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Jun Morita, Arturo Pianzola and Taiki Shibata

Abstract. We provide explicit generators and relations for the affine
Kac-Moody groups, as well as a realization of them as (twisted) loop
groups by means of Galois descent considerations. As a consequence, we

show that the affine Kac-Moody group of type X
(r)
N is isomorphic to the

fixed-point subgroup of the affine Kac-Moody group of type X
(1)
N under

an action of the Galois group.

1. Introduction

Kac-Moody Lie algebras, a particular class of infinite dimensional Lie
algebras, were independently discovered by V. Kac [10] and R. V. Moody
[15]. Given a field K of characteristic 0, they are defined by generators and
relations (à la Chevalley-Harish-Chandra-Serre) encoded in a generalized
Cartan matrix (GCM) A. If A is a Cartan matrix of type X, then the
corresponding Kac-Moody Lie algebra is nothing but the split simple finite
dimensional K-Lie algebra of type X. Closely related to these are the affine
Lie algebras (see [11, Chapter 7] and [16]).

The first step towards the construction/definition of Kac-Moody groups
is given in [18]. This was done using representation theory and admissible
lattices following along the lines of Chevalley’s early work on analogues of the
simple Lie groups over arbitrary fields. A summary of this approach and a
vision of the steps ahead can be found in [27]. Rather than working with one
representation, Peterson and Kac considered all (integrable) representations
at once in their definition of “simply connected” Kac-Moody groups over
fields of characteristic 0 given in [24]. This paper establishes the conjugacy
theorem of “Cartan subalgebras” of symmetrizable Kac-Moody Lie algebras
and, as a consequence, that the GCMs and corresponding root systems are
an invariant of the algebras. Detailed expositions of this material are given
in [12] and [17].

If A is of finite type X, the corresponding “groups” (with the simply
connected being the largest) exist (Chevalley) and are unique (Demazure).
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They are smooth group schemes over Z constructed using a “root datum”
that includes A. The base change to K produces a linear algebraic group
over K whose Lie algebra is split simple of type X if K is of characteristic 0.

J. Tits pioneered the idea of defining root datum based on GCMs, and
attaching to them group functors that “behave right” when evaluated at
arbitrary fields [28]. See also [25]. Some of the affine cases are discussed in
examples. Further clarity about the nature of the abstract groups obtained
in this fashion is given by the construction of Kac-Moody groups due to
O. Mathieu in [14]. See also [7, 13, 23].

While the works described above deal with arbitrary (symmetrizable)
GCM, the focus of our paper are the (abstract) groups attached to the affine
GCMs. This can be done over arbitrary fields (avoiding characteristic 2 and
3 in the twisted cases) by considering fixed points of Chevalley-Demazure
group schemes evaluated at suitable Laurent polynomial rings. The link
with the representation related approach, and with the work of Tits, is
given by a detailed analysis motivated by the work of Steinberg, that yields
generators and relations for these groups. This method of studying of affine
Kac-Moody groups was pioneered by E. Abe, N. Iwahori and H. Matsumoto,
and J. Morita (see references).
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ENHI (Grants-in-Aid for Scientific Research) Grant Number JP17K05158.
A.P. acknowledges the continued support of NSERC and Conicet. T.S. was
a Pacific Institute for the Mathematical Sciences (PIMS) Postdoctoral Fel-
low position at University of Alberta, and is supported by JSPS KAKENHI
Grant Number JP19K14517.

2. Structure of the Paper and Main Results

The article is organized as follows. In Section 3, we recall some basic
definitions and notation for twisted root systems and Chevalley basis of
finite-dimensional simple Lie algebra g over C. The type and rank of g will
be denoted by XN (X = A,B,C,D,E,F, or G). The description of Dynkin
diagram automorphisms as automorphisms of g is given in this section. Sec-
tion 4 starts with the construction of twisted loop algebras associated to g
over Q. We then give an explicit description of a Lie algebra isomorphism

φ from the twisted loop algebra to the affine Kac-Moody algebra ĝQ(X
(r)
N )

of type X
(r)
N defined over Q (Theorem 4.8), where r is the tier number (i.e.,

the order of the Dynkin diagram automorphism) and X
(r)
N is as in Kac’s list

[11, TABLE Aff r]. Using the isomorphism φ, we translate the notion of
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Chevalley pairs (Definition A.3) of ĝQ(X
(r)
N ) into the twisted loop algebra

(Proposition 4.13).
In the rest of the paper (Sections 5, 6, and 7), we work over a field K

of characteristic not equal to 2 (resp. 3) when we consider the case r = 2
(resp. r = 3). Let G be the simply-connected Chevalley-Demazure group
scheme over Z of type XN (cf. [5, 6]). In Section 5, using Abe’s construction
[1], we introduce the notion of the twisted loop group L(GK; Γ), as a Γ-

twisted Chevalley group over the Laurent polynomial ring SK := K(ξ)[z±
1
r ],

where ξ is a fixed primitive r th root of unity in an algebraic closure of
K. Here, Γ is the Galois group of SK over RK := K[z±1]. We determine
generators of the group L(GK; Γ) explicitly (Theorem 5.12). Since we have
described the Lie algebra isomorphism φ concretely (in Section 4.4), we are
able to write down the “induced” group homomorphism Φ from the simply-

connected affine Kac-Moody group ĜK(X
(r)
N ) of type X

(r)
N defined over K (see

Definition A.5 for details) to the twisted loop group L(GK; Γ) explicitly. In
Section 6, we show that the homomorphism Φ is surjective (Proposition 6.6)
and determine the kernel of Φ. As a result, we have the following.

Theorem (Theorem 6.7). The simply-connected affine Kac-Moody group

ĜK(X
(r)
N ) of type X

(r)
N defined over K is a one-dimensional central extension

of L(GK; Γ). In particular, ĜK(X
(r)
N )/K× ∼= L(GK; Γ).

In the final Section 7, we define a Γ-action on the simply-connected affine

Kac-Moody group ĜK(ξ)(X
(1)
N ) of type X

(1)
N defined over K(ξ) and study

structure of the fixed-point subgroup of ĜK(ξ)(X
(1)
N ) under Γ. Using the

results in the previous section, we have the following result.

Theorem (Theorem 7.7). The fixed-point subgroup of ĜK(ξ)(X
(1)
N ) under Γ

is isomorphic to ĜK(X
(r)
N ).

If ξ ∈ K, then our results can be express as the following commutative
diagram.

1 K× ĜK(X
(1)
N ) L(GK) GK(SK) 1

1 K× ĜK(X
(1)
N )Γ GK(SK)

Γ 1

1 K× ĜK(X
(r)
N ) L(GK; Γ) 1.

// � � // // //
∼=// //

⊂ ⊂

// � � // // //_______ //

OO

∼=�
�

// � � // // // //
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Here, L(GK) := GK(RK) is the so-called loop group, and L(GK)
∼=→ GK(SK)

is a group isomorphism induced from the canonical algebra isomorphism
RK → SK; z

n 7→ z
n
r (n ∈ Z).

3. Twisted Root Systems

In this section, we work over the field of complex numbers C. Let g be
a complex simple Lie algebra of type XN . Recall that N is the rank of g
and X = A,B,C,D,E,F, or G. We fix a Cartan subalgebra h and a Borel
subalgebra b of g with h ⊂ b. We let h∗ denote the linear dual space of h.

Let ∆ be the root system of g with respect to h and let Π = {αi | i ∈ I}
be the set of all simple roots with respect to our chosen Borel subalgebra of
g, where I := {1, . . . , N}. For each α ∈ ∆, we let gα denote the root space
in g corresponding to α. Let < be the lexicographical order on ∆ defined
by Π, and let ∆+ (resp. ∆−) be the set of all positive (resp. negative) roots
in ∆ with respect to <.

3.1. Dynkin Diagram Automorphisms. Let σ ∈ AutC(h
∗) be a Dynkin

diagram automorphism of g, and let r be the order of σ. For simplicity, the
induced automorphism on h and the extended automorphism on g are also
denoted by the same symbol σ. Let (hσ)∗ denote the fixed-point subspace
of h∗ under σ. Then we have a canonical projection π : h∗ → (hσ)∗ defined
by π(λ) =

∑r
j=1

1
r σ

j(λ) for λ ∈ h∗.

We let π(Π) (resp. π(∆)) denote the image of Π (resp. ∆) under π. For

the case of XN = A2ℓ with r = 2, there is a′ ∈ π(∆) such that a′

2 belongs to
π(∆). Thus, we shall define a subset of π(∆) as follows.

(3.1) ∆σ :=

{
π(∆) \ {a′ ∈ π(∆) | a′

2 ∈ π(∆)} if (XN , r) = (A2ℓ, 2),

π(∆) otherwise.

One sees that this ∆σ forms a root system of the fixed-point subalgebra gσ

of g under σ with respect to hσ = h ∩ gσ. Let Xσ
N be the type of gσ with

respect to hσ. In this case, Πσ := ∆σ ∩ π(Π) forms the set of all simple
roots. Set ℓ := #Πσ and set ∆σ

+ := ∆σ ∩ π(∆+). Let ∆σ
long (resp. ∆σ

short)

denote the set of all long (resp. short) roots in ∆σ. If all roots of ∆σ are of
the same length, then we set ∆σ

long = ∆σ and ∆σ
short = ∅.

The Dynkin diagram automorphism σ naturally acts on the set I. Let Iσ

be the set of all equivalence classes of I. By definition, the set Iσ consists
of ℓ elements. For p ∈ Iσ and a fixed i ∈ p, we define ap ∈ (hσ)∗ by letting
ap(H) := αi(H) for all H ∈ hσ. Then we can identify the set {ap}p∈Iσ
with Πσ. For simplicity, we shall identify Iσ with {1, . . . , ℓ}, and write
Πσ = {a1, . . . , aℓ}.
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The following is the complete list of non-trivial Dynkin diagram automor-
phisms σ of order r. Note that r only takes the values 2 or 3.

(1) XN = A2ℓ−1 (ℓ ≥ 2) and r = 2.

◦
α1

◦
α2

· · ·◦
αℓ−1

◦
α2ℓ−1

◦
α2ℓ−2

· · ·◦
αℓ+1

◦
αℓ

ttt
ttt

tt

JJJJJJJJ
��

OO

��

OO

��

OO

σ(αi) = α2ℓ−i.

◦
a1

◦
a2

· · ·◦
aℓ−1

◦
aℓ

+3 Xσ
N = Cℓ.

(2) XN = A2ℓ (ℓ ≥ 1) and r = 2.

◦
α1

◦
α2

· · ·◦
αℓ−1

◦
α2ℓ

◦
α2ℓ−1

· · ·◦
αℓ+2

◦
αℓ

◦
αℓ+1

��

OO

��

OO

��

OO??

��

σ(αi) = α2ℓ+1−i.

◦
a1

◦
a2

· · ·◦
aℓ−1

◦
aℓ

ks Xσ
N = Bℓ.

(3) XN = Dℓ+1 (ℓ ≥ 3) and r = 2.

◦
α1

◦
α2

· · ·◦
αℓ−1

◦
αℓ

◦
αℓ+1

JJJJJJJJ

ttt
ttt

tt
��

OO

σ(αi) =


αℓ+1 if i = ℓ,

αℓ if i = ℓ+ 1,

αi otherwise.

◦
a1

◦
a2

· · ·◦
aℓ−1

◦
aℓ

ks Xσ
N = Bℓ.
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(4) XN = E6 and r = 2.

◦
α1

◦
α2

◦
α3

◦
α6

◦
α5

◦
α4

tttttttt

JJJ
JJJ

JJ
��

OO

��

OO


σ(α1) = α6, σ(α2) = α5,

σ(α3) = α3, σ(α4) = α4,

σ(α5) = α2, σ(α6) = α1.

◦
a1

◦
a2

◦◦
a3a4

+3 Xσ
N = F4.

(5) XN = D4 and r = 3.

◦
α1

◦
α3

◦
α4

◦
α2��

TTTTTTTTTTTTTTTT

jjjj
jjjj

jjjj
jjjj

��

AA {
σ(α1) = α3, σ(α2) = α2,

σ(α3) = α4, σ(α4) = α1.

◦
a1

◦
a2

_jt Xσ
N = G2.

3.2. Types of Twisted Roots. Each α ∈ ∆ satisfies one of the following
four conditions, see [20, Section 1].

(R-1): α = σ(α).
(R-2): r = 2 with α 6= σ(α) and α+ σ(α) /∈ ∆.
(R-3): r = 2 with α 6= σ(α) and α+ σ(α) ∈ ∆.
(R-4): r = 3 with α 6= σ(α) and α 6= σ2(α).

If r = 1, then all roots are of type (R-1). Otherwise, we have to clarify
the difference between ∆ and ∆σ. Hence, in order to avoid confusion, we use
Greek characters α, β to describe elements in ∆, and use Alphabet characters
a, b to describe elements in ∆σ and π(∆).
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We have the following classification of elements in π(∆) (cf. [20, Table 2]).

XN r Types Lengths

A2ℓ−1, Dℓ+1, E6 2
(R-1) long
(R-2) short

A2 2
(R-1) extra long
(R-3) short

A2ℓ ̸=2 2
(R-1) extra long
(R-2) long
(R-3) short

D4 3
(R-1) long
(R-4) short

Notation 3.1. Suppose that XN = A2ℓ with r = 2. For a ∈ ∆σ, we shall
denote a or 2a by a′ so that a′ ∈ π(∆). For the other types, we let a′ := a
for each a ∈ ∆σ.

Example 3.2. The case (XN , r) = (A4, 2). The set of all positive roots are
given by ∆+ = {α1, α2, α3, α4, α1 + α2, α2 + α3, α3 + α4, α1 + α2 + α3, α2 +
α3 + α4, α1 + α2 + α3 + α4}. The Dynkin diagram automorphism of order
2 is given by σ(α1) = α4 and σ(α2) = α3. Then one sees

π(∆+) = {a2, a1 + a2}
(R-3) short

t {a1, a1 + 2a2}
(R-2) long

t {2a2, 2(a1 + a2)}
(R-1) extra long

,

where a1 = π(α1) = (α1 + α4)/2 and a2 = π(α2) = (α2 + α3)/2. Also, we
get Πσ = {a1, a2} and ∆σ

+ = {a2, a1 + a2} t {a1, a1 + 2a2} ⊂ π(∆). This is
the root system of type Xσ

N = B2. Set a := a2 ∈ ∆σ. Then by definition,
a′ stands for a2 or 2a2. If a′ = a2 (resp. a′ = 2a2), then a′ is of type (R-3)
(resp. (R-1)). □

Suppose that r = 1 or 2. If α ≤ σ(α), then −σ(α) ≤ −α. On the other
hand, when r = 3, then the situation is more complicated.

Example 3.3. The case (XN , r) = (D4, 3). Then the set of all positive roots
are given by ∆+ = {α1, α2, α3, α4, α1+α2, α2+α3, α2+α4, α1+α2+α3, α2+
α3 + α4, α1 + α2 + α4, α1 + α2 + α3 + α4, α1 + 2α2 + α3 + α4}. The Dynkin
diagram automorphism of order 3 is given by σ(α1) = α3, σ(α2) = α2,
σ(α3) = α4, and σ(α4) = α1. Then we have

π(∆+) = ∆σ
+ = {a2, a1 + a2, a1 + 2a2}

(R-4) short

t {a1, a1 + 3a2, 2a1 + 3a2}
(R-1) long

,

where a1 = π(α2) and a2 = π(α1). Also, we get Πσ = {a1, a2}. This is
the root system of type Xσ

N = G2. For α ∈ ∆+, it is easy to see that
α ≤ σ(α) ≤ σ2(α) if and only if

α ∈ {α1, α1 + α2} t {α2, α1 + α2 + α3 + α4, α1 + 2α2 + α3 + α4}.
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On the other hand, for α ∈ ∆+, α < σ2(α) < σ(α) if and only if α =
α1 + α2 + α3. □

For a′ ∈ π(∆), there is α ∈ ∆ such that a′ = π(α). Since π(α) =
π(σ(α)) = π(σ2(α)), we shall define something “good” from amongst α,
σ(α) and σ2(α).

Definition 3.4. Let a′ ∈ π(∆). Suppose that a′ = π(α) for some α ∈ ∆.

(1) Assume that a′ is of type (R-1). We say that a′ corresponds to α.
(2) Assume that a is of type (R-2) or (R-3). We say that a corresponds

to α if it satisfies α ≤ σ(α).
(3) Assume that a is of type (R-4). We say that a corresponds to α if

α is one of ±α1,±(α1 + α2),±(α2 + α3 + α4). For the notation, see
Example 3.3.

In these cases, we shall write a′ ↔ α.

Suppose that r = 1 or 2. It is easy to see that if a′ ↔ α, then we have
−a′ ↔ −σ(α).

Example 3.5. The case (XN , r) = (A4, 2). For each roots a′ ∈ π(∆), the
corresponding roots α are given as follows.

a′ a2 a1 + a2 a1 a1 + 2a2 2a2 2(a1 + a2)
α α2 α1 + α2 α1 α1 + α2 + α3 α2 + α3 α1 + α2 + α3 + α4

a′ −a2 −a1 − a2 −a1 −a1 − 2a2 −2a2 −2(a1 + a2)
α −α3 −α3 − α4 −α4 −α2 − α3 − α4 −α2 − α3 −α1 − α2 − α3 − α4

□

Example 3.6. The case (XN , r) = (D4, 3). For each (R-4) roots a, the
corresponding roots α are given as follows.

a a2 a1 + a2 a1 + 2a2 −a2 −a1 − a2 −a1 − 2a2
α α1 α1 + α2 α2 + α3 + α4 −α1 −α1 − α2 −α2 − α3 − α4

Note that −a ↔ −α, in this case. □

3.3. Chevalley Bases. Let κ denote the Killing form of g. For each α ∈ ∆,
there exists a unique tα ∈ h such that κ(tα,H) = α(H) for all H ∈ h. Set
Hα := 2tα/(α, α) for each α ∈ ∆. Here, ( , ) is the standard invariant bilinear
form on h∗ induced by κ. One notes that, for a coroot α∨ := 2α/(α, α) of
α ∈ ∆, we have (β, α∨) = β(Hα) for all β ∈ ∆.

It is known (see [26, Chapter 2] for example) that for any α ∈ ∆, we can
choose Xα ∈ gα so that the set

{Xα ∈ gα | α ∈ ∆} t {Hαi ∈ h | i ∈ I}
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forms a Z-basis of g, the so-called Chevalley basis of g, satisfying

κ(Xα, X−α) = 2/(α, α), [Xα, X−α] = Hα,

[Xα, Xβ ] = Nα,βXα+β , and Nα,β = −N−α,−β

for α, β ∈ ∆ with α+ β ∈ ∆. Here, Nα,β is the so-called structure constant
which is necessarily an integer. If r = 2, then it is easy to see that Nα,β

takes the values ±1 for all α, β ∈ ∆ with α+ β ∈ ∆.

We fix a Chevalley basis {Xα,Hαi}α∈∆,i∈I of g, and let gZ denote the cor-
resposnding Z-form of g. A given Dynkin diagram automorphism σ induces
a Lie algebra isomorphism σ : g → g and a linear isomorphism σ : h∗ → h∗.
Moreover, we get an isomorphism σ : gZ → gZ of Lie algebras over Z satis-
fying

(3.2) σ(Xα) = kαXσ(α) and σ(Hαi) = Hσ(αi) (α ∈ ∆, i ∈ I)

for some kα = ±1. By a suitable replacement (such as Xα with ±Xα), we
can re-choose the signs kα (α ∈ ∆) satisfying the following (cf. [1, Proposi-
tion 3.1] and [20, Proposition 2.2]).

Proposition 3.7. For α ∈ ∆, we have kα = kσ(α) and

kα =

{
−1 if there exists β ∈ ∆ such that α = β + σ(β),

1 otherwise.

In the following, we fix and use the signs kα (α ∈ ∆) as in Proposition 3.7.
Note that kα = −1 occurs only when (XN , r) = (A2ℓ, 2) and α is of type (R-
1). The following result follows from a direct calculation.

Lemma 3.8. For each α, β ∈ ∆ with α + β ∈ ∆, we have Nσ(α),σ(β) =
kα+βkαkβNα,β.

4. Twisted Loop Algebras

In this section, we work over the field Q of rational numbers. Let ξ be a
primitive r th root of unity in the field C of complex numbers. We denote
by Q(ξ) the field generated by ξ over Q. If r = 1 or 2, then ξ takes value ±1,
and hence Q(ξ) = Q. Note that ξ /∈ Q occurs only when (XN , r) = (D4, 3).

4.1. Twisted Loop Algebras. Recall that gZ is a Z-form of g, see Sec-
tion 3.3. Set gQ := gZ ⊗Z Q and hQ := h ∩ gQ, Let RQ := Q[z±1] be the
ring of Laurent polynomials in the variable z with coefficients in Q. Set
L(gQ) := gQ ⊗Q RQ, which is naturally a Lie algebra over RQ (free of rank
equal to the dimension of g) in addition to an infinite dimensional Lie algebra
over Q. This is the so-called loop algebra. In this subsection, we introduce
the notion of a twisted version of loop algebras (cf. [4, Section 2]).
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Let us denote by

SQ := Q(ξ)[z±
1
r ]

the ring of Laurent polynomials in the variable z
1
r with coefficients in Q(ξ).

We define the following Q(ξ)-algebra automorphism.

σ′ : SQ −→ SQ; z
n
r 7−→ ξ−nz

n
r (n ∈ Z).

We also define the following Q[z±
1
r ]-algebra automorphism.

ω′ : SQ −→ SQ; ξn 7−→ ξ−n (n ∈ Z).
Note that if ξ ∈ Q, then this ω′ is trivial. Then SQ is a Galois extension of
RQ with Galois group Γ generated by {σ′, ω′} (see [2] for Galois extension
of rings). An easy calculation shows that

Γ = 〈σ′, ω′〉 ∼=

{
Z/rZ if ξ ∈ Q,

S3 if ξ /∈ Q.

Here, S3 is the symmetric group on three letters. Note that if r = 1, then
SQ = RQ and Γ is trivial.

If ξ ∈ Q, then the group Γ generated by the Dynkin diagram automor-
phism σ ∈ AutC(g) coincides with Z/rZ. For the case when ξ /∈ Q (neces-
sarily (XN , r) = (D4, 3)), we let ω be the element of AutC(g) corresponding
to the diagram automorphism (also denoted by ω, see §3.1).

XN = D4 : α1◦◦
α2

◦α3

◦α4

JJJJJJJJ

ttt
ttt

tt
��

OO

ω(α1) = α1, ω(α2) = α2, ω(α3) = α4, ω(α4) = α3.

Then one sees the set {σ, ω} generates the group S3 (∼= Γ).
The following is easy to see.

Lemma 4.1. Suppose that ξ /∈ Q. For each α, β ∈ ∆ with α + β ∈ ∆, we
have Nω(α),ω(β) = Nα,β.

For simplicity, we set ω = idg if ξ ∈ Q. Then we have Γ = 〈σ′, ω′〉 ∼= 〈σ, ω〉
for any case. The group Γ also acts on gQ ⊗Q SQ (∼= L(gQ)⊗RQ SQ) via

σ(X ⊗Q s) = σ(X)⊗Q σ′(s) and ω(X ⊗Q s) = ω(X)⊗Q ω′(s),

where X ∈ gQ and s ∈ SQ.

Definition 4.2. We let L(gQ; Γ) denote the fixed-point subalgebra of L(gQ)⊗RQ
SQ under Γ, and call it the twisted loop algebra defined over Q.
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As in [11, Chapter 7], the Q-vector space

L̂(gQ; Γ) := L(gQ; Γ)⊕Qc⊕Qd

forms a Lie algebra over Q by letting

[X ⊗Q νz
n
r , Y ⊗Q µz

m
r ] = [X,Y ]⊗Q νµz

m+n
r + κ(X,Y )n δm+n,0 c,

[c, νz
n
r ] = [c,d] = 0, and [d, X ⊗Q νz

n
r ] = nX ⊗Q νz

n
r

for X,Y ∈ gQ, ν, µ ∈ Q(ξ), n,m ∈ Z. Here, c (resp. d) is the so-called
central element (resp. degree derivation).

Remark 4.3. If r 6= 3, then it is easy to see that

L(gQ; Γ) =
⊕
n∈Z

gQ[n̄]⊗Q Qz
n
r ,

where gQ[n̄] := {X ∈ gQ | σ(X) = ξnX}.

4.2. Special Elements in Twisted Loop Algebras. As in [20, §1], we
define the following subset Ω of the set π(∆+) × Z. If (XN , r) = (A2ℓ, 2),
then

Ω := {(a, n) | a ∈ ∆σ, n ∈ Z} t {(2a, n) | a ∈ ∆σ
short, n ∈ 2Z+ 1}.

Otherwise,

Ω := {(a, n) | a ∈ ∆σ
short, n ∈ Z} t {(a, n) | a ∈ ∆σ

long, n ∈ rZ}.

Here, 2Z+ 1 := {2n+ 1 ∈ Z | n ∈ Z} and rZ := {rn ∈ Z | n ∈ Z}.

Definition 4.4. Take (a′, n) ∈ Ω with a′ ↔ α ∈ ∆. We define X̃(a′,n) ∈
gQ ⊗Q SQ as follows.

• X̃(a′,n) := Xα ⊗Q z
n
r if a′ is of type (R-1).

• X̃(a,n) := Xα ⊗Q z
n
r +Xσ(α) ⊗Q ξ−nz

n
r if a is of type (R-2) or (R-3).

• X̃(a,n) := Xα ⊗Q z
n
r +Xσ(α) ⊗Q ξ−nz

n
r +Xσ2(α) ⊗Q ξ−2nz

n
r if a is of

type (R-4).

Lemma 4.5. For each (a′, n) ∈ Ω, the element X̃(a′,n) belongs to L(gQ; Γ).

Proof. Suppose that a′ ↔ α ∈ ∆. First, by Proposition 3.7, σ(X̃(a′,n)) is
given as follows.

• kαXα ⊗Q ξ−nz
n
r if a′ is of type (R-1).

• Xσ(α) ⊗Q ξ−nz
n
r +Xσ2(α) ⊗Q ξ−2nz

n
r if a is of type (R-2) or (R-3).

• Xσ(α) ⊗Q ξ−nz
n
r +Xσ2(α) ⊗Q ξ−2nz

n
r +Xσ3(α) ⊗Q ξ−3nz

n
r if a is of

type (R-4).
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Thus, if (XN , r) 6= (A2ℓ, 2), then we see that σ(X̃(a′,n)) = X̃(a′,n). Suppose
that (XN , r) = (A2ℓ, 2) and a′ is of type (R-1). In this case, we have kα =
−1 by Proposition 3.7. Since ξ = −1 and n ∈ 2Z + 1, we conclude that
σ(X̃(a′,n)) = X̃(a′,n).

Next, suppose that (XN , r) = (D4, 3) and ξ /∈ Q. If a′ = a is of type

(R-1), then obviously we get ω(X̃(a,n)) = X̃(a,n). Thus, in the following,
we treat the case when a′ = a is of type (R-4) and a ∈ ∆σ

+. We use the
notations in Example 3.3. If a = a2 (i.e., α = α1), then by definition, we

get X̃(a2,n) = Xα1 ⊗Q z
n
r +Xα3 ⊗Q ξ−nz

n
r +Xα4 ⊗Q ξ−2nz

n
r , and hence

ω(X̃(a2,n)) = Xα1 ⊗Q z
n
r +Xα4 ⊗Q ξnz

n
r +Xα3 ⊗Q ξ2nz

n
r = X̃(a2,n).

For a = a1 + a2, the situation is similar, and we obtain ω(X̃(a1+a2,n)) =

X̃(a1+a2,n). If a = a1+2a2, then the corresponding root is α ↔ α2+α3+α4 ∈
∆, and hence X̃(a1+2a2,n) is given as follows.

Xα2+α3+α4 ⊗Q z
n
r +Xα2+α4+α1 ⊗Q ξ−nz

n
r +Xα2+α1+α3 ⊗Q ξ−2nz

n
r .

Thus, ω(X̃(a1+2a2,n)) is given by

Xα2+α4+α3 ⊗Q z
n
r +Xα2+α3+α1 ⊗Q ξnz

n
r +Xα2+α1+α4 ⊗Q ξ2nz

n
r .

Since ξn = ξ−2n and ξ2n = ξ−n, we have ω(X̃(a1+2a2,n)) = X̃(a1+2a2,n). □

As a subspace of L̂(gQ; Γ), we set

L̂(hQ; Γ) := hσQ ⊕Qc⊕Qd,

where hσQ := gσ ∩ hQ. For each p ∈ Iσ, we regard ap as an element of the

linear dual space L̂(hQ; Γ)∗ of L̂(hQ; Γ) by letting ap(c) = ap(d) = 0. We

define δ ∈ L̂(hQ; Γ)∗ so that δ(hσQ) = 0, δ(c) = 0, and δ(d) = 1.

Let ∆̂σ be the root system of L̂(gQ; Γ) with respect to L̂(hQ; Γ). One

sees that the set of all “real” roots re∆̂σ in ∆̂σ is given as follows (cf. Theo-
rem 4.8).

re∆̂σ = {a′ + nδ ∈ L̂(hQ; Γ)∗ | (a′, n) ∈ Ω}.

Remark 4.6. If r = 1, then ∆σ = ∆ and re∆̂σ = {α+ nδ | α ∈ ∆, n ∈ Z}.
Suppose that XN = A2ℓ with r = 2. Let â = a′ + nδ ∈ re∆̂σ be a real root
with a′ ∈ π(∆) and n ∈ Z. Then by Notation 3.1, a′ stands for a or 2a for
some a ∈ ∆σ. However, if n is even, then we can conclude that a′ = a.
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4.3. Affine Kac-Moody Algebras and Twisted Loop Algebras. Re-
call that gQ = gQ(XN ) is a finite-dimensional split simple Lie algebra of type
XN defined over Q. Let A = (aij)i,j∈I denote the Cartan matrix of type XN ,
and let {hi, ei, fi} be the Chevalley generators of gQ, see Appendix A.1. In
the following, we let gσQ (resp. hσQ) denote the fixed-point subalgebra of gQ
(resp. hQ) under σ, as in Section 3.1.

Recall that Iσ is the set of all equivalence classes for σ on I. For each
p ∈ Iσ, we define the following elements Hp, Ep, Fp in gσQ: If aij = 2δi,j for
all i, j ∈ p, then

Hp :=
∑
i∈p

hi, Ep :=
∑
i∈p

ei, Fp :=
∑
i∈p

fi.

Otherwise,

Hp := 2
∑
i∈p

hi, Ep :=
∑
i∈p

ei, Fp := 2
∑
i∈p

fi.

Note that the latter case occurs when (XN , r) = (A2ℓ, 2).
One sees that Aσ := (aq(Hp))p,q∈Iσ is the Cartan matrix of type Xσ

N . For
λ ∈ (hσQ)

∗, we let tλ be an element of hσQ such that κσQ(tλ,H) = λ(H) for all

H ∈ hσQ. Here, κ
σ
Q := κ|gσQ×gσQ

is the restricted Killing form of gσQ. Then one

sees that Hp = 2tap/(ap, ap). In this setting, one can show the following.

Lemma 4.7. Let gQ(X
σ
N ) be a finite-dimensional simple Lie algebra of type

Xσ
N defined over Q with Chevalley generators {hσp , eσp , fσ

p }. Then the map
defined by hσp 7→ Hp, e

σ
p 7→ Ep, and fσ

p 7→ Fp (p ∈ Iσ) gives an isomorphism
gQ(X

σ
N ) → gσQ of Lie algebras over Q.

If ξ /∈ Q (i.e., (XN , r) = (D4, 3)), then we let −a0 := a1 + 2a2. If ξ ∈ Q,
then we let −a0 ∈ (hσQ)

∗ be the highest weight of the gQ[0̄]-module gQ[−1̄]

(for the notation, see Remark 4.3). By [11, Propositions 7.9 and 7.10], we
have the following.

XN r −a0 ↔ the corresponding root Type

A2ℓ−1 2 a1 + 2a2 + · · ·+ 2aℓ−1 + aℓ ↔ α1 + · · ·+ α2ℓ−2 (R-2)
A2ℓ 2 2a1 + · · ·+ 2aℓ ↔ α1 + · · ·+ α2ℓ (R-1)
Dℓ+1 2 a1 + · · ·+ aℓ ↔ α1 + · · ·+ αℓ (R-2)
E6 2 2a1 + 3a2 + 2a3 + a4 ↔ α1 + 2α2 + 2α3 + α4 + α5 + α6 (R-2)
D4 3 a1 + 2a2 ↔ α1 + α2 + α3 (R-4)

Set H0 := 2ta0/(a0, a0). We choose E0 ∈ gQ(XN )a0 and F0 ∈ gQ(XN )−a0

so that [E0, F0] = H0 and E0 ⊗Q z
1
r , F0 ⊗Q z−

1
r belong to L̂(gQ; Γ). Set

Îσ := {0} t Iσ. Then Âσ := (aq(Hp))p,q∈Îσ forms a symmetrizable Cartan
matrix.
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For each p ∈ Îσ, we define elements Ĥp ∈ L̂(gQ; Γ) and âp ∈ L̂(hQ; Γ)∗ so
that

Ĥp := Hp ⊗Q 1 + δp,0
2

(a0, a0)
c, âp := ap + δp,0 δ.

Then the triple (L̂(hQ; Γ), {âp}p∈Îσ , {Ĥp}p∈Îσ) is a realization of the gen-

eralized Cartan matrix Âσ of type X
(r)
N . For each p ∈ Îσ, we also define

elements in L̂(gQ; Γ) as follows.

Êp := Ep ⊗Q z
1
r
δp,0 , F̂p := Fp ⊗Q z−

1
r
δp,0 .

By definition, Ĥp, Êp and F̂p belong to L̂(gQ; Γ).
In the following, we use the label X

(r)
N as in Kac’s list [11, TABLE Aff r]

(r = 1, 2, or 3). Then we have the following result.

Theorem 4.8. Let ĝQ(X
(r)
N ) be the affine Kac-Moody algebra of type X

(r)
N

defined over Q with Chevalley generators {ĥp, êp, f̂p}. Then the map

φ : ĝQ(X
(r)
N ) −→ L̂(gQ; Γ); ĥp 7→ Ĥp, êp 7→ Êp, f̂p 7→ F̂p (p ∈ Îσ)

is an isomorphism of Lie algebras over Q.

Proof. If ξ ∈ Q, then the proof is essentially the same as Kac’s [11, The-
orem 8.3] (see also [11, Theorem 7.4]). If ξ /∈ Q, then by comparing the
dimensions of real/imaginary root spaces concretely, we can also show that
φ is bijective. □

Since the center of the derived subalgebra ĝQ(X
(r)
N )′ of ĝQ(X

(r)
N ) is one-

dimensional, the sequence 0 → Q → ĝQ(X
(r)
N )′

φ−→ L(gQ; Γ) → 0 is exact.
Thus, we have the following.

Corollary 4.9. ĝQ(X
(r)
N )′/Q ∼= L(gQ; Γ).

4.4. Chevalley Pairs. We let {ĥp, êp, f̂p} denote the Chevalley generators

of ĝQ(X
(r)
N ) as before. Let ĥQ denote the Cartan subalgebra of ĝQ(X

(r)
N )

generated by ĥp’s. We identify re∆̂σ with the set of all real roots of ĝQ(X
(r)
N )

with respect to ĥQ via the isomorphism φ given in Theorem 4.8. In this
subsection, we translate the notion of Chevalley pairs (see Definition A.3)

of ĝQ(X
(r)
N ) into L̂(gQ; Γ).

For a real root â ∈ re∆̂σ, we define Hâ ∈ ĥQ so that Hâ = w(ĥp) for

some w ∈ Ŵ and p ∈ Îσ satisfying â = w(âp). Here, Ŵ is the Weyl group

of ĝQ(X
(r)
N ) with respect to ĥQ. Let ( , ) be the standard invariant form

induced from the Killing form κ̂Q of ĝQ(X
(r)
N ). As before, for each â ∈ re∆̂σ,
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we define tâ ∈ ĥQ so that κ̂Q(tâ, h) = â(h) for all h ∈ ĥQ. Then we have

Hâ = 2tâ/(â, â) and λ̂(Hâ) = 2(λ̂, â)/(â, â) for all λ̂ ∈ ĥ∗Q.

Lemma 4.10. For â = a′ + nδ ∈ re∆̂σ with a′ ↔ α ∈ ∆, we get

(â, â) =


(α, α) if a′ is of type (R-1),

(α, α)/2 if a is of type (R-2),

(α, α)/4 if a is of type (R-3),

(α, α)/3 if a is of type (R-4).

Proof. First, note that (â, â) = (a′, a′) = κσQ(ta′ , ta′). Since ( , ) is invariant

under the action of the Weyl group Ŵ, it is enough to show the claim in
the case of a′ = ap and α = αi for some p ∈ Îσ and i ∈ p. We may suppose
that p 6= 0. If ap is of type (R-1), then the claim is trivial. If ap is of type
(R-2), then we see (αi, σ(αi)) = 0. Note that (σ(αi), σ(αi)) = (αi, αi). We
have tap = 1

2(tαi + tσ(αi)). Indeed, for any H ∈ hσ,

κσQ(
1
2(tαi + tσ(αi)),H) = 1

2(αi(H) + σ(αi)(H)) = αi(H).

Hence, we conclude that (ap, ap) = κσQ(tap , tap) =
1
2(αi, αi). If ap is of type

(R-3), then we see that tap = 1
2(tαi + tσ(αi)), as before. In this case, notice

that XN = AN and i − σ(i) = ±1. Hence, (αi, αi) = (σ(αi), σ(αi)) =
−2(αi, σ(αi)). By using this, we have

(ap, ap) = κσQ(tap , tap)

= 1
4((αi, αi) + (σ(αi), αi) + (αi, σ(αi)) + (σ(αi), σ(αi)))

= 1
4(αi, αi).

If ap is of type (R-4), then one sees that tap = 1
3(tα+tσ(α)+tσ2(α)). We shall

use the notations in Example 3.3. Then (ap, ap) =
1
9((α1, α1) + (α3, α3) +

(α4, α4)) =
1
3(α1, α1). Thus, we are done. □

Proposition 4.11. For any â = a′ + nδ ∈ re∆̂σ with a′ ↔ α ∈ ∆, we have

φ(Hâ) =


Hα ⊗Q 1 + 2n

(α,α)c if a′ is of type (R-1),

(Hα +Hσ(α))⊗Q 1 + 4n
(α,α)c if a is of type (R-2),

2(Hα +Hσ(α))⊗Q 1 + 8n
(α,α)c if a is of type (R-3),

(Hα +Hσ(α) +Hσ2(α))⊗Q 1 + 6n
(α,α)c if a is of type (R-4).

Proof. Let λ̂ ∈ ĥ∗. Suppose that λ̂ corresponds to λ+ νc∗ + µδ ∈ L̂(hQ; Γ)∗
for some ν, µ ∈ Q(ξ) and λ ∈ (hσQ)

∗, where c∗ is the linear dual element of
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c. Then by Lemma 4.10, we have

2(λ̂, â)

(â, â)
=

2((λ, a′) + νn)

(â, â)
=



2(λ,a′)
(α,α) + 2νn

(α,α) if a′ is of type (R-1),
4(λ,a)
(α,α) + 4νn

(α,α) if a is of type (R-2),
8(λ,a)
(α,α) + 8νn

(α,α) if a is of type (R-3),
6(λ,a)
(α,α) + 6νn

(α,α) if a is of type (R-4).

We shall use the notations in the proof of Lemma 4.10. Then we see that
ta′ = tα (resp. 1

2(tα + tσ(α)),
1
3(tα + tσ(α) + tσ2(α))) if a′ is of type (R-1)

(resp. a is of (R-2 or 3), (R-4)). Since Hα = 2
(α,α) tα, we get

(λ, a′)

(α, α)
=

λ(ta′)

(α, α)
=


1
2λ(Hα) if a′ is of type (R-1),
1
4λ(Hα +Hσ(α)) if a is of type (R-2) or (R-3),
1
6λ(Hα +Hσ(α) +Hσ2(α)) if a is of type (R-4).

On the other hand, we see that λ̂(c) = ν. Hence, the claim follows. □
Notation 4.12. Suppose that (XN , r) 6= (D4, 3). For a ∈ ∆σ, we set

ξa :=

{
1 if a ∈ ∆σ

+,

ξ otherwise.

If a is of type (R-3), then we set

ϵa :=

{
1 if a ∈ ∆σ

+,

2 otherwise.

Note that ξaξ−a = ξ and ϵaϵ−a = 2.

Using the isomorphism φ : ĝQ(X
(r)
N ) → L̂(gQ; Γ) of Lie algebras given in

Theorem 4.8, we define Xâ ∈ ĝQ(X
(r)
N ) for each â = a′+nδ ∈ re∆̂σ as follows.

(4.1) φ(Xâ) =


X̃(a′,n) if a′ is of type (R-1),

ξ−n
a X̃(a,n) if a is of type (R-2),

ϵaξ
−n
a X̃(a,n) if a is of type (R-3),

X̃(a,n) if a is of type (R-4).

For the notation X̃(a′,n), see Definition 4.4.

Proposition 4.13. For â ∈ re∆̂σ, the pair (Xâ, X−â) forms a Chevalley

pair of ĝQ(X
(r)
N ).

Proof. For simplicity, we let Ỹâ denote the right hand side of (4.1). We

will show that the pair (Ỹâ, Ỹ−â) satisfies the conditions of Chevalley pairs

(Definition A.3). To see this, it is enough to show that [Ỹâ, Ỹ−â] = φ(Hâ)
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for any â = a′ + nδ ∈ re∆̂σ. We assume that a′ ↔ α ∈ ∆. Then Ỹ−â is
explicitly given as follows.

• X−α ⊗Q z−
n
r if a′ is of type (R-1).

• X−σ(α) ⊗Q ξn−az
−n

r +X−α ⊗Q ξn−aξ
nz−

n
r if a is of type (R-2).

• ϵ−a(X−σ(α) ⊗Q ξn−az
−n

r +X−α ⊗Q ξn−aξ
nz−

n
r ) if a is of type (R-3).

• X−α⊗Q z−
n
r +X−σ(α)⊗Q ξnz−

n
r +X−σ2(α)⊗Q ξ2nz−

n
r if a is of type

(R-4).

Since [Xα, X−α] = Hα and κQ(Xα, X−α) = 2/(α, α), we have

[Xα ⊗Q ξ−n
a z

n
r , X−α ⊗Q ξn−aξ

nz−
n
r ] = Hα ⊗Q ξ−n

a ξn−aξ
n + n 2

(α,α)c.

Then by Proposition 4.11, the claim follows. □

5. Twisted Loop Groups

Throughout the rest of the paper, we work over a field K of characteristic
not equal to 2 (resp. 3) when we consider the case r = 2 (resp. r = 3). We
take and fix a primitive r th root of unity ξ in a fixed algebraic closure K of
K, and denote by K(ξ) the subfield of K generated by ξ over K. Note that
ξ /∈ K may occur only when (XN , r) = (D4, 3).

5.1. Twisted Loop Groups. As in Section 4.1, we put

RK := K[z±1] and SK := K(ξ)[z±
1
r ].

Also, we define automorphisms σ′ ∈ AutK(ξ)(SK) and ω′ ∈ Aut
K[z±

1
r ]
(SK)

satisfying σ′(z
n
r ) = ξ−nz

n
r and ω′(ξn) = ξ−n for all n ∈ Z. Then as before,

we have Γ = Gal(SK/RK) = 〈σ′, ω′〉 ∼= 〈σ, ω〉. We denote by Sω′
K = K[z±

1
r ]

the fixed-point subalgebra of SK under ω′.
Let G be the Chevalley-Demazure simply-connected group scheme of type

XN defined over Z, and let GK denote the base change of GZ to K. The RK-
valued points L(GK) := GK(RK) of GK is the so-called loop group. In this
section, using Abe’s construction [1], we introduce the notion of a twisted
version of loop groups.

For α ∈ ∆ and s ∈ SK, we let xα(s) denote the associated unipotent
element (cf. (A.3)) of GK(SK). Since SK is an Euclidean domain, we see
that the group GK(SK) is generated by these xα(s)’s, see [26, Chapter 8].
As in Section 4.1, we define the following action of Γ on GK(SK). For α ∈ ∆
and s ∈ SK,

σ(xα(s)) = xσ(α)(kα σ
′(s)) and ω(xα(s)) = xω(α)(ω

′(s)).

For the notation kα, see (3.2).
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Definition 5.1. We let L(GK; Γ) denote the fixed-point subgroup ofGK(SK)

under Γ, and call it the twisted loop group associated to X
(r)
N defined over K.

As in [1, §2], we put

(5.1) AK := {χ = (χ(1), χ(2)) ∈ SK × SK | χ(1) σ′(χ(1)) = χ(2) + σ′(χ(2))}.
For a ∈ ∆σ with a ↔ α ∈ ∆, u ∈ RK, s ∈ SK, s̃ ∈ Sω′

K , and χ = (χ(1), χ(2)) ∈
AK, we define

(G-1): x̃a(u) := xα(u) if a is of type (R-1).
(G-2): x̃a(s) := xα(s)xσ(α)(σ

′(s)) if a is of type (R-2).

(G-3): x̃a(χ) := xα(χ
(1))xσ(α)(σ

′(χ(1)))xα+σ(α)(Nσ(α),αχ
(2)) if a is of

type (R-3).
(G-4): x̃a(s̃) := xα(s̃)xσ(α)(σ

′(s̃))xσ2(α)(σ
′2(s̃)) if a is of type (R-4).

Lemma 5.2. These elements belong to L(GK; Γ).

Proof. First, we show σ(x̃a(χ)) = x̃a(χ) for type (R-3). For others, the proof
is easy. Let α ∈ ∆ be the corresponding root a ↔ α. By the commutator for-
mula (see (A.1)), we have [xα(χ

(1)), xσ(σ
′(χ(1)))] = xα+σ(α)(Nα,σ(α)χ

(1)σ′(χ(1))).
Then by Proposition 3.7,

σ(x̃a(χ))

= xσ(α)(kασ
′(χ(1)))xα(kσ(α)χ

(1))xα+σ(α)(kα+σ(α)Nσ(α),ασ
′(χ(2)))

= xσ(α)(σ
′(χ(1)))xα(χ

(1))xα+σ(α)(−Nσ(α),ασ
′(χ(2)))

= xα+σ(α)(Nα,σ(α)sσ
′(χ(1)))−1xα(χ

(1))xσ(α)(σ
′(χ(1)))xα+σ(α)(−Nσ(α),ασ

′(χ(2)))

= xα(χ
(1))xσ(α)(σ

′(χ(1)))xα+σ(α)(−Nα,σ(α)χ
(1)σ′(χ(1))−Nσ(α),ασ

′(χ(2)))

= xα(χ
(1))xσ(α)(σ

′(χ(1)))xα+σ(α)(Nσ(α),α(χ
(1)σ′(χ(1))− σ′(χ(2)))).

Since χ(1)σ′(χ(1))− σ′(χ(2)) = χ(2), we are done.
Next, we show ω(x̃a(s̃)) = x̃a(s̃) for type (R-4). Suppose that a is of type

(R-4) with a ↔ α ∈ ∆. By definition, x̃a2(s̃), x̃a1+a2(s̃) and x̃a1+2a2(s̃) are
respectively given as follows.

• xα1(s̃)xα3(σ
′(s̃))xα4(σ

′2(s̃)),
• xα1+α2(s̃)xα2+α3(σ

′(s̃))xα2+α4(σ
′2(s̃)), and

• xα2+α3+α4(s̃)xα1+α2+α4(σ
′(s̃))xα1+α2+α3(σ

′2(s̃)).

Thus, ω(x̃a2(s̃)), ω(x̃a1+a2(s̃)), and ω(x̃a1+2a2(s̃)) are respectively calculated
as follows.

• xα1(ω
′(s̃))xα4(ω

′σ′(s̃))xα3(ω
′σ′2(s̃)),

• xα1+α2(ω
′(s̃))xα2+α4(ω

′σ′(s̃))xα2+α3(σ
′2(s̃)), and

• xα2+α3+α4(ω
′(s̃))xα1+α2+α3(ω

′σ′(s̃))xα1+α2+α4(ω
′σ′2(s̃)).

Since ω′σ′ω′ = σ′2 and ω′(s̃) = s̃, we see that ω(x̃a(s̃)) = x̃a(s̃). □
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The set AK forms a (non commutative) group by letting

(5.2) χ∔ ϕ :=
(
χ(1) + ϕ(1), χ(2) + ϕ(2) + σ′(χ(1))ϕ(1)

)
,

for χ = (χ(1), χ(2)), ϕ = (ϕ(1), ϕ(2)) ∈ AK. The unit element is given by

0 := (0, 0) and the inverse element of χ = (χ(1), χ(2)) is given by −̇χ :=

(−χ(1), σ′(χ(2))). For an (R-3) type root a ∈ ∆σ, one sees

(5.3) x̃a(χ)x̃a(ϕ) = x̃a(χ∔ ϕ) and x̃a(χ)
−1 = x̃a(−̇χ)

for χ, ϕ ∈ AK.

5.2. Special Elements in Twisted Loop Groups. As in [1, §2], we define

(5.4) s ⇀ χ := (sχ(1), sσ′(s)χ(2))

for s ∈ SK and χ = (χ(1), χ(2)) ∈ AK. One sees that this ⇀ defines an action
of SK on the group AK. Set

A∗
K := {ζ = (ζ(1), ζ(2)) ∈ AK | ζ(2) ∈ S×

K},
where S×

K is the multiplicative group of SK.
In the following, we use the following usual notations.

wα(t) := xα(t)x−α(−t)xα(t), hα(t) := wα(t)wα(−1)

for α ∈ ∆ and t ∈ R×
K . One easily sees that wα(−t) = wα(t)

−1. It is known

that for all α, β ∈ ∆ and t ∈ R×
K , we have wα(1)hβ(t)wα(−1) = hsα(β)(t),

where sα(β) := β − (β, α∨)α (see [26, Lemma 20(a)] for example).

For a ∈ ∆σ with a ↔ α ∈ ∆, t ∈ R×
K , q ∈ S×

K , q̃ ∈ (Sω′
K )×, and ζ =

(ζ(1), ζ(2)) ∈ A∗
K, we define the following elements in L(GK; Γ).

(W-1): w̃a(t) := wα(t) if a is of type (R-1).
(W-2): w̃a(q) := x̃a(q)x̃−a(−σ′(q)−1)x̃a(q) if a is of type (R-2).

(W-3): w̃a(ζ) := x̃a(ζ)x̃−a(−σ′(ζ(2))
−1

⇀ ζ)x̃a(ζ
(2)σ′(ζ(2))−1 ⇀ ζ) if

a is of type (R-3).
(W-4): w̃a(q̃) := x̃a(q̃)x̃−a(−q̃−1)x̃a(q̃) if a is of type (R-4).

Lemma 5.3. Let a ∈ ∆σ with a ↔ α ∈ ∆, q ∈ S×
K , and q̃ ∈ (Sω′

K )×.

(1) If a is of type (R-2), then w̃a(q) = wα(q)wσ(α)(σ
′(q)) and w̃a(−q) =

w̃a(q)
−1.

(2) If a is of type (R-4), then w̃a(q̃) = wα(q̃)wσ(α)(σ
′(q̃))wσ′2(α)(σ

2(q̃))

and w̃a(−q̃) = w̃a(q̃)
−1.

Proof. First, we show the claim for the case when a is of type (R-2). Since
α± σ(α) /∈ ∆ and −a ↔ −σ(α), we have

w̃a(q) = xα(q)xσ(α)(σ
′(q))x−σ(α)(−σ′(q)−1)x−α(−q−1)xα(q)xσ(α)(σ

′(q))

= xα(q)x−σ(α)(−σ′(q)−1)xα(q)xσ(α)(σ
′(q))x−α(−q−1)xσ(α)(σ

′(q))
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= wα(q)wσ(α)(σ
′(q)).

Moreover, we have w̃a(−q) = wα(q)
−1wσ(α)(σ

′(q))−1 = w̃a(q)
−1.

Next, suppose that a is of type (R-4). By definition, w̃a(q̃) is given as
follows

xα(q̃)xσ(α)(σ
′(q̃))xσ2(α)(σ

′2(q̃)) · x−α(−q̃−1)x−σ(α)(−σ′(q̃−1))x−σ2(α)(−σ′2(q̃−1))

·xα(q̃)xσ(α)(σ′(q̃))xσ2(α)(σ
′2(q̃)).

Since α± σ(α) /∈ ∆ and α± σ2(α) /∈ ∆, the claim follows. □

It is known that the elements hα(t) = wα(t)wα(−1) (α ∈ ∆, t ∈ R×
K)

satisfy hα(τ)hβ(θ) = hβ(θ)hα(τ) and hα(τ)hα(θ) = hα(τθ) for α, β ∈ ∆,
τ, θ ∈ K×. Moreover, if Hα =

∑
i∈I niHαi for some ni ∈ Z, then one sees

that hα(τ) =
∏

i∈I hαi(τ
ni) for all τ ∈ K×. In particular, hα(τ

−1) = hα(τ)
−1

and h−α(τ) = hα(τ)
−1.

For a ∈ ∆σ with a ↔ α ∈ ∆, t ∈ R×
K , q ∈ S×

K , q̃ ∈ (Sω′
K )×, ζ, γ ∈ A∗

K, we
define the following elements in L(GK; Γ).

(H-1): h̃a(t) := hα(t) if a is of type (R-1).

(H-2): h̃a(q) := w̃a(q)w̃a(−1) if a is of type (R-2).

(H-3): h̃a(ζ, γ) := w̃a(ζ)w̃a(γ) if a is of type (R-3).

(H-4): h̃a(q̃) := w̃a(q̃)w̃a(−1) if a is of type (R-4).

Lemma 5.4. Let a ∈ ∆σ with a ↔ α ∈ ∆, q ∈ S×
K , and q̃ ∈ (Sω′

K )×.

(1) If a is of type (R-2), then h̃a(q) = hα(q)hσ(α)(σ
′(q)) and h̃a(q

−1) =

h̃a(q)
−1.

(2) If a is of type (R-4), then h̃a(q̃) = hα(q̃)hσ(α)(σ
′(q̃))hσ2(α)(σ

′2(q̃))

and h̃a(q̃
−1) = h̃a(q̃)

−1.

Proof. We only show lemma for (R-2). For (R-4), the proof is essentially
the same. Suppose that a is of type (R-2). By Lemma 5.3, we have

h̃a(q) = wα(q)wσ(α)(σ
′(q))wα(−1)wσ(α)(−1)

= hα(q)wα(1)hσ(α)(σ
′(q))wσ(α)(1)wα(−1)wσ(α)(−1)

= hα(q)wα(1)hσ(α)(σ
′(q))wα(−1)wα(1)wσ(α)(1)wα(−1)wσ(α)(−1)

= hα(q)wα(1)hσ(α)(σ
′(q))wα(−1).

Since sα(σ(α)) = σ(α), we get wα(1)hσ(α)(σ
′(q))wα(−1) = hσ(α)(σ

′(q)).

This proves the first assertion. By this result, h̃a(q
−1) = h̃a(q)

−1 is trivial.
□
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As in [1, §2], we begin by introducing the following notation. For ζ =

(ζ(1), ζ(2)), γ = (γ(1), γ(2)) ∈ A∗
K, we set

(5.5) c(ζ, γ) := ζ(2) σ′(γ(2))−1.

Note that in [1], the right hand side was denoted by c(ζ, γ). However, we
use c(ζ, γ) to avoid confusion with our setting. By [1, §2 (C)], we have the
following result.

Lemma 5.5. For an (R-3) type root a ∈ ∆σ and ζ1, . . . , ζk, γ1, . . . , γk ∈ A∗
K,

we have h̃a(ζ1, γ1) · · · h̃a(ζk, γk) = 1 if and only if c(ζ1, γ1) · · · c(ζk, γk) = 1.

For (XN , r) = (A2ℓ, 2) and the type (R-3) root aℓ ↔ αℓ, one sees that

(5.6) h̃aℓ(ζ, γ) = hαℓ
(σ′(c(ζ, γ)))hαℓ+1

(c(ζ, γ)),

where ζ, γ ∈ A∗
K.

As in Section 4.3, we shall write −a0 as

(5.7) −a0 = c1a1 + c2a2 + · · ·+ cℓaℓ

for some non-negative integers c1, c2, . . . , cℓ. Then we have the following
lemma.

Lemma 5.6. For fixed τ0, τ1, . . . , τℓ ∈ K× and ζ, γ ∈ A∗
K, we have the

following.

(1) If (XN , r) 6= (A2ℓ, 2), then h̃a0(τ0)h̃a1(τ1) · · · h̃aℓ(τℓ) = 1 if and only
if

τp =

{
τ
rcp
0 if ap is of type (R-1),

τ
cp
0 otherwise

for all 1 ≤ p ≤ ℓ.
(2) If (XN , r) = (A2ℓ, 2), then h̃a0(τ0)h̃a1(τ1) · · · h̃aℓ−1

(τℓ−1)h̃aℓ(ζ, γ) = 1
if and only if

c(ζ, γ) = σ′(c(ζ, γ)) and τp = c(ζ, γ)

for all 0 ≤ p ≤ ℓ− 1.

Proof. First, suppose that (XN , r) = (A2ℓ−1, 2). In this case, −a0 = a1 +
2a2 + · · · + 2aℓ−1 + aℓ (↔ α1 + · · · + α2ℓ−2) is of type (R-2). Then by

Lemma 5.4, the element h̃a0(τ0) is described as follows.

hα1(τ
−1
0 )hα2(τ

−2
0 ) · · ·hαℓ−1

(τ−2
0 )hαℓ

(τ−1
0 )hαℓ+1

(τ−2
0 ) · · ·hα2ℓ−1

(τ−2
0 ).

Thus, the product h̃a0(τ0)h̃a1(τ1) · · · h̃aℓ(τℓ) is given as

hα1(τ
−1
0 τ1)hα2(τ

−2
0 τ2) · · ·hαℓ−1

(τ−2
0 τℓ−1)

·hαℓ
(τ−1

0 τℓ)hαℓ+1
(τ−2

0 τℓ−1) · · ·hα2ℓ−1
(τ−2

0 τ1).
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Hence, by [26, Lemma 28(c)], h̃a0(τ0)h̃a1(τ1) · · · h̃aℓ(τℓ) = 1 if and only if

τ−1
0 τ1 = τ−2

0 τ2 = · · · = τ−2
0 τℓ−1 = τ−1

0 τℓ = 1. Thus, we are done.

Next, for (XN , r) = (Dℓ+1, 2), (E6, 2), and (D4, 3), the product h̃a0(τ0)h̃a1(τ1) · · · h̃aℓ(τℓ)
is calculated respectively as follows.

• hα1(τ
−2
0 τ1)hα2(τ

−2
0 τ2) · · ·hαℓ−1

(τ−2
0 τℓ−1)hαℓ

(τ−1
0 τℓ)hαℓ+1

(τ−1
0 τℓ),

• hα1(τ
−2
0 τ1)hα2(τ

−3
0 τ2)hα3(τ

−4
0 τ3)hα4(τ

−2
0 τ4)hα5(τ

−3
0 τ2)hα6(τ

−2
0 τ1), and

• hα1(τ
−2
0 τ2)hα2(τ

−3
0 τ1)hα3(τ

−2
0 τ2)hα4(τ

−2
0 τ2).

Hence, the claim follows.
Finally, we suppose that (XN , r) = (A2ℓ, 2). Then by the equation (5.6),

the product h̃a0(τ0)h̃a1(τ1) · · · h̃aℓ(ζ, γ) is given as

hα1(τ
−1
0 τ1) · · ·hαℓ−1

(τ−1
0 τℓ−1) · hαℓ

(τ−1
0 σ′(c(ζ, γ)))hαℓ+1

(τ−1
0 c(ζ, γ))

·hαℓ+2
(τ−1

0 τℓ−1) · · ·hα2ℓ
(τ−1

0 τ1).

Thus, we are done. □

5.3. The case (A2, 2). In this subsection, we shall consider the case (XN , r) =
(A2, 2). In this case, we may regard GK as the special linear group scheme

SL3 of degree 3 defined over K, and SK = K[z±
1
2 ] (see [26, Chapter 3] for

example). Then as in [1, §2], the twisted loop group L(GK; Γ) is explicitly
given as

SU3(SK) := {C ∈ SL3(SK) | tC J σ′(C) = J}, J :=

 0 0 −1
0 1 0
−1 0 0

 .

Here, tC is the transpose matrix of C and σ′(C) := (σ′(sij))1≤i,j≤3 for
C = (sij)1≤i,j≤3 ∈ SL3(SK). By definition, we have

x̃a1(χ) =

1 χ(1) σ′(χ(2))

0 1 σ′(χ(1))
0 0 1

 , x̃−a1(χ) =

 1 0 0

σ′(χ(1)) 1 0

σ′(χ(2)) χ(1) 1


for χ = (χ(1), χ(2)) ∈ AK. Moreover, we have

w̃a1(ζ) =

 0 0 σ′(ζ(2))

0 −ζ(2)

σ′(ζ(2))
0

1
ζ(2)

0 0

 , h̃a1(ζ, γ) =


σ′(ζ(2))
γ(2) 0 0

0 −ζ(2)γ(2)

σ′(ζ(2)γ(2))
0

0 0 σ′(γ(2))

ζ(2)


for ζ = (ζ(1), ζ(2)), γ = (γ(1), γ(2)) ∈ A∗.

Let E(SK) denote the subgroup of SU3(SK) generated by the set {x̃a(χ) |
a = ±a1, χ ∈ AK}. The purpose of this subsection is to prove the following
theorem.
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Theorem 5.7. SU3(SK) coincides with E(SK).

To prove this, we prepare some technical notations. For n ∈ Z, m ∈ 2Z+1,
ζ = (ζ(1), ζ(2)) ∈ A∗

K, and τ ∈ K×, we set

x̃′±a1(τz
m
2 ) := x̃±a1

(
(0,−τz

m
2 )

)
, w̃′

a1(ζ) := w̃a1

(
( ζ

(1)

ζ(2)
, 1
ζ(2)

)
)
,

and

h̃′a1(τz
n
2 ) := h̃a1

(
(1, 12), (0,

1
2z

− 1
2 )
)n−1 · h̃a1

(
(1, 12), (0,

1
2τz

− 1
2 )
)

=

τz
n
2 0 0

0 (−1)n 0

0 0 (−1)nτ−1z−
n
2

 .

Note that, 1
2 ∈ K, since K is supposed to be of characteristic not equal to 2.

For 0 6= s =
∑

n snz
n
2 ∈ SK, we set

M(s) := max{n ∈ Z | sn 6= 0}, m(s) := min{n ∈ Z | sn 6= 0},

and k(s) := M(s) − m(s). Also, we put M(0) = m(0) = k(0) := 0. For C =
(sij)1≤i,j≤3 ∈ SU3(SK), we set M(C)ij := M(sij) and m(C)ij := m(sij),
and k(C)ij := k(sij) for each 1 ≤ i, j ≤ 3.

Lemma 5.8. For any C ∈ SU3(SK), there exists E ∈ E(SK) such that
M(C)11 = M(E · C)31, M(C)31 = M(E · C)11, and k(E · C)31 ≤ k(E · C)11.

Proof. If k(C)31 ≤ k(C)11, then we just take E as the identity matrix. Oth-

erwise, we put E := h̃′a1(
1
2) · w̃

′
a1((1,

1
2)) ∈ E(SK). Then we have

E · C =

 s31 s32 s33
−s21 −s22 −s23
s11 s12 s13

 ,

where C = (sij)1≤i,j≤3. Thus, we are done. □

In the following we fix C = (sij)1≤i,j≤3 ∈ SU3(SK) which satisfies k(C)31 ≤
k(C)11.

Lemma 5.9. There exists E ∈ E(SK) such that one of the following holds:

(1) k(E · C)31 ≤ k(E · C)11 and M(E · C)11 = M(E · C)31.
(2) k(E · C)31 ≤ k(E · C)11 and k(E · C)11 < k(C)11.

Proof. Let us write s11 =
∑M

n=m νnz
n
2 and s31 =

∑M ′

n=m′ µnz
n
2 , where m =

m(s11), M = M(s11), m
′ = m(s31), and M ′ = M(s31).
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(I) Case M ≡ M ′ (mod 2): Since M ′ − M ∈ 2Z, we can consider the

element E := h̃′a1(z
M′−M

4 ) ∈ E(SK). Then

E · C =

 · · ·+ νMz
M+M′

4 s′12 s′13
s′21 s′22 s′23

· · ·+ (−1)
M′−M

2 µM ′z
M+M′

4 s′32 s′33


for some s′ij ∈ SK. Thus, we have M(E · C)11 = M(E · C)31. One sees that

k(E · C)31 = k(C)31 and k(E · C)11 = k(C)11.

(II) Case M 6≡ M ′ (mod 2): Since M ′−M+1 ∈ 2Z, we see z
M′−M+1

4 ∈ S×
K .

For simplicity, we put ε := (−1)
M′−M+1

2 . Since (0,−ε νM
µM′

z
1
2 ) ∈ AK, we can

consider the element E := x̃′a1(ε
νM
µM′

z
1
2 ) · h̃′a1(z

M′−M+1
4 ) ∈ E(SK). Then

E · C

=

1 0 −ε νM
µM′

z
1
2

0 1 0
0 0 1


 · · ·+ νM−1z

M+M′−1
4 + νMz

M+M′+1
4 s′12 s′13

s′21 s′22 s′23

· · ·+ εµM ′−1z
M+M′−3

4 + εµM ′z
M+M′−1

4 s′32 s′33



=

 · · ·+ (νM−1 − νM
µM′

µM ′−1)z
M+M′−1

4 s′′12 s′′13
s′′21 s′′22 s′′23

· · ·+ εµM ′−1z
M+M′−3

4 + εµM ′z
M+M′−1

4 s′′32 s′′33


for some s′ij , s

′′
ij ∈ SK. If νM−1− νM

µM′
µM ′−1 6= 0, then we have M(E ·C)11 =

M(E · C)13. Using Lemma 5.8 (if necessary), we are done.
Suppose that νM−1 − νM

µM′
µM ′−1 = 0. Then we have

E · C =

 · · ·+ (νM−2 − νM
µM′

µM ′−2)z
M+M′−3

4 s′′12 s′′13
s′′21 s′′22 s′′23

· · ·+ εµM ′−1z
M+M′−3

4 + εµM ′z
M+M′−1

4 s′′32 s′′33

 .

In this case, we have k(E ·C)11 ≤ k(C)11, since k(C)31 = M ′−m′ ≤ k(C)11 =
M −m. If k(E ·C)11 < k(C)11, then we are done. Otherwise, for simplicity,
we set ν ′n−2 := νn−2 − νM

µM′
µn−M+M ′−2 for each n. If ν ′M−2 = 0, then the

algorithm (I) stated above works. Suppose that ν ′M−2 6= 0. Put E′ :=

x̃′−a1(ε
µM′
ν′M−2

z
1
2 ) · E ∈ E(SK). Then we have

E′ · C
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=

 1 0 0
0 1 0

−εµM′
ν′M−2

z
1
2 0 1


 · · ·+ ν ′M−3z

M+M′−5
4 + ν ′M−2z

M+M′−3
4 s′′12 s′′13

s′′21 s′′22 s′′23

· · ·+ εµM ′−1z
M+M′−3

4 + εµM ′z
M+M′−1

4 s′′32 s′′33



=

· · ·+ ν ′M−3z
M+M′−5

4 + ν ′M−2z
M+M′−3

4 s′′′12 s′′′13
s′′′21 s′′′22 s′′′23

· · ·+ ε(µM ′−1 −
µM′
ν′M−2

ν ′M−3)z
M+M′−3

4 s′′′32 s′′′33

 .

for some s′′′ij ∈ SK. If µM ′−1−
µM′
ν′M−2

ν ′M−3 6= 0, thenM(E′·C)11 = M(E′·C)13.

Using Lemma 5.8 (if necessary), we are done. Otherwise, we just repeat the
algorithm above.

Since the number of non-zero coefficients νn (resp. µn) of s11 (resp. s31)
are finite, this algorithm leads us to the desired result. □

In the following, we assume that our C = (sij)1≤i,j≤3 satisfies k(C)31 ≤
k(C)11 and M := M(C)11 = M(C)31. Let us write

s11 =
M∑

n=m

νnz
n
2 , s21 =

M ′∑
n=m′

ιnz
n
2 and s31 =

M∑
n=m′′

µnz
n
2 .

with m = m(s11), m
′ = m(s21), m

′′ = m(s31) and M ′ = M(s21).

Lemma 5.10. We have M = M ′, ι2M = 2νMµM , and m ≤ min{m′,m′′}.
Proof. By the definition of σ′, we have the following equations:

s21σ
′(s21) = (−1)m

′
ι2m′zm

′
+ · · ·+ (−1)M

′
ι2M ′zM

′
,

s31σ
′(s11) + σ′(s31)s11

= ((−1)m + (−1)m
′′
)νmµm′′z

m+m′′
2 + · · ·+ (−1)M2νMµMzM .

Since C ∈ SU3(SK), we have s21σ
′(s21) = s31σ

′(s11)+σ′(s31)s11. Thus, M
′

should coincide with M and ι2M = 2νMµM .
Next, we show the last claim. Since k(s31) ≤ k(s11), we have m ≤ m′′. In

the following, we show m ≤ m′.

(I) Case m ≡ m′′ (mod 2): In this case, the lowest term of s31σ
′(s11) +

σ′(s31)s11 is given as

((−1)m + (−1)m
′′
)νmµm′′z

m+m′′
2 = 2νmµm′′z

m+m′′
2 6= 0.

Thus, we have 2m′ = m+m′′. This implies 2m ≤ m+m′′ = 2m′, and hence
m ≤ m′.

(II) Case m 6≡ m′′ (mod 2): In this case, s31σ
′(s11)+σ′(s31)s11 is given as

2
(
((−1)m+1νm+1µm′′+(−1)m

′′+1νmµm′′+1)z
m+m′′+1

2 +· · ·+(−1)MνMµMzM
)
.
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Thus, there exists k ≥ 1 such that 2m′ = m +m′′ + k. Since m′′ ≥ m, we
have 2m′ = m+m′′ + k ≥ 2m+ k ≥ 2m, and hence m′ ≥ m. □

The following is a kind of “Euclidean algorithm” for SU3(SK).

Proposition 5.11. For any C ∈ SU3(SK), there exists E ∈ E(SK) such
that k(E · C)11 < k(C)11.

Proof. By Lemmas 5.8, 5.9 and 5.10, we may assume that our C = (sij)1≤i,j≤3

satisfies M := M(s11) = M(s21) = M(s31), m(s11) ≤ m(s21), and m(s11) ≤
m(s31). One sees that χ := (−2νM

ιM
,

2ν2M
ι2M

) belongs to AK. Thus, we may

consider E := x̃a1(χ) ∈ E(SK), and get

E · C =

s11 − 2νM
ιM

s21 +
2ν2M
ι2M

s31 s′12 s′13

s21 − 2νM
ιM

s31 s′22 s′23
s31 s′32 s′33

 .

By Lemma 5.10, the coefficient of z
M
2 in the (1, 1)-component of E · C is

calculated as

νM − 2νM
ιM

ιM +
2ν2M
ι2M

µM = −νM +
2ν2M

2νMµM
µM = 0.

Thus, we have M(E · C)11 < M = M(C)11.
On the other hand, we have m(C)11 ≤ m(E ·C)11, since m(C)11 ≤ m(C)21

and m(C)11 ≤ m(C)31. Therefore, we conclude that k(E · C)11 = M(E ·
C)11−m(E ·C)11 ≤ M(E ·C)11−m(C)11 < M(C)11−m(C)11 = k(C)11. □

Proof of Theorem 5.7. By repeatedly applying Proposition 5.11, for an ar-
bitrary C ∈ SU3(SK), there exists E ∈ E(SK) such that k(E · C)11 = 0.
Since E ·C ∈ SU3(SK) and the (1, 1)-component of E ·C is zero, one easily
sees that E · C is of the form

E · C =

 0 0 s′13
0 s′22 s′23
s′31 s′32 s′33


with s′13 ∈ S×

K , s
′
31 = σ′(s′13)

−1, s′22 = −σ′(s′13)s
′
13

−1, s′23 = −σ′(s′13s
′
32), and

s′32s
′
13σ

′(s′32s
′
13) = s′33σ

′(s′13)+σ′(s′33)s
′
13. Put E

′ := h̃′a1(
1
2) · w̃

′
a1((1,

1
2)) and

E′′ := h̃′a1(σ
′(s′13)

−1) · x̃′a1(s
′
13s

′
23). Then by a direct calculation shows that

E′ · (E · C) =

σ′(s′13)
−1 s′32 s′33

0 σ′(s′13)s
′
13

−1 σ′(s′13s
′
32)

0 0 s′13

 = E′′.

Therefore, we conclude that C = E−1 · E′−1 · E′′ ∈ E(SK). □



AFFINE KAC-MOODY GROUPS AS TWISTED LOOP GROUPS 61

5.4. Structure of Twisted Loop Groups. At the end of this section, we
describe the structure of the twisted loop groups L(GK; Γ).

Let E(SK;∆
σ) be the subgroup of L(GK; Γ) generated by the following

set.

• {x̃a(s), x̃b(χ) | s ∈ SK, a ∈ ∆σ
long, χ ∈ AK, b ∈ ∆σ

short}, if (XN , r) =

(A2ℓ, 2).

• {x̃a(u), x̃b(s̃) | u ∈ RK, a ∈ ∆σ
long, s̃ ∈ Sω′

K , b ∈ ∆σ
short}, if (XN , r) =

(D4, 3).
• {x̃a(u), x̃b(s) | u ∈ RK, a ∈ ∆σ

long, s ∈ SK, b ∈ ∆σ
short}, otherwise.

Note that E(SK;∆
σ) coincides with E(SK) (defined in the previous section)

when (XN , r) = (A2, 2). Using Theorem 5.7, we have the following.

Theorem 5.12. L(GK; Γ) coincides with E(SK;∆
σ).

Proof. Let T and B be the maximal torus and Borel subgroup of G corre-
sponding to h and b respectively (see Section 1). We will for convenience
denote TK and BK simply by T and B. Let U be the unipotent radi-
cal of B. Then B = T ⋉ U (semi-direct product). For w ∈ W , we put
Uw = U ∩ w−1U−w, where (B−,U−) is the opposite of (B,U) and W is
the Weyl group of GK with respect to T .

First, suppose that ξ ∈ K. We consider the fraction field K := K((z
1
r ))

of the ring of formal power series K[[z
1
r ]] in the variable z

1
r over K. It is

known that

GK(K) =
⊔

w∈W
U(K)T (K)wUw(K) (disjoint union),

called a Bruhat decomposition (see [26, Theorem 4]). Then we obtain:

L(GK; Γ) = GK(SK)
Γ

= GK(K)Γ ∩GK(SK)

=
( ⊔
w∈W

U(K)T (K)wUw(K)
)Γ ∩GK(SK)

=
( ⊔
w′∈WΓ

U(K)Γ T (K)Γw′Uw′(K)Γ
)
∩GK(SK)

=
⊔

w′∈WΓ

(
U(K)Γ T (K)Γw′Uw′(K)Γw′−1 · w′ ∩GK(SK)

)
⊂

⊔
w′∈WΓ

(
U(K)Γ T (K)ΓU−(K)Γ ∩GK(SK)

)
· w′,

Here, WΓ is the fixed-point subgroup of W under Γ. We note that if we take
g ∈ (U(K)T (K)wUw(K))Γ and write g = uhwv for some u ∈ U(K), h ∈
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T (K), v ∈ Uw(K), then we obtain γ∗(u)γ∗(h)γ∗(w)γ∗(v) = γ∗(g) = g =
uhwv for all γ∗ ∈ Γ and γ∗(u) = u, γ∗(h) = h, γ∗(w) = w, γ∗(v) = v by
the uniqueness of expression (cf. [26, Theorem 4′]). This shows the forth
equality in the display just above.

Let g ∈ U(K)Γ T (K)ΓU−(K)Γ ∩GK(SK) and write g = uhv for some

u ∈ U(K)Γ, h ∈ T (K)Γ, and v ∈ U−(K)Γ.

For each p ∈ Iσ, we let Uap(K)Γ, U ′
ap(K)Γ, V −ap(K)Γ, and V ′

−ap(K)Γ

be the subgroup of GK(K)Γ corresponding to {ap (, 2ap)}, ∆σ
+ \ {ap (, 2ap)},

{−ap (,−2ap)} and −∆σ
+ \ {−ap (,−2ap)}, respectively. Here, we define

{ap (, 2ap)} to be {ap, 2ap} if 2ap ∈ ∆σ, and {ap} if 2ap 6∈ ∆σ. We note that
the subgroup corresponding to a set of roots means the subgroup generated
by the root subgroups parametrized by it. Also, we define T ap(K)Γ and

T ′
ap(K)Γ to be the subgroups of T (K)Γ corresponding to {ap} and Πσ \

{ap}, respectively (in the sense of tori). Then, g can be expressed as g =
uapu

′
aphaph

′
apv−apv

′
−ap , where u = uapu

′
ap , h = haph

′
ap , and v = v−apv

′
−ap

for ap ∈ Πσ, and where uap ∈ Uap(K)Γ, u′ap ∈ U ′
ap(K)Γ, hap ∈ T ap(K)Γ,

h′ap ∈ T ′
ap(K)Γ, v−ap ∈ V −ap(K)Γ, and v′−ap ∈ V ′

−ap(K)Γ.

Let V λ be a finite dimensional irreducible module of g generated by a
maximal (or minimal) vector vλ0 with a highest (or lowest) weight λ, and
UZ be a Chevalley Z-form in the universal enveloping algebra of g, which is
defined by a fixed Chevalley basis of g. Let V λ

Z denote the UZ-submodule

of V λ generated by vλ0 (cf. Appendix A.2). Note that there is an action
of GK(K) on V λ

K := K ⊗Z V λ
Z . We can choose a direct sum of such finite

dimensional irreducible modules if necessarily.
We understand that our g belongs to

U(K)ΓT (K)ΓU−(K)Γ

= Uap(K)ΓU ′
ap(K)ΓT ap(K)ΓT ′

ap(K)ΓV −ap(K)ΓV ′
−ap(K)Γ

= Uap(K)ΓT ap(K)ΓV −ap(K)Γ ·U ′
ap(K)ΓT ′

ap(K)ΓV ′
−ap(K)Γ

⊂
⟨
Uap(K)Γ, T ap(K)Γ, V −ap(K)Γ

⟩
·U ′

ap(K)Γ T ′
ap(K)Γ V ′

−ap(K)Γ.

If we suppose g = gapg
′
ap satisfying

gap ∈ 〈Uap(K)Γ, T ap(K)Γ, V −ap(K)Γ〉

and

g′ap ∈ U ′
ap(K)Γ T ′

ap(K)Γ V ′
−ap(K)Γ,

then gap can be viewed as an element of

(i) SL2(K)Γ; (ii) (SL2(K)× SL2(K))Γ;
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(iii) (SL2(K)× SL2(K)× SL2(K))Γ; (iv) SL3(K)Γ,

whose matrix entries are all in SK (or sometimes RK). This means that gap
can be identified with an element of one of the following groups:

(i) SL2(RK); (ii) SL2(SK); (iii) SL2(SK); (iv) SU3(SK).

One may here recall how to construct twisted Chevalley groups by using the
so-called “foldings” of root systems (cf. Section 3, or [1]). In this sense, one
knows that there are four types of roots, namely

(i) ap = {α}; (ii) ap = {α, β} (α ⊥ β);

(iii) ap = {α, β, γ} (mutually orthogonal); (iv) ap = {α, β}, 2ap = {α+β}.
For the case when (XN , r) 6= (A2ℓ, 2), multiplying

u′′j := uap(sj) ∈ Uap(K)Γ and v′′j := v−ap(s
′
j) ∈ V −ap(K)Γ

continuously, for some sj , s
′
j ∈ SK (or sometimes RK), from the left hand

side, we may use a “standard” Euclidean algorithm. Then, we can obtain
and assume uap = v−ap = 1. Next, we will select some w′′ ∈ WΓ to have

g′ = w′′gw′′−1 ∈ U(K)Γ T (K)ΓU−(K)Γ

instead of g and to repeat again as above. We notice∩
w′∈WΓ

w′U−(K)Γw′−1 = {1}.

Then, it is possible to continue our process for g′, and finally we obtain
v = 1 at least (cf. Remark 5.13). In case of (XN , r) = (A2ℓ, 2), we can
also use the same method as above. Then, it is enough to concentrate
(XN , r) = (A2, 2) and L(GK; Γ) = SU3(SK). In this case, we already know
L(GK; Γ) = E(SK;∆

σ) by Theorem 5.7. Therefore, in any case, we reach
v = 1. Hence, we have

g = uh ∈ B(K)Γ ∩GK(SK) = B(SK)
Γ = U(SK)

Γ T (SK)
Γ,

and hence we have g ∈ E(SK;∆
σ). Therefore, L(GK; Γ) coincides with

E(SK;∆
σ).

If ξ /∈ K, then the proof is essentially the same as above. That is, first
we put K′ = K(ξ), then one can take Γ-fixed points, and get the desired
result. □
Remark 5.13. Here is the way to understand our inductive method from
g to g′. For b ∈ ∆σ

+, we define U b(K)Γ (resp. V −b(K)Γ) to be the subgroup

of U(K)Γ (resp. U−(K)Γ) corresponding to {b} (resp. {−b}). We already
wrote g = uhv and, more precisely we write

u = x1x2 · · ·xk, v = y1y2 · · · yk,
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where xp ∈ U bp(K)Γ, yp ∈ V −bp(K)Γ, b1 = ap ∈ Πσ and

uap = x1, u′ap = x2 · · ·xk, v−ap = y1, v′−ap = y2 · · · yk.

Using a “standard” Euclidean algorithm, we can obtain and assume uap =
x1 = 1 and v−ap = y1 = 1 as before. Here, we can also assume g = uhv,
satisfying u = x2 · · ·xk and v = y2 · · · yk, from the beginning. Choosing a
suitable element w′′ ∈ WΓ, we obtain

g′ = w′′gw′′−1 ∈ U(K)Γ T (K)ΓU−(K)Γ,

where g′ = u′h′v′ = (x′2 · · ·x′k)h′(y′2 · · · y′k), satisfying

u′ = x′2 · · ·x′k ∈ U(K)Γ, h′ ∈ T (K)Γ, v′ = y′2 · · · y′k ∈ U−(K)Γ,

and where

x′p ∈ U b′p(K)Γ, y′p ∈ V −b′p(K)Γ, b′2 = aq ∈ Πσ, b′p ∈ ∆σ
+.

Hence, we can repeat our process (cf. Remark 5.14). Since the number of
components in the expression of v is decreasing, finally we finish our process,
and reach v = 1 at least.

Remark 5.14. Set ∆σ
− := −∆σ

+. A subset Ψ ⊂ ∆σ
− is called (additively)

closed if b + b′ ∈ ∆σ for b, b′ ∈ Ψ always implies b + b′ ∈ Ψ. Note that
∆σ

− is closed. We also find that w′(Ψ) is closed if Ψ ⊂ ∆σ
− is closed and if

w′(Ψ) ⊂ ∆σ
− for w′ ∈ WΓ. Furthermore, we can see that Ψ′ := Ψ \ {−a} is

closed if Ψ is closed and if there is an element a ∈ Πσ satisfying −a ∈ Ψ.
Hence, the recursive process in Remark 5.13 works in this sense.

We can also obtain the following result (cf. [18, 19, 20, 24, 28, 30]):

Proposition 5.15. The twisted loop group L(GK; Γ) admits the Iwahori-
Matsumoto decomposition.

L(GK; Γ) = E(SK;∆
σ) =

⊔
w′∈Waff

BIw
′BI (disjoint union).

Here, Waff is the corresponding affine Weyl group and BI is the standard
Iwahori subgroup (cf. [9]).

6. Affine Kac-Moody Groups and Twisted Loop Groups

In the following, we consider the simply-connected affine Kac-Moody

group ĜK(X
(r)
N ) of type X

(r)
N defined over our field K. For the precise defini-

tion, see Appendix A.4. We show that ĜK(X
(r)
N ) can be realized as a central

extension of the twisted loop group L(GK; Γ).
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6.1. Induced Group Homomorphisms. In Theorem 4.8, we have seen

that φ : ĝQ(X
(r)
N ) → L̂(gQ; Γ) is an isomorphism of Lie algebras. Since

ĜK(X
(r)
N ) is simply-connected, one sees that this φ induces a group homo-

morphism Φ : ĜK(X
(r)
N ) → GK(SK), where SK is given in Section 5.1.

For the case when (XN , r) = (A2ℓ, 2), it is better to introduce the following
notations in addition to (G-1)–(G-4), (W-1)–(W-4) and (H-1)–(H-4).

x̃2a(s) := xα+σ(α)(s), w̃2a(s) := wα+σ(α)(s), h̃2a(s) := hα+σ(α)(s)

for 2a+ nδ ∈ re∆̂σ with 2a ↔ α+ σ(α) ∈ ∆ and s ∈ SK.

Remark 6.1. In the above case, a is of type (R-3) and n is an odd number,

and x̃2a(z
n
2 ) = xα+σ(α)(z

n
2 ) = x̃a

(
(0, Nσ(α),αz

n
2 )
)
. By Lemma 5.2, this is an

element of the twisted loop group L(GK; Γ).

Then by Proposition 4.13 (see also (4.1)), the induced group homomor-

phism Φ : ĜK(X
(r)
N ) → GK(SK) is explicitly described as follows.

(6.1) Φ(xâ(ν)) =


x̃a′(νz

n
r ) if a′ is of type (R-1),

x̃a(ξ
−n
a νz

n
r ) if a is of type (R-2),

x̃a
(
ϵaξ

−n
a νz

n
2 ⇀ (1, 12)

)
if a is of type (R-3),

x̃a(νz
n
r ) if a is of type (R-4)

for â = a′ + nδ ∈ re∆̂σ and ν ∈ K. Here, (1, 12) is, of course, regarded as an
element of AK. For the constants ξa and ϵa, see Notation 4.12.

For simplicity, we put

χâ,ν := ϵaξ
−n
a νz

n
2 ⇀ (1, 12) =

{
(νz

n
2 , 1

2ξ
−nν2zn) if a ∈ ∆σ

+,

(2ξ−nνz
n
2 , 2ξ−nν2zn) otherwise.

For the definition of ⇀, see (5.4).

Remark 6.2. Suppose that a is of type (R-3). It is easy to see that
c(χâ,ν , χâ,−1) = ν2 (for the notation, see (5.5)). For τ ∈ K×, one sees

that χâ,τ ∈ A∗
K and h̃a(χâ,τ , χâ,−1)

−1 = h̃a(χâ,τ−1 , χâ,−1) by Lemma 5.5.

Lemma 6.3. For â = a′ + nδ ∈ re∆̂σ and τ ∈ K×, we get

Φ(wâ(τ)) =


w̃a′(τz

n
r ) if a′ is of type (R-1),

w̃a(ξ
−n
a τz

n
r ) if a is of type (R-2),

w̃a(χâ,τ ) if a is of type (R-3),

w̃a(τz
n
r ) if a is of type (R-4).
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Proof. By definition, wâ(τ) = xâ(τ)x−â(−τ−1)xâ(τ). Thus, if a′ is of type
(R-1) or (R-4), then nothing to do. First, we suppose that a is of type (R-2).
Then we have

Φ(wâ(τ)) = x̃a(ξ
−n
a τz

n
r )x̃−a(−ξn−aτ

−1z−
n
r )x̃a(ξ

−n
a τz

n
r ).

On the other hand, by definition,

w̃a(ξ
−n
a ) = x̃a(ξ

−n
a τz

n
r )x̃−a(−ξna ξ

nτ−1z−
n
r )x̃a(ξ

−n
a τz

n
r ).

Since ξaξ−a = ξ and ξa = ±1, this proves the claim.
Next, suppose that a is of type (R-3). In this case, Φ(wâ(τ)) is explicitly

given as x̃a(χâ,τ )x̃−a(χ−â,−τ−1)x̃a(χâ,τ ). By the definition of ⇀, we get

−σ′(χ
(2)
â,τ )

−1 ⇀ χâ,τ =

{
(−2ξnτ−1z−

n
2 , 2ξnτ−2z−n) if a ∈ ∆σ

+,

(−τ−1z−
n
2 , 1

2ξ
nτ−2z−n) otherwise.

= ϵ−aξ
n
−a(−τ−1)z−

n
2 ⇀ (1, 12).

Here, χâ,τ = (χ
(1)
â,τ , χ

(2)
â,τ ). Since ξ = −1, we conclude that −σ′(χ

(2)
â,τ )

−1 ⇀

χâ,τ = χ−â,−τ−1 . Moreover, since χ
(2)
â,τ σ

′(χ
(2)
â,τ )

−1 = 1, we get χ
(2)
â,τ σ

′(χ
(2)
â,τ )

−1 ⇀

χâ,τ = χâ,τ . Thus, we are done. □

Lemma 6.4. For â = a′ + nδ ∈ re∆̂σ and τ ∈ K×, we get

Φ(hâ(τ)) =


h̃a′(τ) if a′ is of type (R-1),

h̃a(τ) if a is of type (R-2) or (R-4),

h̃a(χâ,τ , χâ,−1) if a is of type (R-3).

Proof. If a is of type (R-1), then the claim is trivial. Suppose that a is of
type (R-2). Then by Lemmas 5.3 and 5.4, we have

Φ(hâ(τ)) = w̃a(ξ
−n
a τz

n
r )w̃a(−ξ−n

a z
n
r )

= w̃a(ξ
−n
a τz

n
r )w̃a(−1)w̃a(−1)−1w̃a(ξ

−n
a z

n
r )−1

= h̃a(ξ
−n
a τz

n
r )h̃a(ξ

−n
a z

n
r )−1

= h̃a(τ).

For the case (R-4), the proof is the same as above. If a is of type (R-3),

then by definition Φ(hâ(τ)) = w̃a(χâ,τ )w̃a(χâ,−1) = h̃a(χâ,τ , χâ,−1). □

Let T̂K be the subgroup of ĜK(X
(r)
N ) generated by {hâ(τ) | â ∈ re∆̂σ, τ ∈

K×}.

Lemma 6.5. The kernel of Φ is included in T̂K.
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Proof. For any x ∈ Ker(Φ), we can uniquely write as x = ywy′ for some

y, y′ ∈ B̂+
K and w ∈ Ŵ by Proposition A.6. Then we have 1 = Φ(x) =

Φ(y)Φ(w)Φ(y′). By Proposition 5.15, the expression is unique, and hence
Φ(w) should be trivial. We conclude that w = 1, see Lemma 6.3. Thus,

Ker(Φ) is included in B̂K.

Again, we take x ∈ Ker(Φ) and express x = uh for some u ∈ Û+
K and

h ∈ T̂K. In particular, Φ(u) is trivial. On the other hand, again by Propo-
sition 5.15, one sees that the restriction map Φ|ÛK

is injective. Hence, we

conclude that u is trivial, and Ker(Φ) ⊂ T̂K. □

6.2. Central Extension. In this subsection, we will show that ĜK(X
(r)
N ) is

a one-dimensional central extension of L(GK; Γ).

Proposition 6.6. The map Φ : ĜK(X
(r)
N ) → L(GK; Γ) is surjective.

Proof. By Theorem 5.12, it is enough to show that the image of Φ coincides
with the subgroup E(SK;∆

σ) of L(GK; Γ). If r = 1 or 3, then the claim is
trivial. Assume that r = 2. When (XN , r) 6= (A2ℓ, 2), we can easily see that
Φ is surjective by definition of E(SK;∆

σ). Thus, in the following, we will
show the claim for (XN , r) = (A2ℓ, 2). In this case, note that ξ = −1 ∈ K,

and hence SK = K[z±
1
2 ].

We take x̃a(χ) ∈ E(SK;∆
σ) for some a ∈ ∆σ

short with a ↔ α ∈ ∆ and

χ = (s, s′) ∈ AK. Note that 2a ↔ α+σ(α) ∈ ∆. We shall write s =
∑

n snz
n
2

and s′ =
∑

n s
′
nz

n
2 with some sn, s

′
n ∈ K. We define an element y of ĜK(X

(r)
N )

so that

y :=
∏
n

xa+nδ(sn),

where the product is (necessarily) finite, and is taken in the canonical order
(· · · < −1 < 0 < 1 < 2 < · · · ). Then by (5.3), we can find g ∈ SK such that
ϕ := (s, g) belongs to A and

Φ(y) =
∏
n

x̃a
(
(snz

n
2 , 1

2ξ
ns2nz

n)
)
= x̃a

(
(
∑
n

snz
n
2 , g)

)
= x̃a(ϕ).

We shall denote g =
∑

n gnz
n
2 for some gn ∈ K (n ∈ Z). If there exists an

odd number m ∈ 2Z+1 such that the coefficient gm of z
m
2 in g is non-zero,

then

Φ
(
y · x2a+mδ(−gmNσ(α),α)

)
= x̃a(ϕ) · x̃a

(
(0,−gmz

m
2 )

)
= x̃a(ϕ∔ (0,−gmz

m
2 ))

= x̃a
(
(s, g − gmz

m
2 )

)
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(cf. Remark 6.1). Thus, we define an element y′ of ĜK(X
(r)
N ) as follows.

y′ :=
∏

m∈2Z+1
with gm ̸=0

x2a+mδ(−gmNσ(α),α).

Then we can choose g′ ∈ SK so that g′ has no odd terms, ϕ′ := (s, g′) is in

AK and Φ(y · y′) = x̃a(ϕ
′). Finally, we define an element y′′ of ĜK(X

(r)
N ) as

follows.

y′′ :=
∏

m∈2Z+1

x2a+mδ(s
′
mNσ(α),α).

We put g′′ := g′+ s′odd, where s
′
odd :=

∑
m∈2Z+1 s

′
mz

m
2 . Then ϕ′′ := (s, g′′) ∈

AK and Φ(y ·y′ ·y′′) = x̃a(ϕ
′′). By the definition of AK, the following relation

holds.

g′′even = 1
2(s

2
even − s2odd) = s′even,

where s′even :=
∑

n∈2Z s
′
nz

n
2 etc. Since g′′odd = s′odd, we conclude that g′′ = s′

and χ = ϕ′′. In this way, we see Φ(y · y′ · y′′) = x̃a(χ). This proves the
claim. □

As in (5.7), we shall write −a0 = c1a1 + c2a2 + · · · + cℓaℓ for some non-
negative integers c1, c2, . . . , cℓ. For (XN , r) 6= (A2ℓ, 2), we set

ẐK := {
ℓ∏

p=0

hâp(τp) ∈ T̂K | τ0 ∈ K×, τp =

{
τ
rcp
0 if ap is of type (R-1),

τ
cp
0 otherwise.

}.

Otherwise, we set

ẐK := {
ℓ∏

p=0

hâp(τ
2
ℓ ) ∈ T̂K | τℓ ∈ K×}.

Obviously, this ẐK is a subgroup of the center Z(ĜK(X
(r)
N )) of the Kac-Moody

group ĜK(X
(r)
N ) (as an abstract group) and satisfies ẐK ∼= K×. In this way,

we may identify K× as a subgroup of the center of ĜK(X
(r)
N ). The non-twisted

version (i.e., r = 1) of the following theorem is well-known (cf. [3, 24]).

Theorem 6.7. The kernel of Φ coincides with ẐK, and hence the sequence

1 → K× → ĜK(X
(r)
N )

Φ−→ L(GK; Γ) → 1 is exact.

Proof. By Lemma 6.5, any element h in Ker(Φ) can be expressed as h =∏ℓ
p=0 hâp(τp) ∈ Ker(Φ) for some τp ∈ K×. First, suppose that (XN , r) 6=

(A2ℓ, 2). By Lemma 6.4, we have

1 = Φ(h) = h̃a0(τ0)h̃a1(τ1) · · · h̃aℓ(τℓ).



AFFINE KAC-MOODY GROUPS AS TWISTED LOOP GROUPS 69

Then, by Lemma 5.6, h ∈ ẐK.
Next, suppose that (XN , r) = (A2ℓ, 2). In this case, we get

1 = Φ(h) = h̃a0(τ0)h̃a1(τ1) · · · h̃aℓ−1
(τℓ−1) · h̃aℓ(χaℓ,τℓ , χaℓ,−1).

Then, by Lemma 5.6, we see that τp = c(χaℓ,τℓ , χaℓ,−1) = τ2ℓ . Hence, h ∈ ẐK.

Thus, we conclude that Ker(Φ) ⊂ ẐK. One can easily see the converse

ẐK ⊂ Ker(Φ) in a similar way. □

We have the following corollary.

Corollary 6.8. ĜK(X
(r)
N )/K× ∼= L(GK; Γ).

7. Twisted Affine Kac-Moody Groups

In this section, we define a Γ-action on the simply-connected affine Kac-

Moody group ĜK(ξ)(X
(1)
N ) of type X

(1)
N defined over K(ξ), and show that

the fixed-point subgroup of ĜK(ξ)(X
(1)
N ) under Γ coincides with the simply-

connected affine Kac-Moody group ĜK(X
(r)
N ) of type X

(r)
N defined over K.

7.1. Twisted Affine Kac-Moody Groups. In this subsection, we define

an action of the group Γ on the affine Kac-Moody group ĜK(ξ)(X
(1)
N ). For

simplicity, we set re∆̂ := re∆̂id = {α + nδ | α ∈ ∆, n ∈ Z}. For a real root

α̂ = α+ nδ ∈ re∆̂, we let

σ(α̂) := σ(α) + nδ and ω(α̂) := ω(α) + nδ.

Note that if ξ ∈ K, then this ω is trivial.
Let FK(ξ)(

re∆̂) denote the free group with free generating set {x̂α̂(ν) | α̂ ∈
re∆̂, ν ∈ K(ξ)}. We define group homomorphisms σ̂ and ω̂ form FK(ξ)(

re∆̂)

to ĜK(ξ)(X
(1)
N ) as follows.

(7.1) σ̂(x̂α̂(ν)) := xσ(α̂)(kαξ
−nν) and ω̂(x̂α̂(ν)) := xω(α̂)(ω

′(ν)),

where α̂ = α + nδ ∈ re∆̂ and ν ∈ K(ξ). Here, ω′ : K(ξ) → K(ξ) is a
K-automorphism defined by ω′(ξ) = ξ−1.

Lemma 7.1. For τ ∈ K(ξ)× and α̂ = α + nδ ∈ re∆̂, we have the following

equations. σ̂(ŵα̂(τ)) = wσ(α̂)(kαξ
−nτ), σ̂(ĥα̂(τ)) = hσ(α̂)(τ), ω̂(ŵα̂(τ)) =

wω(α̂)(ω
′(τ)), and ω̂(ĥα̂(τ)) = hω(α̂)(ω

′(τ)).

Proof. By Proposition 3.7, we note that kα = k−α = ±1. Thus, we have

σ̂(ŵα̂(τ)) = σ̂(x̂α̂(τ))σ̂(x̂−α̂(−τ−1))σ̂(x̂α̂(τ))

= xσ(α̂)(kαξ
−nτ)x−σ(α̂)(k−αξ

n(−τ−1))xσ(α̂)(kαξ
−nτ)
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= xσ(α̂)(kαξ
−nτ)x−σ(α̂)(−(kαξ

−nτ)−1)xσ(α̂)(kαξ
−nτ)

= wσ(α̂)(kαξ
−nτ).

Also,

σ̂(ĥα̂(τ)) = σ̂(ŵα̂(τ))σ̂(ŵα̂(−1))

= wσ(α̂)(kαξ
−nτ)wσ(α̂)(−1)wσ(α̂)(1)wσ(α̂)(−kαξ

−n)

= hσ(α̂)(kαξ
−nτ)hσ(α̂)(kαξ

−n)−1

= hσ(α̂)(τ).

Thus, we are done. For ω̂, the proof is essentially the same as above. □

Then by Proposition A.8, we get the following.

Proposition 7.2. The induced automorphisms σ̂ and ω̂ on ĜK(ξ)(X
(1)
N ) are

well-defined. The order of σ̂ (resp. ω̂) coincides with the order of σ (resp. ω).

Proof. We have to check that σ̂ and ω̂ preserve the relations (SC-A), (SC-
B), (SC-B′), and (SC-C), see Appendix A.4. First, we shall show the claim
for σ̂. For the relations (SC-A) and (SC-C) are trivial. Hence, we will show
that σ̂ preserves (SC-B) and (SC-B′).

For (SC-B), we will show the following equation.

(7.2)

[xσ(α̂)(kαξ
−nν), xσ(β̂)(kβξ

−mµ)]

=
∏

σ(iα̂+jβ̂)∈Qα̂,β̂

xσ(α̂+β̂)

(
ci,j
α̂,β̂

kα+β ξ
−in−jmνiµj

)
,

where ν, µ ∈ K and α̂ = α+nδ, β̂ = β+mδ ∈ re∆̂. If σ = id, then nothing to
do. Thus, in the following, we assume that σ 6= id. Suppose that XN 6= A2ℓ.

In this case, it is easy to see that kα = kβ = kα+β = 1 and ci,j
σ(α̂),σ(β̂)

= ci,j
α̂,β̂

by Proposition 3.7 and Lemma 3.8. Then the equation (7.2) holds. Suppose
that XN = A2ℓ. In this case, a concrete calculation shows that

ci,j
α̂,β̂

= ci,jα,β =

{
Nα,β if i = j = 1,

0 otherwise.

Then again by Lemma 3.8, we get ci,j
σ(α̂),σ(β̂)

kαkβkα+β = ci,j
α̂,β̂

. Hence, the

equation (7.2) also holds.
For (SC-B′), we will show the following equation.

(7.3)
wσ(α̂)(kαξ

−nτ) · xσ(β̂)(kβξ
−mν)) · wσ(α̂)(kαξ

−nτ)−1

= xsσ(α̂)(σ(β̂))

(
ησ(α̂),σ(β̂)ksα(β) ξ

−(m−nβ(Hα))ντ−β(Hα)
)
,
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where ν ∈ K, τ ∈ K× and α̂ = α + nδ, β̂ = β + mδ ∈ re∆̂. Here, we
used σ(β)(Hσ(α)) = (σ(β), σ(α)∨) = (β, α∨) = β(Hα) and sσ(α̂)(σ(β̂)) =
σ(sα(β)) + (m − nβ(Hα))δ. If σ = id, then nothing to do. Thus, assume
that σ 6= id. As before, if XN 6= A2ℓ, then the equation (7.3) is easy to see.
Suppose that XN = A2ℓ. In this case, a concrete calculation shows that

ηα̂,β̂ = ηα,β =

{
±1 if β(Hα) = 0 (i.e., sα(β) = β),

±N±α,β if β(Hα) = ±1 (i.e., sα(β) = β ± α).

Then by Lemma 3.8, one sees that the equation (7.3) holds.
Finally, using Lemma 4.1, we can also show that ω̂ preserves the relations

(SC-A), (SC-B), (SC-B′), and (SC-C). □

By Proposition 7.2, we can consider the subgroup 〈σ̂, ω̂〉 of the automor-

phism group of ĜK(ξ)(X
(1)
N ) generated by σ̂ and ω̂, and we get an isomorphism

Γ ∼= 〈σ̂, ω̂〉 via σ 7→ σ̂ and ω 7→ ω̂. Under this identification, Γ acts on the

group ĜK(ξ)(X
(1)
N ). We let ĜK(ξ)(X

(1)
N )Γ denote the fixed-point subgroup of

ĜK(ξ)(X
(1)
N ) under Γ.

7.2. Special Elements in Twisted Affine Kac-Moody Groups. As in

Section 5.1, we define some special elements in ĜK(ξ)(X
(1)
N ).

For ν ∈ K(ξ) and â = a′ + nδ ∈ re∆̂σ with a′ ↔ α ∈ ∆, we define an

element x̃â(ν) of ĜK(ξ)(X
(1)
N ) as follows.

(Ĝ-1): x̃â(ν) := xα̂(ν) if a
′ is of type (R-1).

(Ĝ-2): x̃â(ν) := xα̂(ν)xσ(α̂)(ξ
−nν) if a is of type (R-2).

(Ĝ-3): x̃â(ν) := xα̂(ν)xσ(α̂)(ξ
−nν)xα̂+σ(α̂)(

1
2Nσ(α),αξ

−nν2) if a is of
type (R-3).

(Ĝ-4): x̃â(ν) := xα̂(ν)xσ(α̂)(ξ
−nν)xσ2(α̂)(ξ

−2nν) if a is of type (R-4).

Lemma 7.3. These elements belong to ĜK(ξ)(X
(1)
N )Γ.

Proof. If σ̂ = id, then nothing to do. We shall show the claim one-by-one for
σ̂ 6= id. In the following, let α ∈ ∆ be the corresponding root a ↔ α ∈ ∆.

Suppose that a is of type (R-1). By definition, σ̂(x̃â(ν)) = xα+nδ(kαξ
−nν).

First, assume that (XN , r) 6= (A2ℓ, 2). Then by Proposition 3.7, kα = 1.

Since â ∈ re∆̂σ and a ∈ ∆σ
long, the integer n should be divided by r. Thus,

ξ−n = 1, and hence σ̂(x̃â(ν)) = x̃â(ν). Next, assume that (XN , r) = (A2ℓ, 2).
By Proposition 3.7, we have kα = −1. Hence, we have to show that
ξ−n = (−1)−n = −1. Since â ∈ re∆̂σ and a′ = 2a is of type (R-1), we
see n ∈ 2Z+ 1. Thus we are done.
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Suppose that a is of type (R-2). Since kα = 1, we get

σ̂(x̃â(ν)) = xσ(α)+nδ(ξ
−nν)xα+nδ(ν).

This proves the claim, since α+ σ(α) /∈ ∆ and the product is commutative.
Suppose that a is of type (R-3). By Proposition 3.7, we get kα = 1 and

kα+σ(α) = −1. Since α̂+ σ(α̂) = α+ σ(α) + 2nδ, we have

σ̂(x̃â(ν))

= xσ(α̂)(ξ
−nν)xα̂(ξ

−2nν)xα̂+σ(α̂)(−1
2Nσ(α),αξ

−nν2)

= xσ(α̂)+α̂(c
1,1
σ(α),αξ

−nν2)xα̂(ν)xσ(α̂)(ξ
−nν)xα̂+σ(α̂)(−1

2Nσ(α),αξ
−nν2)

= xα̂(u)xσ(α̂)(ξ
−nν)xα̂+σ(α̂)

(
(c1,1σ(α̂),α̂ − 1

2Nσ(α),α)ξ
−nν2

)
.

Here, we used the commutation law, see (A.1). Since c1,1σ(α̂),α̂ = c1,1σ(α),α =

Nσ(α),α, we are done.
Suppose that a is of type (R-4). Then by the same calculation for (R-2)

shows σ̂(x̃â(ν)) = x̃â(ν). Since ωσω = σ2 and ω′(ξ−nν) = ξnν, we get

ω̂(x̃â(ν)) = xω(α̂)(ω
′(ν))xω(σ(α̂))(ξ

nν)xω(σ2(α̂))(ξ
2nν) = x̃â(ν),

see the proof of Lemma 5.2. This completes the proof. □

For τ ∈ K(ξ)× and â = a′ + nδ ∈ re∆̂σ with a′ ↔ α ∈ ∆, we define

elements w̃â(t) and h̃â(τ) of ĜK(ξ)(X
(1)
N ) as follows.

(Ŵ-1): w̃â(τ) := wα̂(τ) if a
′ is of type (R-1).

(Ŵ-2): w̃â(τ) := x̃â(τ)x̃−â(−ξnτ−1)x̃â(τ) if a is of type (R-2).

(Ŵ-3): w̃â(τ) := x̃â(τ)x̃−â(−2Nσ(α),αξ
nτ−1)x̃â(τ) if a is of type (R-3).

(Ŵ-4): w̃â(τ) := x̃â(τ)x̃−â(−τ−1)x̃â(τ) if a is of type (R-4).

(Ĥ): h̃â(τ) := w̃â(τ)w̃â(−1) for all types.

Note that if a is of type (R-3), then Nσ(α),α = ±1, and hence (Nσ(α),α)
−1 =

Nσ(α),α.
Then a direct calculation shows the following.

Lemma 7.4. Elements x̃â(ν), w̃â(τ), and h̃â(τ) satisfy the relations (SC-

A), (SC-B), (SC-B′), and (SC-C) in ĜK(ξ)(X
(1)
N )Γ.

7.3. Galois Descent Formalism. In this subsection, we will show that

the fixed-point subgroup ĜK(ξ)(X
(1)
N )Γ of ĜK(ξ)(X

(1)
N ) under Γ is isomorphic

to ĜK(X
(r)
N ).

If we consider the case when r = 1, then we have constructed the following
surjective group homomorphism (see (6.1)).

ĜK(ξ)(X
(1)
N ) −→ GK(K(ξ)⊗K RK); xα̂(ν) 7−→ xα(ν ⊗K zn),
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where α̂ = α + nδ ∈ re∆̂ and ν ∈ K(ξ). Since GK is a group scheme, we
can consider the natural group isomorphism GK(K(ξ) ⊗K RK) → GK(SK)
induced from the canonical algebra isomorphism K(ξ) ⊗K RK → SK =

K(ξ)[z±
1
r ] given by ν ⊗ zn 7→ νz

n
r (ν ∈ K(ξ), n ∈ Z). Then by compositing

above maps, we get the following surjective group homomorphism.

Ψ : ĜK(ξ)(X
(1)
N ) −→ GK(K(ξ)⊗K RK) ∼= GK(SK); xα̂(ν) 7−→ xα(νz

n
r ),

where α̂ = α + nδ ∈ re∆̂ and ν ∈ K(ξ). It is easy to see that this preserves
the Γ-action, see (7.1) and Section 5.1. Hence, by taking the fixed-point
functor (−)Γ to Ψ, we have the following group homomorphism.

ΨΓ : ĜK(ξ)(X
(1)
N )Γ −→ GK(SK)

Γ = L(GK; Γ).

Since (−)Γ is left exact, we have Ker(ΨΓ) ∼= K× by Theorem 6.7.

On the other hand, we shall consider the following group homomorphism

Θ : FK(
re∆̂σ) → ĜK(ξ)(X

(1)
N )Γ.

Θ(x̂â(ν)) :=


x̃â(ν) if a′ is of type (R-1),

x̃â(ξ
−n
a ν) if a is of type (R-2),

x̃â(ϵaξ
−n
a ν) if a is of type (R-3),

x̃â(ν) if a is of type (R-4),

where â = a′ + nδ ∈ re∆̂σ and ν ∈ K. For ξa and ϵa, see Notation 4.12.

Lemma 7.5. The induced map Θ : ĜK(X
(r)
N ) → ĜK(ξ)(X

(1)
N )Γ is well-defined.

Proof. For each â ∈ re∆̂σ and τ ∈ K×. One easily sees that

Θ(ŵâ(τ)) =

{
w̃â(ξ

−n
a τ) if a is type of (R-2),

w̃â(τ) otherwise

and Θ(ĥâ(τ)) = h̃â(τ). Thus, by Lemma 7.4, one easily sees that the map
Θ preserves the relations (SC-A), (SC-B), (SC-B′), and (SC-C). □

Lemma 7.6. The following diagram is commutative.

ĜK(ξ)(X
(1)
N )Γ GK(SK)

Γ

ĜK(X
(r)
N ) L(GK; Γ).

ΨΓ
//

Θ

OO

Φ
//
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Proof. Let â = a′ + nδ ∈ re∆̂σ and ν ∈ K. For an (R-1) type root a′, it

is easy to see that (ΨΓ ◦ Θ)(xâ(ν)) = xα(νz
n
r ) = Φ(xâ(ν)). If a is of type

(R-2), then

(ΨΓ ◦Θ)(xâ(ν)) = ΨΓ(x̃â(ξ
−n
a ν)) = Ψ

(
xα̂(ξ

−n
a ν)xσ(α̂)(ξ

−n
a ξ−nν)

)
= xα(ξ

−n
a νz

n
r )xσ(α)(ξ

−n
a ξ−nνz

n
r )

= x̃a(ξ
−n
a νz

n
r ) = Φ(xâ(ν)).

Next, suppose that a is of type (R-3). Then (ΨΓ ◦ Θ)(xâ(ν)) is calculated
as follows.

ΨΓ(x̃â(ϵaξ
−n
a ν))

= Ψ
(
xα̂(ϵaξ

−n
a ν)xσ(α̂)(ϵaξ

−n
a ξ−nν)xα̂+σ(α̂)(

1
2Nσ(α),αϵ

2
aξ

−2n
a ξ−nν2)

)
= xα(ϵaξ

−n
a νz

n
r )xσ(α)(ϵaξ

−n
a ξ−nνz

n
r )xα+σ(α)(

1
2Nσ(α),αϵ

2
aξ

−nν2z
2n
r ).

On the other hand, by definition,

Φ(xâ(ν)) = x̃a(ϵaξ
−n
a νz

n
2 ⇀ (1, 12)) = x̃a(ϵaξ

−n
a νz

n
2 , 12ϵ

2
aξ

−nν2zn).

Since r = 2, we conclude that (ΨΓ ◦ Θ)(xâ(ν)) = Φ(xâ(ν)). Finally, if a is
of type (R-4), then the similar calculus for (R-2) shows that the equation
(ΨΓ ◦Θ)(xâ(ν)) = Φ(xâ(ν)) also holds. □

Thus, we have the following commutative diagram:

ĜK(ξ)(X
(1)
N )Γ GK(SK)

Γ

ĜK(X
(r)
N ) L(GK; Γ)

K×1

K×1 1.

ΨΓ
//// � � //

// � � //

Θ

OO

Φ
// // //

By Theorem 6.7, we see that the bottom sequence is exact. In particular,
ΨΓ is surjective and the upper sequence is also exact. Thus, Θ should be
bijective, and hence we have the following result.

Theorem 7.7. ĜK(ξ)(X
(1)
N )Γ ∼= ĜK(X

(r)
N ).

Appendix A. Kac-Moody Groups

There are several ways to construct a “Kac-Moody group” associated to a
given Kac-Moody algebra, [12, 14, 17, 22, 24, 28] etc. In our paper, we have
used a representation theoretic approach (á la Chevalley). In this appendix,
we give the definition and review some basic properties.
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A.1. Kac-Moody Algebras. In the following, we fix a natural number ℓ
and put I := {1, . . . , ℓ}. An integer matrix A = (aij)i,j∈I is called a gener-
alized Cartan matrix (GCM for short) if it satisfies the following conditions:
aii = 2 for i ∈ I, aij ≤ 0 for i 6= j ∈ I, and aij = 0 ⇔ aji = 0 for i, j ∈ I.
We let (Λ,Λ∨,Π = {αi}i∈I ,Π∨ = {hi}i∈I) be a realization of A over Z, that
is, Λ is a free abelian group of finite rank, Λ∨ is the Z-dual of Λ, and Π
(resp. Π∨) is Z-free in Λ (resp. Λ∨) satisfying αj(hi) = aij for all i, j ∈ I.
We note that the rank ℓ′ of Λ satisfies ℓ′ ≥ ℓ. We put h := Λ∨ ⊗Z C and
extend Π∨ to a C-basis of h, say, {hi′}i′∈I′ = {h1, . . . , hℓ, . . . , hℓ′}, where
I ′ := {1, . . . , ℓ′}.

A Kac-Moody algebra g defined over C (associated to the triple (h,Π,Π∨))
is the Lie algebra defined over C generated by a set {hi′ , ei, fi}i′∈I′,i∈I , called
the Chevalley generators of g (cf. [11]), subject to the following relations:

[hi′ , hj′ ] = 0, [hi′ , ej ] = αj(hi′)ej , [hi′ , fj ] = −αj(hi′)fj ,

[ei, fj ] = δi,jhi, ad(ep)
1−apq(eq) = 0, ad(fp)

1−apq(fq) = 0

for i′, j′ ∈ I ′, i, j, p, q ∈ I with p 6= q. Here, δi,j is Kronecker’s delta and
ad : g → EndC(g);X 7→ (Y 7→ [X,Y ]) is the adjoint representation on g.

One easily sees that h is a Lie subalgebra of g, called the Cartan subalgebra
of g. Let g+ (resp. g−) be the Lie subalgebra of g generated by {ei}i∈I
(resp. {fi}i∈I). Then we get the triangular decomposition g = g+ ⊕ h⊕ g−.
The Z-submodule Q :=

∑
i∈I Zαi of Λ is called the root lattice. For latter

use, we put Q± := {α ∈ Q | α 6= 0 and ± α ∈
∑

i∈I Z≥0αi}, where Z≥0 :=
{0, 1, 2, 3, . . . } ⊂ Z. For α ∈ Q, we set the subspace gα := {X ∈ g | [H,X] =
α(H)X for all H ∈ h} of g is called the root space of g corresponding to α.
The set ∆ := {α ∈ Q | α 6= 0 and gα 6= 0} is called the root system of g with
respect to h. Set ∆± := ∆ ∩Q±.

Let h∗ denote the C-dual of h. For αi ∈ Π, we define si ∈ AutC(h
∗) so that

si(λ) := λ−λ(hi)αi for each λ ∈ h∗. The subgroup W of AutC(h
∗) generated

by the set {si}i∈I is called the Weyl group of g. The set of all real roots re∆
is given by W(Π) := {w(αi) | w ∈ W , αi ∈ Π}. Set re∆± := re∆ ∩∆±.

A.2. Admissible Lattices. Let U(g) be the universal enveloping algebra

over C of g. For x ∈ U(g) and a natural number m, we set x(m) := 1
m!x

m

and
(
x
m

)
:= 1

m!

∏m−1
i=0 (x − i), where the product is taken in an arbitrary

order. Put x(0) :=
(
x
0

)
:= 1 for simplicity. Let UZ be the Z-subalgebra of

U(g) generated by the set

{
(
h

m

)
, e

(m)
i , f

(m)
i | h ∈ Λ∨, i ∈ I,m ∈ Z≥0}.

By [30], this algebra is a Z-form of U(g), that is, the canonical map UZ ⊗Z
C → U(g) is an isomorphism of Lie algebras over C.
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Since each ei (i ∈ I) acts locally nilpotently on g under the adjoint rep-
resentation, we get an automorphism on g as follows

exp(ad(ei)) : g −→ g; X 7−→
∞∑

m=0

1

m!
ad(ei)

m(X).

Similarly, we see that exp(ad(fi)) ∈ AutC(g). For each i ∈ I, the restric-
tion of the automorphism exp(ad(ei)) exp(ad(fi))

−1 exp(ad(ei)) to h coincides
with the contragredient representation of si, and hence we shall identify
both. The action of the Weyl group W on g naturally extends to U(g). Then
the Z-algebra UZ is invariant under the action of W, see [30, Section 4.5].

A representation g → EndC(V ) is said to be h-diagonalizable if V is the
direct sum of its h-weight spaces V =

⊕
λ∈h∗ Vλ, where Vλ := {v ∈ V |

H.v = λ(H)v for all H ∈ h}. Set Λ(V ) := {λ ∈ h∗ | Vλ 6= 0}. A h-
diagonalizable representation V of g is said to be integrable if ei and fi act
locally nilpotently on V for all i ∈ I.

Definition A.1 (Cf. [8, Section 27]). Let V be a representation of g, and
let VZ be a Z-submodule of V . A pair (V, VZ) is said to be admissible if

• V is integrable,
• VZ is a Z-form VZ of V , that is, the canonical map VZ ⊗Z C → V is
an isomorphism of C-vector spaces, and

• VZ is invariant under the action of UZ.

In this case, we call VZ an admissible lattice in V .

Example A.2. We see some basic examples.

(1) By the adjoint action, g is an integrable representation of g. Then
gZ := g ∩ UZ is an admissible lattice in g.

(2) For λ ∈ h∗, we let V λ denote an integrable irreducible representation
V λ of g with highest weight λ. Then the UZ-submodule V λ

Z of V λ

generated by a highest weight vector of V λ is an admissible lattice
in V λ (cf. [26, Corollary 1 in Chapter 2]).

(3) For each i ∈ I, we let λi be a fundamental weight, and let V λi be
as in (2) above. Let Vsc be the direct sum of all V λi for i ∈ I. Then

the direct sum of all V λi
Z for i ∈ I is an admissible lattice in V .

For an integrable representation V of g, we let Ξ(V ) be the submodule
of Zℓ generated by {(λ(hi))i∈I ∈ Zℓ | λ ∈ Λ(V )}, called the valued weight
lattice of V . As in [26, Lemma 27], we have the relation Ξ(g) ⊂ Ξ(V ) ⊂
Ξ(Vsc) = Zℓ.
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A.3. Chevalley Pairs. A Lie algebra automorphism ρ : g → g is called the
Chevalley involution of g if it satisfies

ρ(H) = −H, ρ(ei) = −fi, and ρ(fi) = −ei

for all H ∈ h and i ∈ I (cf. [11, Section 1.3]).
For a real root α ∈ re∆, recall that gα is the root space of g corresponding

to α. By definition, there exists w ∈ W and αi ∈ Π such that α = w(αi).
We set Hα := w(hi). Note that Hαi = hi for all i ∈ I.

Definition A.3. For a real root α ∈ re∆, a pair (X,Y ) ∈ gα× g−α is called
a Chevalley pair for α if it satisfies ρ(X) = −Y and [X,Y ] = Hα.

For a real root α ∈ re∆ with α = w(αi) for some w ∈ W and αi ∈ Π, we
set

Xα := w(ei) and X−α := w(fi).

Then it is easy to see that (Xα, X−α) is a Chevalley pair for α. Using the
Chevalley involution, a Chevalley pair uniquely exists up to sign (cf. [21]).
Since UZ is stable under the action of W, we get the following lemma.

Lemma A.4. For α ∈ re∆ and m ∈ Z≥0, we have X
(m)
α ∈ UZ.

For α, β ∈ re∆, we define a scalar Nα,β by [Xα, Xβ ] = Nα,βXα+β . We
set Nα,β = 0 if α + β 6∈ re∆, for simplicity. By [21, Theorem 1], the scalar
Nα,β is an integer. If the GCM A is of finite type, then the set {Xα | α ∈
re∆} t {Hαi | αi ∈ Π} forms a Chevalley basis of g.

As in Example A.2 (1), we consider the adjoint representation on g and
gZ = g∩UZ. For ν ∈ Z, we can define an isomorphism exp(ν ad(Xα)) : gZ →
gZ of Z-modules by X 7→

∑∞
m=0

νm

m! ad(Xα)
m(X) (cf. Lemma A.4).

For α, β ∈ re∆ with α 6= ±β, we suppose

Qα,β := {iα+ jβ ∈ Q | i, j = 1, 2, 3, . . . } ∩∆ ⊂ re∆.

Then by [21, Theorem 2], we can find integers ci,jα,β such that

(A.1)

[exp(ν ad(Xα)), exp(µ ad(Xβ))] =
∏

iα+jβ∈Qα,β

exp(ci,jα,β ν
iµj ad(Xiα+jβ))

for all ν, µ ∈ Z, where the product is taken in an arbitrary order. Here, [ , ]
denotes the commutator, that is, [x, y] := xyx−1y−1 for two elements x, y of

a group. Note that c1,1α,β coincides with Nα,β .

For α, β ∈ re∆, there exits a scalar ηα,β such that

(A.2) exp(ad(Xα)) exp(− ad(X−α)) exp(ad(Xα))(Xβ) = ηα,βXsα(β),

where sα(β) := β − β(Hα)α is the simple reflection. By the property of
Chevalley pairs, one sees that ηα,β = ±1.
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A.4. Kac-Moody Groups. Let (V, VZ) be an admissible pair of g. For a
fixed field K, we set VK := VZ ⊗Z K. For α ∈ re∆ and ν ∈ K, we can define
an element xα(ν) of AutK(VK) as follows.

(A.3) xα(ν) : VK −→ VK; v ⊗Z 1 7−→
∞∑

m=0

X(m)
α .v ⊗Z νm,

see Lemma A.4. Here, X
(m)
α .v denotes the action of X

(m)
α on v.

Definition A.5. The Kac-Moody group GK defined over K associated to
the admissible pair (V, VZ) is the subgroup of AutK(VK) generated by the set
{xα(ν) | α ∈ re∆, ν ∈ K}. We prepare some terminology as follows.

• GK is said to be of adjoint type if we take V = g the adjoint repre-
sentation.

• GK is said to be of simply connected type if we take V = Vsc, or
equivalently Ξ(V ) = Zℓ.

• GK is affine if g is affine (i.e., the GCM A is of affine type).

For simplicity, we say that an affine Kac-Moody group GK is of type X
(r)
N if

g is affine of type X
(r)
N , where X

(r)
N is one of Kac’s list [11, TABLE Aff r].

In the following, we let GK be a Kac-Moody group over K associated to
an admissible pair (V, VZ). For α ∈ re∆ and τ ∈ K× := K \ {0}, we put

(A.4) wα(τ) := xα(τ)x−α(−τ−1)xα(τ) and hα(τ) := wα(τ)wα(−1).

One easily sees that wα(−τ) = wα(τ)
−1 and hα(τ)

−1 = hα(τ
−1).

Let TK be the subgroup of GK generated by {hα(τ) | α ∈ re∆, τ ∈ K×}.
The group TK is an abelian group and is generated by the hαi(τ)’s. We let
U±
K be the subgroup of GK generated by {xα(ν) | α ∈ re∆±, ν ∈ K}, and let

B±
K be the subgroup of GK generated by TK and U±

K.

Theorem A.6. The group GK admits a Bruhat decomposition, that is,

GK =
⊔

w∈W
B±

K wB±
K (disjoint union).

Proof. We only show the claim for B+
K, since the proof is similar for B−

K.
Let NK be the subgroup of GK generated by {wα(τ) | α ∈ re∆, τ ∈ K×}.
It follows that TK is a normal subgroup of NK, since wα(θ)hβ(τ)wα(−θ) =
hsα(β)(τ) for α, β ∈ ∆ and τ, θ ∈ K×. The map W → NK/TK defined by
si 7→ wαi(1)TK is an isomorphism (cf. [26, Lemma 22]), and hence the subset
S := {wαi(1)TK | αi ∈ Π} of NK/TK generates W.

First, we show that TK coincides with B+
K ∩NK. Since TK ⊂ B+

K ∩NK is

trivial, we take and fix x ∈ B+
K ∩NK and put w = xTK. For each λ ∈ Λ(VK)
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and vλ ∈ (VK)λ, we write down the image of vλ under x as

x(vλ) = τvλ +
∑
β∈Q+

vµ+β = v′w(µ),

where τ ∈ K×, vµ + β ∈ (VK)µ+β , and v′w(µ) ∈ (VK)w(µ). Then by the

assumption, we get x(vλ) = τvλ = v′w(µ),
∑

β∈Λ+ vµ+β = 0, and w(µ) = µ.

For each αi ∈ Π, there exists µi ∈ Λ(VK) such that 0 6= ei((VK)µi) ⊂
(VK)αi+µi . In particular, we see w(µi) = µi and w(αi + µi) = αi + µi. This
means that w(αi) = αi for all αi ∈ Π, and hence w = 1. We conclude
that x ∈ TK. Finally, the same argument as in [17, Section 6.3] shows that
sBKw ⊂ BKwBK ∪BKswBK and sBKs 6⊂ BK for all s ∈ S and w ∈ W .
These results show that the quadruple (GK,B

+
K,NK,S) forms a Tits system

for GK (cf. [18, 29]). □

Let Z(GK) denote the center of the Kac-Moody group GK, regarding as
an abstract group. Using the Bruhat decomposition above, we can prove
the following result in the same way as [26, Chapter 3].

Proposition A.7. The center Z(GK) of GK lies in TK. Moreover, Z(GK)
is explicitly given as

Z(GK) = {
∏
i∈I

hαi(τi) ∈ TK |
∏
i∈I

τ
aij
i = 1 for all j ∈ I},

and is isomorphic to Hom(Ξ(V )/Ξ(g),K×).

Let FK(
re∆) denote the free group with free generating set {x̂α(ν) | α ∈

re∆, ν ∈ K}. As (A.4), we put

ŵα(τ) := x̂α(τ)x̂−α(−τ−1)x̂α(τ) and ĥα(τ) := ŵα(τ)ŵα(−1)

for α ∈ re∆ and τ ∈ K×. We define the following relations in FK(
re∆). For

α, β ∈ re∆, ν, µ ∈ K, τ, θ ∈ K×,

(SC-A): x̂α(ν)x̂α(µ) = x̂α(ν + µ),

(SC-B): [x̂α(ν), x̂β(µ)] =
∏

iα+jβ∈Qα,β

x̂iα+jβ(c
i,j
α,β ν

iµj),

(SC-B′): ŵα(τ)x̂β(θ)ŵα(τ)
−1 = x̂sα(β)(ηα,β ντ

−β(Hα)),

(SC-C): ĥα(τ)ĥα(θ) = ĥα(τθ).

Here, ci,jα,β and ηα,β are defined in (A.1) and (A.2), respectively. By [30] (see

also [26, Chapter 6]), we have the following result.

Proposition A.8. The Kac-Moody group of simply-connected type is iso-
morphic to the quotient group of FK(

re∆) by the normal subgroup generated
by the relations (SC-A), (SC-B), (SC-B′), and (SC-C).
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