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1. Introduction

In a recent paper [1], we presented a unified formulation for the one-sided Tempered
Fractional Calculus, that includes the classic, tempered, substantial, and shifted fractional
operators [2–9].

Here, we continue in the same road by presenting a study on the two-sided tempered
operators that generalize and include the one-sided. The most interesting is the tempered
Riesz potential that was proposed in analogy with the one-sided tempered derivatives [10].
However, a two-sided tempering was introduced before, in the study of the called variance
gamma processes [11,12], in Statistical Physics for modelling turbulence, under the concept
of truncated Lévy flight [8,13–17], and for defining the Regular Lévy Processes of Expo-
nential type [2,10,18]. The tempered stable Lévy motion appeared in a previous work [19].
Meanwhile, the Feynman–Kac equation used in normal diffusion was generalized for
anomalous diffusion and tempered [20,21]. These studies led to the introduction of the
tempered Riesz derivative [14] and some applications. Sabzikar et al. [22] described a new
variation on the fractional calculus which was called tempered fractional calculus and
introduced the tempered fractional diffusion equation. The solutions to this equation are
tempered stable probability densities, with semi-heavy tails that state a transition from
power law to Gaussian. They proposed a new stochastic process model for turbulence,
based on tempered fractional Brownian motion. Li et al. [23] designed a high order
difference scheme for the tempered fractional diffusion equation on bounded domain.
Their approach is based in properties of the tempered fractional calculus using first order
Grünwald type difference approximations. Alternatively, Arshad et al. [24] proposed
another difference scheme to solve time–space fractional diffusion equation where the
Riesz derivative is approximated by means of a centered difference. They obtained Volterra
integral equations which were approximated using the trapezoidal rule. For solving space–
time tempered fractional diffusion-wave equation in finite domain another fourth-order
technique was proposed in [25,26]. D’Ovidio et al. [27] presented fractional equations
governing the distribution of reflecting drifted Brownian motions. In Zhang et al. [28]
approximated the tempered Riemann–Liouville and Riesz derivatives by means of second-
order difference operator. In [29] new computational methods for the tempered fractional

Symmetry 2021, 13, 823. https://doi.org/10.3390/sym13050823 https://www.mdpi.com/journal/symmetry

https://www.mdpi.com/journal/symmetry
https://www.mdpi.com
https://orcid.org/0000-0003-4270-3284
https://orcid.org/0000-0002-9587-2586
https://doi.org/10.3390/sym13050823
https://doi.org/10.3390/sym13050823
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/sym13050823
https://www.mdpi.com/journal/symmetry
https://www.mdpi.com/article/10.3390/sym13050823?type=check_update&version=1


Symmetry 2021, 13, 823 2 of 14

Laplacian equation were introduced, including the cases with the homogeneous and non-
homogeneous generalized Dirichlet type boundary conditions. In [30], by means of a
linear combination of the left and right normalized tempered Riemann–Liouville frac-
tional operators, tempered fractional Laplacian (tempered Riesz fractional derivative) was
defined as (∆ + λ)β/2. This operator was used to develop finite difference schemes to
solve the tempered fractional Laplacian equation that governs the probability distribution
function of the positions of particles. Similarly, Duo et al. [31] presented a finite difference
method to discretize the d-dimensional (for d ≥ 1) tempered integral fractional Laplacian
(−∆ + λ)α/2. By means of this approximation they resolved fractional Poisson problems.
Hu et al. [32] present the implicit midpoint method for solving Riesz tempered fractional
diffusion equation with a nonlinear source term. The Riesz tempered fractional derivative
was worked in finite domain. An interesting application of the tempered Riesz derivative
in solving the fractional Schrödinger equation was described in [33].

These works suggest us that the tempered Riesz derivative (TRD) is a very important
operator. However, and despite such importance, there are no significative theoretical
results about such operator. Furthermore, nobody has placed the question: is the tempered
Riesz derivative really a derivative?

In this paper, we follow the work described in our previous paper [1] where a deep
study on the tempered one-sided derivative was performed. Therefore, we intend here
to enlarge the results we obtained previously by combining them with the two-sided
derivatives studied in [34]. This approach intends to show that the TRD is not really a
fractional derivative according to the criterion introduced in [35]. Instead, we propose
a formulation for general tempered two-sided derivatives defined with the help of the
Tricomi function [36].

The paper is outlined as follows. In Section 2.1 two preliminary descriptions are done:
the one-sided tempered fractional derivatives (TFDs) and the two-sided (non tempered)
fractional derivatives (TSFDs). The Riesz–Feller tempered derivatives are introduced
and studied in Section 3. Their study in frequency domain shows that they should not
be considered as derivatives. The bilateral tempered fractional derivatives (BTFDs) are
studied in Section 4. Both versions, continuous- and discrete-time are considered and
compared with Riesz-Feller’s. Finally, some conclusions are drawn.

Remark 1. We adopt here the assumptions in [1], namely

• We work on R.
• We use the two-sided Laplace transform (LT):

F(s) = L[ f (t)] =
∫
R

f (t)e−stdt, (1)

where f (t) is any function defined on R and F(s) is its transform, provided that it has a non
empty region of convergence (ROC).

• The Fourier transform (FT), F [ f (t)], is obtained from the LT through the substitution s = iκ,
with κ ∈ R.

2. Preliminaries
2.1. The Unilateral Tempered Fractional Derivatives

The one-sided (unilateral) Tempered Fractional Derivatives TFD (UTFD) were formally
introduced and studied in [1]. In Table 1 we depict the most important characteristics of
the most interesting derivatives, namely the transfer function and corresponding region
of convergence (ROC). The tempering parameter λ is assumed to be a nonnegative real
number. We present only the stable derivatives. This stability manifests in the fact that the
ROC of the LT of stable TFD include the imaginary axis. Therefore, the corresponding FT
exist and are obtained by setting s = iκ. The ROC abscissa is −λ in the causal (forward)
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and λ in the anti-causal (backward) cases. The parameter α ∈ R is the derivative order and
N = bαc.

Table 1. Stable TFD with λ ≥ 0.

Derivative λDα
±α f (t) LT ROC

Forward Grünwald-Letnikov lim
h→0+

h−α
∞
∑

n=0

(−α)n
n! e−nλh f (t− nh) (s + λ)α Re(s) > −λ

Backward Grünwald-Letnikov lim
h→0+

h−α
∞
∑

n=0

(−α)n
n! e−nλh f (t + nh) (−s + λ)α Re(s) < λ

Regularised forward Liouville
∫ ∞

0

[
f (t− τ)− ε(α)∑N

0
(−1)m f (m)(t)

m! τm
]

e−λτ τ−α−1

Γ(−α)
dτ (s + λ)α Re(s) > −λ

Regularised backward Liouville
∫ ∞

0

[
f (t + τ)− ε(α)∑N

0
f (m)(t)

m! τm
]

e−λτ τ−α−1

Γ(−α)
dτ (−s + λ)α Re(s) < λ

Relatively to [1], a complex factor in the backward derivatives was removed to keep
coherence with the mathematical developments presented below. The corresponding LT
was changed accordingly. Throughout the paper, we will use the designations “Grünwald–
Letnikov” (GL) and “Liouville derivative” (L) for the cases corresponding to λ = 0.

2.2. The Two-Sided Fractional Derivatives

Definition 1. In [34], we introduced formally a general two-sided fractional derivative (TSFD),

0Dβ
θ , through its Fourier transform

F
[

0Dβ
θ f (x)

]
= |κ|βei π

2 θ·sgn(κ)F(κ), (2)

where β and θ are any real numbers that we will call derivative order and asymmetry parameter,
respectively.

The inverse Fourier transform computation of (2) is not important here (see, [34]). In
Table 2 we present the most interesting definitions of the two-sided derivatives together
with the corresponding Fourier transform. It is important to note that we present the
regularised Riesz and Feller derivatives.

Table 2. TSFD (λ = 0).

Derivative 0Dβ
θ f (t) FT

TSGL symmetric limh→0+ h−β ∑+∞
n=−∞

(−1)nΓ(β+1)
Γ( β

2−n+1)Γ( β
2 +n+1)

f (x− nh) |κ|β

TSGL anti-symmetric limh→0+ h−β ∑+∞
n=−∞

(−1)nΓ(β+1)
Γ( β+1

2 −n+1)Γ( β−1
2 +n+1)

f (x− nh) i|κ|βsgn(κ)

TSGL general limh→0+ h−β ∑+∞
n=−∞

(−1)nΓ(β+1)
Γ( β+θ

2 −n+1)Γ( β−θ
2 +n+1)

f (x− nh) |κ|βei π
2 θ·sgn(κ)

Riesz derivative 1
2 cos(β π

2 )Γ(−β)

∫ ∞
−∞

[
f (x− y)− 2 ∑M

k=0
f (2k)(x)
(2k)! y2k

]
|y|−β−1dy, |κ|β

Feller derivative 1
2 sin(β π

2 )Γ(−β)

∫ ∞
−∞

[
f (x− y)− 2 ∑M

k=0
f (2k+1)(x)
(2k+1)! y2k+1

]
|y|−β−1sgn(y)dy i|κ|βsgn(κ)

Riesz-Feller potential 1
2 sin(βπ)Γ(−β)

∫
R f (x− y) sin[(β + θ · sgn(y))π/2]|y|−β−1dy |κ|βei π

2 θ·sgn(κ)

Some properties of this definition can be drawn [34,37,38]. Here we are mainly
interested in the folowing
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1. Eigenfunctions
Let f (x) = eiκx, κ, x ∈ R. Then

0Dβ
θ eiκx = |κ|βei π

2 θ·sgn(κ)eiκx, (3)

meaning that the sinusoids are the eigenfunctions of the TSFD.
2. The Liouville and GL derivatives as particular cases

With θ = ±β we obtain the forward (left) (+) and backward (−) Liouville one-
sided derivatives:

F
[

0Dβ
±β f (x)

]
= (±κ)βF(κ). (4)

3. The Riesz and Feller derivatives as special cases

F
[

0Dβ
0 f (x)

]
= |κ|βF(κ), (5)

and
F
[

0Dβ
1 f (x)

]
= i|κ|β · sgn(κ)F(κ). (6)

4. Relations involving the sum/difference of Liouville derivatives [39]
Let κ, β ∈ R. It is a simple task to show that

|κ|β =
(iκ)β + (−iκ)β

2 cos(β π
2 )

, β 6= 1, 3, 5 · · · (7)

i|κ|βsgn(κ) =
(iκ)β − (−iκ)β

2 sin(β π
2 )

, β 6= 2, 4, 6 · · · (8)

which means that the Riesz derivative is, aside a constant, equal to the sum of the left
and right Liouville derivatives. Similarly, the Feller derivative is the difference. Then,

0Dβ
0 =

0Dβ
β + 0Dβ

−β

2 cos(β π
2 )

, β 6= 1, 3, 5 · · · (9)

0Dβ
1 =

0Dβ
β − 0Dβ

−β

2 sin(β π
2 )

, β 6= 2, 4, 6 · · · (10)

5. Relations involving the composition of Liouville derivatives [34]
The composition of the GL, or L, derivatives in (4) is defined by:

F
[

0Dβ1
β1 0Dβ2

−β2
f (x)

]
= (iκ)β1(−iκ)β2 F(κ). (11)

Setting β = β1 + β2 and θ = β1 − β2 we obtain

Ψβ
θ (κ) = (iκ)β1(−iκ)β2 = |κ|βei π

2 θ·sgn(κ), (12)

showing that any bilateral fractional derivative can be considered as the composition
of a forward and a backward GL, or L, derivatives.

6. The TSFD as a linear combination of Riesz and Feller derivatives [34]

0Dβ
θ f (x) = cos

(π

2
θ
)

0Dβ
0 f (x) + sin

(π

2
θ
)

0Dβ
1 f (x). (13)

Therefore, any TSFD can be expressed as a linear combinations of pairs: causal/anti-
causal GL, or L, or Riesz/Feller derivatives.



Symmetry 2021, 13, 823 5 of 14

3. Riesz–Feller Tempered Derivatives

The Riesz tempered potential has been used by several authores as referred in Section 1.
Here, we will deduce its general regularised form from the TFD in Section 2.1 while using
the relation (9).

Definition 2. We define the tempered Riesz derivative by:

λDβ
0 =

λDβ
β + λDβ

−β

2 cos(β π
2 )

β 6= 1, 3, 5 · · · (14)

This definition allows us to state that

Theorem 1.

λDβ
0 f (x) =

1
2Γ(−β) cos(β π

2 )

∫ ∞

−∞

[
f (x− τ)−

M

∑
m=0

f (2m)(x)
(2m)!

τ2m

]
e−λ|τ||τ|−β−1dτ, (15)

for 2M < β < 2M + 2, M ∈ Z+.

Remark 2. The integer order case leads to a singular situation that we can solve using the relations
introduced in [34]. We will not do it here.

Proof. We only have to insert the expressions from Table 1 into (14). Let N = bβc If we use
the Liouville derivatives, we obtain:

λDβ
0 f (x) =

1
2Γ(−β) cos(β π

2 )

∫ ∞

0

[
f (x− τ)− ε(β)

N

∑
m=0

(−1)m f (m)(x)
m!

τm

]
e−λττ−β−1dτ

+
1

2Γ(−β) cos(β π
2 )

∫ ∞

0

[
f (x + τ)− ε(β)

N

∑
0

(+1)m f (m)(x)
m!

τm

]
e−λττ−β−1dτ

or

λDβ
0 f (x) =

1
2Γ(−β) cos(β π

2 )∫ ∞

0

{
f (x− τ) + f (x + τ)− ε(β)

[
N

∑
0

(−1)m f (m)(x)
m!

τm +
N

∑
m=0

f (m)(x)
m!

τm

]}
e−λ|τ||τ|−β−1dτ.

The odd terms in the inner summation are null. Therefore,

λDβ
0 f (x) =

1
2Γ(−β) cos(β π

2 )∫ ∞

0

{
f (x− τ) + f (x + τ)− 2ε(β)

M

∑
m=0

f (2m)(x)
(2m)!

τ2m

}
e−λ|τ||τ|−β−1dτ.

As the integrand is an even function, we are led to (15).

In which concerns the Laplace and Fourier transforms, we remark that

L
[

λDβ
0 f (x)

]
=

(s + λ)β + (−s + λ)β

2 cos(β π
2 )

F(s),
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for |Re(s)| < λ, meaning that the ROC is a vertical strip that contains the imaginary axis,

s = iκ. Therefore, as (±iκ + λ)β =
∣∣κ2 + λ2

∣∣ β
2 e±iβ arctan( κ

λ ), and using relation (7), we obtain

F
[

λDβ
0 f (x)

]
=

∣∣κ2 + λ2
∣∣ β

2 cos
(

β arctan( κ
λ )
)

cos(β π
2 )

F(iκ), (16)

that is coherent with the usual Riesz derivative (λ = 0).

Definition 3. Similarly to the Riesz case, we use the relation (10) to find expressions for the
tempered Feller derivative that we can define through

λDβ
0 =

λDβ
β − λDβ

−β

2 sin(β π
2 )

, β 6= 2, 4, 6 · · · (17)

Theorem 2. The tempered Feller derivative is given by:

λDβ
0 f (x) =

1
2Γ(−α) sin(β π

2 )

∫ ∞

−∞

[
f (x− τ)−

M

∑
m=0

f (2m+1)(x)
(2m + 1)!

τ(2m+1)

]
e−λ|τ||τ|−β−1dτ, (18)

for 2M + 1 < β < 2M + 3.

The proof is similar to the Riesz derivative. Therefore we omit it.
Now, the corresponding Laplace transform is

L
[

λDβ
0 f (x)

]
=

(s + λ)β − (−s + λ)β

2 sin(β π
2 )

,

for |Re(s)| < λ. Therefore, using relation (8), we obtain

F
[

λDβ
0 f (x)

]
= i

∣∣κ2 + λ2
∣∣ β

2 sin
(

β arctan( κ
λ )
)

sin(β π
2 )

F(κ), (19)

that is coherent with the usual Feller derivative (λ = 0). In fact lim
λ→0+

sin
(

β arctan( κ
λ )
)
=

sin
[
β π

2 sgn(κ)
]
.

Remark 3. These procedures and the TSGL derivative (3) suggest that the GL type tempered
Riesz–Feller derivatives should read

λDβ
0 f (x) = lim

h→0+
h−β

+∞

∑
n=−∞

(−1)nΓ(β + 1)

Γ( β+θ
2 − n + 1)Γ( β−θ

2 + n + 1)
e−λ|n|h f (x− nh). (20)

We will not study it, since it leads to the results stated above.

The relation (13) allows us to obtain the general tempered Riesz–Feller derivatives.
We only have to insert there the expressions (14) and (18). Proceeding as in [34] we obtain:

Definition 4. Let β ∈ RrZ and f (x) in L1(R) or in L2(R). The generalised TSFD is defined by

λD
β
θ f (x) :=

1
2 sin(βπ)Γ(−β)

∫
R

f (x− τ) sin[(β + θ · sgn(τ))π/2]e−λ|τ||τ|−β−1dτ. (21)
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In terms of the Fourier transform, we have from (13)

F
[

λDβ
θ f (x)

]
= 2

∣∣∣κ2 + λ2
∣∣∣ β

2

[
cos
(
θ π

2
)

cos
(

β arctan( κ
λ )
)

cos
(

β π
2
) + i

sin
(
θ π

2
)

sin
(

β arctan( κ
λ )
)

sin
(

β π
2
) ]

F(κ). (22)

Remark 4. It is important to note that none of these operators, tempered Riesz and Feller, and the
general Riesz–Feller, can be considered as fractional derivatives. This is easy to see, for example,
from (16) that

λDα+β
0 f (x) 6= λDα

0 λDβ
0 f (x),

for any pairs α, β ∈ R, since

2
∣∣∣κ2 + λ2

∣∣∣ α+β
2 cos

(
(α + β) arctan

( κ

λ

))
6=

2
∣∣∣κ2 + λ2

∣∣∣ α
2 cos

[
α arctan

( κ

λ

)]
· 2
∣∣∣κ2 + λ2

∣∣∣ β
2 cos

[
β arctan

( κ

λ

)]
.

(23)

These considerations show that although appealing this way into bilateral tempered
fractional derivatives is not correct, since we do not obtain effectively derivatives according
to the criteria stated in [35]. In Figure 1, we observe the effect of the tempering on the
spectra and on the time kernel corresponding to β = −1.8 and λ = 0, 0.25, 0.5, 0.75.
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Figure 1. Frequency responses and kernels of Riesz potential (β = −1.8) without and with tempering (λ = 0.25, 0.5, 0.75).

4. Bilateral Tempered Fractional Derivatives

Above, we profit the fact that Riesz and Feller derivatives are expressed as sum and
difference of one-sided derivatives. However, such approach was not successful, attending
to the characteristics of the obtained operators that do not make them derivatives. Anyway,
there is an alternative approach.

Definition 5. We define the Bilateral Tempered Fractional Derivatives (BTFD), λDα
θ , as a compo-

sition of forward and backward unilateral TFD derivatives, Liouville or Grünwald–Letnikov. Let a,
b, α, and θ be real numbers, such that α = a + b and θ = a− b. Then

λDα
θ f (x) = λDa

a

[
λDb
−b f (x)

]
, (24)

or, using the Fourier transform:

F (λDα
θ f (x)] = (iκ + λ)a(−iκ + λ)b

=
∣∣∣κ2 + λ2

∣∣∣ α
2 eiθ arctan( κ

λ )F(κ).
(25)
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It is important to note that limλ→0+ arctan( κ
λ ) =

π
2 sgn(κ).

Let
λψα

θ (t) = F−1[λΨα
θ (ω)], (26)

and

T(α, θ, 2λ|t|) = 1

Γ
(
− α+sgn(t)θ

2

)
Γ
(

α−sgn(t)θ
2

) ∫ ∞

0
e−2λ|t|uu−

α+sgn(t)θ
2 −1(u + 1)−

α−sgn(t)θ
2 −1du, (27)

closely related (aside a factor) with the Tricomi function [36]. Then

Theorem 3. For α, β < 0,

λψα
θ (t) = e−λ|t||t|−α−1T(α, θ, 2λ|t|). (28)

Proof. Suppose that a, b < 0. As

∫ ∞

0
f (t + τ)e−λτ τ−a−1

Γ(−a)
dτ =

∫ 0

−∞
f (t− τ)eλτ (−τ)−a−1

Γ(−a)
dτ,

then

λDα
θ f (t) =

[
e−λt t−a−1

Γ(−a)
ε(t)

]
∗
[

eλt (−t)−b−1

Γ(−b)
ε(−t)

]
∗ f (t), (29)

where ∗ denotes the usual convolution. Let

λψα
θ (t) =

[
e−λt t−a−1

Γ(−a)
ε(t)

]
∗
[

eλt (−t)−b−1

Γ(−b)
ε(−t)

]
.

Hence

λψα
θ (t) =

∫ ∞

0
e−λτ τ−a−1

Γ(−a)
eλ(t−τ) (τ − t)−b−1

Γ(−b)
ε(τ − t)dτ.

We have two possibilities

1. t ≥ 0

λψα
θ (t) =

∫ ∞

t
e−λτ τ−a−1

Γ(−a)
eλ(t−τ) (τ − t)−b−1

Γ(−b)
dτ =

∫ ∞

0
e−λ(τ+t) (τ + t)−a−1

Γ(−a)
eλ(−τ) τ−b−1

Γ(−b)
dτ

2. t < 0

λψα
θ (t) =

∫ ∞

0
e−λτ τ−a−1

Γ(−a)
eλ(t−τ) (τ − t)−b−1

Γ(−b)
dτ =

∫ ∞

0
e−λτ τ−a−1

Γ(−a)
e−λ(|t|+τ) (τ + |t|)−b−1

Γ(−b)
dτ

Setting a = α+θ
2 and b = α−θ

2 we can write

λψα
θ (t) =

e−λ|t|

Γ(− α+sgn(t)θ
2 )Γ(− α−sgn(t)θ

2 )

∫ ∞

0
e−2λττ−

α+sgn(t)θ
2 −1(τ + |t|)−

α−sgn(t)θ
2 −1dτ

=
|t|−α−1

Γ(− α+sgn(t)θ
2 )Γ(− α−sgn(t)θ

2 )

∫ ∞

0
e−λ|t|(1+2 τ

|t| )
(

τ

|t|

)− α+sgn(t)θ
2 −1( τ

|t| + 1
)− α−sgn(t)θ

2 −1 dτ

|t| ,

and

λψα
θ (t) =

e−λ|t||t|−α−1

Γ(− α+sgn(t)θ
2 )Γ(− α−sgn(t)θ

2 )

∫ ∞

0
e−2λ|t|uu−

α+sgn(t)θ
2 −1(u + 1)−

α−sgn(t)θ
2 −1du. (30)
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Remark 5. With (29) we can write

λDα
θ f (t) =

∫ ∞

−∞
f (t− τ)e−λ|τ||τ|−α−1T(α, θ, 2λ|τ|)dτ, (31)

that is valid for α ≤ 0. We can extend its validity for α > 0, through a regularization as shown
above in Section 4. It is important to note the similarity between (31) and (15).

Another version of this derivative can be obtained from the tempered unilateral GL
derivatives in Table 1. It has the advantage of not needing any regularization.

Theorem 4. For any α, θ ∈ R,

λDα
θ f (t) = lim

h→0+
h−α

∞

∑
m=−∞

Tm(α, θ, 2λh)e−|m|λh f (t−mh), (32)

where Tm(α, β, 2λh) is defined below (37).

Proof. We have successively

g(t) =
∞

∑
n=0

(−a)n

n!
e−nλh

∞

∑
k=0

(−b)k
k!

e−kλh f (t− (n− k)h)

=
∞

∑
m=−∞

 ∞

∑
n=max(0,m)

e−2nλh (−a)n

n!
(−b)n−m

(n−m)!
e(m−2n)λh

 f (t−mh).

Let us work out the series

∞

∑
n=max(m,0)

(−a)n

n!
(−b)n−m

(n−m)!
e(m−2n)λh.

For m ≥ 0

∞

∑
n=max(m,0)

(−a)n

n!
(−b)n−m

(n−m)!
e(m−2n)λh =

∞

∑
n=0

(−a)n+m

(n + m)!
(−b)n

n!
e(−m−2n)λh. (33)

Therefore,

∞

∑
n=max(m,0)

(−a)n

n!
(−b)n−m

(n−m)!
e(−2n+m)λh =


∑∞

n=0
(−a)n+m

(n + m)!
(−b)n

n!
e(−m−2n)λh, m ≥ 0

∑∞
n=0

(−a)n

n!
(−b)n−m

(n−m)!
e(m−2n)λh, m < 0

(34)

Using the relations (−a)n+|m| = (−a)|m|(−a + |m|)n and (−b)n+|m| = (−b)|m|(−b + |m|)n
and simplifying, we get

e−mλh (−a)m

m! ∑∞
n=0

(−a + m)n

(m + 1)n

(−b)n

n!
e−2nλh, m ≥ 0

e−|m|λh (−b)|m|
|m|! ∑∞

n=0
(−b + |m|)n

(|m|+ 1)n

(−a)n

n!
e−2nλh, m < 0.

(35)
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From this relation, we define a new discrete function Tm(a, b, 2λh) by

T(a, b, 2λh) =



(−a)m

m! ∑∞
n=0

(−a + m)n

(m + 1)n

(−b)n

n!
e−2nλh, m ≥ 0

(−b)|m|
|m|! ∑∞

n=0
(−b + |m|)n

(|m|+ 1)n

(−a)n

n!
e−2nλh, m < 0

(36)

Therefore,

g(t) =
∞

∑
m=−∞

Tm(a, b, 2λh)e−|m|λh f (t−mh).

It is interesting to note that T−m(a, b, 2λh) = Tm(b, a, 2λh). Setting α = a + b and θ = a− b,
we obtain

Tm(α, θ, 2λh) =


(− α+θ

2 )m
m! ∑∞

n=0 e−2nλh (− α+θ
2 +m)n

(m+1)n

(− α−θ
2 )n

n! m ≥ 0
(− α−θ

2 )|m|
|m|! ∑∞

n=0 e−2nλh (− α−θ
2 +|m|)n

(|m|+1)n

(− α+θ
2 )n

n! m < 0.

Then
Tm(α, θ, 2λh) = T−m(α,−θ, 2λh), m ∈ Z

and consequently,

Tm(α, θ, 2λh) =
(− α+θ

2 )|m|
|m|!

∞

∑
n=0

e−2nλh (−
α+θ

2 + |m|)n

(|m|+ 1)n

(− α−θ
2 )n

n!
, (37)

for any integer m.

Remark 6. The similarity of (37) and (27) must be noted.
We can give a more symmentric form of the summation in (37) using a Pfaff transformation, but it
seems not to be of particular interest.

To verify the coherence of this result, we note that:

1. The second term in (37) is the Hypergeometric function;
2. If λ = 0, using a well-known property of the Hypergeometric function, we have

∞

∑
n=0

(− α+θ
2 + |m|)n

(|m|+ 1)n

(− α−θ
2 )n

n!
=

Γ(1 + α)|m|!
Γ( α+θ

2 + 1)Γ( α−θ
2 + |m|+ 1)

,

and,

Tm(α, θ, 0) =
(− α+θ

2 )|m|
|m|!

Γ(1 + α)|m|!
Γ( α+θ

2 + 1)Γ( α−θ
2 + |m|+ 1)

. (38)

3. As (1− z)n = (−1)nΓ(z)/Γ(z− n),

(−α + θ

2
)|m| = (−1)m Γ(1 + α+θ

2 )

Γ( α+θ
2 − |m|+ 1)

,

and

Tm(α, θ, 0) = (−1)m Γ(1 + α)

Γ( α+θ
2 − |m|+ 1)Γ( α−θ

2 + |m|+ 1)
, (39)
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in agreement with (20). Another interesting result can be obtained by dividing (37) by (38)
to obtain the factor

Qm(α, θ, 2λh) =
Γ( α+θ

2 + 1)Γ( α−θ
2 + |m|+ 1)

Γ(1 + α)|m|!
∞

∑
n=0

e−2nλh (−
α+θ

2 + |m|)n

(|m|+ 1)n

(− α−θ
2 )n

n!
, (40)

that expresses the “deviation” of the BTFD from the tempered Riesz–Feller derivative (22).
In Figure 2 we illustrate the behavour of this factor for two derivative orders, α = ±0.5
and three values of the tempering exponent, λ = 0.25, 0.5, 1 with θ = 0.4. It is important to
note that

• In the derivative case, Qm increases slowly and monotonuously with m, contributing
for an enlargement of the kernel duration;

• In the anti-derivative case, Qm decreases slowly and monotonuously to zero with in-
creasing m reducing the kernel duration and consequently the memory of the operator.

0 1000 2000 3000 4000 5000
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1

Figure 2. The Q-factor for β = ±0.5; θ = 0.4, and λ = 0.25, 0.5, 1.

Knowing that the first term in (37) tends asymptotically to 1
|m|α+1 [39], it will be

interesting to study the behaviour of the summation term. In Figure 3 we examplify its
variation for positive and negative derivative orders for three values of λ.
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0.75

0.8

0.85

0.9

0.95

1

1.05

m

T
m

0.25

0.5

1

0 1000 2000 3000 4000 5000

0

2

4

6

8

10

12

m

T
m

0.25

0.5

1

Figure 3. The summation factor in (37) for β = ±0.5; θ = 0.4, and λ = 0.25, 0.5, 1.

As seen, it seems to approach a constant depending on λ.
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Can We Consider the BTFD as Fractional Derivatives?

In Section 4 we noted that the tempered Riesz and Feller potentials could not be
considered as fractional derivatives, since the composition property was not valid for any
pairs of orders. We wonder if this is also true for the BTFD. We will base our study in the
SSC as proposed in [35].

It is not a hard task to show that the BTFD verify the following properties

P1 Linearity
The BTFD we introduced in the last sub-section is linear.

P2 Identity
The zero order BTFD of a function returns the function itself, since (iκ + λ)0 = 1, for
any λ, κ ∈ R.

P3 Backward compatibility
When the order is integer, the BTFD gives the same result as the integer order two-
sided TD and recovers the ordinary bilateral derivative, for λ = 0.

P4 The index law holds

λDα
θ λDβ

η f (t) = λDα+β
θ+η f (t), (41)

for any α and β, since

∣∣∣κ2 + λ2
∣∣∣ α

2 eiθ arctan( κ
λ )
∣∣∣κ2 + λ2

∣∣∣ β
2 eiη arctan( κ

λ ) =
∣∣∣κ2 + λ2

∣∣∣ α+β
2 ei(θ+η) arctan( κ

λ )

P5 The generalised Leibniz rule reads

λDα
θ [ f (t)g(t)] =

∞

∑
i=0

(
α

i

)
Di f (t)λDα−i

θ g(t), (42)

a bit different from the usual. Its deduction is similar to the one described in [1].

We conclude that the BTFD verifies the SSC and therefore can be considered a derivative.

5. Conclusions

This paper addressed the study of tempered two-sided derivatives. Two versions
were considered: integral and GL like. The conformity of these operators as studied in
the perspective of a criterion for fractional derivatives was stated. In passing we showed
that a simple tempering of the traditional Riesz and Feller potentials does not lead to
fractional derivatives.
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Abbreviations
The following abbreviations are used in this manuscript:

LT Laplace transform
FT Fourier transform
FD Fractional derivative
FP Feller Potential
GL Grünwald-Letnikov
L Liouville
RL Riemann-Liouville
TF Transfer function
TFD Tempered Fractional Derivative
BTFD Bilateral Tempered Fractional Derivatives
RP Riesz Potential
RD Riesz Derivative
RFD Riesz-Feller Derivative
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