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Abstract: In recent years, scheduling optimization has been utilized in production systems. To
construct a suitable mathematical model of a production scheduling problem, modeling techniques
that can automatically select an appropriate objective function from historical data are necessary.
This paper presents two methods to estimate weighting factors of the objective function in the
scheduling problem from historical data, given the information of operation time and setup costs.
We propose a machine learning-based method, and an inverse optimization-based method using the
input/output data of the scheduling problems when the weighting factors of the objective function
are unknown. These two methods are applied to a multi-objective parallel machine scheduling
problem and a real-world chemical batch plant scheduling problem. The results of the estimation
accuracy evaluation show that the proposed methods for estimating the weighting factors of the
objective function are effective.

Keywords: multi-objective scheduling; estimation; weighting factors; machine learning; simulated
annealing; inverse optimization

1. Introduction

The optimization model for scheduling problems consists of boundary conditions,
decision variables, constraints, and objective functions. In practice, it is difficult to adapt to
changes in the selection of objective functions and weighting factors for multi-objective
optimization problems when constructing an optimization model for production scheduling
problems. Data-driven optimization is one of the decision-making methods based on
quantitative data [1]. In the data-driven approach, the actions are determined after the data
is collected, stored, and analyzed. This allows past information to be incorporated into
future decision-making factors. The data-driven optimization approach has been widely
used in various fields such as supply chain, transportation systems, and healthcare [2–4],
and it is required for modeling complex production scheduling problems.

Scheduling optimization has become an important issue in recent years. Many compa-
nies have interests to upgrade their industrial facilities to meet the Industry 4.0 paradigm.
At the same time, they are required to optimally manage their production systems. In
recent years, real-world scheduling problems have become complicated due to complex
constraints and objective functions. Scheduling algorithms using the concepts of linear
optimization and batch operation scheduling [5] and nonlinear optimization theory and
batch scheduling [6] have been proposed and applied to a chemical industrial site. Methods
for integrating multiple time scales to increase process efficiency have also been stud-
ied [7]. The application of game theoretical approaches to job scheduling has also been
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studied in the distributed scheduling methods. An autonomous decentralized schedul-
ing [8,9], non-cooperative game approach for scheduling [10], and evolutionary game
theory approach [11] have been addressed. Recently, restaurant scheduling with resource
allocation [12] has also been proposed. These approaches have been successfully applied
to the job scheduling problems. It is also required to help decision-makers to build an
optimization model from historical and real-time data for efficiency and flexibility of pro-
duction systems. In online scheduling, algorithms have been proposed which take real-time
data into account [13]. Scheduling problems with multiple objectives require mathematical
models that reflect human operators’ preferences based on multiple optimization crite-
ria [14]. However, it is difficult to set the appropriate weighting factors for the objective
function in a multi-objective scheduling problem [15]. Scheduling is a complex task that
is often determined manually or by simulation. As a result, suboptimal solutions are
derived [16]. If weighting factors that do not reflect the operator’s intention are set, an
undesired schedule will be generated. In that situation, human operators must manually
fine-tune the schedule when the circumstances surrounding the production environment
change. Thus, the weighting factors need to be modified iteratively in the multi-objective
scheduling problem [17,18]. The estimation of the weighting factors is required because
the human operators can efficiently obtain the schedule originally desired. For example,
when we automatically determine the weighting factors of the objective function, the in-
put/output data is effectively used to quantify the evaluation criteria of the production
schedules that had been already in operation. As a result, the weighting factor of the daily
schedule result can be quantitatively analyzed.

In this paper, we propose a machine learning method and an inverse optimization
method to estimate weighting factors of the objective function for model identification
of production scheduling problems. In machine learning, features for weighting factor
estimation are selected using a wrapper method. In recent years, machine learning has
grown rapidly with the increase in data and the development of computers performance.
On the other hand, inverse optimization is used to estimate the internal structure based on
the input/output data of the target and to optimize from input to output based on it, and
various studies have been conducted [19,20]. In the machine learning method, we attempt
to extract effective features to improve the estimation accuracy. Additionally, the weighting
factor is estimated by the inverse optimization to compare the performance with that of
machine learning. The difference in the estimation results for the small-scale and large-scale
problems is studied. The proposed method is applied to a parallel machine scheduling
problem for a chemical batch plant. From the result of computational experiments, it was
confirmed that using feature selection approach can improve the accuracy of weighting
factor estimation in machine learning for the parallel machine scheduling problems.

The contributions of this paper are as follows. We propose a model identification
method for multi-objective scheduling problems based on historical scheduling data. We
propose the wrapper method for feature selection to select effective features for weighting
factor estimation. We apply our proposed method to realistic data for a scheduling problem
of a chemical batch plant.

This paper is organized as follows. First, we discuss related work for weighting factor
estimation in Section 2. We then explain the problem definition of scheduling problems
and weighting factor estimation. The machine learning method is described in Section 3,
and the inverse optimization method is proposed in Section 4. In Section 5, we perform
numerical experiments on the proposed method. We conclude and discuss future work in
Section 6.

2. Literature Review

Analytic Hierarchy Process (AHP) is one of the traditional decision-making methods
for estimating weighting factors for multi-criteria decision-making [21]. Evaluation is
performed by pairwise comparison for multiple evaluation criteria and alternatives. The
pairwise comparison determines the importance of evaluation criteria and alternatives. It
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is effective in rationalizing complicated decision-making. Since it is a simple method, it is
used in various situations. For example, the AHP model is used to evaluate the components
of a machining center so that the manufacturer can purchase the most suitable machining
center [22]. However, when there are so many evaluation criteria and alternative options, it
is too complicated to set appropriate pairwise comparisons for multiple evaluation criteria.

In general, the methods for solving multi-objective optimization problems are classi-
fied into the following three methods depending on the situation in which the decision-
maker involves the process [23].

1. A priori methods: The decision maker specifies the preferred objective function before
executing the solution process.

2. Interactive methods: Phases of interaction between decision-makers and the solution
process are iteratively conducted.

3. Posteriori or generation methods: After the solutions are generated by the weighting
method or ε-constraint method, the decision-maker selects the preferred solution.

In this study, the a priori method is used to solve the scheduling problems. However,
the aim of this study is to estimate the weighting factor of a scheduling problem instead of
solving it.

A previous study on the identification of the objective function was conducted to read
the operator’s intentions from the input/output data of a scheduling problem [24]. In the
single-objective scheduling problem, the objective function used was estimated from histor-
ical data in the literature. This was conducted for only one objective function. However,
in an actual factory, there are multiple objective functions to be optimized in many cases.
The methods for solving multi-objective optimization problems have been extensively
studied in the literature. A decomposition-based evolutionary multi-objective optimization
algorithm is used, which transforms a multi-objective optimization problem into several
single objective optimization problems and optimizes them simultaneously [25]. For the
three-objective scheduling problem, a three-phase decision-making method is constructed,
and finally, a data envelopment analysis technique is applied to determine the preferred
schedule [26]. Dynamic scheduling is proposed to solve the optimization problem of
selecting the next job for each schedule [27]. In multi-objective flow shop scheduling, opti-
mization algorithms are used which consider changes in material requirements, inventory
control, and delivery dates [23]. To solve the multi-objective scheduling problems, there is a
method of setting a weighting factor for each objective function to create a single objective
function. To reflect the operator’s intentions from the past schedule, it is necessary to
estimate the weighting factors of the objective function.

Previous studies on weighting factor estimation are described. The inverse problem
using linear programming was used to estimate the weighting factors after the range of
weighting factor that derives a preferred solution is derived when a person in the field
makes decisions [18]. However, this method has not been applied to the actual scheduling
problem in the literature. In reference [28], a method for estimating the weighting factors
from past scheduling data has been proposed for small-scale scheduling problems. How-
ever, the scale of production processes in the conventional study is not so large because
the exact optimal solutions are used to find the weighting factors by using commercial
solvers. It becomes intractable to utilize exact algorithms for large scale problems. There-
fore, various approximate solution methods have been proposed for solving large-scale
scheduling problems [29]. The simulated annealing method was used to minimize the total
loading time of the container in the scheduling problem of the two-transtainer system [30].
For flexible job shop scheduling problems, an effective algorithm that combines a genetic
algorithm and tabu search has been proposed [31]. In reference [32], weighting factors
were estimated for large-scale scheduling problems. A simulated annealing method was
used to solve the scheduling problem and a near-optimal solution was derived. However,
in machine learning, the features to be selected for estimating the weighting factors were
combined manually in the literature. It becomes more difficult as the number of features
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increases. Efficient feature selection methods that can improve estimation accuracy are
required for machine learning methods.

We address the model identification of the multi-objective scheduling problem and
apply the wrapper method as a feature selection method for estimating weighting factors
in this paper.

3. Problem Description

This section describes the multi-objective scheduling problem used in this study and
the weighting factor estimation problem.

3.1. Definition of Multi-Objective Parallel Machine Scheduling Problem

In this section, we describe the multi-objective unrelated parallel machine scheduling
problem. The objectives of this problem are to determine the assignment of jobs to some
machines and the job processing order. This problem is subject to three constraints. The
unrelated parallel machine scheduling problem has no specific restrictions on the processing
time of each job. Additionally, the processing speed of each machine is different. It is more
general than related parallel machine scheduling problems that the processing speed of
each machine is the same.

The following three constraints are given:

• There is no idle time set for each machine.
• One machine can only handle one job at a time.
• Each job cannot be interrupted during processing. No preemption is allowed.

In the scheduling problem, the obtained schedules are different depending on the
objective function.

3.2. Weighting Factor Estimation Problem from Historical Data

Noise and unnecessary information in the actual historical data interfere with the esti-
mation of the weighting factors of the objective function. Therefore, we use the scheduling
results (starting time of operations, production sequence of operations) and the param-
eters of the scheduling problem as input/output data. The possibility of using these
input/output data for system identification to estimate the model is considered, but we
refrain from using them because the relationship between the schedule and the weighting
factors is difficult to ascertain. It is still difficult to estimate the weighting factors from the
solution of the multi-objective scheduling problem because most of the scheduling prob-
lem is NP (non-deterministic polynomial-time) hard, and there is no one-to-one relation
between the solution of the scheduling problem and the correct weighting factors of the ob-
jective function. Another challenge is how to find effective features from the input/output
data. The problem can be used in many realistic situations due to the following reasons.

1. When the plant is operated by human experts, they will set appropriate weighting
factors in daily scheduling. The derived weighting factors can be used to understand
the expert knowledge of human operators.

2. The solutions of the scheduling system can be used to set appropriate weighting
factors of the objective function when an automated scheduling system is equipped
in a real factory.

The outline of the weighting factor estimation is shown in Figure 1. In this study,
the near-optimal solutions of the scheduling problem are regarded as the actual data for
estimating the weighting factors. We assume a parallel machine production scheduling
problem. The processing time, job delivery time, and setup cost are given as input data. The
output data includes job assignments, processing order, and objective function values. The
weighting factor is estimated using these input/output data. Machine learning methods
and inverse optimization are used to estimate the weighting factors. The model is evaluated
by the mean squared error (MSE) between the estimated weighting factor and the true
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weighting factor. MSE is expressed by Equation (1), where yi is the estimated weighting
factor, ŷi is the true weighting factor, and Ndata is the number of data.

MSE =
1

Ndata
(yi − ŷi)

2 (1)

Figure 1. Outline of the weighting factor estimation.

4. Weighting Factor Estimation Method from Scheduling Results

Weighting factor estimation method using historical scheduling data is described.
Machine learning and inverse optimization for weighting factor estimation are proposed.

4.1. Machine Learning

In this section, weighting factor estimation using machine learning is described. The
outline of machine learning method is shown in Figure 2.

Figure 2. Outline of machine learning method.

First, we prepare 100 problem examples of the scheduling problem. Information
such as delivery time, processing time, and setup cost is given as input parameters to
the scheduling problem. A set of weighting factors is given to this input to solve the
scheduling problem and obtain the output. The output contains the job processing order,
job assignment, and each objective function value. The input data and weighting factors
corresponding to the output results are known. For small-scale problems, an exact solution
is obtained, and for large-scale problems, an approximate solution is obtained by simulated
annealing. The obtained input/output data is divided 8 to 2 into training and test data.
Then, the input/output data are converted into features. Then, machine learning models
are constructed by training data. Finally, machine learning is used to estimate the test data.
The machine learning method that we used in this study is random forest [33]. Random
forest is one of the supervised learning methods and it constructs a model with higher
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generalization performance by using multiple decision trees. A regression random forest
is used to output the estimated weighting factor as a continuous value. The decision tree
is formed by multiple explanatory variables. It is undesirable to use the input/output
data of a scheduling problem as is in machine learning. To construct a highly accurate
model with random forest, it is necessary to extract features that strongly represent the
relationship between the weighting factors and the schedule. In this study, we use features
for the explanatory variable. Conversely, including features that have no relationship
may generate noise during learning, increase computation time, and decrease prediction
accuracy. We will explain how to generate features used in random forests in Section 4.2.

4.2. Feature Extraction

This section describes the feature extraction methods used in machine learning. Fea-
tures that are considered effective for estimating weighting factors are extracted. The
features vary depending on the objective function used and the scale of the problem.

4.2.1. Small Scale Problems with 2 Objectives Optimization Problems

First, the features used for the small-scale problems with 2 objectives are explained [28].
In the 2 objectives case, the maximum completion time and the sum of setup costs are used
as objective functions. The objective function of the scheduling problem is expressed by
Equation (2).

min
{δijk}

w1max(Cik) + w2

M

∑
k=1

N

∑
i=1

δijkSij (2)

where w f represents the weighting factor of objective function f , Cik represents completion
time of job i at machine k, δijk represents 1 when job j is processed next to job i at machine
k, 0 otherwise, Sij represents setup cost when switching from job i to job j. We considered
the following features: 1. The values of the maximum completion time, 2. The values
of the sum of setup costs, 3. The variance of completion time for each machine, and 4.
Spearman’s rank correlation coefficients (τs,i and τp,i). The objective function values are
extracted because they are related to the weighting factors. If the objective of the maximum
completion time is emphasized, the difference between the completion times between
machines is small. Therefore, it is used as a feature of the variation of the completion time
σ2

c expressed by Equation (3).

σ2
c =

1
M

M

∑
k=1

(
Ck − C

)2 (3)

where M (k = 1, 2, . . . , M) represents number of machines, Ck represents maximum com-
pletion time of machine k, C represents mean of completion time of each machine. Figure 3
shows Gantt charts with different weighting factors. The vertical dashed lines represent
processing times of 300 and 600. In Figure 3a, the maximum completion time is emphasized,
and in Figure 3b, it is not emphasized. In this case, the variance of the maximum completion
time is effective.

Figure 3. Gantt charts with different weighting factor: (a) maximum completion time is emphasized;
(b) maximum completion time is not emphasized.
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τs,i represents starting time order of job i in ascending order, τp,i represents processing
time order of job i in ascending order. The orders τs,i are indexed by an integer value such
as 1, 2, 3, . . . , N according to the value of starting time of job i. Others τ are the same.
Spearman’s rank correlation coefficient, which represents the correlation between the ranks
of the two indicators, is used. Since the maximum completion time is used as the objective
function, a rank correlation is generated from the processing sequence of the job and the job
processing time order. The obtained rank correlation value rs is represented by Equation (4).
N (i = 1, 2, . . . , N) represents number of jobs, Xi is τs,i, Yi is τp,i.

rs = 1− 6 ∑N
i=1(Xi −Yi)

2

N3 − N
(4)

4.2.2. Large Scale Problems with 2 Objectives Optimization Problems

Then, the features for large-scale problems are proposed. We try to extract effective
features when the objective function is different. The sum of delivery delay and the sum
of setup costs is used as the objective function. The objective function of the scheduling
problem is expressed in Equation (5).

min
{δijk}

w1

M

∑
k=1

N

∑
i=1

Lik + w2

M

∑
k=1

N

∑
i=1

δijkSij (5)

where Lik represent a delay in delivery of job i at machine k. Since the objective function has
changed from small-scale problems, it is necessary to change the features used. Features that
are not related to the weighting factor do not contribute to the improvement of estimation
accuracy, so it is not preferable to use the same features. We considered the following
features: 5. The values of the sum of delivery delay, 2. The values of the sum of setup
costs, 6. The variance of delivery time setting for each machine, 7. The sum of completion
time of each machine, and 8. Spearman’s rank correlation coefficients (τs,i and τd,i). For the
problem of minimizing the sum of delivery delays in the case of one machine, the optimal
schedule can be obtained by processing in the order of earliest delivery time. It is effective
even in the case of multiple machines. In that case, there is no difference in the delivery
date set by each machine. The variance of delivery time setting for each machine σ2

d is
represented by Equation (6).

σ2
d =

1
M

M

∑
k=1

(
Dk − D

)2 (6)

where Dk represents total delivery time of job processed of machine k, D represents mean
of the delivery time of job processed by each machine. If the sum of delivery delay is
minimized, the job needs to be completed in less time. It is considered that the sum of
delivery delay and the total completion time are related. The sum of completion time of
each machine U is represented by Equation (7).

U =
M

∑
k=1

N

∑
i=1

yik pik (7)

where yik represents 1 when job i is processed at machine k, 0 otherwise, pi,k represents
processing time at job i at machine k. τd,i represents delivery time order of job i in ascending
order. Since the objective function has changed from the maximum completion time to the
sum of delivery delays, a rank correlation is generated from the processing sequence of the
job and the job delivery time order. It is represented by Equation (4). X is τs,i, Y is τd,i.

4.2.3. Small Scale Problems with 3 Objectives Optimization Problems

Next, we consider a scheduling problem with three objective functions. Three of the
following five objective functions are combined. The objective functions used are as follows.
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I. maximum completion time + sum of weighted delivery delay + sum of setup costs

min
{δijk}

w1max(Cik) + w2

M

∑
k=1

N

∑
i=1

ρiLik + w3

M

∑
k=1

N

∑
i=1

δijkSij (8)

II. sum of weighted completion time + maximum weighted delivery delay + sum of
setup costs

min
{δijk}

w1

M

∑
k=1

N

∑
i=1

ρiCik + w2max(ρiLik) + w3

M

∑
k=1

N

∑
i=1

δijkSij (9)

where ρi represents weight of job i. We considered the following features: 1. The values
of the maximum completion time (Case I only), 2. The values of the sum of setup costs,
3. The variance of completion time for each machine, 4. Spearman’s rank correlation
coefficients (τs,i and τρ,i), 6. The variance of delivery time setting for each machine, 7.
The sum of completion time of each machine, 8. Spearman’s rank correlation coefficients
(τs,i and τd,i), 9. The values of the sum of weighted delivery delay (Case I only), 10. The
values of sum of weighted completion time (Case II only), 11. The values of maximum
weighted delivery delay (Case II only), 12. The shortest processing time selectivity, 13.
Spearman’s rank correlation coefficients (τs,i and τp,i), 14. Spearman’s rank correlation
coefficients (τs,i and τρ/p,i), 15. Spearman’s rank correlation coefficients (τs,i and τρ/d,i),
16. Spearman’s rank correlation coefficients (τs,i and τ1/pd,i), and 17. Spearman’s rank
correlation coefficients (τs,i and τρ/pd,i). Feature 12 indicates the degree to which a job is
processed by a machine with a short processing time. The smaller the value, the more jobs
are assigned to machines with shorter processing times. The shorter the processing time
of a job, the smaller the value of the objective function other than the sum of setup costs.
Therefore, there is a relationship between the weighting factor for the objective functions
other than the sum of setup costs. The shortest processing time selectivity µ is expressed by
Equation (10).

µ =
N

∑
i=1

(
yik p2

ik

∑M
k=1 pik

)
(10)

Features 4, 8, 13~17 are Spearman’s rank correlation coefficients. The rank correlation is
generated from the two rankings in parentheses. For the 3-objective case, rank correlations
are extracted, including the weights of the jobs. τρ/p,i represents ρ/p order of job i in
ascending order. τρ/d,i represents ρ/d order of job i in ascending order. τ1/pd,i represents
1/pd order of job i in ascending order. τρ/pd,i represents ρ/pd order of job i in ascending
order. Rank correlation coefficients is represented by Equation (4). X and Y correspond to
the two symbols in parentheses features 4, 8, 13~17, respectively.

4.3. Feature Selection

In this section, we describe how to combine the features extracted in Section 4.2. There
are three main goals of feature selection. The three main goals are to improve prediction
performance, to improve computational efficiency, and to understand the relationship
between the results and the features. There are three main feature selection methods
commonly used: filter methods, wrapper methods, and embedded methods [34]. The filter
method statistically ranks each feature and decides whether to use it for prediction. It is
computationally efficient, but because it confirms at features one by one, the combined
effect of features cannot be checked. The wrapper method determines which features to
select by adding (or deleting) features that will increase (or decrease) the accuracy the most
from the already selected features. Compared to the filter method, the wrapper method
improves accuracy, but the computational cost increases as the number of features increases.
The embedded method determines the features to be selected based on the importance
of each feature during model prediction. It is a well-balanced method between the filter
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and wrapper methods. In this study, the wrapper method is used. There are two types of
wrapper methods: sequential forward selection (SFS), which adds features, and sequential
backward selection (SBS), which removes features. In this study, SFS is used. Outline of
wrapper feature selection method is shown in Figure 4. The procedure is as follows.

Figure 4. Outline of wrapper feature selection method.

1. Start with an empty set and add the feature z that improves accuracy the most to the
subset S.

2. Add the feature z+ that improves accuracy the most when adding features to subset
S. The MSE is computed when the feature is added.

3. If the state of Equation (11) is maintained, go to 2. Otherwise, exit.

S is a subset of the selected features and S+ is a subset of the features when feature z+

is added. ε is constant, ns is the number of selected features.

ε

n2
s
> MSE

(
S+
)
−MSE(S) (11)

Many sets of features are extracted as described in Section 4.2 and the weighting factors
corresponding to each problem are prepared. Features and the corresponding weighting
factors are divided into training data for training in a random forest, and test data for
examining the accuracy of the machine learning model. When dividing, stratified sampling
is performed so that the weighting factors are not biased. When dividing a node in random
forest, the data is divided by the feature that minimizes the impure of the node. The MSE
is used as an impure index when dividing a node. The division is performed so that this
impure index is the smallest. After constructing a learning model from the training data,
new test data that does not include the weighting factor is inputted into the model, and the
weighting factor is estimated. In the regression type random forest method, the weighting
factor is outputted as a continuous value. The model is evaluated by the MSE between the
estimated weighting factor and the true weighting factor.

4.4. Inverse Optimization

Inverse optimization is finding the input that generates the output, given the out-
put of an optimization problem [35]. When applied to the weighting factor estima-
tion problem, the output is the scheduling results, and the input is the weighting fac-
tors. We will describe how to estimate the weighting factors using the inverse opti-
mization method. First, many schedule data, solved by changing the weighting fac-
tor from 0.1 to 0.9 by 0.1, are prepared. The scheduling problem is solved by giving
an initial weighting factor. The weighting factors are updated to reduce the error be-
tween the resulting output and the desired output. The scheduling problem is solved
again with the updated weighting factor. By repeating this, the weighting factors are
estimated. The model is evaluated by the MSE between the estimated weighting fac-
tor and the true weighting factor. It is applied to both small- and large-scale prob-
lems. The outline of the inverse optimization algorithm is shown in Algorithm 1 [36].
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Algorithm 1: Inverse optimization

Input : w0
Output : w
1 w← w0
2 for 1 ≤ i ≤ I do
3 ∆w← 0
4 for 1 ≤ β ≤ B do
5 xβ ← Forward Optimization(w)

6 l← xtrue
β −xβ

xtrue
β

7 ∆w← ∆w + ∂l
∂w

8 end for
9 w← w− α ∆w

B
10 end for
11 return w

The input data are the initialized weighting factors. The weighting factor is initialized
on line 1. On the 5th line, the scheduling problem is solved after the initial value of the
weighting factor is set. The optimal solutions xβ are obtained at line 5. Exact solutions are
obtained by a commercial solver for small-scale problems, and the approximate solutions
are obtained for large-scale problems. In lines 6 and 7, the gradient of the weighting factor
is computed, and the loss function is used for the gradient. Solutions xtrue

β with known
weighting factor and optimal solutions xβ are used to calculate the gradient. The loss
function is calculated by solving some problems. The number of problems B on the 4th
line is set to 10. After that, the weighting factor is updated on line 9. When updating, the
update width is divided by the number of problems and multiplied by the learning rate
α. The iteration is executed with the maximum number of iterations I, and the weighting
factor output on the 11th line is the result of the weighting estimation.

5. Computational Experiments

The procedure of the numerical experiment is explained in this section. First, we
generate the input data. Then, we solve the scheduling problem using the exact solution
and approximate solution. We create a dataset from the input data and the obtained output
data and apply it to each model. Finally, we evaluate the accuracy of the model by the
MSE of the estimated weighting factor with the true weighting factor. MSE is expressed by
Equation (1). For machine learning, the dataset was divided into 5 parts and 5-fold cross
validations were performed.

For small-scale problems, the number of machines is 3 and the number of jobs is 7.
For large-scale problems, the number of machines is 5 and the number of jobs is 50. The
parameters of the scheduling problem are given randomly in the range of Tables 1 and 2.
Table 1 shows small-scale problems and Table 2 shows large-scale problems. A total of
100 scheduling problems were prepared for each case. The weighting factor was changed
by 0.1 from 0.1 to 0.9. For the small-scale problems, CPLEX solver was used to obtain an
exact solution, and for the large-scale problems, simulated annealing was used to obtain an
approximate solution. In machine learning, 900 data sets are used for the 2 objectives and
3600 data sets are used for the 3 objectives. MSE is obtained from these numbers of data. In
the random forest, the number of decision trees is set to 100 and the tree depth to 5. ε in
SFS is set to 0.001. In inverse optimization, the maximum number of iterations I is 15, the
learning rate is 0.5, the number of problem instances is 10.

Table 1. Parameter of input data in small-scale problems.

Weight of Job Processing Time Delivery Time Setup Cost

1~5 50~500 50~200 10~1000
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Table 2. Parameter of input data in large-scale problems.

Processing Time Delivery Time Setup Cost

10~100 10~200 10~100

5.1. Effectiveness of Features in Machine Learning

First, it is applied to small-scale problems. Objective function is the maximum comple-
tion time and the sum of setup costs. The case where only the objective function values
were used as features was compared with the case where features were selected by SFS
from the features extracted in Section 4.2.1. Table 3 shows the features selected by SFS in
the order in which they were selected. Table 4 shows the MSE of the estimation results.

Table 3. List of features selected by SFS for small-scale problems for 2 objectives.

Features

1. The values of the maximum completion time
2. The values of the sum of setup costs
3. The variance of completion time for each machine

4. Spearman’s rank correlation coefficients
(

τs,i and τp,i )

Table 4. MSE results of machine learning to small-scale problems for 2 objectives.

Only Objective Function Values SFS

MSE 3.282 × 10−2 2.990 × 10−2

In SFS, all the extracted features were selected. As a result, the accuracy is higher
than that obtained by learning only the objective function values in a random forest. The
order in which the features were selected is noteworthy: the objective function values were
selected first. This was closely related to the change in the weighting factor, since they were
included in the equation of the scheduling problem.

Then, the target problem is extended to a large scale. The objective function is the sum
of the delivery delay and the sum of the setup costs. The case where only the objective
function values were used as features was compared with the case where features were
selected by SFS from the features extracted in Section 4.2.2. Table 5 shows the features
selected by SFS in the order in which they were selected. Table 6 shows the MSE of the
estimation results.

Table 5. List of features selected by SFS for large-scale problems for 2 objectives.

Features

2. The values of the sum of setup costs
5. The values of the sum of delivery delay
7. The sum of completion time of each machine
6. The variance of delivery time setting for each machine
8. Spearman’s rank correlation coefficients

(
τs,i and τd,i )

Table 6. MSE results of machine learning for large-scale problems for 2 objectives.

Only Objective Function
Values SFS

MSE 2.875 × 10−3 2.871 × 10−3

In SFS, all extracted features were selected even for large-scale problems. Compared
to the estimation of objective function values only, the estimation with features selected
by SFS was more accurate. However, the improvement in accuracy was not as great as
for small-scale problems. As the problem size increases, a small change in the weighting
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factors causes the objective function values to change. This was effective during machine
learning. For the large-scale problem, an approximate solution method was used to solve
the scheduling problem. These results suggest that the objective function values obtained
by the approximate solution method changes more easily than objective function values
obtained by exact solution method.

Then, estimation was performed for 3 objectives in small-scale problems. Experiments
were performed on two different objective functions. Each objective function is shown in
Section 4.2.3. The case where only the objective function values were used as features was
compared with the case where features were selected by SFS from the features extracted in
Section 4.2.2. Table 7 shows the features selected by SFS in the order in which they were
selected. Table 8 shows the MSE of the estimation results.

Table 7. List of features selected by SFS small-scale problems for 3 objectives.

Objective Function I II

Features
2. The values of the sum of setup costs
3. The variance of completion time for
each machine

2. The values of the sum of setup costs
3. The variance of completion time for
each machine
4. Spearman’s rank correlation coefficients(

τs,i and τp,i )
13. Spearman’s rank correlation coefficients(

τs,i and τρ,i )
6. The variance of delivery time setting for
each machine

Table 8. MSE results of machine learning to small-scale problems for 3 objectives.

I (Only Objective Function
Values) I (SFS) II (Only Objective Function

Values) II (SFS)

MSE 2.702 × 10−2 2.667 × 10−2 2.696 × 10−2 2.642 × 10−2

First, we consider case I. In SFS, only two features were selected. However, it is more
accurate than the estimation with 3 objective function values. In the case of valid features,
the estimation is possible even with a small number of features. The features that are valid
in case 1 are the sum of setup costs and the variance of completion time for each machine.

Next, we consider case II. Five features were selected by SFS. The accuracy is better
than the estimation using only the objective function values. As in case 1, the sum of
setup costs and the variance of completion time for each machine are selected. The rank
correlation coefficients between job processing time and processing order were also effective
in the estimation. There is no significant difference in estimation accuracy between case I
and case II.

5.2. Comparison of Each Case in Machine Learning

A comparison between small-scale and large-scale problems is discussed. Table 9
shows a comparison between small-scale and large-scale problems in machine learning.

Table 9. MSE results of machine learning.

Small-Scale Problems
(2 Objectives)

Large-Scale Problems
(2 Objectives)

Small-Scale Problems
(3 Objectives: I)

Small-Scale Problems
(3 Objectives: II)

MSE 2.990 × 10−2 2.871 × 10−3 2.667 × 10−2 2.642 × 10−2

First, for the 2 objectives, we compare small-scale and large-scale problems. Large-
scale problems are more accurate. In small-scale problems, the objective function value
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often does not change even if the weighting factors change. The fact that the value does
not change is the cause of the lack of accuracy in machine learning. Next, we compare 2
objectives and 3 objectives for small-scale problems. 3 objectives were more accurate. As
the number of objectives increased, the objective function values changed more easily. This
worked well in machine learning.

5.3. Comparison of Each Case in Inverse Optimization

The inverse optimization is applied to problems of each case. Figure 5 shows the
weighting factor estimation for the small-scale problem (2 objectives). The initial value
of the weighting factor is set to (w1, w2) = (0.7, 0.3). The target weighting factor is (w1,
w2) = (0.2, 0.8). The target weighting factor is reached after the 10th iteration.

Figure 5. The result of estimation (initial value is (w1, w2) = (0.7, 0.3) target value is (w1, w2) = (0.2, 0.8)).

Table 10 shows the estimation error in MSE for each case. First, in the 2-objective
case, small-scale and large-scale problems are compared. The accuracy of the large-scale
problem was higher than that of the small-scale problem. It is thought that the change in
the objective function value has something to do with this. In small-scale problems, the
objective function value may not change even if the weighting factors change. In such a
case, the estimation is completed before reaching the weighting factors to be estimated.
Therefore, it is thought that the estimation accuracy becomes low. Next, the 2-objective and
3-objective cases are compared in the small-scale case. The 2-objective case is more accurate.
In the 2-objective case, as the weighting factor increases, the corresponding objective
function value decreases. But this is not necessarily the case for the 3-objective case.

Table 10. MSE result of inverse optimization.

Small-Scale
Problems

(2 Objective)

Large-Scale
Problems

(2 Objective)

Small-Scale
Problems

(3 Objective: I)

Small-Scale
Problems

(3 Objective: II)

MSE 2.418 × 10−3 4.446 × 10−4 1.667 × 10−2 1.704 × 10−2

We consider an example of the weighting factor and objective function values for the
case I. When the weighting factor is (w) = (0.2, 0.3, 0.5), the objective function value is
(390, 2982, 1241). On the other hand, when the weighting factor is (w) = (0.5, 0.1, 0.4), the
objective function values are (478, 3783, 754). The value of maximum completion time for
the first objective function increases as the weighting factor increases. The value of sum of
setup costs for the third objective function decreases as the weighting factor decreases. In
this case, the weighting factors are not updated correctly.
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5.4. Comparison of Machine Learning Method and Inverse Optimization Method

The results of machine learning and inverse optimization are compared. Table 11
shows the comparison between machine learning and inverse optimization for each prob-
lem scale. The machine learning value is the one with the better accuracy when the feature
is the objective function value, or the feature selected by SFS.

Table 11. MSE result of each case.

Machine Learning Inverse Optimization

Small-scale problems for 2 objectives 2.990 × 10−2 2.418 × 10−3

Large-scale problems for 2 objectives 2.871 × 10−3 4.446 × 10−4

Small-scale problems for 3 objectives (I) 2.667 × 10−2 1.667 × 10−2

Small-scale problems for 3 objectives (II) 2.642 × 10−2 1.704 × 10−2

In all cases, inverse optimization is more accurate than machine learning. In the 2-
objectives case, inverse optimization is significantly more accurate. In the 2-objectives case,
the change in the objective function value varies monotonically with the weighting factors.
The gradients of the weighting factors are easy to compute. In the case of the 3-objectives,
the gradients of the weighting factors were not calculated properly in some cases.

5.5. Application to Chemical Batch Plants

We apply the proposed methods to a production scheduling problem in a chemical
batch plant. In this paper, we use the lubricating oil filling schedule in chemical batch
plants. The job contents and constraints will be briefly explained. A total of 34 filling
operations are given. The filling amount, the drum to be filled, and the delivery date are
shown for each. There are 9 types of drums to fill. The filling speed differs depending
on the type. Filling works consist of the following three steps. 1. Cleaning and draining
oil from the line, 2. Product edge, and 3. Filling. There are two main time constraints.
Filling work start time is 09:05. Break times are 10:30–11:00, 12:00–13:00, and 15:00–15:30.
Filling work cannot be done during the above break time. If the type of oil is different from
the previous oil during cleaning, cleaning costs (setup costs) are incurred. Two objective
functions are used in chemical batch plant scheduling: the sum of delivery delays and
the sum of setup costs. The objective function is expressed in Equation (5). The required
amount of filling of each oil differs from day to day. An approximate solution method
is used for the input/output data. We considered the following features: 5. The values
of the sum of delivery delay, 2. The values of the sum of setup costs, and 7. The sum of
completion time of each machine. We prepared 270 data sets. Machine learning evaluates
the data by performing 5-cross-validation. The case where only the objective function
values were used as features was compared with the case where features were selected by
SFS from the features extracted in Section 4.2.1. The hyperparameters for machine learning
and inverse optimization are the same as in Section 5.

Figures 6 and 7 show the Gantt chart when the weighting factor is (w1, w2) = (0.5, 0.5)
and (w1, w2) = (0.9, 0.1). The gray bar sections on the Gantt chart represent break time.
Table 12 shows the features selected by SFS in the order in which they were selected.
Table 13 shows the MSE of the estimation results.

Figure 6. Weighting factor is (w1, w2) = (0.5, 0.5).
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Figure 7. Weighting factor is (w1, w2) = (0.9, 0.1).

Table 12. List of features selected by SFS.

Features
2. The values of the sum of setup costs
5. The values of the sum of delivery delay
7. The sum of completion time of each machine

Table 13. MSE results of machine learning and inverse optimization.

Machine Learning Inverse
OptimizationOnly Objective Function Values SFS

MSE 5.020 × 10−2 4.796 × 10−2 2.345 × 10−2

Since the number of tanks that can be assigned to a job is predetermined, only seven
machines were used in this case. Figure 7 shows that many machines have shorter com-
pletion times compared to Figure 6. As a result, the value of the sum of delivery delays
is smaller. Table 12 shows that all features are selected. The order in which the features
are selected is the same as for the large-scale problem. Since the objective function is the
same, the order of effective features is also the same. Furthermore, the MSE is smaller than
when only the objective function value is used as features. It was confirmed that feature
extraction is effective even when the data is close to real data. In inverse optimization,
estimation accuracy was better than machine learning. However, both were less accurate
than when the scheduling problem was generated randomly. In the randomly generated
problems, setup costs varied slowly. The real data, however, do not vary slowly because the
setup cost is predetermined to a certain value due to the nature of the problem. This is the
reason why the accuracy of the inverse optimization was lower than that of the randomly
generated problems.

5.6. Discussion

SFS was used in feature selection from the extracted features. As a result, in all cases,
the accuracy was higher than estimating the weighting factors using only the objective
function values. In addition, the selected features were different for each case. We found
that even a small number of features can be estimated with good accuracy if they are valid
features. The feature of variance of completion time was effective for small-scale problems.
Especially in case I, it was judged to be more effective in improving accuracy than the
objective function values other than the setup cost sum.

For the large-scale problem, the accuracy was particularly better compared to the other
cases. This is because the objective function values are more variable than in the small-scale
case. In the inverse optimization, the weighting factors were estimated almost exactly by
repeatedly solving the scheduling problem. The approximate solution method was also
highly accurate. In addition to the objective function value, the sum of completion time
of each machine and the variance of delivery time setting for each machine were found
to be effective in machine learning for large-scale problems. However, the improvement
in accuracy from estimating only the objective function value was smaller than that for
small-scale problems.
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Experiments on near-realistic data confirmed the same trend as for randomly generated
problems. However, the estimation accuracy was low, partly because there were problems
in which the objective function value of the sum of setup costs did not change much.

The following insights obtained from our study are as follows.

1. In randomly generated problems, the estimation accuracy of the large-scale prob-
lem was higher than that of the small-scale problem because the solution changed
continuously in response to the change of the weighting factor.

2. In the case of machine learning, the feature of the variance of completion time for
each machine was effective for small-scale problems, and the features of the sum of
completion time of each machine and the variance of delivery time setting for each
machine were effective for large-scale problems.

3. When using the input/output data of the same scheduling model, if a solution close
to the exact solution is used, the inverse optimization has higher estimation accuracy
than machine learning because the gradient was recalculated many times during the
estimation process.

6. Conclusions

In this study, we estimated the weighting factors of the objective function in the
production scheduling problem from input/output data. The scheduling problem was
expanded on a large scale and an approximate solution was applied. Simulated annealing
was used as the approximate solution method. Two methods were used to estimate the
weighting factors: machine learning and inverse optimization. It was confirmed that feature
selection in SFS works effectively and improves estimation accuracy. It also evaluated
performance using an inverse optimization method. Future work is to confirm whether
the proposed method is effective for other scheduling problems. Extracting valid features
other than the objective function value from the scheduling results, when applied to actual
data, is also required.

Author Contributions: Conceptualization, H.T., K.A. and T.N.; methodology, H.T., K.A. and T.N.;
software, H.T., K.A. and T.N.; validation, H.T. and K.A.; formal analysis, H.T.; investigation, H.T.;
resources, T.N.; data curation, K.A.; writing—original draft preparation, H.T., K.A., T.N. and Z.L.;
writing—review and editing, H.T., K.A., T.N. and Z.L.; visualization, H.T.; supervision, T.N.; project
administration, T.N.; funding acquisition, T.N. All authors have read and agreed to the published
version of the manuscript.

Funding: This research was funded by JSPS KAKENHI(B) 22H01714.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Data is contained within the article.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations
AHP analytic hierarchy process
MSE mean squared error
SFS sequential forward selection
SBS sequential backward selection
Symbol
MSE
Ndata Number of data
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Abbreviations
yi Estimated weighting factor
ŷi True weighting factor
Feature extraction
N Number of jobs (i = 1, 2, . . . , N)
M Number of machines (k = 1, 2, . . . , M)
w f Weight of objective function f
ρi Weight of job i
pi,k Processing time at job i at machine k
Sij Setup cost when switching from job i to job j
Cik Completion time of job i at machine k
Lik Delay in delivery of job i at machine k
δijk 1 when job j is processed immediately after job i at machine k, 0

otherwise
yik 1 when job i is processed at machine k, 0 otherwise
Ck Maximum completion time of machine k
C Mean of completion time of each machine
Dk Total delivery date of job processed of machine k
D Mean of the delivery date of job processed by each machine
τs,i Starting time order of job i in ascending order
τρ,i Weight order of job i in ascending order
τp,i Processing time order of job i in ascending order
τd,i Delivery time order of job i in ascending order
τρ/p,i ρ/p order of job i in ascending order
τρ/d,i ρ/d order of job i in ascending order
τ1/pd,i 1/pd order of job i in ascending order
τρ/pd,i ρ/pd order of job i in ascending order
σ2

c Variation of the completion time
rs Spearman’s rank correlation coefficients
σ2

d Variance of delivery time setting for each machine
U Sum of completion time of each machine
µ Shortest processing time selectivity
Feature selection
z Feature
S Subset of the selected features
z+ Feature that improves accuracy the most when adding features to subset

S
S+ Subset of the features when feature z+ is added
E Constant expressing the degree of tolerance
ns Number of selected features
Inverse optimization
w0 Initial weighting factor
I Maximum number of iterations
xtrue

β Solutions with known weighting factor
α Learning rate
B Number of problem instances
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