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GENERAL TWO COMPETING OPINIONS
MODEL

We consider a finite population of Z individuals, possi-
bility structured. Each individual holds one of two opin-
ions, A or B. At each time-step, a random individual is
selected to potentially update their strategy. Individu-
als revise their opinions by considering the configuration
of their neighbourhood. An individual i with opinion
X = A or B changes to a different opinion Y = B or A
with probability

pX→Yi = fXYi

[
nYi
zi

]
, (1)

where nYi is the number of neighbours of i with opin-
ion Y and zi the size of their neighbourhood. The form
of fXYi encapsulates the complexity of opinion Y when
being acquired by an individual i that holds opinion X,
given their environment (current neighbours opinion dis-
tribution). This transition probability can be seen as
deriving from a fractional threshold model where each
opinion has a different threshold distribution, dXY [M ].
In the threshold models, an opinion is adopted if, in the
neighbourhood of an individual, there is at least a frac-
tion M of individuals with that opinion (e.g., M = 1/2
corresponds to simple majority). In such a case, the
probability an individual changes strategy is the prob-
ability that the threshold is below the current fraction of
neighbours, such that fXYi [nYi /zi] =

∫ nY
i /zi

0
dXY [M ]dM .

This creates a dynamical and stochastic process in which
the number of individuals with opinion A, k, and that of
those with opinion B, Z − k, evolve in time. In the main
text, we assume a homogeneous populations (i.e., non-
subjective complexity) and we characterizse the complex-
ity of an opinion by a single parameter, αXY , which con-
trols the functional form of fXY . However, we allow for
competition between opinions with different complexities
(αAB 6= αBA). Figure 1 shows how pX→Yi changes with
the density of Y individuals for different values of αXY .

GENERAL MEAN-FIELD DESCRIPTION

Let us start by considering the case of a single fi-
nite and fully connected well-mixed population. The
neighbourhood of each individual, is, thus, comprised of
the entire population, making pX→Yi = fXY

[
kY/(Z−1)

]
,

where kY is the number of individuals in the population
with strategy Y . The dynamical process becomes fully
described upon the computation of the transition prob-
abilities between the different available configurations,
k ≡ kA, each corresponding to a possible composition
of opinions in the population. The probability that the
number of individuals with opinion A increases, T+

k , and
decreases, T−k , by one is given, respectively, by

T+
k =

Z − k
Z

fBA
[

k

Z − 1

]
and (2a)

T−k =
k

Z
fAB

[
Z − k
Z − 1

]
. (2b)

For sufficiently large Z, x ≡ k/Z can be approximated
by a continuous process and the evolution of its probabil-
ity density function, ρ, is well approximated by Fokker-
Planck equation [4, 5],

∂ρ

∂t
=− ∂

∂x

[
(T+[x]− T−[x])ρ

]
+

1

2Z

∂2

∂2x2

[
(T+[x] + T−[x])ρ

] (3)

where T±[x] = T±xZ . In turn, this equation is equivalent
to a Langevin description

ẋ = g[x] +
√
D[x]Γ(t), (4)

where the so-called gradient of selection g[x] [7] is given
by

g[x] = T+
k − T−k

= (1− x)fBA[x]− xfAB [1− x]
(5)

and the non-homogeneous diffusion, D[x], is given by

D[x] =
T+[x] + T−[x]

2Z
=

=
(1− x)fBA[x] + xfAB [1− x]

2Z

(6)
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In the limit of very large populations, Z → ∞, the
dynamics becomes described by a non-linear differential
equation that can be written in the form

ẋ = (1− x)fBA[x]− xfAB [1− x]. (7)

Let us derive the general properties of this equation.
Notice that the equation is symmetric for interchanging
A for B and x for 1− x, which simplifies our analysis.

Fixed points

Following the same strategy as in the main text,
we define hBA [x] ≡ fBA [x]/x and hAB [1− x] ≡
fAB [1− x]/(1− x). In that case, we can conveniently
rewrite Equation (7) as

ẋ = x (1− x)
(
hBA [x]− hAB [1− x]

)
. (8)

Notice that our definition of hBA [x] causes the need of
particular care for what is happening around x = 0. In-
deed, hBA [x] can have poles at that point – the obvi-
ous case is for non-zero fBA [0]. However, it does not
lose its meaning in the light of Equation (7): indeed the
term hBA [x]− hAB [1− x] can be seen as a force gener-
ated by a potential that describes the evolution of con-
tact processes, and the non-zero fBA (0) is just creating
an infinite barrier to fixation at x = 0, which renders
x = 0 unstable (see non-conservative evolutionary dy-
namics section in [2]). However, if fBA (x) grows super-
linearly from zero, i.e., fBA (x) ∼ O(xε) with ε ≥ 1 and
fBA (0) = 0, then hBA (x) can be analytically extended
to a finite value. Thus, we can have two natural fixed
points x∗ = 0 and x∗ = 1. Their existence is given by
fBA [0] = 0 and fAB [1] = 0, respectively. Then, addi-
tional fixed points can occur depending on the behaviour
of the term

h [x] ≡ hBA [x]− hAB [1− x] . (9)

Furthermore, notice that the stability of the fixed
points will depend on derivatives of fBA (x) which,
in the fraction threshold interpretation, corresponds
to the threshold distribution itself, as d

dxf
XY (x) =

d
dx

∫ x
0
dXY (M)dM = dXY (x), via the fundamental theo-

rem of calculus.

Stability of x∗ = 0

Whenever ẋ [0] > 0, which requires fBA [0] > 0, x = 0
is not a fixed point and the system will move away from
it. If fBA [0] = 0 then the stability of x∗ = 0 can be
determined by studying the sign of dẋ/dx.

dẋ

dx
[x] =− fBA [x] + (1− x)

dfBA

dx
[x]

− fAB [1− x] + x
dfAB

dx
[1− x] .

(10)

At the fixed point it reads

dẋ

dx
[0] =

dfBA

dx
[0]− fAB [1] . (11)

Whenever dfBA
/dx [0] > fAB [1], x∗ = 0 is unsta-

ble. For dfBA
/dx [0] < fAB [1], x∗ = 0 is stable. For

dfBA
/dx [0] = fAB [1], higher derivatives must be ac-

counted for. This shows that the stability of the bound-
aries is mostly determined by the rate of change of fBA
when there are only a few individuals of type A com-
pared with the contagion probability of Bs by As when
Bs dominate.

Stability of x∗ = 1

Because of the symmetry mentioned, the stability of
x∗ = 1 is determined by the sign of

dẋ

dx
[1] =

dfAB

dx
[1]− fBA [0] . (12)

Whenever, dfAB
/dx [1] > fBA [0], x∗ = 1 is unstable. For

dfAB
/dx [1] < fBA [0], x∗ = 0 is stable. For dfAB

/dx [1] =
fBA [0], higher order derivatives must be accounted for.

Internal fixed points

Because ẋ is continuous in x, whenever both fixed
points are stable, i.e., dfBA

/dx [0] < fAB [1] and
dfAB

/dx [1] < fBA [0], there is at least one unstable fixed
point in (0, 1). If both are unstable, there is at least
one stable fixed point in (0, 1). More, whenever hBA [x]
crosses hAB [1− x] from above, there is a stable fixed
point. When hBA [x] crosses hAB [1− x] from below,
there is an unstable fixed point.

MEAN-FIELD DESCRIPTION – MS MODEL

In the main text we discuss a model where

fXYi

[
nYi
zi

]
=

(
nYi
zi

)αXY

, (13)

which contains the key properties of the complex con-
tagion properties of monotonic functions.

We start by considering the case of a single fi-
nite and fully connected well-mixed population. The
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neighbourhood of each individual is, thus, comprised of
the entire population. Following the procedure described
in section above, we can write Eq.(7) as

ẋ = x(1− x)(xαBA−1 − (1− x)αAB−1), (14)

The system described by Eq.(14) above has, for αXY 6=
1, the two trivial solutions at x = 0 and x = 1 and an
additional internal fixed point that can be inspected by
solving

xαBA−1 − (1− x)αAB−1 = 0 (15)

In such a case, and taking γ = (αBA − 1)/(αAB − 1),
the solutions can be found by solving the transcendental
equation

1− x = xγ (16)

whose LHS and RHS are graphically depicted in Fig-
ure 2. The stability nature of the internal fixed point
is unstable when both αXY > 1 (lower left quadrant)
and stable when both αXY < 1 (top right quadrant).
In the regions bounded by αAB > 1 ∧ αBA < 1 and
αAB < 1 ∧ αBA > 1, there are no internal fixed points
(gray areas). We prove this below. Two other trivial dy-
namics exist in the αAB×αBA parameter-space: i) when
αAB = αBA = 1, g(x) = 0, so every state corresponds to
a fixed point and a finite population would evolve under
neutral drift, since D(x) = (x(1 − x))/Z 6= 0, and ii)
when αAB = αBA = 0 in which case g(x) = (1− 2x) and
D(x) = 1/2Z, which reduces the problem to an Ornstein-
Uhlenbeck process.
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Figure 1. Probability that individuals update their opinion
from X to Y as a function of the abundance of opinion Y
individuals in the neighbourhood of an X. Different colours
show scenarios with different values of αXY .
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Figure 2. Graphical Depiction of Equation 16 solutions, where
f(x) = xγ and g(x) = 1− x.

Stability of edges (x∗ = 0 and x∗ = 1)

For x∗ = 0, we use Eq.(11) and we note that
fAB [1] = 1 and the first derivative is given by dfBA

dx [x] =
αBAx

αBA−1. Furthermore,

dfBA

dx
[x] = αBAx

αBA−1 x→0−−−→


0 αBA > 1

1 αBA = 1

∞ αBA < 1

. (17)

This solves stability for αBA > 1 and αAB < 1. For
αBA = 1, we use the second derivative

d2ẋ

dx2
[x] =− 2

df

dx

BA

[x] + 2
df

dx

AB

[1− x]

+ (1− x)
d2f

BA

dx2
[x]− xd

2f
AB

dx2
[1− x] ,

(18)

which for x = 0 and αBA = 1, gives

d2ẋ

dx2
[0] = −2 + 2αAB . (19)

This is positive for αAB > 1 and negative for αAB < 1.
For both αBA = αAB = 1, ẋ = 0 for all x ∈ [0, 1]. Thus,

• x∗ = 0 is stable iff either αBA > 1 or both αBA = 1
and αAB < 1,

• x∗ = 0 is unstable iff either αBA < 1 or both αBA =
1 and αAB > 1,

• x∗ ∈ [0, 1] is neutrally stable iff αBA = αAB = 1.

Equivalently, for x∗ = 1, we get

• x∗ = 1 is stable iff either αAB > 1 or both αAB = 1
and αBA < 1,

• x∗ = 1 is unstable iff either αAB < 1 or both αAB =
1 and αBA > 1,

• x∗ ∈ [0, 1] is neutrally stable iff αBA = αAB = 1.
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Internal fixed point

The equation for the internal fixed point, y ∈ (0, 1), is
given by the roots of h [x] in Eq.(9). In this case,

y ∈ (0, 1) : yαBA−1 = (1− y)
αAB−1 . (20)

If any of the αXY is 1, solution is y = 1, which is the
boundary, which we already analyzed. Otherwise, we
can reduce the equation above to

y ∈ (0, 1) : 1− y = yγ , (21)

where γ ≡ (αBA−1)/(αAB−1). Notice that for αXY > 0,
γ ∈ R. More, the parameterizsation αBA = r cos θ + 1
and αAB = r sin θ + 1 yields γ = cotanθ, which means
that any point with the same θ will have the same root,
as we can see in Figure 1 of the main text. Eq.(21) corre-
sponds to the intersection of a straight line (1−y) with a
power yγ . Thus, y exists in (0, 1) and is unique iff γ > 0.
Thus, through the definition of γ, we get

γ > 0⇔ αBA − 1

αAB − 1
> 0⇔

⇔ (αBA > 1 and αAB > 1)

or (αBA < 1 and αAB < 1) .

(22)

To get the stability of y, we either use the results pre-
sented in the general section and the unicity of the root,
or we look at the linearizsation of ẋ near it.

dẋ

dx
[y] =− (1− y)

αAB−1 (1− y − αABy)

− yαBA−1 (y − (1− y)αBA) .
(23)

Using the property of the fixed point as (1− y)
αAB−1 =

yαBA−1 or 1− y = yγ we get

dẋ

dx
[y] =yαBA−1((1− y)(αBA − 1)

+ y(αAB − 1)).
(24)

In the intervals where the root exists, we get

• (αBA > 1 and αAB > 1) ⇒ dẋ
dx [y] > 0, the point is

unstable,

• (αBA < 1 and αAB < 1) ⇒ dẋ
dx [y] < 0, the point is

stable.

Expected Time to Reach Consensus

Another quantity of interest is the time required to
reach a consensus (τk) when starting from configuration
k. For αXY > 0, the system has two absorbing states,
k = 0 and k = Z, so it represents an Absorbing Markov
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Figure 3. Fixation time in the consensus regime. For low
values of r the dynamicsisare neutral and the expected time
given by Eq. (26). As r increases, the coordination-like dy-
namics makes the system evolve towards one of the consen-
suses. However, for very large r the dynamics freeze.

Chain. Thus, the time to consensus (fixation) starting
from configuration k can be formally computed as [8]

τk = −τ1
Z−1∑
j=k

j∏
m=1

γm +

Z−1∑
j=k

j∑
l=1

1

T+
l

j∏
m=l+1

γm (25a)

τ1 =
1

1 +
∑Z−1
j=1

∏j
m=1 γm

Z−1∑
j=1

j∑
l=1

1

T+
l

j∏
m=l+1

γm (25b)

where γm = T−m/T
+
m . Alternatively, for a higher dimen-

sional process, it can be computed as tk =
∑Z−1
l=1 Nkl,

where [Nij ] is the fundamental matrix of the chain, given
by [Nij ] = [((1 − Q)−1)ij ], and Q is the transition ma-
trix between the transient states, k = 1,. . . ,Z − 1 [9].
For αXY = 1, the process evolves under neutral drift,
T+
m = T−m , making γm = 1 and the average fixation time

is given by

τ0k =(Z − 1)(Z(HZ−1 −HZ−k) + k(HZ−k −Hk) + 1)

(26)

where Hn =
∑n
l=1 1/l is the harmonic number that in-

creases logarithmically with n as Hn = η + ln(n) +
1/(2n) + O(n−2), where η ≈ 0.5772156649 is the Euler-
Mascheroni constant. For k = 1 it reduces to t01 =
(Z − 1)HZ−1.

An interesting result in our model relates to the fact
that, for very high complexities, the process slows down.
That has to do high the need of very high consensus for
a state change. Thus, for a fixed θ ∈ (0, π/4), negative
values of r correspond to the polarizsation region, where
fixation times are very high. As r goes to zero the fixa-
tion times approach neutral and, as it becomes positive,
in the consensus region, there is a value of r that mini-
mizses the fixation time (see Fig.3), corresponding to the
fastest dynamics characterizsed by the same coordination



5

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

! AB

!BA 

b)

fra
cti

on
 of

 A
1.00

0.00

0.50
D

E
F

A
B

C

0.0 0.2 0.4 0.6 0.8 1.0
fraction of A x

fra
cti

on
 of

 tim
e

f)
0.05

0.04

0.03

0.02

0.01

0.00

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

! AB

!BA 

a)

0.0 0.2 0.4 0.6 0.8 1.0
fraction of A x

fra
cti

on
 of

 tim
e

0.05

0.04

0.03

0.02

0.01

0.00

A B C D E F

fra
cti

on
 of

 A

1.00

0.00

0.50
D

E
F

A
B

C

e)

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

! AB

!BA 

c)

0.0 0.2 0.4 0.6 0.8 1.0
fraction of A x

fra
cti

on
 of

 tim
e

g)
0.05

0.04

0.03

0.02

0.01

0.00

A B C D E F

fra
cti

on
 of

 A

1.00

0.00

0.50
D

E
F

A
B

C

H
om

og
en

eo
us

 
R

an
do

m
R

an
do

m
Sc

al
e 

Fr
ee

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

! AB

!BA 

d)

0.0 0.2 0.4 0.6 0.8 1.0
fraction of A x

fra
cti

on
 of

 tim
e

h)
0.10

0.08

0.06

0.04

0.02

0.00

A
B
C
D
E
F

fra
cti

on
 of

 A

1.00

0.00

0.50

D

E
F

A
B

C

Sc
al

e 
Fr

ee

A B C D E F

Figure 4. Average final fraction of opinion A and quasi-
stationary distributions in structured populations. Panels a)
and e) show the results in Homogeneous Random Networks, b)
and f) in Random Networks, c) and g) in Scale-free Networks,
d) and h) in Modular networks. All structures have Z = 103

nodes and an average degree of 4. Panels a–d show the av-
erage final fraction of opinion A when evolution starts from
a configuration with equal abundance of opinions A and B.
Blue/Red indicates regions dominated by opinion B/A. Pan-
els e–h show the quasi-stationary distribution along six differ-
ent combinations of the parameters αAB and αBA, indicated
in panels a–d. Results are the average over 104 independent
simulations for each pair of parameters, and the results corre-
spond to the average observed value after 2.5 million Monte
Carlo Steps. The quasi-stationary distribution show the frac-
tion of time the population spent in which configuration.

barrier (same unstable fixed point of the deterministic
dynamics).

STRUCTURED POPULATIONS

In this work we have explored the effect of three dif-
ferent population structures. We have used complex
networks as a way to model population structure. In
that sense, vertices/nodes correspond to individuals and

edges/links indicate the existence of a social tie between
a pair of individuals. Following past works, we have used
three network topologies, namely, Homogeneous Random
Networks (HRND), Random Networks (ER), Scale-free
Networks (SF), and Modular networks. These networks
span a wide range of network heterogeneity (degree vari-
ance).

ER networks were generated through the Erdős–Rényi
algorithm [3]. Starting from a set of Z unconnected
nodes, pairs of nodes are sequentially connected with
probability p. We stop when all pairs of nodes have been
tested. Moreover, we discard networks in which there are
disconnected components. We choose a value of p that
guarantees the network will have the desired average de-
gree. HRND are generated by randomly swapping the
ends of edges from an initially regular graph [6] until
all topological correlations vanish. SF are created using
the Barabási-Albert algorithm of growth and preferential
attachment [1]. Starting with m fully connected nodes,
the remaining Z − m nodes are sequaentially added to
the network and attached to m − 1 pre-existing nodes
but preferentially to those with a higher degree. We use
m = 3, leading to a network with an average degree of 4.
Finally, Modular networks are generated by connecting
at random a number q of nodes from two independently
generated scale-free networks with Z/2 nodes. In the
manuscript, we choose q = 20 to study a scenario of a
weakly connected two-component modular network.

Figure 4a–d shows the average final fraction of opin-
ion A in the domain defined by 0 ≤ αAB ≤ 2 and
0 ≤ αBA ≤ 2. Overall we observe that results are qual-
itatively similar among the three structures, and with
the results obtained in well-mixed populations. However,
two noteworthy differences need to be mentioned. First,
in region (i), that concerns the consensus/coordination
dynamical regime, the transition is sharper for homo-
geneous networks, and becomes wider as networks be-
come more heterogeneous. Second, there is a consider-
able range of parameters in region (iv), which concerns
the polarizsation/co-existence dynamical regime, where
population structure leads to a dominance-like dynamics,
which contrasts with the findings in well-mixed popula-
tions.

Figure 4e–h shows the quasi-stationary distributions
for six combinations of the complexity parameters, as
indicated in panels a–d of Figure 4a–d. These results
show another difference prompted by the different net-
work structures, and that concerns the observed diffu-
sion levels:, as the peaks in the polarizsation levels have
different variances.

Following the results in Figure 1 of the main text, Fig-
ure 5a–d shows the average fixation times for different
combinations of the parameters αBA and αAB . To com-
plement these results we also show the average final frac-
tion of opinion A for the same combination of parameters
in Figure 5e–h.
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Figure 5. Long-run properties of the distribution. Panels a,
b, c, and d show the average number of steps to fixation in
one of the monomorphic states, with an upper bound of 2.5
Million Monte Carlo Steps. Panels e, f, g, and h show the
expected final fraction of individuals of type A.
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