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Abstract

The algebraic variety defined by the idempotents of an incidence monoid is investi-
gated. Its irreducible components are determined. The intersection with an antichain
submonoid is shown to be the union of these irreducible components. The antichain
monoids of bipartite posets are shown to be orthodox semigroups. The Green’s rela-
tions are explicitly determined, and applications to conjugacy problems are described.
In particular, it is shown that two elements in the antichain monoid are primarily
conjugate in the monoid if and only if they belong to the same J -class and their multi-
plication by an idempotent of the same J -class gives conjugate elements in the group.
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1 Introduction

The incidence monoid of a finite poset is the (complex) linear algebraic monoid whose un-
derlying set consists of (C-valued) functions defined on the set of all intervals of the poset,
and the multiplication is given by a suitable convolution product. In this article we inves-
tigate various algebraic subsemigroups in an incidence monoid. The purpose of our work is
manifold. First, we show that several important families of semigroups are among the ranks
of incidence monoids. Secondly, we investigate the structures of the idempotent varieties of
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such monoids. Also, we test some notions of conjugacy relations described in [2] on certain
submonoids of the incidence monoids. Towards achieving these goals, we pay particular
attention to the incidence monoids that come from bipartite graphs. The starting point of
our analysis is the following theorem.

Theorem 1.1. Let P be a finite poset. Let E(I(P )) denote the idempotent variety of the
incidence monoid of P , that is, E(I(P )) := {e ∈ I(P ) : e2 = e}. Then E(I(P )) has 2|P |

connected components. Furthermore, each connected component of E(I(P )) is an irreducible
algebraic subsemigroup of I(P ).

Note that our first Theorem 1.1 does not say that E(I(P )) is a subsemigroup, but rather
its irreducible components are subsemigroups. In fact, by using the theory of regular al-
gebraic monoids, we will identify a family of posets for which the idempotent varieties are
subsemigroups. After writing our paper, we learned from Michel Brion that a closely related,
much more general result about the irreducibility and the smoothness of the components of
the idempotent scheme of a not necessarily affine algebraic monoid was already obtained by
Brion in [4, Theorem 2.14]. It turns out that our proofs for the relevant parts are different.

The theory of linear algebraic monoids is a fascinating branch of semigroup theory that
encompasses the theory of linear algebraic groups. An important result of Putcha [17] and
Renner [20] states that the unit group G(M) of an irreducible linear algebraic monoid M
with zero is a reductive algebraic group if and only ifM is a regular semigroup. Here, regular
means that for each a ∈M there exists an element s ∈M such that a = asa. When the zero
element is missing, the regularity of M is determined by the radical of G(M). This is given
by another theorem of Putcha [17]: an irreducible linear algebraic monoid is regular if and
only if the Zariski closure of the radical of G(M) is a completely regular semigroup. Here,
completely regular means that the semigroup is a union of its subgroups. This motivates the
question of understanding the solvable linear algebraic monoids that are completely regular.
These monoids are classified in a paper of Renner [21]. We return to the incidence monoid
of a finite poset P . In [7], it is shown that there is a set of completely regular submonoids,
{I(P,A) ⊆ I(P ) : A is an antichain in P}. We refer to the elements of this set by antichain
monoids (of P ). Structurally I(P,A) is very similar to I(P ). Indeed, we show in the present
article that the idempotent variety of an antichain monoid I(P,A) is a union of certain
irreducible components E(I(P )) (Proposition 3.5).

The antichain monoids of certain posets provide us with important classes of semigroups.
The second main result of this article is the following.

Theorem 1.2. Let P be a finite poset in which every interval has at most two elements.
If A is an antichain of P , then the corresponding antichain monoid I(P,A) is an orthodox
semigroup, that is, the set of idempotents of I(P,A) is a subsemigroup.

Let M be an irreducible regular monoid with unit group G. The cross-section lattice
of M , denoted Λ, is a finite lattice of idempotents of M such that M =

⊔
e∈ΛGeG. This

notion is one of the most important discrete invariants of a regular monoid. In general, the
computation of this finite poset is difficult. Let P be a poset as in Theorem 1.2. If every
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maximal element of P covers all minimal elements of P , then we call P a complete bipartite
poset. In the third main result of our paper we analyze the cross-section lattices of the
antichain monoids of complete bipartite posets.

Theorem 1.3. The cross-section lattice of an antichain monoid of a complete bipartite poset
is a Boolean lattice.

In an irreducible algebraic monoid M with unit group G, a J -class is given by the
two sided orbit GeG, where e is an idempotent. An important question here is about the
structure of the H-class of e. What does it look like? Our fourth main result answers this
question.

Theorem 1.4. Let e be an idempotent of the antichain monoid of a complete bipartite
poset Q with respect to the maximal antichain of maximal elements. Then the H-class of
e is isomorphic to the group of invertible elements of the antichain monoid of a complete
bipartite subposet Q′ ⊂ Q with respect to the maximal antichain of maximal elements of Q′.

As a corollary of this result we see that in the antichain monoidM of a complete bipartite
poset Q with respect to the maximal antichain A consisting of maximal elements, there are
|A| nonisomorphic H-classes (Corollary 5.7). In fact, we determine not only all H-classes
but also every Green’s classes for M (Theorem 6.2).

As we mentioned earlier, one of our goals in this paper is to initiate a study of conjugacy
actions on the incidence monoids. For a group G, there is essentially one type of conjugacy
relation; a ∼ b in G if there exists g ∈ G such that a = gbg−1. For monoids, there are many
different conjugacy notions that agree with the ordinary conjugacy action when restricted
to the group of invertible elements. To give an example, let us consider a monoid M with
unit group G. The p-conjugacy relation is defined by

a ∼p b⇔ ∃z, w ∈M : a = zw, b = wz.

It is easy to see that on G, we have ∼ ≡ ∼p. In the last main result of our paper, we
determine the ∼p conjugacy classes in the antichain monoid of a complete bipartite poset.

Theorem 1.5. Let M denote the antichain monoid (associated with a maximal antichain)
of a complete bipartite poset. Let X and Y be two elements from M . Then X ∼p Y if
and only if both X and Y belong to the same J -class and their (right) multiplication by an
idempotent of the same J -class gives conjugate elements in the group.

Let us finally mention that this theorem shows that the p-conjugacy problem in M is
reduced to the ordinary conjugacy problem in the H-classes. We solve this problem explicitly
in our Corollary 7.3.

We are now ready to describe the contents of the individual sections. In the next pre-
liminaries section, we setup our notation, and review the fundamentals of linear algebraic
monoids. Also in this section, we introduce the incidence monoids and their antichain sub-
monoids. The purpose of Section 3 is to analyze the idempotent variety of an incidence
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monoid. This is where we prove our first main result Theorem 1.1. In addition, we show
that the components of the idempotent variety of an antichain submonoid are among the
irreducible components of the idempotent variety of the ambient incidence monoid (Propo-
sition 3.5). At the beginning of Section 4, we prove our Theorem 1.2, which states roughly
that the idempotents of the incidence monoid of a bipartite poset is a subsemigroup. In
Theorem 4.9, we analyze the product of two irreducible components in this semigroup of
idempotents. In Section 5, we analyze the lattice of regular J -classes of the antichain monoid
of a complete bipartite poset. More precisely, we prove our Theorem 1.3, which states that
the lattice of regular J -classes here form a Boolean lattice. Another goal of Section 5 is to
describe the H-classes of the idempotents. It turns out that the H-classes in our particular
antichain monoids look like the unit groups of appropriate antichain monoids. This is where
we prove our Theorem 1.4. In Section 6, we describe explicitly all Green equivalence classes
of an arbitrary element of a maximal antichain monoid of a complete bipartite poset (Theo-
rem 6.2). This result turns out to be very instrumental for our study of the ∼p-conjugacy on
the antichain monoid of a complete bipartite poset. We prove our Theorem 1.5 in Section 7.
Finally, we close our paper by a brief discussion of another equivalence relation that is closely
related to ∼p. We pose several open problems for future research.

2 Preliminaries

Although our results hold true for any algebraically closed field of characteristic zero, for
simplicity, we work with algebraic semigroups defined over the field of complex numbers. We
denote the set of positive integers by Z+. Let {k, n} ⊂ Z+. We fix the following notation
for the rest of our text:

Matk,n : the set of k × n matrices;
Matn : the monoid of n× n matrices;
GLn : the unit group of Matn;
Bn : the subgroup of upper triangular matrices in GLn;
Un : the subgroup of unipotent upper triangular matrices in Bn;
Tn : the diagonal torus, that is, the subgroup of diagonal matrices in Bn;
1n : the n× n identity matrix;
[n] : the set {1, . . . , n};

diag(a1, . . . , an) : n× n diagonal matrix with entries a1, . . . , an.

For L ⊆ [n], we denote by 1L the diagonal idempotent

1L := diag(a1, . . . , an), where aj =

{
1 if j ∈ L

0 otherwise.
(1)

Let G be an algebraic group. The radical of G, denoted R(G), is the maximal connected
normal solvable subgroup of G. If R(G) is trivial, then G is said to be semisimple. The
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unipotent radical of G, denoted Ru(G), is the maximal connected normal unipotent subgroup
of G. If Ru(G) is trivial, then G is said to be reductive.

An algebraic semigroup is an algebraic variety S with an associative binary operation
µ : S × S → S such that µ is a morphism of varieties. Following the useful conventions
of algebraic group theory, in this text, we do not assume that varieties are irreducible. Of
course, an algebraic set has only finitely many irreducible components. An algebraic monoid
is an algebraic semigroup with an identity element. For an introduction to the theory of not
necessarily linear algebraic semigroups, we refer the reader to [3, 22].

We now introduce some poset theory terminology. Let (P,≤) be a poset. We will usually
omit the order relation “≤” from our notation. A chain is a totally ordered subposet of P .
A maximal chain in P is a chain C in P such that C is not a chain in any other chain in
P . Let P be a finite poset. If C is a chain, then its length is the number |C| − 1. If every
maximal chain in P has the same length, then P is said to be ranked (or, graded). In this
case, the length of any maximal chain in P is called the rank of P . In this paper we are
concerned with the incidence monoids of finite posets only.

2.1 Semigroups, algebraic semigroups.

The group Bn is a Borel subgroup of GLn. We call the Zariski closure of Bn in Matn the
(standard) Borel monoid. The main purpose of this subsection is to review some general
results of Putcha on the closed subsemigroups of the Borel monoid. We begin with some
general semigroup theory notions. We shall use the following results without further notice.
For more information on semigroups see [9].

Throughout this section S will denote a semigroup unless otherwise specified. Let S1

denote the monoid obtained by adjoining an identity to S if necessary (in which case S1 :=
S ∪ {1}). The Green’s relations on S are defined as follows. Let a, b ∈ S. Then

1. aRb if aS1 = bS1,

2. aLb if S1a = S1b,

3. aJ b if S1aS1 = S1bS1,

4. aHb if aRb and aLb,

5. aDb if aRc and cLb for some c ∈ S.

The equivalence class of an element a ∈ S with respect to any of these relations will be
indicated by putting a in the subscript. For example, Ha stands for the H-class of a.

We denote the set of idempotents of S by E(S). The natural partial order on E(S) is
given by

e ≤ f ⇐⇒ e = fe = ef (2)

5



for e, f ∈ E(S). Let I be a nonempty subset of S. Then I is called a right ideal of S (resp.
left ideal, resp. ideal) if IS ⊆ I (resp. SI ⊆ I, resp. S1IS1 ⊆ I). The semigroup S is
called simple if it contains no proper ideals, and if S contains a zero element 0, then it is
said 0-simple if it is not a null semigroup and its only proper ideal is {0}.

For a ∈ S, we define the set V (a) := {s ∈ S : asa = a and s = sas}. We call an element
s of V (a) an inverse of a. Many useful definitions of semigroup theory can be stated via the
set V (a). For example, a regular semigroup is a semigroup S such that V (a) 6= ∅ for every
a ∈ S.

Recall that S is called completely regular if it is a union of subgroups. There are several
useful descriptions of a completely regular semigroup. Here is one of them: S is completely
regular if and only if for every a ∈ S there is an inverse a−1 ∈ V (a) such that the following
identities hold:

(a−1)−1 = a and a−1a = aa−1. (3)

Note that in a completely regular semigroup an inverse a−1 ∈ V (a) satisfying the conditions
in (3) is unique.

The following facts will be useful for our purposes.

1. Any regular subsemigroup of Bn is completely regular [18, Remark 3.21].

2. LetM be an irreducible linear algebraic monoid with unit group G. Let e be a minimal
idempotent of M . Then M is a regular semigroup if and only if Ge := {g ∈ G : ge =
eg = e} is a reductive group [18, Theorem 7.4].

Warning: In Putcha’s monograph [18], a connected monoid means an irreducible monoid.

A fundamental theorem due to Putcha [18, Theorem 3.18] for linear algebraic semigroups,
Brion and Renner for arbitrary algebraic semigroups [5], states that every algebraic semi-
group is strongly π-regular, also known as epigroup, that is, for any x ∈ S, there exists a
positive integer n ∈ Z+ such that xn lies in a group. Let S be an epigroup. Let a and e
be two elements of S such that e ∈ E(S). Proofs of the following statements can be found
in [22, Theorem 2.65]:

1. Let Je ∩ eSe = He;

2. J = D on S;

3. If aJ a2, then Ha is a group. In particular, He is an algebraic group.

A J -class J of S is said to be regular if some (hence every) element of J is regular. This is
equivalent to the requirement that E(J) 6= ∅. We will denote by U (S) the partially ordered
set of all regular J -classes of S. Here, the partial order on U (S) is defined as follows: for
any regular elements a and b in S

Jb ≤ Ja ⇐⇒ xay = b for some x, y ∈ S1. (4)
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In [18, Theorem 3.28] Putcha shows that if S is an algebraic semigroup, then U (S) is a
finite poset.

A semigroup S is said completely simple if it is a simple epigroup [9, Theorem 3.3.2], and
it is said completely 0-simple if it is a 0-simple epigroup [9, Theorem 3.2.11]. It is pointed
out in [22, Remark 2.68] that these are not the standard definitions of completely simple
and completely 0-simple semigroups. However, by a theorem of Munn, they are equivalent
to the standard ones. A semigroup S is called right simple if the R = S × S. A semigroup
which is right simple and left cancellative is called a right group [9, pag. 61]. A famous
result of Clifford from [8] states that S is completely regular if and only if S is a semilattice
of completely simple semigroups (c.f. [9, §4.1]). In this case, S/J is a semilattice and each
J -class is a completely simple semigroup.

In this paragraph, M denotes an irreducible (hence connected) linear algebraic monoid
with unit group G. Let {a, b} ⊂ M and {e, f} ⊂ E(M). Since G is dense in M , we know
the following facts from [18, Proposition 6.1]:

1. aRb if and only if aG = bG;

2. aLb if and only if Ga = Gb;

3. aJ b if and only if GaG = GbG.

We know the following facts from [18, Proposition 6.8]:

1. eJ f if and only if x−1ex = f for some x ∈ G;

2. eRf if and only if there exists x ∈ G such that ex = x−1ex = f ;

3. eLf if and only if there exists x ∈ G such that xe = xex−1 = f .

Finally, we state the structure theorem [18, Corollary 6.10] for the idempotent variety of M .
For any maximal torus T in G, the idempotent variety of M is given by the union

E(M) =
⋃

x∈G

x−1E(T )x. (5)

We are now ready to review Putcha’s “cross-section lattice”. Let M be an irreducible
linear algebraic monoid with unit group G. A subset Λ of E(M) is called a weak cross-section
lattice if

• |Λ ∩ J | = 1 for all J ∈ U (M), and

• If e, f ∈ Λ, then Je ≤ Jf implies e ≤ f .
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If in addition Λ ⊆ E(T ) for some maximal torus T of G, then Λ is called a cross-section
lattice. Since the regular J -classes of an irreducible linear algebraic semigroup form a finite
lattice ([18, Theorem 5.10]), the cross-section lattice of an irreducible linear algebraic monoid
is indeed a finite lattice. In particular, every cross-section lattice has a unique minimal and
a unique maximal elements.

Recall that the J -class of an element x ∈ M is given by GxG ([18, Proposition 6.1]).
Thus, it follows from the definition of Λ that the natural partial order inherited from E(M)
on Λ agrees with the following order: e ≤ f ⇐⇒ GeG ⊆ GfG for every {e, f} ⊆ Λ.

We close this section by summarizing some important properties of the regular linear
algebraic monoids. If M is an irreducible regular monoid, then the following statements
hold:

1. M has a cross-section lattice [18, Corollary 9.4];

2. Any two cross-section lattices of M are conjugate [18, Corollary 9.7].

2.2 Incidence monoids.

Incidence monoids come from certain associative algebras. More information on such semi-
groups can be found in Okninski’s article, [15].

Let (P,≤) be a poset. The set of all intervals of P is denoted by int(P ). Let f and g be
two C-valued functions on int(P ). The convolution product of f and g is the product defined
by

(f ∗ g)([s, u]) =
∑

s≤t≤u

f([s, t])g([t, u]) ([s, u] ∈ int(P )).

The incidence monoid of P , denoted I(P ), is the monoid of C-valued functions on int(P ),
where the multiplication is given by the convolution product. There is a vector space struc-
ture on I(P ), where the sum is given by the point-wise addition of the functions. It follows
that, if P is a finite poset, then I(P ) is an affine space. In particular, in this case, I(P ) is a
linear algebraic monoid. Hereafter, we will work with finite posets only.

We proceed with descriptions of certain linear representations of I(P ). A linear extension
of P is a bijection le : P → [n] such that, for every {s, u} ⊂ P , the following implication
holds:

s ≤ u =⇒ le(s) ≤ le(u).

Here, ≤ is the natural order on [n]. From now on, when we list the elements of P as in
P = {x1, . . . , xn}, we assume implicitly that the assignment xi 7→ i, i ∈ [n] is a fixed linear
extension of P . For such a presentation of P , we get a C-algebra representation

Ψ = Ψle : I(P ) −→ Matn

f 7−→ (f([xi, xj ]))
n
i,j=1,
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where we set f([xi, xj ]) := 0 for every non-relation xi 
 xj in P . Clearly, the image of Ψ is
a closed submonoid of Bn. Indeed, Ψ is a faithful representation of I(P ). Also, since any
two matrix representations that are obtained from two (different) linear extensions of P are
isomorphic, for our purposes, the choice of a linear extension is unimportant. Hereafter, we
will identify the incidence monoid I(P ) with its image Ψ(I(P )) in Bn.

Example 2.1. Let P be a chain with n elements. In other words, let P = {x1, . . . , xn},
where x1 < · · · < xn. The image of the corresponding matrix representation of I(P ) is the
Borel monoid, Bn.

The unit group of an incidence monoid I(P ) will be denoted by G(P ). We note that
since I(P ) has the structure of a linear space, it is irreducible as a variety. In particular, the
unit group G(P ) is an irreducible algebraic group.

2.3 Antichain monoids.

We are now ready to properly introduce the antichain monoids. Let P := {x1, . . . , xn} be
a poset. Let A be a nonempty antichain in P . The antichain monoid, denoted I(P,A), is
the linear algebraic monoid defined by the Zariski closure Tn(A)⋉Un(P ) ⊆ Matn, where
Tn(A) is the diagonal torus,

Tn(A) := {diag(t1, . . . , tn) ∈ Matn : ti = 1 if xi /∈ A for i ∈ [n]} , (6)

and Un(P ) is the group of upper triangular unipotent matrices (aij)
n
i,j=1 ∈ Matn such that

aij = 0 for every i, j ∈ {1, . . . , n} whenever xi � xj . Note that Un(P ) is the unipotent
radical of the unit group of I(P ). We denote the unit group of I(P,A) by G(P,A). Since
we have G(P,A) = Tn(A) ⋉Un(P ), the antichain monoid I(P,A) is a unit-dense monoid.
In [7, Proposition 2.4] it is shown that I(P,A) is a completely regular semigroup.

Let us call a poset connected if its Hasse diagram is connected. A connected component
of a finite poset P is a subposet P ′ ⊆ P such that the Hasse diagram of P ′ is a connected
component of the Hasse diagram of P . The following proposition will be useful in the sequel.

Proposition 2.2. Let A be an antichain of P . Let P1, . . . , Ps denote the connected compo-
nents of P . If Ai (i ∈ [s]) denotes the antichain defined by Ai := A ∩ Pi, then we have the
following decomposition of algebraic monoids:

I(P,A) = I(P1, A1)× · · · × I(Ps, As).

Proof. For i ∈ [n], let ni denote the cardinality of Pi. The proofs of the following decompo-
sitions follow from definitions,

Un(P ) = Un1
(P )× · · · ×Uns

(P ) and Tn(A) = Tn1
(A1)× · · · ×Tns

(As).

It is now easy to see that G(P,A) =
∏s

i=1(Tni
(Ai)⋉Uni

(Pi)). Since the Zariski closure of
the right hand side of this isomorphism is the product of the Zariski closures of the factors,
the proof of our assertion follows.
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3 The Idempotent Varieties

In this section we investigate the structure of the idempotent variety of an incidence monoid.
As we mentioned before, the idempotent variety of a not necessarily linear algebraic semi-
group was investigated by Brion in [4]. Some of our general statements in this section can
be derived from Brion’s work. For completeness, we will provide the proofs of all of our
statements. Let us begin with a basic example to motivate our discussion.

Example 3.1. Let Q denote the chain x1 < x2. The incidence monoid of Q is the Borel
monoid B2. The idempotent variety of Q, that is E(Q), has four connected components.
They are given by

1. C1 :=

{[
1 a
0 0

]
: a ∈ C

}
,

2. C2 :=

{[
0 b
0 1

]
: b ∈ C

}
,

3. C3 :=

{[
1 0
0 1

]}
,

4. C4 :=

{[
0 0
0 0

]}
.

Clearly, Q has two antichains, A := {x2} and A′ := {x1}. It is not difficult to verify that the
union C1 ∪C3 is the idempotent variety of I(Q,A), and the union C2 ∪C3 is the idempotent
variety of I(Q,A′).

Let P = {x1, . . . , xn} be a poset. The diagonal monoid Tn (the Zariski closure of Tn)
is a maximal abelian algebraic submonoid of I(P ). The following natural map of upper
triangular matrices is an algebraic monoid homomorphism between Bn and Tn,

(aij)i,j=1,...,n 7→ diag(a11, . . . , ann) ((aij)
n
i,j=1 ∈ Bn). (7)

The restriction of (7) to its closed submonoid I(P ) is still a surjective algebraic monoid
homomorphism. Thus, by [3, Corollary 1], we get a morphism of idempotent varieties,

p : E(I(P )) −→ E(Tn)

(eij)i,j=1,...,n 7−→ diag(e11, . . . , enn). (8)

Our final remark before proving the main result of this section is the following: Since Tn is
abelian, the variety E(Tn) is a finite set of points, [3, Proposition 4 (iii)]. In fact, E(Tn) is
given by

E(Tn) = {1L : L ⊆ [n]},

where 1L is the idempotent defined in (1).
We are now ready to prove the first announced theorem of our paper. Let us recall its

statement for convenience.
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Theorem 3.2. Let P = {x1, . . . , xn} be a poset. The idempotent variety E(I(P )) has 2n

connected components. Each connected component is of the form

p−1(1L) = G(P ) · 1L = J1L
∩ E(I(P )), (9)

for some L ⊆ [n]. Furthermore, each connected component is an irreducible subsemigroup
of I(P ).

In (9), the action of G(P ) is the conjugation action; J1L
stands for the J -class of 1L.

Proof. Since Tn is a submonoid of I(P ), the morphism p in (8) is surjective. The image of
p has 2n elements. Let L ⊆ [n]. We will analyze the subvariety p−1(1L) of E(I(P )).

For {k, l} ⊆ [n], let xkl denote the (k, l)-th coordinate function on Matn. Recall that
I(P ) is the affine subspace of Matn defined by the equations xkl = 0 corresponding to the
non-relations in P . In this notation, the closed subset p−1(1L) ⊆ I(P ) is defined by the
conditions,

xjj = 0 for j ∈ [n] \ L, xii = 1 for i ∈ L,

and

n∑

l=1

xslxlt = xst for {s, t} ⊆ [n]. (10)

Since the equations in (10) do not have constant terms, by sending the off-diagonal matrix
coordinate variables to 0, we see the idempotent 1L is contained in every (path-)connected
component of the preimage, p−1(1L). In other words, p−1(1L) is a Zariski connected topo-
logical space. Therefore, E(I(P )) has 2n connected components. This finishes the proof of
our first assertion.

We proceed to show that the connected component p−1(1L) is irreducible. Recall that
I(P ) is irreducible and that E(Tn) = {1L : L ⊆ [n]}. Then G(P ) is irreducible, and hence
the orbit G(P ) · 1L is an irreducible subvariety of E(I(P )). From the decomposition (5) it
follows that

E(I(P )) =
⋃

1L∈E(Tn)

G(P ) · 1L,

where G(P ) · 1L = {x−11Lx : x ∈ G(P )}. Since G(P ) · 1L ⊆ p−1(1L), the above decompo-
sition is disjoint. It follows immediately that p−1(1L) = G(P ) · 1L, and hence is irreducible.
Also notice that any idempotents are in the J -class if and only if both belong to the same
conjugacy orbit by [18, Proposition 6.8].

Finally, if X and Y are two idempotents from p−1(1L) for some L ⊆ [n], then the diagonal
of XY is equal to the diagonal of X . In other words, p(XY ) = 1L. It follows that p−1(1L)
is closed under multiplication. Hence, it is a subsemigroup. This finishes the proof of our
theorem.
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Remark 3.3. In a personal communication, it is pointed to us by Michel Brion that the
second part of the conclusion of our theorem holds more generally. Let M be an irreducible
algebraic monoid with unit group G. It is proved in [4, Theorem 2.1] that the scheme
of idempotents E(M) is smooth. Furthermore, each connected component of E(M) is a
conjugacy class of G; it meets the closure of a given maximal torus of G. Consequently, each
connected component of E(M) is irreducible.

Example 3.4. Let P denote the chain x1 < x2 < x3. Then we have I(P ) = B3. Let us
consider the irreducible component p−1(1L) of E(B3), where L is the subset L := {1, 3} ⊂ [3].
It is easy to check that

p−1(1L) =







1 a b
0 0 c
0 0 1


 : b = −ac



 .

Clearly, this is isomorphic as a variety to the irreducible hypersurface defined by the vanishing
of the polynomial y + xz in the affine 3-space, A3(C).

The following observation will be useful in the sequel.

Proposition 3.5. Let I(P,A) be an antichain submonoid of I(P ) for some antichain A ⊆ P .
Then every irreducible component of E(I(P,A)) is an irreducible component of E(I(P )). In
particular, if 1L is a diagonal idempotent of I(P,A) for some L ⊆ [n], then we have

p−1(1L) = G(P,A) · 1L = J1L
(A) ∩ E(I(P,A)), (11)

where J1L
(A) is the J -class of 1L in I(P,A).

Proof. Since E(I(P,A)) = E(I(P )) ∩ I(P,A), by Theorem 3.2, it suffices to show that
p−1(1L) ⊆ E(I(P,A)) for every L ⊆ [n]. Of course, if for some L ⊆ [n] the idempotent
1L is not an element of E(I(P,A)), then there is nothing to prove. So, we proceed with the
assumption that 1L ∈ E(I(P,A)) for some subset L ⊆ [n]. Let x be an idempotent from
p−1(1L). Then x is of the form x = 1L + N , where N is a strictly upper triangular n × n
matrix. We now define a one-parameter subgroup of G(P,A):

λ : C∗ −→ G(P,A)

t 7−→ 1L + t(1n − 1L) +N (12)

Clearly, we have limt→0 λ(t) = 1L + N . Hence, the idempotent 1L + N is contained in the
closure of the image of λ. At the same time, the following inclusion holds:

λ(C∗) ⊆ G(P,A) = I(P,A).

Therefore, the idempotent 1L+N is contained in I(P,A). This finishes the proof of our first
assertion.
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To prove our second assertion, we recall the decomposition (5): the idempotents of an
irreducible monoid M with unit group G are given by the G-conjugates of the idempotents
of the closure of a maximal torus of G. A maximal torus of G(P,A) is given by the diagonal
torus Tn(A) as defined in (6). Since every element of G(P,A) is upper triangular, two-
idempotents L and L′ of Tn(A) are G(P,A)-conjugate if and only if they are equal. It
follows that G(P,A) · 1L does not contain any other idempotent of Tn(A). Since G(P,A) is
connected, so is its orbitG(P,A)·1L. This means that G(P,A)·1L is a connected component
of E(I(P,A)). Since G(P,A) · 1L ⊆ G(P ) · 1L, and G(P ) · 1L is a connected component of
E(I(P,A)) also, we see that G(P,A) · 1L = G(P ) · 1L. Hence, the proof of the first equality
in (11) follows. The proof of the second equality is similar, so, we skip it. This finishes the
proof of our proposition.

Remark 3.6. Let A and A′ be two antichains in P . By [7, Corollary 2.5] we know that

1. A′ ⊆ A if and only if I(P,A′) ⊆ I(P,A), and

2. I(P,A ∩ A′) = I(P,A) ∩ I(P,A′).

These items combined with Proposition 3.5 show that

1. A′ ⊆ A⇒ E(I(P,A′)) ⊆ E(I(P,A)), and

2. E(I(P,A ∩ A′)) = E(I(P,A)) ∩ E(I(P,A′)).

We close this section by another useful observation.

Lemma 3.7. Let A be an antichain of P := {x1, . . . , xn}. Then I(P,A) is an affine subspace
of Bn.

Proof. Let 1A denote the minimal diagonal idempotent of I(P,A). In other words, we have
1A := diag(a1, . . . , an), where

ai :=

{
0 if xi ∈ A

1 if xi /∈ A.

We observe that Tn(A)−1A is a linear space. In fact, it is not difficult to see that Tn(A)−1A

is isomorphic to the Lie algebra of the maximal torus Tn(A) of G(P,A).
Since we can view I(P,A)−1A as a subset of End(Cn), we can apply the additive Jordan

decomposition, [23, Proposition 2.4.4], to its elements. For y ∈ I(P,A), let (ys − 1A) + yn
denote the additive Jordan decomposition of y − 1A, where ys is a diagonal matrix and yn
is a strictly upper triangular (nilpotent) matrix. We notice that yn is an element of the Lie
algebra of Un(P ). Now we define the following map:

f : I(P,A) −→ Lie(Tn(A))⊕ Lie(Un(P ))

y 7−→ (ys − 1A) + yn.

It is easy to check that f is a birational map of varieties. Furthermore, it follows from the
uniqueness of the additive Jordan decomposition that f is bijective. Since the affine space
Lie(Tn(A))⊕ Lie(Un(P )) is a normal variety, by the Zariski’s Main Theorem [23, Theorem
5.2.8], we see that f is an isomorphism. This finishes the proof of our assertion.
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4 Bipartite Posets

Let P be a ranked poset such that every interval of P has at most two elements. If, in
addition, P is connected, then we will call P a bipartite poset. This terminology is justified
by the fact that the Hasse diagram of P is a directed bipartite graph.

The type of a bipartite poset P is the pair (k,m) ∈ Z+ × Z+, where k is the number of
minimal elements of P and m is the number of maximal elements of P . A complete bipartite
poset of type (k,m) is a bipartite poset of type (k,m) such that every minimal element of P
is covered by all maximal elements of P .

Example 4.1. Let us consider the bipartite posets in Figure 1. The poset P on the left is a
bipartite poset of type (3, 2). The poset Q on the right is a complete bipartite poset of type
(3, 2).

• • •

• •

x1 x2 x3

x4 x5

P

• • •

• •

x1 x2 x3

x4 x5

Q

Figure 1: Two bipartite posets.

A generic element of I(P ) is of the form




a11 0 0 a14 0
0 a22 0 a24 a25
0 0 a33 0 a35
0 0 0 a44 0
0 0 0 0 a55




for some ai,j ∈ C.

Similarly, the elements of the incidence monoid of Q are of the form




b11 0 0 b14 b15
0 b22 0 b24 b25
0 0 b33 b3,4 b35
0 0 0 b44 0
0 0 0 0 b55



, where bi,j ∈ C. (13)

We notice here that I(P ) is a submonoid of I(Q).

Remark 4.2. The observation we have at the end of this example holds in a greater gener-
ality. Indeed, it is easy to verify that if P is a bipartite poset of type (k,m), and Q is the
complete bipartite poset of type (k,m), then I(P ) is an algebraic submonoid of I(Q).
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Recall that a semigroup S is called an orthodox semigroup if E(S) is a subsemigroup of
S. Finding examples of posets such that I(P ) is not an orthodox semigroup is not difficult.
Nonetheless, we are able to show that all antichain submonoids of certain posets are orthodox
semigroups.

Theorem 4.3. Let P be a ranked poset such that every interval in P has at most two
elements. Let A be an antichain in P . Then the incidence monoid I(P,A) is an orthodox
semigroup.

Proof. Since P is a disjoint union of bipartite posets, in light of Proposition 2.2, it suffices to
prove our claim for bipartite posets. We proceed with the assumption that P is a bipartite
poset of type (k,m). Then the elements of the incidence monoid I(P ) are of the form

X :=

[
D1 B
0 D2

]
, (14)

where D1 (resp. D2) is a k × k diagonal matrix (resp. m×m diagonal matrix), and B is a
k×m matrix. Clearly, X is invertible if and only if both ofD1 and D2 are invertible matrices.
Since G(P ) is a subgroup of Bn, the unipotent radical of G(P ) is given by the intersection
G(P ) ∩ Ru(Bn). It is easy to check that Ru(Bn) = Un. By using [23, Proposition 2.4.12],
we see that Ru(G(P )) ⊆ Un. It follows that we have

Ru(G(P )) =

{[
1k B
0 1m

]
: B ∈ Matk,m

}
.

Notice that
[
1k B
0 1m

] [
1k B′

0 1m

]
=

[
1k B +B′

0 1m

]

for every B and B′ from Matk,m. It follows that Ru(G(P )) is an abelian group.
By using an argument as in the previous paragraph, we see that the unipotent radical

of G(P,A) is a subgroup of Un ∩G(P ). Since Ru(G(P )) is the maximal connected normal
unipotent subgroup of G(P ), we see that the unipotent radical of G(P,A) is contained in
Ru(G(P )). In particular, we see that Ru(G(P,A)) is an abelian group as well. It follows
from Lemma 3.7 that I(P,A) is a smooth, hence normal, variety. The rest of the proof now
follows from a result of Renner, [21, Theorem 3.2 (c)].

4.1 The idempotent monoid of a complete bipartite poset.

Since it is a rather important special case, in this subsection, we determine completely the
structure of the irreducible components of the idempotent monoid of a complete bipartite
poset Q of type (k,m). We set, as usual, n := k +m.

Lemma 4.4. Let X = (Xij)i,j=1,...,n be an idempotent in the incidence monoid I(Q). If
Xij 6= 0 for some 1 ≤ i < j ≤ n, then {Xii, Xjj} = {0, 1}.
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Proof. Notice thatXij 6= 0 for some 1 ≤ i < j ≤ n, then i ≤ k < j. Then the (i, j)-th entry of
X2 is given by XiiXij+XijXjj. Since X

2 = X , we have XiiXij+XijXjj = Xij. Equivalently,
we have Xii +Xjj = 1. The proof now follows from the fact that {Xii, Xjj} ⊆ {0, 1}.

The proof of the following corollary follows easily from Lemma 4.4.

Corollary 4.5. Let X = (Xij)i,j=1,...,n be an idempotent in the incidence monoid I(Q). If
Xii = Xjj for some i and j such that 1 ≤ i ≤ k < j ≤ n, then we have Xij = 0.

Next, in the case of a complete bipartite poset Q, we give a combinatorial formula for
the dimension of the irreducible components of E(I(Q)).

Proposition 4.6. Let L ⊆ [n]. Then the dimension of the fiber p−1(1L) ⊆ E(I(Q)) is given
by

dim p−1(1L) = km− ab− (k − a)(m− b) = kb+ am− 2ab,

where a = |L ∩ {1, . . . , k}| and b = |L ∩ {k + 1, . . . , n}|.

Proof. We set

L1 := {1, . . . , k} ∩ L and L2 := {k + 1, . . . , n} ∩ L.

Let Y be an idempotent in p−1(1L). Let (Yij)i,j=1,...,n denote the matrix of Y . Since p(Y ) =
1L, and Y is upper triangular, we have the following restrictions on the ‘lower triangular’
entries of Y :

Yij =





0 if i > j;

0 if i = j and i /∈ L;

1 if i = j and i ∈ L.

The restrictions on the strictly upper triangular entries of Y come from Corollary 4.5:

Yij =

{
0 if i ∈ L1 and j ∈ L2;

0 if i < j, i /∈ L1, and j /∈ L2.

There are no other restrictions of the entries of Y . Therefore, if i ∈ L1, then for each
j ∈ {k + 1, . . . , n} \ L2, the entry Yij can be any element of C. Likewise, if j ∈ L2, then for
each i ∈ {1, . . . , k}\L1, the entry Yij can be any element of C. The zero entries of Y that we
listed here will be called the absolutely-zero entries of Y . We observe that for each i ∈ L1,
the number of zero entries in the i-th row of Y are completely determined by the elements
j ∈ L2. Similarly, for each i ∈ {1, . . . , k} \ L1, the number of zero entries in the i-th row of
Y are completely determined by the elements j ∈ {k+1, . . . , n}\L2. Therefore, the number
of (possibly) nonzero entries of Y is given by km minus the total number of absolutely-zero
entries of Y . This finishes the proof of our second assertion.
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Example 4.7. Let L denote the subset L = {2, 4, 6, 7} ⊆ {1, . . . , 8}. Let Q denote the
complete bipartite poset of type (3, 5). Then p−1(1L) consists of matrices of the form




0 0 0 ∗ 0 ∗ ∗ 0
0 1 0 0 ∗ 0 0 ∗
0 0 0 ∗ 0 ∗ ∗ 0
0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0




,

where ∗ stands for an arbitrary scalar from C. As in the proof of Proposition 4.6, we set
L1 := L ∩ {1, 2, 3} and L2 := L ∩ {4, 5, 6, 7, 8}. Since L1 = {2} and L2 = {4, 6, 7}, we have
a = 1 and b = 3. Therefore, the dimension of p−1(1L) is given by

km− ab− (k − a)(m− b) = 8.

We emphasize once more the fact that for any arbitrary poset P and an antichain A in P ,
the idempotent variety of I(P,A) need not be a subsemigroup. But Proposition 3.5 together
with Theorem 1.1 show that every irreducible component of E(I(P,A)) is a subsemigroup. In
the case of a complete bipartite poset Q, and for any antichain A ⊆ Q, Theorem 1.2 shows
that I(Q,A) is an orthodox semigroup. To fully describe the structure of the semigroup
E(I(Q,A)), we want to answer the following question:

Question 4.8. How do the subsemigroups p−1(1L) ⊆ E(I(Q,A)) fit together?

First of all, we notice from the homomorphism property of the morphism p, for every
pair of subsets L, L′ from [n], there is an inclusion p−1(1L)p

−1(1L′) ⊆ p−1(1L∩L′) in E(I(P )),
where P is any finite poset.

In light of Remark 3.6, to answer our question it suffices to work with a maximal antichain
A in Q. This means that, if Q is given by Q = {x1, . . . , xn}, then A is either {x1, . . . , xk}
or {xk+1, . . . , xn}. Without losing generality, we will proceed with the assumption that
A = {xk+1, . . . , xn}. In this case, a diagonal idempotent 1L is a member of I(Q,A) if and
only if the inclusions [k] ⊆ L ⊆ [n] hold.

Theorem 4.9. Let Q be a complete bipartite poset of type (k, n − k) and let A be the
maximal antichain {xk+1, . . . , xn} in Q. The irreducible components of E(I(Q,A)) are given
by p−1(1L), where [k] ⊆ L ⊆ [n] hold. Furthermore, for every two such subsets L and L′, we
have p−1(1L)p

−1(1L′) = p−1(1L∩L′).

Proof. We already proved our first assertion, so, we proceed with the proof of the second
assertion. Under our assumptions, our claim follows from a direct matrix multiplication. Let
Y ∈ p−1(1L) and Z ∈ p−1(1L′). Then the columns of Y Z are determined as follows. Let Yi
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(resp. Zi) denote the i-th column of Y (resp. of Z) for i ∈ [n]. Likewise, we denote by (Y Z)i
the i-th column of Y Z for i ∈ [n]. Then by a direct computation and using Corollary 4.5 we
see that, for every i ∈ [n], the i-th column of Y Z is given by

(Y Z)i =

{
Zi if the i-th entry of the column Zi is zero,

Yi otherwise.
(15)

We notice that both of the components p−1(1L) and p−1(1L′) are affine spaces. Indeed,
this follows from the fact the matrix entries of the elements of p−1(1L) and p−1(1L′) can
be freely chosen from the underlying field. The calculation in (15) shows that the product
p−1(1L)p

−1(1L′) is also an affine space of dimension k(n−|L∩L′|). Since p−1(1L)p
−1(1L′) ⊆

p−1(1L∩L′), to finish the proof, it remains to show that dim p−1(1L∩L′) = k(n−|L∩L′|). We
will use Proposition 4.6.

By our assumptions on L and L′ we have [k] ⊆ L∩L′. Therefore, a and b of Proposition 4.6
are given by

a = k and b = |L ∩ L′| − k.

Then, by the same proposition we have

dim p−1(1L∩L′) = kb+ a(n− k)− 2ab

= k(|L ∩ L′| − k) + kn− k2 − 2k(|L ∩ L′| − k)

= kn− k|L ∩ L′|.

This finishes the proof of our theorem.

Example 4.10. Let Y ∈ p−1(1{1,2,3,6,7,8}) and Z ∈ p−1(1{1,2,3,5,8}) denote the following
idempotent matrices:

Y :=




1 0 0 a14 a15 0 0 0
0 1 0 a24 a25 0 0 0
0 0 1 a34 a35 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1




and Z :=




1 0 0 b14 0 b16 b17 0
0 1 0 b24 0 b26 b27 0
0 0 1 b34 0 b36 b37 0
0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1




.

Then we have Y Z =




1 0 0 b14 a15 b16 b17 0
0 1 0 b24 a25 b26 b27 0
0 0 1 b34 a35 b36 b27 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1




∈ p−1(1{1,2,3,8}).
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5 The Cross-Section Lattice

Recall from Subsection 2.1 that a regular irreducible linear algebraic monoid M has a cross-
section lattice. Our goal in this section is to determine a cross-section lattice of I(P,A),
where P is a bipartite poset, and A is an antichain. As our earlier Example 4.1 indicates,
by adding cover relations to our bipartite poset, we enlarge the underlying incidence monoid
without changing its maximal torus, hence, its diagonal idempotents. At the same time,
our earlier Remark 3.6 shows that an enlargement of an antichain adds more idempotents
to the underlying antichain monoid. Since there is no information lost when we work with
complete bipartite posets and their maximal antichains, we proceed with this assumption.

We fix the following notation: Q = {x1, . . . , xn} is a complete bipartite poset of type
(k,m), so, n = m+ k. The letter A denotes the maximal antichain that consists of maximal
elements, A := {xk+1, . . . , xn}. If there is no danger for confusion, we will denote the
antichain monoid I(Q,A) by M ; the unit group of M will be denoted by G.

Theorem 5.1. In the above notation, the cross-section lattice Λ of M is isomorphic to the
Boolean lattice of all subsets of [m].

Proof. SinceM is an irreducible linear algebraic monoid, for x ∈M , the J -class of x is given
by GxG. In particular, for every idempotent e ∈ E(M), we have Je = GeG. At the same
time, two idempotents of M are in the same J -class if and only if they are G-conjugate. By
Proposition 3.5, we know that the diagonal idempotents 1L, where [k] ⊆ L ⊆ [n], are the
representatives of the G-conjugacy classes in E(M).

Since M is an irreducible regular monoid, it has a cross-section lattice Λ. Furthermore,
all cross-section lattices are conjugate to each other. Without loss of generality we will work
with the cross-section lattice that is contained in the maximal torus Tn(A).

Recall that E(Tn(A)) = {1L : [k] ⊆ L ⊆ [n]}. Now, since every element of Λ intersects
a unique J -class and every J -class is represented by a unique diagonal idempotent 1L

such that [k] ⊆ L ⊆ [n], we see that the elements of Λ are in bijection with the subsets
of [n − k] = [m]. Finally, it is easy to check that the natural order on the idempotents in
{1L : [k] ⊆ L ⊆ [n]} is the one that corresponds to the inclusion order on their indices. Hence
we recover Λ as the Boolean lattice ([m],⊆). This finishes the proof of our theorem.

The proof of our theorem shows that a cross-section lattice for an antichain monoid can
be chosen inside the closure of the diagonal torus. We isolate this fact as a corollary to refer
to it later.

Corollary 5.2. In the above notation, the set

Λ = {1L : [k] ⊆ L ⊆ [n]}

is a cross-section lattice of M .

Proof. The proof is contained in the second paragraph of the proof of Theorem 5.1.

Open problem 5.3. Is it true that the weak cross-section lattice of an incidence monoid is
a cross-section lattice if and only if it is a regular monoid?
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5.1 The H-classes.

In the remainder of this section, we will determine the structures of the H-classes of (the
elements of the cross-section lattice of) I(Q,A), where Q = {x1, . . . , xn} is a complete
bipartite poset of type (k,m), and A = {xk+1, . . . , xn} ⊆ Q is the maximal antichain. We
begin with some general remarks.

Let M be an incidence monoid. Let e be an idempotent from E(M). Since G is solvable,
the Weyl group W of G is trivial. By [18, Corollary 6.34], we know that the following are
equivalent:

1. 1 = w(e) := |{wew−1 : w ∈ W}|.

2. G = C l
G(e)C

r
G(e), where C

l
G(e) (resp. C

r
G(e)) is the left (resp. right) centralizer of e in

G.

3. eGe is the H-class of e.

Let f be another idempotent that is G-conjugate to e. Let g ∈ G be such that f = geg−1.
Then we have fGf = geg−1Ggeg−1 = geGeg−1. It is easily seen that the map x 7→ gxg−1,
where x ∈ eGe, defines an isomorphism between eGe and fGf . From these observations
we conclude that to calculate the H-class of an idempotent of M , it suffices to focus on the
groups eGe, where e is from the cross-section lattice of M .

We now specialize to the antichain monoidM := I(Q,A). Since M is completely regular,
by [9, Proposition 4.1.1], every H-class in M is a group. Hence, every H-class contains an
idempotent of M . By our observations in the previous paragraph, we see that any H-class
in M is isomorphic to one of the H-classes of the form eGe, where e ∈ Λ. By Corollary 5.2,
we know that

Λ = {1L : [k] ⊆ L ⊆ [n]}.

Notation 5.4. Let 1L be an idempotent from Λ. If 1L is given by 1L = diag(a1, . . . , an),
then we set

1̃L := diag(ak+1, . . . , an).

We denote by TL the set of diagonal matrices T ∈ Tm such that T = T ′1̃L for some T ′ ∈ Tm.

The elements of the unit group G are the invertible matrices of the form Y :=

[
1k B
0 T

]
,

where T is an invertible diagonal m×m matrix, and B ∈ Matk,m.

Proposition 5.5. Let 1L be an idempotent from Λ for some L such that [k] ⊆ L ⊂ [n].
Then the H-class of 1L is given by

1LG1L =

{[
1k B
0 T

]
:
B ∈ Matk,m is such that B1̃L = B

T ∈ TL

}
.

20



Proof. This follows from a direct computation by matrix multiplication. We omit the details.

Proposition 5.5 suggests that some of the H-classes in different D-classes can be isomor-
phic to each other as well. We make this observation more precise by our next result.

Theorem 5.6. Let 1L be an idempotent from Λ for some L such that [k] ⊆ L ⊆ [n]. Let
a := |L|. If a > k, then the H-class of 1L is isomorphic to the unit group G(Q(a), A(a)),
where Q(a) is the complete bipartite poset Q(a) := {x1, . . . , xa}, and A(a) is the maximal
antichain {xk+1, . . . , xa}.

Proof. Let G(a) denote the unit group ofG(Q(a), A(a)). Strictly speaking, G(a) is contained
in the standard Borel subgroup Ba. We consider the map defined by

ψ : 1LG1L −→ G(a)
[
1k B
0 T

]
7−→

[
1k B′

0 T ′

]
,

where B′ ∈ Matk,n−a is the matrix obtained from B by deleting its columns indexed by
the elements of [n] \ L. Likewise, T ′ ∈ Tn−a is the matrix obtained from T by deleting its
columns as well as rows that correspond to the elements of [n] \ L. Since ψ is defined by
deleting only the zero columns (and zero rows) it is an isomorphism of varieties. We claim
that ψ is a group homomorphism. To see this, let

X :=

[
1k B1

0 T1

]
and Y :=

[
1k B2

0 T2

]

be two elements from 1LG1L. Then XY :=

[
1k B2 +B1T2
0 T1T2

]
. It is easy to check that

(B2+B1T2)
′ = B′

2+B
′
1T

′
2 and (T1T2)

′ = T ′
1T

′
2. In other words, we have ψ(XY ) = ψ(X)ψ(Y ).

This finishes the proof of our assertion.

Corollary 5.7. Let 1L and 1L′ be two elements from Λ. If |L| = |L′| > k, then the H-classes
of 1L and 1L′ are isomorphic. Furthermore, there are exactly m+1 nonisomorphic H-classes
in M .

Proof. Let G(a) denote the unit group G(Q(a), A(a)), where a = |L|, and Q(a) is as defined
in Theorem 5.6. Then we know that both of theH-classes 1LG1L and 1L′G1L′ are isomorphic
to G(a). The spectrum of cardinalities |L|, where 1L ∈ Λ, is given by the set {k, k+1, . . . , n}.
By comparing their maximal tori, we see immediately that G(a) ≇ G(b) if k ≤ a 6= b ≤ n.

6 Green’s Relations Revisted

In the previous sections we determined the H-classes (of the elements of the cross-section
lattices) as well as the idempotent semigroups of the antichain monoids of (complete) bipar-
tite posets. In this section, we will characterize the remaining Green’s relations. As before,
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let Q = {x1, . . . , xn} be a complete bipartite poset of type (k,m). Let A = {xk+1, . . . , xn}
be a maximal antichain in Q. We proceed to determine the inverses of the elements of
M := I(Q,A). Recall that M is a completely regular semigroup [7, Proposition 2.4].

Let X be an element of M . Then X is of the form X =

[
1k B
0 T

]
, for some B ∈ Matk,m

and T ∈ TL, with L such that [k] ⊆ L ⊆ [n]. Since Tm is a commutative semigroup, there is

a unique inverse T ′ ∈ V (T ) such that TT ′ = T ′T = 1̃L. After using the defining equations
of V (X), we find that

V (X) =

{[
1k B′ −BT ′

0 T ′

]
: B′1̃L = 0, TT ′ = T ′T = 1̃L

}
.

Hereafter, if there is no danger for confusion, we denote by X ′ any element of V (X), and
we denote by X−1 the unique element in V (X) satisfying (3). With some calculations we
obtain

X−1 =

[
1k B(1m − 1̃L)−BT ′

0 T ′

]
, where TT ′ = T ′T = 1̃L

and

XX−1 = X−1X =

[
1k B(1m − 1̃L)

0 1̃L

]
. (16)

Now it is easy to verify the following characterization of the idempotents of M :

E(M) =

{[
1k B

0 1̃L

]
: B1̃L = 0, [k] ⊆ L ⊆ [n]

}
.

Remark 6.1. Let E ∈ p−1(1L) ⊆ E(M), for some [k] ⊆ L ⊆ [n]. Then we have

V (E) =

{[
1k B

0 1̃L

]
: B1̃L = 0

}
= p−1(1L) = G(Q,A) · 1L = J1L

∩ E(M),

by Proposition 3.5. It is easy to check that V (E) is a subsemigroup of E(M), in accordance
with the mentioned result. Furthermore, V (E) is a right-zero band. Indeed if F,G ∈ V (E)
then FG = G.

Any element X ∈M is in the same H-class of the respective idempotent XX−1 = X−1X .
So to verify if any two elements in M are H-related (resp., R-, L- and J -) is equivalent to
verify if the respective idempotents are in the same H-class (resp., R-, L- and J -). Recall
that D = J . So, by the previous remark, XJ Y if and only if there exists some [k] ⊆ L ⊆ [n]
such that XX−1, Y Y −1 ∈ p−1(1L).

Since for any L with [k] ⊆ L ⊆ [n], p−1(1L) is a right-zero band, any two idempotents in
p−1(1L) are L-related. Therefore, every J -class has at most one L-class. Hence, L = H and
R = J = D.

We summarize our findings in the form of a theorem.
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Theorem 6.2. Let X =

[
1k BX

0 TX

]
be an element of M , with TX ∈ TL for some L such

that [k] ⊆ L ⊆ [n]. Then we have

(1) JX = DX = RX =

{[
1k B
0 T

]
∈M : T ∈ TL

}
= J1L

;

(2) LX = HX =

{[
1k B
0 T

]
∈M : B(1m − 1̃L) = BX(1m − 1̃L) and T ∈ TL

}
.

(3) JX is a right group.

Proof. (1) From the previous observations we have that JX = DX = RX . Because XX−1

is an idempotent it belongs to p−1(1L), for some L with [k] ⊆ L ⊆ [n], and so XX−1J 1L.
Since XHXX−1 we get JX = J1L

.

Let K denote the set

{[
1k B
0 T

]
∈M : T ∈ TL

}
. Given Y ∈ K, from equality (16),

we deduce that Y Y −1 ∈ p−1(1L) ⊆ J1L
. Therefore, Y ∈ J1L

since YHY Y −1. Now, if

Y =

[
1k B
0 T

]
∈ J1L

, then Y Y −1 ∈ p−1(1L), and so T ∈ TL. Therefore, Y ∈ K.

(2) From the previous observations we know that LX = HX . Let Y =

[
1k B
0 T

]
∈ M . We

have XHY if and only if XX−1 = Y Y −1, because HX is a group. Attending to (16), we
deduce that Y has the form given in the statement.
(3) We already mentioned the result of Putcha ([18, Corollary 3.20]) that every J -class in
a closed subsemigroup of Bn is a completely simple semigroup. By [13, Proposition 2.4.3],
since JX is a regular subsemigroup of M , then JX has also only one L-class. It is known
that a semigroup is a right group if and only if it is a completely simple and contains one
L-class [6, Theorem 1.4.9]. Therefore JX is a right group.

Remark 6.3. Let X be an element of the H-class of an idempotent E ∈ E(M). It is not
difficult to verify that the description of HX in Theorem 6.2 (2) is in agreement with the
elements of the H-class of E, that is, HE = EGE.

Proposition 6.4. Let X be an element of M and let L, with [k] ⊆ L ⊆ [n], be such that
X ∈ J1L

. The mapping ρ : HX −→ H1L
, given by Y 7→ Y 1L, is an isomorphism, and its

inverse map is given by Y 7→ Y XX−1.

Proof. The result follows from the fact thatXR1L and the proof in [9, Proposition 2.3.6].

Remark 6.5. By [9, pg. 61], given E ∈ E(M), JEE is a group and φ : JEE×E(JE) −→ JE ,
(X,F ) 7→ XF is an isomorphism.

23



7 Conjugacy Relations

There is a continuous interest on the study of various conjugacy actions for reasons notably
rooted in representation theory. For reductive monoids, the ordinary conjugation action of
the unit group is described by Putcha in [19]. For regular semigroups as well as transforma-
tion semigroups, and for some specific conjugacy relations that we will discuss below, the
groundbreaking work is done by Kudryavtseva and Mazorchuk in the papers [10, 11, 12].
Our main goal in this section is to compare the conjugation action by the unit group on
the monoid and the so called primarily relation ∼p credited to Lyndon and Schützenberger
[14] by Lallement. This relation has been considered as one of many other possible gener-
alizations of conjugacy to semigroups - see [2] for different possible notions of conjugacy in
semigroups.

For elements a and b from a semigroup S, we say that a and b are primarily related, or
that, a and b are p-conjugate, and write a ∼p b, if there are z, w ∈ S1 such that

a = zw, b = wz. (17)

For a completely regular semigroup S, it is known that the p-conjugacy is transitive and
hence an equivalence relation [10, Corollary 4]. For this class, we also know that both
generalizations of conjugacy to semigroups ∼n and ∼tr are equal to ∼p by [1, Theorem 6.5]
and [2, Corollary 4.6].

For our purposes here, it is convenient to work with the following definition. Let a, b ∈ S.
Then we define

a ∼n b⇔ ∃g, h ∈ S1 : ag = gb, bh = ha, hag = b, and gbh = a. (18)

Note that if a ∼n b, then aJ b. For the sake of completeness, we include a characterization
of the trace conjugacy in the class of completely regular semigroups (see [2, Theorem 4.5]):

a ∼tr b ⇔ ∃z, w ∈ S1 : wzw = w, waz = b, zbw = a.

In the rest of this section, we follow the notation that is setup in the previous section.
In particular, M will denote I(Q,A), where Q and A are as defined at the beginning of
Section 6.

By [7, Proposition 2.4], M is a completely regular monoid and so the conjugacy notions
∼n, ∼tr and ∼p coincide in M . Hence, p-conjugate elements must be in the same J -class.
We have the following result, which is stated as Theorem 1.5 in the introduction.

Theorem 7.1. Let X and Y be two elements of M . Then X ∼p Y if and only if {X, Y } ⊆
J1L

for some L with [k] ⊆ L ⊆ [n], and X1L and Y 1L are conjugate in the group H1L
.

Proof. Assume that X ∼p Y . Then we already observed that XJ Y . So, there exists a set
L such that [k] ⊆ L ⊆ [n] and X, Y ∈ J1L

. By Proposition 6.4, we have X1L, Y 1L ∈ H1L
.

Now, let Z,W ∈M be such that X = ZW and Y = WZ. We notice that

J1L
= JX1L

= JY 1L
≤ JZ1L

, JW1L
≤ J1L

(see (4)).
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This means that the elements Z1L and W1L belong to the same J -class, J1L
. Again

by Proposition 6.4, we conclude that Z1L,W1L ∈ H1L
. Since 1L is the identity element

of the group H1L
, we can write X1L = 1LX1L, Y 1L = 1LY 1L, W1L = 1LW1L, and

Z1L = 1LZ1L. Therefore, we have

X1L = (ZW )1L = Z(W1L) = Z(1LW1L) = (Z1L)(W1L).

Similarly, we find that Y 1L = W1LZ1L. In other words, the elements X1L and Y 1L are
p-conjugate in the group H1L

. Therefore, they are H1L
-conjugate.

Conversely, suppose that {X, Y } ⊆ J1L
, for some L with [k] ⊆ L ⊆ [n], and X1L

and Y 1L are conjugate in the group H1L
. Let Z,W ∈ H1L

be such that X1L = ZW
and Y 1L = WZ. Consider Z ′ = ZY Y −1 and W ′ = WXX−1. By Proposition 6.4,
Z ′ ∈ HY and W ′ ∈ HX . Note that XX−1 and Y Y −1 are idempotents in the same
J -class being the identities of the groups HX and HY , respectively. Attending to Re-
mark 6.1, we get Z ′W ′ = ZY Y −1WXX−1 = ZY Y −1XX−1WXX−1 = ZXX−1WXX−1 =
ZWXX−1 = X1LXX

−1 = XXX−1 = X . Similarly, we have W ′Z ′ = WXX−1ZY Y −1 =
WXX−1Y Y −1ZY Y −1 = WY Y −1ZY Y −1 = WZY Y −1 = Y 1LY Y

−1 = Y Y Y −1 = Y . This
finishes the proof of our proposition.

The previous result shows us that any two elements X and Y of M are p-conjugate if
and only if they are J -related (for some J -class J1L

) and their images, under the map in
Proposition 6.4, are conjugate in the group of units of the idempotent 1L. Notice that,
by Theorem 5.6, H1L

is isomorphic to the unit group G(a) := G(Q(a), A(a)), where Q(a)
is the complete bipartite poset Q(a) := {x1, . . . , xa}, and A(a) is the maximal antichain
{xk+1, . . . , xa}. As a consequence of our next result, we will show how to identify conjugate
elements in such unit groups G(a). To this end, first, we introduce some terminology. Let
G be a connected solvable group. Let us denote by T a maximal torus in G, and by U
the unipotent radical of G. By the multiplicative Jordan decomposition theorem (see [23,
Corollary 2.4.5]), we know that every element g ∈ G has a unique decomposition of the form
g = tu, where t ∈ T and u ∈ U . In this decomposition, if u = 1 (resp. t = 1), then g is a
semisimple element (resp. a unipotent element). For t ∈ T , u ∈ U , we define the t-twisted
G-conjugacy class of u, denoted Ct(u), by

Ct(u) := {s((t−1vt)uv−1)s−1 : s ∈ T, v ∈ U}. (19)

It is easy to see that Ct(u) is contained in U . Note also that the t-twisted conjugacy classes
can be defined more generally for any torus normalizing a unipotent group.

Theorem 7.2. Let K be a connected solvable linear algebraic group with an abelian unipo-
tent radical V . Let S be a maximal torus of K such that K = S ⋉ V . Let g be an element
of K with the Jordan decomposition g = tu, where t ∈ S and u ∈ V .

1. If g is a semisimple element, then there exists a unique element h ∈ S such that g is
conjugate to h. The K-conjugacy class of h is given by its U -conjugacy class in K,
that is, {uhu−1 : u ∈ U}.
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2. If g is a unipotent element, then the K-conjugacy class of g is given by its S-conjugacy
class in V .

3. If g is not unipotent or semisimple, then its K-conjugacy class is given by {tw′ : w′ ∈
Ct(u)}, where Ct(u) is the t-twisted conjugacy class of u in V .

Proof. The first part of our first claim holds true in a greater generality; in a connected
algebraic group any two maximal tori are conjugate to each other [23, Theorem 6.4.1]. In
particular, every semisimple element of K is conjugate to a unique element of S. The
uniqueness is a consequence of the commutativity of S. To calculate the K-conjugacy class
of h, let x be an element of K. We write x in the form x = vs, where s ∈ S and v ∈ U .
Then we have xhx−1 = vshs−1v−1 = vhv−1. This finishes the proof of our first claim.

We proceed to the proof of our second claim. Let x ∈ K. Then x can be written as
x = sv, where s ∈ S and v ∈ V . Now, if u is from V , then we have

xux−1 = svuv−1s−1 = sus−1 since V is abelian.

Since V is normalized by S, we see that the conjugacy class of u in K is given by the
S-conjugacy class of u in V . This finishes the proof of our second assertion.

Now we end with the proof of the third claim. Let x ∈ K. such that x = sv, where s ∈ S
and v ∈ V , by using the abelian property of the subgroups S and V , we have

xgx−1 = sv tu v−1s−1 = tst−1vtuv−1s−1 = t(sws−1),

where w = t−1vtuv−1 ∈ V , hence sws−1 ∈ Ct(u). This finishes the proof of our last
assertion.

We now apply our previous theorem to the H-classes of M . Let X ∈ M . We will
make a practical assumption. Since every H-class of M is isomorphic to the unit group
of the antichain monoid of a complete bipartite poset with respect to a maximal antichain
(Theorem 5.6), we assume that HX is given by the unit group of M . Now let G denote
the unit group of M . Let S denote the maximal diagonal torus of G. Let V denote the
unipotent radical of G.

Corollary 7.3. Let X ∈ G. If X = TU for some T ∈ S and U ∈ V, then the p-conjugacy
class of X , denoted [X ]p, is given by one of the following items:

1. If U = 1n, then [X ]p = {U ′XU ′−1 : U ′ ∈ V}.

2. If T = 1n, then [X ]p = {T ′XT ′−1 : T ′ ∈ S}.

3. If U and T are different from 1n, then [X ]p = {TU ′ : U ′ ∈ CT (U)}.

Proof. The proof of Theorem 4.3 shows that V is abelian. The rest of the proof follows from
a direct application of Theorem 7.2. We omit the details.
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The last conjugacy relation we consider here is the o-conjugacy relation which is defined
by Otto in [16]. Let a and b be two elements from a semigroup S. Then we say that a and
b are o-conjugacy related, and write a ∼o b if there exists {g, h} ⊆ S1 such that

ag = gb and bh = ha.

In fact, it is easy to verify that ∼o is an equivalence relation. It is known that ∼p ⊆ ∼o and
that if S has a zero, then ∼o is a universal relation. Since antichain monoids do not have a
zero element, it is interesting to know the properties of ∼o on antichain monoids. It turns
out that ∼o is still a universal relation on the idempotent semigroup of M .

Proposition 7.4. Let M be an antichain monoid as before. If X and Y are two elements
of E(M), then we have X ∼o Y in E(M).

Proof. Let X and Y be given by the matrices

[
1k BX

0 TX

]
and

[
1k BY

0 TY

]
, respectively. Let Z

denote the element of M defined by

[
1k BY

0 0

]
. Clearly, Z is an idempotent. Then we have

XZ =

[
1k BY

0 0

]
and ZY =

[
1k BY +BY TY
0 0

]
.

But the identity Y 2 = Y implies that BY + BY TY = BY , hence that BY TY = 0. In other
words, we have XZ = ZY . A similar argument shows that if we choose W ∈ E(M) as

W =

[
1k BX

0 0

]
, then we have YW = WX . This finishes the proof of our proposition.

Open problem 7.5. Theorem 7.1 solves the problem of p-conjugacy only in the case of
antichain monoids of (complete) bipartite posets. The general case remains open. Also
unsolved is the equivalence of ∼p, ∼n and ∼tr on an arbitrary incidence monoid. It would
be interesting to investigate the structures of the individual conjugacy classes under these
relations.

A closely related question is about the determination of the ∼o-conjugacy classes in M .
Although Proposition 7.4 shows that ∼o is a universal relation within E(M), in general, M
has many distinct ∼o-conjugacy classes. Is it true that E(M) is a single ∼o-conjugacy class
in M?
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