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AFFINE KAC-MOODY GROUPS AS TWISTED LOOP
GROUPS OBTAINED BY GALOIS DESCENT
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JUN MORITA, ARTURO PIANZOLA AND TAIKI SHIBATA

ABSTRACT. We provide explicit generators and relations for the affine
Kac-Moody groups, as well as a realization of them as (twisted) loop
groups by means of Galois descent considerations. As a consequence, we
show that the affine Kac-Moody group of type XE\?) is isomorphic to the

fixed-point subgroup of the affine Kac-Moody group of type X%) under
an action of the Galois group.

1. INTRODUCTION

Kac-Moody Lie algebras, a particular class of infinite dimensional Lie
algebras, were independently discovered by V. Kac [10] and R. V. Moody
[15]. Given a field K of characteristic 0, they are defined by generators and
relations (& la Chevalley-Harish-Chandra-Serre) encoded in a generalized
Cartan matrix (GCM) A. If A is a Cartan matrix of type X, then the
corresponding Kac-Moody Lie algebra is nothing but the split simple finite
dimensional K-Lie algebra of type X. Closely related to these are the affine
Lie algebras (see [11, Chapter 7] and [16]).

The first step towards the construction/definition of Kac-Moody groups
is given in [18]. This was done using representation theory and admissible
lattices following along the lines of Chevalley’s early work on analogues of the
simple Lie groups over arbitrary fields. A summary of this approach and a
vision of the steps ahead can be found in [27]. Rather than working with one
representation, Peterson and Kac considered all (integrable) representations
at once in their definition of “simply connected” Kac-Moody groups over
fields of characteristic 0 given in [24]. This paper establishes the conjugacy
theorem of “Cartan subalgebras” of symmetrizable Kac-Moody Lie algebras
and, as a consequence, that the GCMs and corresponding root systems are
an invariant of the algebras. Detailed expositions of this material are given
in [12] and [17].

If A is of finite type X, the corresponding “groups” (with the simply
connected being the largest) exist (Chevalley) and are unique (Demazure).
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They are smooth group schemes over Z constructed using a “root datum”
that includes A. The base change to K produces a linear algebraic group
over K whose Lie algebra is split simple of type X if K is of characteristic 0.

J. Tits pioneered the idea of defining root datum based on GCMs, and
attaching to them group functors that “behave right” when evaluated at
arbitrary fields [28]. See also [25]. Some of the affine cases are discussed in
examples. Further clarity about the nature of the abstract groups obtained
in this fashion is given by the construction of Kac-Moody groups due to
O. Mathieu in [14]. See also [7, 13, 23].

While the works described above deal with arbitrary (symmetrizable)
GCM, the focus of our paper are the (abstract) groups attached to the affine
GCMs. This can be done over arbitrary fields (avoiding characteristic 2 and
3 in the twisted cases) by considering fixed points of Chevalley-Demazure
group schemes evaluated at suitable Laurent polynomial rings. The link
with the representation related approach, and with the work of Tits, is
given by a detailed analysis motivated by the work of Steinberg, that yields
generators and relations for these groups. This method of studying of affine
Kac-Moody groups was pioneered by E. Abe, N. Iwahori and H. Matsumoto,
and J. Morita (see references).
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2. STRUCTURE OF THE PAPER AND MAIN RESULTS

The article is organized as follows. In Section 3, we recall some basic
definitions and notation for twisted root systems and Chevalley basis of
finite-dimensional simple Lie algebra g over C. The type and rank of g will
be denoted by Xy (X = A,B,C,D,E,F, or G). The description of Dynkin
diagram automorphisms as automorphisms of g is given in this section. Sec-
tion 4 starts with the construction of twisted loop algebras associated to g
over Q. We then give an explicit description of a Lie algebra isomorphism

@ from the twisted loop algebra to the affine Kac-Moody algebra QQ(XE\C))
of type X%) defined over Q (Theorem 4.8), where r is the tier number (i.e.,

the order of the Dynkin diagram automorphism) and XE\T,) is as in Kac’s list
[11, TABLE Aff r|. Using the isomorphism ¢, we translate the notion of
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Chevalley pairs (Definition A.3) of ﬁQ(X%)) into the twisted loop algebra
(Proposition 4.13).

In the rest of the paper (Sections 5, 6, and 7), we work over a field K
of characteristic not equal to 2 (resp. 3) when we consider the case r = 2
(resp. r = 3). Let G be the simply-connected Chevalley-Demazure group
scheme over Z of type Xy (cf. [5, 6]). In Section 5, using Abe’s construction
[1], we introduce the notion of the twisted loop group L(Gk;I'), as a I'-

twisted Chevalley group over the Laurent polynomial ring Sk := K(¢) [zi%],
where ¢ is a fixed primitive r th root of unity in an algebraic closure of
K. Here, T' is the Galois group of Sk over Rk := K[z*!]. We determine
generators of the group £(Gx;T") explicitly (Theorem 5.12). Since we have
described the Lie algebra isomorphism ¢ concretely (in Section 4.4), we are
able to write down the “induced” group homomorphism ® from the simply-

connected affine Kac-Moody group @K(X%)) of type X%) defined over K (see
Definition A.5 for details) to the twisted loop group L(Gxk;I") explicitly. In
Section 6, we show that the homomorphism @ is surjective (Proposition 6.6)
and determine the kernel of ®. As a result, we have the following.

Theorem (Theorem 6.7). The simply-connected affine Kac-Moody group
@K(X%)) of type X%) defined over K is a one-dimensional central extension
of LIGx;T). In particular, (’BK(X%))/KX ~ L(Gk;T).

In the final Section 7, we define a ['-action on the simply-connected affine
Kac-Moody group QBK(&) (Xg\lf)) of type Xg\lf) defined over K(¢) and study
structure of the fixed-point subgroup of éiK(g) (Xg\l,)) under I'. Using the
results in the previous section, we have the following result.

Theorem (Theorem 7.7). The fized-point subgroup of éK({) (Xg\l,)) under T’
is isomorphic to Q}K(Xg)).

If £ € K, then our results can be express as the following commutative
diagram.

N
U U
I — KX & @K(XS\P)F —————— » Gr(Sk)' — 1

1 —— KX —— (X)) L(Gg;T) — 1.
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Here, L(Gk) := Gk (Rx) is the so-called loop group, and L(Gx) 5 Gk (Sk)
is a group isomorphism induced from the canonical algebra isomorphism
Rg — Sk; 2" — 2+ (n € 7).

3. TWISTED ROOT SYSTEMS

In this section, we work over the field of complex numbers C. Let g be
a complex simple Lie algebra of type Xu. Recall that N is the rank of g
and X = A,B,C,D,E,F, or G. We fix a Cartan subalgebra § and a Borel
subalgebra b of g with h C b. We let h* denote the linear dual space of b.

Let A be the root system of g with respect to h and let Il = {o; | i € I}
be the set of all simple roots with respect to our chosen Borel subalgebra of
g, where I := {1,...,N}. For each o € A, we let g, denote the root space
in g corresponding to o.. Let < be the lexicographical order on A defined
by II, and let Ay (resp. A_) be the set of all positive (resp. negative) roots
in A with respect to <.

3.1. Dynkin Diagram Automorphisms. Let o € Autc(h*) be a Dynkin
diagram automorphism of g, and let r be the order of o. For simplicity, the
induced automorphism on h and the extended automorphism on g are also
denoted by the same symbol o. Let (h7)* denote the fixed-point subspace
of h* under o. Then we have a canonical projection 7 : h* — (h?)* defined
by m(A) =377, Lo7(A) for A € b*.

We let 7(II) (resp. m(A)) denote the image of II (resp. A) under 7. For
the case of Xy = Agp with r = 2, there is o’ € 7(A) such that %/ belongs to
m(A). Thus, we shall define a subset of 7(A) as follows.

1) A7 {w(A) \fd em(A) | § en(A)} i (Xn,r) = (Asr,2),
' | m(A) otherwise.

One sees that this A? forms a root system of the fixed-point subalgebra g
of g under o with respect to h7 = h N g?. Let X% be the type of g7 with
respect to h?. In this case, I17 := A% N w(II) forms the set of all simple
roots. Set ¢ := #II? and set A7 := A N7(A4). Let AT, (resp. Ad,.)
denote the set of all long (resp. short) roots in A?. If all roots of A7 are of
the same length, then we set Al‘fmg =A% and Ag,, = 0.

The Dynkin diagram automorphism ¢ naturally acts on the set I. Let I
be the set of all equivalence classes of I. By definition, the set 17 consists
of ¢ elements. For p € I and a fixed i € p, we define a, € (h7)* by letting
ap(H) := oi(H) for all H € h?. Then we can identify the set {ap}per~
with II?. For simplicity, we shall identify I¢ with {1,...,¢}, and write
II° = {ai,...,as}.
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The following is the complete list of non-trivial Dynkin diagram automor-
phisms o of order r. Note that r only takes the values 2 or 3.

(1) Xy =Agp—1 ({ >2) and r = 2.

ap—1 a2 aq

o o

R

o

U(Oéi) = Q9p—j.

(e]

Qi1 (6 DY/ E) Qgp—1
O ———> O o o X?—V = Cf
Gy ap—1 a2 ai

(2) Xy =Ag (¢ >1) and r = 2.

Qy Q-1 (%) a1
0] (o] (@] (@]

< ] I I o(a;) = aeqp1—
(@] (o] (@] (@]

(e7AN | Q7R Qgp—1 Qp
O<L———o0 (@] o] X?\] = Bé
Gy ap—1 a2 al

(3) Xy =Dypsq (6> 3) and r = 2.

Qy

@]

I\ul as ay apr1 ifi =4,

o O’(Oéi): Qy ifizg-f—l,
/ Q; otherwise.

(OTAE |

O<L——0o0O
ag ar—1 az ai
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(4) Xy = Eg and r = 2.

ag Qg
o 0O———=>o0 o Xj‘\f = F4
a4 as ag ai

(5) Xy =Dy and r = 3.

an

7‘ l {a(al) = a3, o(az) = oy,

l/ olag) = ay, o(ag) = ;.

a2 a

3.2. Types of Twisted Roots. Each o € A satisfies one of the following
four conditions, see [20, Section 1].

(R-1): a=o0(a).

(R-2): r =2 with a # o(a) and a + o(a) ¢ A
(R-3): r =2 with a # o(«) and o + 0( ) €A
(R-4): r = 3 with a # o(a) and a # o%(a).

If r = 1, then all roots are of type (R-1). Otherwise, we have to clarify
the difference between A and A°. Hence, in order to avoid confusion, we use
Greek characters a, 8 to describe elements in A, and use Alphabet characters
a, b to describe elements in A% and 7(A).
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We have the following classification of elements in 7w(A) (cf. [20, Table 2]).

Xy || Types Lengths
R-1) lon
Aze—1, Dey1, Eg || 2 ER_2§311()grt
R ) (R-1) extra long
2 (R-3) short
(R-1) extra long
A s 2| (R-2) long
(R-3) short
(R-1) long
D4 3 (R-4) short

Notation 3.1. Suppose that Xy = Agy with r = 2. For a € A?, we shall
denote a or 2a by a’ so that @’ € w(A). For the other types, we let ¢’ :=a
for each a € A°.

Example 3.2. The case (Xy,7) = (A4,2). The set of all positive roots are
given by Ay = {1, a9, a3, a4, a1 + o, a0 + @z, a3 + g, a1 + a2 + az, ag +
ag + ay, a1 + ag + a3 + ag}. The Dynkin diagram automorphism of order
2 is given by o(a;) = ay and o(az) = a3. Then one sees

m(A4) = {ag,a1 + as} U{ai, a1 + 2a2} U{2a9,2(a; + a2)},
(R-3) short (R-2) long (R-1) extra long

where a1 = m(a1) = (a1 + a4)/2 and ay = 7(a2) = (a2 + as)/2. Also, we
get 117 = {a1, a2} and AT = {ag,a1 + a2} U {a1,a1 + 2az} C 7(A). This is
the root system of type X%, = Ba. Set a := az € A?. Then by definition,
a’ stands for ag or 2ay. If ' = ag (resp. @’ = 2a3), then ' is of type (R-3)
(resp. (R-1)). O

Suppose that » =1 or 2. If @ < o(«), then —o(a) < —a. On the other
hand, when r = 3, then the situation is more complicated.

Example 3.3. The case (Xy,7) = (D4, 3). Then the set of all positive roots
are given by A+ = {041, a9, 03, g, 0] + 09, g +Q3, g+ 0y, 0] + Qg +Q3, Qo +
as+ oy, a1 + ag + ayg, a1 + g + asg + ay, a1 + 200 + ag + a4}. The Dynkin
diagram automorphism of order 3 is given by o(a1) = ag, o(a2) = ag,
o(as) = ay, and o(ay) = a1. Then we have

m(Ay) = AT = {az, a1 + a2, a1 + 2a2} U {a1, a1 + 3az, 2a1 + 3az},
(R-4) short (R-1) long

where a; = m(a2) and as = w(ay). Also, we get II° = {aj,a2}. This is
the root system of type X%, = Go. For a € AL, it is easy to see that
a < o(a) < o?(a) if and only if

a € {a, a1 + oo} U{ag, a1 + oo + az + ag, a1 + 200 + oz + aa ).
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On the other hand, for € Ay, a < ¢?(a) < o(a) if and only if «
a1 + oo + as.

o

For ¢/ € mw(A), there is @« € A such that ' = 7(a). Since 7(«)
m(o(a)) = m(0?(a)), we shall define something “good” from amongst a
o(a) and o?(a).

Definition 3.4. Let o’ € w(A). Suppose that a’ = 7(«) for some a € A.

(1) Assume that o’ is of type (R-1). We say that o’ corresponds to c.

(2) Assume that a is of type (R-2) or (R-3). We say that a corresponds
to « if it satisfies a < o(a).

(3) Assume that a is of type (R-4). We say that a corresponds to « if
a is one of taq, £(a1 + o), £(a2 + a3 + a4). For the notation, see
Example 3.3.

In these cases, we shall write a’ < «.

Suppose that » = 1 or 2. It is easy to see that if a’ <> «, then we have
—a < —o(a).

Example 3.5. The case (Xy,r) = (Ag,2). For each roots a’ € 7(A), the

corresponding roots « are given as follows.

a | ag a1 + as al a1 + 2as 2a9 2(ay + az)

(%) a1 + as 1 a1+ a2 + a3 a2 + a3 a1+ a2+ a3+ oy

a —ay | —a1 —az | —ai —ay1 — 2a9 —2a9 —2(&1 + ag)
—Q3 | —Q3 — Qg | —Qyg | —Qp— Q3 —Qq | —Qp — Q3 | —Q1 — Q2 — Q3 — 0y

O

Example 3.6. The case (Xy,7) = (Dy4,3). For each (R-4) roots a, the
corresponding roots « are given as follows.

all as | a1 + as a1 + 2as —as | —a; — a9 —ay1 — 2a9
allar |ap+ay |agt+a3+aq | —p | —p — Q| —Qig — 3 — Q4

Note that —a <> —a, in this case. ]

3.3. Chevalley Bases. Let x denote the Killing form of g. For each a € A,
there exists a unique t,, € b such that k(to, H) = a(H) for all H € h. Set
H, :=2t,/(c, ) for each a € A. Here, (, ) is the standard invariant bilinear
form on h* induced by k. One notes that, for a coroot oV := 2a/(a, a) of
a € A, we have (8,a") = 8(H,) for all 3 € A.

It is known (see [26, Chapter 2] for example) that for any o € A, we can
choose X, € g, so that the set

{Xa €E0a|aeAYU{H,, €bh|icl}
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forms a Z-basis of g, the so-called Chevalley basis of g, satisfying
K/(XOHX—O&) = 2/(@,04), [XomX—a] = H,,
[Xa, Xg] = NagXa+g, and Nopg=-—N_o_pg

for o, 8 € A with ao + 8 € A. Here, N, g is the so-called structure constant
which is necessarily an integer. If r = 2, then it is easy to see that N, g
takes the values £1 for all o, 8 € A with a4+ € A.

We fix a Chevalley basis {Xq, Hq, facaicr of g, and let gz denote the cor-
resposnding Z-form of g. A given Dynkin diagram automorphism ¢ induces
a Lie algebra isomorphism o : g — g and a linear isomorphism o : h* — b*.
Moreover, we get an isomorphism o : gz — gz of Lie algebras over Z satis-

fying
(3.2) 0(Xa) = kaXs@) and o(Ha,) = Hye,) (€A, i€l)

for some ko, = £1. By a suitable replacement (such as X, with £X,), we
can re-choose the signs k, (o € A) satisfying the following (cf. [1, Proposi-
tion 3.1] and [20, Proposition 2.2]).

Proposition 3.7. For a € A, we have ko = ky(q) and
b — {—1 if there exists B € A such that o = B+ o(8),

1 otherwise.

In the following, we fix and use the signs k, (o € A) as in Proposition 3.7.
Note that k, = —1 occurs only when (Xy,7) = (Ag,2) and « is of type (R~
1). The following result follows from a direct calculation.

Lemma 3.8. For each o, € A with a + 8 € A, we have Ny(o) o(8) =
kaygkaksNa s

4. TWISTED LOOP ALGEBRAS

In this section, we work over the field Q of rational numbers. Let £ be a
primitive r th root of unity in the field C of complex numbers. We denote
by Q(¢) the field generated by & over Q. If r = 1 or 2, then £ takes value +1,
and hence Q(§) = Q. Note that £ ¢ Q occurs only when (Xy,r) = (Dy, 3).

4.1. Twisted Loop Algebras. Recall that gz is a Z-form of g, see Sec-
tion 3.3. Set gg := gz ®z Q and hg := h N gg, Let Ry := Q[z*!] be the
ring of Laurent polynomials in the variable z with coefficients in Q. Set
L(gg) := 9o ®q R, which is naturally a Lie algebra over Rg (free of rank
equal to the dimension of g) in addition to an infinite dimensional Lie algebra
over Q. This is the so-called loop algebra. In this subsection, we introduce
the notion of a twisted version of loop algebras (cf. [4, Section 2]).
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Let us denote by
1
So = QE)[=*7]
the ring of Laurent polynomials in the variable 2+ with coefficients in Q(¢).
We define the following Q(&)-algebra automorphism.
(n€Z).

n n

o' :Sg—> Sgp; zr—E& Mz
We also define the following Q[zi%]—algebra automorphism.
WSy —Sg; £'—E&" (neZ).

Note that if £ € Q, then this ' is trivial. Then Sg is a Galois extension of
Rg with Galois group I' generated by {o’,w'} (see [2] for Galois extension
of rings). An easy calculation shows that

Z/rZ i€ e€qQ,
S,  ifE¢Q.

Here, G5 is the symmetric group on three letters. Note that if » = 1, then
Sg = Rg and T is trivial.

If £ € Q, then the group I' generated by the Dynkin diagram automor-
phism o € Autc(g) coincides with Z/rZ. For the case when £ ¢ Q (neces-
sarily (Xn,7) = (D4, 3)), we let w be the element of Autc(g) corresponding
to the diagram automorphism (also denoted by w, see §3.1).

I'= (0, )= {

a3 o

\ag
Xy =Dy I

o

~

Q4 o

wlag) =a1, w(a) =2, w(ag)=ay, w(ag)=as.
Then one sees the set {o,w} generates the group &3 (= T).
The following is easy to see.

Lemma 4.1. Suppose that & ¢ Q. For each a, B € A with a + 3 € A, we
have N (q)w(p) = Nap-

For simplicity, we set w = idg if £ € Q. Then we have I' = (¢/,w’) = (o, w)
for any case. The group I also acts on gg ®q Sq (= L(gg) ®r, Sg) via
o(X ©g5) = 0(X) ®go'(s) and w(X g s) = w(X) ©gw/(s),
where X € gg and s € Sg.

Definition 4.2. We let L(gg; ") denote the fixed-point subalgebra of L(gg)®r,
Sg under I', and call it the twisted loop algebra defined over Q.
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As in [11, Chapter 7], the Q-vector space

L(g:T) = L(gg: 1) ® Qe Qd
forms a Lie algebra over QQ by letting

(X @qrzr,Y ®guzr]=[X, Y]®Quuz 4+ k(X Y)ndminoc,
lc,vzr] =[e,d] =0, and [d,X @gvzr]=nX @qvzr
for X,Y € gg, v, € Q(&), n,m € Z. Here, c (resp. d) is the so-called

central element (resp. degree derivation).

Remark 4.3. If r # 3, then it is easy to see that
L(gg; T EB golf] ®g Qz",

nez
where gg[n] :={X € gg | 0(X) =&£"X}.

4.2. Special Elements in Twisted Loop Algebras. As in [20, §1], we
define the following subset  of the set m(Ay) x Z. If (Xn,7) = (A2, 2),
then

Q:={(a,n) |lae A% neZ}U{(2a,n) | a € A, n € 2Z + 1}.
Otherwise,
Q:={(a,n) | a € Agors n € Z} U {(a,n) | a € Afng, 1 € rZ}.
Here,2Z +1:={2n+1€Z|n€Z} and rZ :={rn € Z | n € Z}.
Definition 4.4. Take (a’,n) € Q with ¢’ + a € A. We define X(a/m) €
9o ®g Sg as follows.
° X(a/’n) Xa ®q z% if @’ is of type (E{—l).
. X(a n) = Xa ®Q zv + Xo(a) ®Q &~ ZZ if a is of type (R—2)nor (R-3).
o Xian) = Xa®q 27 + Xy(a) @027 + Xpo(a) @€ 227 if ais of
type (R-4).
Lemma 4.5. For each (a’,n) € Q, the element X(a/,n) belongs to L(gg;T').
Proof. Suppose that a’ +» o € A. First, by Proposition 3.7, O'(X(a/m)) is
given as follows.
o ko X, ®q & "2 if d is of type (R-1).
* Xo(a) ®Q £ + X2(a) ®Q 72727 if a is of type (R-2) or (R-3).

a(a) DQ £ + Xo2(a) ®Q & ngr + Xg3(a) ®Q & 327 if a is of
type (R-4).
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Thus, if (Xn,7) # (A2, 2), then we see that o (X (4 ) = X(a/m). Suppose
that (Xn,7) = (Ag,2) and a’ is of type (R-1). In this case, we have k, =
—1 by Proposition 3.7. Since { = —1 and n € 2Z + 1, we conclude that
U(X(a’,n)) = X(a’,n)'

Next, suppose that (Xy,r) = (D4,3) and £ ¢ Q. If ' = a is of type
(R-1), then obviously we get w(f((a’n)) = X(am). Thus, in the following,
we treat the case when o’ = a is of type (R-4) and a € A7. We use the
notations in Example 3.3. If a = ay (i.e., @« = «1), then by definition, we
get X(az,n) = Xa;, ®Q Zr + Xos ®Q é‘*nz% + Xo, ®0 5*2nz%7 and hence

W(X(arn)) = Xy ® 27 + Xy ® £"27 + Xy ® £727 = X(ay n).

For a = a1 + az, the situation is similar, and we obtain w(X(q,4as,n)) =
X(aﬁ%n). If a = a1+2as9, then the corresponding root is o <> as+ag+ay €

A, and hence X, ( is given as follows.

a1+2az,n)

Xag+az+as AQ 2" + Xastastar ®Q g—nz% + Xaz+ai+as ®Q 5—271Z%‘

Thus, w(X(q,4242,n)) 18 given by

Xa2+a4+a3 X Z% + Xa2+a3+a1 X gnz% + Xa2+a1+a4 ®Q 52712%

Since ¢ = ¢72" and €27 = ¢, we have W(X (4, 1200m)) = X(a1412a0,m)- U

As a subspace of ﬁ(gQ; I'), we set

L(hg:T) := b @ Qc @ Qd,

where [J%_) = g’ N hg. For each p € I, we regard a, as an element of the
linear dual space L(hqg;I")* of L(hg;I') by letting a,(c) = ay(d) = 0. We
define 6 € L(hg; )" so that §(hg) = 0, (c) =0, and §(d) = 1.

Let A7 be the root system of L(gg;I') with respect to L£(hg;I'). One

sees that the set of all “real” roots A in A? is given as follows (cf. Theo-
rem 4.8).

reAa — {a/ + n(s c ﬁ(b(@’r)* | (a,/, n) c Q}

Remark 4.6. If 7 = 1, then A = A and ®A? = {a +nd | a € A, n € Z}.
Suppose that Xy = Ay with 7 = 2. Let @ = @’ + nd € A be a real root
with @’ € m(A) and n € Z. Then by Notation 3.1, @’ stands for a or 2a for
some a € A?. However, if n is even, then we can conclude that a’ = a.
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4.3. Affine Kac-Moody Algebras and Twisted Loop Algebras. Re-
call that gg = go(Xn) is a finite-dimensional split simple Lie algebra of type
Xy defined over Q. Let A = (aij)i jer denote the Cartan matrix of type Xy,
and let {h;, e;, fi} be the Chevalley generators of gg, see Appendix A.1. In
the following, we let 90 (resp. f)é) denote the fixed-point subalgebra of gg
(resp. hg) under o, as in Section 3.1.

Recall that 17 is the set of all equivalence classes for ¢ on I. For each
p € I, we define the following elements H,,, F,, F}, in 9% If a;; = 20;; for
all 4,5 € p, then

Hy = Zhi’ E, = Zei, F, = Zf’

1€Ep 1€Ep 1€EP
Otherwise,

Hy,:=2) hi, Ey=> e,  F:=2) f
1€p 1€p 1€P
Note that the latter case occurs when (Xy,7) = (Ag, 2).

One sees that A7 := (aq(Hp))pgere is the Cartan matrix of type X§;. For
A€ (h)", we let t) be an element of b such that kg (tx, H) = A(H) for all
H € bg. Here, k) = K|95>X96 is the restricted Killing form of g. Then one
sees that H), = 2t,,/(ap, ap). In this setting, one can show the following.

Lemma 4.7. Let go(X%) be a finite-dimensional simple Lie algebra of type
X% defined over Q with Chevalley generators {hj,eJ, f7}. Then the map
defined by hy v~ Hy, eg +— Ep, and f7 — F, (p € 1?) gives an isomorphism
9o(X%) — 8§ of Lie algebras over Q.

If £ ¢ Q (ie., (Xy,7) = (D4,3)), then we let —ag := a1 + 2a2. If £ € Q,

then we let —ag € (h)* be the highest weight of the gg[0]-module gg[—1]
(for the notation, see Remark 4.3). By [11, Propositions 7.9 and 7.10], we
have the following.

XN H r \ —ag <> the corresponding root \ Type
Agp_1 || 2 a1+ 2a2+ -+ 2ap_1+ap o1+ a9 (R-2)
Agy 2 201+ -+ 2ap > a1+ -+ gy (R—l)
DY) 2 a+---+ap>ap+--+ oy (R—2)
Eg 2 | 2a1 + 3az + 2a3 + a4 <> a1 + 200 + 203 + ag + a5 + ag | (R-2)
Dy 3 a1 + 2az <> a1 + ag + as (R—4)

Set Hy := 2t,4,/(ap,ap). We choose Ey € go(Xn)a, and Fy € go(Xn)—qo
so that [Ey, Fy] = Hy and Ey ®q z%,Fo ®q 2 belong to ﬁ(g@;f‘). Set
17 := {0} UI°. Then A% := (aq(Hp)),, 4ejo forms a symmetrizable Cartan
matrix.
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For each p € I7, we define elements pr € E(gQ;F) and a, € ﬁ(h@; I')* so
that

. 2 .
Hp = Hy®q 1+ 0p0 WC, ap = ap + 0p0 0.

Then the triple (£(hg;T), {ap} cio {lﬁlp}peﬁ,) is a realization of the gen-
eralized Cartan matrix A% of type X%). For each p € 19, we also define
elements in £(gg;T) as follows.

~ 15 6 ~ _1ls
Ep = E, ®q 27, Fp:=F,®qz r7°.
By definition, I:[p, Ep and Fp belong to ﬁ(g@; ).

In the following, we use the label X%) as in Kac’s list [11, TABLE Aff r]
(r=1, 2, or 3). Then we have the following result.

Theorem 4.8. Let gQ(X( )) be the affine Kac-Moody algebra of type X(T)
defined over Q with Chevalley generators {hp, €p, fp}. Then the map

0 80X) — Llag;T); by Hy, ¢y By, fos By, (pe )
is an isomorphism of Lie algebras over Q.
Proof. If £ € Q, then the proof is essentially the same as Kac’s [11, The-
orem 8.3 (see also [11, Theorem 7.4]). If £ ¢ Q, then by comparing the

dimensions of real/imaginary root spaces concretely, we can also show that
 is bijective. ([l

Since the center of the derived subalgebra gQ(XEV)) of gQ(X(T)) is one-

dimensional, the sequence 0 — Q — g@(X(T)) — L(gg;I") — 0 is exact.
Thus, we have the following.

Corollary 4.9. QQ(X%))//Q = L(go;T).

4.4. Chevalley Pairs. We let {ﬁp, ép, fp} denote the Chevalley generators
of @Q(X(NT) ) as before. Let hg denote the Cartan subalgebra of @@(X%))
generated by ﬁp’s. We identify "®A? with the set of all real roots of QQ(X%))

with respect to 6(@ via the isomorphism ¢ given in Theorem 4.8. In this
subsection, we translate the notion of Chevalley pairs (see Definition A.3)

of Go(XY) into £(gg;T).

For a real root a € "A“, we define H; € hg so that H, = w(hy,) for
some w € W and p € 17 satisfying a = w(a,). Here, W is the Weyl group
of @@(X(T)) with respect to hg. Let (,) be the standard invariant form
induced from the Killing form kg of gg(X X\ )) As before, for each & € A,
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we define t; € hg so that Ag(ta, h) = a(h) for all h € hg. Then we have
H, = 2ta/(@,a) and A(Ha) = 2(A, )/ (@, a) for all A € b

Lemma 4.10. For a = d +nd € ®A° with a’ > o € A, we get

(o, @) if d is of type (R-1),
(@, ) (o, ) /2 if a is of type (R-2),
@ (a,) /4 if a is of type (R-3),

(o,0)/3  if a is of type (R-4).

Proof. First, note that (a,a) = (a',a’) = kg (ta,tar). Since (, ) is invariant
under the action of the Weyl group W, it is enough to show the claim in
the case of a’ = a, and a = «; for some p € I9 and i € p. We may suppose
that p # 0. If a, is of type (R-1), then the claim is trivial. If a, is of type
(R-2), then we see (a;,0(a;)) = 0. Note that (o(y),0(a;)) = (i, ;). We
have t,, = 1(tai + to(a;))- Indeed, for any H € 7,

kG5 (ta; + to(ay), H) = 3(0i(H) + o(a)(H)) = ai(H).
Hence, we conclude that (ap,ap) = £ (ta,,ta,) = $(i, ;). If ay is of type
(R-3), then we see that t,, = (ta, + to(a;)), as before. In this case, notice
that Xy = Ay and ¢ — o(i) = £1. Hence, (a;, ;) = (0(a;),0()) =
—2(a,0(;)). By using this, we have
(ap7 ap) = R(a(tap’ tap)
1((ai, i) + (o), i) + (i, o(aw)) + (o(ei), o(ai)))
= i(ai, Oéi).

If a, is of type (R-4), then one sees that t,, = %(tq +to(a) Tto2(a)). We shall
use the notations in Example 3.3. Then (ap,ap) = §((a1, 1) + (o3, 03) +
(ag, aq)) = 3(y, 1). Thus, we are done. O

Proposition 4.11. For any d = d’' +nd € A% with d’ <+ o € A, we have

H,®q 1+ (37&)0 if ' is of type (R-1),
(H,) — (Ho + Hy(a)) ®g 1+ (:‘%)c if a is of type (R-2),
plia) = 2(Ho + Hy(a)) ®g 1+ ((f%)c if a is of type (R-3),

(Ho + Hg(a) + Hy2(a)) ®g 1 + ((S,’;)c if a is of type (R-4).

Proof. Let ) € h*. Suppose that \ corresponds to A+ vc* + uo € ﬁ(f)@; r*
for some v, € Q(§) and A € (h)*, where c* is the linear dual element of
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c. Then by Lemma 4.10, we have

2((;‘7’23) + (iljg) if @’ is of type (R-1),
2(0,a) _ 2((\d)+wvn) |84 dm i as of type (R-2),
(a,4) (@,4) L)y B i g s of type (R-3),
L&g:’s)) + (i’jg) if a is of type (R-4).

We shall use the notations in the proof of Lemma 4.10. Then we see that
tw = to (vesp. 3(ta + to(a))s %(toé + to(a) + to2(a))) if @' is of type (R-1)
(resp. a is of (R-2 or 3), (R-4)). Since H, = ﬁta, we get

1 e )
IN(H, f f type (R-1),
(na) _ M) _ |20 it ol is of type (R-1)
(o) = (@0) =4 AMHa + Hy(o)) if a is of type (R-2) or (R-3),
’ ’ SAHo + Hyo) + Hy2(y)) if a s of type (R-4).
On the other hand, we see that A(c) = v. Hence, the claim follows. O

Notation 4.12. Suppose that (Xu, ) # (D4,3). For a € A%, we set

1 ifaec A9,
{a = .
¢ otherwise.

If a is of type (R-3), then we set

1 ifae A7,
€ 1= —t
2 otherwise.

Note that £,6_, = £ and eqe_, = 2.

Using the isomorphism ¢ : @Q(X%)) — ﬁ(g@; ') of Lie algebras given in
Theorem 4.8, we define X; € QQ(X%)) for each & = a/+nd € A as follows.

X(a,ﬂ) if @’ is of type (R-1),

& "X am if a is of type (R-2),
(41) p(Xa) = 0 “lam T (1)

€aly " X(am) if ais of type (R-3),

X(an) if a is of type (R-4).
For the notation )N((a/’n), see Definition 4.4.

Proposition 4.13. For a € A, the pair (X4, X_g4) forms a Chevalley
pair of go(Xy).

Proof. For simplicity, We~let~}~’& denote the right hand side of (4.1). We
will show that the pair (Y, Y_4) satisfies the conditions of Chevalley pairs
(Definition A.3). To see this, it is enough to show that [Y;,Y_;] = w(Hz)
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for any @ = d’ +nd € ®A°. We assume that @’ <+ & € A. Then Y_; is
explicitly given as follows.
e X_,®qgz v if d is of type (R-1).
e X_ () ®Q fﬁazfg + X_o ®g 5’_1(15”27% if a is of type (R-2).
o e o(X_5(a) ®q &2+ X g ®@ € €27 ) if a is of type (R-3).
e X _,®q zr + X () ®Q £z + X_o02(0) ®Q £2n2=7 if a is of type
(R-4).
Since [Xqo, X_o| = Hy and kg(Xa, X—a) = 2/(, o), we have
[Xa ®Q&:"27, Xoa ® 1a€"2 7] = Ho ®q & €0 E" + niggye.

(a’a

Then by Proposition 4.11, the claim follows. O

5. TwWISTED Loor GROUPS

Throughout the rest of the paper, we work over a field K of characteristic
not equal to 2 (resp. 3) when we consider the case r = 2 (resp. r = 3). We
take and fix a primitive r th root of unity ¢ in a fixed algebraic closure K of
K, and denote by K(£) the subfield of K generated by & over K. Note that
¢ ¢ K may occur only when (Xy,7) = (D4, 3).

5.1. Twisted Loop Groups. As in Section 4.1, we put
Rg :=K[z*] and Sk :=K()[*"].

Also, we define automorphisms o’ € Autge)(Sk) and W' € AUtK[Zﬂ:%](SK)

satisfying o’(z7) = € "z7 and w'(£") = €™ for all n € Z. Then as before,
we have T' = Gal(Sk/Rk) = (0/,w') = (0,w). We denote by S¥ = K[zi%]
the fixed-point subalgebra of Sk under w'.

Let G be the Chevalley-Demazure simply-connected group scheme of type
Xpu defined over Z, and let Gk denote the base change of Gz to K. The Rx-
valued points £(Gk) := Gk (Rk) of Gk is the so-called loop group. In this
section, using Abe’s construction [1], we introduce the notion of a twisted
version of loop groups.

For « € A and s € Sk, we let z,(s) denote the associated unipotent
element (cf. (A.3)) of Gk(Sk). Since Sk is an Euclidean domain, we see
that the group Gk (Sk) is generated by these x,(s)’s, see [26, Chapter §].
As in Section 4.1, we define the following action of I' on Gk (Sk). For a € A
and s € Sk,

7(2a(s)) = To(a) (ke 0'(s)) and  w(za(s)) = Tuy(a) (w'(5))-
For the notation k,, see (3.2).



52 J. MORITA, A. PTANZOLA AND T. SHIBATA

Definition 5.1. We let L(Gx;I") denote the fixed-point subgroup of Gk (Sk)

under I', and call it the twisted loop group associated to XSG) defined over K.
As in [1, §2], we put

(5.1 A= {x = (M, x?) € Sk x Sk | xV o' (xV) = xP + o' (x)}.

Fora € A witha+ a€ A,u € Rg, s € Sg, § € Sﬁg/, and y = (X(l),x(2)) €
Ak, we define

(G-1): Z4(u) = zo(u) if a is of type (R-1).

(G-2): 74(5) := 2a(8)T(a)(0'(s)) if a is of type (R-2).

(C-3): (0] — 200D )20 Ot 1o Ny P i a s of
type (R-3).

(G-4): Z4(3) 1= 2a(8)Te(a)(07(3))Zs2(a) (07(5)) if a is of type (R-4).
Lemma 5.2. These elements belong to L(Gk;T).

Proof. First, we show o(Z4(x)) = Za(x) for type (R-3). For others, the proof
is easy. Let a € A be the corresponding root a <> a.. By the commutator for-
mula (see (A.1)), we have [za(x!V), 24 (0'(x™V))] = Zato(a) Nag@x Mo (xM)).
Then by Proposition 3.7,

o (Za(X))

= Zo(a) (kao-/(x(l)))xa(ka(a)x(l))moz—i—a(a) (ka—l—a(a) Na(a),ao-/(X(Q) ))

= T (o) (@ (X)) Za(X™M)Zart0(0) (—No(a).a0’ (X))

= Tato(@) Nao@so (X)) ™ 2a(xM)200) (' (M) T ot o(@) (—No(a)ao’ (X))
= 2a(X")%0(0) (0" (X)) Zato(@) (~Nao@x o' (X)) = Nya)ao’ (X))

= 2a(X")Zo(0) (' (X)) T ot o(0) No(a),a (X' () = o' (X))

/

(
Since YW/ (x1) — o’ (x?) = x(@), we are done.

Next, we show w(Z,(8)) = xa( ) for type (R-4). Suppose that a is of type
(R-4) with a <» o € A. By definition, Z4,(5), Ta,+a,(5) and Zq,4+24,(5) are
respectively given as follows.

® Ta,(8)a; (0 (5))7ay (07%(3)),

b $a1+042( )xa2+a3(o”(§))xaz+a4(g’2(§))’ and

® Zostastas(5)Tartastas(07(3))Tar+astas (072 (3)).
Thus, w(Za,(5)), W(ZTay+as(5)), and w(Za, +24, (5)) are respectively calculated
as follows.

. fcal(W'(g))ﬂfa4(W'U'(S))%s(W'U’Q( 5))s

® Taj+taz (w/(‘g))xO@-ﬁ-O@ (w o (S))$a2+a3 (0/2(5))’ and

® Zogtagtas (W (8))Tar+astas (W' (3))Tar+as+as (W'a?(5)).
Since w'o’w’ = ¢’ and W'(8) = 5, we see that w(Z,(3)) = Z4(5). O
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The set Ak forms a (non commutative) group by letting
(5:2) x o=+, X +6® 1o/ (1)),
for x = (x(V,x®), ¢ = (¢, $?)) € Axg. The unit element is given by
0 := (0,0) and the inverse element of y = (x(I), x?) is given by ~y :=
(—xW, o’ (x®)). For an (R-3) type root a € A, one sees
(5.3) Fa(0)Ta(9) = Ta(x +¢) and F.(x)7! = Fa(-x)
for x, ¢ € Ak.
5.2. Special Elements in Twisted Loop Groups. Asin [1, §2], we define
(5.4) s = x = (sx!, s0’(s)x1?)
for s € Sk and x = (X(l), X(Q)) € k. One sees that this — defines an action
of Sk on the group QAg. Set

Wi = {¢ = (CW,¢®) e A | (P € 57},

where Sy is the multiplicative group of Sk.
In the following, we use the following usual notations.

Wo(t) = za(t)x_o(—t)za(t), ha(t) := wa(t)wa(—1)
for &« € A and t € R;. One easily sees that wa(—t) = we (). It is known
that for all a,8 € A and t € Ry, we have wq(1)hg(t)wa(—1) = hy, (5)(t),
where s,(8) := 8 — (8,a")a (see [26, Lemma 20(a)] for example).
ForaeA“WithaHaeA,tERﬁé,quX,QE(Sﬁg)x,andﬁz
(¢, ¢@)) € A%, we define the following elements in £(Gx;T).
(W-1): @4(t) := wq(t) if a is of type (R-1).
(W-2): a(q) := Ta(9)7-a(—0"(a) ") Talq) if a is of type (R-2).
(W-3): @a(C) = 7a(Q)i—a(—0'((P) " = Oa(¢Po' (¢ = ) if
a is of type (R-3).
(W-4): @4(d) = 7a(@)F o~ )7a(d) if @ is of type (R-4).

Lemma 5.3. Let a € A” witha <> o€ A, g€ Sy, and § € (S¢')%.

(1) Ifcz 35 (1)f type (R'Q); then wa(Q) = wa(‘])wo(a) (OJ(Q)) and 7I)CL(_(]) =
We(qg) .
(2) If a is of type (R-4), then ¥a(q) = wa(§)Wo(a)(0"(@)wer2(a)(0%(7))

and We(—q) = Wa(q) L.

Proof. First, we show the claim for the case when a is of type (R-2). Since
ato(a) ¢ Aand —a <> —o(a), we have

Wa(q) = 2a(Q)To(a)(0'(@)2_0()(—0" (@) )7 -al(—a")2a(q)Ts) (0" (0))
= xa(Q)x—U(a)(_O—I(Q)_l)xa(q)xa(a)(G,(Q))x—a(_q_l)xa(a)(UI(Q))



54 J. MORITA, A. PTANZOLA AND T. SHIBATA

= Wa (Q)wa(a) (OJ (Q)) :

Moreover, we have W, (—¢q) = wa(‘])_lwa(a) (G,(Q))_l = wa(‘])_l'
Next, suppose that a is of type (R-4). By definition, w,(q) is given as
follows

2a(0)Zo(0) (0" (0)202(a) (0™(0)) - 2-a(=G )2 o) (=0 (@ 1))z _g2(a) (0@ 7))
2o ()T (a)(07(7)To2(a) (07(7))-
Since a + o(a) ¢ A and a + 0%(a) ¢ A, the claim follows. O

It is known that the elements hq(t) = wa(t)wa(—1) (@ € At € Ry)
satisfy ha(7)hg(0) = hg(0)ha(T) and ha(T)ha(0) = ho(78) for o, 8 € A,
7,0 € K*. Moreover, if Hy, = ),y niH,, for some n; € Z, then one sees
that ho (1) = [Tics ha, (7™) for all 7 € K*. In particular, ho(771) = ho(7) ™
and h_q(7) = ho(7)” 1

Fora e A witha <> a € A te Ry, qe Sg, g€ (8%, ¢,y € Ak, we
define the following elements in £L(Gk;T").

(H-1): hy(t) := ha(t) if a is of type (R-1).

(H-2): ha(q) := @a(q)da(—1) if a is of type (R-2).
(H-3): ha((,7) = wa(()wWa(7) if a is of type (R-3).
(H-4): he(q) := w0a(q)Wa(—1) if a is of type (R-4).

Lemma 5.4. Let a € A% witha ¢ a € A, g € S, and § € (S¢)*.
(1) If a is of type (R-2), then Ba(q) = ha(q)ha(a)(a’(q)) and iNza(q*I) =
ha(@)il- ~
(2) If a ~7;S Of type ~(R'4); then ha((j) - ha(Cj)h’U(a)(U/(Cj))haQ(a)(0/2(6))
and ha(q_l) = ha(@)_l

Proof. We only show lemma for (R-2). For (R-4), the proof is essentially
the same. Suppose that a is of type (R-2). By Lemma 5.3, we have

ila(‘]) = wa(‘])woa(o-/(Q))wOé(*l)wa(a)(*l)

= h
= hq q
ha(oz) (U/(q))‘

(q)~ ! is trivial.
(|

Since sq(0(a)) = o(a), we get wa(1)lhg(q)(0'(q))wa(—1)
This proves the first assertion. By this result, he(q~!) = hq
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As in [1, §2], we begin by introducing the following notation. For ¢ =
(CM,¢®),y = (1, 4?) € A, we set
(5.5) «(¢.7) = ¢ o' ()7
Note that in [1], the right hand side was denoted by ¢(¢,v). However, we

use ¢(¢, ) to avoid confusion with our setting. By [1, §2 (C)], we have the
following result.

Lemma 5.5. For an (R-3) type root a € A and (1, ..., 71,57k € A,
we have hq(Cr,71) -+ ha(Ce, ve) = 1 if and only if ¢(C1,m) -+ e(Ce, k) = 1.

For (Xn,7) = (Ag,2) and the type (R-3) root ay <> ay, one sees that

(5.6) hag(C.7) = ha, (0" (c(¢, 7)) hagsy (€(C,7)),

where ¢,y € .
As in Section 4.3, we shall write —ag as

(5.7) —ag = c1a1 + caag + -+ + cpay
for some non-negative integers ci,cs,...,c,. Then we have the following
lemma.

Lemma 5.6. For fized 9,71,...,7¢ € K* and {,v € Ay, we have the
following.
( ) [f (XN, ) 7é (A2Z72)7 then hao(TO)hm(Tl) o 'hae(Tﬁ) =1 Z'f and Only
if
70" if ap is of type (R-1),
Tp = cp .
7o otherwise

forall1 <p</L. B B
(2) If (XNar) = (A2£>2)7 then hao (To)hal (7—1) haz 1(7_@ 1) (C ’Y) =1
if and only if

«(¢,7) =d'(e(¢y) and T = ()
forall0<p<{l-—1.

Proof. First, suppose that (Xy,7) = (Ag_1,2). In this case, —ag = a1 +
2a9 + -+ + 2ap-1 + a¢ (§—> a1 + -+ + ag_s) is of type (R-2). Then by
Lemma 5.4, the element hq,(70) is described as follows.

hal(T(;l)haz (TO 2) e hofeﬂ (T(;Q)hae (To l)haul(TO 2) e ha2Z71(TO 2)-
Thus, the product Aa, (70)ha, (11) - - - ha, (1¢) is given as
hCVl (7-0717—1)}7“042 (T(;272) e hOég,1 (TJ2TZ—1)

ooy (70 T B (7 270-1) -+ hangy (757 271).
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Hence, by [26, Lemma 28(c)], hqy(70)ha, (T1) - - - ha,(7¢) = 1 if and only if
70_171 = 70_272 == 70_2@,1 = TO_ITg = 1. Thus, we are done.
Next, for (Xn,7) = (De41,2), (Eg, 2), and (D4, 3), the product hay (10)hay (71) - - hay (77)
is calculated respectively as follows.
® hq, (76271)}5012 (76272) T haefl(TOi2T£—1)hae (T(;le)haz+1 (T(;le)a
® hay (15 1) has (Tg °T2)hag (T 73)ha (T 2Ta) has (T 272) hag (75 >71), and
® ha, (7-0_27-2)]%@ (7-0_37-1)h043 (7'0_27'2)ha4 (7-0_27-2)-
Hence, the claim follows.
Finally, we suppose that (Xy,7) = (A, 2). Then by the equation (5.6),

the product hay(70)ha, (T1) - - - ha, (C,7y) is given as
hOél (T()_lTl) e haz-l(T[)_lefl) ’ haz (T()_lo-/(c(ga 7)))hae+1 (To_lc(<7 7))

'hae+2 (T(;le—l) o hay, (T(;lTl)-

Thus, we are done. ]

5.3. The case (Ag,2). In this subsection, we shall consider the case (Xy,7) =
(A2,2). In this case, we may regard G as the special linear group scheme
S L3 of degree 3 defined over K, and Sg = K[zi%] (see [26, Chapter 3] for
example). Then as in [1, §2], the twisted loop group L(Gxk;I") is explicitly
given as

0 0 -1
SU3(SK) = {C € SLg(SK) | tCJO'/(C) = J}, J = 0 1 0
-1 0 O
Here, 'C is the transpose matrix of C' and o/(C) = (0/(sij))1<ij<3 for
C = (Sz‘j)1§i7j§3 € SL3(Sk). By definition, we have
Za()={0 1 6|, Fal)=[cGY) 1 0
0 0 1 U/(X(2)) X(l) 1
for x = (x(, x®) € Ax. Moreover, we have
o (¢
! 0<2) 7'(¢%) £€2> : 0 0
~ — 7 —c(2)4(2)
0= 0 gm0 | haCn=| 0 Siuley O
1 ’
@ 0 0 0 0 o é’(yé)m)

for ¢ = (¢,¢?),y = (yV,7®) e A,

Let £(Sk) denote the subgroup of SU3(Sk) generated by the set {Z,(x) |
a = tay, x € Ax}. The purpose of this subsection is to prove the following
theorem.
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Theorem 5.7. SU;3(Sk) coincides with E(Sk).

To prove this, we prepare some technical notations. Forn € Z, m € 2Z+1,
¢=(¢W,¢?) e A, and 7 € KX, we set

i B 7 m . . )
:L',:tal (TZ 2 ) = T4q, ((0; —TZ?2 ))? wtlll (C) = Way ((%’ CTIQ)))a
and
h 7 7 1 n—1 7 1
h;1(7—22) = hal ((17%)7(07 %Z' 2)) ‘ha1((17%)7(07 %TZ 2))
T2 0 0

Note that, % € K, since K is supposed to be of characteristic not equal to 2.
ForO0#s=5_, snz2 € Sk, we set

M(s) :=max{n € Z | s, # 0}, m(s) :=min{n € Z| s, # 0},

and £(s) := M(s) — m(s). Also, we put M(0) = m(0) = £(0) := 0. For C =
(Sz‘j)lgi,j§3 S SUg(SK), we set f)ﬁ(C)z] = m(sij) and m(C)w = m(sij),
and €(C);; = ¥(s;5) for each 1 <4,5 < 3.

Lemma 5.8. For any C € SU3(Sk), there exists E € E£(Sk) such that
M(C)11 =M(E-C)s1, M(C)z1 =M(E - C)11, and ¢(E - C)31 < €E-C)1;.

Proof. 1f €(C)31 < £(C)11, then we just take E as the identity matrix. Oth-
erwise, we put E := h/, (3) -1, ((1,3)) € £(Sk). Then we have

531 532 533
E-C=|-s21 —s2 —s]|,
511 S12 813

where C' = (s;5)1<i,j<3. Thus, we are done. O
In the following we fix C' = (s;5)1<i j<3 € SU3(Sk) which satisfies ¢(C)3; <
¢(C)11.

Lemma 5.9. There exists E € £(Sk) such that one of the following holds:
(1) ¢(E-C)31 <¢(E-C)11 and M(E -C)11 = M(E - C)31.
(2) ?(E . 0)31 < E(E . 0)11 and E(E . 0)11 < 9(0)11.

e vpz? and sg = Eﬁm, nz?, where m =
m(su), M = Dﬁ(sn), m’ = m(531), and M = 932(531).

Proof. Let us write s;1 = S.M
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(I) Case M = M’ (mod 2): Since M' — M € 27, we can consider the
M’

element E := ﬁfll(z ZM) € £(Sk). Then

M+M' , ,
-+ V]\/42 1 3/12 3/13
E-C= §21 ) So2  Sa3
M —M M+M
/ /
o (S1)7 2 parzT T sy sag

for some si; € Sg. Thus, we have MM(E - C)11 = M(E - C)31. One sees that
E(E . 0)31 = 3(0)31 and E(E . 0)11 = 3(0)11

. M —M+1
(IT) Case M # M’ (mod 2): Since M'—M+1 € 27, wesee z~ 1 € Sy.
. L. M —M+1
For simplicity, we put € := (—1)" 2 . Since (0 u ) € Ak, we can
. B 1 M+1
consider the element E := 7/, (5:]1\;,22) h, ( ) € ( k). Then
E-C
1 M+M'—1 M+M'+1
1 0 78%22 "‘+VM_1Z 4/ —|—VMZ 4 3112 Sj]_3
= 01 0 So1 S22 523
0 0 1 M+4M'—3 M+M' -1 , ,
cteupr—1z 4 tepypz 4 S39  Sag
M+M' —1 y y
4 (V-1 — MM, Lpipp—1)2” 4 S12 S13
— n "
= St So2  S23
M+M' -3 M+M' —1 I y
ey —12T F teppyrz 4 839 S35
for some 31]» Z] € Sk. Ifvp— (E-C)1 =

M(E - C)13. Using Lemma 5.8 (1f necessary), we are done.
Suppose that vy;_

vpm " "
(a2 — P2 2)z 512 513

. _ " " "
E-C= 521 S22 523
M+M' -3 M+M' -1 " "

"+€/11M/_]_Z 4 +€,UzM/Z 4 832 533

In this case, we have ¢(E-C)11 < 8(C)11, since £(C)31 = M'—m/ < €(C)11 =
M—-—m. If¢(E-C)1 < P(C’)ll, then we are done. Otherwise, for simplicity,
we set v),_g 1= Up_o — 2L, apip—o for each n. If v}, , = 0, then the

MM’

algorithm () stated above works. Suppose that vy, , # 0. Put E' :=
T, (e A z2) - FE € £(Sk). Then we have
M

—aq

E'-C
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! !
1 0 O o ’ M+4+M"—5 , M+M"—3 " "
T V3?2 1 V92 1 S12 513
— 0 1 0 §!! s gl
= B 1 21 22 523
A s 01 MM’ =3 MiM'—1 o, "
Vir_o et epupr—1z 4 +euprz 4 S39  Sag
M+M'—5 M+M'—3
/ / MyM =3 4y "
R RS T
= S21 , So2  Sa23
By M+M -3 " "
et e(par—t v Vi—3)z 4 32 533
for some S;,]/ S S]K If/LM/_lf VIZ/JIWQ V;\/I—3 75 0, then M(E/-C)ll = M(E/'C)lg.

Using Lemma 5.8 (if necessary), we are done. Otherwise, we just repeat the

algorithm above.

Since the number of non-zero coefficients v, (resp. uy) of s11 (resp. s31)

are finite, this algorithm leads us to the d

In the following, we assume that our C' = (s;j)1<i j<3 satisfies £(C)

E(C)H and M := SUI(C)H = f)ﬁ(C)gl. Let
M M’
s11 = Z Vnz3, so1 = Z Inz?

esired result. OJ
31 <

us write

M
n
and s31 = E Un22.

n=m/’

with m = m(s11), m’ = m(s91), m” = m(s31) and M’ = M(s91).

Lemma 5.10. We have M = M’, 12, = 2uprupr, and m < min{m/,m"}.

Proof. By the definition of ¢/, we have the following equations:

8210'/(821) = (—1)m/L2n/2m/ + .-

53107 (s11) + o'(

1

m m mtm!!
(=)™ 4+ (=1)" Jvmpprz 2
Since C' € SU3(Sk), we have s910'(s21) =

+ (=1)M2,, M

831)311

+---+ (—1)M2VMMMZM.
8310”(511) +0/(831)811. Thus, M’

should coincide with M and L%w =2vpr -

Next, we show the last claim. Since €(s
the following, we show m < m/.

(I) Case m =
o'(s31)s11 is given as

(=)™ + (=1 ) ptrmr2

m4m”!
2

31) < £(s11), we have m < m”. In

m” (mod 2): In this case, the lowest term of s310'(s11) +

mtm!’

2

£0.

= 2Uplmr 2

Thus, we have 2m’ = m+m”. This implies 2m < m+m” = 2m/, and hence

m<m.

(IT) Case m = m” (mod 2): In this case,

2(((_1)m+1l/m+1/lm”+(_1)m”+1’/m,um”+1)z

s310'(s11) + 0”(s31)s11 is given as

m+m”+1

2 +- - ._|_(_1)

MI/M,uMzM).
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Thus, there exists & > 1 such that 2m’ = m +m” + k. Since m” > m, we
have 2m' = m +m” + k > 2m + k > 2m, and hence m’ > m. O

The following is a kind of “Euclidean algorithm” for SU3(Sk).

Proposition 5.11. For any C € SU3(Sk), there exists E € £(Sk) such
that E(E . 0)11 < E(C)H

Proof. By Lemmas 5.8, 5.9 and 5.10, we may assume that our C' = (s;5)1<i,j<3
satisfies M := M(s11) = M(s21) = M(s31), m(s11) < m(s21), and m(sy;) <

2;’%, QLVM ) belongs to Ax. Thus, we may
M

consider E := T4, (x) € £(Sk), and get

m(s31). One sees that y = (—

2w 202, / /
s11— 5, st 7831 S12  S13

E.-C=

/ /
LM 331 3/22 3/23
531 532 S33

S21 —

By Lemma 5.10, the coefficient of 2% in the (1,1)-component of E - C is
calculated as

2up 2 203
UM — LLM-F VMMM = —Uvm+ i
LM LM 2unr s

Thus, we have M(E - C)11 < M = M(C)11
On the other hand, we have m(C);; < m(E-C)11, since m(C)11 < m(C)ag
and m(C)11 < m(C)sz;. Therefore, we conclude that ¢(E - C)1; = M(E -
C)H —m(E-C)H < m(E~C>11 —m(C)H < m(C)H —m(C’)u = E(C)H. O

par = 0.

Proof of Theorem 5.7. By repeatedly applying Proposition 5.11, for an ar-
bitrary C' € SU3(Sk), there exists E € £(Sk) such that ¢(E - C)11 = 0.
Since E - C € SU3(Sk) and the (1,1)-component of E - C' is zero, one easily
sees that E - C' is of the form

0 0 =5
_ / /
831 S32 533
with 13 € S, s = 0'(s13)” 1, shy = — /('5’,1:)>)5/1sz1 Sp3 = —0'(s13535), and
TS R 1
8398130 (332313) —333‘7,(5/13)+ 0'(s33)s13- Put E" := hy, (35) -y, ((1, 3)) and
E" =1, (o'(s)3)7Y) - 7, (5’13323 Then by a direct calculatlon shows that
/ / — /
o'(s13) 83 ) 533 ,
! / ! —
(E-C) 0 o'(sh3)s13  0'(S138%9) | = B
0 0 Shs

Therefore, we conclude that C = E~!- E'~1. E" € £(Sk). O
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5.4. Structure of Twisted Loop Groups. At the end of this section, we
describe the structure of the twisted loop groups £(Gk;T').

Let £(Sk; A7) be the subgroup of L(Gk;I") generated by the following
set.

o {T4(s), Tp(x) | s € Sk, a € A7, x € Ak, b € AL .}, if Xy,7) =

long>
(A, 2). /
o {Zq(u), Tp(5) | u € Rx, a € Af, ., § € Sg, be A .}, if (Xn,7) =
(D4a3>'
o {Za(u), Tp(s) | u € Rk, a € Af, ., s € Sk, b € A}, otherwise.

Note that £(Sk; A?) coincides with £(Sk) (defined in the previous section)
when (Xy,r) = (A2,2). Using Theorem 5.7, we have the following.

Theorem 5.12. L(Gk;T") coincides with £(Sk; A7).

Proof. Let T and B be the maximal torus and Borel subgroup of G corre-
sponding to h and b respectively (see Section 1). We will for convenience
denote Tx and By simply by T  and B. Let U be the unipotent radi-
cal of B. Then B = T x U (semi-direct product). For w € W, we put
U, =Unw U w, where (B~,U") is the opposite of (B,U) and W is
the Weyl group of G with respect to T'.

First, suppose that £ € K. We consider the fraction field K := K((z%))
of the ring of formal power series K[[z%]] in the variable z+ over K. It is
known that

Gk (K) = |_| UK)T(K)wU,(K) (disjoint union),
wew
called a Bruhat decomposition (see [26, Theorem 4]). Then we obtain:
L(Gg;T) = Gx(Sk)"
= GK(K)F N Gk (Sk)
= (| UE) T(E)wU(K))" 0 Gx(Sk)
weW
= (|| " T(E) WU (K)) NGk (Sk)
w’ ewr
= || WE"TE)" WU (K) v w' N Gr(Sk))
w' ewrl
c || WE'TE) UK NGk(Sk)) v,
w' eWr
Here, W is the fixed-point subgroup of W under I'. We note that if we take
g € (UK)T(K)wU ,(K))' and write g = uhwv for some v € U(K),h €
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T(K),v € Uy(K), then we obtain v*(u)y*(h)y*(w)y*(v) = v*(g9) = g =
uhwv for all v* € T" and v*(u) = u,v*(h) = h,y*(w) = w,y*(v) = v by
the uniqueness of expression (cf. [26, Theorem 4']). This shows the forth
equality in the display just above.

Let g € U(K)' T(K)"' U™ (K)' N Gk(Sk) and write g = uhv for some

we UK), heT(K)', and veU (K)'.

For each p € I7, we let U,,(K)", U, (K)', V_o,(K)", and V., (K)"
be the subgroup of Gk (K)'' corresponding to {a, (,2a,)}, AT\ {a, (,2a,)},
{—=ay, (,—2ap)} and —A% \ {—ap (, —2ap)}, respectively. Here, we define
{ap (,2ap)} to be {ap, 2ay} if 2a, € A7, and {a,} if 2a, ¢ A?. We note that
the subgroup corresponding to a set of roots means the subgroup generated
by the root subgroups parametrized by it. Also, we define T, (K )I and
T;p (K)'' to be the subgroups of T'(K)' corresponding to {a,} and II \
{ap} respectively (in the sense of tori) Then, g can be expressed as g =
Uq, Ul haphfl V_q,V _ap, where u = ug,u a , h = haphfl ,and v = v_apv’_ap
for a, € 117, and where u,, € U,, (K )F, u, € Up (K )Es ha, € Ta, (K)',
o, € To (K)', 00, €V 4 (K)', and v, € VL, (K)'.

Let V* be a finite dimensional irreducible module of g generated by a
maximal (or minimal) vector vj with a highest (or lowest) weight )\, and
Uz be a Chevalley Z-form in the universal enveloping algebra of g, which is
defined by a fixed Chevalley basis of g. Let VZ)‘ denote the Uz-submodule
of V* generated by v} (cf. Appendix A.2). Note that there is an action
of Gk(K) on V@ := K ®z V. We can choose a direct sum of such finite
dimensional irreducible modules if necessarily.

We understand that our g belongs to

UK)'T(K)'U (K)"
= U, (K)'U,, (K)'T,,(K) T, (K)'V_o,(K)'V., (K)"
= U, (K)'To,(K)'V_o,(K)" - U, (K)'T, (K)' V., (K)"
(Ua, (K)', To, (K)', Vo (K)') - U, (K)' T, (K)' VL, (K)'
If we suppose g = gq, g(’lp satisfying
Ja, € (Ua, ()", Ta, ()", Vg, (K)")

and
G, € UL (K" T, (K)' V., (K)F,

then g,, can be viewed as an element of

(i) SL2(K)"; (i) (SLa(K) x SL2(K))';
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(iif) (SLo(K) x SLy(K) x SLy(K)';  (iv) SL3(K)',
whose matrix entries are all in Sk (or sometimes Rk). This means that Ja,
can be identified with an element of one of the following groups:
(i) SLo(Rk); (i) SLy(Sk); (iii) SLa(Sk); (iv) SU3(Sk).

One may here recall how to construct twisted Chevalley groups by using the
so-called “foldings” of root systems (cf. Section 3, or [1]). In this sense, one
knows that there are four types of roots, namely

(i) ap = {a}; (i) ap = {a, B} (a L P);
(ili) ap = {e, B, 7} (mutually orthogonal); (iv) a, = {e, B}, 2ap = {a+5}.
For the case when (Xy,7) # (Ags, 2), multiplying

u;-' = Ug, (s5) € Uap(K)F and v}' = v,ap(s;-) € V,ap(K)F

continuously, for some sj,s; € Sk (or sometimes R), from the left hand
side, we may use a “standard” Euclidean algorithm. Then, we can obtain
and assume uq, = v_q, = 1. Next, we will select some w” € WY to have

g/ — wl/gw//—l c U(K)F T(K)F U_(K)F

instead of g and to repeat again as above. We notice

(| U E)"w ™" ={1}.
w’ ewr

Then, it is possible to continue our process for ¢/, and finally we obtain
v = 1 at least (cf. Remark 5.13). In case of (Xy,7) = (Ag,2), we can
also use the same method as above. Then, it is enough to concentrate
(Xn,7) = (A2,2) and L(Gk;I') = SU3(Sk). In this case, we already know
L(Gx;T) = E(Sk; A7) by Theorem 5.7. Therefore, in any case, we reach
v = 1. Hence, we have

g =uh € B(K)'' nGx(Sx) = B(Sg)! = U(Sk)' T(Sk)",
and hence we have g € &(Sk;A%). Therefore, L(Gk;I') coincides with
E(Sk; A7).
If ¢ ¢ K, then the proof is essentially the same as above. That is, first

we put K' = K(£), then one can take I'-fixed points, and get the desired
result. O

Remark 5.13. Here is the way to understand our inductive method from
g to g'. For b € A%, we define U,(K)" (resp. V_,(K)') to be the subgroup
of U(K)' (resp. U™ (K)') corresponding to {b} (resp. {—b}). We already

wrote g = uhv and, more precisely we write

U=2T1T2 Tk, UV=Y1Y2" - Yk,
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where z, € Uy, (K)'', y, € V_ (K)', by = a, € TI? and
P by > YUp —bp s V1 D

/ /
Uq, = X1, Uq, = X2 " Tky,  V—q, = Y1, V_q, = Y2 Yk-

Using a “standard” Euclidean algorithm, we can obtain and assume uq, =
7y = 1 and v, = y1 = 1 as before. Here, we can also assume g = uhv,
satisfying w = xo---xp and v = yo - - - y, from the beginning. Choosing a
suitable element w” € W', we obtain

g/ — w/lgwllfl c U(K)F T(K)F U~ (K)F,
where ¢’ = u'h'v" = (2 - - - 2} )W (yh - - - y;,), satisfying
ulzwé..-$2€U<K)F’ h/ET(K)Fu v,:yé'”y;ceU_(K)F7
and where
z, € Uy (K)', y,eV_y(K)', bth=a,ell”, b,eA].

Hence, we can repeat our process (cf. Remark 5.14). Since the number of
components in the expression of v is decreasing, finally we finish our process,
and reach v =1 at least.

Remark 5.14. Set A7 := —A7. A subset ¥ C A7 is called (additively)
closed if b+ b € A7 for b,/ € ¥ always implies b + b € ¥. Note that
A7 is closed. We also find that w'(¥) is closed if ¥ C A7 is closed and if
w' (V) € A? for w' € W', Furthermore, we can see that ¥/ := W\ {—a} is
closed if ¥ is closed and if there is an element a € 117 satisfying —a € V.
Hence, the recursive process in Remark 5.13 works in this sense.

We can also obtain the following result (cf. [18, 19, 20, 24, 28, 30]):

Proposition 5.15. The twisted loop group L(Gx;T') admits the Twahori-
Matsumoto decomposition.

L(Gg;T) =E(Sk; A7) = I_I Brw'By  (disjoint union,).
w' €Wagr

Here, Wy is the corresponding affine Weyl group and By is the standard
Twahori subgroup (cf. [9]).

6. AFFINE KAc-MooDYy GROUPS AND TwISTED LoopP GROUPS

In the following, we consider the simply-connected affine Kac-Moody

group @K(X%)) of type X%) defined over our field K. For the precise defini-

tion, see Appendix A.4. We show that (’SK(XE\?)) can be realized as a central
extension of the twisted loop group L(Gk;T).
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6.1. Induced Group Homomorphisms. In Theorem 4.8, we have seen
that ¢ : @Q(X%)) — L(gg;T) is an isomorphism of Lie algebras. Since
(’BK(XE\T})) is simply-connected, one sees that this ¢ induces a group homo-
morphism & : QSK(X%)) — Gk (Sk), where Sk is given in Section 5.1.

For the case when (Xy, ) = (Agg, 2), it is better to introduce the following
notations in addition to (G-1)—(G-4), (W-1)-(W-4) and (H-1)—-(H-4).

i‘Qa(S) = xa-{—a(a)(s)a ﬁ)Qa(S) = wa—&—o(a)(s)’ BQG(‘S) = hoz-i—a(a)(s)
for 2a +nd € A’ with 2a < a + o(a) € A and s € Sk.

Remark 6.1. In the above case, a is of type (R-3) and n is an odd number,
and £24(22) = Toto(a)(22) = Za((0, Ny(a)a22)). By Lemma 5.2, this is an
element of the twisted loop group L£L(Gk;T').

Then by Proposition 4.13 (see also (4.1)), the induced group homomor-
phism @ : @K(X%)) — G (Sk) is explicitly described as follows.

G (vzr) if a’ is of type (R-1),

To(&5mvz7) if a is of type (R-2),
6.1)  P(za(v) =4 . ., x Ny e

To(€aéy"vz2 — (1,3)) if ais of type (R-3),

Tqa(vzr) if a is of type (R-4)

for a = a’ +nd € ®A° and v € K. Here, (1, %) is, of course, regarded as an
element of Ax. For the constants &, and ¢, see Notation 4.12.

For simplicity, we put

_ n
Xa,y = faga "vzz — (L%

)= (vz2, FET2m) ifa € AT,
a (25771”2%, 26 "22™)  otherwise.

For the definition of —, see (5.4).

Remark 6.2. Suppose that a is of type (R-3). It is easy to see that
¢(Xaw, Xa,—1) = v? (for the notation, see (5.5)). For 7 € KX, one sees

that x4~ € 2% and hq(Xa,rs Xa,—1) "' = ha(Xa.r—1, Xa,—1) by Lemma 5.5.
Lemma 6.3. For a =d +ndé € ®A° and 7 € KX, we get

Wy (T27) if a’ is of type (R-1),
@a(f;nTZ%) if a is of type (R-2),

Wa(Xa,r) if a is of type (R-3),
Wa(T27) if a is of type (R-4).

®(wa(r)) =
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Proof. By definition, wy (1) = x4(7)x_a(—7"1)aa(7). Thus, if a’ is of type
(R-1) or (R-4), then nothing to do. First, we suppose that a is of type (R-2).
Then we have

‘I)(w@(T)) = :Z'a(fa_nTZ%)i‘,a(— r T_lz_%):f:a(ga_n7—27).

—a

On the other hand, by definition,

n

Wa(€5") = Fa(€"T27 ) —a(—EL€" T 27 F)Fa (€ T2T).

Since £,6_, = £ and &, = %1, this proves the claim.
Next, suppose that a is of type (R-3). In this case, ®(wg(7)) is explicitly
given as 4 (Xa,r)T—a(X—4,—r-1)%a(Xa,r). By the definition of —, we get

D) sy, = QKT 1n , 2677227 ifa € AF,
o 7 (—r71272, $¢nr2) otherwise.
= eafl(-7 )27 = (L g).

(1) (2))

Here, xar = (X5, X5 ,)- Since £ = —1, we conclude that — ’(Xfl)*l -

Xa,r = X—q,—r—1. Moreover, since Xé; (Xfl) =1, we get Xél (Xfl)
Xa,r = Xa,r- LThus, we are done. ]
Lemma 6.4. For a = a' +nd € ®A” and 7 € K*, we get
ha (T) if ' is of type (R-1),
®(ha(T)) = { ha(7) if a is of type (R-2) or (R-4),
ha(Xa,rs Xa,—1) if a is of type (R-3).

Proof. 1f a is of type (R-1), then the claim is trivial. Suppose that a is of
type (R-2). Then by Lemmas 5.3 and 5.4, we have

O(ha(r)) = Wa(&"T27 )a(—E,"27)
o327 Vi (— 1) (—1) Mia (&, 27 ) !
a2 ) ha (&2 )7

= ha(T).

!

For the case (R-4), the proof is the same as above. If a is of type (R-3),
then by definition ®(h4(7)) = Wa(Xar)Wa(Xa,—1) = Pa(Xars Xa,—1)- O

Let Tx be the subgroup of (‘SK(XE\C)) generated by {ha(7) | @ € *A7, 1 €
K*}.

Lemma 6.5. The kernel of ® is included in k.
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Proof. For any x € Ker(®), we can uniquely write as x = ywy’ for some
v,y € %HE and w € W by Proposition A.6. Then we have 1 = O(z) =
O (y)®(w)®(y'). By Proposition 5.15, the expression is unique, and hence
®(w) should be trivial. We conclude that w = 1, see Lemma 6.3. Thus,
Ker(®) is included in B.

Again, we take x € Ker(®) and express x = uh for some u € ﬂﬁg and
h € Sk. In particular, ®(u) is trivial. On the other hand, again by Propo-
sition 5.15, one sees that the restriction map (I)|11K is injective. Hence, we

conclude that u is trivial, and Ker(®) C k. O
6.2. Central Extension. In this subsection, we will show that @K(X%)) is
a one-dimensional central extension of L(Gk;I').

Proposition 6.6. The map @ : QEK(XS\T])) — L(Gk; ') is surjective.

Proof. By Theorem 5.12, it is enough to show that the image of ® coincides
with the subgroup &£(Sk; A7) of L(Gk;T"). If r = 1 or 3, then the claim is
trivial. Assume that r = 2. When (Xy,r) # (Ag, 2), we can easily see that
® is surjective by definition of £(Sk;A%). Thus, in the following, we will
show the claim for (Xy,7) = (Ag,2). In this case, note that £ = —1 € K,
and hence Sk = K[zi%].

We take Z,(x) € £(Sk; A7) for some a € A, with a <> a € A and
X = (s,8') € Ag. Note that 2a <+ ato(a) € A. Weshall write s = 3, 5,22
and s’ = 3 s/ 2% with some s, s/, € K. We define an element y of @K(X%))
so that

Yy = H $a+n5(5n)7
n

where the product is (necessarily) finite, and is taken in the canonical order
((--<-1<0<1<2<---). Then by (5.3), we can find g € Sk such that
¢ := (s,g) belongs to A and

(b(y) = Hia((8n2%7 %gnsizn))

ja((z: SnZ%, g)) = T4(9)

n

We shall denote g = ), gnz?2 for some g, € K (n € Z). If there exists an
odd number m € 2Z + 1 such that the coefficient g,, of 2% in g is non-zero,
then

CI)(Z/ : $2a+m6(_gmNo(a),a)) = Ta(d)- ja((oy _gmz%))
= Fa(¢+ (0, —gmz?))
= i’a((svg_gmz%))
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(cf. Remark 6.1). Thus, we define an element y' of éﬁK(XS\T,)) as follows.

v o= JI 2204ms(—gmNo(a)a):

mez+1

with g #0
Then we can choose g’ € Sk so that ¢’ has no odd terms, ¢’ := (s,¢’) is in
Ag and @(y - y') = Z4(¢'). Finally, we define an element y” of @K(X%)) as
follows.

y” = H :U?a-i-mé(s;nNa(oa),oc)'
mez+1
We put g” := ¢’ + 5 4q, where s, 4y := > oy 4 s,,2%2. Then ¢/ := (s,9") €
Ax and ¢(y -y -y") = Ta(¢”). By the definition of Ak, the following relation
holds.
gtle/ven = %(Szven - Sgdd) = Siaven?

Lven i= Doz Swz? etc. Since gy, = s 44, we conclude that g” = '
and xy = ¢”. In this way, we see ®(y -y’ - y") = Zo(x). This proves the
claim. g

where s’

As in (5.7), we shall write —ag = c1a1 + coag + - - - + ¢pay for some non-

negative integers ci, ca, ..., co. For (Xy,7) # (Ag, 2), we set
J4 rep . .
5 . T, if a,, is of type (R-1)
= ||hAT €Tk |meK”, 7,=4 Y P "1
3x {p:() a (79) k170 P {Tg” otherwise. '

Otherwise, we set

)4
3k = {H ha,(17) € Tk | 70 € K*}
p=0
Obviously, this 3k is a subgroup of the center Z (@K(X%))) of the Kac-Moody
group QBK(X%)) (as an abstract group) and satisfies 3k = K*. In this way,

we may identify K* as a subgroup of the center of @K(X%)). The non-twisted
version (i.e., 7 = 1) of the following theorem is well-known (cf. [3, 24]).

Theorem 6.7. The kernel of ® coincides with 3k, and hence the sequence
1 KX — éK(X%)) N L(Gg;I") — 1 is exact.

Proof. By Lemma 6.5, any element h in Ker(®) can be expressed as h =
Hﬁ:o ha,(1p) € Ker(®) for some 7, € K*. First, suppose that (Xy,r) #
(Ags,2). By Lemma 6.4, we have

1= ®(1) = hay (70 (71) - - By (72):
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Then, by Lemma 5.6, h € 3k.
Next, suppose that (Xy,7) = (A, 2). In this case, we get

1= (I)(h) = }NLao (TO)iLal (Tl) t iba£71 (7—(—1) ’ Bae (Xaeﬂ'w Xag,—l)'

Then, by Lemma 5.6, we see that 7, = ¢(Xay.rys Xag,—1) = 7¢- Hence, h € 3.
Thus, we conclude that Ker(®) C 3x. One can easily see the converse
3k C Ker(®) in a similar way. O

We have the following corollary.

Corollary 6.8. &y (X\))/K* = £(Gx;T).

7. TwISTED AFFINE KAC-MoOODY GROUPS
In this section, we define a I'-action on the simply-connected affine Kac-
Moody group QSK(@ (Xg\l,)) of type Xg\l,) defined over K(¢), and show that
the fixed-point subgroup of QAiK(g) (Xg\l,)) under I' coincides with the simply-
connected affine Kac-Moody group @K(X%)) of type XE\T,) defined over K.

7.1. Twisted Affine Kac-Moody Groups. In this subsection, we define
an action of the group I' on the affine Kac-Moody group QBK(@ (Xg\l,)). For
simplicity, we set ™A := A = {o + nd | @ € A, n € Z}. For a real root
a=a+nd € A, we let
(&) :=o0(a)+nd and w(d):=w(a)+nd.

Note that if £ € K, then this w is trivial.

Let Fx(e)(™A) denote the free group with free generating set {Z4(v) | & €
A v e K(£)}. We define group homomorphisms & and @ form g g) (" )

to @K(g)(Xg\,)) as follows.
(7.1) 0(2a(v)) = Ty (ke "v) and  @(Za(V)) = zy@) (W' (v)),

where & = o +nd € ™A and v € K(€). Here, o' : K(&) — K(¢) is a
K-automorphism defined by w’(§) = ¢71.

Lemma 7.1. For 7 € K(§)* and & = o + n5 e A, we have the following
equations. G(Wa(T)) = We( a( W&, 6(ha(r)) = ho(ay(T), @(a(T)) =
Wio(a) (7)), and &(ha (7)) = hy(a) (@ (7)).

Proof. By Proposition 3.7, we note that k, = k_, = £1. Thus, we have
o(ia(r) = 6(ta(r)o(i-a(-7"1))6(2a(r))
= :Ba(d)(kag_nT) —o( a)( ag ( T ))xa(d) (kOé‘S_nT)
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= Ty (bl " T)2_o(a) (= (kal ") ) (a) (kal"T)
= Wo(a)(ka& "T).
Also,
&(ha(r)) = ( (7))o (wa(-1))
(@) (ka&™ ) Wa(a) (—DWe(a) (DWe(a) (—ka™")
= o(a)( ol ") ho(ay (ka7
&) (7).

Thus, we are done. For @, the proof is essentially the same as above. O

Then by Proposition A.8, we get the following.

Proposition 7.2. The induced automorphisms & and & on QA5K(£) (Xg\})) are
well-defined. The order of & (resp. &) coincides with the order of o (resp. w).

Proof. We have to check that 6 and & preserve the relations (SC-A), (SC-
B), (SC-B’), and (SC-C), see Appendix A.4. First, we shall show the claim
for 6. For the relations (SC-A) and (SC-C) are trivial. Hence, we will show
that & preserves (SC-B) and (SC-B’).

For (SC-B), we will show the following equation.

[To(a) (ka&"V), 5 (kas™ " )]

(7.2) — H (a+6)( J oc+,6’€ in— jmyz'u)
o(ia+iB)EQ, 5

where v, u € Kand & = a+néd, 3= B+md € ™A. If 6 = id, then nothing to
do. Thus, in the following, we assume that o # id. Suppose that XN # Agy.

In this case, it is easy to see that ko = kg = koyp = 1 and " ( Vo B) = CZJB
by Proposition 3.7 and Lemma 3.8. Then the equation (7.2) holds. Suppose

that Xy = Agp. In this case, a concrete calculation shows that

c 7.] — C”j — Navﬂ lf,L :j = 17
&8 o, 0 otherwise.

kakgkais = ¢.. Hence, the

Then again by Lemma 3.8, we get " iy

( ),0(8)
equation (7.2) also holds.

For (SC-B’), we will show the following equation.

73 Wo(a)(Kad™"'T) - 3,5 (ks& V) - Wo(a)(ka& ")~
’ 8) 5—(m—nﬁ(Ha))y7.—ﬁ(Ha))

I

= s, (@(B) (”a(a),(f(B)’“s«x(
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where v € K, 7 € KX and & = a + nd,3 = B+ md € A. Here, we

used o(B)(Ho(a)) = (0(8),0(a)’) = (B,a") = B(Ha) and s,(a)(o(B)) =
(sa(B)) + (m — nB(H,))d. If o = id, then nothing to do. Thus, assume
that o # id. As before, if Xy # Agy, then the equation (7.3) is easy to see.
Suppose that Xy = Agy. In this case, a concrete calculation shows that

R B if B(Ha) =0 (ie., sa(B) = B),
Tap =B =N LN, if B(Ha) = £1 (ie., 5a(8) = § £ a).

Then by Lemma 3.8, one sees that the equation (7.3) holds.
Finally, using Lemma 4.1, we can also show that & preserves the relations

(SC-A), (SC-B), (SC-B'), and (SC-C). 0

By Proposition 7.2, we can consider the subgroup (6, ) of the automor-
phism group of éK(g) (Xg\})) generated by & and @, and we get an isomorphism
I' = (6,w) via 0 — ¢ and w — @. Under this identification, I" acts on the
group Q5K(§) (X( )) We let QSK({) (X( )) denote the fixed-point subgroup of

éK(f) (XE\I,)) under I'.

7.2. Special Elements in Twisted Affine Kac-Moody Groups. As in
Section 5.1, we define some special elements in @K(f) (Xg\l,)).

For v € K(¢) and @ = o’ + nd € ™A% with a’ ++ o € A, we define an
element Z;(v) of (‘SK( )(X(l)) as follows.

(G-1): Z4(v) := z4(v) if d is oftype (R-1).

(G-2): Z4(v) := x4 (v )To(a) (") if @ is of type (R-2).

(G-3): Tu(v) = $a(V)%(a)(57"V)$a+a(a)(%Na(a),afanz) if a is of
type (R-3).

(G-4): iy(v) := 26 (V)T0(a) (V)T o2(4) (67) if a is of type (R-4).

Lemma 7.3. These elements belong to ésK(g)(xg))F.

Proof. If & = id, then nothing to do. We shall show the claim one-by-one for
6 # id. In the following, let o« € A be the corresponding root a <> o € A.

Suppose that a is of type (R-1). By definition, 6(Z4(v)) = atns (k& "v).
First, assume that (Xy,r) # (Ag.,2). Then by Proposition 3.7, k, = 1.
Since @ € A7 and a € A|Ong, the integer n should be divided by r. Thus,
& ™ =1, and hence 6(Z4(v)) = Z4(v). Next, assume that (X, r) = (Ag, 2).
By Proposition 3.7, we have k, = —1. Hence, we have to show that
£ = (=1)"" = —1. Since & € A% and o’ = 2a is of type (R-1), we
see n € 27 + 1. Thus we are done.
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Suppose that a is of type (R-2). Since ko, = 1, we get
&(i’d(’/)) = To(a)+nd (f_ny)q:aers(y)_

This proves the claim, since a4+ o(a) ¢ A and the product is commutative.
Suppose that a is of type (R-3). By Proposition 3.7, we get k, = 1 and
Kato(a) = —1. Since & + o(&) = a + o(a) + 2nd, we have

&(Za(v))
= 2,a) (V)18 (E V)81 0(6) (— 5 No(a) ol V)
= Zo@)1a(Comy ol V)T (V) T0(a) (V) Ta 1 0(a )< %N (@0 ")
= 26(W)2o(0) (V) Tar0@) ()0 — 3No().a)€ V7).
Here, we used the commutation law, see (A.1). Since 0(177(16&),@ = c(lj’(la)@ =

Ny (a),a» We are done.
Suppose that a is of type (R-4). Then by the same calculation for (R-2)
shows 6(Z4(v)) = Ta(v). Since wow = o2 and W' (¢") = v, we get

O(Za(V) = Tua) (W (1) Tuw(o(a) (€M) T2 (E2"V) = Ta(v),
see the proof of Lemma 5.2. This completes the proof. (|

For 7 € K(&)* and & = a/ + nd € A with o’ < o € A, we define
elements W, (t) and ha(7) of éK(g) (Xg\l,)) as follows.
(W-1): w,(7) := wa(7) if @ is of type (R-1).
(W-2): W4(7) := &4(7)T_a(— gn ~D4(r) if a is of type (R-2).
(W-3): (1) 1= 4(7)F_a(—2N, (a) o™ 7 1) Za(7) if a is of type (R-3).
(W-4): @4(7) := Fa(7)E_a(—7)a(7) if a is of type (R-4).
(H): ha(1) := wa(r)ws(—1) for all types.
Note that if a is of type (R-3), then Ny(4) o = %1, and hence (Na(a),o)il =
N,

o(a),a:
Then a direct calculation shows the following.

Lemma 7.4. Elements 24(v), wa(7), and 71@(7') satisfy the relations (SC-

7.3. Galois Descent Formalism. In this subsection, we will show that

the fixed-point subgroup QASK(Q (Xg\l,))r of ésK(g)(xg)) under I' is isomorphic

to B (X)),
If we consider the case when r = 1, then we have constructed the following
surjective group homomorphism (see (6.1)).

B (XY) — Gr(K(€) ®k Rx);  @a(v) — zalv ®x 27,
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where & = a +nd € ™A and v € K(£). Since Gk is a group scheme, we
can consider the natural group isomorphism Gg(K(¢) ®x Rx) — Gk (Sk)
induced from the canonical algebra isomorphism K(¢) ®x Rk — Sk =

K(&) [zi%] given by v ® 2"+ vzr (v € K(€), n € Z). Then by compositing
above maps, we get the following surjective group homomorphism.

U G (X)) — Gr(K(€) ®x Ri) 2 Gx(Sx);  za(v) — za(vz?),

where @ = a +né € A and v € K(&). It is easy to see that this preserves
the I'-action, see (7.1) and Section 5.1. Hence, by taking the fixed-point
functor (—)F to ¥, we have the following group homomorphism.

ol éﬁK(g) (Xg\lf))r — GK(S]K)F = ‘C(GK; F)'
Since (—)! is left exact, we have Ker(¥!) = K* by Theorem 6.7.

On the other hand, we shall consider the following group homomorphism
0 : Fr(A%) = By (XYL

Za(v) if @’ is of type (R-1),
O(za(v)) := Ta(§, ") if a is of type (R-2),
Za(e&, ") if a is of type (R-3),
Za(v) if a is of type (R_4),

where @ = @’ + nd € A and v € K. For &, and ¢, see Notation 4.12.
Lemma 7.5. The induced map O : (;SK(XSG)) — QAﬁK@) (Xg\lf))F is well-defined.
Proof. For each @ € A? and 7 € K*. One easily sees that

we (&, ") if a is type of (R-2),
wa(T) otherwise

O(wa(r)) = {
and O(hg (7)) = ha(r). Thus, by Lemma 7.4, one easily sees that the map
© preserves the relations (SC-A), (SC-B), (SC-B’), and (SC-C). O
Lemma 7.6. The following diagram is commutative.

\I/F
Grce) (X)) —— Gx(Sk)F

Jo |

Sr(X)) —— L(Gx;T).
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Proof. Let & = a’ + nd € A” and v € K. For an (R-1) type root a, it
is easy to see that (U' 0 ©)(z4(v)) = za(vz+) = ®(z4(r)). If a is of type
(R-2), then

(PF 0 0)(za(v) = UF(@a(&, ™)) = V(wal&y "V)To(ay(Es —"v>)
= (& Ve )Ty (&E MVET)
= Fq(&"vzr) = O(xa(v)).

Next, suppose that a is of type (R-3). Then (¥! o ©)(z4(v)) is calculated
as follows.

U (Za(eal, "))
= U(zaleals"V)To(a)(€ala " " V)T 10(0) (3 No(a)atala V7))
%)xa(a)(ea&;"f—"uz%)a:a+g(a)(%]\70(a)7aegf "u222rn).
On the other hand, by definition,
D(24(v)) = Taleay "v2? — (1,3)) = Za(eal, "vz2, 26 22M).

Since r = 2, we conclude that (U o ©)(z;(v)) = ®(x4(v)). Finally, if a is
of type (R-4), then the similar calculus for (R-2) shows that the equation
(UL 0 ©)(z4(v)) = ®(z4(v)) also holds. O

= wq(€, "z

Thus, we have the following commutative diagram:

o r
1] —— KX (G Q5K(§)(X§\17))F ‘Ij—> GK(SJK)F

Te |

1 ———— Kx —— x(XV) — LG D) — 1.

By Theorem 6.7, we see that the bottom sequence is exact. In particular,
Ul is surjective and the upper sequence is also exact. Thus, © should be
bijective, and hence we have the following result.

Theorem 7.7. (’SK@ (X%))F = (’SK(XS\TI))'

APPENDIX A. KAac-MooDY GROUPS

There are several ways to construct a “Kac-Moody group” associated to a
given Kac-Moody algebra, [12, 14, 17, 22, 24, 28] etc. In our paper, we have
used a representation theoretic approach (4 la Chevalley). In this appendix,
we give the definition and review some basic properties.
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A.1. Kac-Moody Algebras. In the following, we fix a natural number £
and put I := {1,...,¢}. An integer matrix A = (a;;)i jer is called a gener-
alized Cartan matriz (GCM for short) if it satisfies the following conditions:
a; =2fori el a;; <0fori#jel, and a;; =04 aj; =0fori,jel.
We let (A, AY,II = {a; }icr, IIY = {h;}ier) be a realization of A over Z, that
is, A is a free abelian group of finite rank, AV is the Z-dual of A, and II
(resp. I1V) is Z-free in A (resp. AV) satisfying a;(h;) = a;; for all 4,5 € I.
We note that the rank ¢ of A satisfies ¢/ > . We put b := AV ®7 C and
extend 11V to a C-basis of b, say, {hy}irer = {h1,...,hg,..., hp}, where
I':={1,...,0'}.

A Kac-Moody algebra g defined over C (associated to the triple (b, II, I1V))
is the Lie algebra defined over C generated by a set {hy, e, fi}ier icr, called
the Chevalley generators of g (cf. [11]), subject to the following relations:

[hir, hyr] = 0, [hir,ej] = aj(hir)ey, [har, fi] = —aj(ha) £,
lei, 3] = 6ijhi, ad(ep)'~1(eg) = 0, ad(f,)'~*1(f,) =0

for i/, € I, i,4,p,q € I with p # q. Here, §;; is Kronecker’s delta and
ad: g — Endc(g); X — (Y — [X,Y]) is the adjoint representation on g.

One easily sees that b is a Lie subalgebra of g, called the Cartan subalgebra
of g. Let g4 (resp. g—) be the Lie subalgebra of g generated by {e;}icr
(resp. {fi}ier). Then we get the triangular decomposition g =g+ ®h D g_.
The Z-submodule Q := ) .; Za; of A is called the root lattice. For latter
use, we put Q1 :={a € Q|a#0and ac ) ;Z>0;}, where Z>g :=
{0,1,2,3,...} C Z. For a € Q, we set the subspace g, :={X € g | [H, X]| =
a(H)X for all H € b} of g is called the root space of g corresponding to .
The set A :={a € Q| a # 0 and g, # 0} is called the root system of g with
respect to h. Set Ay = ANQ+.

Let b* denote the C-dual of . For «; € II, we define s; € Autc(h*) so that
3i(A) := A= A(h;)a; for each A € h*. The subgroup W of Autc(h*) generated
by the set {s;}icr is called the Weyl group of g. The set of all real roots ™A
is given by W(II) := {w(;) | w € W, a; € IT}. Set Ay :="ANAL.

A.2. Admissible Lattices. Let U(g) be the universal enveloping algebra

over C of g. For z € U(g) and a natural number m, we set z("™) := Lgm
and (7) = 2 175 (z — 7), where the product is taken in an arbitrary

order. Put z(0 := (g) := 1 for simplicity. Let Uz be the Z-subalgebra of
U(g) generated by the set
m 7

{<h>,e<m),fi(m) |he AV, iel,meZ>o}.

By [30], this algebra is a Z-form of U(g), that is, the canonical map Uy, ®z
C — U(g) is an isomorphism of Lie algebras over C.
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Since each e; (i € I) acts locally nilpotently on g under the adjoint rep-
resentation, we get an automorphism on g as follows

exp(ad(e)) 10— g X D ad(er)"(X).

m=0

Similarly, we see that exp(ad(f;)) € Autc(g). For each i € I, the restric-
tion of the automorphism exp(ad(e;)) exp(ad(f;)) ' exp(ad(e;)) to b coincides
with the contragredient representation of s;, and hence we shall identify
both. The action of the Weyl group W on g naturally extends to (g). Then
the Z-algebra Uy is invariant under the action of W, see [30, Section 4.5].

A representation g — Endc (V) is said to be h-diagonalizable if V' is the
direct sum of its h-weight spaces V = @/\eh* Vy, where V) := {v € V|
Hv = MNH)vforall H € h}. Set A(V) := {\ € b* | V), # 0}. A b-
diagonalizable representation V of g is said to be integrable if e; and f; act
locally nilpotently on V for all i € I.

Definition A.1 (Cf. [8, Section 27]). Let V' be a representation of g, and
let V7 be a Z-submodule of V. A pair (V, V7) is said to be admissible if

e V is integrable,

e Vz is a Z-form Vz of V, that is, the canonical map Vz @7 C — V is
an isomorphism of C-vector spaces, and

e V7 is invariant under the action of Uy.

In this case, we call V7 an admissible lattice in V.

Example A.2. We see some basic examples.

(1) By the adjoint action, g is an integrable representation of g. Then
gz = g NUz is an admissible lattice in g.

(2) For A € h*, we let V* denote an integrable irreducible representation
V> of g with highest weight A. Then the Uz-submodule VZA of VA
generated by a highest weight vector of V* is an admissible lattice
in V* (cf. [26, Corollary 1 in Chapter 2]).

(3) For each i € I, we let \; be a fundamental weight, and let V¢ be
as in (2) above. Let Vi be the direct sum of all Vi for i € I. Then
the direct sum of all VZ’\ “ for 4 € I is an admissible lattice in V.

For an integrable representation V' of g, we let Z(V') be the submodule
of Z* generated by {(A(h;))ier € Z' | A € A(V)}, called the valued weight
lattice of V. As in [26, Lemma 27|, we have the relation Z(g) C E(V) C
E(Vie) = Z°.
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A.3. Chevalley Pairs. A Lie algebra automorphism p : g — g is called the
Chevalley involution of g if it satisfies

P(H) = 7Ha P(€z> = 7f’ia and p(fl) = —€
for all H € h and i € I (cf. [11, Section 1.3]).
For a real root o € ™A, recall that g, is the root space of g corresponding
to a. By definition, there exists w € W and «o; € II such that a = w(ay).
We set H, := w(h;). Note that H,, = h; for all i € I.

Definition A.3. For a real root a € A, a pair (X,Y) € g X g—q is called
a Chevalley pair for o if it satisfies p(X) = =Y and [X,Y] = H,.

For a real root @ € ™A with o = w(«;) for some w € W and «; € II, we
set
Xo i =w(e;) and X_, :=w(f;).
Then it is easy to see that (X, X_4) is a Chevalley pair for a. Using the
Chevalley involution, a Chevalley pair uniquely exists up to sign (cf. [21]).
Since Uz is stable under the action of W, we get the following lemma.

Lemma A.4. For a € A and m € Z>q, we have Xém) € Uy.

For o, 8 € ™A, we define a scalar Ny g by [Xo, Xg] = NogXats. We
set Nog = 01if a+ 3 ¢ A, for simplicity. By [21, Theorem 1], the scalar
N, s is an integer. If the GCM A is of finite type, then the set {X, | o €
A} U{H,, | o; € I} forms a Chevalley basis of g.

As in Example A.2 (1), we consider the adjoint representation on g and
gz = gNUz. For v € Z, we can define an isomorphism exp(rv ad(X,)) : gz —
gz of Z-modules by X — >>%°_ 2 ad(X,)™(X) (cf. Lemma A.4).

For a, 8 € A with a # 43, we suppose

Qop={ia+jfecQ|ij=1,23,...}NA C "A.

Then by [21, Theorem 2|, we can find integers czjﬁ such that
(A.1)

lexp(vad(Xa)), exp(uad(Xa)] =[] explcd, vip ad(Xiass0))

ia+jBEQq,p

for all v, u € Z, where the product is taken in an arbitrary order. Here, [, |
denotes the commutator, that is, [z,y] := zyz~ly~! for two elements x,y of
a group. Note that Crlxlﬁ coincides with N, g.

For a, B € ™A, there exits a scalar 7, s such that

(A.2) exp(ad(Xy)) exp(—ad(X_,)) exp(ad(X,))(Xp) = N3 Xsa(8)

where s,(8) := 8 — B(Hy)a is the simple reflection. By the property of
Chevalley pairs, one sees that 7,3 = £1.
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A.4. Kac-Moody Groups. Let (V,Vz) be an admissible pair of g. For a
fixed field K, we set Vi := Vz ®z K. For a € A and v € K, we can define
an element z,(v) of Autg(Vk) as follows.

(A.3) zo(V) : Vk — Vk; v @z 11— Z Xém).v ®z V"™,

m=0
see Lemma A.4. Here, Xém).v denotes the action of X&m) on v.

Definition A.5. The Kac-Moody group Sk defined over K associated to
the admissible pair (V, Vz) is the subgroup of Autk (Vi) generated by the set
{za(v) |a € A, v € K}. We prepare some terminology as follows.
e & is said to be of adjoint type if we take V = g the adjoint repre-
sentation.
e Bk is said to be of simply connected type if we take V = Vi, or
equivalently Z(V) = Z¢.
e Ok is affine if g is affine (i.e., the GCM A is of affine type).

For simplicity, we say that an affine Kac-Moody group &k is of type Xg\r,) if
g is affine of type Xg(,), where X%) is one of Kac’s list [11, TABLE Aff r].

In the following, we let &k be a Kac-Moody group over K associated to
an admissible pair (V, V7). For a € A and 7 € K* := K\ {0}, we put

(Ad)  wo(T) =20 (T)2_o(—7 Naao(r) and  he(7) i= wa(T)wa(—1).

One easily sees that wo(—7) = we (7)™ and ha (7)1 = ho(771).

Let Tk be the subgroup of &g generated by {h(7) | @ € A, 7 € K*}.
The group Tk is an abelian group and is generated by the hq, (7)’s. We let
S be the subgroup of &k generated by {z4(v) | @ € ®AL, v € K}, and let
%Hﬂg be the subgroup of &g generated by Tk and ilﬂjg.

Theorem A.6. The group &k admits a Bruhat decomposition, that is,

Ok = |_| BEwBE (disjoint union,).
wew

Proof. We only show the claim for B}, since the proof is similar for By
Let Mk be the subgroup of &k generated by {wq(7) | @ € A, 7 € K*}.
It follows that Tk is a normal subgroup of Mk, since wq (8)hg(T)wa(—0) =
hso()(T) for a,8 € A and 7,0 € K*. The map W — Nk /T defined by
Si +» Wq, (1)Tx is an isomorphism (cf. [26, Lemma 22]), and hence the subset
S = {wq, (1)Tk | a; € IT} of Nk /Tk generates W.

First, we show that Tk coincides with %% NNk. Since T C %% NNk is
trivial, we take and fix x € %% NNk and put w = 2Tk. For each X € A(Vk)
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and vy € (Vk)a, we write down the image of vy under x as

z(vy) = TUr + Z Vu+p = U:U(M),
BEQ+

where 7 € K*, v, + 8 € (Vk)u45, and U;}(M) € (VK)w(w)- Then by the

assumption, we get x(vy) = TU) = U{U(u), > pen+ Vutp = 0, and w(p) = p.
For each o; € II, there exists pu; € A(Vk) such that 0 # e;((Vk)u,) C
(Vk)a;4p;- In particular, we see w(p;) = p; and w(oy + pi) = oy + pi. This
means that w(a;) = «; for all a; € II, and hence w = 1. We conclude
that x € Tx. Finally, the same argument as in [17, Section 6.3] shows that
sBrw C BrwBg U BrswBg and sBgs ¢ Bk for all s € G and w € W.
These results show that the quadruple (B, ‘B%, Nk, S) forms a Tits system
for &k (cf. [18, 29]). O

Let Z(®k) denote the center of the Kac-Moody group &k, regarding as
an abstract group. Using the Bruhat decomposition above, we can prove
the following result in the same way as [26, Chapter 3].

Proposition A.7. The center Z(®&k) of & lies in Tx. Moreover, Z(Bk)
is explicitly given as

Z(®k) = {[[ hoi(m) € T | [[ 77 =1 forall j €I},
i€l i€l
and is isomorphic to Hom(Z(V)/Z(g), K*).
Let §x(™A) denote the free group with free generating set {Z,(v) | a €
A, v e K}. As (A.4), we put
o (7) 1= Za(T)E—a(—T Dia(r) and  he(r) i= e (7)a(—1)
for a € A and 7 € K*. We define the following relations in Fx("™A). For
a,BeE"A v,ueK 7,0 € KX,
(SC-A): 0 (1)ia(p) = Falv + 1), -
(SC-B): [ia(v), 5l = 11 diarsslcldy i),
ioz-i—jﬂGQaﬁ
(SC-B'): wa(7)is(0)iba (1) ™" = &y, (5) (10,5 v~ ),
(SC-C): ho(7)ha(8) = ha(T6).
Here, ci;jﬁ and 7,5 are defined in (A.1) and (A.2), respectively. By [30] (see
also [26, Chapter 6]), we have the following result.

Proposition A.8. The Kac-Moody group of simply-connected type is iso-
morphic to the quotient group of Fx("A) by the normal subgroup generated
by the relations (SC-A), (SC-B), (SC-B'), and (SC-C).



80

(1]

[10]
[11]
[12]
[13]
[14]
[15]
[16]
[17]
(18]
[19]
[20]

21]

J. MORITA, A. PTANZOLA AND T. SHIBATA

REFERENCES

E. ABE, Coverings of twisted Chevalley groups over commutative rings, Sci. Rep.
Tokyo Kyoiku Daigaku Sect. A 13, no. 366-382 (1977), 194-218.

S. CHASE, D. K. HARRISON AND A. ROSENBERG, Galois theory and cohomology of
commutative rings, Mem. Amer. math. Soc. 52 (1965), 15-33.

Y. CHEN, On representations of affine Kac-Moody groups and related loop groups,
Trans. Amer. Math. Soc. 348, no. 9 (1996), 3733-3743.

V. CHERNOUSOV, V. EGORrOV, P. GILLE AND A. PIANZOLA, A cohomological proof
of Peterson-Kac’s theorem on conjugacy of Cartan subalgebras for affine Kac-Moody
Lie algebras, J. Algebra 399 (2014), 55-78.

M. DEMAZURE AND P. GABRIEL, Groupes algébriques. Tome I: Geometrie algebrique,
generalites, groupes commutatifs. (French), North-Holland Publishing Co., Amster-
dam, 1970.

P. GILLE AND P. PoLO (EDS.), Schémas en groupes. Tome I-III (French), Séminaire
de Géométrie Algébrique du Bois Marie 1962/64 (SGA 3). Dirigé par M. Demazure
et A. Grothendieck, Lecture Notes in Math. 151-153, Springer-Verlag, Berlin-New
York, 1970.

T. J. HAINES, J LOURENGO, T. RICHARZ, On the normality of Schubert varieties:
remaining cases in positive characteristic, arXiv:1806.11001v4 [math.AG], 2020.

J. E. HUMPHREYS, Introduction to Lie algebras and representation theory, Graduate
Texts in Mathematics 9, Springer-Verlag, New York-Berlin, 1972.

N. IwAHORI AND H. MATSUMOTO, On some Bruhat decomposition and the structure
of the Hecke rings of p-adic Chevalley groups, Inst. Hautes Etudes Sci. Publ. Math.
no. 25 (1965), 5-48.

V. G. Kac, Simple irreducible graded Lie algebras of finite growth, Izv. Akad. Nauk
SSSR Ser. Mat. 32 (1968), 1323-1367.

V. G. KAc, Infinite dimensional Lie algebras. Third edition., Cambridge University
Press, Cambridge, 1990.

S. KuMAR, Kac-Moody groups, their flag varieties and representation theory, Progress
in Mathematics 204. Birkhauser Boston, Inc., Boston, 2002.

J. LOURENGO, Grassmanniennes affines tordues sur les entiers, arXiv:1912.11918v3
[math.AG], 2021.

O. MATHIEU, Construction d’un groupe de Kac-Moody et applications, Compositio
Math. 69, no. 1 (1989), 37-60.

R. V. Moobpy, A new class of Lie algebras, J. Algebra 10 (1968), 211-230.

R. V. Moobpy, Euclidean Lie algebras, Canadian J. Math. 21 (1969), 1432-1454.
R. V. MooDY AND A. PIANZOLA, Lie algebras with triangular decomposition, Cana-
dian Mathematical Society Series of Monographs and Advanced Texts. A Wiley-
Interscience Publication. John Wiley & Sons, Inc., New York, 1995.

R. V. Moobpy AnD K. L. Tro, Tits’ systems with crystallographic Weyl groups,
J. Algebra 21 (1972), 178-190.

J. MORITA, Tits’ systems in Chevalley groups over Laurent polynomial rings, Tsukuba
J. Math. 3, no. 2 (1979), 41-51.

J. MORITA, On some twisted Chevalley groups over Laurent polynomial rings, Cana-
dian J. Math. 33, no. 5 (1981), 1182-1201.

J. MoriITA, Commutator Relations in Kac-Moody Groups, Proc. Japan Acad. Ser. A
Math. Sci. 63, no. 1 (1987), 21-22.



AFFINE KAC-MOODY GROUPS AS TWISTED LOOP GROUPS 81

[22] J. MORITA, Lectures on Kac-Moody groups (Japanese), Sophia University Lecture
Notes No. 44, 2001.
https://digital-archives.sophia.ac.jp/repository/view/repository/0000003450571lang=en

[23] G. PapprAs AND M. RAPOPORT, Twisted loop groups and their affine flag varieties,
Adv. Math. 219, no. 1, (2008), 118-198.

[24] D. H. PETERSON AND V. G. Kac, Infinite flag varieties and conjugacy theorems,
Proc. Natl. Acad. Sci. U.S.A. 80, no. 6, i. (1983), 1778-1782.

[25] B. REMY, Groupes de Kac-Moody déployés et presque déployés, Astérisque No. 277
(2002).

[26] R. STEINBERG, Lectures on Chevalley groups, Yale University, New Haven, Conn.,
1968.

[27] J. TrTs, Algébres de Kac-Moody et groupes associés, Annuaire du College de France
(1980-1981) 75-87 et (1981-1982) 91-106.

(28] J. T1TS, Groups and group functors attached to Kac-Moody data, Lecture Notes in
Math., 1111, Springer, Berlin, 1985.

[29] J. T1TS, Ensembles ordonnés, immeubles et sommes amalgamées, Bull. Soc. Math.
Belg. Sér. A 38 (1986), 367—387.

[30] J. TiTs, Uniqueness and presentation of Kac-Moody groups over fields, J. Alge-
bra 105, no. 2 (1987), 542-573.

J. MORITA
INSTITUTE OF MATHEMATICS
UNIVERSITY OF TSUKUBA
1-1-1 TENNODAI, TSUKUBA, IBARAKI 305-8571
JAPAN

e-mail address: morita@math.tsukuba.ac.jp

A. PIANZOLA
DEPARTMENT OF MATHEMATICAL AND STATISTICAL SCIENCES
UNIVERSITY OF ALBERTA
EDMONTON, ALBERTA T6G 2G1
CANADA
AND
CENTRO DE ALTOS ESTUDIOS EN CIENCIAS EXACTAS
AVENIDA DE MAYO 866, (1084), BUENOS AIRES
ARGENTINA

e-mail address: a.pianzolaQualberta.ca

T. SHIBATA
DEPARTMENT OF APPLIED MATHEMATICS
OKAYAMA UNIVERSITY OF SCIENCE
1-1 RipAl-cHO KiITA-KU, OKAYAMA, OKAYAMA 700-0005
JAPAN

e-mail address: shibata@xmath.ous.ac.jp

(Received June 7, 2021)
(Accepted December 6, 2021)



