= B′. The refinement rules are formalised in Figure 2a. The first two rules
state that refinement is reflexive and transitive. The third rule, Choice, resolves
choices. It states that we can replace a choice with one of its branches. Finally, the
fourth rule overloads the refinement notation to also apply to branching pomsets
themselves: if R.B can refine to some B′, then R itself can refine to a derived
branching pomset with branching structure B′, whose events are restricted to
those occurring in B′ and likewise for ≤ and λ— as defined in Figure 2c. We note
that we omit one of the rules in [13], since our later well-formedness conditions
lead to it never being used.

The reduction and termination rules are defined in Figure 2b. The first rule
states that a branching pomset can terminate if its branching structure can refine
to the empty set. The second rule states the conditions for enabling an event
e, written R Xe−→ R′: R can enable e by refining to R′ if e is both minimal and
active in R′ and if there is no other refinement between R and R′ for which this
is the case. An event e is minimal if there exists no other event e′ such that
e′ < e. It is active if it is not inside a choice, i.e., if e ∈ R.B. In other words,
R may only refine as far as strictly necessary to enable e. Finally, the last two
rules state that, if R Xe−→ R′, then R can fire e by reducing to R′−e, which is the
branching pomset obtained by removing e from R′ — as defined in Figure 2c.
This reduction is defined both on e’s label and on the event itself, the latter for
internal use in proofs since λ(e) is not necessarily unique but e always is.

For example, let R be the branching pomset (right) in Figure 1. Its initial
active events are those labelled with ab!x, ab!y, ab?x and ab?y, of which the first
two are also minimal. After firing either one, the corresponding receive action
becomes minimal. In these cases R Xe−→ R for the relevant event e, i.e., it suffices
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B w B [Refl] B w B′ w B′′

B w B′′ [Trans] i ∈ {1, 2}
{{B1,B2}} ∪ B w Bi ∪ B

[Choice] R.B w B′

R w R[B′]

(a) Refinement rules, where we assume for Choice that {B1,B2} /∈ B.

R.B w ∅
R↓

R w R′ e ∈ a-min(R′)
∀R′′ : R w R′′ = R′ ⇒ e /∈ a-min(R′′)

R
Xe−→ R′

R
Xe−→ R′

R
e−→ R′ − e

R
e−→ R′

R
λ(e)−−−→ R′

(b) Reduction and termination rules.

〈E,≤, λ,B〉[B′] = 〈E|B′ ,≤|B′ , λ|B′ ,B′〉
X|B = restricts X only to the events in B

a-min(R) = {e ∈ R.E | @e′ ∈ R.E : e′ < e} ∧ e ∈ R.B
ê− e = ê

{C1, . . . , Cn} − e =
{
{C1, . . . , Ci−1, Ci+1, . . . , Cn} if Ci = e

{C1 − e, . . . , Cn − e} otherwise

{B1,B2} − e = {B1 − e,B2 − e}
R− e = R[R.B − e]

(c) Operations on branching pomsets.

Figure 2: Simplified semantics of branching pomsets [13].

to refine R to itself. After firing ab?x the two events labelled with bc!x and
bd!x become minimal but not yet active. Only now are we allowed to resolve
the choice by applying Choice to pick one of the branches. After this either
the events labelled with bc!x and bc?x or those with bd!x and bd?x will become
active, and the first event of the chosen pair can be fired.

3 Realisability

In this section we define our notion of realisability and illustrate it with examples.
We model distributed implementations as compositions of a collection of local

branching pomsets ~R and ordered buffers (FIFO queues) ~b containing the mes-
sages in transit (sent but not yet received) between directed pairs of agents (or
channels), similar to communicating finite-state machines [5]. The local pom-
sets only contain actions for a single agent; there should be one local branching
pomset for each agent and one buffer for each channel.

Composition is formally defined below. We use three auxiliary functions:
add(ab!x,~b) returns ~b with x added to bab, remove(ab!x,~b) returns ~b with x re-
moved from bab and has(ab!x,~b) returns whether x is pending in bab. Since we
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consider ordered buffers, add appends message types to the end of the corres-
ponding queue, remove removes message types from the front, and has only
checks whether the first message matches.

We note that our termination condition does not require the buffers to be
empty. In practice asynchronous communication channels will typically have
some latency, and requiring empty buffers would require processes (the local
branching pomsets) to be aware of messages in transit. Instead, in our model the
presence or absence of orphan messages (messages unreceived on termination) is
a separate property from realisability, to be verified in isolation. It does, however,
follow from our well-formedness conditions in Section 4 that a well-formed and
realisable protocol is also free of orphan messages.

Definition 2 (Composition). Let ~R be an agent-indexed vector of local branch-
ing pomsets. Let ~b be a channel-indexed vector of ordered buffers. Their composi-
tion is the tuple 〈~R,~b〉, whose semantics is defined as the labeled transition system
defined by the rules below.

(Send)

Ra
ab!x−−→ R′a

~b′ = add(ab!x,~b)

〈~R,~b〉 ab!x−−→ 〈~R[R′a/Ra],~b′〉
(Receive)

Rb
ab?x−−−→ R′b

has(ab!x,~b) ~b′ = remove(ab!x,~b)

〈~R,~b〉 ab?x−−−→ 〈~R[R′b/Rb],~b′〉

(Terminate)
∀a : Ra↓

〈~R,~b〉↓
A protocol is realisable if there exists a faithful distributed implementation

of it, i.e., one defining the same behaviour. We formally define realisability be-
low. We note that it is typically defined in terms of language (trace) equival-
ence [18]. However, as the exact branching of choices plays an important part
in branching pomsets, we use a more strict notion of equivalence and require
the global branching pomset and the composition to be bisimilar [29]. As an
example, consider the branching pomsets in Figure 3. After firing ab!int ab?int,
the branching pomset on the left can still fire either bc!yes or bc!no, while the
branching pomset on the right has already committed to one of the two upon
firing ab!int. We wish to distinguish these two branching pomsets, which cannot
be done using language equivalence since they yield the same set of two traces.
It is then most natural to compare two branching pomsets using branching equi-
valence, i.e., bisimilarity. As we wish to be able to make the same distinction
in our realisability analysis, we also define realisability in terms of bisimilarity.
We note that our well-formedness conditions enforce a deterministic setting, in
which bisimilarity agrees with language equivalence. We then choose to prove
bisimilarity rather than language equivalence because the proofs are typically
more straightforward.

Formally, if two branching pomsets R1 and R2 are bisimilar, written R1 ∼ R2,
then, for every reduction R1

`−→ R′1 there should exist a reduction R2
`−→ R′2 such

that R′1 and R′2 are again bisimilar, and vice-versa. Additionally, we require that
two bisimilar branching pomsets R1 and R2 can terminate iff the other can do
so as well.
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Choice

ab!int ab?int

bc!yes bc?yes

bc!no bc?no

Choice

ab!int ab?int

ab!int ab?int

bc!yes bc?yes

bc!no bc?no

Figure 3: Two similar yet not bisimilar branching pomsets.

R1 =

Choice

ab!yes ab?yes

ba!yes ba?yes

ab!no ab?no

ba!no ba?no

R2 =

Choice

ab!int ab?int

ab!bool ab?bool

ba!yes ba?yes

ba!no ba?no

R3 =
ab!int ab?int

ab!bool ab?bool

R4 =

Choice

ab!yes ab?yes

ab!no ab?no

ab!int ab?int

Figure 4: A collection of realisable and unrealisable branching pomsets.

Definition 3 (Realisability). Let R be a branching pomset. The protocol it
represents is realisable iff there exists a composition 〈~R,~b〉 such that bab is empty
for all ab and R ∼ 〈~R,~b〉.

As an example, consider the branching pomsets in Figure 4:

– R1 is unrealisable. Alice and Bob both have to send a yes or a no to the other
but the two messages must be the same. It is impossible without further
synchronisation or communication to prevent a scenario in which one will
send a different message than the other.

– R2 is realisable. Alice first sends an int and then a bool to Bob. After receiving
the int, Bob returns either a yes or a no.

– R3 is unrealisable. Alice sends an int and a bool to Bob, but while they
agree that Alice first sends the int and then the bool, the order in which Bob
receives the message is unspecified. As we assume ordered buffers, Bob will
first receive the int, but the global branching pomset allows an execution in
which Bob first receives the bool.

– R4 is realisable. Alice sends a yes or a no to Bob, followed by an int.

We note that it is easy to go from a global branching pomset R to a local
branching pomset for some agent a by projecting it on a, written R�a. We will
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R1�a =

Choice

ab!yes

ba?yes

ab!no

ba?no

R2�a =

Choice

ab!int

ab!bool

ba?yes

ba?no

Figure 5: The projection of the branching pomsets R1 and R2 in Figure 4 on a.

use projections in our well-formedness conditions and realisability proof, and
we formally define them below. The projection R�a restricts R to the events
whose subject is a, and restricts ≤ and λ accordingly. The branching structure is
pruned by removing all discarded events (leaves), but no inner nodes of the tree
are removed, even if they are left without any children. This is done to safeguard
the symmetry with the branching structure of R to ease our proofs.

Definition 4 (Projection). 〈E,≤, λ,B〉�a = 〈Ea,≤a, λa,Ba〉 where:

– Ea = {e ∈ E | subj(e) = a}
– ≤a = ≤ ∩ (Ea × Ea)
– λa = λ ∩ (Ea × L)
– Ba = B�a as defined below.

e�a = e if e ∈ Ea

{C1, . . . , Cn}�a = {Ci�a | 1 ≤ i ≤ n ∧ Ci�a is defined}
{B1,B2}�a = {B1�a,B2�a}

As an example, Figure 5 shows the projection of two of the branching pom-
sets in Figure 4 on agent a. The events with subject b are removed, as are
dependencies involving them. R1�a is left with no dependencies at all. We note
that, as the graphical representation of a branching pomset shows the transitive
reduction of the causality relation and not the full relation, it is unclear from
just Figure 4 whether R2�a should contain dependencies between ab!int and the
events ba?yes and ba?no. This is unambiguous in the formal textual definition,
which we omitted but which also relates these events.

Finally, we prove that R and its projections can mirror each others refine-
ments. Both proofs are straightforward by induction on the structure of the
premise’s derivation tree.

Lemma 1. If R w R′ then R�a w R′�a.

Lemma 2. If R�a w R′a then R w R′ for some R′ such that R′a = R′�a.
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4 Well-formedness

In this section we define our well-formedness conditions on branching pomsets.
We define four well-formedness conditions (Definition 10): to be well-formed,

a branching pomset must be well-branched, well-channeled, tree-like and choreo-
graphic. Well-branchedness, well-channeledness and tree-likeness are inspired by
MPST [20] and ensure some safety properties. Choreographicness ensures that
the branching pomset represents some sort of meaningful protocol.

– Well-branched (Definition 6): every choice is made only on the label of a
send-receive pair, i.e., the first events in every branch must be a send and
receive between some agents a and b, with the message type being different
in every branch. Additionally, the projection on every agent uninvolved in
the choice must be the same in every branch. Then a and b are both aware
of the chosen branch and all other agents are unaffected by the choice.
Although the branching pomset model only contains binary choices, an n-
ary choice C can be encoded as a nested binary one, where the n children of
C become the leaves of a binary tree. We call such a leaf B an option of C,
written B � C, which is formally defined below. This allows us to properly
interpret C as an n-ary choice again and reason about it accordingly.

– Well-channeled (Definition 7): pairs of sends and pairs of receives on the
same channel that can occur in the same execution should be ordered, and
the pairs of sends should have the same order as the pairs of their corres-
ponding receives. A branching pomset which is not well-channeled could, for
example, yield a trace ab!x ab!y ab?y ab?x, which cannot be reproduced by
a composition using ordered buffers.

– Tree-like (Definition 8): events inside of choices can only affect future events
in the same branch. Graphically speaking, arrows can only enter boxes, not
leave them. As a consequence, the causality relation ≤ follows the branching
structure B and has a tree-like shape — hence the name.

– Choreographic (Definition 9): the branching pomset represents a choreo-
graphy of some sort, i.e., a communication protocol in which the send and
receive events are properly paired and all dependencies can be logically de-
rived. Specifically, all dependencies are between send-receive pairs or between
same-subject events, or they can be transitively derived from those. Addi-
tionally, there is some correspondence between the send and receive events:
every send can be matched to exactly one corresponding receive, and every
non-top-level receive has some corresponding send at the same level of the
branching structure B. This definition is similar to the definition of well-
formedness by Guanciale and Tuosto [18].

Definition 5 (Option). Let C ≺ R.B. B is an option of C, written B � C, if
B ∈ {B† | B† �† C ∧ @B‡ : (B‡ �† C ∧ B‡ ≺ B†)}, where �† is defined as follows:

B ∈ C
B �† C

B ∈ C′ {C′} �† C
B �† C
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Definition 6 (Well-branched). A branching pomset R is well-branched iff,
for every C ≺ R.B there exist participants a, b such that for every Bi 6= Bj � C
there exist events ei1, ei2 ∈ Bi and ej1, ej2 ∈ Bj such that:

– λ(ei1) = ab!x, λ(ei2) = ab?x, λ(ej1) = ab!y and λ(ej2) = ab?y for some
x 6= y;

– ei1 ≤ ei for all ei � Bi and ej1 ≤ ej for all ej � Bj;
– ei2 ≤ ei for all ei � Bi for which subj(ei) = b and ej2 ≤ ej for all ej � Bj

for which subj(ej) = b; and
– R[Bi]�c = R[Bj ]�c for all c 6= a, b3.

Definition 7 (Well-channeled). A branching pomset R is well-channeled iff,
for all events e1, e2, e3, e4 ∈ R.E:

– If e1 and e2 are either both sends or both receive events, and if they share the
same channel, then they are either causally ordered or mutually exclusive.

– If e1, e3 and e2, e4 are two pairs of matching send-receive events sharing the
same channel, and if there exists no e5 ∈ R.E such that e1 < e5 < e3 or
e2 < e5 < e4, then e1 ≤ e2 =⇒ e3 ≤ e4.

Definition 8 (Tree-like). A branching pomset R is tree-like iff:
∀C = {B1,B2} ≺ R.B : (e1 ≤ e2 ∧ e1 � Bi) =⇒ e2 � Bi, where i ∈ {1, 2}.

Definition 9 (Choreographic). A branching pomset R is choreographic iff,
for every e ∈ R.E:

– If there exists e′ ∈ R.E such that e′ < e then there exists some event e′′ (not
necessarily distinct from e′) such that e′ ≤ e′′ < e and either subj(λ(e′′)) =
subj(λ(e)) or [λ(e′′) = ab!x and λ(e) = ab?x for some a, b, x].

– If λ(e) = ab?x and e ∈ B for some B ≺ R.B then there exists some e′ such
that e′ ∈ B and λ(e′) = ab!x and e′ < e.

– If λ(e) = ab!x then there exists exactly one e′ such that e ≤ e′ and that
λ(e′) = ab?x and that (λ(e†) = ab!x ∧ e† ≤ e′)⇒ e† ≤ e.

Definition 10 (Well-formed). A branching pomset R is well-formed iff it is
well-branched, well-channeled, tree-like and choreographic.

As an example, recall the branching pomsets in Figure 4:

– R1 is not well-formed since it is not well-branched: for example, the branches
of the choice have multiple minimal events. It is indeed unrealisable.

– R2 is both well-formed and realisable.
– R3 is not well-formed since it is not well-channeled: the two receive events

are on the same channel but are unordered. It is indeed unrealisable.
3 Technically R[Bi]�c and R[Bj ]�c have different events and should thus be isomorphic
rather than precisely equal. We choose to write it as an equality to not unnecessarily
complicate the definition and proofs.
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– R4 is not well-formed since it is not tree-like: there are arrows from events
inside branches of a choice to ab!int and ab?int, even though the latter are
not part of the same branch. It is, however, realisable, which illustrates that,
while we prove in Section 5 that our well-formedness conditions are sufficient,
they are not necessary.

Finally, we show that well-formedness is retained after a reduction.

Lemma 3. Let R be a branching pomset and let R `−→ R′. If R is well-formed
then so is R′.

Proof (sketch). We use that the components of R′ are subsets of or (in the case
of the branching structure) derived from the components of R. It then follows
that a violation of one of the properties in R′ would also invariably lead to a
violation of one of the properties in R.

5 Bisimulation proof

In this section we prove that, if a branching pomset R is well-formed, then the
corresponding protocol is realisable.

To prove that R’s protocol is realisable, we have to show the existence of
a bisimilar composition of local branching pomsets and buffers. To do this, we
define a canonical decomposition of R by combining our previously defined pro-
jections with a buffer construction, and we prove that this canonical decompos-
ition is bisimilar to R. The (re)construction of the buffer contents of channel ab
based on R, written buffab(R), and the canonical decomposition of R, written
cd(R), are defined below.

The buffer construction buffab(R) gathers the receive events in R that have
no preceding matching send event. We infer that, since the send has already
been fired and the receive has not, the message must be in transit.

Definition 11 (Buffer construction). Let R be a branching pomset. Let a
and b be agents in R. Let ε be the empty word.

Then buffab(R) =


x · buffab(R′) if R′ = R− e and λ(e) = ab?x

and ∀e′: if e′ < e then λ(e′) 6= ab!x
and ∀e′, y: if e′ < e then λ(e′) 6= ab?y

ε otherwise

The corresponding message types are nondeterministically put in some order
that respects the order of the gathered receive events — if e1 < e2 then e1’s
message type must precede that of e2 in the constructed buffer. We note that
all unmatched receive events are top-level if R is choreographic, and that the
same-channel top-level receive events are totally ordered if R is well-channeled. It
follows that, although it may add duplicate messages and is nondeterministic in
the general case, buffab(R) does not add duplicate messages and is deterministic
if R is well-formed.



12 L. Edixhoven and S.-S. Jongmans

Definition 12 (Canonical decomposition). Let R be a branching pomset.
Let ~R be such that Ra = R�a for all a. Let ~b be such that bab = buffab(R) for all
ab. Then cd(R) = 〈~R,~b〉 is the canonical decomposition of R.

To prove that a well-formed R is bisimilar to cd(R), we define the rela-
tion R = {〈R, 〈~R†,~b〉〉 | 〈~R†,~b〉 ∼ 〈~R,~b〉 = cd(R)} and we prove that R is a
bisimulation relation (Theorem 1). Note that the vector of buffers ~b is the same
across the definition; we only allow leeway in the vector of local branching pom-
sets. The proof consists of the two parts mentioned in Section 3. Given that
〈R, 〈~R†,~b〉〉 ∈ R, if one can make some reduction then the other must be able to
make the same reduction such that the resulting configurations are again related
by R (Lemma 7, Lemma 8). Additionally, if one can terminate then so should
the other (Lemma 9, Lemma 10).

The reason that R is not simply the set of all 〈R, cd(R)〉 is that a reduction
from cd(R) may not always result in cd(R′) for some R′. This is because choices
are only resolved in the branching pomset of the agent causing the reduction. For
example, consider branching pomset R4 in Figure 4. Upon Alice sending yes the
global branching pomset would resolve the choice for both agents simultaneously.
However, upon Alice sending yes in the canonical decomposition the projection
on Bob remains unchanged and still contains receive events for both yes and
no. Since yes has been added to the buffer from Alice to Bob, we know that
Bob will eventually have to pick the branch containing yes — after all, there is
no no to receive. In other words: this configuration is bisimilar to the canonical
decomposition of the resulting global branching pomset, in which the choice has
also been resolved for Bob. If there were also some additional no being sent from
Alice to Bob, e.g., if we replace the messages int in R4 with no, then R4 being
well-channeled and the buffers being ordered would still ensure that we can safely
resolve Bob’s choice. This crucial insight is formally proven in Lemma 4.

Lemma 4. Let R be a well-formed branching pomset. Let 〈~R,~b〉 = cd(R). Let
` be some label and let a = subj(`). If R `−→ R′ and if 〈~R,~b〉 `−→ 〈~R[R′a/R�a],~b†〉
and if R′a = R′�a, then 〈~R[R′a/R�a],~b†〉 ∼ 〈 ~R′,~b′〉 = cd(R′).

Proof (sketch). If ` = ba?x for some b, x then it follows from the well-formedness
of R that R′ = R − e and the remainder is straightforward. The same is true if
` = ab!x and e is top-level, i.e., e ∈ R.B.

Otherwise it follows from the well-formedness of R that e is a minimal send
event in one of the options of a top-level choice, i.e., e ∈ B � C ∈ R.B for
some B, C, and R′ = R[(R.B \ C) ∪ (B − e)]. We proceed to show that the set
of unmatched receive events in R′ is exactly that of R with the addition of
the one corresponding to e, and then ~b′ = add(ab!x,~b) = ~b†. It follows that
〈~R[R′a/R�a],~b†〉 = 〈~R[R′a/R�a],~b′〉. For the projections, we proceed in two steps:

– First we observe that, since R is well-branched, B′�c = B�c for all B′ � C
and for all c 6= a, b. It follows that R�c ∼ R′�c, and then 〈~R[R′a/R�a],~b′〉 ∼
〈 ~R′[R�b/R

′�b],~b′〉. Note that the projection on a is R′�a and the projection
on b is R�b on both sides, and the projection on every other c is bisimilar.
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– Next we show that, with the new message added to the buffer, no event can
ever fire in R�b in any other option of C than B. It follows that we can discard
all other options, and then 〈 ~R′[R�b/R

′�b],~b′〉 ∼ 〈 ~R′,~b′〉 = cd(R′). ut

To satisfy the preconditions of Lemma 4, we additionally prove that R’s
reductions can be mirrored by its projection on the reduction label’s subject
(Lemma 5) and dually that the reductions of R’s canonical decomposition can
be mirrored by R (Lemma 6). Their proofs rely on the observations that the cor-
responding event e must be minimal both in R and R�a, and that the branching
structures of the two are the same (modulo discarded leaves). It then follows
that the same refinement enables e in both R and R�a.

Lemma 5. Let R be a tree-like branching pomset. If R `−→ R′ and a = subj(`)
then R�a

`−→ R′�a.

Lemma 6. Let R be a well-channeled, tree-like and choreographic branching
pomset. Let 〈~R,~b〉 = cd(R). If 〈~R,~b〉 `−→ 〈~R[R′a/R�a],~b′〉 then R

`−→ R′ for some
R′ such that R′a = R′�a.

Finally, we bring everything together and prove the four necessary steps for
bisimulation in the lemmas below, culminating in Theorem 1. The proof for
Lemma 7 uses Lemma 5 to show the preconditions of Lemma 4 and then applies
the latter. This gives us cd(R) `−→ cd(R)′ ∼ cd(R′), and since 〈~R†,~b†〉 ∼ cd(R)
the result is then straightforward. The proof for Lemma 8 is analogous but uses
Lemma 6. The proofs for Lemma 9 and Lemma 10 respectively use Lemma 1
and Lemma 2 to show that, if one can terminate by refining to the empty set,
then so must the other.

Lemma 7. Let 〈R, 〈~R†,~b〉〉 ∈ R. If R is well-formed and R
`−→ R′ then there

exist ~R‡ and ~b‡ such that 〈~R†,~b〉 `−→ 〈~R‡,~b‡〉 and 〈R′, 〈~R‡,~b‡〉〉 ∈ R.

Lemma 8. Let 〈R, 〈~R†,~b〉〉 ∈ R. If R is well-formed and 〈~R†,~b〉 `−→ 〈~R‡,~b‡〉 then
there exists R′ such that R `−→ R′ and 〈R′, 〈~R‡,~b‡〉〉 ∈ R.

Lemma 9. Let 〈R, 〈~R†,~b〉〉 ∈ R. If R is well-formed and R↓ then 〈~R†,~b〉↓.

Lemma 10. Let 〈R, 〈~R†,~b〉〉 ∈ R. If R is well-formed and 〈~R†,~b〉↓ then R↓.

Theorem 1. Let R be a branching pomset. If R is well-formed and buffab(R) = ε
for all ab then the protocol represented by R is realisable.

Proof. It follows from Lemma 7, Lemma 8, Lemma 9 and Lemma 10 that R is
a bisimulation relation [29]. Specifically, it then follows that R ∼ cd(R). Then,
since buffab(R) = ε for all ab, by Definition 3 the protocol represented by R is
realisable. ut
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Choice

b1s!string b1s?string

sb1!int sb1?int

sb2!int sb2?int

b1b2!int b1b2?int

b2s!ok b2s?ok

b2s!string b2s?string sb2!date sb2?date

b2s!quit b2s?quit

dr!bool dr?bool

kr!bool kr?bool
rc!bool rc?bool

dr!bool dr?bool

kr!bool kr?bool
rc!bool rc?bool

Figure 6: Branching pomsets representing the two-buyers-protocol (top) and two
iterations of the simple streaming protocol (bottom) [20].

6 Examples

In this section we briefly look at two example protocols used by Honda et al. [20].
Both are depicted as branching pomsets in Figure 6.

The two-buyers-protocol (top) features Buyer 1 and Buyer 2 (b1, b2) who
wish to jointly buy a book from Seller (s). Buyer 1 first sends the title of the
book (string) to Seller, Seller sends its quote (int) to both Buyer 1 and Buyer 2,
and Buyer 1 sends Buyer 2 the amount they can contribute (int). Buyer 2 then
notifies Seller whether they accept (ok) or reject (quit) the quote. If they accept,
they also send their address (string), and Seller returns a delivery date (date).

The simple streaming protocol (bottom) features Data Producer (d) and
Key Producer (k), who continuously respectively send data and keys (both bool)
to Kernel (r). Kernel performs some computation and sends the result (bool) to
Consumer (c). The protocol in Figure 6 shows two iterations of this process.

Both branching pomsets are well-formed, and hence the protocols are real-
isable. We note that, as in the paper by Honda et al., further communication
between Buyers 1 and 2 has been omitted in the two-buyers-protocol. Since
this is bound to be different in the case of acceptance and rejection, the result-
ing branching pomset would not be well-branched and thus not well-formed —
though still realisable. We discuss relaxed well-branchedness conditions in Sec-
tion 7. Also note that the ok and address (string) messages are sent sequentially;
sending these in parallel would violate well-channeledness and make the protocol
unrealisable with ordered buffers. The same is true for the streaming protocol:
the two iterations are composed sequentially and doing so concurrently would
violate well-channeledness and result in unrealisability. The size of the branching
pomset for the streaming protocol scales linearly with the number of depicted
iterations; showing all (infinitely many) iterations would require an infinitely
large branching pomset. We briefly touch upon infinity in Section 8.
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7 Related work

Realisability has been well-studied in the last two decades in a variety of settings.
For example, Alur et al. study the realisability of message sequence charts [1].
They define the notions of weak and safe realisability of languages, the latter
also ensuring deadlock-freedom, and they define closure conditions on languages
which they show to precisely capture weakly and safely realisable languages.
Lohmann and Wolf define the notion of distributed realisability, where a protocol
is distributedly realisable if there exists a set of compositions such that every
composition covers a subset of the protocol and the entire protocol is covered by
their union [25]. Fu et al. [16], Basu et al. [3], Finkel and Lozes [15] and Schewe et
al. [32] all study the realisability of protocols on different network configurations
when considering only the sending behaviour — receive events are omitted —
showing necessary and/or sufficient conditions and decidability results.

One major source of inspiration for our work has been previous work on
pomsets. Pomsets were initially introduced by Pratt [28] for concurrency mod-
els and have been widely used, e.g., in the context of message sequence charts
by Katoen and Lambert [24]. Recently Guanciale and Tuosto presented a real-
isability analysis based on sets of pomsets [18], in which they show how to
capture the language closure conditions of Alur et al. [1] directly on pomsets,
without having to explicitly compute their language. Typically choreography
languages are limited in their expressiveness and any analysis on their realis-
ability is then language-dependent. Both Alur et al. and Guanciale and Tuosto
perform a syntax-oblivious analysis, which has the benefit of being applicable
to any specification which can be encoded as a set of pomsets, regardless of the
specification language. The analysis by Guanciale and Tuosto is at a higher level
of abstraction than sets of traces. This allows both for a more efficient analysis
and for easier identification of design errors, as these can be identified in a more
abstract model.

Our approach is similarly syntax-oblivious, though the analysis itself is based
on MPST (on which we will elaborate later). A major difference is that Guan-
ciale and Tuosto use unordered buffers (e.g., non-FIFO queues) while ours are
ordered. For example, the parallel composition of a�b:x and a�b:y is realisable
in the unordered setting and not in the ordered one. The two settings agree
on realisability when the two message types are the same (e.g., two concurrent
copies of a�b:x); while Guanciale and Tuosto explicitly note that they support
concurrently repeated actions, however, our current well-channeledness condition
does not make an exception for these. This is an obvious target for relaxation
of our conditions. In their paper, Guanciale and Tuosto also separately define
termination soundness, i.e., whether participants are not kept waiting indefin-
itely after a composition terminates. For example, the branching pomset (right)
in Figure 1 is realisable but not termination-sound, as either Carol or Dave will
have to wait indefinitely since they do not know that the other received Bob’s
message. Making this protocol termination-sound would require additional com-
munication between Bob, Carol and/or Dave. Further inspiration for relaxation
of well-formedness conditions can be found in an earlier paper by Guanciale and
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Tuosto [17]. In particular their definition of well-branchedness, using ‘active’ and
‘passive’ agents, could serve as a basis for a relaxed version of our own.

The other major source of inspiration for our work is multiparty session types
(MPST), introduced by Honda et al. [20]. Specifically:

– Our well-branchedness condition corresponds to the branching syntax of
global types in MPST and its definition of projection. Branching in MPST
is done on the label of a single message, and the projection on agents unin-
volved in the choice is only defined if it is the same in every branch.

– Our well-channeledness condition corresponds to the principle that same-
channeled actions should be ordered. We note that our condition is more
lenient: we prohibit concurrent sends or receives on the same channel, while
in MPST the projection of a parallel composition on an agent is undefined if
the agent occurs in both threads (even if the threads’ channels are disjoint).

– Our tree-likeness condition follows from the syntax of global types in MPST,
which uses a prefix operator rather than a more general sequential compos-
ition. As a consequence all global types are tree-like. The same is true for
other languages that use a prefix operator and not sequential composition,
such as CCS [26] and π-calculus [30].

Since its introduction, various papers have addressed the strictness of the well-
branchedness condition in MPST. One line of research relaxes the condition by
using a merge operation to allow all agents to have different behaviour in different
branches, as long as they are timely informed of the choice [6,11,31]. Another line
relaxes the condition by allowing different branches to start with different receiv-
ers, rather than enforcing the same receiver in every branch [10,7,4,9,22]. These
results may also serve as inspiration for relaxations of the well-branchedness
condition on branching pomsets.

While our current conditions broadly correspond with well-formedness in
MPST, we believe that our approach offers three advantages. First, as discussed
before, it is syntax-oblivious, meaning it is not only applicable to MPST but
to any specification which can be encoded as a branching pomset. Second, we
believe that branching pomsets have the potential to be more expressive than
global types in MPST. As mentioned above, our well-channeledness condition is
already more lenient than the one in MPST. We have described various sources of
possible relaxations for our well-branchedness condition, both in the MPST and
in the pomset literature. Lastly, we conjecture that our tree-likeness condition
is needed to simplify our proofs, and that it is possible — though more complex
— to prove realisability without it or at least with a relaxed version of it.

A proper comparison between the pomset-based approach by Guanciale and
Tuosto [18] and ours, both in terms of expressiveness and efficiency, would first
require further development of our conditions. In the meantime, one takeaway
from their paper is the performance gain they obtain by lifting the analysis from
languages (sets of traces) to a higher level of abstraction, i.e., sets of pomsets. Our
hope is that a further performance gain can be obtained by lifting the analysis
from sets of pomsets to an even higher level of abstraction (e.g., branching
pomsets).
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Event structures Finally, the concept of branching pomsets is reminiscent of
event structures [27] and their recent usage in the context of MPST [8]. Both
consist of a set of events with some causality relation and a choice mechanism. In
event structures the choice mechanism consists of a conflict relation, where two
conflicting events may not occur together in the same execution; in branching
pomsets choices are modelled as a branching structure. A technical difference
seems to be the resolving of choices. In event structures a choice (conflict) may
only be resolved by firing an event in one of its branches. In contrast, in branching
pomsets a choice may be resolved without doing so; instead, one branch may be
discarded to fire an event outside of the choice, which is causally dependent
on the discarded branch but not on the other. A thorough formal comparison
between the two models, including both technical and conceptual aspects, is
ongoing work.

8 Conclusion

We have defined well-formedness conditions on branching pomsets (Definition 10)
and have proven that a well-formed branching pomset represents a realisable
protocol (Theorem 1). These conditions are sufficient but not necessary, i.e., a
protocol may be realisable if its branching pomset is not well-formed. Examples
of this are given in Figure 1 (the branching pomset on the right is realisable
but not well-branched) and Figure 4 (branching pomset R4 is realisable but not
tree-like). Several routes for relaxing our well-channeledness and especially our
well-branchedness conditions have been discussed in Section 7, in the aim of
increasing the number of branching pomsets that are well-formed while retain-
ing well-formedness as a sufficient condition for realisability. In the remainder
of this section we share some additional thoughts on well-channeledness and
tree-likeness, and then briefly discuss the applicability of our work to branching
pomsets of infinite size.

Well-channeledness The branching pomset R3 in Figure 4 is not well-channeled
since the events labelled with ab?int and ab?bool are unordered. It is unrealisable
because a local system will force the int to be received before the bool while the
global branching pomset allows a different order. However, in this case one may
take the view that the problem is not the local system being too strict, but
rather the global branching pomset being too lenient in an environment with
ordered buffers: it should then in some way allow a user to specify just the two
acceptable orderings without having to resort to adding a choice between the
two and duplicating all events in the pomset. Therefore, instead of changing the
well-channeledness condition, another avenue would be to change the reduction
rules in for branching pomsets themselves (Figure 2) and specifically adapt them
to ordered buffers. This could be done in such a way that reducing R3 by firing
ab!int then automatically adds a dependency from ab?int to ab?bool. This might
allow the well-channeledness condition to be significantly relaxed or to possibly
be removed altogether.
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Tree-likeness Having the assumption of tree-likeness simplifies our proofs. It is
our aim to eventually relax or even remove it and still prove realisability, but this
will require a significantly more complex proof. We have noted in Section 7 that
global types in MPST and expressions in, e.g., CCS and the π-calculus, are tree-
like by default. Conceptually a non-tree-like branching pomset could potentially
be turned into an equivalent (i.e., bisimilar) tree-like one by distributing the
offending events over the branches of the involved choice. For example, consider
the branching pomsetR4 in Figure 4. By duplicating ab!int and ab?int and adding
a copy of each with the relevant dependencies to each of the two branches of
the choice, we obtain a bisimilar but now tree-like (and well-formed) branching
pomset. A more general scheme may be developed based on versions of the
CCS expansion theorem [19,14]. However, regaining expressiveness at the cost
of duplicating events effectively negates the benefits of using branching pomsets
in the first place.

Infinity The paper introducing branching pomsets [13] supports branching pom-
sets of infinite size. We note that our theoretical results in this paper also hold
for infinite branching pomsets. However, determining the well-formedness of an
infinite branching pomset is undecidable due to its size. A solution in the case of
infinity through repetition, e.g., loops in choreographies, would be to use a sym-
bolic representation. Alternatively, a solution might be found in the extension
from message sequence charts (MSCs) to MSC-graphs [21]. A similar extension
could be developed for branching pomsets, where they are sequentially composed
in a (possibly cyclic) graph. Finally, it may be possible to leverage the recently
introduced pomset automata [23].
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