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Abstract: Collagen cleavage by matrix metalloproteinase (MMP) is considered a major cause of dental
resins long term failure. Most MMP inhibitors display significant toxicity and are unsuitable for
dental resins’ applications. Here we report a study of a new class of inhibitors that display the unique
property of being co-polymerizable with other vinyl compounds present in commercial dental resins,
limiting their release and potential toxicity. Computational affinity towards the active site of different
MMP-1; -2; -8; -9 and -13 of several compounds showed interesting properties and were synthesized.
These free compounds were tested concerning their toxicity upon contact with two different cell
types, with no substantial decrease in cell viability at high concentrations. Even so, compound’s
safety can be further improved upon copolymerization with commercial dental resins, limiting their
release.

Keywords: matrix; metalloproteinases; Inhibitors of matrix metalloproteinases; Cytotoxicity

1. Introduction

The matrix metalloproteinases (MMPs) belong to the Metzincs superfamily [1–8], and
are characterized by a common conserved catalytic domain: VAAHExGHxxGxxH [2,5–7,9–14].
The MMPs are zinc dependent, functional at neutral pH [13,15] and they are a family of
proteolytic enzymes with different substrates, but which share similar structural character-
istics [3,5,7,8,10–18]. In human tissue there are 23 different types of MMPs [1,3,5–7,11,12,15,16]
and they can be subdivided according to substrate specificity, sequential similarity and
domain organization into collagenases (MMP-1, -8 and -13), gelatinases (MMPs-2 and -9),
stromelysins (MMPs-3, -10 and -11), matrilysins (MMP-7 and -26), membrane-type MMPs
(MMPs-14, -15, -16, -17, -24 and -25) and other MMPs (MMPs-12, -19, -20, -21, -23, -27
and -28) [1,3,6–8,11–16,19]. The principal biologic function of MMPs is degradation of
extracellular matrix (ECM) proteins and glycoproteins, membrane receptors, cytokines
and growth factors [1–3,5–8,11,13,14,16,20–24]. They are involved in several biologic pro-
cesses [1,2,7,8,10,11,13,15,16,23,25,26] and their deregulation leads to the progression of
various pathologies [1,2,8,13,14,19,23].

The MMPs are molecular targets for the development of therapeutics and diagnosis
agents [14]. The inhibition of MMP activity can be done at the biomolecular expres-
sion or enzyme activity [10,16,17]. The MMPs inhibitors that could affect enzyme ac-
tivity can be divided into endogenous specific or non-specific inhibitors or synthetic
inhibitors [1,3,7,8,12–14,16,23,27–30]. The synthetic MMP inhibitor must have a functional
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group able to chelate the catalytic zinc ion, at least one group that promote hydrogen bonds
and side chains undergoing Van der Waals interactions with the enzyme [11,13,16,31–33].
These requirements are crucial to the selectivity of MMP inhibitor, to increasing the efficacy
and to preventing the side effects [16]. Several strategies have been suggested to create
a specific MMP inhibitor [34], but they have been difficult to develop because MMPs are
involved in various pathways. It is necessary to identify the enzymes that are involved in
the disease progression, while there are more than 50 human metalloproteinases (23MMPs;
13 ADAM and 19 ADAMTs) [16,17].

There is a wide variety of inhibitors, but few have selectivity and specificity for
MMPs [2,27–31,33,35] and most inhibitors have a biphenyl group conjugated to a sul-
fonamides group [36–41]. In this work, a set of several molecules with biphenyl group
conjugated with methacrylate or methylacrylamide were studied via computational dock-
ing, of which three molecules [42] were selected to be synthesized and tested for cytotoxicity
in mouse embryo NIH/3T3 fibroblast cells and human MG-63 osteoblast-like cells.

2. Materials and Methods
2.1. Computational Docking Studies

The 2D structure of the studied compounds was drawn (Figure 1) and the 3D structure
of compounds was previously optimized by RHF/3–21G using Chem3D. The crystal
structure of the MMPs-1, -2, -8, -9 and -13 was retrieved from the RCSB protein database
(Table 1).
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was the TOP10. The results were edited by Discovery Studio and the 2D image were ob-
tained by PoseView. 

  

Figure 1. Compounds selected from docking studies. (a) N-Isobutyl-N-(4-methoxyphenylsulfonyl)glycyl hydroxamic acid-
NNGH, inhibitor of commercial MMP enzymatic test kit (b) 4′-cyano-[1,1′-bihenyl]-4-yl methacrylate- Compound A [42]
(c) 5-((4′-cyano-[1,1′-biphenyl]-4-yl)oxy)pentyl methacrylate- Compound B [42] (d) N,N′-(oxybis(4,1-phenylene))bis(2-
methylacrylamide)- Compound C [42].

Table 1. MMP information obtained from the Protein Data Bank (PDB).

MMP PDB ID Total Structure
Weight (kDa) Method Resolution (Å) R-Factor (%)

1 2tcl 19.63 X-ray diffraction 2.20 16.2

2 1HOV 19.28 Solution NMR − −
8 1BZS 19.22 X-ray diffraction 1.70 19.2

9 4XCT 18.97 X-ray diffraction 1.30 17.0

13 1FM1 19.21 Solution NMR − −

In SeeSAR, the binding site of these proteins was defined, containing the conserved
sequence VAAHExGHxxGxxH and the S’1 pocket and the number of solutions defined was
the TOP10. The results were edited by Discovery Studio and the 2D image were obtained
by PoseView.

2.2. Synthesis of A, B and C Compounds

Synthesis was performed according to reference [42]. Briefly a diol moiety was
substituted with two additional side chains to yield the final molecule.
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2.3. Cytotoxicity Study Using MTT Assay

Two cell lines, fibroblastic cells NIH/3T3 from mouse embryo (93061524) obtained
from Health Protection Agency Culture Collections and supplied by Sigma and MG-
63 osteoblast-like cells from human osteosarcoma (ATCC® CRL-1427TM) were used for
cytotoxicity studies. Defrosting and handling of cell lines was carried out according to
supplier information.

The NIH/3T3 cells were grown in Dulbecco’s Modified Eagle Medium (DMEM, Sigma)
supplemented with 10% calf bovine serum (Sigma) and 1% Penicillin-Streptomycin solution:
10,000 U/mL penicillin, 10 mg/mL streptomycin, Sigma) and 2.5 mg/L amphotericin B
(fungizone, Sigma). MG-63 cells were grown in Eagle’s Minimum Essential Medium
(EMEM, Sigma) supplemented with 10% fetal bovine serum and 1% of antibiotics and
2.5 mg/L antimycotics solutions.

Extracts from each compound A, B or C were prepared by spreading 20 µL of a
solution with 20 µM, 50 µM or 100 µM of each compound in a glass petri dish, allowed
to dry, and incubated at 37 ◦C under humidified 5% CO2 for 24 h with 10 mL of the
corresponding growth medium according to ISO 10993–12: 2012.

The cytotoxicity assay was performed as follows: 1 × 104 cells per well, from passages
8 to 12, were seeded in 96-well plates (eight replicates) and incubated at 37 ◦C under
humidified 5% CO2 for 24 h. After proliferation, the cell medium was replaced by 200 µL
of each extract and incubated under the same conditions for 24 h. As positive control cells
were grown in their medium containing 7.5% DMSO (Sigma) and as negative control cells
proliferated in medium without any toxic corresponding to 100% cell viability. MTT assays
were performed as previously described [43]. Briefly, extracts or medium were removed,
an MTT solution (0.5 mg/mL prepared in serum-free medium, Sigma) was added to each
well and cells were incubated for additional 3 h. After that, a solution containing 0.1%
IGEPAL (Merck), 4 mM HCl (Sigma) in isopropanol (Sigma) was used to dissolve formazan.
Plates were incubated with agitation for one hour and absorbance was read at 595 nm with
a microplate reader (Bio-Rad®, Hercules, California, USA).

2.4. Statistical Analysis

Data analysis was performed using SPSS for MAC, 26 version (Statistic Package for
Social Sciences, Inc., New York, NY, USA) and the significant level was set at 5%. Normality
distribution of quantitative variables was assessed using Shapiro-Wilk test. A three-way
ANOVA was performed to evaluate the effect of cell type, inhibitor compound and inhibitor
concentration on cell viability. Due to the existence of interactions between the main factors,
the data obtained for each type of cell were analyzed with a two-way ANOVA followed by
Tukey HSD post-hoc tests (α = 0.05).

3. Results and Discussion
3.1. Docking Studies
3.1.1. Physicochemical and ADMET Properties of NNGH Commercial Inhibitor,
Compounds A, B and C

Knowledge of physicochemical properties and physiological behavior as absorption,
distribution, metabolism, excretion and toxicity (ADMET data) is important to predict
efficacy and safety and can help drug design [44]. The SeeSAR platform provides a set
of physicochemical information (Appendix A), the most relevant of which are shown in
Table 2.

The molecular weight (MW) is an important parameter because it can influence several
events, such as absorption, bile elimination rate and blood-brain barrier penetration [45–49],
while hydrogen bonds acceptors and donors are important parameters for polarity and
permeability [50]. Previous studies showed that, for drug development, the number of
the hydrogen bonds donors may be more crucial than the number of hydrogen bonds
acceptors since compounds with more hydrogen bonds acceptors have more favorable
profiles related to bioavailability and membrane permeability [45,48,51,52]. According
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to these studies, NNGH inhibitor and compounds A and B have better bioavailability
and membrane permeability than compound C. Other coefficients as partition, log P
(for neutral compounds, such as compounds A, B and C) and distribution Log D (for
ionizable compounds, such as NNGH inhibitor) are measures of lipophilicity a rather
important characteristic that also impacts certain ADMET parameters and drug potencies.
Generally, high lipophilicity compromises water solubility, being more likely to cause
toxic effects, though too low lipophilicity could excessively decrease permeability and
absorption [53]. Compound B, with the highest lipophilicity value (Log P = 5.089), is the
least soluble compound, while the NNGH inhibitor has a low permeability because it
has low lipophilicity (Log P = 1.472). These parameters belong to Lipinski’s rule of five,
which determine if a compound with biological activity has physicochemical properties
that would make it a likely orally active drug. All compounds respect Lipinski’s rule of five,
except for compound B that exceeds the threshold Log P. More importantly, as inhibitors
to be used in dentistry, will be permanently covalently bound to dental resins, decreasing
drastically the eventual free concentration in the organism.

Table 2. Physicochemical and ADMET properties of the NNGH inhibitor and the compounds A, B
and C.

Property NNGH Compound A Compound B Compound C

Molecular weight (MW) 316.375 263.295 349.428 336.389

H-bonds acceptor 6 3 4 2

H-bonds donor 2 0 0 2

Log P 1.472 3.828 5.089 2.943

Log D −0.075 3.828 5.089 2.943

Topological polar surface
area (TPSA) 95.94 50.09 59.32 67.43

BBB category − + + −
BBB log[(brain): (blood)] 0.703 −0.158 −0.15 −0.492

P-gp category No No No Yes

The Topological Polar Surface Area (TPSA) is defined as the surface sum over all polar
atoms and is another descriptor related to hydrogen bonding, also important to estimate
the permeability and the oral bioavailability. Several models show that these properties
decrease with the increase of TPSA and, for Central nervous system (CNS) permeability by
passive diffusion, the TPSA must be less than 80 Å2 [45,50,54,55]. Compound A has the
highest permeability, while the NNGH inhibitor with the highest TPSA value presents the
lowest permeability and is not able to diffuse to CNS (TPSA > 80 Å2).

Drugs directed towards CNS cross the blood-brain barrier (BBB) by passive diffusion,
or active transport mechanism [56]. The BBB penetration should be minimal in non-CNS
compounds to reduce the possibility of undesired pharmacological events and neuro-
toxicity [50]. The most common parameter to quantify BBB penetration is the BBB log
([brain]:[blood]) and it determines the total extent of brain exposure, at a steady-state [57].
The P-glycoprotein (P-gp) is an important transporter that belongs to the ATP-binding
Cassette superfamily and it can be found in cells throughout the body, including the blood-
brain barrier [48,50]. The P-gp plays an important role in the distribution of drugs due to
its ability to remove/extract a structurally diverse range of molecules and can reduce drug
accumulation in tissues [48,58]. For the compounds A, B and C, none can cross the BBB,
since they have a low BBB log value. The NNGH, for having a TPSA greater than 80Å2, is
also not able to cross the BBB, despite having a high BBB log. Only compound C can be a
substrate for P-gp transporters.

3.1.2. Interactions between Ligand and Protein

A relevant feature of inhibitor specificity is the way it performs as a ligand. The active
site of MMPs is a deep cavity and the catalytic domain of different MMPs share a sequential
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similarity [59]. The catalytic domain is highly conserved, containing three histidine residues
responsible for chelates the catalytic zinc ion (VAAHExGHxxGxxH) [1,14,33] and, in the
terminal zone, there is the “met-turn” [1,7], that forms the outer wall of pocket S1′ [1,14].
There are six S pockets (S1, S2, S3, S1′ , S2′ and S3′ ) [14] but the S1′ pocket is the most
important since it is a determining factor for substrate specificity [1,3,11,16]. The depth of
the S11′ pocket can be shallow (MMP-1), intermedium or deep (MMP-2, -8, -9 and -13) cavity
(Figure 2) and it is highly hydrophobic [1,7,10–12,14,16,60]. The highly conserved sequence
(VAAHExGHxxGxxH), the “met-turn” region and the S1′ pocket from collagenases (MMP-1,
-8 and -13) and gelatinases (MMP-2 and -9) were considered for docking studies.
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The catalytic activity of MMPs requires a catalytic zinc ion, a water molecule flanked
by three histidine and one glutamate residues [1,8,16], present in conserved sequence-
VAAHExGHxxGxxH. Our hypothesis is that if there is an interaction between the com-
pound and the catalytic zinc ion or any of these residues from the conserved sequence,
there will cause enzyme inhibition. The zinc ion demonstrated affinity for all compounds,
mainly for the sulfonyl group of NNGH inhibitor and for the aromatic rings of the com-
pounds A (Figure 3a), B (Figure 3b) and C. The three histidine and glutamate residues of
the conserved sequence also demonstrated capacity to establish a hydrogen bond with the
hydroxamic acid of NNGH inhibitor, in MMPs-1, -2, -8 and -9 and with the methacrylate
group of compounds A and B, in all MMPs or methylacrylamide group of compound C, in
MMP-1, -2, -8, and -9. Another hypothesis is that the compound can cause enzyme inhibi-
tion if blocks the access to S1′ pocket and all compounds besides demonstrated affinity to
the active site blocked totally (Figure 3d) or partially (Figure 3c) the S1′ .

However, there were additional interactions between the compounds and the enzyme
depending on the enzyme class (collagenases and gelatinases) (See Appendices B–E). Pre-
liminary biochemical tests (not shown) gave encouraging indications on activity reduction
achieved for most MMPs by compound A, B and C, even though their low solubility and
polymerization tendency.

Collagenases (MMP-1, -8 and -13)

The residues Leu81, Ala82 and Ala84 of the MMP-1, the residues Leu160, Ala161 and
Ala160 of the MMP-8, and the residues Leu82, Ala83 and Ala85 of the MMP-13 are located at
the same distance from the conserved sequence in the three enzymes and their neighboring
peptide bond groups can establish hydrogen bonds with the compounds studied (Table 3),
through the sulfonyl group or hydroxamic acid of the NNGH inhibitor, both oxygen atoms
of the methacrylate group from compound A, CN group of the compounds A and B, the
oxygen atom adjacent to the biphenyl group of the compound B and the methylacylamide
group of the compound C.
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Table 3. Interactions between the residues Leu, Ala and Ala of the MMPs-1, -8 and -13 and the
NNGH inhibitor and the compounds A, B and C.

Residue NNGH Compound A Compound B Compound C

Leu81 (MMP-1);
Leu160 (MMP-8);
Leu82 (MMP-13)

All
collagenases All collagenases MMP-8

MMP-13 MMP-8

Ala82 (MMP-1);
Ala161 (MMP-8);
Ala83 (MMP-13)

All collagenases MMP-1 MMP-8
MMP-13

MMP-8
MMP-13

Ala84 (MMP-1);
Ala163 (MMP-8);
Ala85 (MMP-13)

No interact MMP-13 MMP-1 All collagenases

In MMP-1, there are three more spots on the peptide that can interact with the studied
compounds. The peptide bond group adjacent to Gly79 can establish a hydrogen bond with
the NH group of methylacrylamide group of compound C (Figure 4a). The residue Asn80
interacts with the tertiary amine of NNGH inhibitor (Figure 4b) and with the oxygen atom
adjacent to the biphenyl group of compound A (Figure 3a). The Tyr140 can interact with the
CN group of compound B (Figure 3b) or with the oxygen atom of the methylacrylamide
group of compound C (Figure 4a). In MMP-8, the residue His162 establishes a hydrogen
bond with the oxygen atom of the carbonyl group of methacrylate function of compound B
(Figure 4c). In MMP-13, the residue Thr142 establishes a hydrogen bond with compound C,
through the oxygen atom of the methylacrylamide group (Figure 4d) and residue Thr144
can establish an interaction with the oxygen atom of the methacrylate group of compound
B (Figure 3d).
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Gly79 and Tyr140, of MMP-1, establish a hydrogen bond with the NH group and the oxygen atom, respectively, of
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of NNGH inhibitor. (c) The His162 of MMP-8 interacts with the oxygen atom of the carbonyl group of methacrylate of the
compound B. (d) In MMP-13, the residue Thr142 establishes a hydrogen bond with the oxygen atom of methylacrylamide of
compound C.

Gelatinases (MMP-2 and -9)

In MMP-2, the peptide bond adjacent to Leu83 and Ala84 can establish hydrogen
bonds with all of the compounds. In the case of the NNGH inhibitor, the oxygen atom of
the sulfonyl group and the NH group of the hydroxamic acid interact with both residues.
The oxygen atom of the carbonyl group of methacrylate in compound A can establish a
hydrogen bond with Leu83 and Ala84 (Figure 5a). The CN group of compound A and B
can interact with Leu83 or Ala84, in the case of compound B (Figure 5b). The oxygen atom
adjacent to the biphenyl group in compound B can establish a hydrogen bond with Leu83
(Figure 5c). The methylacrylamide group of compound C interacts with Leu83 and Ala84
(Figure 5d). The residue His85 can establish a hydrogen bond with the oxygen atom of the
sulfonyl group in the NNGH inhibitor and with the methacrylate group in compound B
(Figure 5c).

The residues Leu137, Tyr142 and Thr143 belong to the “met-turn” region and interact
only with the compounds A, B and C. The residue Leu137 establishes a hydrogen bond
only with the NH group of the methylacrylamide of the compound C (Figure 5d). The
residue Tyr142 can interact with one or both aromatic rings of the biphenyl group of the
compounds A and B (Figure 5b). The residue Thr143 establishes a hydrogen bond with
the oxygen atom of the methacrylate group, in compounds A and B or methylacrylamide
group in compound C (Figure 5b,d).

In MMP-9, the residues Leu188, Ala189 and His190 interact with the NNGH inhibitor
and the compounds A, B and C. The sulfonyl group and the NH group of the hydrox-
amic acid of the NNGH inhibitor (Figure 6a) and the methacrylate group of compound A
(Figure 6b) can interact with Leu188 and Ala189. In compound B, the methacrylate group es-
tablishes a hydrogen bond with His190 and the oxygen atom adjacent to the biphenyl group
interacts with Leu188 and Ala189 (Figure 6c). The methylacrylamide group of compound
C can establish a hydrogen bond with all amino acids (Figures 3c and 6d). This group of
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compound C can also establish a hydrogen bond with the residue Asp235 in MMP-9, a
variable residue of the conserved sequence-VAAHExGHxxGxxH (Figure 6d).
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3.2. Cytotoxicity Study

In general, MG-63 cells showed significantly (p < 0.001) more resistance to the presence
of MMP inhibitors than NIH/3T3 cells. The compound interaction with cellular membrane
depend on their physical and chemicals characteristics [61]. In fact, cellular differentiation
can be the answer why osteoblasts (MG-63) are more resistant than fibroblasts (NIH/3T3);
it is known that growing factors and gene expression are the responsible ones for this
differentiation [61,62].

Compounds A, B and C decrease cell viability (Figure 7 and Table 4) and can even
be considered toxic for NIH/3T3 cells at 50 and 100 µM concentration since the number
of viable cells decreased more than 30% (ISO 10993–5: 2009). The viability of NIH/3T3
cell was significantly (p < 0.05) higher for compound A than for compound B and C; and
significantly (p < 0.001) higher at 20 µM than the other two concentrations tested.
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Figure 7. NIH/3T3 (a) and MG-63 (b) cell viability upon exposure to compounds A (4′-cyano-[1,1′-bihenyl]-4-yl
methacrylate), B (5-((4′-cyano-[1,1′-biphenyl]-4-yl)oxy)pentyl methacrylate) and C (N,N′-(oxybis(4,1-phenylene))bis(2-
methylacrylamide).

Table 4. Percentage of mean (M) and standard variation (SD) of cell viability for the two type of cells
with the several inhibitor compounds in different concentrations.

Groups Cell Viability (%)

Inhibitor
Compound

Inhibitor
Concentration

NIH/3T3 MG-63

M SD M SD

A

20 µM 85.1 0.71 82.6 2.28

50 µM 54.2 4.47 73.6 0.78

100 µM 45.5 5.30 73.0 5.40

B

20 µM 78.6 1.41 78.1 1.41

50 µM 50.5 4.42 70.3 2.03

100 µM 40.5 1.60 65.9 0.82

C

20 µM 83.7 1.41 85.0 0.36

50 µM 46.4 4.22 65.8 2.94

100 µM 42.4 8.28 69.2 9.24

A decrease in cell viability was also observed in human MG-63 cells, but not statistical
significantly differences were found between compounds (p = 0.307) and concentrations
(p = 0.406). However, according to ISO standards, only compound B at 50/100 µM and
compound C at 100 µM were toxic. Nevertheless, none of the three compounds highlighted
serious toxicity.
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Although compounds A, B and C present some toxicity towards the two cell types,
it may be much less as compounds are to be used copolymerization with dental resins,
which reduce their free concentration. Preliminary results by FTIR spectroscopy using
commercial resins showed a decrease in the vinyl bands of the free compounds upon light
polymerization (results not shown).

4. Conclusions

According to the computational docking simulations, all compounds (NNGH inhibitor
and the compounds A, B and C) have the potential to be good inhibitors of MMPs. These
compounds were chosen among a pool of previously synthesized compounds in the
laboratory and a few hundred other proposals as the ones with better affinity score towards
the MMPs active sites. The compounds showed an affinity for the active center of MMPs,
which may block access to the S1′ pocket, and they can interact with the catalytic zinc ion.
The residues histidine and glutamate, belong to the conserved sequence, and some residues
of the “met-turn” can also establish hydrogen bonds with the compounds. Altogether
available data lead us to conclude that the compounds interact with the crucial components
for the catalytic activity of MMPs. Furthermore, cell viability does not decrease much upon
direct contact with the free non-polymerized compounds and toxicity is expected to further
decrease upon covalent binding to the dental resin matrix, promising improvements in
dental resins mechanical strength.
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Appendix A

Table A1. Physicochemical and ADMET properties, by SeeSAR.

Parameter NNGH Compound A Compound B Compound C

MW 316.375 263.295 349.428 336.389

H-bonds acceptors 6 3 4 2

H-bonds donors 2 0 0 2

Aromatic rings 1 2 2 2

Stereo centers 0 0 0 0

Rotatable bonds 5 0 6 0

Total charge 0 (OH)/ −1 (O−) 0 0 0

Log P 1.472 3.828 5.089 2.943

Log D −0.075 3.828 5.089 2.943

TPSA 95.94 50.09 59.32 67.43

BBB category − + + −
BBB log ([brain]:[blood]) 0.703 −0.158 −0.150 −0.492

P-gp category No No No Yes
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Table A1. Cont.

Parameter NNGH Compound A Compound B Compound C

2C9 pki 4.377 4.931 5.040 5.125

2D6 affinity Low Medium High Medium

HIA category + + + +

PPB90 category Low High High High

hERG pIC50 4.319 5.073 5.749 4.894

Log S (pH = 7.4) 3.264 0.653 -0.217 2.336

Appendix B
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