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Abstract

Abstract

After a long period of decline and stagnation, the number of undernourished people in the world has
been increasing since 2017. Climate change will further exacerbate pressure on agriculture and food
security, particularly for smallholder and subsistence-based farming systems in the tropics. These
farming systems are vulnerable to climate change as they are strongly affected by climate impacts
and lack adaptive capacity. Anticipating and responding to global warming through climate risk
management is needed to increase the resilience of food systems and food security. Crop models
play an indispensable role in this regard. They allow quantifying crop responses to changes in climatic
conditions and thus identify risks. This dissertation demonstrates how statistical crop modelling can
inform climate risk management and adaptation in tropical agriculture in the case studies of Peru,
Tanzania and Burkina Faso.

The first study assesses weather influences on starchy maize yields on the sub-national and local
scale in Peru. Moreover, the influence of higher water availability on maize yields is investigated to
inform climate adaptation planning as suggested by the Peruvian Nationally Determined
Contributions. The second study provides a within-season maize yield forecast six weeks prior to the
harvest on the sub-national level in Tanzania. This can support governments to anticipate looming
harvest losses. In addition to a yield forecast, the third study provides a crop production forecast for
maize, millet and sorghum on the national level in Burkina Faso. By comparing produced calories
from these crops with the historic demand, early information on shortages in domestic cereal
production can be obtained.

The three publications present novel statistical crop modelling approaches on sub-national scales in
Peru, Tanzania and Burkina Faso. The models explain a substantial part of crop yield variability based
on weather variables. This indicates strong weather influences on maize yields and high model
performance. The studies underline the importance of spatially-distinct variables and model
parameters to take account of diverse weather-yield relations within the countries. Especially,
weather influences related to extreme events, such as dry spells and erratic precipitation within the
growing season influence maize yield variability. Moreover, the three studies found a strong
explanatory power of yield trends (study one and two) and harvest area trends (study three). The
latter highlights the relevance of obtaining information on sown areas within the growing season for
accurate predictions in practice. In contrast to most yield forecasting studies, we applied a rigorous
validation, including an out-of-sample variable selection. This validation mimics the operational
context in which model formation and variable selection are purely based on information from past
years. The statistical crop modelling approach relies on globally available climate data and provides
robust results even for limited available yield data - making it potentially transferrable to other
regions.

The dissertation aims to deepen the understanding of weather-related influences on crop yields,
food production and food availability in the tropics. Moreover, the findings demonstrate how
statistical crop modelling can inform climate risk management and adaptation at different spatial
levels in the tropics through an assessment of weather influences, the evaluation of adaptation
options and within-season crop yield and production forecasting.



Zusammenfassung

Zusammenfassung

Die Anzahl der untererndahrten Menschen in der Welt steigt nach einer langen Phase des Riickgangs
und der Stagnation seit 2017 wieder an. Der Klimawandel wird den Druck auf die Landwirtschaft und
die Erndhrungssicherheit weiter erhéhen, insbesondere fiir kleinbauerliche und von
Subsistenzwirtschaft gepragte Agrarsysteme in den Tropen. Diese sind zum einen stark vom
Klimawandel betroffen und zum anderen aufgrund begrenzter Anpassungsfahigkeit besonders
vulnerable. Um die Widerstandsfahigkeit der Erndhrungssysteme und die Erndhrungssicherheit zu
starken, bedarf es eines Klimarisikomanagements und Klimaanpassung, da dies sowohl die
Antizipation als auch die Reaktion auf die Auswirkungen der globalen Erwdarmung ermoglicht. Eine
zentrale Rolle spielen in dieser Hinsicht landwirtschaftliche Modelle. Sie kénnen die Reaktionen von
Pflanzen auf Verdanderungen in den Klimabedingungen quantifizieren und damit Risiken
identifizieren. Diese Dissertation demonstriert anhand dreier in Peru, in Tansania und in Burkina Faso
durchgefiihrten Fallstudien, wie statistische Erntemodelle das Klimarisikomanagement und die
Anpassung in der tropischen Landwirtschaft unterstiitzen kénnen.

In der ersten Studie werden die Wettereinfliisse auf die Maisertrage auf subnationaler und lokaler
Ebene in Peru untersucht. Dabei wird auch der Einfluss hoherer Wasserverfligbarkeit auf die
Maisertrage quantifiziert, um die Klimaanpassungsbestrebungen der peruanischen Nationally
Determined Contributions zu unterstiitzen. Die zweite Studie erstellt eine Vorhersage der
Maisertrage sechs Wochen vor der Ernte auf subnationaler Ebene in Tansania. Dies kann es
Regierungen erméglichen, vorsorgende MalBnahmen zu treffen, um die Auswirkungen von
drohenden Ernteverlusten zu mildern. Die dritte Studie liefert neben einer Ertragsvorhersage eine
Produktionsvorhersage flir Mais, Sorghumhirse und Millethirse auf nationaler Ebene in Burkina Faso.
Der Vergleich der aus diesen Kulturen erzeugten Kalorien mit dem historischen Bedarf, ermoglicht es
frihzeitig Informationen liber Engpasse in der heimischen Getreideproduktion zu erlangen.

In den drei Veroffentlichungen werden neue Ansatze statistischer Erntemodellierung auf
subnationaler Ebene in Peru, Tansania und Burkina Faso vorgestellt. Die Modelle erkldren einen
betrachtlichen Anteil der Ertragsvariabilitdt auf Grundlage von Wettervariablen. Das weist sowohl auf
einen starken Einfluss des Wetters auf Maisertrage hin als auch auf eine hohe Modellgite. Die
Studien betonen die Notwendigkeit von rdumlich differenzierten Variablen und Modellparametern,
sodass die unterschiedlichen Wetter-Ertrags-Beziehungen innerhalb der Lander berlicksichtigt
werden kdnnen. Insbesondere Wettereinfliisse in Bezug auf Extremereignisse, wie Trockenperioden
oder unglinstig verteilte Niederschldge innerhalb der Wachstumsperiode, beeinflussen die
Variabilitdt der Maisertrage. Darliber hinaus zeigen die drei Studien eine starke Erklarungskraft von
Ertragstrends (Studie eins und zwei) und Ernteflachentrends (Studie drei). Letzteres unterstreicht die
Relevanz der Ermittlung von Aussaatflachen innerhalb der Wachstumsperiode fiir prazise
Vorhersagen in der Praxis. Im Gegensatz zu den meisten Ertragsvorhersagestudien, haben wir eine
strenge Validierung, inklusive der unabhangigen Variablenauswahl, durchgefiihrt. Diese Validierung
spiegelt die Situation in der Praxis wieder, in der lediglich Informationen der vergangenen Jahre die
Modellbildung und Variablenauswahl beeinflussen kénnen. Unser Ansatz der statistischen
Erntemodellierung stiitzt sich auf weltweit verfligbare Klimadaten und liefert selbst bei begrenzten
Ertragsdaten robuste Ergebnisse, so dass er potenziell auf andere Regionen (ibertragbar ist.
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1 Introduction

1 Introduction

For the first time in over a decade of declining and stagnating numbers of undernourished people in
the world, there has been an increase since 2017 - reaching 768 million people in 2020. This reversal
in the trend can largely be attributed to conflicts, climate extremes and economic downturns, which
makes it increasingly difficult to end hunger by 2030 (FAO et al., 2021). In future, global food demand
will increase due to a growing world population, which is projected to rise from 7.7 billion in 2019 to
9.7 billion in 2050 (UNDESA, 2019). To feed the world, global food production must grow
substantially. At the same time, the expansion of arable land needs to be halted to avoid further
environmental damages, biodiversity loss and greenhouse gas emissions (van Ittersum et al., 2016).
Thus, sustainable production increases will need to go hand in hand with a decline in per capita food
demand. Avoiding food waste (Gustavsson et al., 2011; Mc Carthy et al., 2018) and reducing crop
production for non-food uses (Cassidy et al., 2013) will be key to meeting the global food demand.
Addressing these challenges seems to be most urgent in the tropics across many parts of Africa and
South America. In these regions, the strongest population growth is expected (UNDESA, 2019), while
agricultural production remains below its potential (Foley et al., 2011; van Ittersum et al., 2013).
Moreover, the largest expansion of agricultural land to biodiversity-rich areas has occurred in these
areas (Gibbs et al., 2010).

Climate change exacerbates the pressure on agriculture with the strongest negative impacts
projected in the tropics (Hasegawa et al., 2022; Rosenzweig et al., 2014). To increase agricultural
production, farming systems need to adapt to changing climatic conditions including slow onset
events as well as extreme events, which are increasing in intensity and/or frequency (Seneviratne et
al., 2021). The transformation towards a resilient food system that provides sufficient, safe and
nutritious food for a growing world population requires information on climate risks in agriculture.
This provides the basis for exploring ways to anticipate and respond to them. Crop models play an
indispensable role in this regard as they allow quantifying crop responses to changes in climatic
conditions. This dissertation demonstrates how statistical crop modelling can support this process,
especially climate risk management and adaptation in tropical agriculture to increase the resilience
of cropping systems and contribute to improved food security.

The subsequent sections review climate change impacts on tropical agriculture in chapter 1.1 and
climate risk management and adaptation options in agriculture in chapter 1.2 with a specific focus on
crop production. The role of statistical crop modelling in support of climate risk management and
adaptation is discussed in chapter 1.3. Chapter 1.4 introduces the case studies of Peru, Tanzania and
Burkina Faso, which share similar characteristics in terms of farming systems and climatic conditions
in the tropics. The three publications that form the basis of this dissertation are introduced in
chapter 2 and follow in the sub-chapters 2.1, 2.2 and 2.3. The discussion in chapter 3 includes a
section on main findings across all publications (chapter 3.1) and an outlook with open research
questions (chapter 3.2). The dissertation ends with concluding remarks and personal hopes in
chapter 4.

1.1 Climate change impacts on agriculture in the tropics

Climate change impacts agricultural production in various ways through changes in modal conditions,
seasonal changes and extreme events. Modal changes, such as the shift in climatic envelopes can
alter the crop suitability in certain areas, which can lead to shifts in growing areas (Chemura et al.,
2020; Kummu et al., 2021; Travis, 2016). Also, the distribution of pests and pathogens, such as the
poleward expansion of many groups of crop pests and pathogens since the 1960s (Bebber, 2015)
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changes with increasing warming and can potentially lead to drastic harvest losses. Seasonal changes
can affect agriculture as warming trends lead to a shortened life cycle of major crops (Kerr et al.,
2022; Wang et al., 2009) and a lengthening of the growing season in extratropical regions (Mueller et
al., 2015). Extreme events increasingly cause crop losses (Cottrell et al., 2019), e.g. related to
droughts (Kim et al., 2019), heat (Liu et al., 2019; Zampieri et al., 2017) or a combination of multiple
hazards (Matiu et al., 2017). Apart from the described temperature and/or precipitation-related
impacts, the atmospheric composition related to CO,, dust, ozone and other short-lived climate
pollutants changes. Elevated CO; concentrations affect agricultural production through changes in
the photosynthesis rate, water use efficiency or nutrient content of crops (Kerr et al., 2022). Taken
together, there is a complex interplay of climate drivers on crop production.

These human-induced climate change impacts have had regionally different, but mostly negative
effects on global crop production since the pre-industrial era (Kerr et al., 2022). Advancements in
plant breeding, irrigation, fertilisation and integrated pest management are associated with a 2.5 to
3-fold increase in major crop yields since the 1960s on the global level. On the contrary, climate
change had mostly negative effects on crop yields and acts as a drag on the growth of agricultural
production (Kerr et al., 2022). In a counterfactual analysis that attributes observed yield trends to
anthropogenic warming, Moore (2022) showed a negative effect of global warming on maize and
wheat yield trends and a positive effect for rice in cooler regions with an average reduction in the
annual calorie production from these crops by 5.3 % from 2008 to 2017 (Moore, 2022). The overall
negative impact of climate change on crop yields is projected to continue in the 21 century. Without
adaptation, yields are projected to decrease by 2.3 % for maize, 3.3 % for soybean, 0.7 % for rice and
1.3 % for wheat per decade (Hasegawa et al., 2022).

Both observed and projected climate change impacts vary by region. Whereas yields for some crops
benefitted from climate change impacts in the mid and high-latitudes (e.g. wheat in Northern
Europe, rice and wheat in Eastern Asia, maize and soybean in North America), mostly negative
impacts could be found in Sub-Saharan Africa, South America and the Caribbean (Ortiz-Bobea et al.,
2021). The strongest negative climate impacts are projected in the tropics (Rosenzweig et al., 2014),
particularly for Africa, Central and South America at the end of this century (Aggarwal et al., 2019;
Hasegawa et al., 2022; Porter et al., 2019) due to the current temperature level and degree of
warming. Regions with current average temperatures above approx. 15 °C are projected to face
negative effects of climate change on agricultural production. When current average temperatures
exceed approx. 20 °C, even small degrees of warming result in negative effects (Hasegawa et al.,
2022). Higher temperatures lead to increasing atmospheric vapour-pressure deficits which in turn
increase evapotranspiration and thus reduce soil moisture, with negative impacts on yields (Levis et
al., 2018; Lobell et al., 2013, 2014). Moreover, temperatures in many tropical regions are already
today closer to the optimum temperatures for plant growth (Hatfield et al., 2011) so that further
temperature increases will exceed the optimal range.

Smallholder farming systems are most prevalent in tropical agriculture, particularly in Latin America,
Sub-Saharan Africa, and South and East Asia (Samberg et al., 2016) and are disproportionally
vulnerable to climate change (Donatti et al., 2019; Kerr et al., 2022; Morton, 2007). The livelihoods of
smallholder farmers often primarily depend on agriculture so that changes in rainfall, temperature
and the occurrence of extreme events directly affect their income, food security situation and well-
being (Harvey et al., 2014; Morton, 2007; Vignola et al., 2015). Moreover, smallholder farmers have
limited capacities to adapt to climate change for various reasons, such as lacking policy,
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infrastructure and institutional support as well as limited access to credits and viable markets (Kerr et
al., 2022; Mbow et al., 2019). Also, insecure land tenure rights can constrain farmers’ ability to adapt
to climate change (Murken & Gornott, 2022). The negative impacts of global warming on tropical
agriculture and the high vulnerability of smallholder farmers further jeopardize their food and
nutrition security (Wheeler & von Braun, 2013), which underlines the need for strong adaptation
efforts.

1.2 Climate risk management and adaptation in agriculture

Negative climate impacts on agriculture require strong responses through climate risk management
and adaptation to increase the resilience of farming systems. Climate risks result from “dynamic
interactions between climate-related hazards with the exposure and vulnerability of the affected
human or ecological system” (Begum et al., 2022). Risks of unmitigated climate impacts can be
addressed through risk reduction by either preventing or preparing for them. For this purpose,
integrating climate change adaptation and disaster risk reduction is needed (Begum et al., 2022;
Lavell et al., 2012; UNDRR, 2019) to anticipate and respond to slow onset events as well as extreme
events, which are increasing in intensity and/or frequency due to climate change (Seneviratne et al.,
2021). However, not all of the risks can be prevented, so that the residual risks will have to be
addressed through either risk finance and transfer or loss and damage when limits to adaptation are
reached (Begum et al., 2022).

Adaptation options that reduce risks to agricultural crop production include the sustainable
intensification of production, e.g. through the use of fertilizer and improved cultivars, or
infrastructural and technological measures, such as investments in irrigation facilities. Nature-based
adaptation solutions entail the adjustment of planting dates or agricultural diversification to spread
risks in case of harvest losses. Moreover, water and soil management practices as well as
agroecological approaches, including intercropping, cover crops, crop rotations, mixed systems or
agroforestry, belong to nature-based solutions (Berrang-Ford et al., 2021; Kerr et al., 2022). Apart
from these field-level adaptation options, several institutional measures can contribute to risk
reduction. By providing tailored climate information such as early warnings (Tall et al., 2018), climate
services can facilitate the implementation of adaptation options. Spreading risks through livelihood
diversification or migration (Loison, 2015), increasing adaptive capacity through community-based
adaptation (Ensor et al., 2018) or integrated approaches addressing climate adaptation and
mitigating simultaneously (Harvey et al., 2014) are also possibilities to reduce climate-related risks in
agriculture.

1.3 Statistical crop modelling in support of climate risk management

Crop models are indispensable tools to inform decision-making in climate risk management and
adaptation as they allow quantifying crop responses to weather and climatic conditions. Three main
approaches of crop models can be distinguished — process-based models, statistical crop models and
integrated approaches. Process-based or crop simulation models attempt to represent key processes
of crop growth and yield formation and can quantify the interaction of genotype, environment and
management on various outputs, such as crop production, yield, carbon sequestration or greenhouse
gas emissions. Statistical or empirical crop models assess the relationship between climatic variables
and yield empirically. Last, integrated approaches combine biophysical and socio-economic
considerations — thereby attempting to inform complex, multi-targeted policy decisions across
different scales, e.g. related to food security (Rotter et al., 2018).
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This dissertation focuses on the use of statistical models, including machine learning, to inform
climate risk management. Statistical crop models have a long history with early examples by Runge
(1968) and Thompson (1975). They estimate climate-yield relationships based on empirical
observations. With increasingly available weather and crop yield data (derived from official statistics,
field measurements or farmer surveys), statistical models became a common tool in climate impact
assessments (Lobell & Asseng 2017). Compared to process-based models, they require fewer input
data and can use spatially and temporally aggregated data as input (Holzkdmper, 2017; Rotter et al.,
2018), which facilitates their application and transfer to data scare contexts often found in countries
in the Global South. Especially in the tropics where yield loss related biotic stressors are a common
issue (Aggarwal et al., 2006; van Ittersum et al., 2016), statistical models offer an advantage as they
inherently cover indirect yield-limiting factors linked to climatic variables. This allows to better
capture pests and diseases in statistical crop models (Rotter et al., 2018).

For the purpose of supporting climate-related risk reduction in the agricultural sector, crop models
can provide support in various ways. Crop models can improve the understanding of physical and
socio-economic systems and be used to identify major climatic drivers. They can predict and thus
help to anticipate future climate risks to crop production. Moreover, crop models can be applied to
test and prioritize climate adaptation options based on their environmental and socio-economic
impacts (Holzkdmper, 2017). Statistical crop models have mostly been applied for agricultural climate
impact assessments (e.g. Bras et al., 2021; Lobell, David. B et al., 2011; Lobell et al., 2006, 2008; Ray
et al., 2015; Schlenker & Lobell, 2010). By identifying main climatic drivers on yield, they are able to
prioritize regions in which climate adaptation will be particularly needed. Statistical crop models
usually do not explicitly account for adaptation processes, unless management-related variables are
included, such as in Jiang & Koo (2014). However, these models implicitly take autonomous
adaptation into account, which continuously progresses over time and is therefore represented in
observational data (Gornott & Wechsung, 2016; Holzkamper, 2017). Statistical models have a high
potential for short-term, i.e. seasonal yield predictions (Liu & Basso, 2019; Schauberger et al., 2017,
2020), for which machine learning is increasingly being used (Meroni et al., 2021). These forecasts
can inform early warning systems on food insecurity (Choularton & Krishnamurthy, 2019) to support
governments in taking actions to alleviate looming food crises (Liu & Basso, 2019). Independently of
the modelling approach, any model requires thorough validation before it can inform real-world
applications.

1.4 Case studies

The three case studies of this dissertation - Peru, Tanzania and Burkina Faso - are located in the
tropics and share similar characteristics in the farming systems. Agriculture in these countries is
dominated by smallholder and subsistence farming systems with mostly low input agronomic
management. Because most people’s livelihoods in these countries directly depend on agriculture —
either as a source of food or income, the food security situation of the population is directly
impacted by unfavourable weather conditions and climate change. The following sub-chapters
highlight some characteristics concerning the climatic conditions and the farming systems in Peru,
Tanzania and Burkina Faso.
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Figure 1: Map of case studies

1.4.1 Peru

Peru’s geography is characterised by the Andes, which run north-south and divide the country into
three prominent landforms with distinct climatic and growing conditions resulting in a high level of
biodiversity. The coastal region (costa) along the Pacific Ocean is characterised by semi-arid
subtropical desert climate. Mean temperatures vary from 13 ° to 26 °C and annual rainfall is on
average 150 mm. Agriculture in the coastal region is dominated by intensively grown export crops
(USAID, 2017), which mostly rely on irrigation based on water coming from glacial melt of the Andes
(Liersch & Gornott, 2015). With ongoing climate change and continuous melting of the glaciers (Ortiz,
2012), water scarcity will further hamper agricultural production in this region. The Andean highlands
(sierra) have lower temperatures (11 ° to 18 °C on average) due to their higher elevations. Annual
rainfall shows substantial variations (50 to 1000 mm per year), depending on the location within the
Andes (eastern or western slope). The rainy season is from September to March (USAID, 2017).
Particularly in the dry season from May to August, irrigation stemming from glacier melt is needed
(Liersch & Gornott, 2015). Most farmers live in the Andean region, practising subsistence and rainfed
agriculture to grow traditional crops, such as potatoes, quinoa and maize. A shift of agricultural
production to higher elevations occurs in response to increasing temperatures, which increases the
risk of being impacted by snowstorms, drought and floods (USAID, 2017). The amazon rainforest
(selva) is a high-precipitation region (1000 to 3000 mm per year) with high temperatures (22 ° to

31 °C) throughout the whole year. Pastoralism mainly takes place in the mountainous and high-
elevated jungle areas, where it provides food and income, especially for rural communities (USAID,
2017).

Median yields for the most grown crops in Peru are 3.4 t/ha for maize, 0.8 t/ha for coffee, 7.7 t/ha
for rice, 15.9 t/ha for potatoes and 12.9 t/ha for bananas (from 2016-2020 based on FAO, 2020). The
high level of input use (INEI, 2013) and irrigation coverage (75 % of agricultural area is equipped with
irrigation schemes on the national level (FAO, 2018)) primarily reflects the export-orientated agro-
industry in the coastal region. However, 80 % of farmers in Peru are subsistence farmers (USAID,
2017) in the highlands, where traditional farming practices on small parcels of land prevail (Sietz et
al., 2012). Approximately 19 % of the population in Peru is threatened by severe food insecurity
(2016-2018; FAOQ, 2018).
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1.4.2 Tanzania

The climate in Tanzania is largely influenced by its topography and its differences in altitude. It ranges
from tropical climate in the lowlands at the coast with annual mean temperatures of 26 °C to
temperate climate found in the highlands in the north and south-west of the country with annual
mean temperatures of 18 °C. Whereas rainfall on the central plateau, which covers most of the
country, ranges from 500 to 1000 mm per year, precipitation in the lowlands and highlands exceeds
1300 mm (Tomalka et al., 2020). In Northeast Tanzania and the coastal areas, there is a bimodal
rainfall pattern resulting from the seasonal migration of the Intertropical Convergence Zone (Zorita &
Tilya, 2002). The short rains are called Vuli and occur from October to December, whereas the longer
rain period is called Masika and occurs from March to May. The rest of the country has a unimodal
rainfall pattern called Musumi with rainfall occurring from December to April (Arce & Caballero,
2015).

Agriculture in Tanzania is characterised by small-scale farming with low-input agronomic
management. The average farm size per household is 2 ha and 91 % of total farmland is occupied by
small-scale farms (Yoshino et al., 2017). Most crop production is based on rain-fed agriculture (only
approx. 2.7 % of crop land is equipped with irrigation; FAO, 2018), making crop production
particularly susceptible to shortages in rain. Maize is the most grown crop in Tanzania (median yield
from 2016-2020 = 1.6 t/ha), followed by rice (2.9 t/ha), cassava (7.3 t/ha), groundnuts (0.7 t/ha),
sunflower (1 t/ha) and beans (1.3 t/ha). The main cash crops are rice, nuts (sesame, cashew,
coconut), cotton, coffee and tobacco (FAO, 2020). Even though agriculture accounts for 50 % of
Tanzania’s total exports, it has little impact on job creation and technological development as most
exporting goods are unprocessed (Yoshino et al., 2017). With 94.3 % of households having an income
from agriculture (National Bureau of Statistics Tanzania, 2014), the livelihood of the vast majority of
people in Tanzania is directly impacted by adverse climate impacts on agriculture.

1.4.3 Burkina Faso

Large parts of Burkina Faso are located on the central Savannah plateau with slight elevations and an
average altitude of 400 m. The climate is predominantly Sahelian tropical climate with increasing
precipitation amounts and duration of the rainy season towards the South. Three climate zones can
be distinguished. The Sahelian zone in the north of the country receives the lowest amounts of rain
(300 to 600 mm per year; FAO, 2015). Moreover, annual mean temperatures of up to 29 ° (Tomalka
et al., 2021) and the hot and dry winds from the Sahara (harmattans) that prevail from March to May
lead to high evapotranspiration rates and thus dry conditions. The dry season can last up to nine
months (October to June; FAO, 2015). As only 0.9 % of arable land is irrigated in Burkina Faso (FAO,
2018), the growing season is mainly aligned with the rainy season, resulting in a short growing season
of fewer than 100 days (FAO, 2015). Therefore, agriculture in this zone is dominated by livestock
rather than crop production (Tomalka et al., 2021). Whereas the Sudano-Sahelian zone in the centre
of Burkina Faso receives 600 to 900 mm of rainfall per year, rainfall in the southern Sudanian zone
amounts to up to 1200 mm in the rainy season, which lasts up to seven months from May to October
(FAO, 2015). Average annual temperatures are around 27 °C (Tomalka et al., 2021). This zone is due
to the growing season length of about 160 days and fertile soils the most suited for agricultural crop
production, which translates into higher yields compared to the rest of the country (FAO, 2015). On
national level, median yields from 2016 to 2020 for the most grown crops are 1 t/ha for sorghum, 0.5
t/ha for cow peas, 0.8 t/ha for millet, 1.7 t/ha for maize and 1.2 t/ha for cotton (FAO, 2020).

Burkina Faso is one of the poorest countries in the world and belongs to the group of least developed
countries. The high population growth rate of 2.8 % per year (World Bank, 2022) and the high level of
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violence and unrests in the country contribute to the severe food security situation (USAID, 2020),
with almost half of the Burkinabe population being affected by either moderate or severe food
insecurity (FAO, 2018).
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This dissertation presents three publications, which are shortly introduced in this section and follow
in the subsequent sub-chapters (2.1, 2.2 and 2.3). Rights of use are specified within the respective
sub-chapter of the publication.

(1) Laudien, R., Schauberger, B., Gleixner, S., & Gornott, C. (2020). Assessment of weather-yield
relations of starchy maize at different scales in Peru to support the NDC implementation.
Agricultural and Forest Meteorology, 295, 108154,
https://doi.org/10.1016/j.agrformet.2020.108154

The first study assesses weather influences on starchy maize yields on the sub-national and local
scale in Peru based on different yield data sources (official agricultural statistics and survey data) and
different statistical approaches (a linear regression model, a linear panel data model and a machine
learning algorithm). Moreover, the influence of higher water availability on maize yields on the sub-
national level is assessed in support of the Peruvian Nationally Determined Contributions and the
herein suggested adaptation options to climate change.

(2) Laudien, R., Schauberger, B., Makowski, D., & Gornott, C. (2020). Robustly forecasting maize
yields in Tanzania based on climatic predictors. Scientific Reports, 10(1), 1-12.
https://doi.org/10.1038/s41598-020-76315-8

The second study provides a within-season maize yield forecast six weeks before the harvest on the
sub-national level in Tanzania, which can support governments in preparing for looming food crises.
The study utilizes a rigorous and transparent validation that mimics the operational context in which
the model has to be trained purely on past data. Furthermore, we tested the robustness by providing
a completely independent forecast for the harvest year 2019.

(3) Laudien, R., Schauberger, B., Waid, J., & Gornott, C. (2022). A forecast of staple crop
production in Burkina Faso to enable early warnings of shortages in domestic food
availability. Scientific Reports, 12(1), 1638. https://doi.org/10.1038/s41598-022-05561-9

By combining a yield forecast with information on harvest areas, the third study provides a crop
production forecast one month before the harvest for maize, millet and sorghum on the national
level in Burkina Faso. Moreover, the produced calories from these crops are compared with the
historic demand. This allows us to provide early information on shortages in domestic cereal
production, which can inform early warning systems of food security.
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and Forest Meteorology, 295, 108154. https://doi.org/10.1016/j.agrformet.2020.108154
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ARTICLE INFO ABSTRACT

Climate change poses a substantial risk to agricultural production in Peru. Nationally Determined Contributions
(NDCs) are currently developed and outline Peru's mitigation actions and adaptation plans to climate change in
Yield various sectors. To support the implementation of adaptation measures in the agricultural sector, information on
Peru weather-related risks for crop production and the effectiveness of adaptation options on the local scale are
Ing Cs d . needed. We assess weather influences on starchy maize yields on different scales in Peru based on statistical crop
St:;::c; :rit:t::;‘del models and a machine learning algorithm. The models explain 91% of yield variability (55% based on the cross-

validation) on the regional scale. On the local scale, weather-related yield variation can be explained in some
areas, but to a lower extent. Based on these models, we assess the effectiveness of adaptation measures which
increase water availability to protect against negative impacts from dry weather conditions. The results show
that a higher water availability of 77mm in the growing season would have regionally different effects, ranging
from an increase of 20% to a decrease of 17% in maize yields. This large range underlines the importance of a
local assessment of adaptation options. With this example, we illustrate how a statistical approach can support a
risk-informed selection of adaptation measures at the local scale as suggested in Peru's NDC implementation

Keywords:
Starchy maize

plan.

1. Introduction

The Nationally Determined Contributions (NDCs) implementation
plan is currently developed in Peru, as a follow-up to the COP21 in Paris
in 2015. It provides the basis for Peru's contributions to reducing
greenhouse gas emissions and outlines how Peru plans to adapt to cli-
mate change impacts in various sectors. Climate change projections
show that the agricultural sector in Peru is expected to be confronted
with higher temperatures and fewer rainy days but more intense rain-
fall events (Christensen et al., 2013; Giorgi et al., 2014). In addition to
changes in precipitation patterns, the melting of Peru's glaciers
(Rabatel et al., 2013) diminishes an important water source for agri-
culture.

To support the development of the NDCs in Peru, information on the
expected impacts of climate change and altered weather conditions on

agriculture is required to formulate effective adaptation measures. In
addition to information on long-term climatic changes, information on
production risks for the near future is needed to provide guidance on
how to reduce weather risks by short-term adaptation planning and
how to deal with already altered climate conditions.

To test if an adaptation measure is appropriate to reduce risks in
crop production, process-based and statistical crop models are im-
portant tools to resolve the impact of weather on crop yields
(Challinor et al., 2014), and the particular effect of adaptation measures
under different environmental conditions. A statistical model, which is
trained on past weather and yield data, can provide valuable empirical
support for informing adaptation measures in the near future
(Iglesias et al., 2010; Lobell et al., 2008; Lobell and Burke, 2010;
Mu et al., 2013).

As outlined in the NDCs of Peru, the local scale is of particular

Abbreviations: NDCs, Nationally Determined Contributions; COP21, 21st session of the Conference of the Parties; RRM, regional regression model; PDM, panel data
model, DT, decision tree; ENSO, El Nifio-Southern Oscillation; GDD, growing degree days; AIC, Akaike Information Criterion; MSE, mean squared error; NSEe
(NSEv), Nash-Sutcliffe efficiency coefficient of the estimation (validation) result; CART, Classification and Regression Tree; SENAMHI, Servicio Nacional de
Meteorologia e Hidrologia del Pert; PISCO, Peruvian Interpolation Data of the SENAMHI's Climatological and Hydrological Observations; JRA-55, Japanese 55-year
Reanalysis; MODIS, Moderate Resolution Imaging Spectroradiometer, cloud fraction

* Corresponding author.

E-mail addresses: laudien@pik-potsdam.de (R. Laudien), schauber@pik-potsdam.de (B. Schauberger), gleixner@pik-potsdam.de (S. Gleixner),

gornott@pik-potsdam.de (C. Gornott).

https://doi.org/10.1016/j.agrformet.2020.108154

Received 2 December 2019; Received in revised form 11 August 2020; Accepted 20 August 2020

0168-1923/ © 2020 Elsevier B.V. All rights reserved.



2 Publications

R. Laudien, et al.

importance when it comes to developing and implementing adaptation
measures as often ways to anticipate and protect against climate change
impacts need to be found on the local scale (Gobierno del Pert, 2018).
To support an effective selection of appropriate adaptation measures at
this level, a model assessment needs to be able to provide information
about yield impacts and effects of adaptation at this scale. Apart from a
global assessment by Ray et al. (2015) that describes weather-related
yield variation on the regional level in Peru, there is — to our best
knowledge — no local or regional assessment of the complex weather
influences on crop production covering the whole country of Peru.
Moreover, there is no assessment of suitable adaptation measures in-
formed by risk assessments of current or future weather conditions.

In this study, we assess the influence of weather on starchy maize
yields. Together with potato (Solanum tuberosum L.), starchy maize (Zea
mays L ssp. amildceo) belongs to the main food crops in Peru. It is mostly
produced for self-consumption, which makes its production particularly
important for the food security of 42% of the rural population who live
in poverty in Peru (INEIL, 2019).

We assess weather influences on starchy maize yields on different
scales in Peru with a regional regression model, a panel data model and
the machine learning algorithm decision tree. Based on these models,
we evaluate the effectiveness of adaption measures which increase
water availability (e.g. irrigation, water storage and harvesting or soil
management, as named in Peru's NDCs) as action options under un-
favourable weather conditions. With this example, we illustrate how a
statistical approach can support a risk-informed selection of adaptation
measures suggested in Peru's NDCs. This can support the implementa-
tion process of the NDCs and the design of effective adaptation mea-
sures for current and future periods at the local scale.

1.1. Weather variability and climate change in Peru

Already today, Peru is affected by high weather variability — both
spatially and temporally. Peru has 15 Koppen-Geiger climate zones
(Fig. A.1 of the supplementary information, SI), which range from hot
and cold desert climate at the coast to subtropical highland climate in
the Andes and tropical rainforest climate in the Amazon (Peel et al.,
2007). This spatial climatic diversity results in different growing con-
ditions across the country. Even within the same climate zones, the
inter-annual weather variability is high because of periodically recur-
ring El Nifio-Southern Oscillation (ENSO) events. El Nifio particularly
impacts the coastal region of the Andes in Peru (Bourrel et al., 2015).
The recent Coastal El Niflo event in 2016/17 led to severe floods and
landslides along the northern and central coastal region (Rodriguez-
Morata et al., 2019). The El Nifio in 2015/16 was associated with ex-
ceptionally dry conditions in the south of Peru. Agriculture in Peru
needs to be able to adapt to these varying weather conditions for which
early warnings are still difficult to obtain, despite progress in the pre-
diction lead time (Ludescher et al., 2014).

In addition to these already prevalent weather risks on agriculture,
climate change will amplify risks for Peru's agricultural sector. In the
last four decades, the strongest warming within Peru occurred in the
southern Andes of Peru (warming rates reached up to 0.3°C per decade
since 1981; SI Fig. A.2). This warming trend is projected to continue to
an additional increase of 1° to 2°C until mid-century depending on the
emission scenario (Collins et al., 2013; Marengo et al., 2009). Apart
from the direct impact of increased temperatures on agriculture, higher
temperatures also increase the atmospheric water demand and conse-
quently evapotranspiration rates (Allen et al., 1998). This in turn re-
duces the amount of water available to agriculture (Lobell et al., 2013).

With regards to future precipitation projections, a general tendency
towards fewer rainy days, but more intense rainfall events, is expected
(Christensen et al., 2013; Giorgi et al., 2014). Whereas the northern
Coast and the Amazon region are expected to experience fewer con-
secutive dry days throughout the 21* century, the number of dry days
and consequently dry spells are projected to increase over southern
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Peru (Giorgi et al., 2014; Sorensson et al., 2010) where the main
starchy maize producing regions can be found.

Many glaciers have already lost up to 30% of their surface area since
the 1960s (Rabatel et al., 2013) such that an important water source for
agriculture is diminishing. Melting glaciers, dryer conditions in
southern Peru and more erratic rainfall suggest that adaptation options
(e.g. irrigation, water storage and harvesting or soil management) that
address water scarcity and precipitation vagaries will be important to
maintain and increase agricultural productivity in Peru.

2. Material and methods

In this study, we used two yield data sources and three different
statistical models to assess the influence of weather on starchy maize
yields in Peru. Based on the models, we evaluated the effectiveness of
artificially increased water availability to increase yields.

2.1. Input data

2.1.1. Yield data

The first source of crop yield data is obtained from official statistics
from the Ministry of Agriculture of Peru (MINAGRI, 2018). The time
series covers 13 years (from 2005 to 2017) and is available on region
level. The dataset comprises 19 out of the 25 regions in Peru.

The second yield data source is a household survey on plot level
carried out by the Peruvian national statistical institute “Instituto
Nacional de Estadistica e Informatica” (INEI, 2017). The first survey
wave started in 2014. However, the size assessment of the agricultural
plots changed in 2016 (source: personal communication with INEI), so
that the first two and the last two waves are not comparable. Therefore,
we only considered the last two waves (2016 and 2017) of the survey to
have a consistent measurement of the plot sizes in the data set. This is
important as yield is calculated as production over area. The data set of
waves 2016 and 2017 comprises 19,704 yield observations in total (SI
Fig. A.3). We aggregated the plot level data to cluster level. The clusters
were derived from the IV national census from 2012 and are the pri-
mary sampling unit of the survey. Clusters are below districts, i.e. the
lowest administrative unit in Peru (SI Fig. A.4 shows a map of regions
and clusters in Peru). The aggregation to cluster level was necessary to
limit a potential sampling bias or reporting error on plot level and
because the GPS locations of the plots are not publically available, thus
precluding a correlation with weather data. We averaged the yields per
cluster with weights based on harvest area.

2.1.2. Weather data

We used the following climate data for our analysis. For precipita-
tion, we used a data set provided by the Peruvian meteorological ser-
vice SENAMHI (Servicio Nacional de Meteorologia e Hidrologia del
Perti) called PISCO (the Peruvian Interpolation Data of the SENAMHI's
Climatological and Hydrological Observations, Aybar et al., 2019). The
data set provides daily precipitation sums at a spatial resolution of 0.1°
and has a robust performance in particular in the coastal regions and
the western flank of the Andes (Aybar et al., 2019), which are parti-
cularly used for maize production. While PISCO also includes tem-
perature data, this was not available for the whole study period.
Therefore, we used surface temperature data from JRA-55 (Japanese
55-year Reanalysis; Kobayashi et al., 2015). JRA-55 provides 6-hourly
temperature at a resolution of ca. 0.6°. To represent the influence of
solar radiation on plant growth, we used cloud fraction derived from
MODIS  (Moderate  Resolution  Imaging  Spectroradiometer;
Platnick et al., 2015) due to its high spatial and temporal resolution for
a long time series. MODIS provides daily raster imageries at a resolution
of 5km. We used cloud fraction instead of solar radiation due to relia-
bility issues in the data quality of solar radiation over the Amazon
(Dutra et al., 2015) and because cloud fraction can be regarded as
tantamount to solar radiation (Muneer and Gul, 2000). Even though the
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combination of different climate data sources bears the risk of in-
corporating physical inconsistencies, the different sources were con-
sidered the best available choices for Peru in particular in regard of
spatial resolution, which is crucial in complex terrain. Moreover, phy-
sical correlations are less relevant when aggregating climate data
temporally and spatially to administrative levels. For the regional as-
sessment, we calculated the mean over all grid points per region. For
the local assessment, we aggregated the weather data to cluster scale.
Due to the small size of the clusters, we used the weather grid point that
has the shortest distance to the cluster center calculated by the Eu-
clidean distance.

2.1.3. Crop calendar

To represent the weather conditions during the growing season, we
followed the crop calendar provided by MINAGRI (MINAGRI, 2017).
Even though the survey also contains information about the growing
season, we preferred the MINAGRI crop calendar to allow for a better
comparison between the two yield data sources and to avoid possible
errors in the survey-based seasons (Section 2.1.1). Per region the most
frequent sowing and harvesting month were selected. If the previous
(next) sowing month (harvesting month) had a share higher than 25%,
it was also included in the growing season. For the regions Lambayeque
and Ica no clear growing season could be found, because several
months have a similarly high share. Therefore, we used the dates of the
provinces within these regions with the highest production of starchy
maize.

2.2. Modelling approaches

We used three modelling approaches (Fig. 1). To assess weather-
yield relations on the regional level, we used a regional regression

Regional assessment
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model (RRM). The data set on region level covering 2005 to 2017 was
used as input yield data. For each of the 19 regions, a RRM (Eq. (1))
with different variables and parameters was constructed to account for
the diverse climatic conditions within the country.

Due to the short time series of the household survey (covering the
harvesting years 2015 to 2017), we used a panel data model (PDM) to
analyse weather influences on maize yields at the local level. The PDM
uses one parameter set for all the considered spatial units (Eq. (2)). Both

the RRM and PDM follow the approach of Gornott and
Wechsung (2016).
K
Vi = Zﬁki X + i+ &
k=1 @
K
Y = ZB’( Xie + o+ &
k=1 2)

with B as parameters, X as explanatory input variable, a as unobserved
time-invariant individual effects, ¢ as error term for K variables
(k =1, ..,K), N spatial units (i =1, ..,N) and T years (t = 1, ..., T)

In addition to these two regression models, we used a decision tree
(DT) to cross-check the results obtained from the PDM. The PDM is
based on fewer input data, which bears the risk of generating less robust
results. We therefore apply a machine learning algorithm as an addi-
tional validation. The DT is a non-parametric machine learning algo-
rithm which does not require distributional assumptions and is robust
to outliers (Song and Lu, 2015). For our analysis, we used the CART
(Classification and Regression Tree) algorithm (Breiman et al., 1984).
To avoid overfitting, we pruned the tree by defining the minimum
amount of observations required to perform a split to 50 and the
minimum amount of observations for an end node to 25. This is referred
to as pre-pruning and stops the tree from growing completely until it

Local assessment
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Fig. 1. Work flow of the analysis for regional (left) and local assessment (right).
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perfectly classifies the training set (Patel and Upadhyay, 2012).

For our analysis, we used R (R Core Team, 2014) with the package
glmnet (Friedman et al., 2008) to perform LASSO regression, the
package rpart (Therneau et al., 2019) to perform the decision tree and
the package ggplot2 (Wickham, 2009) to produce the figures.

2.2.1. Pre-processing

The household survey contained obvious inconsistencies that re-
quired data cleaning. Some observations in the survey have higher
harvest areas than planted areas or unrealistically high production on
small plots (e.g. > 300kg production on < 0.03ha harvest area). The
sowing and harvesting dates show questionable entries for many ob-
servations, i.e. either strong deviations from the median dates per re-
gion or a growing season longer than a year. These inconsistencies
could originate from differing techniques applied by enumerators or
wrong statements made by the interviewees. Different units used for
production (kg, arroba, bag, quintal and other units), and plot sizes (m?,
ha, acre and other units) make the data set prone to errors and in-
accuracies, because the conversion factors used to standardize pro-
duction and plot size might be inaccurate. To ensure a proper data base,
we deemed it essential to clean the data before modelling. First, we
removed observations with missing values for yield. Second, we
omitted yields outside the 1% and 99 percentiles to guard against
outliers, leaving only yields between 0.24 and 3.75 t/ha. Third, we only
kept clusters that have yield data for at least three harvesting years (the
survey in 2016 also asked for harvests in 2015, with equal plot size
calculations as in 2016 and 2017). Fourth, we removed those clusters
that show very little yield variability (standard deviation < 0.01 per-
centile), as constant yields are unlikely and probably reporting errors.
In sum, after data cleaning (remaining n=19,253), aggregating to
cluster level (n=1,994), only considering clusters with three harvesting
years (n=324) and sufficient variability, we used 291 aggregated yield
observations (SI Fig. A.3).

In addition, we applied the following transformations: For all three
models, we applied a within-transformation to remove time-constant
effects from the variables (Wooldridge, 2014). For the RRM that is
based on a time series of 13 years, we removed the trend in the yield
data by testing different de-trending methods (none, linear, quadratic)
and then applying the one that resulted in the lowest Akaike Informa-
tion Criterion (AIC; Bozdogan, 1987). For the DT, we transformed
quantitative maize yields into a categorical variable by splitting it into
five groups (using the Oth, 20th, 40th, 60th, 80th, 100th percentiles as
group limits).

2.2.2. Variable creation and selection

Following the climatic envelope for maize growth (SI Text A.1), we
generated the following variables (formulas are provided in SI Text
A.2): To represent temperature conditions, we included mean tem-
perature (T.mean), the mean and maximum of daily maximum tem-
peratures (T.max and maxOfmax, respectively) and the mean and
minimum of daily minimum temperatures (T.min and minOfmin, re-
spectively). The two extreme values were included to account for single
high and low temperature events that could already induce crop da-
mages. To represent cumulative extreme temperature influences, we
included Freezing Degree Days (FDD) to account for the harmful in-
fluence of cold temperatures below 0°C and Heat Degree Days above
30°C (HDD) to cover too high temperatures. Variations in temperature
within the season are represented by the coefficient of variation (CV,
defined as standard deviation over mean). We calculated the CV of
T.mean, T.max and T.min.

We included the precipitation sum in the growing season (P.sum) to
represent the overall water availability for maize. We also included the
number of days with precipitation above a threshold of 5 (PA5), 10
(PA10), 15 (PA15) and 20mm (PA20) per day as well as the maximum
daily precipitation (P.max) to cover the influence of single precipitation
events. The number of days without precipitation (DWP) accounts for
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dry conditions. Because the distribution of rainfall within the growing
season is of particular importance for plant growth, we included dry
spells of more than 5 (cdd5) and 10 consecutrive dry days (cdd10) and
wet spells of more than 5 (cwd5) and 10 consecutive wet days (cwd10).
The coefficient of variation of the precipitation sum (P.cv) represents
the variability of rainfall within the growing season.

To cover the influence of solar radiation, we included the mean
cloud fraction (C.mean), the minimum cloud fraction (C.min) and the
coefficient of variation of the mean cloud fraction (C.cv).

The variables were separately calculated for the vegetative and re-
productive phase of the growing season. The separation between ve-
getative and reproductive phase was based on the sum of growing de-
gree days (GDD; SI Text A.2 Eq. (22)). The days in the growing season
until 50% of the full-season GDD sum was reached were allocated to the
vegetative phase and the remainder to the reproductive phase, fol-
lowing Schauberger et al. (2017).

Since there is a large number of potentially relevant variables, a
selection process was applied for the RRM and the PDM to elucidate
important influences. 1) To avoid multicollinearity, only those variables
were selected that are not strongly collinear (i.e. Pearson's r > 0.7) with
another explanatory variable. For the RRM: if a set of variables was
strongly collinear, then from this set only one variable was included,
choosing the one with the highest correlation with yield. For the PDM:
variables were selected for which more clusters have a high correlation
with yield. 2) Least Absolute Shrinkage and Selection Operator (LASSO)
regression was performed for the final feature selection. Through reg-
ularization, LASSO performs a co-variate selection, which improves
both  the prediction accuracy and the interpretability
(Tibshirani, 1996). For the RRM: to select the optimum lambda (the
regularization penalty for the LASSO regression), we used the lowest
cross-validation (years were omitted subsequently) mean squared error
(MSE). For the PDM: because of a higher amount of input data, we used
the lowest cross-validation MSE of a 10-fold cross-validation to select
the optimal lambda. Because in this case the folds were selected across
time and space, we used the mean minimum lambda value of 30 model
runs. 3) As an extra safeguard against overfitting in the RRM, we in-
cluded one further restriction, allowing only half as many variables as
there are observations. For the DT, the described variable selection
process was not applied as the algorithm explicitly selects the variables
that achieve the highest information gain and pre-pruning avoids
overfitting.

2.2.3. Validation

To validate the RRM and the PDM results, we performed a one-year-
out cross-validation. For each year subsequently, all observations in
that year are removed from the dataset and the remaining observations
from the other years are used to estimate the model and predict yield
changes for the removed year. The goodness of fit was then evaluated
based on the Nash-Sutcliffe efficiency coefficient (NSE; Nash and
Sutcliffe, 1970), for the combined out-of-sample predictions. In contrast
to R?, NSE does not only evaluate similarities in variability, but also the
mean model bias, which makes it a robust quality measure. In addition,
we tested the significance of the models based on the F-statistics and the
performance of the models compared to a constant model that only
takes the mean yield per region as a predictor. With the Breusch—
Godfrey test we assessed autocorrelation and with the Breusch-Pagan
test we tested for heteroscedasticity. As highly co-linear variables were
removed in the variable selection process, a test for multicollinearity
was not necessary.

The DT is validated based on a 10-fold cross-validation and the
model fit is assed based on accuracy, which is defined as the share of
correctly predicted values of all predicted values.

We compare the model fit of the different modelling approaches on
region level. Therefore, the observed and modelled yields of the PDM
and the DT were aggregated to region level.
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2.3. Assessment of adaptation options

We assessed the effect of increased water availability on crop yields.
To get an estimate of how much more water is going to be needed in
future with ongoing climate change, we focused in our analysis on
changes in the atmospheric water demand. A warming climate in-
creases the atmospheric water demand (Allen et al., 1998). This in turn
reduces the amount of water available to agriculture (Konings et al.,
2017; Konings and Gentine, 2017; Lobell et al., 2013; Novick et al.,
2016). The actual water availability depends also on other factors, most
importantly on precipitation and soil water holding capacity. However,
as climate models do not agree on a sign of the change in precipitation
in the future in Peru (SI Fig. A.5), we concentrated on the change in
atmospheric moisture demand.

For an estimate of future changes in the atmospheric water demand,
we focused on potential evaporation in the ISIMIP2b simulations from
the global hydrological model WaterGAP2 (Miiller Schmied et al.,
2016). The model was driven with climate data from four global cli-
mate models (namely GFDL-ESM2M, HadGEM2-ES, IPSL-CM5A-LR,
MIROC5), which were bias-adjusted and provided within ISIMIP2b
(Warszawski et al., 2014). We focused on the RCP8.5 scenario, which is
the RCP emission scenarios without climate policy interventions, to
take into account the range from conditions similar to today to un-
mitigated climate change. The spatial variation of current potential
evapotranspiration over Peru and expected changes by mid-century are
shown in Fig. 2. The ensemble mean change of potential evaporation
under RCP8.5 in Peru is an increase of ca. 77mm for the growing season
in the middle of this century. This amount of water is estimated to feed
the atmospheric water demand and as such is not available to crops.
Therefore, we assume this amount to be the minimum necessary ad-
ditional water in the near future to compensate for the negative tem-
perature effects on water availability. We used this estimated change in
potential evapotranspiration and assessed the effect of 77mm more
water per growing season on starchy maize yields.

To distribute the additional water evenly over the growing season,
we assumed that the farmer would irrigate twice per month (on day 1
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and 15 of each month) by an amount of 77mm divided by the number
of months times two. As most growing seasons are around nine months,
this means ca. 9mm of irrigation per month. We compared the original
model output (the estimation with currently available water) with the
adaptation scenario outputs and evaluated the changes in simulated
maize yields.

3. Results
3.1. Starchy maize yields in Peru

In Peru, 273,868 tons of starchy maize were produced in 2017. The
main producing regions were Cusco, Apurimac, Huancavelica, La
Libertad, Ayacucho and Cajamarca (Fig. 3). These six regions accounted
for 70% of the total national production in 2017.

Between 2005 and 2017, yields for starchy maize in Peru were 1.7t/
ha on average. In 2017, the highest yields could be found in the
southern coastal regions in Peru (Ica, Arequipa and Tacna) with the
highest yields in Ica (4.5t/ha). The lowest yields were obtained in
Piura, Amazonas and Cajamarca (0.8 to 1t/ha). Apart from Cusco,
which had relatively high yields (2.5t/ha), most regions with high total
production only showed medium yield levels (Apurimac = 1.9t/ha,
Huancavelica = 1.6t/ha, La Libertad = 1.6t/ha, Ayacucho = 1.3t/ha).
An exception is Cajamarca, which had the lowest yield level (0.8t/ha)
compared to the other regions even though it was one of the most
producing regions. Accordingly the harvest area was one of the highest
compared to the other regions, whereas the high-yield regions had
lower harvest areas (Ica, Lima, Tacna and Moquegua; MINAGRI, 2018).
The vast majority of starchy maize production was based on small-
holder agriculture with an average harvest areas of 0.13ha. Even in
Piura and Lambayeque, which were the regions with the highest har-
vest area for starchy maize in Peru, the harvest areas was only 0.28ha
on average (INEI, 2017).

As there is no spatially explicit information in the data set when
maize is planted or harvested, we chose the entire official growing
period (Fig. 4) as reported by the Ministry of Agriculture
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Fig. 2. Mean potential evapotranspiration from 2000 to 2020 (left) and the change in mean evapotranspiration in the period from 2040 to 2060 compared to the
period from 2000 to 2020 (right), both figures show modelled data for consistency.
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Fig. 3. Yield, harvest area and production of starchy maize in Peru in 2017.

(MINAGRI, 2017). The length of the growing season ranged from 204
(5™ Percentile) to 306 (95" Percentile) days and the main growing
season is from September to June. Exemptions were Piura and Lima
with relatively late sowing in January/February and late harvest in
August. Lambayeque and Ica have a high amount of larger farms with
irrigation facilities available, which is why the growing season in these
two regions is less dependent on the start of the rainy season. In these
two regions, starchy maize is produced almost all year long and a clear
growing season cannot be found. The sowing and harvesting months in
these two regions do not represent most of farmers, but represent the
month with the highest share of farmers who planted/harvested.

3.2. The influence of weather on starchy maize yields

3.2.1. Regional assessment

We used a RRM to assess weather influences on yield variability
from 2005 to 2017 on region level. The model shows a good perfor-
mance for almost the whole country (Fig. 6). The median NSE for the
estimation with all data (coined ‘NSEe’ hereinafter) is 0.91, which

corresponds to an explained variability of 91%. The exhaustive one-
year-out cross-validation produces a median NSE (coined ‘NSEV’ for
‘validation’) of 0.55 (i.e. an explained variability of 55%). The model is
also able to reproduce most of the extreme years as can be seen with the
high harvests in Amazonas in 2014 and in Lambayeque in 2011 or the
low harvests in 2016 in Hudnuco and in Tacna (Fig. 5). The yield
variability in Lima cannot be reproduced by the model (NSE of -0.75; SI
Fig. A.6), which can be explained by the diverging agricultural condi-
tions and the high degree of urbanization in this region. Also the models
for Apurimac (NSE of -0.24) and Huancavelica (NSE of -0.45) show an
overall weak performance, even if some years can be reproduced well
by the models.

We tested whether the assumptions in linear regression are fulfilled.
Whereas heteroscedasticity does not occur in any of the RRMs, a few
models show autocorrelation, which is why we used robust standard
errors in these cases (Zeileis, 2004). The significance of the models on
the 0.05 significance level and the lower RMSE of the RRMs compared
to a constant model (SI Table A.1) suggest that the model results are
useful (apart from the models for Lima, Apurimac and Huancavelica)
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Fig. 4. Sowing and harvesting month (left) and the length of the growing season (right) for starchy maize yields on region level in Peru.
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Fig. 5. Observed and simulated maize yield anomalies in Peruvian regions. Black lines show observed yield anomalies, blue lines show anomalies estimated with the
full model and green lines those estimated out-of-sample. Region-specific selected variables are shown in blue for precipitation, red for temperature and grey for
cloud fraction. The abbreviations of the variable names are explained in Table 1. Lima is not shown here for space reasons and because it is not used for further
applications, but it can be seen in SI Fig. A.6. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this

article.)
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Table 1

Abbreviations of selected variables. The column “count” denotes the frequency of selected variables over all RRMs (excluding the model for Lima). The variables are generated for the vegetative (indicated by the suffix

v”) and the reproductive phase (indicated by “_r”) of the growing season.

«

Cloud-related variables

Temperature-related variables

Precipitation-related variables

Count

Explanation

Name

Count

Explanation

Name

Count

Explanation

Name

Mean minumum cloud fraction [%]

C.min

C.cv

6

Coefficient of variation of maximum temperature
Coefficient of variation of mean temperature

maxOfmax ~ Maximum of the maximum temperature [°C]

T.cv.max

T.cv.mean

11 (3)

Consecutive dry days of more than 5 (10) days

cdd5 (cdd10)

4

Coefficient of variation of mean cloud fraction

Mean cloud fraction [%]

7, 4,52
4

Precipitation events above 5, 10, 15 or 20[mm]

PAS5, PA10, PA15, PA20

P.cy

C.mean

5
3

Coefficient of variation of daily precipitation sum
Consecutive wet days of more than 5 (10) days

Maximum precipitation [mm]
Days without precipitation
Precipitation sum [mm]

Coefficient of variation of minimum temperature
Mean maximum temperature [°C]
Mean minimum temperature [°C]

Mean temperature [°C]

T.cv.min
T.max
T.min

33

cwd5 (cwd10)

P.max
DWP
P.sum

N NN

Minimum of the minimum temperature [°C]

Heat degree days

minOfmin

T.mean
HDD
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and that weather explains a substantial share of observed maize yield
variation.

The variable selection reflects the high climatic variability within
Peru. Precipitation seems to determine yields most evidenced by the
most frequent selection of precipitation-based variables when com-
pared to others. The variable cdd5 is selected most often. Strong var-
iations in both maximum and mean temperatures influence maize
yields in most regions (mostly negatively). Selected variables related to
cloud fraction are most often minimum cloud fraction and the coeffi-
cient is usually positive, which may be due to a higher cloud fraction
often being synonymic with more precipitation. A comparative de-
scription of the variable selection in different regions in Peru can be
found in SI Text A.3 and SI Table A.1 provides the region-specific
coefficients of selected variables.

3.2.2. Local assessment

As stated by the Peruvian NDCs, the local scale is of particular im-
portance in adaptation planning (Gobierno del Pert, 2018). Therefore,
we also analysed the weather influence on starchy maize yields on the
local level. For this assessment, we used a PDM that takes a survey
covering the harvesting years 2015 to 2017 as input data. Over all
observations (n=291), the model has an NSE of 0.20 in the estimation.
Autocorrelation and heteroscedasticity do not impair the model. The
non-exhaustive one-year-out cross-validation produces an NSE of 0.11,
which is a lower model performance compared to the RRM. However,
in 33% of the clusters the NSE in the validation is higher than 0.25 and
the model is significant and has a higher performance compared to a
constant model, indicating a detectable impact of weather on crop
yields beyond random influence (SI Table A.2). The following de-
scriptions only relate to these clusters (Fig. 6).

The variable selection process revealed an influence of 16 weather
variables on starchy maize yields for the harvesting years 2015 to 2017
and the considered observations. Like in the RRM, precipitation seems
to have a stronger influence on maize yields than temperature and
cloud fraction. Overall, the model suggests a positive influence of
moderately wet conditions on starchy maize yields. Consecutive dry
spells of more than 5 and 10 days influenced yields negatively in the
reproductive phase, whereas consecutive wet days of more than 5 days
showed a positive impact in the whole growing season. Maximum
precipitation showed a positive impact, but precipitation above 20mm
had a negative impact. Mean cloud fraction, which is often related with
rainy weather conditions, showed a positive impact. The negative in-
fluence of variations in cloud fraction can be explained by the deviation
from high cloud fractions, which are related with dryer weather con-
ditions. Temperature-related influences were most pronounced for
variations in temperature (mean, maximum and minimum). Heat de-
gree days and minimum temperature proved to be detrimental for
starchy maize yields. For the considered observations, the model sug-
gests that too dry conditions had a stronger negative impact on yields
than too wet weather conditions.

To compare the results with the RRM, we aggregated the results to
region level. Whereas the RRM is able to explain yield variability in
almost all regions in Peru, the PDM captures yield variability in nine
out of 16 regions (Moquegua, Huancavelica, Lambayeque, Cajamarca,
Ayacucho, Junin, Tacna, Arequipa and La Libertad), evidenced by an
NSEv higher than 0.25. The model seems to be particularly suitable to
capture the weather influences on starchy maize yields in the cold and
hot desert climate that is found in the coastal region of Peru. Wet
conditions, on the other hand, like those in the tropical wet and dry or
savanna climate, the tropical rainforest and monsoon climate like in
Ancash, Amazonas and Pasco are not well captured by the model. The
regional differences in the model performances indicate that the PDM is
better in representing dry weather influences on maize yields than too
wet weather conditions.

Because the PDM on the local level can explain yield variability for
fewer regions compared to the RRM, we used another modelling
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Fig. 6. Model performance in the out-of-sample validation for the RRM (left), the PDM (middle) and the DT (right). Points show the location of the considered cluster
centroids (points in yellow in the PDM show clusters with a higher model performance than an NSEv of 0.25, black points show all other clusters). Grey color in the
PDM panel indicates NSEv values < -1. Regions in white have no observations in our data base. (For interpretation of the references to colour in this figure legend,

the reader is referred to the web version of this article.)
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Fig. 7. A decision tree for starchy maize yield anomalies on the local scale in Peru. Yield anomalies in kg/ha are split into five categories (each comprising ca. 58
observations, with 291 observations in total), denoted by different colors. For each end node, the majority category is indicated by color, while the number of
observations in each category are displayed in the histogram below the nodes. Percentages show the fractions of all observations contained in the node. Variable

explanations are provided in Table 1.

approach to corroborate our results. We therefore applied a decision
tree to the same input data as for the PDM (Fig. 7). The accuracy of the
DT is 42% in the training set and 20% in the test set (Fig. 6).

In both the PDM and the DT, the variables C.cv, P.max, cdd10 and
minOfmin were selected. In the DT, the first split variable on the top
node was cloud fraction, which shows that major yield differences can
be explained by deviations from high cloud fractions that are usually
related with dryer weather conditions. 12% of observations had high

18

yield levels when cloud variation is smaller. Whereas 18% of the ob-
servations showed a positive relation with high maximum tempera-
tures, in most cases (the remaining 70%) there was a negative impact of
maximum temperatures. The influence of precipitation depends on the
yield range and suggests non-linear influences. Whereas low maximum
precipitation was related to higher yields in 15% of the observations
and precipitation above 15mm with lower yields in 20% of the ob-
servations, more dry spells of 10 days were connected with low yields
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Fig. 8. The effect of 77mm more available water during the growing season on starchy maize yields.

for 9% of observations and with higher yields for the remaining 26% of
the observations.

3.3. Assessing an adaptation option

Due to the high performance of the RRM for large parts of the
country, we used the RRM to assess the effect of higher water avail-
ability on starchy maize yields. This is relevant to gauge expectations
on adaptation measures that aim to compensate the water loss due to
increased potential evapotranspiration under climate change in the
middle of this century (Section 2.3).

Our analysis shows that 77mm more water availability in the
growing season would have regionally different effects (Fig. 8). The
model suggests an increase of 17% (i.e. 160kg/ha) in Piura and an in-
crease of 15% (i.e. 405kg/ha) in Tacna. In contrast, the model result for
Lambayeque shows a drop in yields by 21% (i.e. 380kg/ha). Even
though Lambayeque is a neighbouring region of Tacna, yields are in-
fluenced more strongly by the negative influence of excessive rain, such
that a higher water availability in the growing season would have a
negative influence on yields. Half of the regions show only a slight
change (-2% to +2%), and partly an insignificant change in yields (SI
Table A.3).

4. Discussion

We have shown that three different statistical crop models can ex-
plain a substantial fraction of starchy maize yield variation in Peru by
variations in weather. Model performances diverge, with a regional
regression model showing the highest skill in yield estimation while
local-scale panel data and decision tree models account for less of the
observed variation. The effect of more plant-available water - to
counterbalance possibly higher atmospheric demands under climate
change — was assessed, resulting in mostly limited, regionally distinct
yield effects.

Whereas the RRMs on the regional scale showed a high perfor-
mance, the PDM on the local scale could capture yield variability only
to a limited extent. There are also divergences in the importance of
climatic variables between the two scales. We cannot exactly decipher
the underlying reasons for the difference in the model performances
and the variable selections due to different input data and different
modelling approaches used. Differences between the RRM and the PDM
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could be related to issues in data quality, the modelling approach or a
lacking influence of weather on crop yields at the local scale caused by
higher importance of management factors.

The yield input data for the local assessment is a survey and we
identified inconsistencies in the data set (detailed in Section 2.2.1).
Despite the applied filters, some uncertainties remain such as those
stemming from the normalization of different units for production and
plot sizes or the high inner-regional differences in the growing season
length. The PDM performs better on an aggregated (region) level, which
also indicates that the survey might contain reporting errors that are
averaged by the spatial aggregation and that other influences on crop
yields may also play an important role at local level.

Due to the short time series of the survey data, we had to apply a
different modelling approach for the local assessment, i.e. a pooled
PDM instead of an RRM. The PDM uses one parameter set to explain
weather-yield relations for entire Peru. Because of the highly diverse
climatic conditions within Peru, one parameter set may only be able to
capture the complex yield-weather relations in Peru to a limited extent.

Moreover, existing adaptation efforts, e.g. irrigation possibilities, or
individual farmers’ decision on sowing dates or cultivar choices could
contribute to a low model performance in some regions. The high inter-
regional differences in weather-responses underline the need for a
spatially distinct assessment of adaptation options to climate change.

In addition to regression analysis (RRM and PDM), we used a ma-
chine learning algorithm. The regression models conform to the as-
sumptions of linear regression, apart from a few RRMs that showed
autocorrelation. In this case, we used robust standard errors. To ex-
plicitly address autocorrelation in those regions, a multi-variate time
series model could be applied in future research. To avoid overfitting,
we restricted the maximum number of selected variables per RRM to
half of the amount of available observations. This is a conservative
approach, because in LASSO regression the number of nonzero coeffi-
cients is an unbiased estimate for the degrees of freedom (Zou et al.,
2007). Though it could still be argued that the number of variables is
high with respect to the number of observations (13 years), the com-
parable performance of the model in the cross-validation clearly points
to a robust measurement of the influence of weather on maize yields
that can be transferred to unknown data sets. The F-statistics and the
lower RMSE values compared to a constant model suggest that the
models are robust. Due to the lower model performance of the PDM, we
applied a machine learning algorithm as an additional validation for the
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variable selection. The decision tree has the advantage of being less
dependent on rigid model assumptions as found in regression analysis
(e.g. it is also able to capture non-linear weather influences). Despite
the limited amount of observations, the DT revealed largely similar
weather-yield relations, underlining that there are large-scale patterns
of weather impacts on maize yields in Peru and that the variable se-
lection can be considered robust.

Given the higher performance of the RRM, we assessed the effect of
more plant-available water on starchy maize yields on the regional
scale. Higher plant-available water could be realised by several adap-
tation measures, but these need to be implemented with diligence as
irrigation has already led to unsustainable water withdrawal rates
(Drenkhan et al., 2015). Water consumption from the agricultural
sector accounts for 89% of total fresh water use in Peru (ANA, 2013). In
addition, with on-going climate change the water sources coming from
the Andes are diminishing (Rabatel et al., 2013). Therefore, a focus
should be on improving irrigation efficiency and other adaptation
measures, such as improved water storage, water harvesting and better
soil management practices, as proposed by the NDCs (Gobierno del
Pert, 2018).

The result suggests that in some regions more water availability
would neither decrease nor increase yields substantially (Section 3.3
and SI Table A.3). Apart from possible uncertainties stemming from the
model coefficients or the model structure, this can be related to the
presence of favourable rain conditions or sufficient adaptation practices
already in place that regulate water availability, such as irrigation. In
this case, other adaptation measures need to be tested to enable an
increase in yields. The NDCs emphasize the need for good soil fertili-
zation practices, erosion and flood control, salinity management, di-
versification of the production system, pest and disease control, im-
proved seed varieties and the implementation of early warning and
agricultural risk transfer systems. Also the necessity to provide in-
formation services in the agricultural sector, better access to markets
and adding value to agricultural products are emphasised. Based on this
list of possible adaptation options, local adaptation strategies need to be
developed together with relevant stakeholders that take account of the
interconnectedness of adaptation options in various sectors
(Goosen et al., 2014). Our study provides an example of how a statis-
tical modelling approach can inform this process.

As the results show, there are strong regional differences within
Peru. Despite the high societal relevance of local weather-yield rela-
tions (Gobierno del Perti, 2018), a quantitative assessment of weather
impacts on maize yield at the local level has not yet been done for Peru,
to our best knowledge. To increase the pertinence of such modelling
efforts, in particular for adaptation planning, comprehensive and con-
sistent local yield data are required. The currently available data base
seems limiting for this high-resolution modelling. Thus, once longer
time series of high-quality yield and weather data become available on
the local scale, future research should be directed towards supporting
local adaptation planning by quantitative analyses of weather influ-
ences on Crops.

Particularly in regions that show a low model performance, a fur-
ther evaluation is needed and results should be tested on the ground.
Despite the discussed uncertainties, we consider the assessment of more
plant-available water useful as it provides a first indication of the ef-
fectiveness of adaptation measures suggested by the NDCs. Our results
can be used to prioritize regions in which more water availability would
potentially increase or decrease maize yields through the implementa-
tion of appropriate adaptation measures.

5. Conclusion

In this study, we assessed the influence of weather on starchy maize
yields on the regional and the local scale in Peru based on a regional
regression model, a panel data model and a machine learning algo-
rithm. Based on these models, we assessed the effect of higher water
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availability on starchy maize yields, which is suggested by the Peruvian
NDCs to adapt to climate change.

To our best knowledge, this is the first paper assessing weather-yield
relations in Peru in such temporal and spatial detail and our study
underlines the importance of a spatially-distinct assessment of adapta-
tion options. Under such diverse climatic conditions as can be found in
Peru, a local assessment is needed to account for the complex weather-
yield relations. This study shows how a statistical approach can support
the implementation of NDCs by providing quantitative information
about the effectiveness of adaptation measures that can be used to
identify priority areas for adaptation efforts.
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Robustly forecasting maize yields
in Tanzania based on climatic
predictors

Rahel Laudien'™, Bernhard Schauberger’, David Makowski? & Christoph Gornott'3

Seasonal yield forecasts are important to support agricultural development programs and can
contribute to improved food security in developing countries. Despite their importance, no
operational forecasting system on sub-national level is yet in place in Tanzania. We develop a
statistical maize yield forecast based on regional yield statistics in Tanzania and climatic predictors,
covering the period 2009-2019. We forecast both yield anomalies and absolute yields at the sub-
national scale about 6 weeks before the harvest. The forecasted yield anomalies (absolute yields) have
a median Nash-Sutcliffe efficiency coefficient of 0.72 (0.79) in the out-of-sample cross validation,
which corresponds to a median root mean squared error of 0.13 t/ha for absolute yields. In addition,
we perform an out-of-sample variable selection and produce completely independent yield forecasts
for the harvest year 2019. Our study is potentially applicable to other countries with short time series
of yield data and inaccessible or low quality weather data due to the usage of only global climate data
and a strict and transparent assessment of the forecasting skill.

To support food security planning in face of unfavourable weather conditions, accurate yield forecasts at sub-
seasonal to seasonal timescales, i.e. from weeks to months ahead, are important. Such yield forecasts can be used
for early warning so that actions can be taken before the disaster occurred. On a regional and national scale, a
seasonal yield forecast allows to adjust food imports so that food shortages in case of harvest losses or failures
can be alleviated. If available on a high spatial resolution, a yield forecast can also inform farm management
practices, such as fertilizer use, and decisions on sale prices and grain storage"*.

Despite the importance of yield forecasts, as expressed by the Division of National Food Security of the
Ministry of Agriculture in Tanzania (personal communications), no operational yield forecasting system on
sub-national level exists up to now. The Famine Early Warning Systems Network (FEWS-net), which provides
regular food insecurity reports for East Africa, stopped providing yield forecasts for Tanzania since December
2017. Ogutu et al. (2018)° proposed a yield forecasting system for East Africa but this system relies on model
simulations that were not validated with observational data at a subnational scale so that the accuracy of the
forecast is unknown. Liu and Basso (2020)? provide a yield forecast for three case studies in Tanzania based on a
process-based model with a lead time of 14-77 days. They calibrate and validate the forecast using survey data at
field scale. However, the practical application of this forecast for an operational forecasting system is hampered
due to the limited spatial (three regions) and temporal scale (year 2017) and the high potential implementation
costs (necessity to collect survey data for every new forecast).

In this study, we provide a statistical yield forecast for the whole country covering the time period from 2009
to 2019, which can be operationalized in a technical and cost-efficient way. We provide a within-season forecast of
maize yields at the subnational level about 6 weeks before harvest and relate the yields to weather and sea surface
temperature data. We focus on maize (Zea mays L.), as this is the main staple crop in Tanzania*. We conduct a
strict model validation—not only comprising of an out-of-sample validation, but also an out-of-sample variable
selection—to assess the forecasting skill.

any. “email: laudien@
pik-potsdam.de

Scientific Reports |

(2020) 10:19650 | https://doi.org/10.1038/s41598-020-76315-8 natureresearch

23



2 Publications

www.nature.com/scientificreports/

full model level 1 - LOOCV

latitude

NSE =0.92 NSE =0.81
T T T I 1 T
32 36 40 32 36 40
longitude
NsE I —
0.00 0.25 0.50 0.75 1.00

Figure 1. Model performance for yield anomalies from 2009 to 2018 based on selected region-specific weather
variables measured in the Nash-Sutcliffe efficiency coefficient (NSE). The NSE can range from 1 (100%
agreement between observed and modelled data) to — co; a value of zero can be interpreted in a way that nothing
of the observed variability can be explained by the model. The left panel shows the model performance when
the complete time series for each region is included. The right hand panel shows the performance for the leave-
one-out cross validation. The colour grey indicates an NSE lower than 0. The median NSE over all regions of
Tanzania is shown in the left corner of the panels.

Results

The influence of weather on maize yield variability. In the first step, we assessed how weather influ-
enced maize variability from 2009 to 2018. The median Nash-Sutcliffe efficiency coefficient® (NSE) of all models
for the estimation results is 0.92 (coined ‘NSEe’ hereinafter). The NSE of the level 1 validation (coined ‘NSEv1’)
is 0.81. The models show a high performance for almost the whole country (18 out of 21 regions have an NSEv1
of higher than 0.3; Fig. 1). Extreme years, like e.g. the high yields in 2010 in Dar es Salaam and Manyara or low
yields in 2016 in Kagera, as well as average yields can be reproduced by the models (Fig. 2).

The variable selection reveals the strong influence of extreme weather events on maize yields in Tanzania. In
general, maize yields seem to benefit from higher minimum temperatures, more precipitation and the absence
of more than 5 consecutive dry days (Fig. 3).

In the vegetative phase, high rainfall events (precip.p99_v, i.e. precipitation events with more rain than the
99% percentile) are related with higher yields, whereas the occurrence of consecutive dry days of more than
5 days (cdd5) are mostly negatively correlated with yield. Consecutive dry days play an important role in explain-
ing maize variability. In total, cdd5, cdd10 and cdd15 have been selected 17 times. They are mostly negatively
correlated with yields, in particular in the vegetative phase. Temperature events below the 1% percentile of the
minimum temperature in the reproductive phase (tas.min.p01_r) are related with lower yields—indicating that
too low minimum temperatures are detrimental for maize yields.

The influence of sea surface temperatures on maize yield variability. The usage of sea surface
temperature (SST) indicators in a separate, alternative model formulation led to a median model performance
of an NSE of 0.29 (level 1-LOOCYV), which shows that SST variables can explain a substantial part of yield vari-
ability, but that the influence of weather is stronger.

The SST of the West Pacific (WP) with a lead time of 120 days has the strongest influence on maize variability
from 2009 to 2018. Maize variability shows a positive correlation with the number of times the SST falls below
the 1% percentile of the WP SST (Fig. 4). The SST of the Indian Ocean Dipole (IOD) with a lead time of 30 days
influences mostly the bimodal rainfall regions in Tanzania. The number of times the SST of the IOD falls below
the 1% percentile is mostly positively correlated with yield, whereas the median IOD shows a mostly negative
correlation with yield.

Forecasting yield anomalies. We performed a within-season forecast by including the weather and SST
variables related to the vegetative phase of the growing season. This allows us to provide a yield forecast around
6 weeks before the calculated harvest date. To assess the hindcast-based operational performance of the forecast,
we include the level 1 (i.e. the out-of-sample validation) and level 2 validation (i.e. the out-of-sample variable
selection validation).

The forecast shows a high accuracy for the full model (NSE=0.91) and the level 1 validation (NSE=0.72). The
results of the level 2 validation suggest that the variable selection has a high year-to-year variability so that the
performance of this validation is lower. The level 2 validation has a high skill (NSE > 0.3) for 5 regions in Tanzania
(Fig. 5). The middle panel of Fig. 8 shows the yearly performance of the forecast of anomalies.

We tested the performance of the forecast compared to a constant model that only takes the mean yield
excluding the year that is forecasted as a predictor. The lower RMSE of the forecast compared to a constant model
(SI Table 4) underlines the robustness of the forecasting results. A strong correlation between SST and weather
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Figure 2. Observed and modelled maize yield anomalies in Tanzanian regions based on region-specific
selected weather inputs. Grey lines show observed yield anomalies, blue lines show modelled anomalies using
the full time series for model development, green lines indicate out-of-sample (level 1-LOOCV) estimates.
The y-axis shows detrended yield anomalies in logarithmic form. The names of the inputs are shown in blue
for precipitation and red for temperature-related variables. Explanations of abbreviations for input names are
provided in supplemental information (SI) Tables 1, 2 and 3.
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Figure 3. Estimated regression coefficients for the three most often selected variables. The three most often
selected variables are temperature events below the 1% minimum temperature percentile in the reproductive
phase (tas.min.p01_r), consecutive dry days of more than 5 days in the vegetative phase (cdd5_v) and
precipitation events above the 99th precipitation percentile in the vegetative phase (precip.p99_v). Note that this
analysis excludes the model coefficients with a performance lower than an NSE of 0.3 in the level 1 validation,
because we assumed these models as not robust enough for further analysis. Negative (positive) values indicate
that yields tend to decrease (increase) as a function of the values of the variables. The coefficients show
standardized values, i.e. they show the change in yield per standard deviation of the input variable. Regions, in
which the variable was not selected, are shown in white. The statistical significance of the estimated regression
coeflicients is shown in SI Fig. 1.

variables exists only in few, non-systematic cases (SI Fig. 4) and is eliminated due to the applied filter during the
variable selection. Thus a collinearity between SST and weather variables is not existent.

The variable selection of the forecast reveals similar variables compared to the model based on variables of
the vegetative and the reproductive phase. The three most often selected variables are shown in Fig. 6. Precipita-

wp_120.p01 iod_30.p01 iod_30.median

latitude

32 36 40 32 36 40
longitude
coeicient NN -
02 0.0 0.2

Figure 4. Coeflicients of the most often selected sea surface temperature (SST) variables. The three most often
selected variables are the number of times the SST falls below the 1% percentile of the West Pacific considering
alead time of 120 days (wp_120.p01), the number of times the SST falls below the 1% percentile of the Indian
Ocean Dipole considering a lead time of 30 days (iod_30.p01) and the median SST of the IOD considering
alead time of 30 days (iod_30.median). Further explanations can be found under Fig. 3. The statistical
significance of the estimated regression coefficients is shown in SI Fig. 2.

tion events below 5 mm (pB5) are positively correlated with maize yields in the North, but negatively correlated
with yields in the rest of the country. Whereas the negative correlation could indicate a negative influence of
low precipitation events on yields due to insufficient total rainfall amounts in the vegetative phase, the positive
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Figure 5. Performance of the forecast of anomalies based on selected region-specific weather and SST variables.
Areas in grey show an NSE of lower than -0.5. Further explanation can be found under Fig. 2.

correlation could indicate a positive influence of moderate and well distributed rainfall. The number of times
the SST in WP falls below the 1% percentile with a lead time of 120 days (wp_120.p01) is positively correlated
with yields, which could be explained by above average rainfall amounts in case of negative SST anomalies in

pB5_v wp_120.p01 cdd5_v

latitude

32 36 40 32 36 40
longitude

coefiient. NN =
-0.2

0.0 0.2

Figure 6. Coeflicients of the three most often selected variables in the forecast based on weather and SST
variables. Further explanations can be found under Fig. 3. The statistical significance of the estimated regression
coefficients is shown in SI Fig. 3.

the West Pacific. Dry conditions represented by the number of consecutive dry days of more than 5 days (cdd5)
are mostly negatively correlated with yields.

Forecasting absolute yields. As required for operational forecasting systems, we also provide a forecast
of absolute yields. To obtain absolute yields, we added the previously subtracted trend and the mean yield to the
forecasted yield anomalies.

The full model evaluation and the level 1 validation indicate a high skill (median NSE of 0.93 and 0.79) of
the within-season forecast of absolute yields for the whole country (Fig. 7). The level 2 validation has a median
NSE of 0.26 and shows a high performance for 10 of 21 regions, which have an NSE higher than 0.3. The median
RMSE is 0.07 t/ha for the estimation, 0.13 t/ha for the level 1 validation and 0.3 t/ha for the level 2 validation.

The reason for the improved forecasting performance is, in most regions, due to the inclusion of the trend,
in particular for the level 2 validation (Fig. 8).

Application of the forecast for year 2019. We used the model trained on yield data from 2009 to 2018
to provide a completely independent forecast for the harvest year 2019. The forecast of absolute yields for 2019
shows an overall high performance of the forecast in regions with a unimodal rainfall regime (NSE of 0.89 in the
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Figure 7. Assessment of the forecasted absolute yields. Areas in grey show an NSE of lower than —0.5.

level 2—LOOCYV) and a weak performance in bimodal rainfall regions (NSE of —7.73 in the level 2—LOOCYV;
Fig. 9).

Discussion

Our study provides a within-season maize yield forecast for entire Tanzania and is, to our best knowledge, the first
of its kind. In contrast to existing forecasting studies in East Africa®, we provide an out-of-sample validation and
an out-of-sample variable selection. Furthermore, we test the robustness by providing a completely independ-
ent forecast for the harvest year 2019. This strict and transparent assessment of uncertainties of the forecast is
particularly important in practice, when e.g. policy makers use a yield forecast to inform food security planning.

Over all regions, the forecast of anomalies produces a median NSE of 0.91 in the model estimation and a
median NSE of 0.72 in the level 1 validation, which indicates an accurate and robust forecast for large parts of
the country. The forecast reproduces both extreme years as well as average yields with high accuracy at a lead
time of on average 6 weeks.

Weather influences explain a substantial share of observed maize yield variability in Tanzania as shown by
the national median NSE of 0.92 in the estimation and 0.81 in the level 1 validation of the yield model based on
weather inputs. Precipitation as well as higher minimum temperatures positively influence maize yields. The
variable consecutive dry days is the most often selected variable across the regions, which underlines the detri-
mental effect of dry weather conditions on maize yields. This is in line with Cairns et al. (2013)° and Rowhani
et al. (2011)” who found drought stress to be one of the main weather-related reasons for low maize yields in
Sub-Saharan Africa. Apart from weather inputs, the SST of the West Pacific (WP) provides most explained yield
variability in the forecast. This can be explained by a strong correlation between the SST in the WP and East
African rain®. Low SST in the WP, which are related with higher rainfall amounts during the long rains in East
Africa®'", are positively correlated with maize yields. The variable selection shows that maize yield variability in
Tanzania is strongly influenced by extreme events. Also the study of Rowhani et al. (2011)” focusing on climate
variability and crop production in Tanzania seems to be in line with our finding. They found a strong relation-
ship between the coeflicient of variation (cv) of weather variables and cereal yields. In contrast to the cv, the
percentile variables can explicitly represent lower or upper extremes and are therefore easier to interpret. The
importance of extreme events for explaining maize yield variability in Tanzania implies that there is an upper
quality bound for yield forecasts in case of extreme events that are out of the considered range of the training
data. The variables selected in the estimation and the forecast show strong similarities for most regions, which
suggests that the variable selection is robust.

In contrast to the high estimation and level 1 validation performance, the level 2 validation, which additionally
integrates an out-of-sample variable selection, only shows good skills for a limited number of regions in Tanzania.
This rigorous level 2 validation is most relevant in practice, as at the moment of forecasting (1-2 month before
the harvest), the variable selection can only be done based on yield information from previous years. Despite its
importance, this validation is rarely applied by forecasting studies and more than half of the studies even lack a
level 1 validation''. The study of Ogutu et al. (2018)* who provide a forecast for East Africa does not even assess
the model results based on observational data. To guarantee that the weaker level 2 performance is not due to
model overfitting for the short time series at our disposal, we used a precautionary approach of only allowing a
maximum of 5 variables to be selected for a time series of 10 years. This leaves sufficient degrees of freedom (5
DF in the full model and 4 DF for the validation) so that we assume model overfitting to the training as not the
main reason for lower performance. Instead, the weaker level 2 performance could be related to the following
reasons. First, the short length of the time series of only 10 years may not be sufficient to provide a stable out-
of-sample variable selection. In our study period, several ENSO events (e.g. El Nifio in 2015/2016 or 2009/2010
and La Nina in 2010/2011 or 2011/2012'%) and Indian Ocean Dipole phases (e.g. positive phases in 2019 and
2015 and negative phases in 2016 and 2010'%) occurred, which bring high year-to-year variation in weather
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Figure 8. Regional performance of the forecasts derived from the model combining SST and weather inputs.
Model assessment was done separately for the trend (left panel), the variability (middle panel) and absolute
yields, which is a combination of trend and variability (right panel) for 8 of 21 regions in Tanzania. Plots for

all 21 regions can be found in SI Fig. 5. The dark colour (dark green and dark purple) shows the forecast when
the level 1 validation is applied. The corresponding NSE value is shown as ‘nse.11’ The light colour (light green
and light purple) and the ‘nse.12” show the results of the level 2 validation. Because the trend was fitted based on
logarithmic values, the transformation back to linear values results in a slightly curved shape.
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Figure 9. Assessments of the forecasted absolute yields for 2019 in regions with unimodal and bimodal rainfall
regimes.

influences and consequently in the variable selection. The time series may not be long enough to train the model
for this highly variable weather. The forecast should be repeated and tested on a longer time series when more
data becomes available. Also the prediction of ENSO Events'*!* can be used to inform the yield forecast. Second,
uncertainties in the calculated start and end of the growing season, as well as the calculated separation between
the vegetative and the reproductive phase can lead to a lower performance of the forecast or inaccuracies in the
lead time. The calculated dates may not reflect the real phenological phases and the static dates do not account
for the inner-seasonal variability due to differing weather conditions. Third, the forecast relies on reported yield
data, which is prone to reporting errors and data quality issues, which may change the forecasting performance.

Because of its relevance in practice, we also provide a forecast of absolute yields, which in addition to the
yield variability also includes information about the trend. The results of the absolute yield forecasts are slightly
better (median NSE of 0.79 in the level 1 validation) due to the explanatory power of the trend. The disentan-
gling of trend and variability provides transparency about the reasons for the forecasting skills so that in case
of a weak weather signal, the trend can be used as the best available information about the expected yields. The
forecast is only valid when assuming that the trend of the previous years is going to continue for the following
years. For grounding such an assumption, a causal analysis of trends taking into account national policies'® and
international market conditions, as it has been examined for East African countries'” and the Usangu plain in
Tanzania'®, would be mandatory.

The completely independent forecast of yields for the harvest year 2019 shows a high performance for the uni-
modal rainfall areas and a poor performance in bimodal rainfall regions. The poor performance in the bimodal
regions could be related to the outbreak of the fall armyworms, which particularly hit the bimodal rainfall areas
in northern, north-eastern and the coastal areas. The below average rainfall during the long rains in these areas
fostered the outbreak of the fall armyworms so that an infestation level of 50% was reached in some regions®.
This result underlines the importance of incorporating local expert knowledge in the evaluation of an operational
forecast. Yields in some regions may be strongly influenced by factors that the model does not account for, such
as pests and diseases or political, economic or social changes. Therefore, the forecast—as a tool that provides
quantitative information about the expected weather-related yields—should be embedded in a forecasting system
that integrates several sources of information for the evaluation of the food security situation.

In this study, we constructed an empirical model to decipher climatic influences on maize yield variation in
Tanzania. We applied this model to forecast maize yield anomalies and absolute yields at a lead time of about
6 weeks before the harvest on region level in Tanzania. The model provides accurate and robust yield forecasts for
large parts of the country. The strict and transparent assessment of the forecasting skill and the low requirements
of input data make the forecast potentially suitable to inform operational yield forecasting systems in other coun-
tries with inaccessible or low quality weather data and short time series yield data. The proposed model can con-
tribute to better informed local agronomic management strategies and support the implementation of regional
agricultural development programs so that food shortages caused by unfavourable weather conditions can be
mitigated. This has the potential to accelerate investments in these programs and thus, reduce food insecurity.

Methods

Yield data. We used official maize yield data from 2009 to 2019 obtained from the National Food Security
Division of the Ministry of Agriculture of Tanzania. Maize is the most important staple crop in Tanzania* and
had a total harvest area of 3,428,630 ha in 2019, which represents ca. 25% of the total crop land in Tanzania®
(statistics from 2017). Maize yields in Tanzania show a high variability and were on average at 1.6 t/ha from 2016
to 2018 (SI Fig. 6). The official statistics report yearly yield data covering all 21 regions of Mainland Tanzania
(excluding the island Zanzibar). The administrative boundaries of some regions changed in 2012. To obtain a
consistent time series, we used the administrative boundaries from before 2012 by applying a weighted average
based on area.

Weather data. We created weather variables based on two climate data sources. For precipitation, we used
observed daily rainfall totals from CHIRPS (Climate Hazards group Infrared Precipitation with Stations) at a
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resolution of 0.25° x 0.25°2!, CHIRPS provides reliable precipitation information for East Africa and outperforms
previous products, like ARC2 and TAMSAT?**. For daily mean, maximum and minimum temperature, we used
ERAS5 data® provided at a spatial resolution of 0.25°x 0.25°. ERA5 is the most recent reanalyses product and
outperforms ERA-Interim for East Africa®. The weather variables were created for the time period of available
yield statistics (2009-2019), including weather data for the year 2008 in case of growing seasons starting already
at the end of 2008.

SST data. In addition to weather data, we included monthly sea surface temperature (SST) anomalies® of
(1) the El Nifio 3.4 zone (170°W-120°W, 5°S-5°N), (2) the West Pacific Box (WP) (130°E-160°E, 10°S-10°N)
and (3) the Indian Ocean Dipole (IOD), which is the non-normalized difference between the West Indian Ocean
(50°E-70°E, 10°S-10°N) and the Eastern Indian Ocean (90°E-110°E, 10°S-0°N). We included these SST indica-
tors due to their documented influence on East African rainfall. SST anomalies in the El Nifio 3.4 zone and the
IOD have shown to be positively correlated with rainfall over East Africa during the short rains, whereas SST
anomalies in the WP show a negative correlation with East African rainfall during the long rains®-*°. The influ-
ence of these indicators on East African precipitation has a lag of some weeks to months offering the potential
to provide yield forecasts at longer lead times. We tested different lead times and included those that showed the
highest correlation with yield (SI Fig. 7), i.e. a lead time of 120 days for El Nifio 3.4 and WP; and a lead time of
30 days for IOD.

Growing season. The North, North-East and the coastal areas of Tanzania are characterized by a bimodal
rainfall pattern. The so-called ‘short rains’ (or Vuli) occur from October to December and the ‘long rains’
(Masika) last from March to May. The rest of the country has a unimodal rainfall pattern called Musumi with
rainfall occurring from December to April’. Because of the low availability of irrigation facilities in Tanzania®,
we did not distinguish irrigated from non-irrigated agriculture and considered the growing seasons to be aligned
with the onset of the rain.

We defined the start of the growing season following the approach of Dodd and Jolliffe (2001)?’, which was
tested for tropical and subtropical conditions. They define the onset of the growing season when the following
three criteria are fulfilled:

at least 25 mm rainfall within 6 days
starting day and at least 2 other days in this 6-day period are wet (>0.1 mm)
3. nodry period of 10 or more consecutive days within next 40 days

N

Because of the bimodal rainfall pattern in North and North-East Tanzania, two onsets of the growing season
are found for some grid points. In this case, we considered the onset of the long rains (Masika), which is the main
growing season. We used a static crop calendar at region level by first calculating the onset and the end of the
growing season per grid point for each harvest year and then calculating the median over all grid points within
a region and then a median over all years. We also tested other approaches (SI Section 8) to test the robustness
of the results.

We defined the end of the growing season as 110 days after the start, which corresponds to the average time
from sowing to maturity of 4 typical maize cultivars in Tanzania (i.e. Stuka, Staha, TMV1 and Pioneer HB3253).
This is a reasonable choice since individual growing season lengths vary in a small range from 105 to 114 days®.

Model inputs. Based on temperature and precipitation data, we created variables that account for the cli-
mate drivers that influence maize development and yields (SI Tables 1, 2, 3 show a list of model inputs).

In addition to the median daily mean, maximum and minimum temperature over the growing season (tas.
median, tas.max, tas.min), we included variables related to extreme temperatures. Above the optimum tempera-
ture range, photosynthesis is reduced, whereas respiration rates rise, such that net photosynthesis rates decline®.
Particularly during flowering, maize is sensitive to heat stress, as it can lead to the desiccation of pollen or a
reduction in grain numbers. High temperatures accelerate the development rate and result in a shortened growing
season and thus a reduction in light perception. Particularly if the time for grain filling is reduced, grain size and
consequently yields decline®. To account for the damaging impacts of too high temperatures, we included the
number of days where the daily maximum temperature exceeds the region-specific long term 99% percentile of
the maximum temperature in the growing season (tas.max99; SI Section 9 Eq. 1). Also temperatures below the
optimum temperature range, i.e. any temperature below 25 °C according to Rétter and Van De Geijn (1999)%,
are detrimental for maize growth. Therefore, we include the number of times the daily minimum temperature
falls below the region-specific long-term 1% percentile of the minimum temperature (tas.min01).

The optimal rainfall required in the growing season for maize is around 500-800 mm??. We included the
precipitation sum (Psum) in the growing season to represent the overall water availability for maize. For optimal
plant development, the timing and duration of water supply are equally critical. During flowering, maize requires
sufficient water supply. Before pollination water stress leads to kernel abortion, even if at the time of pollination
sufficient water is available. Excessive rain, in contrast, can lead to soil water saturation and oxygen deficiency,
which limits root respiration and the growth of roots. Rainfall that exceeds the water holding capacity of the
soil can lead to the leaching of nutrients and nutrient deficiencies of the plant®. To represent different precipi-
tation ranges, we included the number of days with precipitation above a threshold of 5, 10 and 15 mm (pA5,
PAIO, pAIS5, respectively) and below a threshold of 5, 10 and 15 mm (pB5, pB10, pB15, respectively). Because
the distribution of rainfall within the growing season is of particular importance for plant growth, we included
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Figure 10. Modelling flow chart.

consecutive dry days of more than 5, 10, 15 and 20 days (cdd5, cdd10, cdd15, cdd20, respectively). Extremely high
precipitation events are covered by the number of times the daily precipitation sum exceeds the region-specific
long-term 99% percentile of the daily precipitation sum.

The variables were separately calculated for the vegetative and reproductive phase of the growing season. The
separation between both phases was based on the sum of growing degree days (GDD; SI Section 9 Eq. 2). The
days in the growing season until 50% of the full-season GDD sum was reached were allocated to the vegetative
phase and the remainder to the reproductive phase, following Schauberger et al. (2017)**.

The SST temperatures were aggregated by taking the median over the growing season. We also included the
number of times the 99% percentile of the whole time series is exceeded and the number of times the indicator
is below the 1% percentile as an additional variable. The SST indices are only created for the vegetative phase
(including the lead time) based on the same approach as for the weather variables.

Model development and assessment.  For each of the 21 regions, we applied the work flow as shown in
Fig. 10, i.e. we provide the forecast separately for each region comprising of region-specific variables and param-
eters to account for the diverse climatic conditions within the country.

For our analysis, we used R* (version 3.5.0) with the packages tidyr*® and plyr*’ for data pre-processing, the
packages sp®® and rgdal®’ for spatial data processing, the package glmnet*’ to perform LASSO regression and the
package ggplot2 *! to generate the figures and maps.

Pre-processing. We standardized all weather and SST input data to allow for a better comparability of the beta
coefficients*’. We transformed the yield input data to logarithmic values and removed the trend by first testing
different de-trending methods (mean, linear, quadratic) and then applying the one that resulted in the lowest
Akaike Information Criterion (AIC).

Variable selection. 'We applied the following variable selection process to elucidate important variables for
explaining yield variability in the different regions:

- We removed variables that do not show year-to-year variations (i.e. zero variance).

- To avoid multicollinearity, only those variables were selected that are not strongly collinear (i.e. Pearson’s
r>0.7) with another explanatory variable. If a pair of variables was strongly collinear, then the variable with
the higher correlation with yield anomalies was selected.

- Input selection was done using LASSO regression. Through regularization, LASSO performs a co-variate
selection, which improves both the prediction accuracy and the interpretability®. To select the optimum
lambda (the regularization penalty for the LASSO regression), we used the lowest cross-validation (years
were omitted subsequently) mean squared error (MSE).

- Atlast, we removed all variables except for those 5 variables showing the highest correlation with yields. This
step was conducted to reduce overfitting of the model based on the rule-of-thumb to include a maximum of
half as many independent variables (climate variables) as there are dependent variables (yields).

Model for estimating and forecasting yields before harvest. For each region, we applied a separate regional regres-
sion model (Eq. 1) following the approach of Gornott and Wechsung (2016)* and Schauberger et al. (2017)*.

K
log(yir) = Z Brixkit + €it (1)

k=1

with B as parameters, y as the demeaned and detrended response variable, x as the standardized explanatory input
variable, € as error term for K variables (k = 1,...,K), N spatial units (i = 1,...,N) and T'years (t = 1,..., T).

With the Breusch-Godfrey and the Breusch-Pagan tests we tested autocorrelation and heteroscedasticity of
model residuals. We use the Variance Inflation Factor to test for multicolinearity.

For the within-season forecast, we only included variables during the vegetative phase. This provides a lead
time of around 55 days, i.e. around 6 weeks before the harvest in a growing season totalling 110 days. The exact
lead time differs per region—depending on the start of the reproductive phase in each region (SI Table 5). We
provided the forecast for yield anomalies (i.e. variation around a trend) and for absolute values. For the latter,
we added the trend and retransformed the values back to the linear form.
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Cross validation. We applied a two level leave-one-out cross validation (LOOCV).

Level 1—LOOCYV: we selected the variables based on all observations with LASSO. Then we subsequently
removed observations for 1 year from the data set and used the remaining observations from the other years to
fit the model and predict yield changes for the removed year, using the pre-selected set of variables.

Level 2—LOOCYV: we subsequently removed observations for 1 year from the data set, then selected vari-
ables with LASSO and estimated the model based on the remaining data set. We used this model to predict yield
changes for the removed year. This level 2—LOOCYV guarantees that no information from the removed year is
used for the variable selection or the model estimation. For this validation we allow a maximum of only 4 vari-
ables per model (allowing one less than half as many variables as there are observations). This validation simulates
the operational context, where no yield information from the year to be forecasted is available for model building.

In addition, we used the model we developed based on the yield data from 2009 to 2018 to provide a com-
pletely independent forecast for the harvest year 2019. The yield data for 2019 was not known to us during the
model development.

The goodness of fit between the observed data and the predicted data was then evaluated based on the
Nash-Sutcliffe efficiency coefficient® (NSE). In contrast to the explained variance (r?), NSE does not only evalu-
ate similarities in variability, but also integrates the mean model bias, which makes it a robust measure of the
prediction quality. We also calculated the root mean squared error (RMSE) to estimate the average error between
observed and predicted yields.

Data availability
All data supporting the findings of this study are either public data sets, are available within the article and its
Supplementary Information files or are available from the corresponding author upon reasonable request.
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A forecast of staple crop production
in Burkina Faso to enable early
warnings of shortages in domestic
food availability

Rahel Laudien™, Bernhard Schauberger?, Jillian Waid* & Christoph Gornott

Almost half of the Burkinabe population is moderately or severely affected by food insecurity. With
climate change, domestic food production may become more under pressure, further jeopardizing
food security. In this study, we focus on the production of maize, sorghum and millet as staple

cereal crops in Burkina Faso to assess food availability as one component of food security. Based

on a statistical weather-driven crop model, we provide a within-season forecast of crop production

1 month before the harvest. Hindcast results from 1984 to 2018 produce an r? of 0.95 in case of known
harvest areas and an r? of 0.88 when harvest areas are modelled instead. We compare actually supplied
calories with those usually consumed from staple crops, allowing us to provide early information on
shortages in domestic cereal production on the national level. Despite the—on average—sufficient
domestic cereal production from maize, sorghum and millet, a considerable level of food insecurity
prevails for large parts of the population. We suggest to consider such forecasts as an early warning
signal for shortages in domestic staple crop production and encourage a comprehensive assessment of
all dimensions of food security to rapidly develop counteractions for looming food crises.

Agriculture in Burkina Faso is primarily subsistence-based and rainfed. The dependence on favourable weather
conditions, such as sufficient and well-distributed rainfall and a reliable onset and length of the rainy season',
make agricultural production in Burkina Faso particularly vulnerable to climate change and altered weather
variability. Cereal yields are expected to decrease by 18% in the Northern Sudano-Sahelian countries due to the
impact of higher temperatures, which lead to a reduced crop cycle duration and increased evaporation rates
and thus water stress®™.

From 2017 to 2019, nearly half of the Burkinabe population was moderately or severely affected by food
insecurity’. Due to ongoing armed conflicts and the outbreak of COVID-19 in 2020, which negatively affected
households’ income and access to markets, the number of food insecure people is even expected to increase®.
This underlines the need to study the reasons and devise tools for increasing or stabilizing food supply.

A within-season yield forecast provides information about the expected harvest. This early warning can allow
governments to adjust food imports in case of expected harvest losses’'? and ask for external food assistance
to alleviate food shortages. Yield forecasts can therefore support food security planning in face of unfavourable
weather conditions.

Whereas existing yield forecasting studies in Burkina Faso focus on single crops, have a limited geographic
coverage or time horizon''"", our study covers the whole country and provides a within-season yield forecast
for the most important cereal crops of maize, sorghum and millet. In addition to a statistical weather-driven
crop yield model tested for the time period from 1984 to 2018, we use information about harvest areas to derive
a crop production forecast 1 month before the harvest. We rigorously validate our forecasts in two levels of out-
of-sample modelling.

Moreover, we complement existing studies on food security in Burkina Faso—e.g. focusing on food access
off-farm income'”*® or dietary diversity”—by comparing the supplied calories from staple crops with the historic
demand on national level. This allows us to provide early information on shortages in domestic cereal production
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Figure 1. Crop model performance for yield anomalies (left column) and absolute yields (right column) for
maize, sorghum and millet from 1984 to 2018. The plot shows the observed yields in grey, the estimation results
in blue and the out-of-sample validation results in green. The 1% and r?, values indicate the explained variance
by each model, respectively. The province-specific model performances are shown in SI Fig. 1, a map with
province names is shown in SI Fig. 2.

on the national level. Following this approach, our study aims to contribute to a better understanding of food
production as one component of food availability in Burkina Faso.

Results

First, we present models to estimate crop yields for maize, sorghum and millet in Burkina Faso at the end of the
growing season, i.e. assuming all relevant weather information is known. Combining crop yields with harvest
area estimations, we model crop production as yield times harvest area. Second, the estimation models are turned
into forecasting models of cereal-based calories by withholding weather information from the last month of
the growing season. The produced calories from maize, sorghum and millet are then compared to the calories
usually consumed from those crops.

Performance in estimating yields, area and production. The yield model shows that variation in
crop yield anomalies, i.e. fluctuations around an underlying trend, is highly influenced by variations in weather
(Fig. 1). This is particularly evident for maize and millet. The out-of-sample results (i.e. the validation based on
independent test data) indicate a share of 73% of yield variation for maize and 67% of yield variation for mil-
let, explained by variations in weather. For sorghum, the weather-driven variation in yield is lower with 36%.
If absolute yields are considered instead of anomalies, the out-of-sample validated explanatory power of our
models increases to 86%, 85% and 69% for maize, millet and sorghum, respectively (Fig. 1). The weather-driven
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Figure 2. Harvest area and production for maize, sorghum and millet between 1984 and 2018. The black
lines show the observed harvest area and production. For area, the best out-of-sample model was chosen. The
modelled production is shown for two cases: (1) harvest area is known through e.g. farmer survey or satellite
imageries (blue, first r* value); (2) harvest area is unknown and was modelled (yellow, second r? value).

yield models perform better than a constant model that estimates the mean yield excluding the current year (SI
Table 1). Together with the high out-of-sample explained variances, this suggests that the weather influences on
crop yields are robustly detected, allowing for assessing yield forecasts based on weather observations.

To model crop production, information about harvest areas is required. As this might not be available in
practice, we devised empirical models for harvest areas. The best out-of-sample fit to observed harvest areas can
be achieved with the LOESS-based trend for maize and sorghum and the median harvest area for millet, result-
ing in explained variations of 96% for maize, 62% for sorghum and 34% for millet, respectively (Fig. 2, top row).

Combining yield and area estimations, we modelled crop production as yield times harvest area. We compared
two versions: one where the harvest area is assumed as known and one where the harvest area is modelled. For
yields, we used the model results of the out-of-sample variable selection. In the case of modelled harvest areas,
96% of observed production variability can be explained for maize, 78% for sorghum and 76% for millet. In case
of known harvest areas, the explained variability of production increases to 99% for maize, 92% for sorghum
and 93% for millet (Fig. 2).

Hindcast performance of the forecast of supplied calories compared to the usually consumed
calories from staple crops. We turned the production models into forecasting models by withholding
weather information from the last month of the growing season. Furthermore, production amounts of maize,
sorghum and millet were converted into calories and added up to get the calories production of staple crops on
national level. This allows us to compare produced calories with the historic demand for calories from staple
crops in Burkina Faso.

Assuming unknown, i.e. modelled, harvest areas, the production forecast for maize, sorghum and millet agrees
strongly with observed production (r?=0.88). With known harvest areas, the r” increases to 0.95 and the forecast
more accurately represents the amplitude of the peaks (Fig. 3). Notably, this high agreement was achieved with
arigorous validation (level 2: out-of-sample variable selection), where no yield information from the year to be
forecasted was used in model construction and estimation—which is similar to an operational context. Crop-
specific production forecasts are shown in SI Fig. 3.

From 1984 to 2018 the domestic demand for calories from maize, sorghum and millet has increased in
Burkina Faso due to a growing population (SI Fig. 4). Supplied calories from maize, sorghum and millet have
increased by enhancing yields and expanding harvest areas (SI Fig. 5). The produced calories (excluding post-
harvest losses and the bran) exceeded or fell within the range of usually consumed calories from those crops in the
past on nationally aggregated level (Fig. 3). On average, there were 23% more calories produced than consumed.
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Figure 3. Hindcast performance of aggregated nationally produced calories from staple crops (maize, sorghum
and millet) compared to the usually consumed calories from those crops in Burkina Faso. The black line shows
the observed produced calories minus post-harvest losses and the bran. The forecast is provided for two cases:
(1) harvest areas are known (yellow line), (2) harvest areas are not known and modelled instead (blue line). The
band shows the range between the lowest and the highest share of calories from maize, sorghum and millet from
1984 to 2018 in the total supplied calories (i.e. between ca. 47% and 61% of total supplied calories stemmed
from maize, sorghum and millet in the past in Burkina Faso).

Discussion

Our study presents models to estimate staple crop yields (maize, sorghum and millet) and harvest areas in Bur-
kina Faso, and combines these into within-season crop production forecasts. Our rigorously validated produc-
tion forecasts show very high agreement with actually observed production. Thus, the forecast could support
near-term planning endeavours to adjust food trade balances, mobilize disaster reliefs and food aid in case of
expected harvest losses by anticipating deficiencies in calories supply.

Weather influences can explain a substantial part of crop yield variations in Burkina Faso as indicated by
the high performance of the crop yield model in the out-of-sample validation (r? between 0.73 (0.86) and 0.36
(0.69) for yield anomalies (or absolute yields, respectively)). Our linear regression models provide robust and
interpretable results, which is important in an operational context. As the increasing trend in absolute yields
acts as a major driver of explanatory power, the model performance is greater for absolute yields compared to
yield anomalies. As the yield estimation quality thus relies on a persisting trend, at least for the next year, a causal
analysis of the recent increases (management, fertilizer, improved seeds, irrigation expansion etc.) is recom-
mended, but beyond the scope of this study.

The yield forecast (SI Fig. 6) shows similarly good results compared to the yield model, which suggests that
the vegetative and first part of the reproductive phase of the growing season sufficiently cover important weather
influences. This is in line with findings of Schauberger et al.?’, who also found a high and sometimes even higher
model performance for a reduced growing season, omitting the last part of the reproductive phase. The weather-
based yield forecast performed better than a model based on trends only, indicating the relevance of weather
for yield formation (SI Fig. 7).

To our best knowledge, there is no previous study covering the same regional scope and time period of crop
estimation in Burkina Faso. Yet, our results are partly comparable to two local studies. Our model skill is higher
for maize and millet and lower for sorghum compared to the weather-based yield model of Belesova et al.?! for
the province Kossi and the NDVI-based yield forecast of Karst et al.'* for the department Nouna within Kossi. The
lower performance for sorghum could be related to reliability issues in the sorghum data applied here (SI Text 1).

To forecast crop production in Burkina Faso, information about crop yields and harvest areas is required,
as production is a function of both. For hindcasting past production, the actual area is available. But this is not
necessarily the case during the growing season, although early area information would be crucial for early pro-
duction estimation. While, in principle, farm surveys or satellite observations could detect sown areas during
the season, handling frictions and temporal latencies might obfuscate their reliability in practice. Therefore, we
estimated this year’s harvest areas based on information from preceding years—assuming persistent trends as
for yields. Using this approach, harvest areas can be represented to a large extent for maize and sorghum due to
ongoing upward trends in area. Trends in millet areas are less pronounced and thus less indicative for areas in
the target year. Calculated crop production shows a high agreement in case of known harvest areas (r>>0.9) as
well as modelled harvest areas (r?>0.75).
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Our study provides the first production forecast covering the whole country and the main staple cereal crops
in Burkina Faso. The lead time of the crop-specific forecast (SI Fig. 6) is 1 month for each crop (SI Fig. 8). Due
to possible delays in the provision of climate data, different harvest dates of the crops (at the forecasting time of
sorghum and millet, maize is already harvested) and possible dissemination issues, the lead time of the aggre-
gated production forecast is lower in practice. Nonetheless, we assume that forecasts for the single crops and also
real-time estimates of aggregated available production around harvest time can convey valuable information for
policy makers. To provide transparency about the forecasting skill, we use two validations. In addition to a classic
(‘jack-knife’) out-of-sample validation, we use a more rigorous out-of-sample variable selection that mimics the
operational setting. This validation is rarely used in forecasting® and has also not been applied in existing yield
forecasting studies in Burkina Faso''~'*. Production forecasts for maize, sorghum and millet together, derived
under this mock-operational setting, agree strongly with observed production (r?=0.88 for modelled areas). Thus,
we believe that our production forecast could contribute to existing operational food security platforms, such
as the Famine Early Warning Systems Network (FEWS NET) which provides food security updates for Burkina
Faso incorporating information on crop production, climate, markets, conflicts and nutrition?.

In addition to the production forecast, we compare produced and usually consumed calories from staple
cereals in the past and assume that a similar share in total food supply will also be needed in the current season.
To account for uncertainties in this estimate, we considered a wide range between the highest and the lowest
proportion of supplied calories within the last 35 years. Nonetheless, the study methodology should be updated
regularly to account for changes in dietary preferences and production choices in Burkina Faso—like e.g. the
recent increase in domestic production and consumption of rice.

Our results—both from reported and modelled data—suggest that for most years, there were more produced
calories from staple crops than the usual amount of consumed calories from these crops on national level. Despite
this surplus in the production of staple crops, there is a prevailing high level of food insecurity in Burkina Faso.
According to a FAO-led household survey from 2014 to 2019, 48% of the population (ca. 9 Million people) were
moderately or severely food insecure and undernourishment affected about 19% of the population from 2017
to 2019° (SI Fig. 9). The discrepancy between the potentially available and consumed calories could have several
causes: First, our assumptions made to derive consumed calories might be too rigorous. Post-harvest losses
might be higher in reality. Also apart from food and feed, we did not include other uses of staple crops, such as
sorghum beer production. Even though beer production consumes a practically relevant amount of sorghum in
Burkina Faso (on average 27% of total supplied calories from sorghum from 2014 to 2018%*), limited data avail-
ability did not allow for a quantification of this impact over the whole time period and was therefore neglected (SI
Fig. 10). Second, our national level results do not provide insights about the seasonal, spatial and group-specific
distribution of food within the country. Food shortages in specific regions (e.g. the Sahel region in Northern
Burkina Faso), times during the year (e.g. the dry season) and/or in specific population groups (e.g. subsistence
framers)® are therefore not necessarily reflected in annual and national statistics. Future research should therefore
take into account the seasonal and spatial dimension of food availability in Burkina Faso. Third, our study does
not account for population-specific demand of food. In particular, the rural population and subsistence farmers
with labour intense lifestyles® are characterised by a greater dependence on calorie-rich foods such as cereals,
tubers and coarse grains and have fewer capacities to diversify the composition of their diets®®. Therefore, the
share of consumed calories from staple crops is likely higher for those vulnerable groups. Our results should
therefore be interpreted as representing a lower bound estimate of the actual required calories from staple crops.
Fourth, our study focuses on production from staple crops, which is one important component of food avail-
ability and thus food security. Deficiencies in the other three components, namely food access, utilization and
stability®, contribute to the high level of food insecurity even when, on paper, there are more produced calories
than consumed. Local increases in food prices, political instability, ongoing conflicts as well as terrorist threats
and attacks in Burkina Faso negatively impact food security in Burkina Faso®.

In the past, the increase in production was in line with the strong population growth in Burkina Faso (SI
Fig. 4). This increase was achieved by enhanced yields and simultaneously expanded agricultural land (SI Fig. 5).
The implementation of improved soil and water conservations practices in the first half of the 1980s, and the shift
to early maturing varieties led to yield increases”. At the same time, the share of arable land increased from ca.
30% in the beginning of the 1980s to ca. 50% in 2018 (SI Fig. 11). Apart from the negative environmental con-
sequences related to this land use change”, the increase in arable land is limited because of finite land resources
and has already been stagnating for the last 10 years (SI Fig. 11). Also increasing crop yields through agricultural
intensification is constrained by limited access to agricultural inputs (improved seeds, fertilizer, plant protec-
tion and machinery), environmental boundaries* and challenges in adopting good agricultural practices®-*.
Both components—yields and acreage—taken together suggest that domestically produced calories might not
be sufficient to meet the increasing demand of a growing population in the long term*>**. This looming future
deficiency may become more pronounced when adverse effects of climate change materialize in crop produc-
tion. At this point, other dimensions of food security, namely food access, utilization and stability, will become
crucial to guarantee sufficient food supply.

Methods

To forecast crop production in Burkina Faso, information about crop yields (harvested amount per area) and
harvest areas is required, as production is a function of both. In the following, we describe a yield model (yield
module) and a harvest area model (harvest area module) on province level to calculate both types of information.
Both models can be run in an ex-post (estimation of production after the harvest) and an ex-ante (estimation
of production before the harvest) mode. In the forecast (ex-ante) mode, the yield model was only supplied with
reduced climate information, omitting weather influences of the last month before the harvest. Then, the results
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of the yield and harvest area model were aggregated to the national level (production forecast module). Finally,
we compared the produced calories from maize, sorghum and millet with the usually consumed calories from
those crops (calories balance module; Fig. 4).

For our analysis, we used the statistical software R—version 4.0.5*. A list of used packages can be found in
SI Text 2.

Yield module. For each of the 45 provinces, we applied the work flow as shown in Fig. 5, i.e. we set up a
separate yield model for each crop and each province. The empirical model comprises crop and province-specific
exogenous variables to account for the different growth requirements of each crop type and the diverse climatic
conditions within the country.

Input data. 'We used annual harvest area and production statistics for maize, sorghum and millet on province
level from 1984 to 2018 from the Burkinabe Ministére de ’Agriculture et des Aménagements Hydroagricoles/
Direction Générale des Etudes et des Statistiques Sectorielles®. Maize, sorghum and millet are the main cereal
crops in Burkina Faso and accounted for 53% of total supplied calories from 1984 to 2016 (median value; SI
Fig. 12). Climate data from 1984 to 2018 were extracted from two sources. For precipitation, we used observed
daily rainfall totals from CHIRPS (Climate Hazards Group Infrared Precipitation with Stations) at a resolu-
tion of 0.25 x 0.25 degrees®®, which provides reliable precipitation information®”. For daily mean, maximum and
minimum temperature, we used ERA5 data® provided at a resolution of 0.25x0.25 degrees. ERA5 is a recent
re-analysis product and outperforms ERA-Interim over Africa®. Based on the ERA5 temperature data, we cal-
culated vapour pressure deficit*’ (VPD, SI Eq. 1) to account for water stress caused by high atmospheric water
demand, which leads to a reduction in plant carbon uptake*! and thus yields. All weather data were mapped to
province boundaries, considering only intersecting cells for each province.

Exogenous variables. Based on precipitation, temperature and vapour pressure deficit, we created variables that
represent yield influencing climate drivers. We included variables that represent the median state of the weather
during the growing season, as well as variables accounting for variation and extremes in weather. For precipita-
tion, we took into account the occurrence of consecutive dry and wet days, respectively, and different thresholds
for light and heavy precipitation events. SI Table 2 shows a list of all possible model inputs and SI Text 3 further
expands on the reasons for the included variables.

The weather variables were calculated for the growing season in Burkina Faso following the FAO crop
calendar®. All sowing and harvesting activities happen between May and November. As the yield statistics do
not provide variety-specific information, we used the median sowing and harvest dates of all reported varieties
(SI Fig. 13 for maize and SI Fig. 14 for sorghum and millet). For sorghum and millet the same crop calendar
was used because the FAO does not provide a specific calendar for sorghum and due to the similarity in sowing
and harvest dates®.

The variables were separately calculated for the vegetative (veg), the first (reprol) and the last part of the
reproductive phase (repro2) of the growing season. The days in the growing season until 50% of the full-season
growing degree days sum (GDD, SI Eq. 2) was reached were allocated to the vegetative phase and the remainder
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to the reproductive phase, following Schauberger et al.?’. The reproductive phase was then split into two separate
phases (reprol and repro2) with repro2 covering the last month before the harvest and reprol covering the time
between veg and repro2. The separation between reprol and repro2 accounts for different weather influences on
crop growth during the reproductive phase (grain filling and maturity phase)*’ and enables a forecast with a lead
time of 1 month if weather information from repro2 is withheld from model construction.

Pre-processing. Due to unreasonable values in the yield data, we applied data cleaning steps detailed in SI Text
1. Moreover, possible trends in the yield time series were removed on province level, by choosing the polynomial
trend (mean, linear or quadratic) with the lowest Akaike Information Criterion (AIC). The weather variables
were standardized to a mean of 0 and a standard deviation of 1 to allow for a better comparability of the beta
coefficients*.

Variable selection. We applied the following variable selection process to elucidate important variables for
explaining yield variability in the different provinces:

®  We removed variables that do not show year-to-year variations (i.e. zero variance).

e To avoid multicollinearity, only those variables were selected that are not strongly collinear (i.e. Pearson’s
r>0.7) with another explanatory variable. If a pair of variables was strongly collinear, then the variable with
the higher correlation with yield anomalies was retained and the other removed.

e Input selection was done using LASSO regression. Through regularization, LASSO performs a co-variate
selection, which improves both the prediction accuracy and the interpretability*®. To select the optimum
lambda, i.e. the regularization penalty for the LASSO regression, we used the lowest cross-validation (years
were omitted subsequently) mean squared error (MSE).

® Asalast step, we restricted the maximum number of variables to be included in the model to avoid overfitting.
Per crop, we tested a maximum of four, five and six variables and selected the set of variables that showed the
highest correlation with yields in the out-of-sample validation.

Regression model.  For each province, we applied a separate regression model (Eq. 1) following the approach of
Gornott and Wechsung* and Schauberger et al.%.

K
it =Y Brixkir + e 1

k=1

with 8 as parameters, y as the demeaned and detrended response variable, x as the standardized explanatory
input variable, and ¢ as error term, for K variables (k = 1,...,K), N spatial units (i =1,...,N) and T years
(t=1,...,T). Exogenous variables x are specific to each province and crop; all candidate variables are listed
in SI Table 1.

In case of autocorrelation and heteroscedasticity of model residuals, which we tested based on the
Breusch-Godfrey and the Breusch-Pagan test respectively, we used robust standard errors*.

Validation.  To test the adequacy of our empirical models, we applied two validations:

® Qut-of-sample validation: We selected the variables (x in Eq. 1) with the three steps described above based on
all observations. Then we subsequently removed observations for 1 year and used the remaining observations
to fit the model coefficients for all selected variables (8 in Eq. 1) and predict yield anomalies for the removed
year.

® Out-of-sample variable selection: We subsequently removed observations for 1 year, then selected variables
as described above and estimated the model coefficients based on the remaining data. We used this model
to predict yield changes for the removed year. This guarantees that no information from the removed year is
used for the variable selection or the model estimation. This validation simulates the operational forecasting
context, where no yield information from the year to be forecasted is available for model building.

The goodness of fit between the observed yields and the predicted yields was evaluated based on r?, which
represents the share of explained variance.

Yield forecasting.  For the within-season forecast of crop yields, we applied the same pipeline of variable selec-
tion, model estimation and model validation as described above, but omitted weather information from the last
month before harvest (repro2). The resulting lead time is thus 1 month before the harvest (SI Fig. 8).

Harvest area module. In our study, we compared two types of data availability for harvest areas: fully
known and estimated. Data about the harvest areas could be obtained within the season from farmer surveys
or satellite imageries. Yet even though this is possible in principle, it might not be available in practice. To still
be able to provide a production forecast in an operational context, we tested different options to represent har-
vest areas based on information from previous years. We tested the following four options: the median harvest
area, the median harvest area of the previous 3 (5) years and the trend of the harvest area calculated by a non-
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Maize | Sorghum | Millet
Calories per 100 g in kcal 360 343 340
Median post-harvest loss in % 17 13 11
Branin % 6 13 14

Table 1. Calories*®, median post-harvest losses per crop* and share of bran*®.
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Figure 6. Supplied calories from maize, sorghum and millet and total supplied calories per capita and day
in Burkina Faso from 1984 to 2018 in Burkina Faso. The calories supply refers to the total amount of calories
available for human food including any commodity derived therefrom as a result of further processing®'.
(source: authors’ illustration based on FAO®! and Roser and Ritchie?).

parametric LOESS function with a span of 0.9. We chose the option for calculated harvest area that resulted in
the highest correlation (Pearson’s r) between the observed and the modelled area.

Production forecast module. Production is calculated as yield times harvest area for each crop and prov-
ince. To obtain total national production of staple crops, province-level production data for maize, sorghum
and millet were added up. In the forecasting case, the lead time of the production forecast of all crops together
is 1 month before the sorghum and millet harvest (which happens around end of October/begin of November).
The maize harvest (end of September/October) has already happened by then; the implications of this are dis-
cussed below.

Calories balance module. In the calories balance module, we compare the produced calories with the
usually consumed calories from staple crops in Burkina Faso. First, production amounts of maize, sorghum and
millet were converted into calories and added up to get the calories production of staple crops on national level,
using nutrient information*® shown in Table 1. Second, we subtracted the share of the bran*® (Table 1) from the
produced calories, which is used for feed in Burkina Faso*’. Due to post-harvest losses (PHL), not all produced
calories are available for food energy uptake. In the last step we therefore subtracted the PHL fraction from the
produced calories. We considered the median PHL per crop (Table 1), as annual information about PHL was
not sufficiently available. Information about PHL were obtained from Aphlis** who account for losses incurring
during harvesting, drying, handling operations, household and market level storage and transport.

The total national consumed calories from staple crops in Burkina Faso were obtained by multiplying the
calories from staple crops in the diet per day (Fig. 6) with the number of days per year and the total population
in Burkina Faso® (SI Fig. 4). To account for uncertainties in this estimate, we consider the range between the
minimum and the maximum share of calories from maize, sorghum and millet in total supplied calories in the
time period from 1984 to 2018 and assume that all seasons fall within this long-term average range.
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We only took into account domestically produced calories, deliberately disregarding imports and exports.

Given the very low amount of cross-border trade for maize, sorghum and millet in Burkina Faso® (SI Fig. 15),
we consider domestic production as a good proxy for overall availability.
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In the first study, we assessed the influence of weather on starchy maize yields on the regional and
the local scale in Peru. Three different statistical approaches were used: a linear regression model, a
linear panel data model and the machine learning algorithm decision tree. Weather-yield relations
for starchy maize on the regional level reflect the complex Peruvian climate as shown by the
selected weather variables of the linear regression model in different regions on the coast (costa),
the Andean highlands (sierra) and the Amazon rainforest (selva). The analysis on the local level was
based on a panel data model and a decision tree and revealed similar weather-influences on maize
yields, which validates the robustness of the obtained results. As suggested by the Peruvian
Nationally Determined Contributions to adapt to climate change, we assessed the effect of higher
water availability on starchy maize yields based on the linear regression model. The analysis showed
regionally different effects on starchy maize yields, which highlights the importance to develop
adaptation options at the sub-national scale.

The second study provides a within-season forecast for maize yields on the sub-national scale six
weeks before the harvest for Tanzania. Despite the limited availability of only ten years of yield data,
the forecast shows a high and robust performance (i.e. median NSE of 0.72 in the out-of-sample
validation). We found that particularly extreme weather conditions, i.e. consecutive dry days, high
precipitation events and minimum temperatures, have a strong impact on maize yields in Tanzania.
The inclusion of the sea surface temperature in the West Pacific as an additional predictor improves
the performance and could be used to extend the lead time of the forecast. We utilize a rigorous and
transparent two-level validation to mimic the situation in operational practice when the model has
to be trained purely on past data. Furthermore, we tested the robustness by providing a completely
independent forecast for the harvest year 2019.

The third study provides a within-season forecast of crop production for the staples maize, sorghum
and millet one month before the harvest in Burkina Faso based on a rigorous validation. The
persistent trend in harvest areas in Burkina Faso contributes to the high skill of the production
forecast (i.e. r* > 0.76). This underlines the high potential this information would have for production
forecasts — if detected within the season, e.g. through farmer surveys or remote sensing. Moreover,
we compared the produced calories from maize, sorghum and millet with the historic demand
allowing us to provide early information on shortages in domestic cereal production. Results show
that despite the surplus of produced calories on the national level, a high level of food insecurity
prevails for large parts of the Burkinabe population. We recommend a comprehensive assessment of
all dimensions of food security considering the seasonal, spatial and group-specific distribution of
food within the country.

The following sub-chapters provide a synthesis of the main findings across all three publications
(chapter 3.1) and open research questions (3.2).

3.1 Main findings across publications

The three publications present novel statistical crop modelling approaches for maize on the sub-
national scale in Peru, Tanzania and Burkina Faso covering the whole country. Previous assessments
focused either on single regions within these countries, i.e. Liu & Basso (2020) in Tanzania and Karst
et al. (2020) in Burkina Faso, or on the wider region, e.g. Ogutu et al. (2018) for East Africa or Leroux
et al. (2019) for West Africa. The statistical crop modelling approach applied in the three studies for

Peru, Tanzania and Burkina Faso is potentially transferrable to other countries for two reasons. First,
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it relies on globally available climate data and second, it provides robust results even in case of
limited yield data availability which can often be found in data-scare regions in the Global South.

The crop yield models can explain a substantial part of crop yield variability based on weather
influences. The median performance of the sub-national maize yield models measured in NSE (Nash-
Sutcliffe model efficiency coefficient) is 0.55 in Peru, 0.81 in Tanzania and 0.58 in Burkina Faso based
on the out-of-sample validation. This indicates a strong sensitivity of maize yield anomalies to
weather influences in these countries. In addition to maize, the study for Burkina Faso also included a
crop model for sorghum (NSE = 0.34) and millet (NSE = 0.64). The lower performance of the sorghum
crop model in Burkina Faso could be related to reliability issues in the sorghum data. The studies
underline the importance of spatially-distinct crop models with distinct variables and model
parameters to take account of the diverse and complex yield influencing weather characteristics
within the countries.

Apart from weather-yield relations, the three studies discussed other influences on the crop model
performance. In paper two and three, we found that the persistent trend in yields had high
explanatory power for the prediction of absolute yields — leading to a higher forecasting skill for
absolute yields than for yield anomalies. In paper three, we found that having information about
acreage within the season resulted in a highly accurate within-season production forecast (i.e. r? >
0.92). This information could be obtained through farmer surveys or remote sensing and has — as our
results suggest — high practical relevance for accurate production forecasts in practice.

In contrast to most statistical crop forecasts that rely on either estimation and/or out-of-sample
validation results (Schauberger et al., 2020), our second and third publications applied an out-of-
sample variable selection. This rigorous validation technique mimics the operational context in which
no information from the current year influences model formation or variable selection. We are not
aware of previous statistical crop modelling studies that used this validation technique. Recently,
Meroni et al. (2021) and Dinh & Aires (2021) presented examples of validation approaches based on
the same principle, which they refer to as the nested leave-one-year-out cross-validation and the
nested leave-two-out cross-validation respectively. In the first paper, we also focused on rigorous
validation by applying two independent models - a machine learning algorithm and a linear panel
data model - to test the validity of the variable selection. A rigorous validation is particularly
important when the model results are potentially being used to inform adaptation planning (in case
of the first publication) or early warning systems on food security (in case of publications two and
three). Prediction inaccuracies in these cases could potentially have severe consequences for the
livelihoods and food security of people.

The three studies emphasize the importance of integrating crop model results with other sources of
information to comprehensively inform climate risk management and adaptation. Our first study
illustrates how a statistical crop model can assess the effect of an adaptation option on yields.
However, the development and design of adaptation strategies that take account of inter-sectoral
aspects (Pardoe et al., 2018) as well as synergies and trade-offs between different options (Palm et
al., 2010) need to be done jointly with local stakeholders (Goosen et al., 2014). Similarly, the
forecasts provided in study two and three should be embedded in a forecasting system that
integrates other sources of information, such as local knowledge. Factors that the model does not
explicitly account for, such as changes in the occurrence of pests and diseases, need to be identified
by local experts as they can negatively influence the reliability of the model. An example is the
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outbreak of the fall armyworm in 2019 in East Africa with detrimental consequences for agricultural
production, particularly in the Northern regions and coastal areas in Tanzania, for which the models
show weak performances. Additionally, changes in the economic, social or political environment
need to be identified to safeguard against inaccurate predictions.

3.2 Outlook

The following sub-chapters discuss open research questions concerning model improvements (3.2.1
to 3.2.3) and integration with other information for comprehensive assessments of food security
(3.2.4) and climate adaptation (3.2.5).

3.2.1 Comparing observed planting and harvest dates with calculated ones to improve the
accuracy of growing season data
In tropical and rainfed agricultural systems, the planting date is aligned with the onset of the rains.
Therefore, farmers need information on the onset of the rains to decide about the optimal planting
date. Both early planting (reduced germination of seeds) and late planting (lower water availability at
the end of the growing season) could negatively affect yields (Krell et al., 2022) and thus the food
availability of subsistence farmers. Having accurate growing season data is also crucial for crop
modelling to better capture growing season-specific weather influences and key phenological phases
(Schauberger et al., 2020). In contrast to static crop calendars, e.g. provided by the FAO (FAO, 2010),
a dynamic crop calendar takes account of year-to-year variations at the beginning and the end of the
growing season. Using a dynamic crop calendar has the potential to improve the model performance
because yield-influencing weather conditions of the growing season can be more accurately
represented. This is particularly relevant in regions with strong year-to-year variations in the onset of
the rains, like in our study areas in East Africa (Wenhaji Ndomeni et al., 2018) and West Africa (Paeth
& Hense, 2004).

Different approaches exist to calculate the onset of the growing season based on rainfall
characteristics (e.g. Dodd & Jolliffe, 2001; Laux et al., 2008; Stern et al., 1981) to obtain a dynamic
crop calendar. These approaches define the onset of the growing season as the time when a
sufficient amount of rain occurred over a defined period without the interruption by a dry spell. Even
though the approach of Dodd & Jolliffe (2001) is considered suitable for semi-arid tropical conditions,
we could not verify whether the specific criteria (i.e. precipitation amount, number of wet days,
length of dry spell) match the local conditions and take account of the diverse climatic conditions
within the study areas. For this purpose, observational data derived from survey data or satellite
imageries should be used to compare the observed planting dates with the calculated ones. This way,
thresholds of the criteria that define the beginning of the growing season could be optimised for
specific climate zones. Additionally, the length of the growing season could be determined based on
crop-specific observed harvest dates. The comparison could also provide insights on how closely the
time of planting is aligned with the onset of the rains. A strong discrepancy could indicate that apart
from rain, other factors might influence the decision on the planting time.

3.2.2 Analysing the implications of different spatial scales on model performance
Statistical crop modelling is often done at the spatial level of political boundaries due to input data
availability and possible applications of crop model results. Official yield statistics, which are often
used as input data for crop models, are reported on administrative levels and thus determine the
spatial scale of the crop model. Moreover, for the purpose of informing decision-making, model
outputs should be provided at the level at which decision-making takes place. For example,
production forecasts at a national scale can contribute to increased food security by supporting
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governments in adjusting imports, exports and trading prices (Delincé, 2017), whereas yield forecasts
at the local level can inform management decisions, e.g. concerning cultivar selection or planting
date (Zinyengere et al., 2011). However, administrative boundaries do not necessarily follow climatic
and/or growing conditions with potentially negative implications for statistical inference. Diverging
crop-weather influences within one administrative unit, e.g. due to differences in soil or
management practices, can lead to biased parameter estimates and/or lower precision, and thus
lower predictive model skill. Despite statistical remedies for clustered data, such as using fixed-
effects models (Wooldridge, 2014), the problem arises if clusters are unknown.

This dissertation used statistical crop models at different spatial levels - from local to sub-national to
national scales. We found that spatially distinct variables and parameters could better represent the
diverse climatic conditions within the countries, particularly in Peru and Tanzania. The question is
whether setting up the model on higher resolutions (if data was available) would have improved
model performance. On the other hand, the aggregation of input data to lower resolutions can also
be beneficial in contexts where data quality is suspected to be low, as independent errors are
levelled out (Gornott & Wechsung, 2016). Future research should therefore systematically analyse
how setting up the model on different spatial scales influences model performance. For this purpose,
different administrative levels and nature-based boundaries, such as agro-ecological or agro-climatic
zones, should be tested alongside different aggregation methods (Ewert et al., 2011). Moreover,
clusters of similar management characteristics and growing conditions should be identified via
statistical clustering techniques to derive the context-specific optimal spatial scale for statistical crop
modelling. This analysis can make the trade-off between resolution and model accuracy transparent,
which can direct potential applications of statistical crop models.

3.2.3 Using interpretable and causal machine learning to improve the accuracy and usability
of predictions in an operational context
Machine learning has proven high predictive power in many applications, including yield forecasting
(e.g. Cai et al., 2019; Meroni et al., 2021; Wolanin et al., 2020) and has the advantage of capturing
complex and non-linear interactions. Although machine learning algorithms do not necessarily
outperform regression models (Johnson et al., 2016), they should be used in addition to such models
to provide a suite of different modelling approaches. Deriving ensemble means or medians from
multiple crop models often outperform single models (Fleisher et al., 2017; lizumi et al., 2018; B. Liu
et al., 2016) if errors in different models are independent (Lobell & Asseng, 2017). Algorithms, such
as random forest, neural networks, gradient boosting and support vector machines, should be tested
for their suitability to accurately forecast yield within the growing season. While yield statistics are
often only available for a short time period, particularly in the Global South, Meroni et al. (2021)
show that machine learning algorithms can still be applied if validation is performed rigorously as
proven in our second and third publications.

Special focus should be placed on increasing the interpretability of predictions by explaining either
general or causal relationships of the model. In the second publication of this dissertation, the
interpretability of forecasts was facilitated by comparing and interpreting standardized model
coefficients of linear regression models. Especially in complex linear models with several predictors,
the interpretation of results becomes increasingly difficult. Further research should therefore expand
on facilitating the interpretability of yield forecasts obtained by complex linear regression models
and/or machine learning. Model-agnostic methods, such as visualization techniques of feature
importance or the use of Shapley Values are independent of the applied model, which facilitates the
comparability of different modelling approaches. Additionally, ad hoc methods should be used for
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specific models, such as tools to uncover features learned in hidden layers in neural networks
(Molnar, 2022). Detecting causal relations in machine learning helps to understand cause-effect
connections and offers explanations for the reasons behind predictions. This can be realised through
different tools, such as causal modelling tools and causal diagrams, which go beyond the
identification of associations between variables and provide answers to counterfactual questions
(Pearl, 2019). Improving the interpretability and explaining causal relationships can, in practice,
enhance the uptake of a yield forecast as it builds trust in the model performance based on domain
expertise. Moreover, it helps to identify possible errors and biases in the prediction and thus can
improve the model performance, e.g. a model that is accurate for wrong reasons can be identified
(Murdoch et al., 2019).

3.2.4 Analysing all dimensions of food security by integrating weather-driven crop yield
models with survey data
The literature on the impacts of climate change on food security predominantly focuses on food
availability and particularly food production (Davis et al., 2021; Wheeler & von Braun, 2013).
However, our third study suggests that the other dimensions of food security - namely food access,
utilization and stability — strongly influence the food security situation in Burkina Faso so that despite
a surplus of produced calories from staples, a high degree of food insecurity prevails for large parts of
the population. Similar results were found by Lewis (2017) for Ethiopia where high crop production
on the national level also did not lead to a reduction in food insecurity. These findings align with
Schmidhuber & Tubiello (2007) who conclude that the socio-economic environment in which climate
change evolves is more relevant to food security than the expected biophysical changes due to
climate change. Myers et al. (2017) highlight that next to immediate biological effects (such as crop
yield losses), socio-economic factors, such as price increases and income effects, are also related to
sharp declines in access to food and thus food security, especially for the global poor. Integrating all
dimensions of food security is therefore needed to comprehensively understand the complex
underlying causes of food insecurity and to potentially make predictions for the food security status
of a population.

For this purpose, the weather-driven statistical crop modelling approaches should be linked with
household survey data to better understand the complex interplay of climatic and socio-economic
factors that influence food and nutrition security. Therefore, variables related to food availability
(e.g. quantify of produced food), food access (e.g. price of agricultural commodities and access to
markets), food utilization (e.g. dietary diversity, availability of safe drinking water, state of health)
and food stability (e.g. political conflicts, unrest) should be included to represent all pillars of food
security (FAO et al., 2021). In addition, nutrition security should be integrated, which goes beyond
food security by considering not only the amount of calories produced, accessed and consumed but
also the nutrients it contains (Ingram, 2020). Particularly, the provision of micronutrients, such as
iodine, vitamin A and iron should be considered as they have high relevance for global health and
development in low-income countries (Han et al., 2022). The integration of different data sources
could be achieved by setting up a Bayesian Belief Network (BBN). This machine learning technique
provides a graphical representation of the probabilistic dependencies and independencies in a
system, where each variable has the potential to have a direct (probabilistic) relationship with any
other variable in the network (Eyre et al., 2021). Based on the BBN, interactions between weather
and socio-economic factors that contribute to food and nutrition (in)security and different scenarios
for future developments can be analysed. Additionally, sensitivity tests allow the identification of
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factors with the highest probabilistic impacts on food and nutrition security and possible
interventions can be simulated. The latter can inform adaptation policies and direct interventions
where they are most needed.

3.2.5 Comprehensively assessing adaptation options by integrating local knowledge

Existing crop modelling efforts that assess climate adaptation strongly focus on the impacts of on-
farm management practices on agricultural outcomes. Especially, changes in planting dates,
irrigation, crop cultivar and fertilizer have been studied extensively with crop models as agricultural
adaptation strategies (Challinor et al., 2018). The adaptation potential of existing on-farm
management practices to reduce yield losses was found to be on average 8 % in mid-century and

11 % in end-century. This is insufficient to compensate for the projected yield losses from climate
change, particularly in currently warmer regions (Hasegawa et al., 2022), such as the tropics.
However, these studies usually do not account for technological developments and agricultural
intensification, which happen regardless of adaptation. This leads to a systematic underestimation of
projected yields (Lobell, 2014). Furthermore, the adaptation options currently reflected in crop
modelling studies do not reflect the breadth of available options found in practice, which range from
on-farm management practices to transformational changes, including the shift to other cropping
areas, crops or production systems (Vermeulen et al., 2018). This is particularly problematic in
smallholder farming systems in the tropics where crop diversification and intercropping are common
but remain underrepresented in model-based adaptation research (Claessens et al., 2012).

Alongside crop model improvements (e.g. focusing on other crops than wheat, maize, soybean and
rice; integrating mixed farming systems and agro-forestry), integrated assessment models (Ewert et
al., 2015) should be further developed. Moreover, crop modelling efforts should be integrated with
bottom-up adaptation approaches, i.e. qualitative research including focus group discussions and
interviews. These approaches can provide local information to support adaptation planning, such as
context or site-specific information on livelihoods, culture, constraints and opportunities of
adaptation (Beveridge et al., 2018). Whereas crop models can quantify yield changes related to
specific adaptation options, they can neither assess impacts on the farming or food system nor on
other potentially influenced sectors. Therefore, adaptation strategies need to be designed together
with local stakeholders and experts. This is crucial to consider inter-sectoral aspects (Rosenzweig et
al., 2017), e.g. related to food, water and energy (Pardoe et al., 2018), as well as synergies and trade-
offs between different adaptation options (Palm et al., 2010) and adaptation and mitigation
(Thornton & Comberti, 2017).
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4 Concluding remarks and personal hopes

This dissertation aims to contribute to a deeper understanding of weather-yield relations in the
tropics and how these findings can inform climate risk management and adaptation in one of the
most vulnerable regions to climate change. Whereas adaptation efforts will inevitably be necessary
to protect us from negative impacts of global warming, the primary goal is to mitigate climate
change. This requires quick action, as the newest IPCC Assessment Report 6 concludes. Global
greenhouse gas emissions need to go down from 2025 onwards so that limiting warming to 1.5 °C
remains possible (IPCC, 2022). With every ton of CO, avoided, fewer people will face the negative
consequences of global warming on food and nutrition security. However, climate change is just one
of many drivers behind recent setbacks in global food security as recent developments demonstrate.
The war in Ukraine increases food prices, particularly for wheat with detrimental consequences for
food availability in the Global South (FAO, 2022). The corona pandemic provides another example,
showing how the disruption of food supply chains affects the accessibility of food worldwide (Béné et
al., 2021). Given the complex nature of food insecurity, solutions will have to be manifold and require
vast transformational efforts, including insights from science. This dissertation is an attempt towards
improving the predictability of food and nutrition security based on scientific approaches.

At the end of this dissertation, | would like to quote my father: “The relevant question is not whether
something is good, as this question is impossible to answer. The question is whether it contributes to
something better.” (inspired by Kelson, 2016 and Rawls, 1979). With this dissertation, | hope | have
contributed to something better. Maybe these results and my future research endeavours can add
one more piece of the puzzle towards improving early warning systems on food insecurity. Using
these and similar research approaches to support real-world solutions will require more steps that go
beyond the sphere of science. Reaching the last mile will require making the results useable for local
stakeholders and integrating them with other relevant information (Goosen et al., 2014) so that it
can enable better decisions.
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Fig. A.1. Kbppen-Geiger climate classification of South America (Peel et al., 2007);

A =Tropical, B = Arid, C = Temperate, D = Cold, ET = Polar Tundra, f = Rainforest, m = Monsoon, w =
Savannah, s = Dry Summer, W = Desert, S = Steppe, a = Hot Summer, b = Warm Summer, ¢ = Cold
Summer, h = Hot, k = Cold
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Fig. A.2. Historic warming in Peru; linear trend in mean surface air temperature from 1981 to 2016
based on PISCO data (Aybar et al., 2019)
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Fig. A.3. Location of starchy maize producing households interviewed in the survey waves 2016 and
2017 of the agricultural survey carried out by the Peruvian national statistical institute “Instituto
Nacional de Estadistica e Informatica” (INEI, 2017); the points show the centre of the primary
sampling unit of the survey, called clusters (in Spanish: Conglomerados); black points show all clusters
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of the survey waves 2016 and 2017 (i.e. 19,704 observations coming from 1,213 unique clusters), blue
points show the clusters that we used in the study after data cleaning techniques were applied (i.e.

291 observations coming from 97 unique clusters)
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Fig. A.4. Administrative map of Peru showing regions (in Spanish: departamentos) in blue and clusters
(in Spanish: conglomerados) in light grey; clusters are the primary sampling unit of the agricultural
household survey carried out by the Peruvian national statistical institute “Instituto Nacional de

Estadistica e Informatica” (INEI, 2017).
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Fig. A.5. Projected precipitation changes in Peru in 2040 to 2060 (compared to 2000-2020) during the
main growing season (from September to June) based on the global climate models GFDL-ESM2M,
HadGEM2-ES, IPSL-CM5A-LR and MIROCS, which were bias-adjusted and provided within ISIMIP2b
(Warszawski et al., 2014); the panels on top show the modelled mean precipitation in the growing
season from 2000 to 2020; the panels below show the differences in mean precipitation in the

growing season from 2000-2020 and 2040-2060
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Fig. A.6. Observed and simulated maize yield anomalies in the region Lima. Black lines show observed
yield anomalies, blue lines show anomalies estimated with the full model and green lines those
estimated out-of-sample. Selected variables are shown in blue for precipitation, red for temperature
and grey for cloud fraction (Abbreviations: cdd10 = Consecutive dry days of more than 10 days, cdd5 =
Consecutive dry days of more than 5 days, T.cv.mean = Coefficient of variation of mean temperature;
T.cv.max = Coefficient of variation of maximum temperature, T.max = Mean maximum temperature
[°C], C.cv = Coefficient of variation of mean cloud fraction; “_v” stands for vegetative phase and “_r”
stands for reproductive phase)
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Supplementary Tables

AMAZONAS ANCASH

term estimate std.error t.stat p.value term estimate std.error t.stat p.value

T.cv.mean_v -2501.79 962.16 -2.60 0.04 T.cv.max_r -450.07 407.70 -1.10 0.31
P.cv_r -94.87 73.47 -1.29 0.24 T.cv.mean_v -564.05 464.49 -1.21 0.27
T.max_v 62.25 19.62 3.17 0.02 cdd10 v 17.24 7.33 2.35 0.06
T.min_v -43.52 16.54 -2.63 0.04 T.max_v 14.14 9.10 1.55 0.17
cdd5_r -9.76 4.65 -2.10 0.08 cwd10_r 1.02 0.30 3.40 0.01
C.min_r 2.79 1.05 2.66 0.04 C.mean_v 0.53 1.23 0.43 0.68
PA20_v -3.90 2.03 -1.92 0.10 C.min_v -0.59 0.72 -0.83 0.44
NSEe 0.91 NSEe 0.91

NSEv 0.55 NSEv 0.47

RMSE 9.81 RMSE 6.98

RMSE.const 34.52 RMSE.const 24.9

p.value of <0.05 p.value of <0.01

f.stat f.stat

APURIMAC AREQUIPA

term estimate std.error t.stat p.value term estimate std.error t.stat p.value

cdd10 v -86.86 42.35 -2.05 0.09 Cev_r -1109.00 682.57 -1.62 0.14
C.min_v 10.83 20.91 0.52 0.62 PA10 r 426.53 271.94 1.57 0.15
T.cv.min_v 150.81 790.53 0.19 0.86 cwd10 v 27.20 12.93 2.10 0.06
cwd5 v 0.77 1.42 0.54 0.61

minOfmin_r -16.97 17.40 -0.98 0.37

T.min_v 69.11 58.82 1.18 0.28

PA15 v 7.06 12.24 0.58 0.59

NSEe 0.76 NSEe 0.62

NSEv -0.24 NSEv 0.46

RMSE 38.55 RMSE 221.09

RMSE.const 84.63 RMSE.const 389.21

p.value of 0.13 p.value of <0.05

f.stat f.stat

AYACUCHO CAJAMARCA

term estimate std.error t.stat p.value term estimate std.error t.stat p.value

Ccv_ v -458.61 301.06 -1.52 0.18 T.cv.mean_v -365.88 352.50 -1.04 0.34
minOfmin_v -17.63 12.68 -1.39 0.21 cdd5 v 19.51 3.37 5.79 0.00
PA15 r 25.06 10.89 2.30 0.06 C.min_r -2.93 0.61 -4.77 0.00
P.max_v 7.52 2.75 2.73 0.03 PA20_v -3.41 2.69 -1.27 0.25
C.mean_v 1.73 3.86 0.45 0.67 C.min_v 2.07 0.39 5.30 0.00
PA5 r -2.69 1.25 -2.15 0.08 PA5 r 1.09 0.33 3.34 0.02
DWP_v 2.67 1.14 2.35 0.06 P.max_v -0.32 0.41 -0.78 0.47
NSEe 0.94 NSEe 0.94

NSEv 0.57 NSEv 0.64

RMSE 16.87 RMSE 5.48

RMSE.const 72.31 RMSE.const 24.58

p.value of <0.01 p.value of <0.01

f.stat f.stat
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Cusco HUANCAVELICA

term estimate std.error t.stat p.value term estimate std.error t.stat p.value

P.cv_v -1557.50 605.18 -2.57 0.04 PA10 r 2.18 5.08 0.43 0.68

T.cv.max_r 3531.93 4706.80 0.75 0.48 T.cv.max_v 2173.78 2183.72 1.00 0.36

maxOfmax_r -108.17 27.13 -3.99 0.01 T.mean_v -18.07 39.98 -0.45 0.67

cdd5 v 64.35 48.65 1.32 0.23 PA15 r 17.42 15.07 1.16 0.29

PA10 r -33.48 7.59 -4.41 0.00 cwd5_v 1.68 1.10 1.53 0.18

PA15 v -39.64 12.01 -3.30 0.02 cdd5_r 2.50 8.16 0.31 0.77

cdd5_r -50.94 41.60 -1.22 0.27 minOfmin_r 2.13 15.26 0.14 0.89

NSEe 0.89 NSEe 0.65

NSEv 0.37 NSEv -0.33

RMSE 59.46 RMSE 24.77

RMSE.const 190.35 RMSE.const 45.23

p.value of <0.05 p.value of 0.3

f.stat f.stat

HUANUCO ICA

term estimate std.error t.stat p.value term estimate std.error t.stat p.value

T.cv.max_v -9348.19 1170.05 -7.99 0.00 cwd10 v 107.44 34.40 3.12 0.01

T.mean_r -80.72 39.39 -2.05 0.09

maxOfmax_r -33.51 15.43 -2.17 0.07

PA15 r 11.53 2.63 4.38 0.00

C.mean_v 6.19 4.47 1.39 0.21

PA10_r 3.64 3.07 1.18 0.28

PA5 r 5.70 1.12 5.08 0.00

NSEe 0.97 NSEe 0.45

NSEv 0.76 NSEv 0.44

RMSE 13.66 RMSE 285.8

RMSE.const 88.11 RMSE.const 416.87

p.value of <0.001 p.value of <0.01

f.stat f.stat

JUNIN LA LIBERTAD

term estimate std.error t.stat p.value term estimate std.error t.stat p.value

cdd5_r -161.11 52.40 -3.07 0.01 T.cv.min_v 4678.72  2475.00 1.89 0.11
T.cv.mean_v -12219.59  3334.53 -3.66 0.01
P.cv_v 245.85 137.71 1.79 0.12
minOfmin_r 38.09 15.39 2.47 0.05
PA15 r 92.39 35.04 2.64 0.04
PA10 v 46.63 15.53 3.00 0.02
PA5 r -18.16 4.58 -3.97 0.01

NSEe 0.44 NSEe 0.94

NSEv 0.35 NSEv 0.76

RMSE 152.96 RMSE 29.71

RMSE.const 221.56 RMSE.const 130.76

p.value of <0.01 p.value of <0.01

f.stat f.stat
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LAMBAYEQUE LIMA

term estimate std.error t.stat p.value term estimate std.error t.stat p.value

T.cv.max_v -1919.11  1302.52 -1.47 0.18 T.cv.mean_v 57083.12 28027.33 2.04 0.09

cwd5 v -96.15 23.44 -4.10 0.00 T.cv.max_v -44441.64 28803.12 -1.54 0.17

cdd5_v -54.39 9.14 -5.95 0.00 Cev_r -5664.20 2939.05 -1.93 0.10

P.cv_v 29.57 9.75 3.03 0.02 T.cv.mean_r 25795.98 22889.98 1.13 0.30

cdd5 _r -6.40 5.16 -1.24 0.25 cddio r 152.04 231.20 0.66 0.54
T.max_v -140.65 218.66 -0.64 0.54
cdd5_v -498.79 254.23 -1.96 0.10

NSEe 0.94 NSEe 0.72

NSEv 0.88 NSEv -0.75

RMSE 18.48 RMSE 248.41

RMSE.const 81.38 RMSE.const 511.3

p.value of <0.001 p.value of 0.17

f.stat f.stat

MOQUEGUA PASCO

term estimate std.error t.stat p.value term estimate std.error t.stat p.value

T.cv.min_v 1415.05 399.55 3.54 0.00 T.cv.max_r -18242.99  7083.80 -2.58 0.04

PA5 v 36.22 13.75 2.63 0.02 T.cv.max_v -6568.94 4018.42 -1.63 0.15
Ccv_v -2937.66 1672.40 -1.76 0.13
cdd5_v -78.95 60.37 -1.31 0.24
cdd10_r 70.10 35.23 1.99 0.09
maxOfmax_v -70.20 51.45 -1.36 0.22
PA5 v -14.10 4.80 -2.94 0.03

NSEe 0.66 NSEe 0.94

NSEv 0.56 NSEv 0.83

RMSE 42.26 RMSE 56.18

RMSE.const 78.06 RMSE.const 252.78

p.value of <0.01 p.value of <0.01

f.stat f.stat

PIURA PUNO

term estimate std.error t.stat p.value term estimate std.error t.stat p.value

T.min_r -32.37 13.92 -2.32 0.06 T.cv.mean_r -1161.05 126.91 -9.15 0.00

cwd5_v -4.17 1.43 -2.93 0.03 T.cv.min_v -490.71 53.34 -9.20 0.00

PA5 r 37.33 12.63 2.96 0.03 Ccv_ v 169.10 40.21 421 0.01

C.min_v 9.91 4.96 2.00 0.09 PA15 v 10.96 0.82 13.28 0.00

T.mean_v 82.92 28.61 2.90 0.03 cdd10 v -5.24 3.06 -1.71 0.14

maxOfmax_v -31.52 20.22 -1.56 0.17 C.min_r -2.90 0.30 -9.56 0.00

cdd5 r -27.66 12.48 -2.22 0.07 cdd5 r 5.18 1.84 2.82 0.03

NSEe 0.83 NSEe 0.99

NSEv 0.26 NSEv 0.97

RMSE 21.67 RMSE 2.68

RMSE.const 57.37 RMSE.const 35

p.value of <0.05 p.value of <0.001

f.stat f.stat
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TACNA

term estimate std.error t.stat p.value
HDD v -250.99 83.30 -3.01 0.02
maxOfmax_v -50.39 30.08 -1.68 0.14
T.max_v -14.90 57.47 -0.26 0.80
cdd5_r 39.37 29.35 1.34 0.23
cwd5_r -6.92 4.60 -1.51 0.18
P.sum_v 5.53 1.76 3.15 0.02
C.mean_v -13.23 9.68 -1.37 0.22
NSEe 0.94

NSEv 0.62

RMSE 58.62

RMSE.const 253.02

p.value of <0.01

f.stat

Table A.1. Table of coefficients of the RRM per region; the estimate shows the estimated value of the
regression term; std. error shows the standard error of the regression term; t.stat shows the t-
statistic; p.value shows the two-sided p-value of the observed t-statistic; NSEe (NSEv) shows the Nash—
Sutcliffe efficiency coefficient of the estimation (validation) result; RMSE shows the root mean
squared error between the observed yields and the estimated yields, RMSE.const shows the RMSE
between observed yields and a constant model that takes the mean yield per region as a predictor;
p.value of f.stat shows the one-sided p-value of the observed F-statistic

term estimate std.error t.stat p.value
T.cv.max_r 806.19 1717.16 0.47 0.64
T.cv.mean_v -1104.83 2074.09 -0.53 0.59
T.cv.mean_r 1914.65 1066.26 1.80 0.07
Ccv_v -209.20 79.86 -2.62 0.01
cdd10_r -73.19 19.26 -3.80 0.00
Pcv_r 70.79 29.43 2.40 0.02
T.cv.min_r 45.34 14.18 3.20 0.00
minOfmin_v -32.97 23.61 -1.40 0.16
minOfmin_r -31.14 19.93 -1.56 0.12
P.cv_ v 22.02 23.85 0.92 0.36
PA20_r -10.30 9.10 -1.13 0.26
cwd5_r 6.02 1.76 3.42 0.00
C.mean_v 3.52 4.22 0.83 0.40
cdd5_v 12.08 13.24 0.91 0.36
cdd5_r -5.60 12.79 -0.44 0.66
cwd5 v 341 1.95 1.75 0.08
P.max_r 1.80 1.57 1.14 0.25
C.mean_r 2.90 2.80 1.03 0.30
HDD_v -0.25 0.85 -0.29 0.77
NSEe 0.2

NSEv 0.11

RMSE 197.81

RMSE.const 222.12

p.value of f.stat <0.001

Table A.2. Table of coefficients of the PDM; the estimate shows the estimated value of the regression
term; std. error shows the standard error of the regression term; t.stat shows the t-statistic; p.value
shows the two-sided p-value of the observed t-statistic; NSEe (NSEv) shows the Nash—Sutcliffe
efficiency coefficient of the estimation (validation) result; RMSE shows the root mean squared error
between the observed yields and the estimated yields, RMSE.const shows the RMSE between
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observed yields and a constant model that takes the mean yield per region as a predictor; p.value of
f.stat shows the one-sided p-value of the observed F-statistic

Region Mean yield in Mean yield in kg/ha Difference in kg/ha Difference in%  p.value
kg/ha with 77mm more water

AMAZONAS 849.3 861.4 12.0 14 0.00
ANCASH 1241.5 1239.0 -2.5 -0.2 0.20
AREQUIPA 3618.7 3740.1 121.4 3.4 0.06
AYACUCHO 1031.4 1018.6 -12.8 -1.2 0.01
CAJAMARCA 858.2 850.8 -7.3 -0.9 0.06
CUSCO 2342.3 2264.7 -77.7 -3.3 0.00
HUANUCO 1206.0 1239.2 33.2 2.8 0.00
ICA 2815.3 2815.3 0.0 0.0 NaN
JUNIN 1885.9 19354 49.6 2.6 0.17
LA LIBERTAD 1547.7 1533.1 -14.7 -0.9 0.34
LAMBAYEQUE 1917.4 1533.3 -384.1 -20.0 0.00
MOQUEGUA 1345.5 1373.3 27.9 2.1 0.02
PASCO 1256.6 1184.1 -72.5 -5.8 0.00
PIURA 932.3 1088.7 156.4 16.8 0.00
PUNO 1603.1 1608.9 5.9 0.4 0.00
TACNA 2729.9 31333 403.4 14.8 0.00

Table A.3. The effect of 77mm more water in growing season on starchy maize yields. The additional
amount is the minimum necessary additional water in 2040-2060 to compensate for an increased
potential evapotranspiration due to increased temperatures in Peru; the results are based on the
RRMs, the p.value shows the two-sided p-value of the observed t-statistic
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Supplementary Text
Text A.1. Climatic conditions for maize

Depending on the cultivar and the phenological stage, the optimal climatic conditions for maize vary.
Over the entire growing season, the optimal temperature range is between 25°C and 30°C (Rotter and
Van De Geijn, 1999). Above the optimum temperature range, photosynthesis is reduced, whereas
respiration rates rise, such that net photosynthesis rates decline (Barnabas et al., 2008). If
temperatures exceed 42°C, maize growth stops (Yin et al., 1995). Particularly during flowering, maize
is sensitive to heat stress, as it can lead to the desiccation of pollen or a reduction in grain numbers
(Sanchez et al., 2014). If the time for grain filling is reduced, grain size and consequently yields decline
(Rotter et al., 2018). Maize is also susceptible to frost with lethal damages of the stem, leaf and ear
occurring already after a couple of hours below 0°C (Carter and Hestermann, 1990).

The optimal rainfall required in the growing season is around 500 to 800mm (Critchley and Siegert,
1991). For optimal plant development, the timing and duration of water supply are equally critical.
During flowering, maize requires sufficient water supply. Before pollination water stress leads to
kernel abortion, even if at the time of pollination sufficient water is available (Westgate and Boyer,
1985). Excessive rain, in contrast, can lead to soil water saturation and oxygen deficiency, which limits
root respiration and the growth of roots. Also root water uptake is reduced in water-logged soils
(Rotter et al., 2018). Rainfall that exceeds the water holding capacity of the soil can lead to the
leaching of nutrients and nutrient deficiencies of the plant. Soil loss and mechanic damages of the
plant can occur in case of flooding and soil erosion (Rotter et al., 2018).

Compound abiotic stresses may be particularly damaging, beyond the sum of the damages caused by
individual stressors (Barnabas et al., 2008). Higher temperatures are often accompanied with dryer
conditions, which leads to a higher vapour pressure deficit and drives faster transpiration rates. As a
response, plants can reduce the stomatal conductance and save water, but at the price of less carbon
assimilation and lower nutrient uptake, which in turn leads to lower growth rates (Lobell et al., 2013;
Long, 2006).

Text A.2. Equations for the calculation of weather variables; the variables are calculated for the
vegetative and the reproductive phase of the growing season; d denotes the number of days within
the vegetative or the reproductive phase; Days denotes the total number of days within the vegetative
or the reproductive phase

1 Days
T.mean = T, 1
Days d=1 ‘d ( )

With T as daily mean temperature

1 @D
T.max = ﬁzdg’s max(T,) (2)

With T as daily mean temperature

max0fmax = max(Ty,) (3)

With T as daily maximum temperature
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. 1 @b .
T.min = @Zd‘__ul’s min(T,) (4)

With T as daily mean temperature

min0fmin = min(T,) (5)

With T as daily minimum temperature

1 Days 2
\/Days (Tq—T.mean)

T.cv.mean =
T.mean

With T as daily mean temperature and T.mean as defined in Eq. 1

1
\/ DayS(Td T.min)?2

T.cv.min = Y225 (7)
T.min
With T as daily minimum temperature and T.min as defined in Eq. 4
\/Days ZDayS(Td T.max)?
T.cv.max = (8)
T.max
With T as daily maximum temperature and T.max as defined in Eq. 2
0, T; <30

Days HDD HDD __ d
HDD = ¥5%°(T, — THPP) T} {Td: Th > 30 (9)
With T as daily maximum temperature and THPP as the temperature > 30°C

0, T;,>0

Days FDD FDD _ d
FDD =Y, 2° T} T} {Td, T,<0 (10)
With T as daily minimum temperature
P.sum = YL¥° p, (11)
With P as daily precipitation

_ 1 Days
P.mean = - 3,51" Pa (12)
With P as daily precipitation
P.max = max(P,) (13)
With P as daily precipitation

s ZDays(Pd—P mean)?

P.cv = o (14)

P.mean

With P as daily precipitation and P.mean as defined in Eq. 12
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0, P; >0
pwp =g pgvr e = (3 7 19

With P as daily precipitation

0, P;<5

1, P,>5 (16)

PAS = ¥.2%° P45 P;5={

With P as daily precipitation; the equation is also used for the thresholds 10mm, 15mm and 20mm

1, Pd< O.SVPd_l<0.5VPd_2<0.5VPd_3<0.5VPd_4<0.5

0, otherwise (17)

cdd5 = $H%° pgids  pgads ={

With P as daily precipitation; the equation is also used for the calculation of consecutive dry days of
more than 10 days (cdd10)

1, Pd > 0.5 VPd—l > 0.5 VPd—Z > 0.5 VPd_3 >05v Pd—4— > 0.5

0, otherwise (18)

_ yDays pewds cwd5 _
cwd5 = Y295 pgwds  pg _{

With P as daily precipitation; the equation is also used for the calculation of consecutive wet days of
more than 10 days (cwd10)

_ 1 Days
C.mean = _Dayszdzl (o (19)

With C as cloud fraction

. 1 .
C.min = @ZZ‘__”{S min(Cy) (20)

With C as cloud fraction

1 Days, . _ 2
\/Days Yg=1 (Cqg—Cmean)

C.cv= (21)

C.mean

With C as cloud fraction and C. mean as defined in Eq. 19

0’ Td < TBase
GDD = oS TGPP TGP0 —§ T, _TBase, x> TBase < T, < TOPE (22)
TOPt _ TBase' x > Td > TOpt

With T as daily mean temperature; T2%¢ as base temperature of 10°C; T%* as optimal temperature of
30°C (Gilmore and Rogers, 1958)
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Text A.3. Description of variable selection per RRM

Even though the selected variables differ per region, some patterns can be observed. Lambayeque
and Piura are in the low elevated northern coastal region. Whereas precipitation in these two regions
generally has a positive impact on yields, the distribution of rain matters a lot in the hot desert
climate. Both too many consecutive dry or wet days are detrimental for yields. Also too high
temperatures have a negative impact. The southern coast of Peru, which is mostly in the cold desert
climate (Ica, Arequipa and Moqguegua) is determined by a positive impact of precipitation on maize
production. Tacna is south of these regions and also has some areas that are in the hot desert climate.
Here, high temperatures (HDD, maxOfmax and T.max) in the vegetative phase depress yields. Also rain
distribution seems to be important — as both cwd and cdd have a negative impact, whereas
precipitation sum positively influences maize yields.

In the Highlands, most regions encompass several climatic zones. Cusco, Ayacucho and Huancavelica,
for example, are within the subtropical highland climate and cold semi-arid climate, which is why even
within one region high variations in terms of weather occurs. Yields in Cusco are negatively impacted
by too high precipitation and too high temperatures. In contrast, the model for Ayacucho even
suggests that particularly high precipitation levels (above 15mm and maximum precipitation) are
beneficial, whereas moderate precipitation levels (above 5mm) were negative for starchy maize yields.
The negative coefficient of minimum temperature — suggesting that lower minimum temperatures are
beneficial —is unexpected in mountainous areas and requires further investigation. For the model in
Junin only consecutive dry spells longer than 5 days in the reproductive phase were relevant. It
correlates negatively with yields and can explain 35% of yield variability. Hudnuco and Pasco are both
in the tropical rainforest climate. Whereas in both regions too high temperatures are detrimental for
maize production, Huanuco shows a positive correlation with precipitation whereas in Pasco too high
precipitation in the vegetative phase were harmful. Yields in Cajamarca in the northern Highlands are
negatively influenced by too wet conditions in particular in the vegetative phase (precipitation above
20mm and maximum precipitation show negative correlations, whereas consecutive dry days have a
positive impact). Also high variations in the mean temperature have a negative impact. A similar
pattern can be seen in Amazonas, where also variations in the mean temperature and in precipitation
are negatively influencing starchy maize yields. Moreover, too wet weather (precipitation above
20mm) and too long dry spells proved to be detrimental.
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1. Input variables for the Regional Regression Model

input name Definition unit Vegetative phase Reproductive phase
median min max  median min max
psum Precipitation sum mm 303.97 85.50 1080.59 200.86 3.65 689.90
cdd5 Consecutive dry days of equal 1.00 0.00 4.00 2.00 0.00 6.00
or more than 5 days
cdd10 Consecutive dry days of equal 0.00 0.00 2.00 0.00 0.00 3.00
or more than 10 days
cdd15 Consecutive dry days of equal 0.00 0.00 1.00 0.00 0.00 2.00
or more than 15 days
cdd20 Consecutive dry days of equal 0.00 0.00 1.00 0.00 0.00 1.00
or more than 20 days
pB5 Number of precipitation events 9.00 3.00 19.00 8.00 2.00 25.00
below 5mm per day
pB10 Number of precipitation events 18.00 6.00 35.00 13.00 2.00 34.00
below 10mm per day
pB15 Number of precipitation events 23.50 8.00 40.00 17.00 2.00 38.00
below 15mm per day
pA5 Number of precipitation events 20.00 6.00 39.00 14.00 0.00 33.00
equal or above 5mm per day
pAl10 Number of precipitation events 11.00 2.00 26.00 7.00 0.00 25.00
equal or above 10mm per day
pA15 Number of precipitation events 6.00 0.00 18.00 3.00 0.00 18.00
equal or above 15mm per day
precip.p99 Number of times the daily 0.00 0.00 4.00 0.00 0.00 3.00
precipitation sum exceeds the
99% percentile of the daily
precipitation sum
Sl Table 1. Variables related to precipitation
input name Definition unit Vegetative phase Reproductive phase
median min max  median min max
tas.median Median of the daily mean °C 23.93 21.51 28.18 23.87 19.81 27.42
temperature
tas.max Median of the daily maximum °C 28.00 24.97 33.36 27.90 24.61 31.47
temperature
tas.min Median of the daily minimum °C 19.29 17.58 26.28 19.21 14.34 25.22
temperature
tas.max.p99 Number of times the daily 0.00 0.00 9.00 0.00 0.00 7.00
maximum temperature
exceeds the 99% percentile of
the daily maximum
temperature
tas.min.p01 Number of times the daily 0.00 0.00 5.50 0.00 0.00 5.50
minimum temperature falls
below the 1% percentile of the
daily minimum temperature
Sl Table 2. Variables related to temperature
input name Definition median min max
iod_30.median Median Indian Ocean Dipole over the last 30 days before the start of -0.04 -0.57 0.52

the growing season

iod_30.p01

Number of times the Indian Ocean Dipole falls below the 1%

Percentile of the Indian Ocean Dipole over the last 30 days before the

start of the growing season

0.00 0.00 2.00

iod_30.p99

Number of times the Indian Ocean Dipole exceeds the 99% Percentile
of the Indian Ocean Dipole over the last 30 days before the start of the

growing season

3.00 1.00 3.00

nino34_90.median

Median SST anomaly in the El Nino 3.4. zone over the last 90 days
before the start of the growing season

-0.26 -1.61 2.58
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nino34_90.p01 Number of times the SST anomaly in the El Nino 3.4 falls below the 1% 0.00 0.00 4.00
Percentile of the SST anomaly in the El Nino 3.4 zone over the last 90
days before the start of the growing season

nino34_90.p99 Number of times the SST anomaly in the El Nino 3.4 zone exceeds the 5.00 0.00 5.00
99% Percentile of the SST anomaly in the El Nino 3.4 zone over the last
90 days before the start of the growing season

wp_90.median Median SST anomaly in the West Pacific over that last 90 days before 0.42 0.08 0.85
the start of the growing season
wp_90.p01 Number of times the SST anomaly in the West Pacific falls below the 0.00 0.00 2.00

1% Percentile of the SST anomaly in the West Pacific over the last 90
days before the start of the growing season
wp_90.p99 Number of times the SST anomaly in the West Pacific exceeds the 99% 3.00 0.00 5.00
Percentile of the SST anomaly in the West Pacific over the last 90 days
before the start of the growing season
Sl Table 3. Variables related to sea surface temperatures (SST)

2. Significance of estimated regression coefficients
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Sl Fig. 1. Estimated regression coefficients for the three most often selected weather variables for Tanzanian regions. The
three most often selected variables are temperature events below the 1% minimum temperature percentile in the
reproductive period (tas.min.p01_r), consecutive dry days of more than 5 days in the vegetative phase (cdd5_v) and
precipitation events above the 99th precipitation percentile in the vegetative phase (precip.p99_v). Note that this analysis
excludes the model coefficients with a performance lower than an NSE of 0.3 in the level 1 validation, because we assumed
these models as not robust enough for further analysis. The coefficients show standardised values, i.e. they show the change
in yield per standard deviation of the input variable. The horizontal bars show the 95% significance interval for the point
estimator. The geographic location of the regions can be seen in Sl Fig. 6.
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Sl Fig. 2. Estimated regression coefficients for the three most often selected sea surface temperature (SST) variables for
Tanzanian regions. The three most often selected variables are the number of times the SST falls below the 1% percentile of
the West Pacific considering a lead time of 120 days (wp_120.p01), the number of times the SST falls below the 1%

percentile of the Indian Ocean Dipole considering a lead time of 30 days (iod_30.p01) and the median SST of the |OD

considering a lead time of 30 days (iod_30.median). Note that this analysis excludes the model coefficients with a
performance lower than an NSE of 0.3 in the level 1 validation, because we assumed these models as not robust enough for
further analysis. The coefficients show standardised values, i.e. they show the change in yield per standard deviation of the
input variable. The horizontal bars show the 95% significance interval for the point estimator. The geographic location of the

regions can be seen in Sl Fig. 6.
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Sl Fig. 3. Estimated regression coefficients for the three most often selected variables in the forecast based on weather and
sea surface temperature (SST) variables for Tanzanian regions. The three most often selected variables are precipitation
events below 5 mm in the vegetative phase (pB5_v), the number of times the SST in the West Pacific falls below the 1%
percentile considering a lead time of 120 days (wp_120.p01) and consecutive dry days of more than 5 days in the vegetative
phase (cdd5_v). Note that this analysis excludes the model coefficients with a performance lower than an NSE of 0.3 in the
level 1 validation, because we assumed these models as not robust enough for further analysis. The coefficients show
standardised values, i.e. they show the change in yield per standard deviation of the input variable. The horizontal bars show
the 95% significance interval for the point estimator. The geographic location of the regions can be seen in Sl Fig. 6.

3. Comparison of forecasted anomalies to a constant model

region RMSE constant model RMSE forecasted anomalies
Dodoma 0.28 0.08
Arusha 0.52 0.05
Kilimanjaro 0.44 0.04
Tanga 0.61 0.20
Morogoro 0.30 0.07
Pwani 0.58 0.24
Dar es Salaam 0.44 0.05
Lindi 0.30 0.11
Mtwara 0.32 0.09
Ruvuma 0.12 0.05
Iringa 0.18 0.05
Mbeya 0.13 0.01
Singida 0.24 0.10
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Tabora 0.12 0.04
Rukwa 0.14 0.03
Kigoma 0.10 0.06
Shinyanga 0.16 0.01
Kagera 0.20 0.10
Mwanza 0.13 0.07
Mara 0.19 0.01
Manyara 0.31 0.03

Sl Table 4. Comparison of the performance of the forecasted yield anomalies with a lead time of ca. 6 weeks (right column)
and a constant model that only takes the mean yield excluding the year that is forecasted as a predictor (middle column).
The comparison is based on the root mean squared error (RMSE) between the observed yield and the modelled yield.

4. Correlation between input variables

K
oF
tas.max_v &
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tas.min.p01_v
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SI Fig. 4. Correlogram of input variables in sea surface temperature (SST) and weather categories; a strong correlation
(absolute value of Pearson's r coefficient > 0.5) between SST and weather variables can only be found between the minimum
temperature and the median SST in the El Nifio 3.4 zone with a lead time of 120 days.
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5. Performance of the forecasts derived from the model combining SST and weather

inputs
trend anomalies absolute values
nse level 1 =0.94
2 nse level 2 = —2.22
>
1 z
I
X
01 nse level 1 =0.9
-1 nse =0.35 nse level 2 = 0.33
10 nse level 1 =0.83
1 nse level 2 = -0.5 g
A
0.54 m
W
>
0.0+ :;;
nse level 1=085 |
-0.51 nse = -0.07 nse level 2 = 0.54
1.
° nse level 1 =0.85
1.04 nse level 2 = -8.06
]
O
0.51 3
=
>
0.0 / nse level 1=0.91
-0.54 nse =0.5 nse level 2 = 0.45
204 nse level 1 = 0.65
154 nse level 2 = —1.66
1.0 2
I3
0.5
0.0 w nse level 1=0.66
' nse = —145,52 nse level 2 = -1.59
2.04 nse level 1 =0.43
1.57 nse level 2 = -2.11
1.0 z
0.54 %
0.0 w:\i nse level 1=0.28
—05 nse = -125.35 \/ nse level 2= -2.1
2.01 \/\/—/\ neelguel 1 =043 W
154 nse level 2 = -3.13 x
1.04 8
=
0.54 i
) nse level 1 =047
0.0 nse = -513.68 P nse level 2 = -2.99
24 nse level 1 = 0.88
nse level 2 = 0.59 =
14 £
=
=
=
0+ 8
nse level 1=0.89
nse = 0.33 nse level 2 =0.78

trend—anomalies level 1—absolute values level 1

anomalies level 2—absclute values level 2

Sl Fig. 5. Regional performance of the forecasts derived from the model combining SST and weather inputs. Model
assessment was done separately for the trend (left panel), the variability (middle panel) and the absolute yields, which is a

combination of trend and variability (right panel). The dark colour (dark green and dark purple) shows the forecast when the
level 1 validation is applied. The corresponding NSE value is shown as “nse level 1” in the upper right corner of the panels.
The light colour (light green and light purple) and the “nse level 2” show the results of the level 2 validation. Because the
trend was fitted based on logarithmic values, the transformation back to linear values results in a slightly curved shape.

87



6 Supplementary Information

1.01

0.51

0.04

2.5
2.04
1.51
1.01
0.51
0.01

yield in /ha

1.59
1.04
0.51
0.01

1.01

0.51

0.01

2.0

1.51
1.04
0.54
0.01

nse level 1=0.35

nse level 2 = -1.83
=
=)
nse level 1 =0.77
nse =0.5 nse level 2 =045
nse level 1 =0.98
/\/W nse level 2 = -0.76
=
>
=z
S
2
nse level 1 =0.97
nse = -0.35 nse level 2 = -0.05
nse level 1 =0.99
nse level 2 = -0.55
=
=
X
ps
nse level 1 =0.99
nse = -0.39 /M\ nse level2 =04
nse level 1=0.8
wﬁ nse level 2 = -0.3
=
]
S
nse level 1=0.9
nse =051 || M——TT nee level 2 = -0.21
nse level 1 =0.87
/\_/_/_ nse level 2 = -0.78 =
=]
P
o]
0]
o]
a
o]
M nse level 1=0.87
nse = -58.0% nse level 2 =-0.79
nse level 1=0.86
nse level 2 =0.38
=
A g
s Pl
>
nse level 1 =092
nse =0.16 nse level 2=0.73
nse level 1 =-1.61
nse level 2 = -2.86
=
g
4
S
_ nse level 1 =-1.79
nse = -332.47 "\f\-A“‘ nse level 2 = -3.12
nse level 1=0.88
nse level 2=0.24
el
nse level 1=0.95
nse = -0.53 nse level 2=0.38
nse level 1=0.28
nse level 2 = -0.28
z
=
3
nse level 1 =0.15
nse = -275.24 w nse level 2 = -0.41

trend =—anomalies level 1==absolute values level 1

Continuation of Fig. 5

88

anomalies level 2 —absolute values level 2




6 Supplementary Information

31 nse level 1= 0.16
/\/\/—/_ nse level 2 = -0.19
2- A
o
=
1 g
nse level 1=0.25
0 nse =-312.3 i nse level 2 = -0.05
151 nse level 1=0.68
’ nse level 2 = 0.5
1.0 2
z
0.51 z
g
0.01 W nse level 1 = 0.93
—0.51 nse = 0.62 nse level 2 = 0.87
nse level 1=0
1.04 nse level 2 =-1.23
w
0.51 g
g
0.0 W nse level 1 = 0.79
nse = 0.32 nse level 2 = 0.62
151 nse level 1 = 0.8
nse level 2 =-1.24
1.0 %l
o]
0.51 2
001 - nse level 1 =0.93
' nse=0.09 ”V’)’/\/ ~ nse level 2 = -0.04
2 nse level 1 =0.52
nse level 2 = 0.1
Ll 3
ey =
%]
0 NN *
/ i nse level 1 = 0.48
N nse = —11.92 nse level 2 = 0.36
O 0 N OO O A WD OO NAD W0 e AW S 0 NV D M B e A LD
NP OP U TN A AT S I NN R N NN U TR C Ry NS N NN U NIIN
PETFTSTTSS S FTEFTFTFTFTETF S S S S

trend—anomalies level 1=—absolute values level 1

Continuation of Fig. 5

89

anomalies level 2—absolute values level 2




6 Supplementary Information

6. Strong spatiotemporal variability of maize yields in Tanzania

Maize yields in Tanzania show a high variability and are on a low average level: from 2016 to 2018
maize yields were at 1.6 t/ha on average. The regions with the highest yields (Mbeya, Ruvuma, Rukwa)
show the lowest inter-annual variation. The main maize producing regions are Mbeya, Ruvuma, Iringa,
Rukwa and Shinyanga).

average yield in t/ha coefficient of variation of yield

(2016-2018) (2009-2018)
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SI Fig. 6. Average maize yields, production and harvest area from 2016 — 2018 and the coefficient of variation of yields from
all available years (2009-2018).
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7. Correlation between yield and SST indices with different lead times

We assessed the influence of the following SST (sea surface temperature) indices on Tanzanian yield
variability:

1) ElNifio 3.4 zone (170°W — 120° W, 5°S - 5°N)

2) West Pacific Box (WP) (130°E — 160°E, 10°S — 10°N)

3) Indian Ocean Dipole (I0D), which is the non-normalised difference between the West Indian
Ocean (50°E — 70°E, 10°S — 10°N) and the Eastern Indian Ocean (90°E — 110°E, 10°S - 0°N)

To account for the lag in influence of the SST on rainfall in East Africa, we tested different lag times
(0, 30, 60, 90, 120, 150 and 180 days). The strongest influence of SST in the El Nifio 3.4 zone on yields
in Tanzania can be found at a lead time of 90 and 120 days (S| Fig. 7). There is a positive correlation
between yields and the median SST in El Nifio 3.4, which could be explained by higher rainfall
amounts during the short rains in East Africa in relation with a higher El Nifio 3.4 SST 13, Extreme
high and low values of the SST in El Nifio 3.4 (values above the 99% and below the 1% percentiles)
are related with lower maize yields in Tanzania.

Like the SST in El Nifio 3.4, the IOD is also positively correlated with rainfall in East Africa during the
short rains 1. For most regions, the |0D shows the strongest correlations at a lead time of 30 days.
At this lead time, the median 10D shows a negative correlation with Tanzanian yield variability.
Values below the 1% percentile are positively correlated with yields. At other lead times, the
correlation patterns show different directions and the 10D, in contrast to El Nifio 3.4 and WP, has the
highest region-to-region variability.

The median SST in WP is negatively correlated with maize yield variability in Tanzania. Whereas high
values of the SST in WP do not show a clear direction of the correlation, yields tend to be higher in
Tanzania the more often the SST falls below the 1%percentile. This can be related to the negative
correlation of SST in WP with East African rainfall during the long rains 1. The highest correlation
can be found at a lead time of 90 and 120 days.
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SI Fig. 7. The distribution plot shows the correlation coefficients (Pearson’s r) between the demeaned
and detrended yields and different standardised SST indices (median, number of times the SST is
above the 99% percentile and below the 1% percentile). For a better overview, the correlation
coefficients were categorized in classes of 0.25 ranges, so from -1 to -0.75, from -0.75 to -0.5 and so
on. The colour indicates how many regions of 21 regions in Tanzania have a particular correlation
range between yield and the SST index, e.g. dark blue indicates that 60% of regions (i.e. ca. 13 regions
of 21 regions) show a correlation between yield and the SST index of e.g. between 0 and 0.25. The
correlation matrix is presented separately for each SST index (horizontally) and the lead times 0, 30,
60, 90, 120, 150 and 180 days (vertically).
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8. Maize growing season in Tanzania

To define the start of the growing season, we tested the several crop calendars and decided to use
the approach of Dodd and Jolliffe (2001) * that proved to be most suitable for the purpose of our
study. In the following paragraphs, we discuss advantages and disadvantages of different crop
calendars for maize production in Tanzania.

8.1. FAO crop calendar

The FAO crop calendar from 2012 provides crop-specific planting and harvesting months and the
growing season length on district level . The calendar does not distinguish between the short and
the long rains in the bimodal rainfall areas in the North and in the Coastal regions in Tanzania, even
though both rainfall seasons are used for crop production . Moreover, the calendar seems to have
unreasonable outliers: Most parts of the Ruvuma region have a growing season from May to August,
which is within the dry season. Also the district Sumbawanga Urban in Rukwa has a growing season
length of 180days, in contrast to the other parts of the country that have a growing season length of
90 or 120 days.

planting month harvest month growing season length in days

-6 -6 -6

latitude
latitude
latitude

-g - -9 —

-12+ -124

_12 -
T
32 36 40 32 36 40 32 36 40

longitude longitude longitude
! Jan| Mar [JlJuly q} q
Woctl Nov Dec JanllMai FebllAprilllAug 0 120 140 160 0

SI Fig. 8. Crop calendar for maize based on the FAO crop calendar from 2012 >, planting is defined as
the onset of planting and harvest is defined as the onset of harvest.

8.2. FEWS Net crop calendar

The Famine Early Warning Systems Network (FEWS-NET) provides a crop calendar for Tanzania ’ that
distinguishes between the unimodal and bimodal rainfall regions and the calendar seems to be
aligned with the onset of the rains. However, the calendar is neither crop nor region-specific and
therefore does not account for the spatial heterogeneity within Tanzania.

8.3. Crop calendar based on Stern et al. (1981)

We calculated the onset of the growing season based on the approach of Stern et al. (1981) & that
was developed for Ghana and Burkina Faso. They define the onset of the rainy season when the
following three criteria are met:

1. atleast 25 mm rainfall within 5 days
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2. starting day and at least two other days in this 5-day period are wet (>0.1 mm)
3. nodry period of seven or more consecutive days within the next 30 days

We defined the end of the growing season as 110 days after the start. Mourice et al., (2014)
determined crop specific parameters for maize cultivars in Tanzania based on field experiments and
concluded that the cultivars did not differ significantly in terms of the growing season length (they
ranged from 105 to 114). Therefore, we use the average growing season length over the considered
cultivars, which is about 110 days.

Because of the bimodal rainfall pattern, some regions have two growing seasons. We consider the
second growing season if the time between the start of the first growing season and the start of the
second growing season is at least 110 days, enough time for one growth cycle.

The criteria of Stern et al. (1981) ® were developed for Ghana and Burkina Faso. For Tanzania, the
criteria seem to be too strict — leading to too late onsets of the growing season in particular in the
unimodal rainfall areas. Also, in some regions no onset could be calculated for some years, e.g. in Dar
es Salaam in 2008 and 2009 and in Manyara in 2009.

short rain long rain

pass

N
)
1

latitude

senley

longitude

Oct| |De Feb)| prillJuly
Nov] Man| [Marl@lJun NA

Sl Fig. 9. Crop calendar for the short (left) and long rains (right) in Tanzania; the onset of the growing season (top row) is
calculated based on the approach of Stern et al. (1981). The harvest dates (bottom row) represent the sowing dates plus the
maize specific growing season length of 110 days according to Mourice et al., (2014). The figure shows the median sowing
and harvesting dates over the period from 2009 to 2018 for each region in Tanzania.
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8.4. Crop calendar based on Dodd and Jolliffe (2001)

Dodd and Jolliffe (2001) # further developed the approach of Stern et al. (1981)  to correct for too
late onsets of the growing season. Their approach was tested for tropical and subtropical conditions.
According to Dodd and Jolliffe (2001) 4, the onset of the growing season is defined when the
following three criteria are fulfilled:

1. at least 25 mm rainfall within 6 days
2. starting day and at least two other days in this 6-day period are wet (>0.1 mm)
3. no dry period of ten or more consecutive days within next 40 days

Because of the bimodal rainfall pattern in North and North-East Tanzania, two onsets of the growing
season are found for some grid points. In this case, we considered the onset of the long rains
(Masika), which is the main growing season.

Following Mourice et al., (2014) °, we consider a growing season length of 110 days, as described in
section 8.3.

sowing harvest

e %

Dodoma

Kigoma
Tabora

latitude

-12 -

32 36 40 32 36 40
longitude
DNovDDecDJanDMar.April.July

Sl Fig. 10. Sowing (left) and harvest (right) dates for Tanzania; the onset of the growing season is calculated based on the
approach of Dodd and Jolliffe (2001) *. The harvest dates represent the sowing dates plus the maize specific growing season
length of 110 days according to Mourice et al., (2014). In case of two calculated rainy seasons, we considered the onset of
the long rains (Masika), which is the main growing season. The figure shows the median sowing and harvesting dates over
the period from 2009 to 2018 for each region in Tanzania.

9. Equations for the calculation of GDD and percentile variables

SI Eq. 1. Calculation of percentile variables; d denotes the number of days within the growing season;
Days denotes the total number of days within growing season

Days var.p99 var.p99 1, vary > p.99
var.p99 = )., -7  var, var, ={ .
p a=1 "4 d 0, otherwise
Days var.p01

1, vary < p.01
var.p01 = var varverol — { ’ as
P Za=1 a d 0, otherwise
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With var as the weather or sea surface temperature (SST) variable, and p.99 (p.01) as the 99% (1%)
percentile of the weather or SST variable; the percentiles were calculated over all days of the
vegetative and reproductive phase of the growing season within the time period of 2009 and 2018 for
each region. As a sensitivity test, we also calculated the 5% (95%) and 10% (90%) percentiles, which
provided similar results.

SI Eq. 2. Calculation of growing degree days (GDD); d denotes the number of days within the growing
season; Days denotes the total number of days within growing season

0’ Td < TBase
GDD = 2323115 TgDD TgDD — Td _ TBase’ x > TBase < Td < TOpt
TOPt _ TBase' x > Td > TOpt
With T as daily mean temperature; T2%¢ as base temperature of 10°C; T%* as optimal temperature of

30°C 1% d denotes the number of days within the growing season; Days denotes the total number of
days within growing season

10. Lead time of the yield forecast per region

region start start harvest lead time Performance of
vegetative reproductive of forecast  forecast (NSE of the

phase phase (days in days level 1 - LOOCV)

after sowing)

Dodoma 29-Dec 22-Feb (55) 18-Apr 55 0.9
Arusha 30-Mar  19-May (50) 18-Jul 60 0.97
Kilimanjaro 03-Apr  23-May (50) 22-Jul 60 0.93
Tanga 01-Apr  22-May (51) 20-Jul 59 0.28
Morogoro 03-Jan 25-Feb (53) 23-Apr 57 0.79
Pwani 28-Mar  20-May (53) 16-Jul 57 0.63
Dar es Salaam 25-Mar  17-May (53) 13-Jul 57 0.92
Lindi 02-Jan 25-Feb (54) 22-Apr 56 0.59
Mtwara 10-Jan  05-Mar (54) 30-Apr 56 0.78
Ruvuma 02-Jan 25-Feb (54) 22-Apr 56 0.07
Iringa 29-Dec 21-Feb (54) 18-Apr 56 0.58
Mbeya 21-Dec 15-Feb (56) 10-Apr 54 0.98
Singida 26-Dec 20-Feb (56) 15-Apr 54 0.73
Tabora 07-Dec 02-Feb (57) 27-Mar 53 0.88
Rukwa 23-Dec 17-Feb (56) 12-Apr 54 0.82
Kigoma 20-Nov 16-Jan (57) 10-Mar 53 -0.39
Shinyanga 12-Dec 07-Feb (57) 01-Apr 53 0.99
Kagera 28-Mar  23-May (56) 16-Jul 54 0.25
Mwanza 26-Mar  20-May (55) 14-Jul 55 0.19
Mara 27-Mar  21-May (55) 15-Jul 55 0.99
Manyara 27-Mar  16-May (50) 15-Jul 60 0.97

Sl Table 5. Lead time in days of the yield forecast per region; the lead time of the forecast corresponds to the length of the
reproductive phase; the start of the vegetative phase (2" columns) corresponds to O days after sowing; the harvest date (4th
columns) corresponds to 110 days after sowing; the right column shows the performance of the forecast of absolute yields
measured in the NSE of the level 1 validation; unimodal rainfall regions are shaded in blue, bimodal rainfall regions are
shaded in yellow
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1. Performance of yield models compared to a constant model

Province

Bale

Bam

Banwa
Bazega
Bougouriba
Boulgou
Boulkiemde
Comoe
Ganzourgou
Gnagna
Gourma
Houet

loba
Kadiogo
Kenedougou
Komandjoari
Kompienga
Kossi
Koulpelgo
Kouritenga
Kourweogo
Leraba
Loroum
Mouhoun
Nahouri
Namentenga
Nayala
Noumbiel
Oubritenga
Oudalan
Passore
Poni
Sanguie
Sanmatenga
Seno

Sissili

Soum
Sourou
Tapoa

Tuy

Yagha
Yatenga

Maize

Yield
model
127.97

201.48
190.26
158.17
243.87
236.38
298.34
217.64
193.85
219.55
234.94
149.17
188.84
303.58
116.43
177.17
140.48
192.16

89.02
170.04
110.92
107.20
130.65
195.21
278.77
249.75
152.35
238.00
174.92
236.91
187.42
304.77
333.74
231.67
163.36
181.86
265.24
355.13
304.95

66.38
107.47
187.50

Constant
model
359.31

315.59
295.82
251.70
319.45
286.06
366.01
268.60
339.13
349.28
276.49
240.62
240.63
403.30
225.14
437.35
343.87
295.39
184.27
225.56
220.49
250.38
389.53
339.82
338.49
339.83
284.35
443.15
291.38
490.12
314.66
395.60
430.06
345.30
334.26
265.77
475.06
493.75
364.85
298.64
322.41
322.23
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Sorghum

Yield
model
74.66

126.78
56.34
121.19
121.49
132.69
153.80
117.48
115.47
165.70
113.69
141.06
86.05
161.50
92.48
127.08
94.98
131.41
106.10
175.61
119.95
NA
146.04
104.08
98.59
131.18
104.72
134.96
128.56
227.39
169.86
136.84
96.64
164.87
173.51
135.73
124.53
187.56
122.79
64.28
135.44
145.11

Constant
model
174.24

213.99
141.21
161.23
222.79
161.13
186.75
208.43
160.56
212.43
183.51
162.38
166.06
231.25
147.00
203.28
146.83
158.03
145.33
208.54
209.40

NA
227.60
126.15
149.11
168.69
176.58
240.36
182.95
388.39
213.45
197.02
151.74
208.87
230.12
165.17
208.33
218.80
191.75
120.53
171.12
166.76

Millet

Yield
model
153.19

123.73
83.06
110.71
122.62
12411
131.85
97.42
113.34
243.78
117.17
145.09
95.00
156.45
158.15
32.56
112.75
76.29
93.61
128.11
121.01
NA
80.72
78.39
117.29
175.48
108.63
NA
67.17
120.37
133.60
96.88
98.68
154.42
119.20
94.77
106.24
158.66
147.48
117.14
106.58
141.64

Constant
model
232.24

196.71
132.99
137.42
170.34
203.01
159.91
214.23
167.24
275.28
155.35
200.10
151.87
181.16
198.41
224.79
199.01
129.88
183.21
167.18
182.00

NA
238.75
135.08
174.91
208.40
168.83

NA
130.19
186.64
209.52
134.01
141.96
192.04
199.39
166.20
157.73
190.15
224.41
192.73
206.18
205.80
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Ziro 170.50 259.33 77.63 144.45 99.06 194.60
Zondoma 83.19 330.35 81.98 194.64 113.03 248.06
Zoundweogo 196.85 242.16 148.10 181.03 113.29 151.57

Sl Table 1. Comparison of the model performance of yield anomalies to a constant model that only takes the mean yield
excluding the year that is forecasted as a predictor for maize, sorghum and millet. The values show the root mean squared
error (RMSE) in kg/ha between the observed yield and the modelled yield. A map with province names is provided in S/

Fig. 2.

2. Province-specific performance of the yield model

Estimated Out-of-sample

azie\

Latitude
wnybiog

1IN

Longitude
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(0,0.1] (0.1,0.2] (0.2,0.3] (0.3,0.4] (0.4,0.5] (0.5,0.6] (0.6,0.7] (0.7,0.8] (0.8,0.9] (0.9,1] NA

Sl Fig. 1. Province-specific performance of the crop model for yield anomalies from 1984 to 2018 measured in r*. The left
panels show the estimation results (i.e. the model performance when the complete time series for each province is included).
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The right hand panels show the performance for the out-of-sample validation. The median r? of all provinces in Burkina Faso
is shown in the left corner of the panels. A map with province names is provided in S Fig. 2.

3. Map of province names in Burkina Faso
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Sl Fig. 2. Map of province names in Burkina Faso
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4. Performance of the forecast (out-of-sample variable selection)
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Sl Fig. 3. Performance of the crop specific forecast with a lead time of one month for yield anomalies, absolute yields and
harvest areas. The performance of the production forecast is shown for known harvest areas and for modelled harvest
areas. The modelled yield data shows the result of the out-of-sample variable selection. The r? values indicate the explained
variance by each model. The crop specific forecasts were the basis for the aggregated forecast of all crops together. The lead
time of the forecast for all crops is one month before the sorghum and millet harvest. Please note that at this point in time,
maize is already harvested so that yields could be estimated based on weather influences of the whole growing season. For
practical reasons, we chose the forecast for maize also with a lead time of one month to inform early on as soon as the

forecast is available.
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5. Total population in Burkina Faso
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Sl Fig. 4. Total population in Burkina Faso from 1984 to 2019, source: authors’ illustration based on World Bank (2020)*

6. Trend in yield and harvest areas
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Sl Fig. 5. Linear trend in yield and harvest areas for maize, sorghum and millet from 1984 to 2018; the y-axis shows
standardised yields (upper panel) and harvest areas (lower panel). The slope of the trend is shown in the bottom right hand
corner. A value of 0.07 means that there is a trend of 7% per year.
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7. Performance of the forecast (out-of-sample validation)
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Sl Fig. 6. Performance of the forecast with a lead time of one month for yield anomalies (left column) and absolute yields
(right column) for maize, sorghum and millet from 1984 to 2018. The plot shows the observed yields in grey, the estimation
results in blue and the out-of-sample validation results in green. The r’. and r?, values indicate the explained variance by

each model, respectively.
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8. Performance of a simple production model
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Sl Fig. 7. Performance of a simple production model that is only based on yield and harvest area information from previous
years. We tested the following four options: the median yield/harvest area, the median yield/harvest area of the previous
three (five) years and the trend in yield/harvest areas calculated by a non-parametric LOESS function with a span of 0.9. For
each crop, we chose the option that resulted in the highest correlation (Pearson’s r) between the observed and the modelled
data. The best option for modelling yield is the trend calculated by LOESS for maize, the median of the last 3 years for millet
and the median over all years for sorghum. The best option for modelling harvest areas is the trend calculated by LOESS for
maize, the median over all years for millet and the trend calculated by LOESS for sorghum. This simple production model was
set up to test whether a production forecast based on a weather-driven yield model is superior to a yield model based on
yield information from previous years.
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9. Data cleaning of the annual production and harvest area statistics for maize, sorghum
and millet on province level from 1984 to 2019

Sl Text 1. We excluded observations with no harvest area or production as complete harvest losses
are not likely on province level and are probably reporting errors. Yields were then calculated as
production over harvest area. To guard against high outliers, yields outside the 95 percentiles

(2152 kg/ha for maize, 1571 kg/ha for sorghum and 1382 kg/ha for millet) were not considered. The
mean value for the 0-95% percentile (95-100% percentile) is 1120 kg/ha (2937 kg/ha) for maize,

910 kg/ha (2641 kg/ha) for sorghum and 768 kg/ha (2538 kg/ha) for millet. Lastly, data for provinces
with less than 10 years (i.e. one sorghum producing province and two millet producing provinces)
were omitted to allow for robust model construction and validation by preventing overfitting. In sum,
after data cleaning we used 1225 out of 1313 observations for maize, 1245 out of 1575 observations
for sorghum and 1232 out of 1310 observations for millet. The statistics for sorghum showed
unreasonable observations for the years 2012 and 2016 (i.e. no area and no production). Therefore
we aggregated the times series for white and red sorghum which became available from 2003 on and
used this data from 2003 on to guarantee a continuous time series for sorghum.

Even though some yield observations could not be used to validate the yield model results because
of reliability issues as described above, they were still used in the national production aggregation to
not skew aggregated production levels by omission.

10. Crop specific lead time of the forecast
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Sl Fig. 8. Crop specific lead time of the forecast. The forecasting time is one month prior the harvest. The range in the
forecasting time results from province specific sowing and harvesting dates? (Sl Fig. 13 and Sl Fig. 14).
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11. Number of people affected by food insecurity and undernourishment in Burkina Faso
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Sl Fig. 9. People affected by food insecurity from 2000 to 2019 (plot a) and undernourished people from 2014 to 2019 (plot
b) in Burkina Faso. The bottom panels show the absolute number of people, whereas the upper panels show the share of
people in relation to the total population in Burkina Faso, source: authors’ illustration based on FAO (2020)?
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12. Consumed calories from maize, sorghum and millet compared to produced calories
from these crops in Burkina Faso

6 -
44 =
o
S
2 [}
8o
X 6 -
{ =}
) »
E 4 S
- =]
£ =
87 3
S
=0
S 61
44 ’ Z
7 (A e N p— o
2 i g v N ot —_
0 T T T T T T T
) be N N
'\cgt?‘ & '\QQP‘ & S S S
Year
Produced calories Consumed calories

— Produced calories minus PHL and bran

Produced calories minus PHL, bran and beer

Sl Fig. 10. Produced calories of maize, sorghum and millet compared to consumed calories from these crops on national level
in Burkina Faso. Total produced calories* are shown in light blue, whereas dark blue shows the produced calories minus
post-harvest losses (PHL)® and the bran®. Consumed calories were calculated by multiplying the supplied calories per person
and day’ with the number of days per year and the total population in Burkina Faso®. Whereas the difference between
produced and consumed calories from maize and millet can mostly be explained by PHL and the share of the bran in the
crops (which is used for feed in Burkina Faso), a gap remains in the case of sorghum. FAO data suggests that on average
27% of total supplied calories from sorghum originated from sorghum beer in the time from 2014 to 20188. The dotted line
shows the produced calories from sorghum if in addition to PHL and the bran, average calories from sorghum beer were also
subtracted. Despite the high agreement between this data and the consumed calories from sorghum, we did not include
sorghum beer production in our analysis as this data is only available for five years and could not be extrapolated for the
whole time period.
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13. Share of arable land in Burkina Faso
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SI Fig. 11. Share of arable land in Burkina Faso from 1984 to 2018, source: authors’ illustration based on FAO (2020)°

14. Software used in the analysis

Sl Text 2. For our analysis, we used the statistical software R - version 4.0.5*° with the packages
tidyr'* and plyr'? for data pre-processing, the packages sp*3 and rgdal** for spatial data processing,
the package g/mnet® to perform LASSO regression and the package ggplot2® to generate the figures
and maps.
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15. Share of supplied calories from maize, sorghum and millet in the diet in Burkina Faso
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Sl Fig. 12. Share of supplied calories from maize, sorghum and millet in total supplied calories per capita and day in Burkina
Faso from 1984 to 2017; the yellow line shows the median value over the period 1984 to 2017, source: authors’ illustration
based on (FAO 2020)”

16. Equations for the calculation of vapour pressure deficit, growing degree days and
percentile variables

SI Eq. 1. Calculation of vapour pressure deficit (VPD):

17.27 = Tmax) (17.27 * Tmin)

VPD = 6.11 (— il
* P \237.2 + Tmax 237.2 + Tmin

With Tmax as daily maximum temperature and Tmin as daily minimum temperature, formula
according to Allen et al (1998)Y.

SI Eq. 2. Calculation of growing degree days (GDD); d denotes the number of days within the growing
season; Days denotes the total number of days within growing season:

0’ Td < TBase
GDD = Zgi}lfs TL?DD TL?DD — T, — TBase, TBase < T, < TOpt
TOpt _ TBase’ Td > TOpt
With T as daily mean temperature; T2%*¢ as base temperature of 10°C; T%* as optimal temperature of

30°C ®8; d denotes the day within the growing season; Days denotes the total number of days within
growing season.

SI Eq. 3. Calculation of percentile variables:

Days var.p99 var.p99 1; vary > p.99
var.p99 = ), ,_7" var var, = { ,
p La-1 d d 0, otherwise
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s 01 = I v v
With var as the weather or sea surface temperature (SST) variable, and p.99 (p.01) as the 99% (1%)
percentile of the weather or SST variable; the percentiles were calculated over all days of the
vegetative and reproductive phase of the growing season within the time period of 2009 and 2018 for
each region. As a sensitivity test, we also calculated the 5% (95%) and 10% (90%) percentiles, which
provided similar results.

17. Input variables for the yield model

input name Definition unit
Variables related to precipitation

psum Precipitation sum mm
pmedian Median daily precipitation mm
cdd5 Consecutive dry days of equal or more than 5 days
cwd5 Consecutive wet days of equal or more than 5 days
pB5 Number of precipitation events below 5mm per day
pB15 Number of precipitation events below 15mm per day
pA5 Number of precipitation events equal or above 5mm per day
pAl15 Number of precipitation events equal or above 15mm per day
precip.p90 Number of times the daily precipitation sum exceeds the 99% percentile of the
daily precipitation sum
DWP Number of days without precipitation
p.cv Coefficient of variation of the daily precipitation sum

Variables related to temperature

tas.median Median of the daily mean temperature °C
tas.max Median of the daily maximum temperature °C
tas.min Median of the daily minimum temperature °C
tas.max.p95 Number of times the daily maximum temperature exceeds the 95% percentile of

the daily maximum temperature
tas.max.p05 Number of times the daily maximum temperature falls below the 5% percentile of

the daily maximum temperature
tas.min.p95 Number of times the daily minimum temperature exceeds the 95% percentile of

the daily minmum temperature
tas.min.p05 Number of times the daily minimum temperature falls below the 5% percentile of

the daily minimum temperature
tasmax.cv Coefficient of variation of the daily maximum temperature
tasmin.cv Coefficient of variation of the daily minimum temperature

Variables related to vapour pressure deficit

vpd.median Median of the daily vapour pressure deficit mm
vpd.p99 Number of times the daily vapour pressure deficit exceeds the 99% percentile of
the daily vapour pressure deficit
vpd.p01 Number of times the daily vapour pressure deficit falls below the 1% percentile of
the daily vapour pressure deficit
vpd.cv Coefficient of variation of the daily vapour pressure deficit

Sl Table 2. Input variables for the yield model
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Sl Text 3. In addition to the median daily mean, maximum and minimum temperature over the
growing season (tas.median, tas.max, tas.min), we included variables related to extreme
temperatures. Temperatures above the optimum temperature range lead to a decline in the net
photosynthesis rate because photosynthesis reduces with higher temperatures whereas respiration
rates rise®®. To account for extreme high temperatures, we included the number of days with a daily
maximum temperature higher than the province-specific long term 99% percentile of the maximum
temperature in the growing season (tas.max.p99, SI Eq. 3). Particularly low temperatures were
represented by the number of times the daily minimum temperature fell below the province-specific
long-term 1% percentile of the minimum temperature (tas.min.p01). Variations in maximum and
minimum temperatures were represented by the coefficient of variation (tasmax.cv and tasmin.cv).

The overall water availability was represented by the precipitation sum (Psum) in the growing
season. For optimal plant development, seasonal rainfall distribution and intensities are equally
critical. Both excessive rain and drought stress can lead to crop failures and hinder timely planting
and harvest?®. To represent different precipitation ranges, we included the number of days with
precipitation above a threshold of 5 and 15 mm (pA5, pA15, respectively) and below a threshold of 5
and 15 mm (pB5, pB15, respectively). We also included the number of days without precipitation
(DWP), consecutive dry spells of more than five days (cdd5) and consecutive wet spells of more than
five days (cwd5). Extremely high precipitation events are covered by the number of times the daily
precipitation sum exceeds the province-specific long-term 90% percentile of the daily precipitation
sum. Variations in precipitation are covered by the median daily precipitation sum and the coefficient
of variation of the precipitation sum.

Variables related to the vapour pressure deficit were included to account for water stress during
plant growth. A high vapour pressure deficit leads to the closure of the stomata and therefore a
reduction in carbon uptake from the atmosphere and thus crop yields?. As for temperature and
precipitation, we included variables related to the median state (vpd.median), extreme low values
(vpd.p01), high values (vpd.p99) and variations (vpd.cv).
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18. Crop calendar for maize, sorghum and millet
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Sl Fig. 13. Crop calendar for maize for Burkina Faso based on the FAO crop calendar®. Sowing is defined as the onset of the
sowing period and harvest is defined as the end of the harvest period. The values represent the median onset of the growing
season (left hand) and the median end of the growing season (left) over all available varieties (i.e. FBC 6, K.E.J. Barka, K.P.B.
Wari, Espoir, SR 21, SR 22). Please note that information for the four Northern provinces Yagha, Soum, Seno and Oudalan in
the Sahel zone (bordered in red lines) was not available. Therefore, we used the sowing and harvest dates of the
neighbouring provinces.
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Sl Fig. 14. Crop calendar for millet for Burkina Faso based on the FAO crop calendar®. Sowing is defined as the onset of the
sowing period and harvest is defined as the end of the harvest period. The values represent the median onset of the growing
season (left hand) and the median end of the growing season (left) over all available varieties of the crop calendar (i.e.
IKMP1, IKMP2, IKMP3, IKMP5, IKMV 8201). This calendar was used for millet and for sorghum, because the FAO does not
provide a separate calendar for sorghum and due to the similarity in sowing and harvest dates??
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19. Production, imports and exports of maize, millet and sorghum in Burkina Faso
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Sl Fig. 15. Production, import quantity and export quantity of the crops maize, millet and sorghum in Burkina Faso from
1960 to 2017, source: authors’ illustration based on FAO (2020)?3
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