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Abstract  
After a long period of decline and stagnation, the number of undernourished people in the world has 
been increasing since 2017. Climate change will further exacerbate pressure on agriculture and food 
security, particularly for smallholder and subsistence-based farming systems in the tropics. These 
farming systems are vulnerable to climate change as they are strongly affected by climate impacts 
and lack adaptive capacity. Anticipating and responding to global warming through climate risk 
management is needed to increase the resilience of food systems and food security. Crop models 
play an indispensable role in this regard. They allow quantifying crop responses to changes in climatic 
conditions and thus identify risks. This dissertation demonstrates how statistical crop modelling can 
inform climate risk management and adaptation in tropical agriculture in the case studies of Peru, 
Tanzania and Burkina Faso.  

The first study assesses weather influences on starchy maize yields on the sub-national and local 
scale in Peru. Moreover, the influence of higher water availability on maize yields is investigated to 
inform climate adaptation planning as suggested by the Peruvian Nationally Determined 
Contributions. The second study provides a within-season maize yield forecast six weeks prior to the 
harvest on the sub-national level in Tanzania. This can support governments to anticipate looming 
harvest losses. In addition to a yield forecast, the third study provides a crop production forecast for 
maize, millet and sorghum on the national level in Burkina Faso. By comparing produced calories 
from these crops with the historic demand, early information on shortages in domestic cereal 
production can be obtained.  

The three publications present novel statistical crop modelling approaches on sub-national scales in 
Peru, Tanzania and Burkina Faso. The models explain a substantial part of crop yield variability based 
on weather variables. This indicates strong weather influences on maize yields and high model 
performance. The studies underline the importance of spatially-distinct variables and model 
parameters to take account of diverse weather-yield relations within the countries. Especially, 
weather influences related to extreme events, such as dry spells and erratic precipitation within the 
growing season influence maize yield variability. Moreover, the three studies found a strong 
explanatory power of yield trends (study one and two) and harvest area trends (study three). The 
latter highlights the relevance of obtaining information on sown areas within the growing season for 
accurate predictions in practice. In contrast to most yield forecasting studies, we applied a rigorous 
validation, including an out-of-sample variable selection. This validation mimics the operational 
context in which model formation and variable selection are purely based on information from past 
years. The statistical crop modelling approach relies on globally available climate data and provides 
robust results even for limited available yield data - making it potentially transferrable to other 
regions. 

The dissertation aims to deepen the understanding of weather-related influences on crop yields, 
food production and food availability in the tropics. Moreover, the findings demonstrate how 
statistical crop modelling can inform climate risk management and adaptation at different spatial 
levels in the tropics through an assessment of weather influences, the evaluation of adaptation 
options and within-season crop yield and production forecasting.  
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Zusammenfassung 
Die Anzahl der unterernährten Menschen in der Welt steigt nach einer langen Phase des Rückgangs 
und der Stagnation seit 2017 wieder an. Der Klimawandel wird den Druck auf die Landwirtschaft und 
die Ernährungssicherheit weiter erhöhen, insbesondere für kleinbäuerliche und von 
Subsistenzwirtschaft geprägte Agrarsysteme in den Tropen. Diese sind zum einen stark vom 
Klimawandel betroffen und zum anderen aufgrund begrenzter Anpassungsfähigkeit besonders 
vulnerable. Um die Widerstandsfähigkeit der Ernährungssysteme und die Ernährungssicherheit zu 
stärken, bedarf es eines Klimarisikomanagements und Klimaanpassung, da dies sowohl die 
Antizipation als auch die Reaktion auf die Auswirkungen der globalen Erwärmung ermöglicht. Eine 
zentrale Rolle spielen in dieser Hinsicht landwirtschaftliche Modelle. Sie können die Reaktionen von 
Pflanzen auf Veränderungen in den Klimabedingungen quantifizieren und damit Risiken 
identifizieren. Diese Dissertation demonstriert anhand dreier in Peru, in Tansania und in Burkina Faso 
durchgeführten Fallstudien, wie statistische Erntemodelle das Klimarisikomanagement und die 
Anpassung in der tropischen Landwirtschaft unterstützen können.  

In der ersten Studie werden die Wettereinflüsse auf die Maiserträge auf subnationaler und lokaler 
Ebene in Peru untersucht. Dabei wird auch der Einfluss höherer Wasserverfügbarkeit auf die 
Maiserträge quantifiziert, um die Klimaanpassungsbestrebungen der peruanischen Nationally 
Determined Contributions zu unterstützen. Die zweite Studie erstellt eine Vorhersage der 
Maiserträge sechs Wochen vor der Ernte auf subnationaler Ebene in Tansania. Dies kann es 
Regierungen ermöglichen, vorsorgende Maßnahmen zu treffen, um die Auswirkungen von 
drohenden Ernteverlusten zu mildern. Die dritte Studie liefert neben einer Ertragsvorhersage eine 
Produktionsvorhersage für Mais, Sorghumhirse und Millethirse auf nationaler Ebene in Burkina Faso. 
Der Vergleich der aus diesen Kulturen erzeugten Kalorien mit dem historischen Bedarf, ermöglicht es 
frühzeitig Informationen über Engpässe in der heimischen Getreideproduktion zu erlangen.  

In den drei Veröffentlichungen werden neue Ansätze statistischer Erntemodellierung auf 
subnationaler Ebene in Peru, Tansania und Burkina Faso vorgestellt. Die Modelle erklären einen 
beträchtlichen Anteil der Ertragsvariabilität auf Grundlage von Wettervariablen. Das weist sowohl auf 
einen starken Einfluss des Wetters auf Maiserträge hin als auch auf eine hohe Modellgüte. Die 
Studien betonen die Notwendigkeit von räumlich differenzierten Variablen und Modellparametern, 
sodass die unterschiedlichen Wetter-Ertrags-Beziehungen innerhalb der Länder berücksichtigt 
werden können. Insbesondere Wettereinflüsse in Bezug auf Extremereignisse, wie Trockenperioden 
oder ungünstig verteilte Niederschläge innerhalb der Wachstumsperiode, beeinflussen die 
Variabilität der Maiserträge. Darüber hinaus zeigen die drei Studien eine starke Erklärungskraft von 
Ertragstrends (Studie eins und zwei) und Ernteflächentrends (Studie drei). Letzteres unterstreicht die 
Relevanz der Ermittlung von Aussaatflächen innerhalb der Wachstumsperiode für präzise 
Vorhersagen in der Praxis. Im Gegensatz zu den meisten Ertragsvorhersagestudien, haben wir eine 
strenge Validierung, inklusive der unabhängigen Variablenauswahl, durchgeführt. Diese Validierung 
spiegelt die Situation in der Praxis wieder, in der lediglich Informationen der vergangenen Jahre die 
Modellbildung und Variablenauswahl beeinflussen können. Unser Ansatz der statistischen 
Erntemodellierung stützt sich auf weltweit verfügbare Klimadaten und liefert selbst bei begrenzten 
Ertragsdaten robuste Ergebnisse, so dass er potenziell auf andere Regionen übertragbar ist.  
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1 Introduction  
For the first time in over a decade of declining and stagnating numbers of undernourished people in 
the world, there has been an increase since 2017 - reaching 768 million people in 2020. This reversal 
in the trend can largely be attributed to conflicts, climate extremes and economic downturns, which 
makes it increasingly difficult to end hunger by 2030 (FAO et al., 2021). In future, global food demand 
will increase due to a growing world population, which is projected to rise from 7.7 billion in 2019 to 
9.7 billion in 2050 (UNDESA, 2019). To feed the world, global food production must grow 
substantially. At the same time, the expansion of arable land needs to be halted to avoid further 
environmental damages, biodiversity loss and greenhouse gas emissions (van Ittersum et al., 2016). 
Thus, sustainable production increases will need to go hand in hand with a decline in per capita food 
demand. Avoiding food waste (Gustavsson et al., 2011; Mc Carthy et al., 2018) and reducing crop 
production for non-food uses (Cassidy et al., 2013) will be key to meeting the global food demand. 
Addressing these challenges seems to be most urgent in the tropics across many parts of Africa and 
South America. In these regions, the strongest population growth is expected (UNDESA, 2019), while 
agricultural production remains below its potential (Foley et al., 2011; van Ittersum et al., 2013). 
Moreover, the largest expansion of agricultural land to biodiversity-rich areas has occurred in these 
areas (Gibbs et al., 2010).  

Climate change exacerbates the pressure on agriculture with the strongest negative impacts 
projected in the tropics (Hasegawa et al., 2022; Rosenzweig et al., 2014). To increase agricultural 
production, farming systems need to adapt to changing climatic conditions including slow onset 
events as well as extreme events, which are increasing in intensity and/or frequency (Seneviratne et 
al., 2021). The transformation towards a resilient food system that provides sufficient, safe and 
nutritious food for a growing world population requires information on climate risks in agriculture. 
This provides the basis for exploring ways to anticipate and respond to them. Crop models play an 
indispensable role in this regard as they allow quantifying crop responses to changes in climatic 
conditions. This dissertation demonstrates how statistical crop modelling can support this process, 
especially climate risk management and adaptation in tropical agriculture to increase the resilience 
of cropping systems and contribute to improved food security.  

The subsequent sections review climate change impacts on tropical agriculture in chapter 1.1 and 
climate risk management and adaptation options in agriculture in chapter 1.2 with a specific focus on 
crop production. The role of statistical crop modelling in support of climate risk management and 
adaptation is discussed in chapter 1.3. Chapter 1.4 introduces the case studies of Peru, Tanzania and 
Burkina Faso, which share similar characteristics in terms of farming systems and climatic conditions 
in the tropics. The three publications that form the basis of this dissertation are introduced in 
chapter 2 and follow in the sub-chapters 2.1, 2.2 and 2.3. The discussion in chapter 3 includes a 
section on main findings across all publications (chapter 3.1) and an outlook with open research 
questions (chapter 3.2). The dissertation ends with concluding remarks and personal hopes in 
chapter 4.  

1.1 Climate change impacts on agriculture in the tropics   
Climate change impacts agricultural production in various ways through changes in modal conditions, 
seasonal changes and extreme events. Modal changes, such as the shift in climatic envelopes can 
alter the crop suitability in certain areas, which can lead to shifts in growing areas (Chemura et al., 
2020; Kummu et al., 2021; Travis, 2016). Also, the distribution of pests and pathogens, such as the 
poleward expansion of many groups of crop pests and pathogens since the 1960s (Bebber, 2015) 
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changes with increasing warming and can potentially lead to drastic harvest losses. Seasonal changes 
can affect agriculture as warming trends lead to a shortened life cycle of major crops (Kerr et al., 
2022; Wang et al., 2009) and a lengthening of the growing season in extratropical regions (Mueller et 
al., 2015). Extreme events increasingly cause crop losses (Cottrell et al., 2019), e.g. related to 
droughts (Kim et al., 2019), heat (Liu et al., 2019; Zampieri et al., 2017) or a combination of multiple 
hazards (Matiu et al., 2017). Apart from the described temperature and/or precipitation-related 
impacts, the atmospheric composition related to CO2, dust, ozone and other short-lived climate 
pollutants changes. Elevated CO2 concentrations affect agricultural production through changes in 
the photosynthesis rate, water use efficiency or nutrient content of crops (Kerr et al., 2022). Taken 
together, there is a complex interplay of climate drivers on crop production.  

These human-induced climate change impacts have had regionally different, but mostly negative 
effects on global crop production since the pre-industrial era (Kerr et al., 2022). Advancements in 
plant breeding, irrigation, fertilisation and integrated pest management are associated with a 2.5 to 
3-fold increase in major crop yields since the 1960s on the global level. On the contrary, climate 
change had mostly negative effects on crop yields and acts as a drag on the growth of agricultural 
production (Kerr et al., 2022). In a counterfactual analysis that attributes observed yield trends to 
anthropogenic warming, Moore (2022) showed a negative effect of global warming on maize and 
wheat yield trends and a positive effect for rice in cooler regions with an average reduction in the 
annual calorie production from these crops by 5.3 % from 2008 to 2017 (Moore, 2022). The overall 
negative impact of climate change on crop yields is projected to continue in the 21st century. Without 
adaptation, yields are projected to decrease by 2.3 % for maize, 3.3 % for soybean, 0.7 % for rice and 
1.3 % for wheat per decade (Hasegawa et al., 2022).  

Both observed and projected climate change impacts vary by region. Whereas yields for some crops 
benefitted from climate change impacts in the mid and high-latitudes (e.g. wheat in Northern 
Europe, rice and wheat in Eastern Asia, maize and soybean in North America), mostly negative 
impacts could be found in Sub-Saharan Africa, South America and the Caribbean (Ortiz-Bobea et al., 
2021). The strongest negative climate impacts are projected in the tropics (Rosenzweig et al., 2014), 
particularly for Africa, Central and South America at the end of this century (Aggarwal et al., 2019; 
Hasegawa et al., 2022; Porter et al., 2019) due to the current temperature level and degree of 
warming. Regions with current average temperatures above approx. 15 °C are projected to face 
negative effects of climate change on agricultural production. When current average temperatures 
exceed approx. 20 °C, even small degrees of warming result in negative effects (Hasegawa et al., 
2022). Higher temperatures lead to increasing atmospheric vapour-pressure deficits which in turn 
increase evapotranspiration and thus reduce soil moisture, with negative impacts on yields (Levis et 
al., 2018; Lobell et al., 2013, 2014). Moreover, temperatures in many tropical regions are already 
today closer to the optimum temperatures for plant growth (Hatfield et al., 2011) so that further 
temperature increases will exceed the optimal range.  

Smallholder farming systems are most prevalent in tropical agriculture, particularly in Latin America, 
Sub-Saharan Africa, and South and East Asia (Samberg et al., 2016) and are disproportionally 
vulnerable to climate change (Donatti et al., 2019; Kerr et al., 2022; Morton, 2007). The livelihoods of 
smallholder farmers often primarily depend on agriculture so that changes in rainfall, temperature 
and the occurrence of extreme events directly affect their income, food security situation and well-
being (Harvey et al., 2014; Morton, 2007; Vignola et al., 2015). Moreover, smallholder farmers have 
limited capacities to adapt to climate change for various reasons, such as lacking policy, 
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infrastructure and institutional support as well as limited access to credits and viable markets (Kerr et 
al., 2022; Mbow et al., 2019). Also, insecure land tenure rights can constrain farmers’ ability to adapt 
to climate change (Murken & Gornott, 2022). The negative impacts of global warming on tropical 
agriculture and the high vulnerability of smallholder farmers further jeopardize their food and 
nutrition security (Wheeler & von Braun, 2013), which underlines the need for strong adaptation 
efforts.  

1.2 Climate risk management and adaptation in agriculture  
Negative climate impacts on agriculture require strong responses through climate risk management 
and adaptation to increase the resilience of farming systems. Climate risks result from “dynamic 
interactions between climate-related hazards with the exposure and vulnerability of the affected 
human or ecological system” (Begum et al., 2022). Risks of unmitigated climate impacts can be 
addressed through risk reduction by either preventing or preparing for them. For this purpose, 
integrating climate change adaptation and disaster risk reduction is needed (Begum et al., 2022; 
Lavell et al., 2012; UNDRR, 2019) to anticipate and respond to slow onset events as well as extreme 
events, which are increasing in intensity and/or frequency due to climate change (Seneviratne et al., 
2021). However, not all of the risks can be prevented, so that the residual risks will have to be 
addressed through either risk finance and transfer or loss and damage when limits to adaptation are 
reached (Begum et al., 2022).  

Adaptation options that reduce risks to agricultural crop production include the sustainable 
intensification of production, e.g. through the use of fertilizer and improved cultivars, or 
infrastructural and technological measures, such as investments in irrigation facilities. Nature-based 
adaptation solutions entail the adjustment of planting dates or agricultural diversification to spread 
risks in case of harvest losses. Moreover, water and soil management practices as well as 
agroecological approaches, including intercropping, cover crops, crop rotations, mixed systems or 
agroforestry, belong to nature-based solutions (Berrang-Ford et al., 2021; Kerr et al., 2022). Apart 
from these field-level adaptation options, several institutional measures can contribute to risk 
reduction. By providing tailored climate information such as early warnings (Tall et al., 2018), climate 
services can facilitate the implementation of adaptation options. Spreading risks through livelihood 
diversification or migration (Loison, 2015), increasing adaptive capacity through community-based 
adaptation (Ensor et al., 2018) or integrated approaches addressing climate adaptation and 
mitigating simultaneously (Harvey et al., 2014) are also possibilities to reduce climate-related risks in 
agriculture.  

1.3 Statistical crop modelling in support of climate risk management   
Crop models are indispensable tools to inform decision-making in climate risk management and 
adaptation as they allow quantifying crop responses to weather and climatic conditions. Three main 
approaches of crop models can be distinguished – process-based models, statistical crop models and 
integrated approaches. Process-based or crop simulation models attempt to represent key processes 
of crop growth and yield formation and can quantify the interaction of genotype, environment and 
management on various outputs, such as crop production, yield, carbon sequestration or greenhouse 
gas emissions. Statistical or empirical crop models assess the relationship between climatic variables 
and yield empirically. Last, integrated approaches combine biophysical and socio-economic 
considerations – thereby attempting to inform complex, multi-targeted policy decisions across 
different scales, e.g. related to food security (Rötter et al., 2018).  
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This dissertation focuses on the use of statistical models, including machine learning, to inform 
climate risk management. Statistical crop models have a long history with early examples by Runge 
(1968) and Thompson (1975). They estimate climate-yield relationships based on empirical 
observations. With increasingly available weather and crop yield data (derived from official statistics, 
field measurements or farmer surveys), statistical models became a common tool in climate impact 
assessments (Lobell & Asseng 2017). Compared to process-based models, they require fewer input 
data and can use spatially and temporally aggregated data as input (Holzkämper, 2017; Rötter et al., 
2018), which facilitates their application and transfer to data scare contexts often found in countries 
in the Global South. Especially in the tropics where yield loss related biotic stressors are a common 
issue (Aggarwal et al., 2006; van Ittersum et al., 2016), statistical models offer an advantage as they 
inherently cover indirect yield-limiting factors linked to climatic variables. This allows to better 
capture pests and diseases in statistical crop models (Rötter et al., 2018). 

For the purpose of supporting climate-related risk reduction in the agricultural sector, crop models 
can provide support in various ways. Crop models can improve the understanding of physical and 
socio-economic systems and be used to identify major climatic drivers. They can predict and thus 
help to anticipate future climate risks to crop production. Moreover, crop models can be applied to 
test and prioritize climate adaptation options based on their environmental and socio-economic 
impacts (Holzkämper, 2017). Statistical crop models have mostly been applied for agricultural climate 
impact assessments (e.g. Brás et al., 2021; Lobell, David. B et al., 2011; Lobell et al., 2006, 2008; Ray 
et al., 2015; Schlenker & Lobell, 2010). By identifying main climatic drivers on yield, they are able to 
prioritize regions in which climate adaptation will be particularly needed. Statistical crop models 
usually do not explicitly account for adaptation processes, unless management-related variables are 
included, such as in Jiang & Koo (2014). However, these models implicitly take autonomous 
adaptation into account, which continuously progresses over time and is therefore represented in 
observational data (Gornott & Wechsung, 2016; Holzkämper, 2017). Statistical models have a high 
potential for short-term, i.e. seasonal yield predictions (Liu & Basso, 2019; Schauberger et al., 2017, 
2020), for which machine learning is increasingly being used (Meroni et al., 2021). These forecasts 
can inform early warning systems on food insecurity (Choularton & Krishnamurthy, 2019) to support 
governments in taking actions to alleviate looming food crises (Liu & Basso, 2019). Independently of 
the modelling approach, any model requires thorough validation before it can inform real-world 
applications.  

1.4 Case studies  
The three case studies of this dissertation - Peru, Tanzania and Burkina Faso - are located in the 
tropics and share similar characteristics in the farming systems. Agriculture in these countries is 
dominated by smallholder and subsistence farming systems with mostly low input agronomic 
management. Because most people’s livelihoods in these countries directly depend on agriculture – 
either as a source of food or income, the food security situation of the population is directly 
impacted by unfavourable weather conditions and climate change. The following sub-chapters 
highlight some characteristics concerning the climatic conditions and the farming systems in Peru, 
Tanzania and Burkina Faso.  
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Figure 1: Map of case studies 

 

1.4.1 Peru 
Peru’s geography is characterised by the Andes, which run north-south and divide the country into 
three prominent landforms with distinct climatic and growing conditions resulting in a high level of 
biodiversity. The coastal region (costa) along the Pacific Ocean is characterised by semi-arid 
subtropical desert climate. Mean temperatures vary from 13 ° to 26 °C and annual rainfall is on 
average 150 mm. Agriculture in the coastal region is dominated by intensively grown export crops 
(USAID, 2017), which mostly rely on irrigation based on water coming from glacial melt of the Andes 
(Liersch & Gornott, 2015). With ongoing climate change and continuous melting of the glaciers (Ortiz, 
2012), water scarcity will further hamper agricultural production in this region. The Andean highlands 
(sierra) have lower temperatures (11 ° to 18 °C on average) due to their higher elevations. Annual 
rainfall shows substantial variations (50 to 1000 mm per year), depending on the location within the 
Andes (eastern or western slope). The rainy season is from September to March (USAID, 2017). 
Particularly in the dry season from May to August, irrigation stemming from glacier melt is needed 
(Liersch & Gornott, 2015). Most farmers live in the Andean region, practising subsistence and rainfed 
agriculture to grow traditional crops, such as potatoes, quinoa and maize. A shift of agricultural 
production to higher elevations occurs in response to increasing temperatures, which increases the 
risk of being impacted by snowstorms, drought and floods (USAID, 2017). The amazon rainforest 
(selva) is a high-precipitation region (1000 to 3000 mm per year) with high temperatures (22 ° to 
31 °C) throughout the whole year. Pastoralism mainly takes place in the mountainous and high-
elevated jungle areas, where it provides food and income, especially for rural communities (USAID, 
2017). 

Median yields for the most grown crops in Peru are 3.4 t/ha for maize, 0.8 t/ha for coffee, 7.7 t/ha 
for rice, 15.9 t/ha for potatoes and 12.9 t/ha for bananas (from 2016-2020 based on FAO, 2020). The 
high level of input use (INEI, 2013) and irrigation coverage (75 % of agricultural area is equipped with 
irrigation schemes on the national level (FAO, 2018)) primarily reflects the export-orientated agro-
industry in the coastal region. However, 80 % of farmers in Peru are subsistence farmers (USAID, 
2017) in the highlands, where traditional farming practices on small parcels of land prevail (Sietz et 
al., 2012). Approximately 19 % of the population in Peru is threatened by severe food insecurity 
(2016-2018; FAO, 2018). 
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1.4.2 Tanzania  
The climate in Tanzania is largely influenced by its topography and its differences in altitude. It ranges 
from tropical climate in the lowlands at the coast with annual mean temperatures of 26 °C to 
temperate climate found in the highlands in the north and south-west of the country with annual 
mean temperatures of 18 °C. Whereas rainfall on the central plateau, which covers most of the 
country, ranges from 500 to 1000 mm per year, precipitation in the lowlands and highlands exceeds 
1300 mm (Tomalka et al., 2020). In Northeast Tanzania and the coastal areas, there is a bimodal 
rainfall pattern resulting from the seasonal migration of the Intertropical Convergence Zone (Zorita & 
Tilya, 2002). The short rains are called Vuli and occur from October to December, whereas the longer 
rain period is called Masika and occurs from March to May. The rest of the country has a unimodal 
rainfall pattern called Musumi with rainfall occurring from December to April (Arce & Caballero, 
2015).  

Agriculture in Tanzania is characterised by small-scale farming with low-input agronomic 
management. The average farm size per household is 2 ha and 91 % of total farmland is occupied by 
small-scale farms (Yoshino et al., 2017). Most crop production is based on rain-fed agriculture (only 
approx. 2.7 % of crop land is equipped with irrigation; FAO, 2018), making crop production 
particularly susceptible to shortages in rain. Maize is the most grown crop in Tanzania (median yield 
from 2016-2020 = 1.6 t/ha), followed by rice (2.9 t/ha), cassava (7.3 t/ha), groundnuts (0.7 t/ha), 
sunflower (1 t/ha) and beans (1.3 t/ha). The main cash crops are rice, nuts (sesame, cashew, 
coconut), cotton, coffee and tobacco (FAO, 2020). Even though agriculture accounts for 50 % of 
Tanzania’s total exports, it has little impact on job creation and technological development as most 
exporting goods are unprocessed (Yoshino et al., 2017). With 94.3 % of households having an income 
from agriculture (National Bureau of Statistics Tanzania, 2014), the livelihood of the vast majority of 
people in Tanzania is directly impacted by adverse climate impacts on agriculture.   

1.4.3 Burkina Faso  
Large parts of Burkina Faso are located on the central Savannah plateau with slight elevations and an 
average altitude of 400 m. The climate is predominantly Sahelian tropical climate with increasing 
precipitation amounts and duration of the rainy season towards the South. Three climate zones can 
be distinguished. The Sahelian zone in the north of the country receives the lowest amounts of rain 
(300 to 600 mm per year; FAO, 2015). Moreover, annual mean temperatures of up to 29 ° (Tomalka 
et al., 2021) and the hot and dry winds from the Sahara (harmattans) that prevail from March to May 
lead to high evapotranspiration rates and thus dry conditions. The dry season can last up to nine 
months (October to June; FAO, 2015). As only 0.9 % of arable land is irrigated in Burkina Faso (FAO, 
2018), the growing season is mainly aligned with the rainy season, resulting in a short growing season 
of fewer than 100 days (FAO, 2015). Therefore, agriculture in this zone is dominated by livestock 
rather than crop production (Tomalka et al., 2021). Whereas the Sudano-Sahelian zone in the centre 
of Burkina Faso receives 600 to 900 mm of rainfall per year, rainfall in the southern Sudanian zone 
amounts to up to 1200 mm in the rainy season, which lasts up to seven months from May to October 
(FAO, 2015). Average annual temperatures are around 27 °C (Tomalka et al., 2021). This zone is due 
to the growing season length of about 160 days and fertile soils the most suited for agricultural crop 
production, which translates into higher yields compared to the rest of the country (FAO, 2015). On 
national level, median yields from 2016 to 2020 for the most grown crops are 1 t/ha for sorghum, 0.5 
t/ha for cow peas, 0.8 t/ha for millet, 1.7 t/ha for maize and 1.2 t/ha for cotton (FAO, 2020).  

Burkina Faso is one of the poorest countries in the world and belongs to the group of least developed 
countries. The high population growth rate of 2.8 % per year (World Bank, 2022) and the high level of 
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violence and unrests in the country contribute to the severe food security situation (USAID, 2020), 
with almost half of the Burkinabe population being affected by either moderate or severe food 
insecurity (FAO, 2018). 
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2 Publications  
This dissertation presents three publications, which are shortly introduced in this section and follow 
in the subsequent sub-chapters (2.1, 2.2 and 2.3). Rights of use are specified within the respective 
sub-chapter of the publication. 

 

(1) Laudien, R., Schauberger, B., Gleixner, S., & Gornott, C. (2020). Assessment of weather-yield 
relations of starchy maize at different scales in Peru to support the NDC implementation. 
Agricultural and Forest Meteorology, 295, 108154. 
https://doi.org/10.1016/j.agrformet.2020.108154 

The first study assesses weather influences on starchy maize yields on the sub-national and local 
scale in Peru based on different yield data sources (official agricultural statistics and survey data) and 
different statistical approaches (a linear regression model, a linear panel data model and a machine 
learning algorithm). Moreover, the influence of higher water availability on maize yields on the sub-
national level is assessed in support of the Peruvian Nationally Determined Contributions and the 
herein suggested adaptation options to climate change.  

 

(2) Laudien, R., Schauberger, B., Makowski, D., & Gornott, C. (2020). Robustly forecasting maize 
yields in Tanzania based on climatic predictors. Scientific Reports, 10(1), 1–12. 
https://doi.org/10.1038/s41598-020-76315-8 

The second study provides a within-season maize yield forecast six weeks before the harvest on the 
sub-national level in Tanzania, which can support governments in preparing for looming food crises. 
The study utilizes a rigorous and transparent validation that mimics the operational context in which 
the model has to be trained purely on past data. Furthermore, we tested the robustness by providing 
a completely independent forecast for the harvest year 2019.  

 

(3) Laudien, R., Schauberger, B., Waid, J., & Gornott, C. (2022). A forecast of staple crop 
production in Burkina Faso to enable early warnings of shortages in domestic food 
availability. Scientific Reports, 12(1), 1638. https://doi.org/10.1038/s41598-022-05561-9 

By combining a yield forecast with information on harvest areas, the third study provides a crop 
production forecast one month before the harvest for maize, millet and sorghum on the national 
level in Burkina Faso. Moreover, the produced calories from these crops are compared with the 
historic demand. This allows us to provide early information on shortages in domestic cereal 
production, which can inform early warning systems of food security.  
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2.1 Assessment of weather-yield relations of starchy maize at different scales in Peru 
to support the NDC implementation  

 

This chapter is a reproduction of the article published as:  

Laudien, R., Schauberger, B., Gleixner, S., & Gornott, C. (2020). Assessment of weather-yield relations 
of starchy maize at different scales in Peru to support the NDC implementation. Agricultural 
and Forest Meteorology, 295, 108154. https://doi.org/10.1016/j.agrformet.2020.108154 

The paper can only be used for non-commercial purposes. 

https://doi.org/10.1016/j.agrformet.2020.108154
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2.2 Robustly forecasting maize yields in Tanzania based on climatic predictors 
 

This chapter is a reproduction of the article published as: 

Laudien, R., Schauberger, B., Makowski, D., & Gornott, C. (2020). Robustly forecasting maize yields in 
Tanzania based on climatic predictors. Scientific Reports, 10(1), 1–12. 
https://doi.org/10.1038/s41598-020-76315-8 

This article is licensed under a Creative Commons Attribution 4.0 International License (CC BY 4.0).  

https://doi.org/10.1038/s41598-020-76315-8
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2.3 A forecast of staple crop production in Burkina Faso to enable early warnings of 
shortages in domestic food availability  

 

This chapter is a reproduction of the article published as: 

Laudien, R., Schauberger, B., Waid, J., & Gornott, C. (2022). A forecast of staple crop production in 
Burkina Faso to enable early warnings of shortages in domestic food availability. Scientific 
Reports, 12(1), 1- 10. https://doi.org/10.1038/s41598-022-05561-9 

This article is licensed under a Creative Commons Attribution 4.0 International License (CC BY 4.0).  

https://doi.org/10.1038/s41598-022-05561-9
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3 Discussion 
In the first study, we assessed the influence of weather on starchy maize yields on the regional and 
the local scale in Peru. Three different statistical approaches were used: a linear regression model, a 
linear panel data model and the machine learning algorithm decision tree. Weather-yield relations 
for starchy maize on the regional level reflect the complex Peruvian climate as shown by the 
selected weather variables of the linear regression model in different regions on the coast (costa), 
the Andean highlands (sierra) and the Amazon rainforest (selva). The analysis on the local level was 
based on a panel data model and a decision tree and revealed similar weather-influences on maize 
yields, which validates the robustness of the obtained results. As suggested by the Peruvian 
Nationally Determined Contributions to adapt to climate change, we assessed the effect of higher 
water availability on starchy maize yields based on the linear regression model. The analysis showed 
regionally different effects on starchy maize yields, which highlights the importance to develop 
adaptation options at the sub-national scale.  

The second study provides a within-season forecast for maize yields on the sub-national scale six 
weeks before the harvest for Tanzania. Despite the limited availability of only ten years of yield data, 
the forecast shows a high and robust performance (i.e. median NSE of 0.72 in the out-of-sample 
validation). We found that particularly extreme weather conditions, i.e. consecutive dry days, high 
precipitation events and minimum temperatures, have a strong impact on maize yields in Tanzania. 
The inclusion of the sea surface temperature in the West Pacific as an additional predictor improves 
the performance and could be used to extend the lead time of the forecast. We utilize a rigorous and 
transparent two-level validation to mimic the situation in operational practice when the model has 
to be trained purely on past data. Furthermore, we tested the robustness by providing a completely 
independent forecast for the harvest year 2019.  

The third study provides a within-season forecast of crop production for the staples maize, sorghum 
and millet one month before the harvest in Burkina Faso based on a rigorous validation. The 
persistent trend in harvest areas in Burkina Faso contributes to the high skill of the production 
forecast (i.e. r2 > 0.76). This underlines the high potential this information would have for production 
forecasts – if detected within the season, e.g. through farmer surveys or remote sensing. Moreover, 
we compared the produced calories from maize, sorghum and millet with the historic demand 
allowing us to provide early information on shortages in domestic cereal production. Results show 
that despite the surplus of produced calories on the national level, a high level of food insecurity 
prevails for large parts of the Burkinabe population. We recommend a comprehensive assessment of 
all dimensions of food security considering the seasonal, spatial and group-specific distribution of 
food within the country.  

The following sub-chapters provide a synthesis of the main findings across all three publications 
(chapter 3.1) and open research questions (3.2).  

3.1 Main findings across publications  
The three publications present novel statistical crop modelling approaches for maize on the sub-
national scale in Peru, Tanzania and Burkina Faso covering the whole country. Previous assessments 
focused either on single regions within these countries, i.e. Liu & Basso (2020) in Tanzania and Karst 
et al. (2020) in Burkina Faso, or on the wider region, e.g. Ogutu et al. (2018) for East Africa or Leroux 
et al. (2019) for West Africa. The statistical crop modelling approach applied in the three studies for 
Peru, Tanzania and Burkina Faso is potentially transferrable to other countries for two reasons. First, 
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it relies on globally available climate data and second, it provides robust results even in case of 
limited yield data availability which can often be found in data-scare regions in the Global South.   

The crop yield models can explain a substantial part of crop yield variability based on weather 
influences. The median performance of the sub-national maize yield models measured in NSE (Nash-
Sutcliffe model efficiency coefficient) is 0.55 in Peru, 0.81 in Tanzania and 0.58 in Burkina Faso based 
on the out-of-sample validation. This indicates a strong sensitivity of maize yield anomalies to 
weather influences in these countries. In addition to maize, the study for Burkina Faso also included a 
crop model for sorghum (NSE = 0.34) and millet (NSE = 0.64). The lower performance of the sorghum 
crop model in Burkina Faso could be related to reliability issues in the sorghum data. The studies 
underline the importance of spatially-distinct crop models with distinct variables and model 
parameters to take account of the diverse and complex yield influencing weather characteristics 
within the countries.  

Apart from weather-yield relations, the three studies discussed other influences on the crop model 
performance. In paper two and three, we found that the persistent trend in yields had high 
explanatory power for the prediction of absolute yields – leading to a higher forecasting skill for 
absolute yields than for yield anomalies. In paper three, we found that having information about 
acreage within the season resulted in a highly accurate within-season production forecast (i.e. r2 > 
0.92). This information could be obtained through farmer surveys or remote sensing and has – as our 
results suggest – high practical relevance for accurate production forecasts in practice.  

In contrast to most statistical crop forecasts that rely on either estimation and/or out-of-sample 
validation results (Schauberger et al., 2020), our second and third publications applied an out-of-
sample variable selection. This rigorous validation technique mimics the operational context in which 
no information from the current year influences model formation or variable selection. We are not 
aware of previous statistical crop modelling studies that used this validation technique. Recently, 
Meroni et al. (2021) and Dinh & Aires (2021) presented examples of validation approaches based on 
the same principle, which they refer to as the nested leave-one-year-out cross-validation and the 
nested leave-two-out cross-validation respectively. In the first paper, we also focused on rigorous 
validation by applying two independent models - a machine learning algorithm and a linear panel 
data model - to test the validity of the variable selection. A rigorous validation is particularly 
important when the model results are potentially being used to inform adaptation planning (in case 
of the first publication) or early warning systems on food security (in case of publications two and 
three). Prediction inaccuracies in these cases could potentially have severe consequences for the 
livelihoods and food security of people. 

The three studies emphasize the importance of integrating crop model results with other sources of 
information to comprehensively inform climate risk management and adaptation. Our first study 
illustrates how a statistical crop model can assess the effect of an adaptation option on yields. 
However, the development and design of adaptation strategies that take account of inter-sectoral 
aspects (Pardoe et al., 2018) as well as synergies and trade-offs between different options (Palm et 
al., 2010) need to be done jointly with local stakeholders (Goosen et al., 2014). Similarly, the 
forecasts provided in study two and three should be embedded in a forecasting system that 
integrates other sources of information, such as local knowledge. Factors that the model does not 
explicitly account for, such as changes in the occurrence of pests and diseases, need to be identified 
by local experts as they can negatively influence the reliability of the model. An example is the 
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outbreak of the fall armyworm in 2019 in East Africa with detrimental consequences for agricultural 
production, particularly in the Northern regions and coastal areas in Tanzania, for which the models 
show weak performances. Additionally, changes in the economic, social or political environment 
need to be identified to safeguard against inaccurate predictions. 

3.2 Outlook  
The following sub-chapters discuss open research questions concerning model improvements (3.2.1 
to 3.2.3) and integration with other information for comprehensive assessments of food security 
(3.2.4) and climate adaptation (3.2.5).   

3.2.1 Comparing observed planting and harvest dates with calculated ones to improve the 
accuracy of growing season data 

In tropical and rainfed agricultural systems, the planting date is aligned with the onset of the rains. 
Therefore, farmers need information on the onset of the rains to decide about the optimal planting 
date. Both early planting (reduced germination of seeds) and late planting (lower water availability at 
the end of the growing season) could negatively affect yields (Krell et al., 2022) and thus the food 
availability of subsistence farmers. Having accurate growing season data is also crucial for crop 
modelling to better capture growing season-specific weather influences and key phenological phases 
(Schauberger et al., 2020). In contrast to static crop calendars, e.g. provided by the FAO (FAO, 2010), 
a dynamic crop calendar takes account of year-to-year variations at the beginning and the end of the 
growing season. Using a dynamic crop calendar has the potential to improve the model performance 
because yield-influencing weather conditions of the growing season can be more accurately 
represented. This is particularly relevant in regions with strong year-to-year variations in the onset of 
the rains, like in our study areas in East Africa (Wenhaji Ndomeni et al., 2018) and West Africa (Paeth 
& Hense, 2004).  

Different approaches exist to calculate the onset of the growing season based on rainfall 
characteristics (e.g. Dodd & Jolliffe, 2001; Laux et al., 2008; Stern et al., 1981) to obtain a dynamic 
crop calendar. These approaches define the onset of the growing season as the time when a 
sufficient amount of rain occurred over a defined period without the interruption by a dry spell. Even 
though the approach of Dodd & Jolliffe (2001) is considered suitable for semi-arid tropical conditions, 
we could not verify whether the specific criteria (i.e. precipitation amount, number of wet days, 
length of dry spell) match the local conditions and take account of the diverse climatic conditions 
within the study areas. For this purpose, observational data derived from survey data or satellite 
imageries should be used to compare the observed planting dates with the calculated ones. This way, 
thresholds of the criteria that define the beginning of the growing season could be optimised for 
specific climate zones. Additionally, the length of the growing season could be determined based on 
crop-specific observed harvest dates. The comparison could also provide insights on how closely the 
time of planting is aligned with the onset of the rains. A strong discrepancy could indicate that apart 
from rain, other factors might influence the decision on the planting time. 

3.2.2 Analysing the implications of different spatial scales on model performance   
Statistical crop modelling is often done at the spatial level of political boundaries due to input data 
availability and possible applications of crop model results. Official yield statistics, which are often 
used as input data for crop models, are reported on administrative levels and thus determine the 
spatial scale of the crop model. Moreover, for the purpose of informing decision-making, model 
outputs should be provided at the level at which decision-making takes place. For example, 
production forecasts at a national scale can contribute to increased food security by supporting 
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governments in adjusting imports, exports and trading prices (Delincé, 2017), whereas yield forecasts 
at the local level can inform management decisions, e.g. concerning cultivar selection or planting 
date (Zinyengere et al., 2011). However, administrative boundaries do not necessarily follow climatic 
and/or growing conditions with potentially negative implications for statistical inference. Diverging 
crop-weather influences within one administrative unit, e.g. due to differences in soil or 
management practices, can lead to biased parameter estimates and/or lower precision, and thus 
lower predictive model skill. Despite statistical remedies for clustered data, such as using fixed-
effects models (Wooldridge, 2014), the problem arises if clusters are unknown.  

This dissertation used statistical crop models at different spatial levels - from local to sub-national to 
national scales. We found that spatially distinct variables and parameters could better represent the 
diverse climatic conditions within the countries, particularly in Peru and Tanzania. The question is 
whether setting up the model on higher resolutions (if data was available) would have improved 
model performance. On the other hand, the aggregation of input data to lower resolutions can also 
be beneficial in contexts where data quality is suspected to be low, as independent errors are 
levelled out (Gornott & Wechsung, 2016). Future research should therefore systematically analyse 
how setting up the model on different spatial scales influences model performance. For this purpose, 
different administrative levels and nature-based boundaries, such as agro-ecological or agro-climatic 
zones, should be tested alongside different aggregation methods (Ewert et al., 2011). Moreover, 
clusters of similar management characteristics and growing conditions should be identified via 
statistical clustering techniques to derive the context-specific optimal spatial scale for statistical crop 
modelling. This analysis can make the trade-off between resolution and model accuracy transparent, 
which can direct potential applications of statistical crop models.  

3.2.3 Using interpretable and causal machine learning to improve the accuracy and usability 
of predictions in an operational context   

Machine learning has proven high predictive power in many applications, including yield forecasting 
(e.g. Cai et al., 2019; Meroni et al., 2021; Wolanin et al., 2020) and has the advantage of capturing 
complex and non-linear interactions. Although machine learning algorithms do not necessarily 
outperform regression models (Johnson et al., 2016), they should be used in addition to such models 
to provide a suite of different modelling approaches. Deriving ensemble means or medians from 
multiple crop models often outperform single models (Fleisher et al., 2017; Iizumi et al., 2018; B. Liu 
et al., 2016) if errors in different models are independent (Lobell & Asseng, 2017). Algorithms, such 
as random forest, neural networks, gradient boosting and support vector machines, should be tested 
for their suitability to accurately forecast yield within the growing season. While yield statistics are 
often only available for a short time period, particularly in the Global South, Meroni et al. (2021) 
show that machine learning algorithms can still be applied if validation is performed rigorously as 
proven in our second and third publications.  

Special focus should be placed on increasing the interpretability of predictions by explaining either 
general or causal relationships of the model. In the second publication of this dissertation, the 
interpretability of forecasts was facilitated by comparing and interpreting standardized model 
coefficients of linear regression models. Especially in complex linear models with several predictors, 
the interpretation of results becomes increasingly difficult. Further research should therefore expand 
on facilitating the interpretability of yield forecasts obtained by complex linear regression models 
and/or machine learning. Model-agnostic methods, such as visualization techniques of feature 
importance or the use of Shapley Values are independent of the applied model, which facilitates the 
comparability of different modelling approaches. Additionally, ad hoc methods should be used for 
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specific models, such as tools to uncover features learned in hidden layers in neural networks 
(Molnar, 2022). Detecting causal relations in machine learning helps to understand cause-effect 
connections and offers explanations for the reasons behind predictions. This can be realised through 
different tools, such as causal modelling tools and causal diagrams, which go beyond the 
identification of associations between variables and provide answers to counterfactual questions 
(Pearl, 2019). Improving the interpretability and explaining causal relationships can, in practice, 
enhance the uptake of a yield forecast as it builds trust in the model performance based on domain 
expertise. Moreover, it helps to identify possible errors and biases in the prediction and thus can 
improve the model performance, e.g. a model that is accurate for wrong reasons can be identified 
(Murdoch et al., 2019). 

3.2.4 Analysing all dimensions of food security by integrating weather-driven crop yield 
models with survey data   

The literature on the impacts of climate change on food security predominantly focuses on food 
availability and particularly food production (Davis et al., 2021; Wheeler & von Braun, 2013). 
However, our third study suggests that the other dimensions of food security - namely food access, 
utilization and stability – strongly influence the food security situation in Burkina Faso so that despite 
a surplus of produced calories from staples, a high degree of food insecurity prevails for large parts of 
the population. Similar results were found by Lewis (2017) for Ethiopia where high crop production 
on the national level also did not lead to a reduction in food insecurity. These findings align with 
Schmidhuber & Tubiello (2007) who conclude that the socio-economic environment in which climate 
change evolves is more relevant to food security than the expected biophysical changes due to 
climate change. Myers et al. (2017) highlight that next to immediate biological effects (such as crop 
yield losses), socio-economic factors, such as price increases and income effects, are also related to 
sharp declines in access to food and thus food security, especially for the global poor. Integrating all 
dimensions of food security is therefore needed to comprehensively understand the complex 
underlying causes of food insecurity and to potentially make predictions for the food security status 
of a population.  

For this purpose, the weather-driven statistical crop modelling approaches should be linked with 
household survey data to better understand the complex interplay of climatic and socio-economic 
factors that influence food and nutrition security. Therefore, variables related to food availability 
(e.g. quantify of produced food), food access (e.g. price of agricultural commodities and access to 
markets), food utilization (e.g. dietary diversity, availability of safe drinking water, state of health) 
and food stability (e.g. political conflicts, unrest) should be included to represent all pillars of food 
security (FAO et al., 2021). In addition, nutrition security should be integrated, which goes beyond 
food security by considering not only the amount of calories produced, accessed and consumed but 
also the nutrients it contains (Ingram, 2020). Particularly, the provision of micronutrients, such as 
iodine, vitamin A and iron should be considered as they have high relevance for global health and 
development in low-income countries (Han et al., 2022). The integration of different data sources 
could be achieved by setting up a Bayesian Belief Network (BBN). This machine learning technique 
provides a graphical representation of the probabilistic dependencies and independencies in a 
system, where each variable has the potential to have a direct (probabilistic) relationship with any 
other variable in the network (Eyre et al., 2021). Based on the BBN, interactions between weather 
and socio-economic factors that contribute to food and nutrition (in)security and different scenarios 
for future developments can be analysed. Additionally, sensitivity tests allow the identification of 
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factors with the highest probabilistic impacts on food and nutrition security and possible 
interventions can be simulated. The latter can inform adaptation policies and direct interventions 
where they are most needed. 

3.2.5 Comprehensively assessing adaptation options by integrating local knowledge  
Existing crop modelling efforts that assess climate adaptation strongly focus on the impacts of on-
farm management practices on agricultural outcomes. Especially, changes in planting dates, 
irrigation, crop cultivar and fertilizer have been studied extensively with crop models as agricultural 
adaptation strategies (Challinor et al., 2018). The adaptation potential of existing on-farm 
management practices to reduce yield losses was found to be on average 8 % in mid-century and 
11 % in end-century. This is insufficient to compensate for the projected yield losses from climate 
change, particularly in currently warmer regions (Hasegawa et al., 2022), such as the tropics. 
However, these studies usually do not account for technological developments and agricultural 
intensification, which happen regardless of adaptation. This leads to a systematic underestimation of 
projected yields (Lobell, 2014). Furthermore, the adaptation options currently reflected in crop 
modelling studies do not reflect the breadth of available options found in practice, which range from 
on-farm management practices to transformational changes, including the shift to other cropping 
areas, crops or production systems (Vermeulen et al., 2018). This is particularly problematic in 
smallholder farming systems in the tropics where crop diversification and intercropping are common 
but remain underrepresented in model-based adaptation research (Claessens et al., 2012).  

Alongside crop model improvements (e.g. focusing on other crops than wheat, maize, soybean and 
rice; integrating mixed farming systems and agro-forestry), integrated assessment models  (Ewert et 
al., 2015) should be further developed. Moreover, crop modelling efforts should be integrated with 
bottom-up adaptation approaches, i.e. qualitative research including focus group discussions and 
interviews. These approaches can provide local information to support adaptation planning, such as 
context or site-specific information on livelihoods, culture, constraints and opportunities of 
adaptation (Beveridge et al., 2018). Whereas crop models can quantify yield changes related to 
specific adaptation options, they can neither assess impacts on the farming or food system nor on 
other potentially influenced sectors. Therefore, adaptation strategies need to be designed together 
with local stakeholders and experts. This is crucial to consider inter-sectoral aspects (Rosenzweig et 
al., 2017), e.g. related to food, water and energy (Pardoe et al., 2018), as well as synergies and trade-
offs between different adaptation options (Palm et al., 2010) and adaptation and mitigation 
(Thornton & Comberti, 2017). 
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4 Concluding remarks and personal hopes  
This dissertation aims to contribute to a deeper understanding of weather-yield relations in the 
tropics and how these findings can inform climate risk management and adaptation in one of the 
most vulnerable regions to climate change. Whereas adaptation efforts will inevitably be necessary 
to protect us from negative impacts of global warming, the primary goal is to mitigate climate 
change. This requires quick action, as the newest IPCC Assessment Report 6 concludes. Global 
greenhouse gas emissions need to go down from 2025 onwards so that limiting warming to 1.5 °C 
remains possible (IPCC, 2022). With every ton of CO2 avoided, fewer people will face the negative 
consequences of global warming on food and nutrition security. However, climate change is just one 
of many drivers behind recent setbacks in global food security as recent developments demonstrate. 
The war in Ukraine increases food prices, particularly for wheat with detrimental consequences for 
food availability in the Global South (FAO, 2022). The corona pandemic provides another example, 
showing how the disruption of food supply chains affects the accessibility of food worldwide (Béné et 
al., 2021). Given the complex nature of food insecurity, solutions will have to be manifold and require 
vast transformational efforts, including insights from science. This dissertation is an attempt towards 
improving the predictability of food and nutrition security based on scientific approaches.  

At the end of this dissertation, I would like to quote my father: “The relevant question is not whether 
something is good, as this question is impossible to answer. The question is whether it contributes to 
something better.” (inspired by Kelson, 2016 and Rawls, 1979). With this dissertation, I hope I have 
contributed to something better. Maybe these results and my future research endeavours can add 
one more piece of the puzzle towards improving early warning systems on food insecurity. Using 
these and similar research approaches to support real-world solutions will require more steps that go 
beyond the sphere of science. Reaching the last mile will require making the results useable for local 
stakeholders and integrating them with other relevant information (Goosen et al., 2014) so that it 
can enable better decisions.  
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Supplementary figures  

 

Fig. A.1. Köppen-Geiger climate classification of South America (Peel et al., 2007);  

A = Tropical, B = Arid, C = Temperate, D = Cold, ET = Polar Tundra, f = Rainforest, m = Monsoon, w = 
Savannah, s = Dry Summer, W = Desert, S = Steppe, a = Hot Summer, b = Warm Summer, c = Cold 
Summer, h = Hot, k = Cold 



6    Supplementary Information  
 

66 
 

 

Fig. A.2. Historic warming in Peru; linear trend in mean surface air temperature from 1981 to 2016 
based on PISCO data (Aybar et al., 2019) 

 

Fig. A.3. Location of starchy maize producing households interviewed in the survey waves 2016 and 
2017 of the agricultural survey carried out by the Peruvian national statistical institute “Instituto 
Nacional de Estadística e Informática” (INEI, 2017); the points show the centre of the primary 
sampling unit of the survey, called clusters (in Spanish: Conglomerados); black points show all clusters 
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of the survey waves 2016 and 2017 (i.e. 19,704 observations coming from 1,213 unique clusters), blue 
points show the clusters that we used in the study after data cleaning techniques were applied (i.e. 
291 observations coming from 97 unique clusters) 

 

Fig. A.4. Administrative map of Peru showing regions (in Spanish: departamentos) in blue and clusters 
(in Spanish: conglomerados) in light grey; clusters are the primary sampling unit of the agricultural 
household survey carried out by the Peruvian national statistical institute “Instituto Nacional de 
Estadística e Informática” (INEI, 2017). 



6    Supplementary Information  
 

68 
 

 

Fig. A.5. Projected precipitation changes in Peru in 2040 to 2060 (compared to 2000-2020) during the 
main growing season (from September to June) based on the global climate models GFDL-ESM2M, 
HadGEM2-ES, IPSL-CM5A-LR and MIROC5, which were bias-adjusted and provided within ISIMIP2b 
(Warszawski et al., 2014); the panels on top show the modelled mean precipitation in the growing 
season from 2000 to 2020; the panels below show the differences in mean precipitation in the 
growing season from 2000-2020 and 2040-2060 
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Fig. A.5. (continued)  
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Fig. A.6. Observed and simulated maize yield anomalies in the region Lima. Black lines show observed 
yield anomalies, blue lines show anomalies estimated with the full model and green lines those 
estimated out-of-sample. Selected variables are shown in blue for precipitation, red for temperature 
and grey for cloud fraction (Abbreviations: cdd10 = Consecutive dry days of more than 10 days, cdd5 = 
Consecutive dry days of more than 5 days, T.cv.mean = Coefficient of variation of mean temperature; 
T.cv.max = Coefficient of variation of maximum temperature, T.max = Mean maximum temperature 
[°C], C.cv = Coefficient of variation of mean cloud fraction; “_v” stands for vegetative phase and “_r” 
stands for reproductive phase) 
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Supplementary Tables  

 

AMAZONAS 
     

ANCASH 
    

term estimate std.error t.stat p.value 
 

term estimate std.error t.stat p.value 
T.cv.mean_v -2501.79 962.16 -2.60 0.04 

 
T.cv.max_r -450.07 407.70 -1.10 0.31 

P.cv_r -94.87 73.47 -1.29 0.24 
 

T.cv.mean_v -564.05 464.49 -1.21 0.27 
T.max_v 62.25 19.62 3.17 0.02 

 
cdd10_v 17.24 7.33 2.35 0.06 

T.min_v -43.52 16.54 -2.63 0.04 
 

T.max_v 14.14 9.10 1.55 0.17 
cdd5_r -9.76 4.65 -2.10 0.08 

 
cwd10_r 1.02 0.30 3.40 0.01 

C.min_r 2.79 1.05 2.66 0.04 
 

C.mean_v 0.53 1.23 0.43 0.68 
PA20_v -3.90 2.03 -1.92 0.10 

 
C.min_v -0.59 0.72 -0.83 0.44 

NSEe 0.91 
    

NSEe 0.91       
NSEv  0.55 

    
NSEv  0.47 

   

RMSE 9.81 
    

RMSE 6.98   
   

RMSE.const  34.52 
    

RMSE.const  24.9 
   

p.value of 
f.stat 

< 0.05 
    

p.value of 
f.stat 

< 0.01 
   

          
 

          

APURIMAC 
     

AREQUIPA 
    

term estimate std.error t.stat p.value 
 

term estimate std.error t.stat p.value 
cdd10_v -86.86 42.35 -2.05 0.09 

 
C.cv_r -1109.00 682.57 -1.62 0.14 

C.min_v 10.83 20.91 0.52 0.62 
 

PA10_r 426.53 271.94 1.57 0.15 
T.cv.min_v 150.81 790.53 0.19 0.86 

 
cwd10_v 27.20 12.93 2.10 0.06 

cwd5_v 0.77 1.42 0.54 0.61 
      

minOfmin_r -16.97 17.40 -0.98 0.37 
      

T.min_v 69.11 58.82 1.18 0.28 
      

PA15_v 7.06 12.24 0.58 0.59 
      

NSEe 0.76       
 

NSEe 0.62       
NSEv  -0.24 

    
NSEv  0.46 

   

RMSE 38.55  
    

RMSE 221.09 
   

RMSE.const  84.63 
    

RMSE.const  389.21 
   

p.value of 
f.stat 

0.13     p.value of 
f.stat 

< 0.05    

          
 

          

AYACUCHO 
     

CAJAMARCA 
    

term estimate std.error t.stat p.value 
 

term estimate std.error t.stat p.value 
C.cv_v -458.61 301.06 -1.52 0.18 

 
T.cv.mean_v -365.88 352.50 -1.04 0.34 

minOfmin_v -17.63 12.68 -1.39 0.21 
 

cdd5_v 19.51 3.37 5.79 0.00 
PA15_r 25.06 10.89 2.30 0.06 

 
C.min_r -2.93 0.61 -4.77 0.00 

P.max_v 7.52 2.75 2.73 0.03 
 

PA20_v -3.41 2.69 -1.27 0.25 
C.mean_v 1.73 3.86 0.45 0.67 

 
C.min_v 2.07 0.39 5.30 0.00 

PA5_r -2.69 1.25 -2.15 0.08 
 

PA5_r 1.09 0.33 3.34 0.02 
DWP_v 2.67 1.14 2.35 0.06 

 
P.max_v -0.32 0.41 -0.78 0.47 

NSEe 0.94       
 

NSEe 0.94       
NSEv  0.57 

    
NSEv  0.64 

   

RMSE 16.87 
    

RMSE 5.48 
   

RMSE.const  72.31 
    

RMSE.const  24.58 
   

p.value of 
f.stat 

< 0.01     p.value of 
f.stat 

< 0.01    
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CUSCO 
     

HUANCAVELICA 
   

term estimate std.error t.stat p.value 
 

term estimate std.error t.stat p.value 
P.cv_v -1557.50 605.18 -2.57 0.04 

 
PA10_r 2.18 5.08 0.43 0.68 

T.cv.max_r 3531.93 4706.80 0.75 0.48 
 

T.cv.max_v 2173.78 2183.72 1.00 0.36 
maxOfmax_r -108.17 27.13 -3.99 0.01 

 
T.mean_v -18.07 39.98 -0.45 0.67 

cdd5_v 64.35 48.65 1.32 0.23 
 

PA15_r 17.42 15.07 1.16 0.29 
PA10_r -33.48 7.59 -4.41 0.00 

 
cwd5_v 1.68 1.10 1.53 0.18 

PA15_v -39.64 12.01 -3.30 0.02 
 

cdd5_r 2.50 8.16 0.31 0.77 
cdd5_r -50.94 41.60 -1.22 0.27 

 
minOfmin_r 2.13 15.26 0.14 0.89 

NSEe 0.89       
 

NSEe 0.65       
NSEv  0.37 

    
NSEv  -0.33 

   

RMSE 59.46 
    

RMSE 24.77  
   

RMSE.const  190.35 
    

RMSE.const  45.23 
   

p.value of 
f.stat 

< 0.05     p.value of 
f.stat 

0.3    

          
 

          

HUANUCO 
     

ICA 
    

term estimate std.error t.stat p.value 
 

term estimate std.error t.stat p.value 
T.cv.max_v -9348.19 1170.05 -7.99 0.00 

 
cwd10_v 107.44 34.40 3.12 0.01 

T.mean_r -80.72 39.39 -2.05 0.09 
      

maxOfmax_r -33.51 15.43 -2.17 0.07 
      

PA15_r 11.53 2.63 4.38 0.00 
      

C.mean_v 6.19 4.47 1.39 0.21 
      

PA10_r 3.64 3.07 1.18 0.28 
      

PA5_r 5.70 1.12 5.08 0.00 
      

NSEe 0.97       
 

NSEe 0.45       
NSEv  0.76 

    
NSEv  0.44 

   

RMSE 13.66 
    

RMSE 285.8 
   

RMSE.const  88.11 
    

RMSE.const  416.87 
   

p.value of 
f.stat 

< 0.001     p.value of 
f.stat 

< 0.01    

          
 

          

JUNIN 
     

LA LIBERTAD 
    

term estimate std.error t.stat p.value 
 

term estimate std.error t.stat p.value 
cdd5_r -161.11 52.40 -3.07 0.01 

 
T.cv.min_v 4678.72 2475.00 1.89 0.11       
T.cv.mean_v -12219.59 3334.53 -3.66 0.01       
P.cv_v 245.85 137.71 1.79 0.12       
minOfmin_r 38.09 15.39 2.47 0.05       
PA15_r 92.39 35.04 2.64 0.04       
PA10_v 46.63 15.53 3.00 0.02       
PA5_r -18.16 4.58 -3.97 0.01 

NSEe 0.44       
 

NSEe 0.94       
NSEv  0.35 

    
NSEv  0.76 

   

RMSE 152.96 
    

RMSE 29.71 
   

RMSE.const  221.56 
    

RMSE.const  130.76 
   

p.value of 
f.stat 

< 0.01     p.value of 
f.stat 

< 0.01    
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LAMBAYEQUE 
    

LIMA 
    

term estimate std.error t.stat p.value 
 

term estimate std.error t.stat p.value 
T.cv.max_v -1919.11 1302.52 -1.47 0.18 

 
T.cv.mean_v 57083.12 28027.33 2.04 0.09 

cwd5_v -96.15 23.44 -4.10 0.00 
 

T.cv.max_v -44441.64 28803.12 -1.54 0.17 
cdd5_v -54.39 9.14 -5.95 0.00 

 
C.cv_r -5664.20 2939.05 -1.93 0.10 

P.cv_v 29.57 9.75 3.03 0.02 
 

T.cv.mean_r 25795.98 22889.98 1.13 0.30 
cdd5_r -6.40 5.16 -1.24 0.25 

 
cdd10_r 152.04 231.20 0.66 0.54       
T.max_v -140.65 218.66 -0.64 0.54       
cdd5_v -498.79 254.23 -1.96 0.10 

NSEe 0.94       
 

NSEe 0.72       
NSEv  0.88 

    
NSEv  -0.75 

   

RMSE 18.48 
    

RMSE 248.41 
   

RMSE.const  81.38 
    

RMSE.const  511.3 
   

p.value of 
f.stat 

< 0.001     p.value of 
f.stat 

0.17    

          
 

          

MOQUEGUA 
     

PASCO 
    

term estimate std.error t.stat p.value 
 

term estimate std.error t.stat p.value 
T.cv.min_v 1415.05 399.55 3.54 0.00 

 
T.cv.max_r -18242.99 7083.80 -2.58 0.04 

PA5_v 36.22 13.75 2.63 0.02 
 

T.cv.max_v -6568.94 4018.42 -1.63 0.15       
C.cv_v -2937.66 1672.40 -1.76 0.13       
cdd5_v -78.95 60.37 -1.31 0.24       
cdd10_r 70.10 35.23 1.99 0.09       
maxOfmax_v -70.20 51.45 -1.36 0.22       
PA5_v -14.10 4.80 -2.94 0.03 

NSEe 0.66       
 

NSEe 0.94       
NSEv  0.56 

    
NSEv  0.83 

   

RMSE 42.26 
    

RMSE 56.18 
   

RMSE.const  78.06 
    

RMSE.const  252.78 
   

p.value of 
f.stat 

< 0.01     p.value of 
f.stat 

< 0.01    

 
        

 
          

PIURA 
     

PUNO 
    

term estimate std.error t.stat p.value 
 

term estimate std.error t.stat p.value 
T.min_r -32.37 13.92 -2.32 0.06 

 
T.cv.mean_r -1161.05 126.91 -9.15 0.00 

cwd5_v -4.17 1.43 -2.93 0.03 
 

T.cv.min_v -490.71 53.34 -9.20 0.00 
PA5_r 37.33 12.63 2.96 0.03 

 
C.cv_v 169.10 40.21 4.21 0.01 

C.min_v 9.91 4.96 2.00 0.09 
 

PA15_v 10.96 0.82 13.28 0.00 
T.mean_v 82.92 28.61 2.90 0.03 

 
cdd10_v -5.24 3.06 -1.71 0.14 

maxOfmax_v -31.52 20.22 -1.56 0.17 
 

C.min_r -2.90 0.30 -9.56 0.00 
cdd5_r -27.66 12.48 -2.22 0.07 

 
cdd5_r 5.18 1.84 2.82 0.03 

NSEe 0.83       
 

NSEe 0.99       
NSEv  0.26 

    
NSEv  0.97 

   

RMSE 21.67 
    

RMSE 2.68 
   

RMSE.const  57.37 
    

RMSE.const  35 
   

p.value of 
f.stat 

< 0.05     p.value of 
f.stat 

< 0.001    
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TACNA 
          

term estimate std.error t.stat p.value 
      

HDD_v -250.99 83.30 -3.01 0.02 
      

maxOfmax_v -50.39 30.08 -1.68 0.14 
      

T.max_v -14.90 57.47 -0.26 0.80 
      

cdd5_r 39.37 29.35 1.34 0.23 
      

cwd5_r -6.92 4.60 -1.51 0.18 
      

P.sum_v 5.53 1.76 3.15 0.02 
      

C.mean_v -13.23 9.68 -1.37 0.22 
      

NSEe 0.94       
      

NSEv  0.62 
         

RMSE 58.62 
         

RMSE.const  253.02 
    

  
    

p.value of 
f.stat 

< 0.01          

Table A.1. Table of coefficients of the RRM per region; the estimate shows the estimated value of the 
regression term; std. error shows the standard error of the regression term; t.stat shows the t-
statistic; p.value shows the two-sided p-value of the observed t-statistic; NSEe (NSEv) shows the Nash–
Sutcliffe efficiency coefficient of the estimation (validation) result; RMSE shows the root mean 
squared error between the observed yields and the estimated yields, RMSE.const shows the RMSE 
between observed yields and a constant model that takes the mean yield per region as a predictor; 
p.value of f.stat shows the one-sided p-value of the observed F-statistic 

 

term estimate std.error t.stat p.value 
T.cv.max_r 806.19 1717.16 0.47 0.64 
T.cv.mean_v -1104.83 2074.09 -0.53 0.59 
T.cv.mean_r 1914.65 1066.26 1.80 0.07 
C.cv_v -209.20 79.86 -2.62 0.01 
cdd10_r -73.19 19.26 -3.80 0.00 
P.cv_r 70.79 29.43 2.40 0.02 
T.cv.min_r 45.34 14.18 3.20 0.00 
minOfmin_v -32.97 23.61 -1.40 0.16 
minOfmin_r -31.14 19.93 -1.56 0.12 
P.cv_v 22.02 23.85 0.92 0.36 
PA20_r -10.30 9.10 -1.13 0.26 
cwd5_r 6.02 1.76 3.42 0.00 
C.mean_v 3.52 4.22 0.83 0.40 
cdd5_v 12.08 13.24 0.91 0.36 
cdd5_r -5.60 12.79 -0.44 0.66 
cwd5_v 3.41 1.95 1.75 0.08 
P.max_r 1.80 1.57 1.14 0.25 
C.mean_r 2.90 2.80 1.03 0.30 
HDD_v -0.25 0.85 -0.29 0.77 
NSEe 0.2    
NSEv 0.11    
RMSE 197.81    
RMSE.const 222.12    
p.value of f.stat < 0.001    

Table A.2. Table of coefficients of the PDM; the estimate shows the estimated value of the regression 
term; std. error shows the standard error of the regression term; t.stat shows the t-statistic; p.value 
shows the two-sided p-value of the observed t-statistic; NSEe (NSEv) shows the Nash–Sutcliffe 
efficiency coefficient of the estimation (validation) result; RMSE shows the root mean squared error 
between the observed yields and the estimated yields, RMSE.const shows the RMSE between 
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observed yields and a constant model that takes the mean yield per region as a predictor; p.value of 
f.stat shows the one-sided p-value of the observed F-statistic 

 

Region  Mean yield in 
kg/ha 

Mean yield in kg/ha 
with 77mm more water  

Difference in kg/ha Difference  in % p.value  

AMAZONAS  849.3 861.4 12.0 1.4 0.00 

ANCASH  1241.5 1239.0 -2.5 -0.2 0.20 

AREQUIPA  3618.7 3740.1 121.4 3.4 0.06 

AYACUCHO  1031.4 1018.6 -12.8 -1.2 0.01 

CAJAMARCA  858.2 850.8 -7.3 -0.9 0.06 

CUSCO  2342.3 2264.7 -77.7 -3.3 0.00 

HUANUCO  1206.0 1239.2 33.2 2.8 0.00 

ICA  2815.3 2815.3 0.0 0.0       NaN 

JUNIN  1885.9 1935.4 49.6 2.6 0.17 

LA LIBERTAD  1547.7 1533.1 -14.7 -0.9 0.34 

LAMBAYEQUE  1917.4 1533.3 -384.1 -20.0 0.00 

MOQUEGUA  1345.5 1373.3 27.9 2.1 0.02 

PASCO  1256.6 1184.1 -72.5 -5.8 0.00 

PIURA  932.3 1088.7 156.4 16.8 0.00 

PUNO  1603.1 1608.9 5.9 0.4 0.00 

TACNA 2729.9 3133.3 403.4 14.8 0.00 

 

Table A.3. The effect of 77mm more water in growing season on starchy maize yields. The additional 
amount is the minimum necessary additional water in 2040-2060 to compensate for an increased 
potential evapotranspiration due to increased temperatures in Peru; the results are based on the 
RRMs, the p.value shows the two-sided p-value of the observed t-statistic  



6    Supplementary Information  
 

76 
 

Supplementary Text  

Text A.1. Climatic conditions for maize  

Depending on the cultivar and the phenological stage, the optimal climatic conditions for maize vary. 
Over the entire growing season, the optimal temperature range is between 25°C and 30°C (Rötter and 
Van De Geijn, 1999). Above the optimum temperature range, photosynthesis is reduced, whereas 
respiration rates rise, such that net photosynthesis rates decline (Barnabás et al., 2008). If 
temperatures exceed 42°C, maize growth stops (Yin et al., 1995). Particularly during flowering, maize 
is sensitive to heat stress, as it can lead to the desiccation of pollen or a reduction in grain numbers 
(Sánchez et al., 2014). If the time for grain filling is reduced, grain size and consequently yields decline 
(Rötter et al., 2018). Maize is also susceptible to frost with lethal damages of the stem, leaf and ear 
occurring already after a couple of hours below 0°C (Carter and Hestermann, 1990). 

The optimal rainfall required in the growing season is around 500 to 800mm (Critchley and Siegert, 
1991). For optimal plant development, the timing and duration of water supply are equally critical. 
During flowering, maize requires sufficient water supply. Before pollination water stress leads to 
kernel abortion, even if at the time of pollination sufficient water is available (Westgate and Boyer, 
1985). Excessive rain, in contrast, can lead to soil water saturation and oxygen deficiency, which limits 
root respiration and the growth of roots. Also root water uptake is reduced in water-logged soils 
(Rötter et al., 2018). Rainfall that exceeds the water holding capacity of the soil can lead to the 
leaching of nutrients and nutrient deficiencies of the plant. Soil loss and mechanic damages of the 
plant can occur in case of flooding and soil erosion (Rötter et al., 2018).  

Compound abiotic stresses may be particularly damaging,  beyond the sum of the damages caused by 
individual stressors (Barnabás et al., 2008). Higher temperatures are often accompanied with dryer 
conditions, which leads to a higher vapour pressure deficit and drives faster transpiration rates. As a 
response, plants can reduce the stomatal conductance and save water, but at the price of less carbon 
assimilation and lower nutrient uptake, which in turn leads to lower growth rates (Lobell et al., 2013; 
Long, 2006).  

 

Text A.2. Equations for the calculation of weather variables; the variables are calculated for the 
vegetative and the reproductive phase of the growing season; d denotes the number of days within 
the vegetative or the reproductive phase; Days denotes the total number of days within the vegetative 
or the reproductive phase  

𝑇𝑇.𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 = 1
𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷

∑ 𝑇𝑇𝑑𝑑
𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷
𝑑𝑑=1                                                                                                                                                       (1) 

With 𝑇𝑇 as daily mean temperature  

  

𝑇𝑇.𝑚𝑚𝑚𝑚𝑚𝑚 = 1
𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷

∑ max (𝑇𝑇𝑑𝑑)𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷
𝑑𝑑=1                                                                                                                                            (2) 

With 𝑇𝑇 as daily mean temperature  

 

𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 = max (𝑇𝑇𝑑𝑑)                                                                                                                                                      (3) 

With 𝑇𝑇 as daily maximum temperature  
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𝑇𝑇.𝑚𝑚𝑚𝑚𝑚𝑚 = 1
𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷

∑ min (𝑇𝑇𝑑𝑑)𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷
𝑑𝑑=1                                                                                                                                              (4) 

With 𝑇𝑇 as daily mean temperature  

 

𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 = min (𝑇𝑇𝑑𝑑)                                                                                                                                                        (5) 

With 𝑇𝑇 as daily minimum temperature  

 

𝑇𝑇. 𝑐𝑐𝑐𝑐.𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 =  
� 1
𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷  ∑ (𝑇𝑇𝑑𝑑−𝑇𝑇.𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚)2 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷

𝑑𝑑=1

𝑇𝑇.𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚
                                                                                                                             (6) 

With 𝑇𝑇 as daily mean temperature and 𝑇𝑇.𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 as defined in Eq. 1  

 

𝑇𝑇. 𝑐𝑐𝑐𝑐.𝑚𝑚𝑚𝑚𝑚𝑚 =  
� 1
𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷  ∑ (𝑇𝑇𝑑𝑑−𝑇𝑇.𝑚𝑚𝑚𝑚𝑚𝑚)2 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷

𝑑𝑑=1

𝑇𝑇.𝑚𝑚𝑚𝑚𝑚𝑚
                                                                                                                                   (7) 

With 𝑇𝑇 as daily minimum temperature and 𝑇𝑇.𝑚𝑚𝑚𝑚𝑚𝑚 as defined in Eq. 4  

 

𝑇𝑇. 𝑐𝑐𝑐𝑐.𝑚𝑚𝑚𝑚𝑚𝑚 =  
� 1
𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷  ∑ (𝑇𝑇𝑑𝑑−𝑇𝑇.𝑚𝑚𝑚𝑚𝑚𝑚)2 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷

𝑑𝑑=1

𝑇𝑇.𝑚𝑚𝑚𝑚𝑚𝑚
                                                                                                                                 (8) 

With 𝑇𝑇 as daily maximum temperature and 𝑇𝑇.𝑚𝑚𝑚𝑚𝑚𝑚 as defined in Eq. 2  

 

𝐻𝐻𝐻𝐻𝐻𝐻 = ∑ (𝑇𝑇𝑑𝑑 − 𝑇𝑇𝐻𝐻𝐻𝐻𝐻𝐻)𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷
𝑑𝑑=1    𝑇𝑇𝑑𝑑𝐻𝐻𝐻𝐻𝐻𝐻 = � 0, 𝑇𝑇𝑑𝑑 < 30

𝑇𝑇𝑑𝑑 , 𝑇𝑇𝑑𝑑 ≥ 30                                                                                                       (9) 

With 𝑇𝑇 as daily maximum temperature and 𝑇𝑇𝐻𝐻𝐻𝐻𝐻𝐻 as the temperature ≥ 30°C   

𝐹𝐹𝐹𝐹𝐹𝐹 = ∑ 𝑇𝑇𝑑𝑑𝐹𝐹𝐹𝐹𝐹𝐹
𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷
𝑑𝑑=1     𝑇𝑇𝑑𝑑𝐹𝐹𝐹𝐹𝐹𝐹 = � 0, 𝑇𝑇𝑑𝑑 > 0

𝑇𝑇𝑑𝑑 , 𝑇𝑇𝑑𝑑 ≤ 0                                                                                                                    (10) 

With 𝑇𝑇 as daily minimum temperature   

𝑃𝑃. 𝑠𝑠𝑠𝑠𝑠𝑠 =  ∑ 𝑃𝑃𝑑𝑑
𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷
𝑑𝑑=1                                                                                                                                                              (11) 

With 𝑃𝑃 as daily precipitation  

 

𝑃𝑃.𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 = 1
𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷

∑ 𝑃𝑃𝑑𝑑
𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷
𝑑𝑑=1                                                                                                                                                    (12) 

With 𝑃𝑃 as daily precipitation  

 

𝑃𝑃.𝑚𝑚𝑚𝑚𝑚𝑚 = max(𝑃𝑃𝑑𝑑)                                                                                                                                                              (13) 

With 𝑃𝑃 as daily precipitation  

 

𝑃𝑃. 𝑐𝑐𝑐𝑐 =  
� 1
𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷  ∑ (𝑃𝑃𝑑𝑑−𝑃𝑃.𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚)2 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷

𝑑𝑑=1

𝑃𝑃.𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚
                                                                                                                                       (14) 

With 𝑃𝑃 as daily precipitation and 𝑃𝑃.𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 as defined in Eq. 12  
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𝐷𝐷𝐷𝐷𝐷𝐷 = ∑ 𝑃𝑃𝑑𝑑𝐷𝐷𝐷𝐷𝐷𝐷   𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷
𝑑𝑑=1      𝑃𝑃𝑑𝑑𝐷𝐷𝐷𝐷𝐷𝐷 = �0, 𝑃𝑃𝑑𝑑 > 0

1, 𝑃𝑃𝑑𝑑 = 0                                                                                                               (15) 

With 𝑃𝑃 as daily precipitation  

 

𝑃𝑃𝑃𝑃5 = ∑ 𝑃𝑃𝑑𝑑𝐴𝐴5 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷
𝑑𝑑=1      𝑃𝑃𝑑𝑑𝐴𝐴5 = �0, 𝑃𝑃𝑑𝑑 ≤ 5

1, 𝑃𝑃𝑑𝑑 > 5                                                                                                                          (16) 

With 𝑃𝑃 as daily precipitation; the equation is also used for the thresholds 10mm, 15mm and 20mm 

 

𝑐𝑐𝑐𝑐𝑐𝑐5 = ∑ 𝑃𝑃𝑑𝑑𝑐𝑐𝑐𝑐𝑐𝑐5 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷
𝑑𝑑=5      𝑃𝑃𝑑𝑑𝑐𝑐𝑐𝑐𝑐𝑐5 = �1, 𝑃𝑃𝑑𝑑 <  0.5 ˅ 𝑃𝑃𝑑𝑑−1 < 0.5 ˅ 𝑃𝑃𝑑𝑑−2 < 0.5 ˅ 𝑃𝑃𝑑𝑑−3 < 0.5 ˅ 𝑃𝑃𝑑𝑑−4 < 0.5

0, 𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒            (17)                                                                           

With 𝑃𝑃 as daily precipitation; the equation is also used for the calculation of consecutive dry days of 
more than 10 days (cdd10) 

 

𝑐𝑐𝑐𝑐𝑐𝑐5 = ∑ 𝑃𝑃𝑑𝑑𝑐𝑐𝑐𝑐𝑐𝑐5 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷
𝑑𝑑=5      𝑃𝑃𝑑𝑑𝑐𝑐𝑐𝑐𝑐𝑐5 = �1, 𝑃𝑃𝑑𝑑 >  0.5 ˅ 𝑃𝑃𝑑𝑑−1 > 0.5 ˅ 𝑃𝑃𝑑𝑑−2 > 0.5 ˅ 𝑃𝑃𝑑𝑑−3 > 0.5 ˅ 𝑃𝑃𝑑𝑑−4 > 0.5

0, 𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖          (18)                                                                                     

With 𝑃𝑃 as daily precipitation; the equation is also used for the calculation of consecutive wet days of 
more than 10 days (cwd10) 

 

𝐶𝐶.𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 = 1
𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷

∑ 𝐶𝐶𝑑𝑑
𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷
𝑑𝑑=1                                                                                                                                                    (19) 

With 𝐶𝐶 as cloud fraction  

 

𝐶𝐶.𝑚𝑚𝑚𝑚𝑚𝑚 = 1
𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷

∑ min (𝐶𝐶𝑑𝑑)𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷
𝑑𝑑=1                                                                                                                                           (20) 

With 𝐶𝐶 as cloud fraction   

𝐶𝐶. 𝑐𝑐𝑐𝑐 =  
� 1
𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷  ∑ (𝐶𝐶𝑑𝑑−𝐶𝐶.𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚)2 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷

𝑑𝑑=1

𝐶𝐶.𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚
                                                                                                                                       (21) 

With 𝐶𝐶 as cloud fraction and 𝐶𝐶.𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 as defined in Eq. 19  

 

𝐺𝐺𝐺𝐺𝐺𝐺 = ∑ 𝑇𝑇𝑑𝑑𝐺𝐺𝐺𝐺𝐺𝐺    𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷
𝑑𝑑=1 𝑇𝑇𝑑𝑑𝐺𝐺𝐺𝐺𝐺𝐺 = �

0,   𝑇𝑇𝑑𝑑 < 𝑇𝑇𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵

𝑇𝑇𝑑𝑑 − 𝑇𝑇𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 ,   𝑥𝑥 ≥ 𝑇𝑇𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 ≤ 𝑇𝑇𝑑𝑑 ≤ 𝑇𝑇𝑂𝑂𝑂𝑂𝑂𝑂

𝑇𝑇𝑂𝑂𝑂𝑂𝑂𝑂 − 𝑇𝑇𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 ,   𝑥𝑥 ≥  𝑇𝑇𝑑𝑑 > 𝑇𝑇𝑂𝑂𝑂𝑂𝑂𝑂
                                                              (22) 

With T as daily mean temperature; TBase as base temperature of 10°C; TOpt as optimal temperature of 
30°C (Gilmore and Rogers, 1958) 
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Text A.3. Description of variable selection per RRM 

Even though the selected variables differ per region, some patterns can be observed. Lambayeque 
and Piura are in the low elevated northern coastal region. Whereas precipitation in these two regions 
generally has a positive impact on yields, the distribution of rain matters a lot in the hot desert 
climate. Both too many consecutive dry or wet days are detrimental for yields. Also too high 
temperatures have a negative impact. The southern coast of Peru, which is mostly in the cold desert 
climate (Ica, Arequipa and Moquegua) is determined by a positive impact of precipitation on maize 
production. Tacna is south of these regions and also has some areas that are in the hot desert climate. 
Here, high temperatures (HDD, maxOfmax and T.max) in the vegetative phase depress yields. Also rain 
distribution seems to be important – as both cwd and cdd have a negative impact, whereas 
precipitation sum positively influences maize yields.  

In the Highlands, most regions encompass several climatic zones. Cusco, Ayacucho and Huancavelica, 
for example, are within the subtropical highland climate and cold semi-arid climate, which is why even 
within one region high variations in terms of weather occurs. Yields in Cusco are negatively impacted 
by too high precipitation and too high temperatures. In contrast, the model for Ayacucho even 
suggests that particularly high precipitation levels (above 15mm and maximum precipitation) are 
beneficial, whereas moderate precipitation levels (above 5mm) were negative for starchy maize yields. 
The negative coefficient of minimum temperature – suggesting that lower minimum temperatures are 
beneficial – is unexpected in mountainous areas and requires further investigation. For the model in 
Junín only consecutive dry spells longer than 5 days in the reproductive phase were relevant. It 
correlates negatively with yields and can explain 35% of yield variability. Huánuco and Pasco are both 
in the tropical rainforest climate. Whereas in both regions too high temperatures are detrimental for 
maize production, Huánuco shows a positive correlation with precipitation whereas in Pasco too high 
precipitation in the vegetative phase were harmful. Yields in Cajamarca in the northern Highlands are 
negatively influenced by too wet conditions in particular in the vegetative phase (precipitation above 
20mm and maximum precipitation show negative correlations, whereas consecutive dry days have a 
positive impact). Also high variations in the mean temperature have a negative impact. A similar 
pattern can be seen in Amazonas, where also variations in the mean temperature and in precipitation 
are negatively influencing starchy maize yields. Moreover, too wet weather (precipitation above 
20mm) and too long dry spells proved to be detrimental.  
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1. Input variables for the Regional Regression Model  

input name Definition unit  Vegetative phase Reproductive phase 

   median min max median min  max 

psum Precipitation sum  mm 303.97 85.50 1080.59 200.86 3.65 689.90 

cdd5 Consecutive dry days of equal 
or more than 5 days  

 1.00 0.00 4.00 2.00 0.00 6.00 

cdd10 Consecutive dry days of equal 
or more than 10 days  

 0.00 0.00 2.00 0.00 0.00 3.00 

cdd15 Consecutive dry days of equal 
or more than 15 days  

 0.00 0.00 1.00 0.00 0.00 2.00 

cdd20 Consecutive dry days of equal 
or more than 20 days  

 0.00 0.00 1.00 0.00 0.00 1.00 

pB5 Number of precipitation events 
below 5mm per day  

 9.00 3.00 19.00 8.00 2.00 25.00 

pB10 Number of precipitation events 
below 10mm per day  

 18.00 6.00 35.00 13.00 2.00 34.00 

pB15 Number of precipitation events 
below 15mm per day  

 23.50 8.00 40.00 17.00 2.00 38.00 

pA5 Number of precipitation events 
equal or above 5mm per day  

 20.00 6.00 39.00 14.00 0.00 33.00 

pA10 Number of precipitation events 
equal or above 10mm per day  

 11.00 2.00 26.00 7.00 0.00 25.00 

pA15 Number of precipitation events 
equal or above 15mm per day  

 6.00 0.00 18.00 3.00 0.00 18.00 

precip.p99 Number of times the daily 
precipitation sum exceeds the 
99% percentile of the daily 
precipitation sum 

 0.00 0.00 4.00 0.00 0.00 3.00 

SI Table 1. Variables related to precipitation 

 

input name Definition unit  Vegetative phase Reproductive phase 

   median min max median min max 

tas.median Median of the daily mean 
temperature  

°C 23.93 21.51 28.18 23.87 19.81 27.42 

tas.max Median of the daily maximum 
temperature 

°C 28.00 24.97 33.36 27.90 24.61 31.47 

tas.min Median of the daily minimum 
temperature  

°C 19.29 17.58 26.28 19.21 14.34 25.22 

tas.max.p99 Number of times the daily 
maximum temperature 
exceeds the 99% percentile of 
the daily maximum 
temperature 

 0.00 0.00 9.00 0.00 0.00 7.00 

tas.min.p01 Number of times the daily 
minimum temperature falls 
below the 1% percentile of the 
daily minimum temperature 

 0.00 0.00 5.50 0.00 0.00 5.50 

SI Table 2. Variables related to temperature 

 

input name Definition median min max 

iod_30.median Median Indian Ocean Dipole over the last 30 days before the start of 
the growing season  

-0.04 -0.57 0.52 

iod_30.p01 Number of times the Indian Ocean Dipole falls below the 1% 
Percentile of the Indian Ocean Dipole over the last 30 days before the 
start of the growing season 

0.00 0.00 2.00 

iod_30.p99 Number of times the Indian Ocean Dipole exceeds the 99% Percentile 
of the Indian Ocean Dipole over the last 30 days before the start of the 
growing season 

3.00 1.00 3.00 

nino34_90.median Median SST anomaly in the El Nino 3.4. zone over the last 90 days 
before the start of the growing season 

-0.26 -1.61 2.58 
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nino34_90.p01 Number of times the SST anomaly in the El Nino 3.4 falls below the 1% 
Percentile of the SST anomaly in the El Nino 3.4 zone over the last 90 
days before the start of the growing season 

0.00 0.00 4.00 

nino34_90.p99 Number of times the SST anomaly in the El Nino 3.4 zone exceeds the 
99% Percentile of the SST anomaly in the El Nino 3.4 zone over the last 
90 days before the start of the growing season 

5.00 0.00 5.00 

wp_90.median Median SST anomaly in the West Pacific over that last 90 days before 
the start of the growing season 

0.42 0.08 0.85 

wp_90.p01 Number of times the SST anomaly in the West Pacific falls below the 
1% Percentile of the SST anomaly in the West Pacific over the last 90 
days before the start of the growing season 

0.00 0.00 2.00 

wp_90.p99 Number of times the SST anomaly in the West Pacific exceeds the 99% 
Percentile of the SST anomaly in the West Pacific over the last 90 days 
before the start of the growing season 

3.00 0.00 5.00 

SI Table 3. Variables related to sea surface temperatures (SST) 

 

2. Significance of estimated regression coefficients 

 

SI Fig. 1. Estimated regression coefficients for the three most often selected weather variables for Tanzanian regions. The 
three most often selected variables are temperature events below the 1% minimum temperature percentile in the 
reproductive period (tas.min.p01_r), consecutive dry days of more than 5 days in the vegetative phase (cdd5_v) and 
precipitation events above the 99th precipitation percentile in the vegetative phase (precip.p99_v). Note that this analysis 
excludes the model coefficients with a performance lower than an NSE of 0.3 in the level 1 validation, because we assumed 
these models as not robust enough for further analysis. The coefficients show standardised values, i.e. they show the change 
in yield per standard deviation of the input variable. The horizontal bars show the 95% significance interval for the point 
estimator. The geographic location of the regions can be seen in SI Fig. 6.  
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SI Fig. 2. Estimated regression coefficients for the three most often selected sea surface temperature (SST) variables for 
Tanzanian regions. The three most often selected variables are the number of times the SST falls below the 1% percentile of 
the West Pacific considering a lead time of 120 days (wp_120.p01), the number of times the SST falls below the 1% 
percentile of the Indian Ocean Dipole considering a lead time of 30 days (iod_30.p01) and the median SST of the IOD 
considering a lead time of 30 days (iod_30.median). Note that this analysis excludes the model coefficients with a 
performance lower than an NSE of 0.3 in the level 1 validation, because we assumed these models as not robust enough for 
further analysis. The coefficients show standardised values, i.e. they show the change in yield per standard deviation of the 
input variable. The horizontal bars show the 95% significance interval for the point estimator. The geographic location of the 
regions can be seen in SI Fig. 6. 
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SI Fig. 3. Estimated regression coefficients for the three most often selected variables in the forecast based on weather and 
sea surface temperature (SST) variables for Tanzanian regions. The three most often selected variables are precipitation 
events below 5 mm in the vegetative phase (pB5_v), the number of times the SST in the West Pacific falls below the 1% 
percentile considering a lead time of 120 days (wp_120.p01) and consecutive dry days of more than 5 days in the vegetative 
phase (cdd5_v). Note that this analysis excludes the model coefficients with a performance lower than an NSE of 0.3 in the 
level 1 validation, because we assumed these models as not robust enough for further analysis. The coefficients show 
standardised values, i.e. they show the change in yield per standard deviation of the input variable. The horizontal bars show 
the 95% significance interval for the point estimator. The geographic location of the regions can be seen in SI Fig. 6.  

 

3. Comparison of forecasted anomalies to a constant model  

region RMSE constant model RMSE forecasted anomalies 

Dodoma 0.28 0.08 
Arusha 0.52 0.05 
Kilimanjaro 0.44 0.04 
Tanga 0.61 0.20 
Morogoro 0.30 0.07 
Pwani 0.58 0.24 
Dar es Salaam 0.44 0.05 
Lindi 0.30 0.11 
Mtwara 0.32 0.09 
Ruvuma 0.12 0.05 
Iringa 0.18 0.05 
Mbeya 0.13 0.01 
Singida 0.24 0.10 
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Tabora 0.12 0.04 
Rukwa 0.14 0.03 
Kigoma 0.10 0.06 
Shinyanga 0.16 0.01 
Kagera 0.20 0.10 
Mwanza 0.13 0.07 
Mara 0.19 0.01 
Manyara 0.31 0.03 

SI Table 4. Comparison of the performance of the forecasted yield anomalies with a lead time of ca. 6 weeks (right column) 
and a constant model that only takes the mean yield excluding the year that is forecasted as a predictor (middle column). 
The comparison is based on the root mean squared error (RMSE) between the observed yield and the modelled yield.  

 

4. Correlation between input variables  

 

SI Fig. 4. Correlogram of input variables in sea surface temperature (SST) and weather categories; a strong correlation 
(absolute value of Pearson's r coefficient > 0.5) between SST and weather variables can only be found between the minimum 
temperature and the median SST in the El Niño 3.4 zone with a lead time of 120 days.   
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5. Performance of the forecasts derived from the model combining SST and weather 
inputs 

 

 
SI Fig. 5. Regional performance of the forecasts derived from the model combining SST and weather inputs. Model 
assessment was done separately for the trend (left panel), the variability (middle panel) and the absolute yields, which is a 
combination of trend and variability (right panel). The dark colour (dark green and dark purple) shows the forecast when the 
level 1 validation is applied. The corresponding NSE value is shown as “nse level 1” in the upper right corner of the panels. 
The light colour (light green and light purple) and the “nse level 2” show the results of the level 2 validation. Because the 
trend was fitted based on logarithmic values, the transformation back to linear values results in a slightly curved shape.  
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Continuation of Fig. 5 
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Continuation of Fig. 5  
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6. Strong spatiotemporal variability of maize yields in Tanzania  

Maize yields in Tanzania show a high variability and are on a low average level: from 2016 to 2018 
maize yields were at 1.6 t/ha on average. The regions with the highest yields (Mbeya, Ruvuma, Rukwa) 
show the lowest inter-annual variation. The main maize producing regions are Mbeya, Ruvuma, Iringa, 
Rukwa and Shinyanga).  

 

 

SI Fig. 6. Average maize yields, production and harvest area from 2016 – 2018 and the coefficient of variation of yields from 
all available years (2009-2018). 

  



6    Supplementary Information  
 

91 
 

7. Correlation between yield and SST indices with different lead times  

We assessed the influence of the following SST (sea surface temperature) indices on Tanzanian yield 
variability:  

1) El Niño 3.4 zone (170°W – 120° W, 5°S - 5°N) 
2) West Pacific Box (WP) (130°E – 160°E, 10°S – 10°N)  
3) Indian Ocean Dipole (IOD), which is the non-normalised difference between the West Indian 

Ocean (50°E – 70°E, 10°S – 10°N) and the Eastern Indian Ocean (90°E – 110°E, 10°S - 0°N) 

To account for the lag in influence of the SST on rainfall in East Africa, we tested different lag times 
(0, 30, 60, 90, 120, 150 and 180 days). The strongest influence of SST in the El Niño 3.4 zone on yields 
in Tanzania can be found at a lead time of 90 and 120 days (SI Fig. 7). There is a positive correlation 
between yields and the median SST in El Niño 3.4, which could be explained by higher rainfall 
amounts during the short rains in East Africa in relation with a higher El Niño 3.4 SST 1–3. Extreme 
high and low values of the SST in El Niño 3.4 (values above the 99% and below the 1% percentiles) 
are related with lower maize yields in Tanzania.  

Like the SST in El Niño 3.4, the IOD is also positively correlated with rainfall in East Africa during the 
short rains 1–3. For most regions, the IOD shows the strongest correlations at a lead time of 30 days. 
At this lead time, the median IOD shows a negative correlation with Tanzanian yield variability. 
Values below the 1% percentile are positively correlated with yields. At other lead times, the 
correlation patterns show different directions and the IOD, in contrast to El Niño 3.4 and WP, has the 
highest region-to-region variability.  

The median SST in WP is negatively correlated with maize yield variability in Tanzania. Whereas high 
values of the SST in WP do not show a clear direction of the correlation, yields tend to be higher in 
Tanzania the more often the SST falls below the 1%percentile. This can be related to the negative 
correlation of SST in WP with East African rainfall during the long rains 1–3. The highest correlation 
can be found at a lead time of 90 and 120 days.  
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SI Fig. 7. The distribution plot shows the correlation coefficients (Pearson’s r) between the demeaned 
and detrended yields and different standardised SST indices (median, number of times the SST is 
above the 99% percentile and below the 1% percentile). For a better overview, the correlation 
coefficients were categorized in classes of 0.25 ranges, so from -1 to -0.75, from -0.75 to -0.5 and so 
on. The colour indicates how many regions of 21 regions in Tanzania have a particular correlation 
range between yield and the SST index, e.g. dark blue indicates that 60% of regions (i.e. ca. 13 regions 
of 21 regions) show a correlation between yield and the SST index of e.g. between 0 and 0.25. The 
correlation matrix is presented separately for each SST index (horizontally) and the lead times 0, 30, 
60, 90, 120, 150 and 180 days (vertically).  
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8. Maize growing season in Tanzania  

To define the start of the growing season, we tested the several crop calendars and decided to use 
the approach of Dodd and Jolliffe (2001) 4 that proved to be most suitable for the purpose of our 
study. In the following paragraphs, we discuss advantages and disadvantages of different crop 
calendars for maize production in Tanzania. 

8.1. FAO crop calendar 

The FAO crop calendar from 2012 provides crop-specific planting and harvesting months and the 
growing season length on district level 5. The calendar does not distinguish between the short and 
the long rains in the bimodal rainfall areas in the North and in the Coastal regions in Tanzania, even 
though both rainfall seasons are used for crop production 6. Moreover, the calendar seems to have 
unreasonable outliers: Most parts of the Ruvuma region have a growing season from May to August, 
which is within the dry season. Also the district Sumbawanga Urban in Rukwa has a growing season 
length of 180days, in contrast to the other parts of the country that have a growing season length of 
90 or 120 days.  

SI Fig. 8. Crop calendar for maize based on the FAO crop calendar from 2012 5, planting is defined as 
the onset of planting and harvest is defined as the onset of harvest.  

 

8.2. FEWS Net crop calendar  

The Famine Early Warning Systems Network (FEWS-NET) provides a crop calendar for Tanzania 7 that 
distinguishes between the unimodal and bimodal rainfall regions and the calendar seems to be 
aligned with the onset of the rains. However, the calendar is neither crop nor region-specific and 
therefore does not account for the spatial heterogeneity within Tanzania. 

 

8.3. Crop calendar based on Stern et al. (1981) 

We calculated the onset of the growing season based on the approach of Stern et al. (1981) 8 that 
was developed for Ghana and Burkina Faso. They define the onset of the rainy season when the 
following three criteria are met:  

1. at least 25 mm rainfall within 5 days 
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2. starting day and at least two other days in this 5-day period are wet (>0.1 mm) 
3. no dry period of seven or more consecutive days within the next 30 days 

We defined the end of the growing season as 110 days after the start. Mourice et al., (2014) 
determined crop specific parameters for maize cultivars in Tanzania based on field experiments and 
concluded that the cultivars did not differ significantly in terms of the growing season length (they 
ranged from 105 to 114). Therefore, we use the average growing season length over the considered 
cultivars, which is about 110 days.  

Because of the bimodal rainfall pattern, some regions have two growing seasons. We consider the 
second growing season if the time between the start of the first growing season and the start of the 
second growing season is at least 110 days, enough time for one growth cycle.  

The criteria of Stern et al. (1981) 8 were developed for Ghana and Burkina Faso. For Tanzania, the 
criteria seem to be too strict – leading to too late onsets of the growing season in particular in the 
unimodal rainfall areas. Also, in some regions no onset could be calculated for some years, e.g. in Dar 
es Salaam in 2008 and 2009 and in Manyara in 2009.  

 

SI Fig. 9. Crop calendar for the short (left) and long rains (right) in Tanzania; the onset of the growing season (top row) is 
calculated based on the approach of Stern et al. (1981). The harvest dates (bottom row) represent the sowing dates plus the 
maize specific growing season length of 110 days according to Mourice et al., (2014). The figure shows the median sowing 
and harvesting dates over the period from 2009 to 2018 for each region in Tanzania.  
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8.4. Crop calendar based on Dodd and Jolliffe (2001) 

Dodd and Jolliffe (2001) 4 further developed the approach of Stern et al. (1981) 8 to correct for too 
late onsets of the growing season. Their approach was tested for tropical and subtropical conditions. 
According to Dodd and Jolliffe (2001) 4, the onset of the growing season is defined when the 
following three criteria are fulfilled:  

1. at least 25 mm rainfall within 6 days 
2. starting day and at least two other days in this 6-day period are wet (>0.1 mm) 
3. no dry period of ten or more consecutive days within next 40 days 
 
Because of the bimodal rainfall pattern in North and North-East Tanzania, two onsets of the growing 
season are found for some grid points. In this case, we considered the onset of the long rains 
(Masika), which is the main growing season.  

Following Mourice et al., (2014) 9, we consider a growing season length of 110 days, as described in 
section 8.3. 

 

SI Fig. 10. Sowing (left) and harvest (right) dates for Tanzania; the onset of the growing season is calculated based on the 
approach of Dodd and Jolliffe (2001) 4. The harvest dates represent the sowing dates plus the maize specific growing season 
length of 110 days according to Mourice et al., (2014). In case of two calculated rainy seasons, we considered the onset of 
the long rains (Masika), which is the main growing season. The figure shows the median sowing and harvesting dates over 
the period from 2009 to 2018 for each region in Tanzania.  

 

9. Equations for the calculation of GDD and percentile variables  

SI Eq. 1. Calculation of percentile variables; d denotes the number of days within the growing season; 
Days denotes the total number of days within growing season 

𝑣𝑣𝑣𝑣𝑣𝑣.𝑝𝑝99 = ∑ 𝑣𝑣𝑣𝑣𝑣𝑣𝑑𝑑
𝑣𝑣𝑣𝑣𝑣𝑣.𝑝𝑝99 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷

𝑑𝑑=1     𝑣𝑣𝑣𝑣𝑣𝑣𝑑𝑑
𝑣𝑣𝑣𝑣𝑣𝑣.𝑝𝑝99 = �1, 𝑣𝑣𝑣𝑣𝑣𝑣𝑑𝑑 >  𝑝𝑝. 99

0, 𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒                                                                                                                                                                      

 

𝑣𝑣𝑣𝑣𝑣𝑣.𝑝𝑝01 = ∑ 𝑣𝑣𝑣𝑣𝑣𝑣𝑑𝑑
𝑣𝑣𝑣𝑣𝑣𝑣.𝑝𝑝01 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷

𝑑𝑑=1     𝑣𝑣𝑣𝑣𝑣𝑣𝑑𝑑𝑣𝑣𝑣𝑣𝑣𝑣.01 = �1, 𝑣𝑣𝑣𝑣𝑣𝑣𝑑𝑑 <  𝑝𝑝. 01
0, 𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒                                                                                                                                                                         
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With 𝑣𝑣𝑣𝑣𝑣𝑣 as the weather or sea surface temperature (SST) variable, and 𝑝𝑝. 99 (𝑝𝑝. 01) as the 99% (1%) 
percentile of the weather or SST variable; the percentiles were calculated over all days of the 
vegetative and reproductive phase of the growing season within the time period of 2009 and 2018 for 
each region. As a sensitivity test, we also calculated the 5% (95%) and 10% (90%) percentiles, which 
provided similar results.  

 

SI Eq. 2. Calculation of growing degree days (GDD); d denotes the number of days within the growing 
season; Days denotes the total number of days within growing season 

𝐺𝐺𝐺𝐺𝐺𝐺 = ∑ 𝑇𝑇𝑑𝑑𝐺𝐺𝐺𝐺𝐺𝐺    𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷
𝑑𝑑=1 𝑇𝑇𝑑𝑑𝐺𝐺𝐺𝐺𝐺𝐺 = �

0,   𝑇𝑇𝑑𝑑 < 𝑇𝑇𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵

𝑇𝑇𝑑𝑑 − 𝑇𝑇𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 ,   𝑥𝑥 ≥ 𝑇𝑇𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 ≤ 𝑇𝑇𝑑𝑑 ≤ 𝑇𝑇𝑂𝑂𝑂𝑂𝑂𝑂

𝑇𝑇𝑂𝑂𝑂𝑂𝑂𝑂 − 𝑇𝑇𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 ,   𝑥𝑥 ≥  𝑇𝑇𝑑𝑑 > 𝑇𝑇𝑂𝑂𝑂𝑂𝑂𝑂
                                                                

With T as daily mean temperature; TBase as base temperature of 10°C; TOpt as optimal temperature of 
30°C 10; d denotes the number of days within the growing season; Days denotes the total number of 
days within growing season  

 

10. Lead time of the yield forecast per region 

region start 
vegetative 

phase 

start 
reproductive 
phase (days 

after sowing) 

harvest lead time 
of forecast 

in days 

Performance of 
forecast (NSE of the 

level 1 - LOOCV) 

Dodoma 29-Dec 22-Feb (55) 18-Apr  55  0.9 
Arusha 30-Mar 19-May (50) 18-Jul 60 0.97 
Kilimanjaro 03-Apr 23-May (50) 22-Jul 60 0.93 
Tanga 01-Apr 22-May (51) 20-Jul 59 0.28 
Morogoro 03-Jan 25-Feb (53) 23-Apr 57  0.79 
Pwani 28-Mar 20-May (53) 16-Jul 57 0.63 
Dar es Salaam 25-Mar 17-May (53) 13-Jul 57 0.92 
Lindi 02-Jan 25-Feb (54) 22-Apr 56  0.59 
Mtwara 10-Jan 05-Mar (54) 30-Apr 56  0.78 
Ruvuma 02-Jan 25-Feb (54) 22-Apr 56  0.07 
Iringa 29-Dec 21-Feb (54) 18-Apr 56  0.58 
Mbeya 21-Dec 15-Feb (56) 10-Apr 54  0.98 
Singida 26-Dec 20-Feb (56) 15-Apr 54  0.73 
Tabora 07-Dec 02-Feb (57) 27-Mar 53  0.88 
Rukwa 23-Dec 17-Feb (56) 12-Apr 54  0.82 
Kigoma 20-Nov 16-Jan (57) 10-Mar 53  -0.39 
Shinyanga 12-Dec 07-Feb (57) 01-Apr 53  0.99 
Kagera 28-Mar 23-May (56) 16-Jul 54 0.25 
Mwanza 26-Mar 20-May (55) 14-Jul 55 0.19 
Mara 27-Mar 21-May (55) 15-Jul 55 0.99 
Manyara 27-Mar 16-May (50) 15-Jul 60 0.97 

SI Table 5. Lead time in days of the yield forecast per region; the lead time of the forecast corresponds to the length of the 
reproductive phase; the start of the vegetative phase (2nd columns) corresponds to 0 days after sowing; the harvest date (4th 
columns) corresponds to 110 days after sowing; the right column shows the performance of the forecast of absolute yields 
measured in the NSE of the level 1 validation; unimodal rainfall regions are shaded in blue, bimodal rainfall regions are 
shaded in yellow  
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1. Performance of yield models compared to a constant model 

 Maize Sorghum Millet 
Province Yield    

model 
Constant 

model 
Yield    

model 
Constant 

model 
Yield    

model 
Constant 

model 
Bale 127.97 359.31 74.66 174.24 153.19 232.24 
Bam 201.48 315.59 126.78 213.99 123.73 196.71 
Banwa 190.26 295.82 56.34 141.21 83.06 132.99 
Bazega 158.17 251.70 121.19 161.23 110.71 137.42 
Bougouriba 243.87 319.45 121.49 222.79 122.62 170.34 
Boulgou 236.38 286.06 132.69 161.13 124.11 203.01 
Boulkiemde 298.34 366.01 153.80 186.75 131.85 159.91 
Comoe 217.64 268.60 117.48 208.43 97.42 214.23 
Ganzourgou 193.85 339.13 115.47 160.56 113.34 167.24 
Gnagna 219.55 349.28 165.70 212.43 243.78 275.28 
Gourma 234.94 276.49 113.69 183.51 117.17 155.35 
Houet 149.17 240.62 141.06 162.38 145.09 200.10 
Ioba 188.84 240.63 86.05 166.06 95.00 151.87 
Kadiogo 303.58 403.30 161.50 231.25 156.45 181.16 
Kenedougou 116.43 225.14 92.48 147.00 158.15 198.41 
Komandjoari 177.17 437.35 127.08 203.28 32.56 224.79 
Kompienga 140.48 343.87 94.98 146.83 112.75 199.01 
Kossi 192.16 295.39 131.41 158.03 76.29 129.88 
Koulpelgo 89.02 184.27 106.10 145.33 93.61 183.21 
Kouritenga 170.04 225.56 175.61 208.54 128.11 167.18 
Kourweogo 110.92 220.49 119.95 209.40 121.01 182.00 
Leraba 107.20 250.38 NA NA NA NA 
Loroum 130.65 389.53 146.04 227.60 80.72 238.75 
Mouhoun 195.21 339.82 104.08 126.15 78.39 135.08 
Nahouri 278.77 338.49 98.59 149.11 117.29 174.91 
Namentenga 249.75 339.83 131.18 168.69 175.48 208.40 
Nayala 152.35 284.35 104.72 176.58 108.63 168.83 
Noumbiel 238.00 443.15 134.96 240.36 NA NA 
Oubritenga 174.92 291.38 128.56 182.95 67.17 130.19 
Oudalan 236.91 490.12 227.39 388.39 120.37 186.64 
Passore 187.42 314.66 169.86 213.45 133.60 209.52 
Poni 304.77 395.60 136.84 197.02 96.88 134.01 
Sanguie 333.74 430.06 96.64 151.74 98.68 141.96 
Sanmatenga 231.67 345.30 164.87 208.87 154.42 192.04 
Seno 163.36 334.26 173.51 230.12 119.20 199.39 
Sissili 181.86 265.77 135.73 165.17 94.77 166.20 
Soum 265.24 475.06 124.53 208.33 106.24 157.73 
Sourou 355.13 493.75 187.56 218.80 158.66 190.15 
Tapoa 304.95 364.85 122.79 191.75 147.48 224.41 
Tuy 66.38 298.64 64.28 120.53 117.14 192.73 
Yagha 107.47 322.41 135.44 171.12 106.58 206.18 
Yatenga 187.50 322.23 145.11 166.76 141.64 205.80 
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Ziro 170.50 259.33 77.63 144.45 99.06 194.60 
Zondoma 83.19 330.35 81.98 194.64 113.03 248.06 
Zoundweogo 196.85 242.16 148.10 181.03 113.29 151.57 

SI Table 1. Comparison of the model performance of yield anomalies to a constant model that only takes the mean yield 
excluding the year that is forecasted as a predictor for maize, sorghum and millet. The values show the root mean squared 
error (RMSE) in kg/ha between the observed yield and the modelled yield. A map with province names is provided in SI 
Fig. 2.  

 

2. Province-specific performance of the yield model 

 

SI Fig. 1. Province-specific performance of the crop model for yield anomalies from 1984 to 2018 measured in r2. The left 
panels show the estimation results (i.e. the model performance when the complete time series for each province is included). 
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The right hand panels show the performance for the out-of-sample validation. The median r2 of all provinces in Burkina Faso 
is shown in the left corner of the panels. A map with province names is provided in SI Fig. 2. 

 

3. Map of province names in Burkina Faso 

 

SI Fig. 2. Map of province names in Burkina Faso 
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4. Performance of the forecast (out-of-sample variable selection)  

 

SI Fig. 3. Performance of the crop specific forecast with a lead time of one month for yield anomalies, absolute yields and 
harvest areas. The performance of the production forecast is shown for known harvest areas and for modelled harvest 
areas. The modelled yield data shows the result of the out-of-sample variable selection. The r2 values indicate the explained 
variance by each model. The crop specific forecasts were the basis for the aggregated forecast of all crops together. The lead 
time of the forecast for all crops is one month before the sorghum and millet harvest. Please note that at this point in time, 
maize is already harvested so that yields could be estimated based on weather influences of the whole growing season. For 
practical reasons, we chose the forecast for maize also with a lead time of one month to inform early on as soon as the 
forecast is available.  
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5. Total population in Burkina Faso 

 

SI Fig. 4. Total population in Burkina Faso from 1984 to 2019, source: authors’ illustration based on World Bank (2020)1 

 

6. Trend in yield and harvest areas  

 

SI Fig. 5. Linear trend in yield and harvest areas for maize, sorghum and millet from 1984 to 2018; the y-axis shows 
standardised yields (upper panel) and harvest areas (lower panel). The slope of the trend is shown in the bottom right hand 
corner. A value of 0.07 means that there is a trend of 7% per year.  
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7. Performance of the forecast (out-of-sample validation) 

SI Fig. 6. Performance of the forecast with a lead time of one month for yield anomalies (left column) and absolute yields 
(right column) for maize, sorghum and millet from 1984 to 2018. The plot shows the observed yields in grey, the estimation 
results in blue and the out-of-sample validation results in green. The r2

e and r2
v values indicate the explained variance by 

each model, respectively.   

 

 

 

 

 

 

 

 



6    Supplementary Information  
 

105 
 

8. Performance of a simple production model  

 

SI Fig. 7. Performance of a simple production model that is only based on yield and harvest area information from previous 
years. We tested the following four options: the median yield/harvest area, the median yield/harvest area of the previous 
three (five) years and the trend in yield/harvest areas calculated by a non-parametric LOESS function with a span of 0.9. For 
each crop, we chose the option that resulted in the highest correlation (Pearson’s r) between the observed and the modelled 
data. The best option for modelling yield is the trend calculated by LOESS for maize, the median of the last 3 years for millet 
and the median over all years for sorghum. The best option for modelling harvest areas is the trend calculated by LOESS for 
maize, the median over all years for millet and the trend calculated by LOESS for sorghum. This simple production model was 
set up to test whether a production forecast based on a weather-driven yield model is superior to a yield model based on 
yield information from previous years.  
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9. Data cleaning of the annual production and harvest area statistics for maize, sorghum 
and millet on province level from 1984 to 2019 

SI Text 1. We excluded observations with no harvest area or production as complete harvest losses 
are not likely on province level and are probably reporting errors. Yields were then calculated as 
production over harvest area. To guard against high outliers, yields outside the 95th percentiles 
(2152 kg/ha for maize, 1571 kg/ha for sorghum and 1382 kg/ha for millet) were not considered. The 
mean value for the 0-95% percentile (95-100% percentile) is 1120 kg/ha (2937 kg/ha) for maize, 
910 kg/ha (2641 kg/ha) for sorghum and 768 kg/ha (2538 kg/ha) for millet. Lastly, data for provinces 
with less than 10 years (i.e. one sorghum producing province and two millet producing provinces) 
were omitted to allow for robust model construction and validation by preventing overfitting. In sum, 
after data cleaning we used 1225 out of 1313 observations for maize, 1245 out of 1575 observations 
for sorghum and 1232 out of 1310 observations for millet. The statistics for sorghum showed 
unreasonable observations for the years 2012 and 2016 (i.e. no area and no production). Therefore 
we aggregated the times series for white and red sorghum which became available from 2003 on and 
used this data from 2003 on to guarantee a continuous time series for sorghum. 

Even though some yield observations could not be used to validate the yield model results because 
of reliability issues as described above, they were still used in the national production aggregation to 
not skew aggregated production levels by omission.  

 

10. Crop specific lead time of the forecast   

 

SI Fig. 8. Crop specific lead time of the forecast. The forecasting time is one month prior the harvest. The range in the 
forecasting time results from province specific sowing and harvesting dates2 (SI Fig. 13 and SI Fig. 14).  
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11. Number of people affected by food insecurity and undernourishment in Burkina Faso 

 

SI Fig. 9. People affected by food insecurity from 2000 to 2019 (plot a) and undernourished people from 2014 to 2019 (plot 
b) in Burkina Faso. The bottom panels show the absolute number of people, whereas the upper panels show the share of 
people in relation to the total population in Burkina Faso, source: authors’ illustration based on FAO (2020)3 
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12. Consumed calories from maize, sorghum and millet compared to produced calories 
from these crops in Burkina Faso 

 

SI Fig. 10. Produced calories of maize, sorghum and millet compared to consumed calories from these crops on national level 
in Burkina Faso. Total produced calories4 are shown in light blue, whereas dark blue shows the produced calories minus 
post-harvest losses (PHL)5 and the bran6. Consumed calories were calculated by multiplying the supplied calories per person 
and day7 with the number of days per year and the total population in Burkina Faso1. Whereas the difference between 
produced and consumed calories from maize and millet can mostly be explained by PHL and the share of the bran in the 
crops (which is used for feed in Burkina Faso), a gap remains in the case of sorghum. FAO data suggests that on average 
27% of total supplied calories from sorghum originated from sorghum beer in the time from 2014 to 20188. The dotted line 
shows the produced calories from sorghum if in addition to PHL and the bran, average calories from sorghum beer were also 
subtracted. Despite the high agreement between this data and the consumed calories from sorghum, we did not include 
sorghum beer production in our analysis as this data is only available for five years and could not be extrapolated for the 
whole time period. 
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13. Share of arable land in Burkina Faso  

 

SI Fig. 11. Share of arable land in Burkina Faso from 1984 to 2018, source: authors’ illustration based on FAO (2020)9 

 

14. Software used in the analysis  

SI Text 2. For our analysis, we used the statistical software R - version 4.0.510 with the packages 
tidyr11 and plyr12 for data pre-processing, the packages sp13 and rgdal14 for spatial data processing, 
the package glmnet15 to perform LASSO regression and the package ggplot216 to generate the figures 
and maps.  
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15. Share of supplied calories from maize, sorghum and millet in the diet in Burkina Faso 

 

SI Fig. 12. Share of supplied calories from maize, sorghum and millet in total supplied calories per capita and day in Burkina 
Faso from 1984 to 2017; the yellow line shows the median value over the period 1984 to 2017, source: authors’ illustration 
based on (FAO 2020)7 

 

16. Equations for the calculation of vapour pressure deficit, growing degree days and 
percentile variables 

SI Eq. 1. Calculation of vapour pressure deficit (VPD): 

𝑉𝑉𝑉𝑉𝑉𝑉 = 6.11 ∗ exp �
17.27 ∗ 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇
237.2 + 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇

� −  exp �
17.27 ∗ 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇
237.2 + 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇

� 

With Tmax as daily maximum temperature and Tmin as daily minimum temperature, formula 
according to Allen et al (1998)17. 

 

SI Eq. 2. Calculation of growing degree days (GDD); d denotes the number of days within the growing 
season; Days denotes the total number of days within growing season: 

𝐺𝐺𝐺𝐺𝐺𝐺 = ∑ 𝑇𝑇𝑑𝑑𝐺𝐺𝐺𝐺𝐺𝐺    𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷
𝑑𝑑=1 𝑇𝑇𝑑𝑑𝐺𝐺𝐺𝐺𝐺𝐺 = �

0,   𝑇𝑇𝑑𝑑 < 𝑇𝑇𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵

𝑇𝑇𝑑𝑑 − 𝑇𝑇𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 ,  𝑇𝑇𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 ≤ 𝑇𝑇𝑑𝑑 ≤ 𝑇𝑇𝑂𝑂𝑂𝑂𝑂𝑂

𝑇𝑇𝑂𝑂𝑂𝑂𝑂𝑂 − 𝑇𝑇𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 ,  𝑇𝑇𝑑𝑑 > 𝑇𝑇𝑂𝑂𝑂𝑂𝑂𝑂
                                                                

With T as daily mean temperature; TBase as base temperature of 10°C; TOpt as optimal temperature of 
30°C 18; d denotes the day within the growing season; Days denotes the total number of days within 
growing season.  

 

SI Eq. 3. Calculation of percentile variables: 

𝑣𝑣𝑣𝑣𝑣𝑣.𝑝𝑝99 = ∑ 𝑣𝑣𝑣𝑣𝑣𝑣𝑑𝑑
𝑣𝑣𝑣𝑣𝑣𝑣.𝑝𝑝99 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷

𝑑𝑑=1     𝑣𝑣𝑣𝑣𝑣𝑣𝑑𝑑
𝑣𝑣𝑣𝑣𝑣𝑣.𝑝𝑝99 = �1, 𝑣𝑣𝑣𝑣𝑣𝑣𝑑𝑑 >  𝑝𝑝. 99

0, 𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒                                                                                                                                                                      
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𝑣𝑣𝑣𝑣𝑣𝑣.𝑝𝑝01 = ∑ 𝑣𝑣𝑣𝑣𝑣𝑣𝑑𝑑
𝑣𝑣𝑣𝑣𝑣𝑣.𝑝𝑝01 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷

𝑑𝑑=1     𝑣𝑣𝑣𝑣𝑣𝑣𝑑𝑑𝑣𝑣𝑣𝑣𝑣𝑣.01 = �1, 𝑣𝑣𝑣𝑣𝑣𝑣𝑑𝑑 <  𝑝𝑝. 01
0, 𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒                                                                                                                                                                         

With 𝑣𝑣𝑣𝑣𝑣𝑣 as the weather or sea surface temperature (SST) variable, and 𝑝𝑝. 99 (𝑝𝑝. 01) as the 99% (1%) 
percentile of the weather or SST variable; the percentiles were calculated over all days of the 
vegetative and reproductive phase of the growing season within the time period of 2009 and 2018 for 
each region. As a sensitivity test, we also calculated the 5% (95%) and 10% (90%) percentiles, which 
provided similar results.  

 

17. Input variables for the yield model  

input name Definition unit  
Variables related to precipitation 

psum Precipitation sum  mm 
pmedian Median daily precipitation  mm 
cdd5 Consecutive dry days of equal or more than 5 days   
cwd5 Consecutive wet days of equal or more than 5 days   
pB5 Number of precipitation events below 5mm per day   
pB15 Number of precipitation events below 15mm per day   
pA5 Number of precipitation events equal or above 5mm per day   
pA15 Number of precipitation events equal or above 15mm per day   
precip.p90 Number of times the daily precipitation sum exceeds the 99% percentile of the 

daily precipitation sum 
 

DWP Number of days without precipitation   
p.cv Coefficient of variation of the daily precipitation sum   
   

Variables related to temperature 
tas.median Median of the daily mean temperature  °C 
tas.max Median of the daily maximum temperature °C 
tas.min Median of the daily minimum temperature  °C 
tas.max.p95 Number of times the daily maximum temperature exceeds the 95% percentile of 

the daily maximum temperature 
 

tas.max.p05 Number of times the daily maximum temperature falls below the 5% percentile of 
the daily maximum temperature 

 

tas.min.p95 Number of times the daily minimum temperature exceeds the 95% percentile of 
the daily minmum temperature 

 

tas.min.p05 Number of times the daily minimum temperature falls below the 5% percentile of 
the daily minimum temperature 

 

tasmax.cv Coefficient of variation of the daily maximum temperature   
tasmin.cv Coefficient of variation of the daily minimum temperature   

Variables related to vapour pressure deficit 
vpd.median Median of the daily vapour pressure deficit  mm 
vpd.p99 Number of times the daily vapour pressure deficit exceeds the 99% percentile of 

the daily vapour pressure deficit 
 

vpd.p01 Number of times the daily vapour pressure deficit falls below the 1% percentile of 
the daily vapour pressure deficit 

 

vpd.cv Coefficient of variation of the daily vapour pressure deficit   
SI Table 2. Input variables for the yield model 
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SI Text 3. In addition to the median daily mean, maximum and minimum temperature over the 
growing season (tas.median, tas.max, tas.min), we included variables related to extreme 
temperatures. Temperatures above the optimum temperature range lead to a decline in the net 
photosynthesis rate because photosynthesis reduces with higher temperatures whereas respiration 
rates rise19. To account for extreme high temperatures, we included the number of days with a daily 
maximum temperature higher than the province-specific long term 99% percentile of the maximum 
temperature in the growing season (tas.max.p99, SI Eq. 3). Particularly low temperatures were 
represented by the number of times the daily minimum temperature fell below the province-specific 
long-term 1% percentile of the minimum temperature (tas.min.p01). Variations in maximum and 
minimum temperatures were represented by the coefficient of variation (tasmax.cv and tasmin.cv).  

The overall water availability was represented by the precipitation sum (Psum) in the growing 
season. For optimal plant development, seasonal rainfall distribution and intensities are equally 
critical. Both excessive rain and drought stress can lead to crop failures and hinder timely planting 
and harvest20. To represent different precipitation ranges, we included the number of days with 
precipitation above a threshold of 5 and 15 mm (pA5, pA15, respectively) and below a threshold of 5 
and 15 mm (pB5, pB15, respectively). We also included the number of days without precipitation 
(DWP), consecutive dry spells of more than five days (cdd5) and consecutive wet spells of more than 
five days (cwd5). Extremely high precipitation events are covered by the number of times the daily 
precipitation sum exceeds the province-specific long-term 90% percentile of the daily precipitation 
sum. Variations in precipitation are covered by the median daily precipitation sum and the coefficient 
of variation of the precipitation sum.  

Variables related to the vapour pressure deficit were included to account for water stress during 
plant growth. A high vapour pressure deficit leads to the closure of the stomata and therefore a 
reduction in carbon uptake from the atmosphere and thus crop yields21. As for temperature and 
precipitation, we included variables related to the median state (vpd.median), extreme low values 
(vpd.p01), high values (vpd.p99) and variations (vpd.cv).  
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18. Crop calendar for maize, sorghum and millet  

 

SI Fig. 13. Crop calendar for maize for Burkina Faso based on the FAO crop calendar2. Sowing is defined as the onset of the 
sowing period and harvest is defined as the end of the harvest period. The values represent the median onset of the growing 
season (left hand) and the median end of the growing season (left) over all available varieties (i.e. FBC 6, K.E.J. Barka, K.P.B. 
Wari, Espoir, SR 21, SR 22). Please note that information for the four Northern provinces Yagha, Soum, Seno and Oudalan in 
the Sahel zone (bordered in red lines) was not available. Therefore, we used the sowing and harvest dates of the 
neighbouring provinces. 

 

 

SI Fig. 14. Crop calendar for millet for Burkina Faso based on the FAO crop calendar2. Sowing is defined as the onset of the 
sowing period and harvest is defined as the end of the harvest period. The values represent the median onset of the growing 
season (left hand) and the median end of the growing season (left) over all available varieties of the crop calendar (i.e. 
IKMP1, IKMP2, IKMP3, IKMP5, IKMV 8201). This calendar was used for millet and for sorghum, because the FAO does not 
provide a separate calendar for sorghum and due to the similarity in sowing and harvest dates22 
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19. Production, imports and exports of maize, millet and sorghum in Burkina Faso 

 

SI Fig. 15. Production, import quantity and export quantity of the crops maize, millet and sorghum in Burkina Faso from 
1960 to 2017, source: authors’ illustration based on FAO (2020)23 
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