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Abstract
The identification of chemical–protein interactions described in the literature is an important task with applications in drug design, precision 
medicine and biotechnology. Manual extraction of such relationships from the biomedical literature is costly and often prohibitively time-
consuming. The BioCreative VII DrugProt shared task provides a benchmark for methods for the automated extraction of chemical–protein 
relations from scientific text. Here we describe our contribution to the shared task and report on the achieved results. We define the task as a 
relation classification problem, which we approach with pretrained transformer language models. Upon this basic architecture, we experiment 
with utilizing textual and embedded side information from knowledge bases as well as additional training data to improve extraction performance. 
We perform a comprehensive evaluation of the proposed model and the individual extensions including an extensive hyperparameter search 
leading to 2647 different runs. We find that ensembling and choosing the right pretrained language model are crucial for optimal performance, 
whereas adding additional data and embedded side information did not improve results. Our best model is based on an ensemble of 10 pre-
trained transformers and additional textual descriptions of chemicals taken from the Comparative Toxicogenomics Database. The model reaches 
an F1 score of 79.73% on the hidden DrugProt test set and achieves the first rank out of 107 submitted runs in the official evaluation.
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Introduction
With the rapid growth of biomedical literature, it is becoming 
increasingly difficult to obtain comprehensive information on 
any entity, such as a specific gene or drug, by only reading. 
Important aspects of biomedical entities are their interac-
tions with other biomedical concepts. This is especially true 
for the relations between drugs and proteins, which are of 
high importance in various applications such as drug discov-
ery (1), precision medicine (2) and curation of biomedical 
databases (3). Manual extraction of such relationships from 
the biomedical literature is costly and often prohibitively time-
consuming. As an alternative, information extraction can help 
to automatically identify these relationships at a large scale 
and make them more readily accessible. Accordingly, extract-
ing (biomedical) relationships from text has been investigated 
intensely over the last two decades (4). These methods gen-
erally employed hand-crafted features based on lexical or 
syntactic information (5), kernel-based learning (6) or vari-
ous forms of neural networks (7). Moreover, combinations of 
the approaches have been applied (8).

Most recently, a variety of methods employed pretrained 
(transformer-based) language models and achieved new

state-of-the-art performance across several domains and infor-
mation extraction tasks (9, 10). The language models are 
trained without supervision on large unlabeled text corpora 
(e.g. Wikipedia articles or PubMed abstracts) first and then 
fine-tuned to one (or more) target tasks, e.g. named entity 
recognition (11), relation extraction (10) or question answer-
ing (12). A body of work has addressed the assessment of such 
language models on biomedical texts and made their models 
publicly available for further research (10, 13).

One of the challenges of machine and deep learning 
based models is that they typically require large amounts of 
labeled data (14). However, in some specific domains, e.g. in 
biomedicine or materials science, the amount of labeled data 
available is low and precisely annotating texts is difficult, 
since this requires expert knowledge and a lot of time (15). 
In order to address this problem, a plethora of approaches 
explored methods of enriching and augmenting the little data 
available (16–18). Recent studies explore different transfor-
mations of existing instances without changing their label, 
e.g. via synonym replacement (16), switching (uninformative) 
words (18) or back-translation (17), to build additional train-
ing data. For instance, Wang and Henao (17) use pretrained 
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machine translation models for generating paraphrased sen-
tences to improve named entity recognition models in low-
resource settings. Wei and Zou (16) replace words with one 
of their synonyms retrieved from a thesaurus (e.g. WordNet). 
Kobayashi (19) substitutes words with words predicted by 
a language model at this position. Moreover, researchers 
experimented with incorporating additional side information 
from domain-specific knowledge bases (KBs) to enhance their 
models (20, 21). For example, Vashishth (20) propose a dis-
tantly supervised method, which applies Graph Convolution 
Networks to encode syntactic information from text and uti-
lizes additional KB data for improved relation extraction. Xu 
and Barbosa (21) describes a framework for joint training 
of heterogeneous representations of text and from facts in a 
database using KB embeddings (KBEs).

A common use case for relation extraction models is KB 
population (KBP), in which the model is used to extract rela-
tions from a large collection of texts (7, 22–25). Then, the 
resulting relations are added to a KB, possibly after undergo-
ing manual curation or automatic plausibility checking. For 
instance, Ernst et al. (26) introduce KnowLife, a large KB 
for health and life sciences, automatically constructed from 
scientific publications, health portals and online communi-
ties using a small number of seed facts in a pattern-based, 
distantly supervised approach (27). Moreover, they use con-
fidence statistics and logical reasoning for consistency con-
straint checking to achieve high precision of the identified rela-
tions. Singhal et al. (28) propose a machine learning approach 
to curate a biomedical KB for precision medicine via extract-
ing disease-gene-variant triplets from biomedical literature. In 
contrast, Weber et al. (7) combine deep language models and 
distant supervision for identifying functional protein–protein 
associations as well as text spans stating the associations in the 
literature. An expert evaluation highlights that the approach is 
able to extract protein–protein relations that are missing from 
major pathway databases.

Since 2003, the BioCreative initiative organizes challenges 
to foster the development and evaluation of text-mining 
approaches in the biomedical domain. In 2016, they hosted a 
first shared task on chemical–protein relation extraction (29). 
Track 1 (DrugProt) of the 2021 BioCreative VII challenge (30) 
explores the recognition of chemical–protein relations in sci-
entific abstracts. The organizers compiled a manually anno-
tated corpus of abstracts labeled with all chemicals and 
gene/protein mentions as well as binary relationships between 
them, categorized into 13 different types of interactions. Par-
ticipants of the challenge were asked to develop methods 
which, given the abstract text and annotations of the men-
tioned chemicals and proteins, detect all binary relations and 
their type.

In this paper, we describe our contribution to this challenge. 
We define the task as a sentence-level relation classification 
problem, i.e. given a sentence and all chemical–protein pairs 
mentioned in it, for each pair to predict the type of relation-
ship they are in (or ‘no’ as a special type). Our approach is 
based on pretrained transformer-based language models. We 
investigate the extension of this relation-classification baseline 
model by adding textual and embedded side information from 
biomedical KBs. Moreover, we explore the effect of increasing 
the size of training data by using an additional gold stan-
dard corpus as well as generating paraphrased instances via 
back-translation. We perform a comprehensive evaluation of 
the proposed model and the individual extensions including 

Table 1. Document, entity and relation statistics of the DrugProt data set.

Train Dev Test

Abstracts/Passages 3500 750 750
Chemicals 46,274 9853 9434
Genes/Proteins 43,255 9005 9515
Total 89,529 18,858 18,949
Activator 1428 246 334
Agonist 658 131 101
Agonist-Activator 29 10 0
Agonist-Inhibitor 13 2 3
Antagonist 972 218 154
Direct-Regulator 2247 458 429
Indirect-Downregulator 1329 332 304
Indirect-Upregulator 1378 302 277
Inhibitor 5388 1150 1051
Part-Of 885 257 228
Product-Of 920 158 181
Substrate 2003 494 419
Substrate_Product-Of 24 3 10
Total 17,274 3761 3491

an extensive hyperparameter search leading to 2647 different 
runs. 

Our best model is based on an ensemble of 10 pretrained 
transformers and additional textual definitions of chemi-
cals taken from the Comparative Toxicogenomics Database 
(CTD) database. The model achieves an F1 score of 79.73% 
on the hidden DrugProt test set and achieves the first rank 
out of 107 submitted runs in the official shared task eval-
uation. Furthermore, our experimental results highlight the 
necessity of extensive hyperparameter tuning to reach state-
of-the-art extraction performance. Our code and model are 
publicly available (https://github.com/leonweber/drugprot).

Materials and methods
Task and datasets
For the DrugProt shared task (30), the organizers provided a 
data set of 4250 PubMed abstracts with gold standard anno-
tations for gene/protein and chemical mentions, as well as 
for relations between them. The goal of the shared task was 
to use these abstracts to build a system that can accurately 
detect and classify chemical–protein relations in biomedical 
text. The participating systems were evaluated on another set 
of 750 abstracts for which gene/protein and chemical men-
tions were provided but the chemical–protein relations were 
hidden to ensure a fair evaluation. Chemical–protein relations 
are labeled with one or more of 12 relation classes. Detailed 
data set statistics can be found in Table 1.

We experiment with multiple model modifications which 
require linking the entity mentions to reference ontolo-
gies. We link mentions of chemicals to the CTD chemical 
vocabulary (http://ctdbase.org) (31), which provides Medical 
Subject Headings (https://www.nlm.nih.gov/mesh/meshhome.
html) unique identifiers, while we link mentions tagged as 
genes/proteins to the National Center for Biotechnology Infor-
mation Gene database (https://www.ncbi.nlm.nih.gov/gene) 
(32). To perform the normalization, we employ BioSyn 
(33): a state-of-the-art dense neural retrieval model using 
BioBERT (10) as the backbone pretrained language model. 
We train a normalization model for chemicals on the entire 
BioCreative V CDR (BC5CDR) dataset (34) (train+dev+test) 
and on BioCreative II Gene Normalization (BC2GN) (35) 
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Figure 1. Overview of our base model and all evaluated extensions. Solid lines indicate the components of the base model, whereas dashed lines 
indicate evaluated extensions. We create one input example per chemical–protein pair in each sentence and mark the pair with special tokens. This 
sentence is embedded with a pretrained language model. Finally, the embedding of the [CLS] special token is passed through an output layer. As 
pretrained language model, we use RoBERTa-large-p.m.-M3-Voc in our base model and evaluate replacing it with four other variants. Textual 
information is appended to the input text, and KBEs are concatenated with the [CLS] embedding.

(train+test) (as provided by (36)) for proteins. We use the 
author’s original implementation (https://github.com/dmis-
lab/BioSyn) and train the models for 20 epochs with the Adam 
optimizer (37). For all other hyperparameters we use the val-
ues suggested by BioSyn authors. At inference time, the models 
encode both all names in the given ontology and the mentions 
to be normalized in an embedding space and select the can-
didate with the highest inner product score for each mention. 
An estimate of the accuracy of these models can be found in 
(36), who find that the model achieves 83.8% accuracy for 
unseen chemicals and 85.5% for unseen genes when trained 
on a subset of our training data.

Base model
We now report the evaluated model configurations by first 
outlining the baseline and then describing all tested modifica-
tions. We highlight the hyperparameters and modifications of 
the best performing model (as measured in F1 on the DrugProt 
test set) in bold.

We frame chemical–protein relation extraction as a mul-
tilabel relation classification problem, which we approach 
by finetuning pretrained transformers. More specifically, we 
generate one training/testing example per pair of entities 
that occur together in the same sentence. We insert the spe-
cial tokens [CLS], [HEAD-S], [HEAD-E], [TAIL-S] and
[TAIL-E] into the sentence, where [CLS] is the classifica-
tion token prepended to the sentence and the other four mark 
beginning and end of the chemical (head) and protein (tail) 
entities, respectively. See Figure 1 for an example. We also 
experiment with masking the head and tail entities by replac-
ing them with HEAD and TAIL to prevent the model from 
associating specific pairs with relations without taking the 
context into account. Then, we use a pretrained transformer 
to obtain a contextualized embedding hi of every token in the 

sentence and represent the sentence by using the embedding 
of the [CLS] token.

Finally, we apply a linear layer that maps the sentence 
representation to the logits, which are then normalized with 
a sigmoid nonlinearity. To compute the loss we use binary 
cross entropy. We optimize our model using Adam (37) with 
a learning rate schedule in which the learning rate is linearly 
increased from zero to the target learning rate during the first 
10% of training steps and then linearly decayed to zero for the 
remaining 90%. We explored the following hyperparameters 
for the base model:

• learning rate: {5e-6, 3e-5, 5e-5}
• epochs: {3, 5, 10}
• maximum sequence length: 256
• batch size: {8, 16, 32}
• Language models: PubMed-BERT-abstracts and PubMed-

BERT-abstracts-full-
text (13), BioBERT-v1.1 (10), BioMED RoBERTa (38) 
and RoBERTa-large-PM-M3-Voc (39).

• Entity masking: {true, false}

Textual side information
We conjectured that enriching the input with information that 
augments the sentence context might lead to a more accurate 
model, for instance that a chemical is known to act as an ago-
nist for a certain class of proteins or that a protein belongs to a 
specific protein family. To this end, we experiment with differ-
ent additional textual information concerning chemicals and 
proteins gathered from different KBs. That is, for an exam-
ple in which the chemical c and the protein p are marked 
as head and tail, respectively, we queried a database for tex-
tual information on c, p and appended this information to 
the input. See Figure 1 for an example. In cases where this 
led to a number of tokens exceeding the maximum sequence 
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length, we first truncated the side information before trun-
cating the input sentence. When the query for chemical side 
information did not yield any results, we instead searched for 
side information on the chemical’s parent in the hierarchy of 
the CTD database’s (31) chemicals vocabulary (http://ctdbase.
org/reports/CTD_chemicals.csv.gz). Specifically, we explored 
the following choices for textual side information:

• Chemical Definition: The first sentence of the
Definition field from the CTD’s chemicals vocabulary

• Chemical Pharmacodynamics: The Pharmacodyna-
mics field of the DrugBank database (40)

• Chemical General function: The General function
field of the DrugBank database

• Chemical Specific function: The Specific function
field of the DrugBank database

• Protein function: The function field of the UniProt 
database (41)

Embedded side information
In addition to the textual side information, we also eval-
uate entity embeddings trained via KBE methods, as they 
are capable of encoding topological information of KBs into 
dense vectors that can be used to infer relations between 
entities in the KB (42). For this, we experimented with 
multiple KBE methods trained on a graph representing 
the chemical–protein interactions in CTD (http://ctdbase.org/
reports/CTD_chem_gene_ixns.csv.gz). We trained the models 
with the Deep Graph Library Knowledge Graph Embeddings 
library (43), optimizing the hyperparameters of embedding 
size ∈ {200,400,600,800,1000}, batch size ∈ {128,256} and 
number of random negative samples ∈ {50,100,200} on a 
development split of the KB. Given an example with chem-
ical c and protein p, we concatenate the corresponding KBEs 
ec and ep and feed them through a two-layer Multilayer Per-
ceptron: ℎ𝑒 = Dropout(𝑊2Dropout(ReLU(𝑊1(𝑒𝑐 ∘ 𝑒𝑝)))),
where ReLU is a rectified linear unit (44) and Dropout a 
dropout layer (45) with probability 0.5. The resulting embed-
ding he is then concatenated with the sentence embedding 
right before the output layer.

Apart from the KBEs we also investigate the incorporation 
of the contexts in which the chemical and protein entities are 
mentioned in the literature, as this can give further guidance 
about their connections to other biomedical concepts. For this 
purpose, we make use of the dense semantic entity represen-
tations provided by (46) which are learned in an unsupervised 
fashion using a language modeling task based on the complete 
PubMed corpus. The integration of these entity embeddings is 
analogous to that of the KBEs. In summary, we experimented 
with the following entity embedding methods:

• DistMult (47)
• ComplEx (48)
• Rescal (49)
• PubMed entity embeddings (46)

We did not observe improvement with any of the entity 
embedding methods, thus we did not include them in our final 
model.

Additional training data through back-translation
We experimented with back-translating the DrugProt train-
ing data to introduce more textual variability. For this, we 

translate the training instances to German and French using 
pretrained machine translation models and then translate the 
result back into English and add it to our training data. 
We create translations with Facebook’s English-to-German 
transformer-based model trained on the Wmt news corpus (50) 
(https://huggingface.co/facebook/wmt19-en-de) as well as the 
English-to-German and English-to-French models by (51) 
(https://huggingface.co/Helsinki-NLP/) which were trained on 
the Opus corpus. Back-translations are generated by using 
the reverse variants of the respective models. We only use 
back-translated sentences in which we can find all mentioned 
entities of the original sentence by exact string matching and 
add them to the training set, others are discarded. In summary, 
we experimented with the following sets of back-translation 
models:

• Opus and Wmt (+80,263 sentences)
• Wmt (+26,507 sentences)

Note that we did not observe any improvement with back-
translated data and thus do not use these data for training our 
final model.

Results
We evaluate the proposed model in two different settings. 
First, we evaluate the usefulness of the investigated modifi-
cations on the development set, individually optimizing the 
hyperparameters for each modification. Second, we submitted 
a selection of five different configurations to the official shared 
task evaluation on the hidden test set. For each of these two 
scenarios, we first describe the evaluation protocol and then 
the results. All reported scores are micro-averaged scores com-
puted with the official DrugProt evaluation library (https://
github.com/tonifuc3m/drugprot-evaluation-library).

Evaluation on DrugProt Development Set
We use the DrugProt development set to evaluate the 
modifications that we proposed above. We use a RoBERTa-
large (52) as the baseline, initialized with the RoBERTa-
large-pm-M3-Voc (https://github.com/facebookresearch/bio-
lm) weights provided by (39). Then, for each modification, 
we search the best combination (on dev) of learning rate, 
number of epochs and batch size by performing an exhaus-
tive grid search over the ranges described above using a fixed 
random seed (42). After finding the best hyperparameter con-
figuration for the fixed random seed, we evaluate four more 
random seeds using the same hyperparameter configuration. 
When including also preliminary experiments, this leads to a 
total of 2647 training runs logged in the used experiment log-
ging system (https://wandb.ai/). In some cases, a model fails 
to converge for a given random seed, so we drop the two 
seeds with the lowest F1 values and report mean and standard 
deviation of the remaining three, which leaves only converg-
ing models for all configurations but one. Furthermore, we 
evaluate an ensemble of these three runs that were also used 
to compute mean and standard deviation. We produce the 
ensemble prediction by averaging the predicted probabilities 
of each ensemble member. In preliminary experiments, we 
investigated ensembling models that were initialized with dif-
ferent pretrained language models, but found that ensembling 
only models derived from a single language model performed 
better on the DrugProt development set.
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Table 2. Results of different model configurations on DrugProt development set. All scores are in percentage. Single results are mean and standard 
deviation of the best three runs across five different random seeds. Ensemble denotes results of an ensemble of the three best runs per configuration.

Results for this experiment can be found in Table 2. The 
only modification that achieves a higher F1 score than the 
78.6% of the baseline is the addition of chemical definitions 
derived from CTD which leads to an F1 score of 78.9%. 
Ensembling three models leads to an improvement in F1 for 
all modifications except entity masking with an average gain 
of 1.8 percentage points (pp) in F1. All other modifications 
led to lower F1 scores than that of the baseline, for both sin-
gle model and the ensembles. The lowest F1 score of 53% 
F1 was obtained when including entity embeddings com-
puted with Rescal, because in this case only two of the five 
models converged and thus one run with a recall of 2.4% 
was included, which produced predictions for only a small 
fraction of the sentences. When using different pretrained 
transformers, results ranged from 75.6% F1 for BioMed 
RoBERTa to 78.6% for RoBERTa-large-pm-M3-Voc in the
baseline.

Evaluation on DrugProt Test Set
The DrugProt shared task allowed participants to submit 
a maximum of five runs for evaluation on the hidden test 
set. We selected the model configurations for these runs so 
that they could corroborate our findings on the develop-
ment set. To achieve this, we prepared a run using our 
baseline and the two modifications that led to increased per-
formance in our development set experiments: ensembling 
and entity descriptions. We slightly modified the configura-
tion from the development set runs by increasing the number 
of ensemble members from three to ten and by adding the 
development data to our training set. We used the remain-
ing four runs to systematically ablate the modifications as
follows:

• Run 1 (full configuration): Ensemble of 10 RoBERTa-
large-PM-M3-Voc models with chemical definitions 
derived from CTD trained on training and development 
sets

• Run 2 (single model): Single RoBERTa-large-PM-M3-
Voc model with chemical definitions derived from CTD 
trained on training and development sets

• Run 3 (no side information): Ensemble of 10 RoBERTa-
large-PM-M3-Voc models trained on training and devel-
opment sets

• Run 4 (single model and no side information): Single 
RoBERTa-large-PM-M3-Voc model trained on training 
and development sets

• Run 5 (no training on development set): Ensemble of 10 
RoBERTa-large-PM-M3-Voc models with chemical defi-
nitions derived from CTD trained on the training set

The test set results can be found in Table 3. We observe the 
largest gain in performance of 1.7 pp F1 when adding chem-
ical definitions and ensembling. Ensembling 10 models, only 
differing in the seed of the fine-tuning step, without chemical 
descriptions increases the F1 score by 1.4 pp, whereas adding 
chemical descriptions to a single model leads to a gain of 0.8 
pp. Increasing the number of training examples by including 
the development set improves the F1 score by 0.2 pp.

Considering the detailed results of our best submission 
(Run 1) for each relation type (see Table 3 bottom), there is 
a strong variability across different relation types with two 
types having an F1 score of zero (Agonist-Inhibitor and Sub-
strate_Product-of ), while the maximum F1 score is above 
91% (Antagonist). The F1 scores correlate moderately with 
the number of training instances per relation type (Pearson’s 
R of 0.56). Both types with an F1 score of zero have very few 
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Table 3. Top: Results of the five submitted runs on the hidden test set of 
DrugProt. Bottom: Detailed results per relation type of Run 1. All scores 
are in percentage.

training examples (13 and 24). However, for the other types 
there seem to be additional factors influencing performance. 
For instance, the ‘Substrate’ relation type has 2003 training 
examples, but the model achieves an F1 score of only 68.2%.

Discussion
Careful hyperparameter optimization is important 
for robust results
Our experiments on the development set suggest that base-
line models can be surprisingly strong when tuned properly. 
We found that the most critical component to tune is the 
base language model, as replacing BioMed RoBERTa with 
RoBERTa-large-PM-M3-Voc led to an improvement of over 
3 pp F1. We also analyzed the variability of the F1 scores 
when keeping the transformer fixed. For this, we looked at 
the lowest and the highest F1 scores for each transformer 
evaluated in the Transformer rows in Table 2. Here, F1 
scores range from 66.3% to 78% for BioBERT-v1.1, 64.2% 
to 76.2% for BioMed RoBERTa, 0% (it failed to converge) 
to 78.4% for PubMedBERT-abstracts and from 65.8% to 
78.5% for PubMed-BERT-abstracts-full-text. This indicates 
that the careful optimization of hyperparameters is crucial 
to optimize performance of pretrained transformers. We ana-
lyzed hyperparameter importance for these four pretrained 
language models with the functional analysis of variance 
(fANOVA) framework (53), which trains a random forest to 
predict the F1 score given the hyperparameter configuration 

Figure 2. Overview about the importance of different hyperparameters 
using the fANOVA framework (53).

and then uses the fANOVA framework to quantify hyper-
parameter importances. The results of this analysis can be 
found in Figure 2. Across all models, the most important 
hyperparameter to tune is the learning rate. For the other 
three hyperparameters, the ranking varies between models, 
with the difference between the average importances across 
models being negligible. Interestingly, the chosen random 
seed is as important as epochs and batch size when aver-
aged across models, which suggests that this hyperparame-
ter should also be routinely tuned for optimal performance. 
Moreover, these findings emphasize the importance of per-
forming hyperparameter tuning for each model configuration. 
If neglected, this may lead to spurious findings of improve-
ments under some modifications that are simply due to the 
high intra-configuration variability. 

Knowledge Base Population Evaluation
A common use case for relation extraction models is KBP, 
in which the model is used to extract relations from a large 
collection of texts (7, 22). In addition to the shared task eval-
uation, we evaluate our model in such a KBP scenario, in order 
to gauge whether it could be used to assist KB curators. For 
this, we select the subset of four relations from the Thera-
peutic Target Database (TTD) (54) which are shared by the 
DrugProt corpus: activator, agonist, antagonist and inhibitor. 
Then, for each pair in this subset of TTD, we use PubTator 
Central (55), to collect all sentences from PubMed abstracts 
or PubMed Central full texts in which the pair co-occurs, 
discarding all pairs for which we do not find any sentence. 
Statistics for the resulting data set can be found in Table 4. To 
evaluate a model configuration, we use the respective model 
trained on the DrugProt training data to predict labels for each 
sentence using 0.5 as threshold. Finally, we aggregate over all 
sentences for a given pair by outputting all labels that were 
predicted for at least one sentence. We evaluate the models’ 
capability to assign the correct relation types to the TTD pairs 
by calculating precision, recall and F1 for the relation predic-
tion. Note, that this might introduce a bias for the precision 
values, because we do not have access to negative samples.

The results for this evaluation can be found in Table 4. In 
terms of F1, we observe consistent gains through ensembling, 
both with and without chemical definitions (+0.6 pp F1/+1.7 
pp F1). The addition of chemical definitions diminishes results 
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Table 4. Results of the KBP evaluation on the TTD data set. The results 
at the top are the ablation study, while the results at the bottom are the 
detailed results of the best performing model (baseline + ensembling). All 
scores are in percentage.

P R F1 # examples

Baseline 48.2 88.9 62.5 –
+ ensembling 50.3 88.7 64.2 –
+ chemical definitions 47.9 89 62.3 –
+ chemical definitions ensembling 48.7 88.8 62.9 –

Activator 11 90.7 19.6 118
Agonist 49.7 88.4 63.6 667
Antagonist 42.1 89.1 57.1 660
Inhibitor 65.7 88.6 75.4 2437

in the single model setting as well as for ensembling (−0.2 pp 
F1/−1.5 pp F1). In addition to our results on the development 
set, this casts further doubts on whether chemical definitions 
are helpful. When inspecting the results of the best perform-
ing model (ensemble without chemical definitions) for each 
relation type individually, it becomes clear that the differences 
in F1 are almost exclusively due to variance in precision. The 
recall is consistently high for all examined relation types, rang-
ing from 88.6% to 90.7%, whereas the lowest precision score 
is 11% and the highest is 65.7%.

We analyze the sources of errors by manually examining 
a random sample of 30 chemical-protein pairs for which the 
model extracted at least one false-negative or false-positive 
(FP) relation. We find that out of the 16 observed false-
negative relations, 13 were because no sentence in our corpus 
allowed inference of the relation, 2 false negatives would have 
been possible to predict the context provided in the input 
sentence was insufficient and 1 required combining multi-
ple pieces of information given in the sentence. For the 24 
FPs, 22 are correct extractions which are not annotated in 
the TTD KB. Twelve of these correct extractions are due to 
unclear boundaries between the relation types of antagonist 
and inhibitor or of agonist and activator, where our model cor-
rectly extracts both relation types but only one is annotated in 
TTD. Of the two incorrect FPs, one is because of an incorrect 
gene normalization in PubTator Central and the other one is 
because the sentences from which the relation was extracted 
express it for a different gene than the annotated one. This 
suggests that we significantly underestimate the precision of 
the model, but a larger evaluation effort is required to confirm 
this.

Overall, we conclude from the results of our KBP evalua-
tion that ensembles of properly tuned transformers achieve 
high accuracy for chemical–protein extraction ‘in the wild’ 
and might be helpful in KB curation efforts.

Are entity side information beneficial?
The results of our experiments on the DrugProt development 
set show strong performance gains for properly tuned baseline 
models. This applies equally for the ensembling of multiple 
models (see Tables 2 and 3) and also in the TTD evaluation 
setup (see Table 4). In contrast, the results for entity definitions 
are more mixed, we observe marginal gains on Drugprot’s 
development set and test set, but modest to larger drops in 
performance in the KBP evaluation.

Figure 3. Prediction overlap concerning TPs (left) and FPs (right) between 
an ensemble of baseline models and an ensemble of models extended 
with chemical descriptions.

To gain more insights about the differences when using 
entity definitions, we analyzed the prediction overlap of the 
baseline model and the model using chemical definitions.

Figure 3 highlights the overlap of ensembles of the two 
model variants regarding true positives (TPs) and FPs on the 
development set. In total, 2984 of the 3761 gold standard rela-
tions are identified by at least one of the two models. The 
overlap in TP of the model variants is very high (97.55%) 
and the number of relations found exclusively by only one 
model is almost symmetrical, differing only in 10 instances 
(63 vs. 73). The highest overlaps are observed in the relation 
types ANTAGONIST and SUBSTRATE, in which 196 of 198 
(99.0%), respectively, 383 of 388 (98.71%) relations detected 
by both models match. Concerning FP predictions, the picture 
is a bit more diverse. Here, the predictions of both models 
only exhibit an overlap of 76.3%. The most marked differ-
ences can be recognized concerning the classes INDIRECT-
DOWNREGULATOR and INDIRECT-UPREGULATOR, 
where the extended model only predicts 2 FPs each compared 
to 14 each of the baseline model. However, except for the two 
classes there is no clear pattern with regard to the distribution 
of errors across the different relation types. Analogous to the 
TPs the differences of both models in absolute terms are small 
and it is not clear whether this would also hold on a larger 
data set.

We also tried to identify patterns in cases where the 
extended model yields better predictions through manual 
analysis, but could not discern any clear underlying proper-
ties of sentences. We conclude that the improvements through 
the addition of chemical definitions need to be confirmed in 
further analysis and larger studies, which we leave for future 
work. 

Comparison with competitors
We compared our approach to the three best other submis-
sions to the shared task. Table 5 highlights the results of the 
teams on the hidden test set of DrugProt. All approaches are 
based on large pretrained BERT-based language models and 
utilize ensembles of multiple model instances for their best 
submission. The F1 scores achieved range from 77.6 to 79.7.

The second best team (56) models the task in two differ-
ent frameworks: (i) multi-class classification and (ii) sequence 
labeling. For the latter, given a candidate drug (protein) entity 
the goal of the model is to identify and label all correspond-
ing protein (drug) entities which are involved in a relation 
with the candidate. Their best performing submission consists 
of an ensemble of multiple PubMed-BERT-based models of 
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Table 5. Results of the four highest ranked teams on the hidden test set 
of the BioCreative VII DrugProt shared task

Team P R F1

Humboldt (our submission) 79.6 79.9 79.7
National Library of Medicine - 78.5 80.5 79.5
 National Center for Biotechnology
 Information
KU-AZ 79.7 78.2 78.9
University of Texas Health Science 80.4 75.0 77.6
 Center

both frameworks using majority voting reaching an F1 score 
of 79.5.

Analogous to our approach, team KU-AZ (57) formulates 
the task as sentence-level classification problem. The authors 
investigate a distant supervision approach to extend the avail-
able training data. For this, the authors first train a model on 
the official DrugProt data set and then use it to automatically 
identify drug–protein relations in PubMed abstracts that are 
referenced in the CTD database. To reduce noise in the pre-
dicted relations they only keep relation pairs that are listed 
in the CTD database resulting in an data set with over 875K 
sentences. Using the additional data for model pretraining, 
however, shows slight drops in performance. Their best per-
forming model configuration is based on an ensemble of 10 
RoBERTa-large-PM-M3-Voc-based models learned on mixed 
splits of the DrugProt train and development.

Likewise, the fourth best team (58) models the task as
sentence-level classification problem using different BERT 
flavors: PubMed-BERT, BioBERT, BioM-BERT and BioM-
ALBERT (59). In contrast, to our model they perform entity 
masking for encoding the input entity pair under investiga-
tion. Their best models is based on an ensemble of 50 models 
trained on different splits.

Based on the description of the approaches it is hard to 
elicit all the technical details of the methods making the iden-
tification of a single reason for the (rather small) performance 
differences difficult. However, it is remarkable that only one 
of the other teams use the RoBERTa-large-PM-M3-Voc that 
shows a 0.3 pp higher F1 score over other BERT flavors in 
our experiments. Interestingly, team KU-AZ did not achieve 
any performance improvements through distantly supervised 
data confirming our observation that BERT-based baselines 
cannot be easily improved by additional data. In addition, 
all teams achieve performance improvements through model 
ensembling.

Conclusion
We described our contribution to the BioCreative VII Drug-
Prot shared task, for which we developed a chemical–protein 
relation extraction model based on a relation classification 
framework and pretrained transformers. We performed an 
extensive search across hyperparameters and model configu-
rations, which revealed that the choice of pretrained language 
model and ensembling had the largest impact on shared task 
performance. Furthermore, we found that including textual 
chemical definitions leads to small improvement on the Drug-
Prot development and test sets but to diminished results in 
our KBP evaluation. The resulting model achieved an F1 score 
of 79.73% on the hidden DrugProt test set and was the first 

ranking submission of the 107 submitted runs in the offi-
cial evaluation. We also evaluated the proposed model in a 
KBP setting on a distantly supervised chemical–protein rela-
tion extraction data set, which we created for this purpose. In 
this evaluation, we found that performance varied strongly 
with the relation type, suggesting that the model might be 
useful for KBP at least for some relations.
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