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Abstract
An experimental and numerical study on mode II fracture behaviour of European 
beech (Fagus sylvatica L.) in the RL and TL crack propagation systems is per-
formed. It is a hardwood species that has attracted increasing interest for structural 
use in Europe in recent years. Three-point end notched flexure tests are performed. 
The R-curves of both crack propagation systems are obtained, from which the crit-
ical strain energy release rate (GIIc) is derived by applying the compliance-based 
beam method. This data reduction scheme avoids crack length monitoring during 
its propagation, which is an advantage in wood. Using a direct method, the shear 
traction‐separation laws in mode II loading are determined. Full field displacements 
around the crack tip are monitored by 3D digital image correlation technique, and 
the crack tip shear displacements are analysed. The proposed method is numeri-
cally validated by finite element analysis. Cohesive zone models are developed 
implementing a shear traction–separation law with exponential damage evolution 
zone and the average value of the experimental elastic and fracture properties. The 
numerical results for the different properties including upper and lower limits repre-
sent well the experimental data.

Introduction

Wood is one of the most important and least polluting natural resources in the world. 
Currently, concern about greenhouse gas emissions is growing steadily. This results 
in sustainability policies strongly betting on the use of wood as a construction mate-
rial and being interested in carrying out a sustainable exploitation of forests. In 
response, the research community is accompanying this change by developing prod-
ucts and tools that allow building in an environmentally friendly way, deepening the 
use of wood as a structural material.
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Technological development and the better use of natural resources in recent years 
have sparked interest in the use of hardwood species in the building sector. Part of 
this concern is due to the high mechanical performance of hardwoods compared to 
softwoods. In this sense, one of the hardwood species that has recently gained a 
great deal of attention for structural purposes in Europe is beech (Fagus sylvatica L.) 
(Enders-Comberg et al. 2015; Kovryga et al. 2020; Ehrhart et al. 2021), on which 
this study will focus.

In the context of timber structures, there are common design situations where 
brittle failures can occur due to stress concentrations, for example, in beams with 
holes, joints, notched beams, etc. (Ardalany et  al. 2016; Dourado et  al. 2018; 
Majano-Majano et al. 2022) producing critical situations that require special atten-
tion. Therefore, it is necessary to establish adequate failure criteria and to accurately 
characterise the fracture properties of the material. In this context, conventional 
methods relying on the strength of materials and failure criteria have limitations. 
To overcome these drawbacks, fracture mechanics based approach can offer advan-
tages, since this theory appeared as a tool to explain the failure mechanisms associ-
ated with the propagation of pre-existing cracks. The first model developed was only 
able to satisfactorily explain the behaviour of brittle materials such as glass (Ing-
lis 1913; Griffith et al. 1921) and therefore did not arouse much enthusiasm in the 
research community. However, the theory underwent a great development after the 
Second World War (Irwin and Washington 1957; Dugdale 1960; Barenblatt 1962; 
Rice 1968; Bažant and Planas 1998) and managed to explain the failure of materials 
such as steel, concrete, or wood, which is characterised by the development of strain 
energy dissipation mechanisms before failure, such as plastic deformation around 
the crack tip, friction, microcracking, or fibre-bridging. These softening mechanisms 
in wood can be modelled with the concept of Fracture Process Zone (FPZ) ahead of 
the crack tip (de Moura et al. 2006). There is experimental research in the literature 
that suggests a quasi-brittle behaviour of wood, with fibre-bridging being the major 
crack tip toughening mechanism (Vasic and Smith 2002).

Numerical simulations using finite element analysis (FEA) are becoming a use-
ful and powerful tool to better understand the fracture behaviour of many timber 
structural applications, such as end notched beams, beams with holes or bolted con-
nections (Rautenstrauch et al. 2008; Caldeira 2011; Franke and Quenneville 2011, 
2012; Ardalany et al. 2016; Dourado et al. 2018). In this sense, cohesive zone mod-
els (CZM) constitute one of the simplest methods to take into account the afore-
mentioned toughening phenomena and whose precision has been sufficiently dem-
onstrated (Dugdale 1960; Barenblatt 1962; Hillerborg et al. 1976; Petersson 1981; 
Boström 1992; Coureau et  al. 2007; de Moura et  al. 2009a; Dourado et  al. 2013; 
de Moura et  al. 2015; Pereira et  al. 2018). The CZM applies a strength criterion 
based on limit stresses to determine the start of the damage, and later implements a 
traction-separation law to describe the progressive damage of the material accord-
ing to a fracture mechanics criterion. However, the drawback of using CZM is that 
they must be associated with geometrically defined damage paths in the numerical 
model and, therefore, it is essential to know them previously. Moreover, knowledge 
of the different material properties is necessary to develop FEA models accurately. 
Relevant information on the properties of Fagus sylvatica L. can be found in the 
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literature, such as the elastic orthotropic constants (Ozyhar et al. 2013a, c; Gómez-
Royuela et al. 2021) and viscoelastic characterisation (Ozyhar et al. 2013b). How-
ever, CZMs also require the material fracture properties, such as the fracture energy 
and the cohesive law. These properties can be obtained experimentally by direct 
methods (Xavier et  al. 2014b) or by inverse methods using numerical simulations 
(Dourado et al. 2012).

Various fracture test arrangements have been proposed to study pure fracture 
modes (mode I, mode II, mode III) (Cramer and Pugel 1987; Stanzl-Tschegg et al. 
1995; Ehart et al. 1998; Frühmann et al. 2002b, a; Qiao et al. 2003; Yoshihara 2004; 
Brunner et al. 2008; Ardalany et al. 2012; Majano-Majano et al. 2019, 2012; Xavier 
et al. 2014a; Dourado et al. 2015; Luimes et al. 2018; Crespo et al. 2018). Although 
there is still no globally accepted method for each of them, the double cantilever 
beam (DCB) (Yoshihara and Kawamura 2006) and the three-point end notched flex-
ure (ENF) (Yoshihara and Ohta 2000) tests are widely applied to pure modes I and 
II, respectively. Much research has focused mainly on the wood fracture behaviour 
under mode I, as it is considered to be the most predominant one. However, many 
elements are designed to withstand high shear loads, so knowing the fracture behav-
iour under mode II becomes an important key issue.

The objective of this work is to experimentally determine the main fracture prop-
erties in mode II loading of European beech wood (Fagus sylvatica L.) using ENF 
specimens for both tangential-longitudinal (TL) and radial-longitudinal (RL) crack 
propagation systems. For the first time, to the best of the authors’ knowledge, the 
shear traction-separation laws of Fagus sylvatica L. are provided, which are derived 
directly from the relationship between the strain energy release rate (GII) obtained 
from the R-curves and the crack tip shear displacements (CTSD) monitored during 
testing by means of the 3D digital image correlation (DIC) technique. The compli-
ance-based beam method (CBBM) is applied as a data reduction scheme, which is 
based on the beam theory and on the equivalent crack length (aeq) concept. It has 
the advantage that only the load–displacement curve is needed and does not require 
measuring crack growth during the test, which would be a complex task in wood, 
particularly under mode II loading. Numerical validation by FEA using cohesive 
zone models with exponential softening relationship of the shear traction–separation 
law is also performed.

Materials and methods

Raw material

Fagus sylvatica L. from Europe was the wood species tested in this work. The speci-
mens were machined and carefully cut from knot-free boards and oriented according 
to the RL and TL crack propagation systems (Fig. 1). The material was stored in a 
climate chamber at 20 °C and 65% relative humidity until an equilibrium moisture 
content was reached. The density of each specimen was measured, resulting in aver-
age values of 721 kg/m3 and 708 kg/m3 for the batches corresponding to RL and 
TL systems, respectively. Main moisture contents of 10% and 9.9% were achieved 
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for the RL and TL groups of specimens, respectively. Constant values for the 
shear modulus in LR plane, GLR = 1108 MPa, and the shear modulus in LT plane, 
GLT = 706 MPa, were taken from Gómez-Royuela et al. (2021).

Three‑point end notched flexure tests coupled with 3D digital correlation

Twelve ENF specimens with RL orientation and fourteen with TL were tested accord-
ing to the geometry schematically shown in Fig.  2. These are small rectangular-
shaped beams with nominal dimensions 2L1 × 2h × B (500 mm × 20 mm × 20 mm). 
An initial crack was performed at mid-cross section height using a band saw. 

Fig. 1  RL and TL crack propagation systems of the specimens

Fig. 2  ENF geometry
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This procedure was carried out in two steps: first, a notch with an initial length a0 
(161 mm) was machined, and just prior to testing this notch was lengthened 1 mm 
more using a very sharp thin blade. This delicate process was controlled using a 
universal testing machine (Fig. 3) with a cross-head speed of 10 mm/min, since the 
shape of the pre-crack surface plays an important role and could significantly influ-
ence the results, as reported in Dias et al. (2013). The pre-crack length was meas-
ured with a precision magnifying glass as shown in Fig. 4.

The ENF specimens were subjected to three point bending tests using an electro-
mechanical universal testing machine with a load cell of 5 kN maximum capacity 
(Fig. 5). The beam span was 2L (460 mm). The load was introduced at the mid-span 
under a constant crosshead speed of 2 mm/min. To avoid friction effects during the 
tests, two sheets of Teflon were introduced between the upper and lower sides of the 
crack at the support zone. The load displacement curves (P-δ) were recorded during 
the tests with a frequency of 1 Hz. The deflection of the specimen was obtained by 
means of a linear variable differential transformer (LVDT) measuring the loading 

Fig. 3  a Cutting setup: 1- ENF specimen, 2- sharp thin blade, 3- loading plate, 4- cutting support; b pre-
crack

Fig. 4  Pre-crack measurement: measuring area marked in the highlighted square (left); measuring area 
viewed with a precision magnifying glass (right)
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plate displacement (element 4 in Fig. 5), as this LVDT was synchronised with both 
the 5 kN load cell and the DIC system. It should be noted that the loading nose did 
not produce any indentation on the specimens. An additional LVDT was used to ver-
ify that the supports showed no horizontal displacements (Fig. 5c). The maximum 
displacement recorded was approximately 0.01 mm, which was considered negligi-
ble. The initial test setup and the completed test result are shown in Figs. 5 and 6, 
respectively.

3D DIC is an optical technique capable of measuring full field displacements of 
a speckled pattern, applied on the surface of interest (Sutton et al. 2009). An advan-
tage of the 3D system over the 2D system is the ability to take measurements of an 
area within a volume, avoiding measurement errors arising from poor positioning 
of the specimen with respect to the cameras. The 3D DIC system  ARAMIS® 3D 
(GOM mbH 2007) was used and coupled to the universal testing machine to record 
synchronized data of crack tip shear displacements with a frequency of 1  Hz. To 
ensure the accuracy of the measurements, a speckle pattern with appropriate contrast 
and granulometry was created on the surface of interest of the ENF specimens. This 
pattern was made in two stages: first, a thin, homogeneous layer of matte white paint 
was applied by spray, and then a pattern of black dots was projected on the surface 
using an airbrush. The optical system consisted of two front cameras with a resolu-
tion of 5 megapixels, coupled with 35 mm lenses. The optical system was calibrated 
according to the specifications described by the manufacturer (GOM mbH 2007). 
For this proposal, 13 images were taken and the calibration results were verified to 

Fig. 5  a ENF test set-up coupled with 3D DIC: (1) 300 kN load cell, (2) 5 kN load cell, (3) loading nose, 
(4) LVDT, (5) LVDT, (6) beech specimen, (7) speckle pattern, (8) supports, (9) DIC system equipment, 
(10) electro-mechanical testing machine frame; b detail of speckle pattern; c detail of the support

Fig. 6  a ENF specimen being tested; b detail of the fracture zone; c detail of the support
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be within the acceptable range established by GOM company. The calibration pro-
cedure was carried out using a CP20 according to the size of the study area. A sub-
set size of 15 × 15  pixel2 and a subset step of 13 × 13  pixel2 were selected to improve 
the spatial resolution in a compromise with respect to accuracy. To achieve accurate 
measurements, the cameras were placed 400 mm from the surface of interest and 
set up for a field of view of 80 × 65  mm2. Consequently, an angle of 25° was estab-
lished between the cameras. The separation between them and the reference axis 
was locked at 138 mm. In addition, to ensure the correct focus of the specimen sur-
face, the device incorporated two white-light spotlights with adjustable light inten-
sity to avoid insufficient or excessive light exposure. The spotlights and the shutter 
time were set to ensure adequate contrast and illumination of the specimen.

Experimental direct data reduction method

The shear traction–separation laws for pure mode II loading describe the relation-
ship between the strain energy release rate (GII), the shear stresses (τ) and the crack 
tip shear displacements (CTSD) according to the following expression (Leffler et al. 
2007)

where u is the CTSD, which was directly monitored during the test using the ARA-
MIS 3D DIC system. The differentiation of Eq. (1) provides directly the shear trac-
tion-separation law (τ = f(w)) as

To apply this equation, it is necessary to determine the evolution of GII during 
the test. However, nonlinear phenomena such as microcracks, cracks-branching and 
fibre-bridging appear in the area around the crack tip. These toughening mechanisms 
influence the fracture behaviour of wood and therefore cannot be neglected. This 
zone is known as FPZ and is located ahead of the crack tip. To overcome this dif-
ficulty, in this study, the GII was determined from the crack growth resistance curves 
(R-curves), which are a useful tool that allows quantifying the influence of the FPZ. 
The GIIc is given by the plateau value of these curves. According to this, GII can be 
obtained by the Irwin-Kies equation:

where P, B, C and a are the applied load, the width of the specimen, the compliance 
(C = δ/P) and the crack length, respectively. In this work, dC/da was determined 
applying the CBBM (de Moura et al. 2006). This data reduction scheme is based on 
the equivalent crack length (aeq) concept and accounts for the energy dissipated due 

(1)GII =

u

∫
0

�(u)du

(2)�(u) =
dGII

du

(3)GII =
P2

2B

dC

da
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to the toughening mechanisms. These phenomena are developed in the FPZ and are 
not negligible in wood. In this context, considering the Timoshenko beam theory for 
the ENF test, the specimen compliance can be written as (de Moura et al. 2006)

being EL and GLi the longitudinal and shear elastic moduli, respectively. In the last 
one, i can be either R or T and refer to the radial and tangential orthotropic direc-
tions. L, B, h and a are the dimensions of the specimens identified in Fig. 2. To take 
into account the effects that the inherent variability of wood has on the elastic prop-
erties, a corrected bending modulus Ef is considered instead of EL. For this purpose, 
the Ef value can be determined from Eq.  (4) using the initial values of the crack 
length a = a0 and compliance C = C0. It should be clarified that C0 was estimated by 
linear regression of the P-δ curve applying the least-squares method. Consequently, 
Ef can be determined according to the following expression

where C0,corr is given by

It should be highlighted that no significant errors are made when neglecting the 
influence of inherent variability of GLi on the result of C, as shown in de Moura et al. 
(2006). Therefore, in this research work, a typical value of GL summarized in “Raw 
material” section was considered in Eq. (6). On the other hand, accurate crack length 
measurements during the ENF test is a difficult task since crack tends to grow with 
their faces in close contact (Schuecker and Davidson 2000). Furthermore, the specimen 
compliance (C = δ/P) recorded during the test can be quite influenced by the effects that 
the FPZ causes in the vicinity of the crack tip. Because of this, an amount of energy 
can be dissipated that is not accounted for in GII, when real crack length is used as a 
calculation parameter. Consequently, important errors can occur in the characterisation 
of the fracture energy. To overcome these difficulties, an equivalent crack length (aeq) is 
used in Eq. (4) instead of the real one and can be written as (de Moura et al. 2006)

where Ccorr is given by

(4)C =
3a3 + 2L3

8Bh3E
L

+
3L

10BhG
Li

, i = R, T

(5)Ef =
3a3

0
+ 2L3

8Bh3C0,corr

(6)C0,corr = C0 −
3L

10BhG
Li

, i = R, T

(7)aeq = a + ΔaFPZ =
3

√
Ccorr

C0,corr

a3
0
+

2

3

(
Ccorr

C0,corr

− 1

)
L3

(8)Ccorr = C −
3L

10BhGLi

, i = R, T
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Finally, combining Eqs. (3) and (7), the evolution of GII as a function of aeq can be 
determined as follows

In order to obtain the shear traction–separation law, CTSD were rigorously meas-
ured using the ARAMIS 3D DIC system. For this purpose, the pre-crack tip was 
identified in the first image and subsequently pairs of symmetrical facets to the 
expected fracture plane in the initial picture were carefully selected. According to 
this, each top subset (+ 1, + 2, + 3, …) was paired with its lower symmetrical subset 
(− 1, − 2, − 3, …) (Fig. 7). The displacements in the direction of the fracture plane 
were then post-processed for each loading step and for each selected pair of facets. 
It should be noted that the CTSD determination was always started considering the 
subsets pair closest to the crack tip (+ 1 and −  1). However, to avoid facets near 
discontinuities and damage areas, each subset of data was verified to be recognized 
successfully in each of the recorded images. A sensitivity analysis was therefore sys-
tematically performed. This validation process was carried out by observing if there 
were discontinuities in the u-δ curve. In addition, it was verified that each facet of a 
subset pair was on the opposite side of the crack during the test, as the crack propa-
gation could place them on the same arm.

Finally, CTSD (u) was evaluated as the relative displacement between each set of 
facets as follows (Sousa et al. 2010, 2011)

where u+ and u− are the displacement components parallel to the crack surface 
(Fig. 8) associated with the subsets described above and ‖ ⋅ ‖ represents the Euclid-
ean norm.

(9)GII =
9P2a2

eq

16B2h3Ef

(10)u = ��u
+ − u−‖

Fig. 7  Scheme of the subsets pair location (squares) used for the determination of CTSD
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In order to obtain τ, a continuous function was fitted to GII-u. There are different 
ways to address this problem adequately.

In this sense, relevant research available in the literature (Oliveira et  al. 2021; 
Gómez-Royuela et al. 2022) has shown that a 4-parameter logistic model is a useful 
tool for fitting calibration curves of this shape. Therefore, in this study, a 4-param-
eter logistic function (Rodbard 1974; Rodbard and Hutt 1974) was fitted by least 
squares through successive approximations according to the following expression

where A1, A2, u0 and p are fitting constants by regression analysis. It should be noted 
that this function is used as a tool to smooth the noise before deriving Eq. (2). In this 
way, τ can be determined as follows

The A2 parameter in Eqs. (11) and (12) should provide an estimation of the criti-
cal strain energy release rate according to Eq. (13).

On the other hand, this methodology has been successfully applied in other rel-
evant research available in the literature (e.g. Pereira et  al. 2018; Majano-Majano 
et al. 2020).

Numerical validation

In order to verify the appropriateness of the experimental procedure followed 
to determine the shear traction–separation law according to the direct method 
(Eq.  (12)), a numerical law similar to the experimental one (Eq.  (12)) was 
implemented in  ABAQUS® v2021 (Abaqus 2021), a commercial finite element 

(11)GII =
A1 − A2

1 +
(
u
/
u0
)p + A2

(12)� = −
p(A1 − A2)(u

/
u0)

p−1

u0
(
1 + (u

/
u0)

p
)2

(13)A2 = lim
u→∞

GII = GIIc

Fig. 8  Scheme of the ENF test with the speckle pattern at the crack tip area of the specimen during test-
ing
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software. Since the fracture plane will remain the same throughout the thickness 
of the specimen, a 2D analysis was performed using CZM. To obtain accurate 
results, a refined mesh was performed in the crack growth region according to the 
scheme in Fig. 9. A total of 2070 8-node (CPS8R) quadratic plane stress elements 
were used to model the ENF specimen. 148 6-node quadratic cohesive surfaces 
were used to simulate fracture propagation at the plane located at half-height, 
as shown in Fig.  9. 73 of these 148 elements belong to the refined zone. The 
Newton–Cotes integration scheme was used in the elements (Gonçalves et  al., 
2000). The analyses were carried out considering nonlinear geometric behaviour. 
Implicit nonlinear analysis was considered and the Newton–Raphson convergence 
method was used to solve the systems of nonlinear equilibrium equations. The 
model was loaded applying 20 mm displacement (δ) at the mid-span of the speci-
men in increments no greater than 0.02  mm in order to obtain a smooth crack 
growth and accurate results.

Recent research available in the literature uses simple shapes to define the soften-
ing region of the shear traction–separation law, such as linear or bilinear softening, 
to simulate crack growth in wood (de Moura et al. 2009b; Xavier et al. 2014b; de 
Moura et al. 2018). In this study, an exponential softening relationship (Fig. 10) was 
implemented using standard items in ABAQUS to reproduce stable propagation of 
the crack in Mode II according to the experimental test. This shape provides very 
good fit to the experimental cohesive laws.

This fracture behaviour is characterised by an initial undamaged linear elastic 
branch until the maximum shear stress τu is reached at the peak of the curve, 

Fig. 9  Scheme of the numerical model with the refined mesh

Table 1  Numerical parameters of the exponential shear traction–separation law. Maximum shear strength 
(τu), initial stiffness (k), ultimate displacement at which fibre breaks (uu), rate of damage evolution (α) 
and critical fracture energy in mode II (GIIc)

Propagation system τu (N/mm2) K (N/mm3) uu (mm) GIIc (N/mm)

RL
Average 27.95 662 0.413 2.29
Upper limit 36.46 995 0.333 2.46
Lower limit 21.86 487 0.499 2.12
TL
Average 18.65 454 0.298 1.17
Upper limit 22.43 546 0.304 1.43
Lower limit 14.86 362 0.289 0.91
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which is associated with the corresponding crack opening u0. This undamaged 
stage is defined by Eq. (14).

where u is the CTSD and k is the initial interface stiffness considered by the user, 
usually known as the penalty parameter. It should be noted that being rigorous 
with the proposed data reduction scheme in “Experimental direct data reduction 
method” section the initial stiffness implemented in the numerical model could be 
taken directly from the second derivative of Eq. (11). However, this would lead to a 
greater consumption of computational resources and also in many situations to use 
unsound values of k, since the logistic curve shape leads to a stiffness close to zero 
in the first loading step, something that has no physical meaning in this material. 
According to this, the initial stiffness used in the numerical solution was the slope of 
the fitted line between the origin (u = 0 and τ = 0) and the peak of the curve given by 
Eq. (12) (u = u0 and τ = τu). The k values used are summarized in Table 1.

The second branch of the shear traction–separation law is a softening stage 
corresponding to the development of the FPZ. After achieving maximum local 
strength (τu), the material behaves in a nonlinear way and the largest slope zone 
(first descending branch) and the lowest slope zone represent microcracking and 
fibre-bridging, respectively. The ultimate crack growing (uu) is defined from the 
fracture energy GIIc. The shear traction–separation relationships at this part of the 
law are established according to Eq. (15):

where d is the damage parameter, which is determined from the shear traction–sepa-
ration law as a function of u according to Eq. (16). It varies between 0 and 1, with 0 
if there is no material damage and 1 when the rupture is reached.

(14)� = k u

(15)� = (1 − d)k u

Fig. 10  Exponential shear traction–separation law implemented in ABAQUS. Separation (u) and shear 
traction (τ)
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being α a nondimensional parameter that defines the rate of damage evolution. A 
value of α  =  6 was adopted, since it turned out to be a representative value that 
fits the damage branch given by Eq.  (12). Knowing GIIc, the final CTSD (uu) can 
be obtained by integrating the area under the function given in Fig. 10. The values 
considered to determine the shape of the shear traction–separation law are listed in 
Table 1, which correspond to the average experimental values obtained in “Results 
and discussions” section. To consider the inherent variability of wood proper-
ties, two additional separation laws were implemented in the numerical validation, 
which are listed in Table  1 and represent the upper and lower limits of the shear 
traction–separation laws. These additional laws were derived by applying the stand-
ard deviation (St. Dev.) to the mean values, as detailed in “Shear traction-separation 
laws” section.

The mean values of the elastic constants of European beech used as input data in 
the numerical models were taken from previous work by the authors (Gómez-Roy-
uela et al. 2021) and EL was altered in such a way that the initial slope of the experi-
mental P-δ curves was correctly predicted. These values are summarized in Table 2.

Results and discussions

R‑curves

The experimental P-δ curves (in grey) obtained from the ENF tests for the RL and 
TL propagation systems are shown in Fig. 11. They also include the numerical P-
δ curves using the exponential shear traction–separation laws and elastic constants 
specified in Tables 1 and 2. Likewise, numerical P-δ curves considering the upper 
and lower limits of the experimental shear traction–separation laws are represented 
(dotted and dashed lines, respectively), whose values are summarized in Table 1 and 
the laws can be seen in “Shear traction-separation laws” section. 

The experimental curves of both crack propagation systems show consistent 
results despite the typical variability that surrounds a material such as wood. It 
should be noted that RL propagation system shows higher ultimate load and less 
scatter in the curves than the TL direction. In addition, the stiffness of both groups is 
quite similar. Initial compliance (C0) was calibrated using the straight branch of the 

(16)d =
1 − e

−�

(
u−u0

uu−u0

)

1 − e−�

Table 2  Elastic properties of Fagus sylvatica L. used in numerical validation (Gómez-Royuela et  al. 
2021)

EL (MPa) ER (MPa) ET (MPa) νRL (−) νTL (−) νRT (−) GLR 
(MPa)

GLT 
(MPa)

GRT 
(MPa)

Average 13,811 1590 832 0.51 0.44 0.32 1108 706 349
St. Dev (1323) (541) (115) (0.030) (0.015) (0.041) (202) (139) (53)
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experimental P-δ curves. This procedure was addressed by linear regression apply-
ing the least-squares method obtaining coefficients of determination R2 > 0.999. This 
value is used to fit Ef and thus avoid determining this property in each ENF test. The 
numerical curves obtained are consistent with the experimental ones. Furthermore, 
the numerical curves that represent the upper and lower limits of the shear traction-
separation laws prove to be able to explain the variability of the wood.

In Fig. 11, it can be seen that both groups showed nonlinear behaviour before the 
curve reached the maximum load. This fact reveals that the influence of the FPZ 
developed ahead of the crack tip cannot be ignored. This is a typical behaviour of 
quasi-brittle materials such as wood. This phenomenon has also been observed by 
other authors for different wood species (Xavier et al. 2014b; Majano-Majano et al. 
2020) and develops microcracks and fibre-bridging. This fact highlights the diffi-
cult task of accurately monitoring crack propagation during testing. In this sense, 
it seems appropriate to use the data reduction scheme based on an equivalent crack 
length concept to determine GII (de Moura et al. 2006). Typical macroscopic visuali-
sation of the different stages during crack propagation and the absolute displacement 
fields (X,Y,Z) of the crack tip corresponding to the maximum load state (point 3) are 
shown in Fig. 12a, b, respectively.

Fig. 12  a Macroscopic visualization of the different stages during crack propagation of the ENF TL 
14 specimen and corresponding P-δ and P-CTSD curves; b absolute displacement fields (X,Y,Z) of the 
crack tip corresponding to point 3

Fig. 11  Experimental and numerical P-δ curves from ENF tests in both RL (left) and TL (right) propaga-
tion systems
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From Fig. 12b, it can be deduced that the relative displacements in the Y and 
Z directions are negligible. This fact verifies that the choice of an ENF test set-up 
is adequate to evaluate fracture mode II, since the relevant displacements occur in 
the X direction. Therefore, disregarding the displacements in the Y and Z direc-
tions does not imply a significant error.

The experimental and numerical R-curves obtained from both crack propaga-
tion systems are shown in Fig. 13. These curves describe the evolution of GII as 
a function of aeq and are a useful tool to determine the critical fracture energy. 
According to them, GII increases its value until it stabilizes, drawing a plateau. 
The transition between these two branches is not linear and, therefore, the influ-
ence of the FPZ can again be observed. However, in all cases, a horizontal branch 
is clearly evident, revealing stable crack growth. This fact verifies the suitability 
of the proposed method (CBBM).

GIIc was determined as the average value of the points that belong to the hori-
zontal branch. Numerical R-curves were obtained using the numerical P-δ curves. 
As can be observed, the numerical R-curves fit quite well with the experimen-
tal ones. In addition, the upper and lower limit curves encompass the dispersion 
of the experimental curves. These results justify the validity of the experimental 
procedure followed to obtain the fracture properties of Fagus sylvatica L.

The results of C0, Ef, maximum load (Pmax) and critical fracture energy (GIIc) 
obtained from each ENF test in both RL and TL crack propagation systems are 
listed in Tables 3 and 4, respectively. Additionally, the mean, St. Dev., and coeffi-
cient of variation (CoV) values are also shown in those tables. The average value 
of the critical fracture energy obtained in RL system is significantly higher than 
in TL system. In particular, GIIc in RL is twice that of GIIc in TL. Furthermore, it 
should be noted that RL system shows less variability than TL. This can also be 
observed in Fig. 13. The maximum load (Pmax) in RL is again higher than in TL 
but, in this case, the difference is only 32%. On the other hand, the differences of 
C0 and Ef between the two fracture propagation systems are negligible.

The average value of GIIc for Fagus sylvatica L. resulted in 2.29 N/mm (7.5% 
CoV) and 1.17  N/mm (22.1% CoV) in RL and TL crack propagation systems, 
respectively. This mean value in RL system is higher than that of other species 
such as Pinus pinaster, which according to Xavier et al. (2014b) has a GIIc value 

Fig. 13  R-curves from experimental and numerical ENF tests in both RL (left) and TL (right) crack 
propagation systems
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Table 3  Density (ρ), corrected flexural modulus (Ef), maximum load (Pmax), initial compliance (C0) and 
critical fracture energy (GIIc) obtained in RL crack propagation system from the R-curves

Specimen Ref ρ (kg/m3) Ef (N/mm2) Pmax (N) C0 (mm/N) GIIc (N/mm)

ENF_RL_01 718 13,561 810 0.016 1.91
ENF_RL_02 702 14,705 932 0.014 2.47
ENF_RL_03 711 13,050 898 0.016 2.29
ENF_RL_04 720 14,931 941 0.014 2.44
ENF_RL_05 678 13,591 876 0.016 2.25
ENF_RL_06 704 13,725 860 0.016 2.21
ENF_RL_07 664 13,096 858 0.016 2.55
ENF_RL_08 680 13,950 849 0.015 2.15
ENF_RL_09 741 14,741 955 0.014 2.42
ENF_RL_10 694 13,261 858 0.016 2.31
ENF_RL_11 746 15,452 942 0.014 2.22
ENF_RL_12 736 12,271 823 0.017 2.21
Average 708 13,861 883 0.015 2.29
St. Dev 26 928 49 0.001 0.17
CoV (%) 3.7% 6.7% 5.6% 6.8% 7.5%

Table 4  Density (ρ), corrected flexural modulus (Ef), maximum load (Pmax), initial compliance (C0) and 
critical fracture energy (GIIc) obtained in TL crack propagation system from the R-curves

Specimen Ref ρ (kg/m3) Ef (N/mm2) Pmax (N) C0 (mm/N) GIIc (N/mm)

ENF_TL_01 757 12,329 731 0.018 1.71
ENF_TL_02 706 13,968 607 0.016 0.93
ENF_TL_03 735 14,256 572 0.015 0.83
ENF_TL_04 704 13,745 717 0.016 1.37
ENF_TL_05 820 15,311 687 0.014 1.06
ENF_TL_06 714 14,347 647 0.015 1.09
ENF_TL_07 715 15,057 703 0.014 1.17
ENF_TL_08 639 13,145 584 0.017 0.93
ENF_TL_09 672 13,342 616 0.016 1.01
ENF_TL_10 714 13,949 612 0.016 0.97
ENF_TL_11 772 15,056 798 0.015 1.60
ENF_TL_12 757 15,026 715 0.015 1.32
ENF_TL_13 707 14,962 720 0.014 1.21
ENF_TL_14 679 14,457 665 0.014 1.15
Average 721 14,211 670 0.015 1.17
St. Dev 45 865 66 0.001 0.26
CoV (%) 6.3% 6.1% 9.8% 6.8% 22.1%
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of 1.15  N/mm, or Eucalyptus globulus L., which according to Majano-Majano 
et al. (2020) shows a GIIc value of 1.54 N/mm.

Representative pictures of the specimen cross section and the fractured surface 
observed after crack propagation for both RL and TL propagation systems can be 
seen in Fig. 14. The fracture surface shows the rays crossing the wood in the radial 
direction, significantly affecting crack propagation in the RL system, which may 
explain the considerably higher values of fracture energy in RL with respect to the 
TL.

Shear traction‑separation laws

The shear traction-separation law describes the evolution of τ as a function of CTSD 
(u). The area under the τ-u curve corresponds to the GIIc value. To guarantee a cor-
rect characterization of the fracture properties in mode II, the presence of crack tip 
opening displacement (CTOD) during the test must be negligible, as otherwise part 
of the energy in mode I would be erroneously computed as fracture energy in mode 
II. This is a relevant aspect in the proposed data reduction scheme. To verify this, 
the influence of CTSD and CTOD was analysed as a function of the displacement 
(δ) applied to the ENF specimen. The CTOD measurement method is detailed in 
Gómez-Royuela et al. (2022). The results of a representative test in both RL and TL 
crack propagation systems are shown in Fig. 15.

The results reveal that CTOD in Mode I is negligible, which means that the 
ENF test set-up followed is appropriate to determine GIIc, since the influence of 
Mode I on Mode II is very low. The evolution of GII as a function of u from 
the experimental tests is shown in Fig. 16. Such evolution of GII until reaching 
GIIc (plateau value in the R-curves) is smoother in the RL crack propagation sys-
tem compared to TL, where the transition is more abrupt. This fracture behaviour 

Fig. 14  Representative ENF specimens after testing in RL (a) and TL (b) crack propagation systems: (1) 
cross section; (2) fracture surface of the two parts of the specimen; (3) oblique view of the fracture sur-
face; (4) detail of the fracture surface
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reveals a greater influence of the FPZ in the RL system than in the TL, as a result 
of the toughening mechanisms such as microcracks and fibre-bridging.

With the main objective of reducing the noise from the experimental data and 
having a continuous and smooth function that can be derived to determine the 
shear traction–separation law, a logistic-type function (see “Experimental direct 
data reduction method” section) was fitted to each experimental GII-u curve. A 
representative example in both crack propagation systems is shown in Fig.  17, 
from which a good approximation can be observed. It should be noted that the 
same set of data points considered for determining GIIc according to “R-curves” 
section has been taken into account for this fitting procedure.

Fig. 16  Experimental  GII-u relationship in both the RL (left) and TL (right) crack propagation systems

Fig. 17  Logistic function fitting to the ENF RL 01 (left) and ENF TL 06 (right) test results

Fig. 15  Evaluation of normal CTOD (Mode I) and parallel CTSD (Mode II) with respect to applied dis-
placement (δ) in both RL (left) and TL (right) crack propagation systems
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All the experimental and the average shear traction-separation laws of both RL 
and TL fracture systems of Fagus sylvatica L. are shown in Fig. 18. Consistent 
results can be observed. The fitting parameters A1, A2, u0 and p of the logistic 
curves for the RL and TL systems are listed in Tables  5 and 6, respectively. It 
should be clarified that the fit parameter A2 is a direct estimate of GIIc. Further-
more, Glaw,II corresponds to the area under the logistic fit curve shown in Fig. 18. 
It should be noted that the mean curve (black line) shown in Fig. 18 is obtained 
using the average values of parameters A1, A2, u0 and p listed in Tables 5 and 6. 
However, this mean curve does not result in the mean values of Glaw,II, τu and 
uu. The average value of the maximum local shear stress (τu) in the RL direction 
resulted in 57% higher than in the TL.

Fig. 18  Experimental (in grey) and average (in black) shear traction–separation laws in mode II for RL 
(left) and TL (right) crack propagation systems

Table 5  Parameters of the logistic function (A1, A2, u0, p), maximum shear stress (τu), fracture energy of 
the shear traction–separation law (Glaw,II) and maximum relative displacement (uu) for RL crack propaga-
tion system

Specimen Ref A1 (N/mm) A2 (N/mm) u0 (mm) p (−) Glaw,II (N/mm) τu (N/mm2) uu (mm)

ENF_RL_01 0.023 1.94 0.051 2.50 1.91 27.71 0.615
ENF_RL_02 0.034 2.54 0.062 2.51 2.48 29.65 0.383
ENF_RL_03 0.049 2.46 0.044 2.82 2.40 43.64 0.316
ENF_RL_04 0.044 2.60 0.060 2.47 2.48 31.38 0.243
ENF_RL_05 0.043 2.35 0.053 2.74 2.29 34.44 0.289
ENF_RL_06 0.000 2.27 0.075 1.87 2.23 19.09 0.617
ENF_RL_07 -0.008 2.68 0.102 1.80 2.58 16.35 0.627
ENF_RL_08 0.051 2.20 0.053 2.89 2.12 33.14 0.253
ENF_RL_09 0.007 2.65 0.069 2.05 2.45 25.17 0.240
ENF_RL_10 0.008 2.32 0.065 2.15 2.26 23.83 0.350
ENF_RL_11 0.046 2.31 0.049 2.46 2.25 33.40 0.482
ENF_RL_12 0.078 2.37 0.046 2.73 2.29 39.22 0.520
Average 0.031 2.39 0.061 2.42 2.31 29.75 0.411
St. Dev 0.025 0.21 0.016 0.37 0.18 7.89 0.153
CoV (%) 81.3% 8.8% 26.7% 15.3% 7.9% 26.5% 37.3%
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In order to explain the inherent variability of this wood species, three numeri-
cal laws (average, upper limit and lower limit) were fitted to the experimental ones 
by applying the St. Dev. to the average law. The three logistic experimental laws 
(dashed lines) and exponential numerical laws fitted to the logistic experimental 
laws (solid lines) are shown in Fig. 19. It should be noted that the numerical laws 
implemented in FEA have the same GIIc value as that determined according to the 
experimental method detailed in “Experimental direct data reduction method” sec-
tion and obtained as follows: first, logistic curves (Eq. (12)) were obtained varying 
the values of parameters A1, A2, u0 and p so that the area under the curves obtained 

Table 6  Parameters of the logistic function (A1, A2, u0, p), maximum shear stress (τu), fracture energy of 
the shear traction–separation law (Glaw,II) and maximum relative displacement (uu) for TL crack propaga-
tion system

Specimen Ref A1 (N/mm) A2 (N/mm) u0 (mm) p (−) Glaw,II (N/mm) τu (N/mm2) uu (mm)

ENF_TL_01 0.008 1.77 0.067 2.41 1.76 19.04 0.434
ENF_TL_02 0.023 1.02 0.047 2.81 1.00 16.84 0.251
ENF_TL_03 0.023 0.95 0.031 2.70 0.92 23.30 0.161
ENF_TL_04 0.028 1.47 0.058 2.87 1.43 20.31 0.283
ENF_TL_05 0.034 1.19 0.041 3.39 1.15 26.11 0.165
ENF_TL_06 0.024 1.11 0.050 2.94 1.09 17.91 0.389
ENF_TL_07 0.038 1.28 0.049 3.00 1.24 21.34 0.288
ENF_TL_08 0.028 1.01 0.047 3.06 0.97 17.64 0.232
ENF_TL_09 0.028 1.08 0.055 2.91 1.05 15.61 0.320
ENF_TL_10 0.033 1.02 0.061 2.90 0.99 13.22 0.428
ENF_TL_11 0.040 1.70 0.063 2.69 1.64 20.28 0.360
ENF_TL_12 0.036 1.41 0.061 2.84 1.37 18.33 0.376
ENF_TL_13 0.036 1.26 0.052 2.86 1.24 19.18 0.471
ENF_TL_14 0.022 1.23 0.060 2.63 1.19 15.26 0.317
Average 0.029 1.25 0.053 2.86 1.22 18.88 0.320
St. Dev 0.008 0.26 0.010 0.23 0.25 3.34 0.096
CoV (%) 29.4% 20.5% 18.3% 7.9% 20.9% 17.7% 30.2%

Fig. 19  Shear traction–separation laws: experimental laws (in grey); average, upper limit and lower limit 
of the logistic experimental laws (dashed lines); and exponential numerical laws fitted to the logistic 
experimental laws (solid lines). RL (left) and TL (right) crack propagation systems
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(average law, upper limit law and lower limit law) is equal to GIIc determined accord-
ing to the experimental method. The average value of the parameters A1, A2, u0 and 
p coincides with the average values given in Tables 5 and 6. The upper and lower 
limits of these parameters were determined by adding or subtracting a percentage 
(55% in this research work) of the St. Dev. to the mean values. The average value of 
GIIc coincides with the average value shown in Table 3 and Table 4. Likewise, the 
upper and lower limits of GIIc were determined by adding and subtracting, respec-
tively, the St. Dev. to the average value of GIIc (Tables 3, 4). Then, for simplicity in 
FEA, the logistic curves were simplified to exponential curves (see Fig. 10), so that 
the area under the exponential curve is equal to the area of the logistic curve, thus 
ensuring that the GIIc implemented in the FEA is the same as that obtained from 
the experimental test. Furthermore, as a design criterion of the exponential curve, 
it was imposed that the point located at the tip of the logistic curve coincides with 
the point where the damage of the exponential curve begins (coordinates u0, τu). The 
parameters defining each of the exponential laws are summarised in Table 1. The 
load–displacement curves and respective R-curves ensuing from the numerical laws 
were obtained and included for comparison with the experimental results in Figs. 11 
and 13. Overall, it can be settled that the limiting curves define well the observed 
experimental range, which reinforces the suitability of the proposed methodology.

Conclusion

The experimental shear traction–separation law was obtained by the direct method, 
and CTSD was analysed by 3D DIC technique. This data reduction scheme was vali-
dated by finite element analysis implementing an exponential softening relationship. 
A cohesive zone model was used to reproduce crack propagation. Two additional 
shear traction–separation laws were implemented in the numerical validation, rep-
resenting the upper and lower limits of the average law determined by applying the 
standard deviation to the mean value of GIIc. These additional laws prove to be able 
to explain the variability of the wood.

The GII fracture energy of European beech was derived by applying the CBBM, 
a data reduction method based on beam theory and on the equivalent crack length 
concept that only requires the P-δ curves data and not the measurement of crack 
propagation during the test, which would be a difficult task in wood and in the ENF 
test.

The average GIIc values were approximately twice as high in the RL crack propa-
gation system (2.29  N/mm) as in TL (1.17  N/mm). However, the maximum load 
reached in the RL direction only represented 32% more than in TL. The ultimate 
shear stress (τu) of the shear traction–separation law in the RL system resulting from 
a logistic curve fitting was 57% higher than in the TL direction.

The results of GIIc and the shear traction–separation laws presented in this work 
are of great interest for the design of timber structures made of beech with the possi-
bility of brittle failure involving mode II (e.g. dowel connections loaded at an angle 
to the grain, or beams with holes or notches), both for use in analytical expressions 
based on energy approaches for the prediction of load carrying capacity, and in 
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numerical FEM using cohesive zone models where damage initiation and propaga-
tion need to be analysed.
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