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Summary

In the recent years, artificial intelligence (AI) applications 
have gained interest in the field of cardiovascular medical 
imaging, including positron emission tomography (PET). 
The use of AI in cardiac PET imaging is to date limited, al-
though first, important results have been shown, overcom-
ing technical issues, improving diagnostic accuracy and 
providing prognostic information. In this review we aimed 
to summarize the state-of-the-art regarding AI applications 
in cardiovascular PET.

Introduction

In medical imaging, artificial intelligence (AI) is defined 
as the ability of a system to properly interpret (and learn 
from) external data, acquiring knowledge to achieve spe-
cific goals and tasks through flexible adaptation [1]. Most 
of the AI systems are analytical, being classified as ma-
chine- or deep-learning techniques. Machine learning is 
focused on studying algorithms able to learn and improve, 
creating models based on big datasets, and applying 
them to the unseen data through semi-supervised, super-
vised or unsupervised methods. Machine learning includes 
deep-learning techniques, with neural networks organised 
in multiple, progressive and subsequent related layers. 
Deep-learning approaches simultaneously learn relevant 
features and prediction models from input images without 
the need for the so-called “feature engineering” using more 
layers than traditional approaches, and are well suited for 
large, diverse, complex data and tasks (e.g, segmentation, 
classification). Radiomics is a machine-learning technique 
that aims to provide quantitative characteristics from dif-
ferent biomedical images that cannot be assessed by the 
human eye. Radiomics assumes that the smallest con-
stituents of images may include “features” related to a 
patient's outcome and response to therapy, reflecting the 
pathophysiological process and thus potentially supporting 
medical decisions. We can obtain features of several orders

and it is interesting how each of these may be related to
a precise meaning, as we can see in I order features con-
taining information on shape and statistics deriving from
the histogram describing the distribution of grey values in
the selected lesion or from II or higher orders features con-
taining information about the relationships between adja-
cent pixels. In figure 1 a schematic representation of ma-
chine and deep learning is displayed, with description of
the main I and II order radiomics features [1].

Recently, the use of AI has been extended to cardiovascu-
lar imaging techniques in order to identify novel markers
able to yield improved diagnostic performance and prog-
nostic value [2]. Among the different radiological pro-
cedures currently used in the evaluation of patients with
cardiac diseases (fig. 2), positron emission tomography
(PET) has attracted major interest in recent years because
of its superior diagnostic performance and ability to quan-
tify specific metabolic parameters. Also, the European As-
sociation of Nuclear Medicine (EANM) recently published
a position paper on the use of AI in cardiovascular nuclear
imaging [3].

Despite the potential benefits of implementing AI in clin-
ical practice (e.g., better clinical decisions, outcome pre-
diction or prognosis evaluation), some concerns have been
raised, mainly regarding the balance between AI and
physicians’ supervision, as well as ethical and legal issues.

To date, AI in cardiac PET/computed tomography (PET/
CT) imaging has shown utility in three main areas of inter-
est: automation of image detection and segmentation, iden-
tification of patients with obstructive coronary artery dis-
ease (CAD) and risk assessment [4].

In the present review, we aim to summarise the current
state of the art regarding AI models applied to cardiac PET
images. In figure 3 we illustrate the main processes of AI
algorithm used for cardiovascular imaging based on ma-
chine learning (A) and deep laerning (B).
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Material and methods

A comprehensive literature search strategy using PubMed
database was used to look for articles on the role of AI
in cardiovascular PET imaging. The string used for the
search included a combination of the terms: ‘artificial in-
telligence” or “machine learning” or “neural network” or
“deep learning” and “cardiac PET” or “cardiac positron
emission tomography”. The search was updated up to Au-
gust 2021, including only original papers published in
English. The references of the retrieved articles were also
checked so as not to miss important clinical studies. Re-
view articles, articles not in the field of interest and com-
mentaries were excluded. Papers on future perspectives in
the field and experimental data were also considered eli-
gible. Three researchers (CEP, RL and FC) independently
reviewed the titles and the abstracts of the retrieved liter-
ature, selecting relevant articles according to the inclusion
criteria mentioned above. Disagreements were resolved in
a consensus meeting.

Clinical applications of AI in PET/CT myocar-
dial Imaging

The results of the main PET studies described are dis-
played in table 1.

[13N]-ammonia perfusion imaging

Research in the field of myocardial perfusion imaging has
focused on AI applications based on the integration of clin-
ical and radiological data to identify patients at increased
risk of cardiac events.

A first attempt to train a machine-laerning model was
made by Juarez-Orozco et al. using nitrogen-13 [13N] Am-
monia PET (this tracer was chosen in view of its excellent
diagnostic performance in CAD). The authors investigated
the prediction of myocardial ischaemia and the occurrence

of major adverse cardiac events (MACE) based on global
myocardial flow reserve <2.0. Sixteen variables were ex-
tracted by machine learning for model creation and showed
that resting heart rate, systolic blood pressure, stress left
ventricular ejection fraction and age were the most predic-
tive variables within the analysis, consistent with similar
reports based on standard statistics. Data were also test-
ed by adding risk model variables for both PET-defined la-
bels, as provided by the guidelines of the European Society
of Cardiology (ESC). This resulted in a further improve-
ment in diagnostic performance [5].

Similar results were reported by Dey et al. [6], who also
implemented data from computed tomography-based coro-
nary angiography (CCTA) in their machine-learning mod-
el. The aim of their study was to investigate the incre-
mental value of quantitative features of coronary plaques
on CCTA over myocardial flow reserve as measured with
PET. The authors used ensemble boosting, which is ex-
pected to yield high performance of classification by com-
bining individual classifiers, each of which has iteratively
adjusted weights. As main results the authors observed a
significant correlation between coronary artery non-calci-
fied plaque burden in CCTA and impaired myocardial flow
reserve of the corresponding vascular territory.

In a more recent retrospective study, 88 patients with sus-
pected obstructive CAD were referred for [13N]-Ammonia
myocardial perfusion PET/CT and [18F]-fluorodeoxyglu-
cose myocardial metabolic PET/CT (18F-FDG PET/CT).
The semi-quantitative indicator summed rest score (SRS)
and five quantitative indicators, namely perfusion defect
extent, total perfusion deficit, myocardial blood flow, scar
degree and metabolism-perfusion mismatch were com-
bined with seven ML algorithms to derive the opti-
mum combination model and classification method. The
authors concluded that perfusion combined with metab-
olism as well as a multivariate model (scar degree, my-
ocardial blood flow and metabolism-perfusion mismatch)

Figure 1: Schematic representation of machine and deep learning with the main I and II order radiomics features.
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combined with a support vector machine reached better ac-
curacy (area under the curve [AUC] 0.897) in the diagnosis
of obstructive CAD [7].

Rubidium-82 perfusion imaging

Rubidium-82 (82Rb) is a potassium analogue widely used
as a perfusion tracer in myocardial PET in those centres
where a cyclotron is not available. 82Rb is eluted from a

generator and is used mostlywith pharmacological stress
due to its short half-life (t½ 78 seconds) requiring that the
patient be scanned simultaneously with or shortly after the
tracer injection. For 82Rb, there are also attempts, reported
in the literature, to improve the diagnostic and prognostic
value by adding additional variables extracted by AI algo-
rithms. A new patch-based artificial neural network (ANN)
fusion approach that integrates information from the ma-

Figure 2: Potential roles of AI in cardiac imaging. Depiction of an exemplary PET/CT case. Male with non-significant atherosclerosis in the left
circumflex artery and overall preserved perfusion reserve in which deep learning-based processing of PET myocardial blood flow polar maps
automatically suggested a low risk of events with a 1–2-year horizon. Transparency on the workflows represents AI implementations that were
not used in this particular example, namely automatic calcium score quantification, CTA (FFR) analysis and ICA analysis. AI: artificial intelli-
gence; Ca: calcium; CAD: coronary artery disease; CTA: computed tomography angiography; ICA: invasive coronary angiography: MACE:
major adverse cardiovascular events; PET: positron emission tomography. Reprinted under a Creative Commons Attribution 4.0 International
License from [3]. No changes were made.
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chine laerning and the post-smoothed machine laerning re-
construction was proposed by Wang et al. [8] to improve
myocardial perfusion PET imaging quality. Using an
XCAT phantom, the authors simulated three PET imaging
cases, one with normal perfusion and the other two with
non-transmural and transmural regionally reduced perfu-

sion in the left ventricle, respectively. The ANN fusion
technique significantly improved the detectability of both
the non-transmural and transmural defect. Moreover, the
authors concluded that, compared with the post-smoothed
ML reconstruction, the ANN fusion improved the lesion-

Figure 3: Exemplary summary of the main articiaL intelligence algorithms (A) machine-learning and (B) deep-learning. SVM: support vector
machines; KNN: k-Nearest Neighbours, a supervised algorithm; CAD: coronary artery disease.

Table 1:
Main clinical AI applications in PET images.

First au-
thor

Year Tracer Clinical scenario Conclusion and relevance

Juarez-
Orozco [5]

2020 [13N]ammonia Identification of patients with myocardial ischaemia
or high risk of MACE

ML is feasible and applicable in quantitative PET imaging for the identification of pa-
tients with an elevated risk of MACE who will present myocardial ischaemia

Dey D [6] 2015 [13N]-ammo-
nia

Relationship of quantitative plaque features from
CCTA and coronary vascular dysfunction by im-
paired MFR by 13N-ammonia PET

Combining data of quantitative stenosis and plaque burden as assessed by CT angiog-
raphy significantly improves identification of downstream regional vascular dysfunction

Wang F[7] 2020 [13N]-ammo-
nia and [18F]-
FDG

Evaluation of the diagnostic value of both PET my-
ocardial perfusion and metabolic imaging for vascu-
lar stenosis in patients with suspected obstructive
CAD

Perfusion combined with metabolism as well as a multivariate model (SCR, MBF, and
MIS) combined with a support vector machine yields improved accuracy in the diagno-
sis of obstructive CAD compared with perfusion information only

Wang X[8] 2020 [82Rb] Investigation of a patch-based ANN fusion approach
that integrates information from the ML and the
post-smoothed ML reconstruction in improving MPI
quality

The ANN fusion technique significantly improved the defect detectability of both non-
transmural and transmural defects. Moreover, compared with the post-smoothed ML
reconstruction, the ANN fusion improved the lesion-to-background ratio while reducing
noise

Shi L [9] 2021 [82Rb] Evaluation of an automatic (DeepMC) method for
dynamic cardiac PET in improving motion correction

DeepMC showed superior performance compared with conventional registration-based
methods in terms of motion estimation and MBF quantification accuracy

Togo R[10] 2019 [18F]-FDG Determination of whether DCNN-based features can
depict the difference between CS and non-CS using
polar maps

The DCNN-based high-level features may be more effective than low-level features
used in conventional quantitative analysis methods for CS classification

Ladefoged
CN [11]

2021 [18F]-FDG Investigate a common DL network for noise reduc-
tion in low-dose PET images and its accuracy to de-
termine cardiac viability in patients with CAD

A significant dose reduction of 1–10% can be achieved for [18F]FDG PET/CT in the
setting of cardiac viability testing, without significant loss of diagnostic accuracy when
using a common DL network model for noise reduction

Kolossváry
M [12]

2019 [18F]-NaF Identification of invasive and radionuclide imaging
markers of coronary plaque vulnerability using ra-
diomics analysis of CCTA

CCTA radiomics identified invasive and radionuclide imaging markers of plaque vulner-
ability with good to excellent diagnostic accuracy, outperforming conventional quantita-
tive and qualitative high-risk plaque features

Kwiecinski
J [13]

2021 [18F]-NaF Evaluation of a ML model for the prediction of my-
ocardial infarction in patients with stable coronary
disease undergoing [18F]NaF PET/CCTA

Both [18F]NaF uptake and quantitative plaque analysis measures are additive and
strong predictors of outcome in patients with established CAD. Optimal risk stratifica-
tion can be achieved by combining clinical data with these approaches in a ML model.

Santarelli
MF [14]

2021 [18F]-flor-
betaben

Investigation of the potential of DL tools for identify-
ing CA from early PET images

A deep convolutional neural network (CAclassNet) model seems very promising as an
aid for the clinician in the diagnosis of CA from cardiac 18F-florbetaben PET images

MACE: major adverse cardiovascular events; ML: machine learning; PET: positron emission tomography; CCTA: coronary computed tomography angiography; MFR: myocardial
flow reserve; CAD: coronary artery disease; SCR: scar degree; MBF: myocardial blood flow; MIS: metabolism-perfusion mismatch; ANN: artificial neural network; MPI: myocardial
perfusion imaging; CAC: coronary artery calcium; CVD: cardiovascular disease; CTAC: computed tomography attenuation correction; CSCT: calcium scoring CT; DCNN: deep
convolutional neural network; CS: cardiac sarcoidosis; CA: cardiac amyloidosis; DL: deep learning; DeepMC: deep learning-based motion correction; 13NH: (Nitrogen-13)- ammo-
nia; Rb: Rubidium; FDG: Fluorodeoxyglucose; NaF: Sodium Fluoride
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to-background ratio while reducing noise, indicating its
potential clinical application in PET imaging.

Besides the important role of perfusion imaging in 82Rb
PET/CT, the simultaneous acquisition of CT with the cal-
culation of the calcium score is important for the prognos-
tic assessment in CAD. Išgum et al. [15] and Dekker et al.
[16] showed that a calcium score automatically measured
during 82Rb PET/CT can increase the detection rate of ob-
structive CAD in patients without any history of revascu-
larisation. Also, the implementation of automatically cal-
culated calcium score resulted in an increase of the
diagnostic accuracy by 4% in CAD. [16].

Patient motion is a potential drawback in 82Rb PET imag-
ing, as it may impair the absolute myocardial blood
flow quantification. To improve the motion correction, Shi
et al. [9] developed an automatic DL-based motion correc-
tion (DeepMC) method for dynamic cardiac PET featur-
ing 1 million samples based on 65 patient scans in training
and 600 samples based on 20 patient scans. The authors re-
ported superior performance of their method over conven-
tional registration-based methods with regard to myocar-
dial blood flow quantification. However, the low number
of patients and the lack of a realistic patient motion was a
limitation of the study, hence the real clinical value still has
to be confirmed in future studies.

[18F]-fluorodeoxyglucose metabolic imaging

Another possible AI application in cardiovascular molec-
ular imaging is [18F]-FDG PET/CT, an imaging modality
assessing myocardial glucose metabolism both in viability
studies and for the imaging of infection and inflammation.

Specifically, the assessment of cardiac involvement in sys-
temic sarcoidosis relies on [18F]-FDG cardiac PET/CT,
which proved to be reliable both in the diagnosis and
in evaluation of the response to therapy [17]. However, the
interpretation of [18F]-FDG PET/CT images relies mostly
on visual analysis and thus, a quantitative method based
on a deep convolutional neural network would be warrant-
ed.

A pre-trained Inception-v3 network model, which is one
of GoogLeNet models trained for object recognition tasks,
was tested in this scenario, extracting and selecting fea-
tures from polar maps obtained from PET/CT data. Such
features were then classified using support vector ma-
chines as “cardiac sarcoidosis” or “non-cardiac sarcoido-
sis”, yielding sensitivity and specificity of 83.9% and
87.0%, respectively [10].

Besides application in clinical practice, the use of AI in
[18F]-FDG PET/CT is also expected to reduce technical is-
sues such as uncertainties in image reconstruction and ad-
ministered radioactivity.

Widely adopted reconstruction algorithms, such as ordered
subset expectation maximization [18] may lead to inaccu-
rate results in the case of poor counts statistics. Therefore,
a method able to compensate for the loss of image qual-
ity may be of great importance, and may also reduce the
radioactivity dose. A stacked sparse auto-encoder-based
reconstruction framework for dynamic PET imaging was
proposed, wherein the dynamic reconstruction problem
was formulated in a DL representation. The encoding lay-
ers extracted the prototype features, such as edges, so that

the reconstructed results were obtained through a combina-
tion of those features [19]. With these advantages, a signif-
icant dose reduction of 1–10% can be achieved for [18F]-
FDG PET/CT in the setting of cardiac viability testing,
without significant loss of diagnostic accuracy, when using
a common deep-learning network model for noise reduc-
tion [11].

Imaging of vulnerable plaques: [18F]-sodium fluoride

[18F-]sodium fluoride ([18F]-NaF) PET coupled with CT-
coronary angiography (CCTA)-based quantitative plaque
analysis represents a valid tool to assess risk in patients
with CAD [20].

Augmented-PET noninvasive techniques might provide
the opportunity to identify vulnerable plaques and patients
in broad populations. However, today few articles with
specific AI applications on PET images are available. The
study of Kolossváry et al. [12], despite a low number of pa-
tients (n = 25), aimed to assess whether radiomics analysis
outperforms conventional assessment of CCTA images to
identify invasive and [18F]-Na-F PET radionuclide imag-
ing markers of plaque vulnerability. CCTA radiomics iden-
tified invasive and radionuclide imaging markers of plaque
vulnerability with good to excellent diagnostic accuracy,
significantly outperforming conventional quantitative and
qualitative high-risk plaque features.

Kwiecinski et al. [13] developed a machine-learning model
for prediction of the future risk of myocardial infarction in
patients with stable CAD undergoing [18F]-NaF PET/CC-
TA. The machine learning included clinical data, CT quan-
titative plaque analysis measures and [18F]-NaF PET find-
ings of 293 subjects. In their model, quantitative plaque
analysis-based outperformed clinical data, but even more
interestingly, if all available data were included in the mod-
el, a substantial diagnostic improvement was achieved (c-
statistic 0.85, 95% confidence interval 0.79–0.91). As
such, the combination of various parameters is likely to
yield the best clinical value in predicting myocardial in-
farction, similarly to what had been already reported in the
literature in the usual analyses not featuring AI.

Amyloid imaging: [18F]-florbetaben

In a sample of 47 subjects (13 with transthyretin-related
amyloidosis – ATTR – cardiac amyloidosis, 15 patients
with immunoglobulin light-chain – AL – amyloidosis, and
19 control patients), Santarelli et al. [14] investigated the
potential of deep-learning tools for identifying cardiac
amyloidosis from PET images acquired as early as 15 min-
utes after [18F]-florbetaben tracer injection. They designed
a deep convolutional neural network (CAclassNet) consist-
ing of five 2D convolutional layers, three fully connect-
ed layers and a final classifier returning scores for each of
the subgroups. Applyication of this neural network result-
ed in good diagnostic performance, with an accuracy of
93.6% for the diagnosis of ATTR amyloidosis and 97.2%
for the identification of AL amyloidosis. While their re-
sults showed promise, the low number of subjects involved
requires further investigation to assess the real clinical po-
tential.
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Discussion

Artificial intelligence in medical imaging has gained in-
creasing interest in the recent years and new applications
in cardiovascular imaging, including PET, have been test-
ed. However, although many optimistic announcements
were made, many of the predicted advantages are still far
from coming to fruition in clinical practice, partly due to
the large amount of unpredictability, raising doubts on the
practicability even in the mid-term [21].

The aim of AI algorithms would be to perform tasks that
are hardly feasible for humans given the high amount of
data involved. Alternatively, AI may simply facilitate
physicians’ tasks in order to save time, thus streamlining
patients' care. As a matter of fact, in recent years, user-
friendly AI software packages have been made available
and have been introduced in the medical research environ-
ment [22]. In the field of PET imaging, there is also great
interest in new applications of AI, although the number of
possible applications is to date very limited.

From the analysis of the literature, AI in cardiovascular
PET imaging has been mainly tested in overcoming tech-
nical issues such as reconstruction and dose reduction, and
for the diagnostic and prognostic assessment of patients
with CAD and cardiac sarcoidosis. Therefore, on one hand
there is enough room for further applications, but on the
other, there are growing uncertainties as to whether this
approach can really provide advantages over the current
methods [4]. In fact, some major drawbacks should be
mentioned and need to be overcome to secure the role of
AI in cardiac PET imaging. (1) The appropriate balance
between fully autonomous AI and physician supervision
should be clarified; what can a machine do without the
need for human supervision? Or in other words, how much
can a doctor be confident in the results provided by a fully
automated method? (2) Ethical aspects should be consid-
ered, as recently reported [23]. (3) Legal aspects should al-
so be a matter of concern, especially with regard to privacy
and the lack of firm and universal agreement on the legal
basis for the use of data. Not less important, the risk of po-
tential threats from hacker attacks both during training and
use of AI algorithms should be considered.

Despite these major concerns, the use of AI may improve
patients' care in many different scenarios, starting from the
semi-automatisation of a part of medical work from the
technical aspect of image preparation, through image in-
terpretation, calculation of additional factors based on data
obtained during scanning, to prognosis prediction and risk-
group selection [1]. In our opinion, the most important ad-
vantage empowered by AI in cardiac PET imaging may be
the invaluable chance to expand on the prognostic value of
myocardial perfusion imaging, which has already secured
a pivotal role of these techniques in the management of
patients with CAD. This may lead to better clinical deci-
sions, thus optimising the therapeutic approach in selected
patients.

In this sense, deep learning as a building block of AI-
based support systems may have clinical value, not limited
to PET imaging but translatable to other modalities, on
the basis of the encouraging primary results in quantitative
myocardial perfusion PET and in the identification of pa-
tients who developed MACE [4].

What should we expect then? The most conceivable sce-
nario seems to be a gradual process, through the creation of
big datasets, in which AI tools are progressively integrated
into clinical practice. At the end of the path, medical doc-
tors will probably play a role as supervisors of automati-
cally generated data, in view of their capability to integrate
data based on their clinical experience. Once this technol-
ogy becomes standard in clinical routine, guidelines will
need to be developed in order to standardise broad appli-
cations of AI in medicine. Consistent with this hypothesis,
AI would be a helpful tool to systematise the interpretation
process, which will be, however, supervised by medical
imaging doctors by integrating information coming from
automatic and visual assessment.

Conclusion

The use of AI in cardiac PET imaging is to date limited,
although first, important results have been shown. To date,
the small number of studies in the literature and thoughtful
drawbacks limit the wide implementation of such methods
in clinical practice. Consideration of these limitations is a
prerequisite to providing an efficient approach to improve
AI research, facilitating the interpretation of medical imag-
ing.
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