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Abstract
Purpose A critical bottleneck for the credibility of artificial intelligence (AI) is replicating the results in the diversity of 
clinical practice. We aimed to develop an AI that can be independently applied to recover high-quality imaging from low-
dose scans on different scanners and tracers.
Methods Brain  [18F]FDG PET imaging of 237 patients scanned with one scanner was used for the development of AI technol-
ogy. The developed algorithm was then tested on  [18F]FDG PET images of 45 patients scanned with three different scanners, 
 [18F]FET PET images of 18 patients scanned with two different scanners, as well as  [18F]Florbetapir images of 10 patients. 
A conditional generative adversarial network (GAN) was customized for cross-scanner and cross-tracer optimization. Three 
nuclear medicine physicians independently assessed the utility of the results in a clinical setting.
Results The improvement achieved by AI recovery significantly correlated with the baseline image quality indicated by 
structural similarity index measurement (SSIM) (r = −0.71, p < 0.05) and normalized dose acquisition (r = −0.60, p < 
0.05). Our cross-scanner and cross-tracer AI methodology showed utility based on both physical and clinical image assess-
ment (p < 0.05).
Conclusion The deep learning development for extensible application on unknown scanners and tracers may improve the 
trustworthiness and clinical acceptability of AI-based dose reduction.

Keywords Deep learning · Low-dose · PET · Recovery · Cross-scanner · Cross-tracer

Introduction

Positron emission tomography (PET) is one of the main 
imaging modalities in clinical routine procedures of oncol-
ogy [1, 2], neurology [3], and cardiology [4]. One of the 
critical bottlenecks for the wide application of PET is the 
ionizing radiation dose [5]. Although the general principle 
of as low as reasonably achievable (ALARA) [5] is followed 
in clinical practice, patients are typically exposed to more 
than 4 mSv of equivalent dose [6]. In general, the imaging 
quality of PET is directly influenced by the activity of the 
injected tracer and the consequent radiation dose. A reduc-
tion of the radiation dose in PET protocols however leads to 
the degradation of imaging quality.

The technical advancement of PET scanners in recent 
decades has steadily reduced the radiation burden while 
preserving the imaging quality [7]. Breakthroughs have 
been made in signal measurement and imaging generation, 
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including developments on scintillator crystals, photodetec-
tors, acquisition electronics, and image reconstruction tech-
niques [8]. Modern commercial PET scanners have intro-
duced time-of-flight (TOF) techniques at a higher level of 
coincidence time resolution, which largely improved image 
quality [9–11]. Analog scanners are still commercially 
available but are increasingly being replaced by solid-state 
solutions. The transition of all major commercial vendors 
to silicon photomultiplier (SiPM)-based (digital) scanners 
has enabled a much-improved TOF resolution [12–15], as 
well as higher sensitivity, which increased measurement effi-
ciency [16–18] and might afford radiation dose reductions of 
more than 40% [19–21]. The recent innovation of total-body 
PET technology further improves the sensitivity of PET and 
may allow for further reductions of radiation exposure asso-
ciated with PET imaging [22–25]. However, such high-end 
scanners are only available in a small number of centers.

By contrast, computational techniques provide an alter-
native, cost-effective solutions to improve image quality for 
low-dose PET imaging. Denoising methods such as nonlo-
cal means [26] or multi-scale curvelet and wavelet analysis 
[27] were developed to reduce the noise in low-dose PET 
images. Data-driven methods have been employed to synthe-
size high-quality standard-dose PET images from low-dose 
measurements using machine learning, such as random-
forest-based regression [28], mapping-based sparse repre-
sentation [29], semi-supervised tripled dictionary learning 
[30], multilevel canonical correlation analysis framework 
[31], and so on. However, these small patch-based learn-
ing estimations may result in over-smoothed images lack-
ing texture information that limit the quantification of small 
structures in synthesized PET images. Recently developed 
deep learning techniques have been shown to better predict 
textural information in radiological images. Xiang et al. [32] 
proposed a concatenated end-to-end convolutional neural 
network (CNN) to estimate full-dose PET images, which 
effectively utilize the structural information from input data.

One challenge in deep learning is defining an analyti-
cal error function that enables an image quality perception 
comparable to human perception. GAN [33] is a special type 
of neural network model consisting of two units, with the 
generator unit synthesizing candidates while the discrimi-
nator unit attempts to decipher whether the candidate’s 
images are synthetic or real. The development of GAN has 
strengthened the capability of neural networks in this regard, 
allowing them to capture complex probability distributions. 
Wang et al. employed the adversarial training scheme to 
recover full-dose PET images from low-dose PET using a 
conditional GANs model [34] and further improved the per-
formance by incorporating MRI images that provide extra 
anatomical information [35].

However, the translation of this technology to a clinical 
setting is not straightforward. PET imaging is characterized 

by the variability of instrumentation and imaging protocols 
[36, 37], such as geometric configuration, detector capabil-
ity (e.g., TOF [38], depth-of-interaction (DOI) [39]), data 
correction, and system calibration. Furthermore, PET imag-
ing is also strongly influenced by the variability of injected 
radiopharmaceuticals. Even in different tracers using the 
same radioisotope, the signal texture may be different due 
to other different molecules of the tracers. This issue may 
be especially important for the development of new tracers, 
where PET datasets from new or uncommonly used tracers 
may not be adequately available. Moreover, the trustwor-
thiness of AI has been rigorously questioned over the last 
decade, for its reproducibility and stability when applied to 
external datasets.

Therefore, our goal was to develop and optimize a deep 
learning method for the recovery of standard-dose imag-
ing quality from low-dose PET in a versatile clinical set-
ting, including different imaging instrumentations and 
radiopharmaceuticals.

Materials and methods

Patient cohorts

The study was conducted in accordance with the require-
ments of the respective local ethics committees in Switzer-
land and China. Seven cohorts with 310 subjects were retro-
spectively included in this study (Table 1). For the Chinese 
cohorts, we selected 255 subjects who referred to  [18F]FDG 
PET for various non-neurological/psychiatric purposes and 
that were considered neurologically healthy on PET imag-
ing between April and December 2019. We also selected 10 
patients who underwent  [18F]Florbetapir PET for suspected 
neurodegenerative disease between April and August 2021. 
For the Swiss cohorts, we selected 27 patients who under-
went  [18F]FDG PET for suspected neurodegenerative disease 
and 18 patients who underwent  [18F]FET PET for suspected 
brain tumors between February and November 2019.

The subjects were scanned on 3 different PET scan-
ners (GE Discovery MI, Siemens Biograph mCT, Siemens 
Biograph Vision) with 3 different tracers  ([18F]FDG,  [18F]
Florbetapir, and  [18F]FET). The first cohort consists of 
237 subjects considered neurologically healthy referred to 
 [18F]FDG PET on DMI (GE, Discovery MI), which was 
employed for the development of our deep learning meth-
ods. The second cohort consists of 10 patients for suspected 
neurodegenerative disease, who underwent  [18F]Florbetapir 
PET were scanned on DMI. The third and fourth cohorts 
with suspected neurodegeneration were scanned on a mCT 
(Siemens, Biograph mCT) (n = 20) and Vision (Siemens, 
Biograph Vision) (n = 7) with  [18F]FDG. The fifth cohort 
contained 18 subjects with suspected brain tumors in the 
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brain who underwent  [18F]FDG PET on DMI. The last two 
cohorts with suspected brain tumors were acquired on mCT 
(n = 10) and Vision (n = 8) with  [18F]FET PET.

Imaging protocols

All data was acquired in list mode allowing for rebinding of 
data to simulate different acquisition times. PET data were 
reconstructed using OSEM (ordered subset expectation 
maximization). More detailed information concerning scan-
ner properties and reconstruction parameters can be found 
in Supplementary Table S1. Each simulated low-dose PET 
with a certain dose reduction factor (DRF) was reconstructed 
from the counts of a time window resampled at the middle 
of the acquisition with correspondingly reduced time. For 
example, the full-dose PET images from the DMI are recon-
structed with 5-min raw data, while the simulated low-dose 
PET with DRF = 2 is reconstructed with 2.5-min (from the 
75th second to the 225th second) resampled raw data but 
with the same reconstruction parameters and post-processing 
procedure, ensuring that both images have a comparable spa-
tial resolution.

Deep neural network setup

Our network was developed based on the conditional 
GANs (c-GANs) [33, 34] architecture, which consists of 
a generator network to synthesize the full-dose images 
from low-dose measurements and a discriminator to distin-
guish between the synthesized full-dose image and the real 
input. As shown in Figure 1, we specifically customized 
our model for cross-scanner and cross-tracer application 
including a U-net like architecture featuring skip connec-
tion (referred to as “Concatenate” in Figure 1) [40], batch 
normalization (BN) [41], a modified objective function 
with both conventional content loss [33] and also voxel-
wise loss. Techniques like skip connection and BN allow 
the network architecture to be much deeper, which endows 
the network with a better capability of generalization. Cus-
tomized loss function helps to preserve complex image 
details. The model was trained by mixing the image pairs 
of all DRF up to 20 from DMI and later tested on datasets 
from different scanners and tracers with DRF up to 100. 
More information on the network design and training pro-
cedure is attached in the corresponding part of the Sup-
plementary material.

Table 1  Information on patients’ demographics and diagnosis

Diagnosis Development 
group—
healthy

Test group—neurodegeneration Test group—brain tumor

Scanner GE Discovery 
MI

GE Discovery 
MI

Siemens Bio-
graph mCT

Siemens Bio-
graph Vision

GE Discovery 
MI

Siemens Bio-
graph mCT

Siemens Bio-
graph Vision

Tracer [18F]FDG [18F]Florbetapir [18F]FDG [18F]FDG [18F]FDG [18F]FET [18F]FET
Location China China Switzerland Switzerland China Switzerland Switzerland
Scan results 

(number of 
patients)

Control group 
(237)

Scan negative for 
Alzheimer (1)

Normal scan (10) Normal scan (4) Scan negative 
for brain 
tumor (8)

Scan negative for 
brain tumor (6)

Scan negative for 
brain tumor (4)

Scan positive for 
Alzheimer (9)

Neurodegenera-
tion (10)

Neurodegenera-
tion (3)

Scan positive 
for brain 
tumor (10)

Scan positive for 
brain tumor (4)

Scan positive for 
brain tumor (4)

Gender 
(male/
female)

127/110 5/5 14/6 4/3 12/6 7/3 5/3

Age (year) 56.4 ± 14.0 76.5 ± 6.1 64.6 ± 14.3 63.0 ± 22.8 60.9 ± 9.3 55.7 ± 14.8 57.3 ± 9.5
Weight (kg) 63.5 ± 13.2 65.3 ± 12.4 73.8 ± 10.7 73.9 ± 16.6 64.2 ± 11.9 81.3 ± 19.8 77.0 ± 15.6
Total dose 

(MBq)
353.5 ± 6.6 325.5 ± 22.0 249.7 ± 6.3 240.6 ± 3.1 330.3 ± 76.3 249.6 ± 15.3 252.8 ± 11.4

Post-injection 
uptake time 
(min)

89.7 ± 87.2 47.9 ± 11.7 36.6 ± 6.9 33.6 ± 3.0 69.6 ± 24.0 33.0 ± 5.1 35.4 ± 4.8

Standard full 
dose acqui-
sition time 
(min)

5 15 15 15 5 20 20

Dose reduc-
tion factor

2,4,10,20 2,4,10,20,50,100 2,4,10,20,50,100 2,4,10,20,50,100 2,4,10,20 2,4,10,20,50,100 2,4,10,20,50,100
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Evaluation based on physical metrics

To evaluate the quality of the enhanced images on all test 
datasets, we calculated and compared the physical metrics 
including the normalized root mean squared error (NRMSE) 
which measures the overall pixel-wise intensity deviation, 
peak signal-to-noise ratio (PSNR) as well as structural sim-
ilarity index measurement (SSIM) that reflects perceived 
image quality [42]. Differences between the AI-enhanced 
and non-AI-enhanced groups for NRMSE were assessed 
for statistical significance by means of the paired two-tailed 
t-test. Furthermore, to examine the level of difference of 
AI enhancement in a cross-scanner and cross-tracer setting, 
an unpaired two-tailed t-test was performed for NRMSE 

improvement (percentage error calculated between AI-
enhanced and non-AI-enhanced groups) on results from all 
three scanners and both included tracers. A p-value lower 
than 0.05 was considered statistically significant.

Clinical assessment for cross‑scanner application

For the cross-scanner assessment, the neurodegeneration 
cohorts imaged with  [18F]FDG (scanned with mCT n = 20 
and Vision n = 7) were assessed with NEUROSTAT/3D-
SSP [43] according to a standardized procedure used in 
everyday clinical practice, comparing each patient’s images 
with an age-matched healthy collective.

Fig. 1  An illustration of our 
proposed method, including 
data collection, neural network 
training, image enhancement, 
and final evaluation. The model 
was trained by mixing the 
image pairs of all DRF up to 
20 from DMI (GE, Discovery 
MI), and later tested on datasets 
from different scanners and 
tracers with DRF up to 100. We 
evaluated the results with physi-
cal metrics, clinical-relevant 
parameters, and with clinical 
assessment by two independent 
nuclear medicine physicians
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In a first step, the 3D-SSP results as well as com-
plete axial images (full-dose, AI-enhanced, and non-AI-
enhanced low-dose images from DRF 2 to 100) of each 
patient were directly visually compared with each other by 
two board-certified nuclear medicine physicians (A.R. and 
K.P.B.). Subsequently, the physicians determined at which 
DRF the AI-enhanced images started preserving a bet-
ter diagnostic value in comparison with non-AI-enhanced 
images and thus came closer to full-dose images. In a sec-
ond step, the two nuclear medicine physicians indepen-
dently assessed three subsets of the images of the neurode-
generation cohorts (full-dose, DRF = 50 with and without 
AI enhancement) as explained in the following passage. 
The DRF = 50 subset was chosen based on the results of 
the first step. The physicians were blinded regarding the 
source of the image (e.g., full-dose or DRF image) as well 
as patient clinical information.

The results from the 3D-SSP analysis were rated regard-
ing the visual hypometabolism compared to healthy controls 
in four regions (frontal, parietal, temporal lobe, and PCC), 
for each hemisphere on a four-point scale (0 = no hypome-
tabolism, 1 = little hypometabolism, 2 = medium hypome-
tabolism, 3 = strong hypometabolism). The results of the 
rating were also simplified to a binary scale (0 = no or little 
hypometabolism, 1 = medium or strong hypometabolism). 
The four-point scale and binary results of the rating were 
compared between the three subsets by the Friedman test 
(p < 0.05) for significant differences using SPSS Version 
25.0. In case of significant differences on the Friedman test, 
additional post hoc tests using Wilcoxon signed-rank test 
with Bonferroni adjustment were performed, with p < 0.017 
considered significant.

Clinical assessment for cross‑tracer application

For the cross-tracer assessment,  [18F]Florbetapir standard-
ized uptake value ratio (SUVR) maps were generated using 
the cerebellum gray matter as reference regions, for the 
purpose of visual assessment [44] by a nuclear medicine 
physician. As for the brain tumor cohorts (imaged with  [18F]
FDG and  [18F]FET), we measured clinical imaging param-
eters such as SUVmean, SUVmax, as well as the most rel-
evant radiomics features [45] described in literature within 
[46–55]. The lesions were delineated manually and reviewed 
by a board-certified nuclear medicine physician. The accu-
racy of the clinical imaging parameters and radiomics fea-
tures of the lesions were calculated in reference to full-dose 
images (percentage error). The results of the AI-enhanced 
and non-AI-enhanced groups were compared at all DRFs. 
More detailed information regarding feature selection and 
the analysis procedure can be found in the corresponding 
part of the Supplementary material.

Results

Physical metrics evaluation for cross‑scanner 
application

The customized c-GAN trained on  [18F]FDG images from DMI 
was tested on  [18F]FDG images on three different scanners. 
The results for NRMSE on  [18F]FDG imaging are shown in 
Figure 2. Figure 2A, B, and C showed that NRMSE improve-
ment using AI tended to increase with increasing DRF on all 
three scanners. Compared to non-AI-enhanced group, the AI-
enhanced group achieved statistically significant advantage for 
the paired t-test on DMI from DRF = 2 (p = 1.8E−6), on mCT 
from DRF = 10 (p = 4.5E−5), and on Vision from DRF = 
20 (p = 0.03). Additional results of PSNR and SSIM on  [18F]
FDG imaging on the three different scanners showed the same 
tendency as the NRMSE results (Supplementary Figure S2).

Figure  2D and E illustrated the improvement by AI 
enhancement referring to baseline image quality. The base-
line image quality (x-axis) was represented by the normalized 
dose acquisition (D), which is the injecting dose corrected for 
acquisition time and patient weight, and SSIM (E) of the non-
AI-enhanced images. The NRMSE improvement (y-axis) on 
low-dose images by using AI enhancement significantly nega-
tively correlated with the baseline image quality (normalized 
dose acquisition: r = −0.60, p = 3.6E−24 and SSIM: r = 
−0.71, p = 1.1E−37).

Figure 2A–E overall suggested that the benefits of AI 
increase with decreasing image quality and the image quality 
degradation of mCT and Vision was less affected by the dose 
reduction and was milder compared to DMI. The unpaired 
t-test results illustrated that the application of AI on different 
scanners achieved comparable results, although not as good as 
the trained scanner (DMI). For example, the NRMSE improve-
ment on mCT at DRF = 100 achieved the same level as in the 
case of DRF = 4 on DMI (p = 0.12). The level of improvement 
on Vision at DRF = 100 achieved the same level as in the case 
of DRF = 2 on DMI (p = 0.63).

The aforementioned points were also confirmed by the 
visual reading (Figure 3), namely that our model was able to 
enhance image quality on all three scanners, especially at high 
DRF. AI enhancement achieved overall good performance on 
DMI. As for the mCT data, AI enhancement started to show its 
advantages from DRF = 50, with the non-AI-enhanced images 
still maintaining good image quality under DRF = 50. The 
level of improvement on Vision was not as evident as on mCT.

Physical metrics evaluation for cross‑tracer 
application

The same trained c-GAN was tested on cross-tracer data 
from three different scanners. The results for NRMSE are 
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shown in Figure 2F–H. Compared to the non-AI-enhanced 
group, the AI-enhanced group achieved statistically sig-
nificant advantage for the paired t-test on  [18F]Florbetapir 
(DMI) from DRF = 2 (p = 0.03), on  [18F]FET (mCT) from 
DRF = 10 (p = 0.001), no significant advantage observed 
on  [18F]FET (Vision). Furthermore, the unpaired t-test 
results illustrated that there were no statistically significant 
differences between the application of AI to a different 
tracer with the same scanner. For example, the NRMSE 
improvement on  [18F]Florbetapir achieved almost the same 
level as  [18F]FDG (p = 0.6, DRF = 10; p = 0.8, DRF = 
20). Additional results of PSNR and SSIM on both tracers 
showed the same tendency as the NRMSE results (Sup-
plementary Figure S2).

The aforementioned points were also confirmed by 
the visual reading (Figure 4), namely that our model was 
able to enhance image quality for both  [18F]Florbetapir 
and  [18F]FET, especially at high DRF. AI enhancement 
achieved overall good performance on  [18F]Florbetapir. As 
for  [18F]FET, AI enhancement started to show its advan-
tages from DRF = 50 on mCT. The level of improvement 
on Vision was not as evident as on mCT.

Clinical assessment for cross‑scanner application

The comparison of the 3D-SSP data and the axial images of 
the neurodegeneration data for all available DRF showed an 
advantage of AI enhancement starting at DRF = 50 in most 

Fig. 2  Improvement with the help of the developed AI enhance-
ment in terms of NRMSE in a cross-scanner and cross-tracer setting. 
A–C Comparison of NRMSE between images with and without AI 
enhancement at different dose reduction factors (DRFs) for the  [18F]
FDG data from DMI (A GE, Discovery MI), mCT (B Siemens, Bio-
graph mCT) and Vision (C Siemens, Biograph Vision), respectively. 
The asterisk denotes the DRF, where the AI-enhanced group showed 
a significant advantage compared to the non-AI-enhanced group 

based on t-test results (p < 0.05). D–E Improvement of NRMSE with 
regard to the normalized dose acquisition correcting for acquisition 
time and patient weight (D) and SSIM (structural similarity index 
measurement) (E). F–H Comparison of NRMSE between images 
with and without AI enhancement at different DRFs for the  [18F]Flor-
betapir data from DMI (A GE, Discovery MI),  [18F]FET data from 
mCT (B Siemens, Biograph mCT), and Vision (C Siemens, Biograph 
Vision), respectively
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cases. This was mainly due to mCT data, which makes up 
the biggest part of the neurodegeneration group. For DRF 
= 50, non-AI-enhanced images tended to be more blurred 
and to overestimate the extent of pathology. For example, 
in Figure 5A, all 3D-SSP images showed a fairly stable pat-
tern of predominantly temporal bilateral hypometabolism, 
with a slight tendency of the non-AI-enhanced images to be 
more blurred. The corresponding axial images showed the 
disadvantages of the non-AI-enhanced images clearer, as they 
were overall more blurred, and as the areas of temporal hypo-
metabolism were harder to separate from the adjacent non-
affected areas, as well as basal ganglia being less demarcated. 
The increased tendency of non-enhanced images compared to 

AI-enhanced images to overestimate the extent of pathology 
can be seen in the frontal lobes in Figure 5B.

In some cases, the 3D-SSP results of the non-AI-
enhanced images even showed strong incorrect/artificial 
hypometabolism of some regions, which was not visible in 
the 3D-SSP results of the full-dose images. This is dem-
onstrated by Figure 5C, where non-AI-enhanced images 
showed bilateral frontal hypometabolism, which could not 
be seen on full-dose or AI-enhanced images. This erroneous 
frontal hypometabolism on non-AI-enhanced images was not 
visible for images under DRF = 50. More examples can be 
found in Supplementary Figure S6.

Fig. 3  Example of test results of  [18F]FDG imaging from DMI (GE Discovery MI), mCT (Siemens, Biograph mCT), and Vision (Siemens, Bio-
graph Vision)

1849European Journal of Nuclear Medicine and Molecular Imaging (2022) 49:1843–1856
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In contrast, the effect of AI enhancement was not as evi-
dent on data from Vision, being the scanner with the overall 
best imaging quality (Supplementary Figure S7).

On an additional inspection, AI enhancement performed 
best on data from DMI, with the advantage of AI being par-
ticularly evident in the case of high DRF or poor image qual-
ity. An exemplary case is shown in Supplementary Figure S8.

The rating of the 3D-SSP data also showed an over-
all advantage of AI enhancement. The Friedman test 
showed significant differences (p < 0.05) between the 
three assessed groups for rater 1 on the four-point scale 
(p = 0.017, χ2 8.133) and the binary scale (p = 0.002, 
χ2 12.133), whereas there were no significant differences 

for rater 2 (four-point scale p = 0.551, binary scale p = 
0.472). For rater 1, the following post hoc test showed 
significant differences between the full-dose and the DRF 
= 50 non-AI-enhanced groups (four-point scale p = 0.005, 
binary scale p = 0.013), and partly between the DRF = 
50 non-AI-enhanced and AI-enhanced groups (four-point 
scale p = 0.133, binary scale p = 0.004). No significant 
differences were found between the full-dose and DRF = 
50 AI-enhanced groups.

Clinical assessment for cross‑tracer application

Results of  [18F]Florbetapir dataset showed an overall advan-
tage of AI enhancement, especially starting from DRF 10. 

Fig. 4  Example of test results from DMI (GE Discovery MI) with  [18F]Florbetapir, mCT (Siemens, Biograph mCT), and Vision (Siemens, Bio-
graph Vision) with  [18F]FET
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The most noticeable improvement in image quality was 
observed with DRF 100, but some inconsistencies were 
observed compared to the full-dose images (Figure 6).

Regarding the brain tumor dataset, results of  [18F]FDG 
imaging from DMI suggested that the AI-enhanced images 
overall preserved an improved quality in terms of the 
selected features and the improvement tended to increase 
with higher DRF (Figure 7). Yet, none of the clinical fea-
tures of the  [18F]FET images benefited from the enhance-
ment (Supplementary Figure S5). Additional results of 
lesion segmentation and analysis can be found in Supple-
mentary Figures S4 and 5.

Discussions

A critical concern when using machine learning is its repro-
ducibility and extensibility to unknown complexity in real 
application [56]. Methods optimized in one cohort have been 
reported to have limited performance in other cohorts or 
other applications [57]. Despite the demonstrable potential 
of AI for PET dose reduction, the main challenge for its 
clinical translation for routine clinical use remains its ability 
to take the large complexity involved in molecular imaging 
into account, such as the variety of tracers, scanners, imag-
ing protocols, reconstruction settings, metabolic dynam-
ics, and so on [36, 37]. The strength of this study lies in its 
trustworthy design. The model, trained with data from one 
center was applied to data from different scanners, diseases, 
and tracers in another center. Our results demonstrated that 
the customized deep learning was able to synthesize images 
comparable to full-dose PET images from low-dose PET 
images with certain restrictions. The improved capability 
of cross-scanner and cross-tracer application can enhance 
the translational credibility of the AI methods in nuclear 
medicine, considering the diversity and rapid growth of new 
instruments and radiopharmaceuticals. Our study attempts to 
explore the translational potential of deep learning for low-
dose PET protocols in-depth and for moving a step toward 
clinical practice.

We included both digital and analog scanners for vari-
ability. The digital PET scanners were equipped with SiPM 
that enables higher efficiency and better TOF measurements, 
compared to conventional analog PET scanners [58, 59], 
which is a major source of variability of input image quality. 
Our results indicated that although our model was devel-
oped based on a digital scanner (DMI), AI tends to be more 
helpful when recovering from low-dose PET on an analog 
scanner (mCT). Considering the overall better properties 
of the digital scanner, e.g., producing images with higher 
spatial resolution and less noise or artifacts, less room for 
AI improvements seems to be left. Acquisition protocols 
including aspects of injected dose or acquisition time may 
also contribute to variability. As shown in Table 1 and Sup-
plementary Table S2, the two included centers follow dif-
ferent protocols each with respect to different local condi-
tions. As shown in Figure 2D, owing to longer acquisition 
time, the image quality degradation of mCT and Vision was 
less affected by the dose reduction compared to DMI, espe-
cially in the case of the SiPM-based digital scanner (Vision) 
as seen in Figure 2E. Therefore, we additionally obtained 
DRF = 50, 100 data from both Siemens scanners (mCT and 
Vision) to make the data more comparable. Additionally, 
image reconstruction was performed using manufacturer-
provided software with recommended parameters, which 
differ in several aspects such as iterations and subsets when 

Fig. 5  Example  [18F]FDG images of 3D-SSP results with global cor-
tex as reference region and corresponding axial slides for full-dose, 
non-AI-enhanced, and AI-enhanced images at DRF = 50 from mCT 
(Siemens, Biograph mCT). A Male, 59 years old, referred with Alz-
heimer’s disease and additional clinical signs of a frontal lobe disor-
der. B Male, 68 years old, referred with progressive word finding and 
memory difficulties, cerebrospinal fluid with pathological amyloid 
findings in favor of Alzheimer’s disease. Clinically inconclusive find-
ings (DDx Alzheimer’s dementia, frontotemporal dementia, vascular 
dementia, Lewy body dementia). C Male, 71 years old, referred with 
a suspicion of progressive supranuclear palsy
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performing iterative reconstruction with OSEM [60]. Algo-
rithms for physical corrections including attenuation and 
scatter corrections also vary between scanners. The recon-
struction procedures deliberately followed the vendors’ rec-
ommendations and were in line with normal clinical settings, 
in order to fairly assess the robustness of the proposed model 
in handling routine applications. Despite all the aforemen-
tioned variabilities in the cross-scanner application setting, 
the results demonstrated that our customized c-GAN was 
able to achieve a comparable level of enhancement regard-
ing image quality.

The clinical assessment overall showed AI to be advanta-
geous when applied to low-dose PET images. Although the 
clinical and physical evaluations were carried out indepen-
dently, the results were consistent with each other. Accord-
ingly, the clinical evaluation also showed that the positive 

effect of AI becomes greater with decreasing image quality 
as shown in Figures 3, 4, 5, and 6. As the clinical evaluation 
had a focus on DRF = 50 on the cross-scanner setting, the 
benefit of AI should be evaluated in a clinical setting with 
even higher DRFs. Nevertheless, it also remains unclear how 
AI enhancements will perform in a real clinical setting, in 
which the raters have further clinical information that they 
can use to interpret the images and come to a conclusion/
diagnosis. Therefore, it needs further assessment in a routine 
setting and within larger cohorts. Furthermore, it should be 
possible to significantly reduce the dose without a relevant 
impact on clinical assessment results or image quality, even 
without the use of AI, e.g., up to DRF = 20 on mCT data. 
However, we should also be aware of cases like the one in 
Figure 5C where the 3D-SSP results of the non-AI-enhanced 
images showed strong incorrect/artificial hypometabolism 

Fig. 6  Example  [18F]Florbetapir 
images of Alzheimer’s disease 
on DMI (GE, Discovery MI) 
for full-dose and different DRFs 
with or without AI enhance-
ment. Results showed that the 
enhanced images preserved an 
overall better image quality and 
that the improvement tended 
to increase with higher DRF, 
but some inconsistencies were 
observed compared to the full-
dose image
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for DRF = 50 which might lead to a false diagnosis in clini-
cal routine. In such a situation, information might have been 
affected during the 3D-SSP processing pipeline. Since the 
corresponding axial slices showed the same findings inde-
pendently of the 3D-SSP data, we can state that this was not 
the case. In summary, the clinical evaluations showed that 
AI is beneficial, especially in the cross-scanner application 
of AI enhancement on mCT data.

We employed imaging with the same radioisotope but 
different molecules for the tracer. AI overall performed 
well on  [18F]Florbetapir imaging of Alzheimer’s disease, 
since it was acquired from the same scanner as the train-
ing dataset (DMI). The improvement became more evident 
starting from DRF 10, while inevitably producing some 
artifacts at a higher reduction rate (100), which must be 
treated with caution when diagnosing. This fact may also 
be related to the highest DRF included in our training is only 
20. We observed that AI enhancement led to an increase in 

NRMSE for  [18F]FET imaging obtained from Vision (Fig-
ure 2H), which was most pronounced at low DRF. This can 
be explained that our current AI training may have limited 
performance when dealing with complicated situations, i.e., 
cross-scanner and cross-tracer at the same time. The large 
variability imposed in both cross-tracer and cross-scanner 
can place too much burden on the AI model trained with lim-
ited complexity. Future work of incorporating diverse train-
ing data may overcome the limitation and further improve 
the performance of AI.

Overall, some limitations of AI application and potential 
risks need to be considered. There might be some hidden 
problems associated with GAN technology in image syn-
thesis such as feature hallucination, where GANs may add 
or remove image features since the source and target domain 
distributions are paired data [61]. It is therefore important 
to recruit domain experts to further evaluate the resulting 
images, considering that physical indicators often fall into 

Fig. 7  Clinical features analysis 
on DMI (GE, Discovery MI) 
with  [18F]FDG. Results show 
that the enhanced images pre-
serve an overall better quality 
in terms of those features and 
that the improvement compared 
to non-enhanced data tends to 
increase with higher DRF
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this trap. Another limitation of this study is the inherent 
bias in the limited datasets and the inclusion of additional 
subjects may further improve the generalizability and robust-
ness of the developed model. Additionally, the low-dose 
images are simulated by reconstructions with shorter acqui-
sition time and do not originate from patients studied with 
reduced injection dose and reconstruction over the entire 
acquisition time. Our study trained a model on a dataset 
from one scanner and one tracer, which was not optimal for 
AI development. Nevertheless, our preliminary results con-
firmed the potential of our initial hypothesis, albeit in such a 
challenging cross-scanner and cross-tracer setup. This proof 
of concept can therefore support the design of more realistic 
studies in the future, by including a larger and heterogene-
ous dataset that is not limited by the center, scanner, tracer, 
disease, or body region. It would be also helpful to further 
develop algorithms directly based on high-level information 
extracted from PET raw data. In addition, multimodal meth-
ods for dose reduction may be of benefit. Finally, since CT 
is another major contributor to the total effective dose when 
performing PET/CT, it would be helpful to investigate deep 
learning methods for the dose reduction on CT imaging as 
well. However, this aspect might be more relevant in body 
PET/CT protocols, where CT is the main contributor to the 
effective dose whereas the used dose of the radiopharmaceu-
tical is the main contributor to brain PET/CT [62].

Conclusion

The deep learning approach developed for low-dose PET 
image enhancement had the potential to be applied on 
different scanners and tracers with certain limitations. 
The improvement of image quality by using AI tended 
to increase with decreasing image quality when applied 
on cross-scanner and cross-tracer data. When applying 
high DRFs in cross-tracer applications, potential artifacts 
must be treated with caution, especially when applied to 
radiomics feature analysis. Clinical evaluations suggested 
that using AI is advantageous, although further validation 
is needed, including in the context of clinical routine. It 
is reasonable to suggest training with more available data 
would further consolidate the capability of AI.
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