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Abstract: Currently, the User-PC computingsystem (UPC) has been studied as a low-cost and high-
performance distributed computing platform. It uses idling resources of personal computers (PCs) in
a group. The job-worker assignment for minimizing makespan is critical to determine the performance
of the UPC system. Some applications need to execute a lot of uniform jobs that use the identical
program but with slightly different data, where they take the similar CPU time on a PC. Then, the
total CPU time of a worker is almost linear to the number of assigned jobs. In this paper, we propose
a static assignment algorithm of uniform jobs to workers in the UPC system, using simultaneous linear
equations to find the lower bound on makespan, where every worker requires the same CPU time to
complete the assigned jobs. For the evaluations of the proposal, we consider the uniform jobs in three
applications. In OpenPose, the CNN-based keypoint estimation program runs with various images
of human bodies. In OpenFOAM, the physics simulation program runs with various parameter
sets. In code testing, two open-source programs run with various source codes from students for the
Android programming learning assistance system (APLAS). Using the proposal, we assigned the jobs to
six workers in the testbed UPC system and measured the CPU time. The results show that makespan
was reduced by 10% on average, which confirms the effectiveness of the proposal.

Keywords: UPC; distributed computing platform; uniform job; static assignment; linear equations

1. Introduction

Currently, the User-PC computing (UPC) system has been studied as a low-cost and
high-performance distributed computing platform [1]. The UPC system uses idling re-
sources of personal computers (PCs) in a group to handle a number of various computing
jobs from users. Then, the proper assignment of incoming jobs to workers is very important
to effectively deal with them by using computational resources properly. As a result, the job
assignment algorithm is critical to achieve the minimization for makespan to complete all
the demanded jobs in the UPC system.

Previously, we proposed the algorithm of assigning non-uniform jobs to workers in
the UPC system [2]. In non-uniform jobs, the programs are much different from each other,
including the developed programming languages, the number of threads, and the requiring
data. The execution time for each non-uniform job is highly different from the others. The
previous algorithm can find the job-worker assignment through two stages sequentially, of
which are heuristic due to the nature of the NP-hardness and cannot guarantee the optimality
of the solution.

Some applications need to execute a lot of uniform jobs that use the identical pro-
gram but with slightly different data/files, where they take a similar CPU time on a PC.
The applications include deep learning (machine learning), physics simulations, software
testing, computer network simulations, mathematical modeling, and mechanics modeling.
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These jobs have the common feature of a similar CPU time when they run on a specific
PC. The uniform jobs often need a long CPU time. For example, in physics or network
simulations, it can take several days to run one job. Nevertheless, it will be necessary
to find the best result of all the input data by repeating them to slightly change some
parameter values for the program and running them. This work can be common in research
activities using computer simulations.

In this paper, we propose a static assignment algorithm of uniform jobs to workers in the
UPC system, using simultaneous linear equations to find the lower bound on makespan, where
every worker requires the same CPU time to complete the assigned jobs. The simultaneous
linear equations describe the equality of the estimated CPU time among the workers, and the
equality of the total number of assigned jobs to workers with the number of given jobs.
The estimated CPU time considers simultaneous executions of multiple jobs on one worker
by using its multiple cores. Since solutions of simultaneous linear equations become real
numbers in general, the integer number of jobs assigned to each worker is introduced to
them in a greedy way.

For evaluations of the proposal, we consider uniform jobs in the three applications
for the UPC system, namely, OpenPose [3], OpenFOAM [4], and code testing [5,6]. For
OpenPose, the CNN-based program runs with 41 images of human bodies. For OpenFOAM,
the physics simulation program runs with 32 parameter sets. For unit testing, the open-
source programs run with 578 source codes that were submitted from students to the server
in the Android programming learning assistance system (APLAS). These jobs were applied to
the proposed algorithm and were assigned to six workers in the testbed UPC system by
following the results. Then, the CPU time was measured by running them. For comparisons,
two simple algorithms were also implemented where the jobs were applied, and the CPU
time was measured. The evaluation results show that the difference between the longest
CPU time and the shortest one among the six workers became 92 s, and makespan of the
UPC system was reduced by 10% on average from the results by comparative algorithms.
Thus, the effectiveness of the proposal was confirmed.

The proposed algorithm limits the application to the jobs where the CPU time is
nearly equal to a worker. This limitation can simplify the job scheduling algorithm to only
considering the number of jobs assigned to each worker, while neglecting the differences
between individual jobs. Fortunately, it is possible to alleviate this limitation to a certain
degree by considering the granularity of the CPU time on a worker. The CPU time of
a job that is applicable to the proposal is often proportional to the number of iteration
steps before the termination, or to the number of elements in the computational model.
For example, in computer network simulations, the number of iteration steps need to be
selected with the unit time before simulations, where the CPU time is usually proportional
to it. By considering a multiple of a constant number of iteration steps, such as 100, the CPU
time can be estimated even if the number of iteration steps is widely changed with this
granularity. In future works, we will study this extension of the proposed algorithm to
increase its applicable applications.

The rest of this paper is organized as follows: Section 2 discusses related works.
Section 3 reviews the UPC system, OpenPose, OpenFOAM, and code testing in APLAS.
Section 4 presents the static assignment algorithm of uniform jobs to workers in the UPC
system. Section 5 evaluates the proposal through experiments. Section 6 extends the
proposal to multiple job-type assignments. Finally, Section 7 concludes this paper with
future works.

2. Related Works in the Literature

In this section, we discuss some related works in the literature.
In [7], Lin proposed several linear programming models and algorithms for identical

jobs (uniform jobs) on parallel uniform machines for individual minimizations of several
different performance measures. The proposed linear programming models provide struc-



Algorithms 2022, 15, 369 3 of 15

tured insights of the studied problems and provide an easy way to tackle the scheduling
problems.

In [8], Mallek et al. addressed the problem of scheduling identical jobs (uniform jobs) on
a set of parallel uniform machines. The jobs are subjected to conflicting constraints modeled
by an undirected graph G, in which adjacent jobs are not allowed to be processed on the
same machine. The minimization of the maximum makespan in the schedule is known to
be NP-hard. To solve the general case of this problem, they proposed mixed-integer linear
programming formulations alongside lower bounds and heuristic approaches.

In [9], Bansal et al. proposed the two-stage Efficient Refinery Scheduling Algorithm
(ERSA) for distributed computing systems. In the first stage, it assigns a task according to
the min–max heuristic. In the second stage, it improves the scheduling by using the refinery
scheduling heuristic that balances the loads across the machines and reduces makespan.

In [10], Murugesan et al. proposed a multi-source task scheduler to map the tasks to
the distributed resources in a cloud. The scheduler has three phases: the task aggregation,
the task selection, and the task sequencing. By using the ILP formulation, this scheduler
minimizes makespan while satisfying the budget allotted by the cloud user based on the
divisible load theory.

In [11], Garg et al. proposed the adaptive workflow scheduling (AWS) for grid computing
using the dynamic resources based on the rescheduling method. The AWS has three stages
of the initial static scheduling, the resource monitoring, and the rescheduling, to minimize
makespan using the directed acyclic graph workflow model for grid computing. It deals
with the heterogeneous dynamic grid environment, where the availability of computing
nodes and link bandwidths are inevitable due to existences of loads.

In [12], Gawali et al. proposed the two-stage Standard Deviation-Based Modified Cuckoo
Optimization Algorithm (SDMCOA) for the scheduling of distributed computing systems.
In the first stage, it calculates the sample initial population among all the available number
of task populations. In the second stage, the modified COA immigrates and lays the tasks.

In [13], Bittencourt et al. reviewed existing scheduling problems in cloud computing
and distributed systems. The emergence of distributed systems brought new challenges
on scheduling in computer systems, including clusters, grids, and clouds. They defined a
taxonomy for task scheduling in cloud computing, namely, pre-cloud schedulers and cloud
schedulers, and classified existing scheduling algorithms in the taxonomy. They introduced
future directions for scheduling research in cloud computing.

In [14], Attiya et al. presented a modified Harris hawks optimization (HHO) algorithm
based on the simulated annealing (SA) for scheduling the jobs in a cloud environment. In this
approach, SA is employed as a local search algorithm to improve the convergence rate and
the solution quality generated by the standard HHO algorithm. HHO is a novel population-
based, nature-inspired optimization paradigm proposed by Heidari et al. [15]. The main
inspiration of HHO is the cooperative behavior and the chasing style of Harris’ hawks in
nature. In the HHO model, several hawks explore prey, respectively, and simultaneously
after attacking the target from different directions to surprise it.

In [16], Al-Maytami et al. presented a novel scheduling algorithm using Directed
Acyclic Graph (DAG) based on the Prediction of Tasks Computation Time algorithm (PTCT) to
estimate the preeminent scheduling algorithm for prominent cloud data. The proposed
algorithm provides a significant improvement with respect to makespan and reduces the
computational complexity via employing Principal Components Analysis (PCA) and reducing
the Expected-Time-to-Compute (ETC) matrix.

In [17], Panda et al. proposed an energy-efficient task scheduling algorithm (ETSA) to
address the demerits associated with the task consolidation and scheduling. The proposed
algorithm ETSA takes into account the completion time and the total utilization of a task
on the resources, and follows a normalization procedure to make a scheduling decision.
The ETSA provides an elegant trade-off between energy efficiency and makespan, more so
than the existing algorithms.
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3. Reviews of UPC System and Three Applications

In this section, we review the User-PC computing system (UPC) system and the three
applications in this paper.

3.1. UPC System

First, we review the UPC system. The UPC system can provide computational powers
efficiently for members in a group, such as engineers in a company or students in a
laboratory, by using idling computing resources of their PCs. To allow various application
programs to run on different PC environments, the UPC system adopts Docker. Docker
is a popular software tool that has been designed to create, deploy, and execute various
application programs on various platforms by packaging the necessary dependencies of
the application [18].

Figure 1 shows the overview of the UPC system. The UPC system adopts the master-
worker model. Users submit computing jobs to the UPC master through the UPC web
server. After synchronizations of the jobs, the UPC master assigns the submitted jobs
to the appropriate UPC workers. Each worker computes its assigned jobs and returns the
results to the master upon completion. Users can access the results at the web browser.

Figure 1. Overview of UPC system.

For further details, the usage flow of the UPC system will be described:

1. Job reception: A user submits jobs from the web browser and requests to compute
them in the UPC system.

2. Worker assignment: The UPC master selects an appropriate active worker to compute
each job using a job-worker assignment algorithm.

3. Docker image generation: The UPC master generates the Docker image to execute the
job on the assigned worker.

4. Docker image transmission: The master sends the Docker image to the assigned worker.
5. Job execution: The worker generates the Docker container from the image and executes

the job there.
6. Result transmission: The worker returns the result to the master upon completion.
7. Result response: The master shows the computing results of the jobs to the user

through the web server.

3.2. OpenPose

Next, we review OpenPose. It has been developed by researchers at Carnegie Mellon
University and is an popular open-source software for real-time human pose estimation [3].
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It extracts the feature points, called keypoints, of the human body in the given image using
Convolutional Neural Network (CNN). The keypoints represent the important joints in a human
body, the contours of eyes, lips in the face, fingertips, and joints in the hands and feet.
Using the keypoints, the shapes of a body, face, hands, and feet can be described. Since
it has been developed based on CNN, the CPU time is very long when computed on a
conventional PC.

OpenPose is used in our group for developing the exercise and performance learning assis-
tant system (EPLAS) to assist practicing exercises or learning performances by themselves
at home [19]. EPLAS offers video content of Yoga poses by instructors whose performances
should be followed by users. During the practice, it automatically takes photos of important
scenes of the user. Then, it extracts the keypoints of the human body using OpenPose to rate
the poses in the photos by comparing the coordinates of them between the user and the
instructor.

3.3. OpenFOAM

Then, we review OpenFOAM. It is an open-source software for the computational fluid
dynamics (CFD) simulations and has been developed primarily by OpenCFD Ltd. (Bracknell,
UK) It has an extensive range of features to solve anything from complex fluid flows
involving chemical reactions, turbulence, and heat transfer, to acoustics, solid mechanics,
and electromagnetics [4]. Furthermore, the optimal parameter selection is critical for
the high accuracy of the results, and it needs a lot of iterations of selecting parameters in
OpenFOAM and running it with the parameter values. We applied the parameter optimization
method for OpenFOAM [20]; it needs to run OpenFOAM with a lot of different parameters.

Meanwhile, it is also applied for developing the air conditioning guidance system [21]
in our research. The estimation or prediction of the distributions of the temperature or
humidity inside a room using this simulation model is necessary to properly control the air
conditioner. By estimating the room environment changes under various actions, it will be
possible to decide when the air conditioner is turned on or off. Even the timing to open or
close windows in the room can be selected. To estimate or predict the distributions in a room
together with sensors, the CFD simulation using OpenFOAM has been investigated. Then,
the optimization of the parameters in OpenFOAM is critical in order to fit the simulation
results well with the corresponding measured ones.

3.4. Code Testing

Finally, we review the code testing in the Android programming learning assistance system
(APLAS). APLAS has been developed in our group as the automatic and self-learning
system for Android programming using Java and XML [5,6]. The code testing is the process
to validate a source code by running the corresponding test code on a testing framework.
To confirm the validity of the answer source code from a student in satisfying the required
specifications in the assignment, APLAS implements the code testing function using JUnit for
unit testing of Java codes [22] and Robolectric for integration testing with XML codes [23,24].
APLAS needs to run the code testing function with a lot of different source codes from many
students, which usually takes a long time.

In ALPAS, Java codes can be directly tested on JUnit. However, the Android-specific
components, such as the Layout, the Activity, the Event Listener, and the Project Resources
that will be described in XML, cannot be directly tested on JUnit. The building tool Gradle
is used to build and integrate them as Java classes. Then, Robolectric is used to generate Java
objects—called shadow objects—for them, so that they can be tested on JUnit.

4. Proposal of Static Uniform Job Assignment Algorithm

In this section, we present the static uniform job assignment algorithm to workers in
the UPC system.
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4.1. Objective

To design the algorithm, it is observed that when the makespan of every worker
becomes equal, the objective of the problem on the makespan minimization can be achieved.
Otherwise, the maximum makespan can be reduced by moving some jobs at the bottleneck
worker which determines this maximum makespan to other workers, if the number of
assigned jobs to any worker can take a real number. Only when every worker has the same
makespan, the maximum makespan cannot be reduced.

minimize{max(mt
w)} f or t ∈ T, w ∈W (1)

The minimization of the maximum makespan among all the workers is given as the ob-
jective of the problem, where makespan mt

w at worker w for type t is given by the summation
of the CPU time for preparation and execution.

4.2. Simultaneous Linear Equations

In this paper, the following simultaneous linear equations have been derived to find the
optimal job-worker assignment, such that the estimated CPU time required to complete the
assigned jobs becomes equal among all the workers. The solutions of the simultaneous linear
equations will be the lower bound on makespan. Since the solutions become real numbers in
general, the integer number of assigned jobs to each worker should be introduced to them.

Ct
i +

Rt
i,Di

Di
× xt

i = Ct
j +

Rt
j,Dj

Dj
× xt

j

f or i 6= j, i ∈W, j ∈W, t ∈ T.

(2)

To satisfy the objective of the equal CPU time among the workers, Rt
w,Dw

/Dw gives
the best CPU time to solve one job at worker w by running Dw jobs.

4.3. Problem Formulation

To present the static uniform jobs assignment algorithm to workers in the UPC system,
the problem to be solved is formulated here.

4.3.1. Variables

The following variables are defined for the problem to be solved:

• t: Particular job type;
• w: Particular worker;
• xt

w: # of the assigned jobs to worker w for type t;
• mt

w: Makespan at worker w to complete all the assigned jobs for type t;
• dw: # of running jobs in parallel using multi-threads at worker w.

4.3.2. Constants

The following constants are given as the inputs to this problem:

• T: Set of job types;
• W: Set of workers;
• Nt: Total # of jobs for type t;
• Dw: # of jobs for the best throughput at worker w for any type;
• Ct

w: CPU time at worker w to prepare job executions for type t;
• Rt

w,d: CPU time at worker w to execute d jobs for type t in parallel.

Here, Dw represents the number of simultaneously running jobs for job type t at
worker w, which maximizes the number of completed jobs per unit time. This is constant
for any job type in each application, because it depends on the common program in the
application for every job type.
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Ct
w represents the CPU time required to initiate the execution of the program at worker

w. For example, in the code testing application, it represents the CPU time to initiate the
Gradle Wrapper daemon and generate shadow objects that are necessary to run the code testing
function.

Rt
w,d can be measured using any worker by running jobs for job type t while increasing

the number of running jobs in parallel from 1 until Dw.

4.3.3. Constraints

The following two constraints must be satisfied in the problem:

• The total number of the assigned jobs to workers must be equal to Nt for any type t.

∑
w∈W

xt
w = Nt (t ∈ T) (3)

• Any worker cannot run d jobs in parallel when d is larger than the Dw (let dw for
worker w) due to the PC specifications.

dw ≤ Dw (4)

4.4. Conditions for Uniform Job Assignment

For the uniform job assignment to workers in the UPC system, the following conditions
are assumed:

• Several job types may exist for uniform jobs in each application, where different job
types may need the different CPU time, memory size, and number of CPU cores due
to the differences in data;

• Each job is fully executed on one worker until it is completed;
• Each worker may have different performance specifications from the others;
• Each worker may have a different number of running jobs in parallel, using multi-

threads for the best throughput;
• The CPU time to run the certain number of jobs in parallel is given for each worker

and job type.

4.5. Static Uniform Job Assignment Algorithm

Here, we note that the CPU time may be different depending on the number of
running jobs in parallel in each worker that has multiple cores. To reduce the CPU time
by increasing the job completion throughput, Dw jobs of type t should run at worker w
as much as possible, since it will give the best throughput. Based on this observation, we
present the three-step static uniform job assignment algorithm. Figure 2 shows the flowchart
of the proposal.

4.5.1. First Step

By solving the simultaneous linear equations composed of (2) and (3), the optimal number
of assigned jobs of type t to worker w, x̂t

w, is obtained, assuming that any real value is
acceptable for it.
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Figure 2. Flowchart of the proposal.

4.5.2. Second Step

The solution in the first step becomes feasible only when x̂t
w is a multiple of Dw for

type t. Unfortunately, x̂t
w does not satisfy the condition, in general. Therefore, in the second

step, as the closest integer number to satisfy the condition, the following x̃t
w jobs will be

assigned to the worker (worker w), where byc gives the largest integer equal to or smaller
than y:

x̃t
w = b x̂t

w
Dw
c × Dw (5)

Then, the number of the remaining jobs (let rt for type t) is calculated by:

rt = Nt − ∑
w∈W

x̃t
w (6)

Besides, the estimated makespan for each worker (let emt
w for worker w and job type t)

after the job assignment is calculated by:

emt
w = Ct

w + Rt
w,Dw

× x̃t
w

Dw
(7)

Therefore, after completing the procedures for all the job types, the estimated makespan
for each worker is calculated by:

EMw = ∑
t∈T

emt
w (8)

As the objective of the algorithm, the maximum estimated makespan among the workers
is calculated by:

EM = {max(EMw)} f or w ∈W (9)

4.5.3. Third Step

In the third step, the remaining jobs (rt) in the second step will be assigned to workers
in a greedy way, such that the increase in the maximum estimated makespan EM is mini-
mized. It is noted that the remaining jobs may exist for any job type. Here, to utilize the
parallel job computation using multiple threads on multiple cores for each worker as much
as possible, the simultaneous assignment of multiple jobs to one worker is always consid-
ered.

1. Find the worker whose ˆEMw is smallest among the workers (let worker w).

ˆEMw = EMw + Rt
w,Dw

(10)
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2. Assign ∆xt
w jobs to worker w.

∆xt
w =

{
Dw, rt > Dw

rt, rt ≤ Dw
(11)

3. Update the number of the remaining jobs (rt), and the number of assigned jobs and
makespan of the worker w by:

xt
w = xt

w + ∆xt
w,

EMw = EMw + Rt
w,∆xt

w
,

rt = rt − ∆xt
w

(12)

4. If the number of the remaining jobs becomes zero (rt = 0), terminate the procedure.
5. Go to 1.

5. Evaluation

In this section, we evaluate the proposal through extensive experiments which are
running jobs in three applications on the testbed UPC system.

5.1. Testbed UPC System

Table 1 shows the PC specifications in the testbed UPC system. One master and six
workers are used here.

Table 1. PC specifications.

PC # of Cores CPU Model Clock Rate Memory Size

master 4 Core i5 3.20 GHz 8 GB
PC1 4 Core i3 1.70 GHz 2 GB
PC2 4 Core i5 2.60 GHz 2 GB
PC3 4 Core i5 2.60 GHz 2 GB
PC4 8 Core i7 3.40 GHz 4 GB
PC5 16 Core i9 3.60 GHz 8 GB
PC6 20 Core i9 3.70 GHz 8 GB

5.2. Jobs

Table 2 shows the specifications of the jobs for the eight job types in our experiments.
For the code testing application in APLAS, six job types are prepared, where each job type
represents one assignment to students in APLAS. These job types run the same programs of
JUnit and Robolectric, but accept many different data of answer source codes and test codes.
For the other applications, only one job type is considered.

Table 2. Job specifications.

Job Type # of Jobs Ave. Job Size
(KB) Ave. LOC Ave. Peak Mem.

Use (GB)

BassixAppX1 97 548 1288 1.80
BassixAppX2 125 623 1499 1.82
ColorGame 114 177 1834 1.94

SoccerMatch 88 381 2632 2.39
AnimalTour 71 31,048 4625 4.21
MyLibrary 83 409 4850 2.51
OpenPose 41 62 N/A 2.69

OpenFOAM 32 27 N/A 0.035
total/ave. 651 4159 N/A 2.17
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5.3. CPU Time

Table 3 shows the constant CPU time required to start running the jobs on each worker
for each of the six job types. Tables 4–6 show the increasing CPU time when the number of
jobs is increased by one until the number for the best throughput for each type.

Through preliminary experiments, we found the number of simultaneously running
jobs for the highest throughput for each worker. For code testing in APLAS, PC1, PC2,
and PC3 can run only one job in parallel due to the low specifications. This number is two
for PC4, five for PC5, and six for PC6. For OpenPose, any worker can only execute one job
because it uses a lot of threads to compute CNN. For OpenFOAM, for each worker, the CPU
time is constant at any number of simultaneously running jobs until it reaches the number
of cores in the worker.

Table 3. Constant CPU time to start jobs (s).

Job Type PC1 PC2 PC3 PC4 PC5 PC6

BassixAppX1 9 6 6 5 4 4
BassixAppX2 9 6 6 5 4 4
ColorGame 9 6 6 5 4 4
SoccerMatch 10 6 6 6 5 4
AnimalTour 18 16 16 13 9 8
MyLibrary 11 7 7 6 5 4
OpenPose 10 9 9 8 7 7

OpenFOAM 5 5 5 4 3 3

Table 4. Increasing CPU time at PC1∼PC4 (s).

Job Type PC1 PC2 PC3 PC4: 1 Job PC4: 2 Jobs

BassixAppX1 58 37 37 25 32
BassixAppX2 38 24 24 15 21
ColorGame 60 35 35 25 31

SoccerMatch 128 71 71 46 56
AnimalTour 301 58 58 37 46
MyLibrary 119 43 43 27 34
OpenPose 70 35 35 26 N/A

OpenFOAM 415 206 206 170 170

Table 5. Increasing CPU time at PC5 (s).

Job Type 1 Job 2 Jobs 3 Jobs 4 Jobs 5 Jobs

BassixAppX1 18 21 25 27 31
BassixAppX2 11 13 16 19 22
ColorGame 16 19 22 26 30

SoccerMatch 31 37 43 55 62
AnimalTour 25 29 50 67 79
MyLibrary 17 20 32 41 47
OpenPose 22 N/A N/A N/A N/A

OpenFOAM 128 128 128 128 128

Table 6. Increasing CPU time at PC6 (s).

Job Type 1 Job 2 Jobs 3 Jobs 4 Jobs 5 Jobs 6 Jobs

BassixAppX1 16 17 20 23 27 31
BassixAppX2 9 10 12 15 18 21
ColorGame 15 17 19 22 24 28
SoccerMatch 27 31 36 44 54 61
AnimalTour 23 26 30 35 38 44
MyLibrary 16 18 21 27 33 39
OpenPose 21 N/A N/A N/A N/A N/A

OpenFOAM 106 106 106 106 106 106
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5.4. Comparative Algorithms

For performance comparisons, we implemented two simple algorithms to assign
non-uniform jobs to workers.

The first one is the First-Come-First-Serve (FCFS) algorithm. It assigns each job to the
first available worker, starting from the worker with the highest specification until the one
with the lowest. It limits the worker to executing only one job at a time.

The second is the best throughput-based FCFS (T-FCFS) algorithm. The difference
between T-FCFS and FCFS is that each worker may execute multiple jobs simultaneously
until the best throughput.

5.5. Total Makespan Results

Table 7 compares the maximum makespan results for each job type when the testbed
UPC system runs the jobs by following the assignments found by the algorithms. Further-
more, it shows the lower bound (LB) on the maximum makespan found at First Step of the
proposed algorithm for the reference of them.

Table 7. Maximum makespan results (s).

Job Type FCFS T-FCFS Proposal LB

BassixAppX1 536 268 221 203.04
BassixAppX2 470 235 184 178.67
ColorGame 621 276 233 224.04

SoccerMatch 828 414 370 356.03
AnimalTour 666 319 289 262.82
MyLibrary 520 260 238 227.07
OpenPose 272 272 220 209.97

OpenFOAM 1044 131 131 81.55
Total 4957 2175 1886 1743.19

The results indicate that for any job type, the maximum makespan result by the proposal
is better than the results by the two compared algorithms and is close to the lower bound.
Thus, the effectiveness of the proposal is confirmed. It is noted that the results by FCFS
are far larger than the ones by the others because FCFS does not consider simultaneous
multiple job executions for a worker.

5.6. Individual Makespan Results

For reference, Tables 8–10 show makespan or the total CPU time of each worker and the
largest CPU time difference between the workers and the three algorithms. For OpenFOAM,
no job was assigned to PC1–PC4, because all of the 32 jobs can be executed simultaneously
at PC5 and PC6. The largest CPU time difference by the proposal is smaller than the ones by
the others, except for ColorGame, SoccerMatch, AnimalTour, and MyLibrary, where in Table 4,
the increasing CPU time of PC1 is much larger than other workers, and the far smaller
number of jobs was assigned. Therefore, the proposal can balance well the job assignments
among the workers.

Table 8. FCFS makespan detail (s).

Job Type PC1 PC2 PC3 PC4 PC5 PC6 Diff.

BassixAppX1 536 516 516 510 506 500 36
BassixAppX2 470 450 450 440 435 442 35
ColorGame 621 574 574 570 560 570 61
SoccerMatch 828 770 770 780 792 775 58
AnimalTour 638 666 666 650 612 620 54
MyLibrary 520 500 500 462 462 480 58
OpenPose 240 264 264 272 261 252 32
OpenFOAM 840 844 844 1044 917 981 204
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Table 9. T-FCFS makespan detail (s).

Job Type PC1 PC2 PC3 PC4 PC5 PC6 Diff.

BassixAppX1 268 215 215 222 210 241 58
BassixAppX2 235 210 210 208 208 214 27
ColorGame 276 246 246 252 258 256 30
SoccerMatch 414 385 385 372 377 390 42
AnimalTour 319 296 296 295 298 312 24
MyLibrary 260 250 250 240 260 246 20
OpenPose 240 264 264 272 261 252 32
OpenFOAM 0 0 0 0 131 109 131

Table 10. Proposal makespan detail (s).

Job Type PC1 PC2 PC3 PC4 PC5 PC6 Diff.

BassixAppX1 183 191 191 197 190 221 38
BassixAppX2 161 174 174 173 180 184 23
ColorGame 189 216 216 222 233 228 44
SoccerMatch 266 361 361 342 358 370 104
AnimalTour 0 248 248 289 246 272 289
MyLibrary 130 222 222 210 234 238 108
OpenPose 220 219 219 216 205 196 24
OpenFOAM 0 0 0 0 131 109 131

5.7. Discussions

The results in Table 7 show improvements of maximum makespan results by the
proposed algorithm if compared with T-FCFS. However, some differences can be observed
against the lower bound.

The current algorithm can find the assignment of some remaining jobs to workers,
and assign an integer number of jobs to any worker in a greedy way, after the real number
solutions are obtained by solving the simultaneous linear equations. A greedy method is
usually difficult to give a near-optimum solution, since it only considers the local optimality
under the current assignment.

To improve the solution quality, a local search method using iterations has often been
adopted for solving combinatorial optimization problems, including this study. Therefore,
we will study the use of a local search method for the remaining job assignment in the
proposed algorithm.

6. Extension to Multiple Job Types Assignment

In this section, we extend the proposed algorithm to the case when jobs for multiple
job types are assigned together.

6.1. Algorithm Extension

In First Step of the proposed algorithm, the linear equations are modified in this
extension to consider the CPU time to complete all the jobs for the plural job types assigned
to each worker:

∑
t∈T

(Ct
i +

Rt
i,Di

Di
× xt

i ) = ∑
t∈T

(Ct
j +

Rt
j,Dj

Dj
× xt

j)

f or i 6= j, i ∈W, j ∈W.

(13)

The number of variables to be solved is |W||T|, where |W| represents the number
of workers and |T| represents the number of job types, respectively. Thus, |W||T| linear
equations are necessary to solve them. In the original algorithm, for each job type, (|W| − 1)
linear equations are derived for the CPU time equality and one equation is for the job
number. Thus, |W||T| equations can be introduced.

However, in this extension, the total number of linear equations for the CPU time
equality is reduced to (|W| − 1) because all the job types need to be considered together here.
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Therefore, to solve the linear equations uniquely, the following
(|W| − 1)(|T| − 1) linear equations will be introduced by considering the total CPU time
for (|T| − 1) job types together for (|T| − 1) combinations of (|T| − 1) job types, in addition
to the total CPU time for |T| job types together in (13):

∑
t∈T−{u}

(Ct
i +

Rt
i,Di

Di
× xt

i ) = ∑
t∈T−{u}

(Ct
j +

Rt
j,Dj

Dj
× xt

j)

f or i 6= j, i ∈W, j ∈W, u ∈ T.

(14)

where T − {u} represents the set of the job types in T except for job type u.
The (|T| − 1) combinations of (|T| − 1) job types are selected by excluding the combi-

nation where the following estimated total CPU time to execute all the jobs in the remaining
job types on PC6 is smallest:

∑
t∈T−{u}

(Ct
6 +

Rt
6,D6

D6
× Nt) (15)

Then, in Second Step and Third Step, the estimated makespan for each worker and the
maximum estimated makespan among the workers are modified to consider all the given
job types together.

6.2. Total Makespan Results

Table 11 shows the maximum makespan results when the testbed UPC system runs the
jobs by following the assignments by the extended algorithm. When compared with the
result by the original algorithm, it is reduced by 5%, and becomes closer to the lower bound.
The difference between our result and the lower bound is very small. Thus, this extension
is effective when plural job types are requested at the UPC system together.

Table 11. Maximum makespan results (s) by proposal.

Original Extended LB

1886 1799 1743.19

6.3. Discussions

The result in Table 11 confirms some reduction in the total makespan result by the
extended algorithm. However, there is still a difference when compared to the lower bound.
Thus, it is necessary to further improve the algorithm.

One idea for this improvement in the extended algorithm will not be to limit the
exclusion of one job type combination—where the estimated total CPU time to execute all
jobs in the remaining job types on PC6 is the smallest—and to generate the linear equations
for the CPU time equality. Instead, every combination will be excluded one by one to obtain
the result for each combination exclusion. Then, the best one will be selected among them.

7. Conclusions

This paper proposed the static uniform job assignment algorithm to workers in the UPC
system. The simultaneous linear equations have been derived to find the optimal assignment
of minimizing the maximum makespan among the workers, where the CPU time to complete
the assigned jobs becomes equal among all the workers.

For an evaluation, the 651 uniform jobs in three applications, OpenPose, OpenFOAM,
and code testing in APLAS, were considered to run on six workers in the testbed UPC system,
and the makespan was compared with the results by two simple algorithms and the lower
bounds. The comparisons confirmed the effectiveness of the proposal.

The novelty of the proposal is that with a very simple formula, it is able to provide
the near-optimal solutions to NP-complete problems in the User-PC computing (UPC) system,
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a typical distributed system. The current algorithm limits the jobs whereby the computing
time for a worker is nearly equal. This limitation can simplify our approach of considering
the simple assignment of the number of jobs for each worker without considering the
differences among individual jobs.

Fortunately, it is possible to alleviate this limitation by considering the granularity of
the CPU time for a worker. The CPU time of a job in suitable applications to the proposal is
often proportional to the number of iteration steps before the termination or the number of
elements in the model. By considering a multiple of a constant number of iteration steps,
the CPU time can be estimated even if the number of iteration steps is widely changed with
this granularity; this finding will be in future studies.

In future studies, we will also improve the algorithm for remaining job assignments
and simultaneous job assignments of multiple job types, and we will study the combina-
tion of uniform jobs and non-uniform jobs in the job-worker assignment algorithm for the
UPC system.
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Abbreviations
The following abbreviations are used in this paper:

UPC User-PC Computing System
PC Personal Computer
APLAS Android Programming Learning Assistance System
CNN Convolutional Neural Network
CFD Computational Fluid Dynamics
XML Extensible Markup Language
CPU Central Processing Unit
ERSA Efficient Refinery Scheduling Algorithm
ILP Integer Linear Programming
AWS Adaptive Workflow Scheduling
COA Cuckoo Optimization Algorithm
SDMCOA Standard Deviation-Based Modified Cuckoo Optimization Algorithm
HHO Harris Hawks optimization
PTCT Prediction of Tasks Computation Time algorithm
PCA Principal Components Analysis
ETC Expected Time to Compute
ETSA Energy-Efficient Task Scheduling Algorithm
SA Simulated Annealing
AC Air Conditioners
LOC Lines Of Codes
FCFS First Come First Serve
T-FCFS Best Throughput-Based FCFS
LB Lower Bound
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