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Abstract: Glycosylation is a fundamental cellular process affecting human development and health.
Complex machinery establishes the glycan structures whose heterogeneity provides greater struc-
tural diversity than other post-translational modifications. Although known to present spatial and
temporal diversity, the evolution of glycosylation and its role at the tissue-specific level is poorly
understood. In this study, we combined genome and transcriptome profiles of healthy and diseased
tissues to uncover novel insights into the complex role of glycosylation in humans. We constructed a
catalogue of human glycosylation factors, including transferases, hydrolases and other genes directly
involved in glycosylation. These were categorized as involved in N-, O- and lipid-linked glyco-
sylation, glypiation, and glycosaminoglycan synthesis. Our data showed that these glycosylation
factors constitute an ancient family of genes, where evolutionary constraints suppressed large gene
duplications, except for genes involved in O-linked and lipid glycosylation. The transcriptome
profiles of 30 healthy human tissues revealed tissue-specific expression patterns preserved across
mammals. In addition, clusters of tightly co-expressed genes suggest a glycosylation code underlying
tissue identity. Interestingly, several glycosylation factors showed tissue-specific profiles varying with
age, suggesting a role in ageing-related disorders. In cancer, our analysis revealed that glycosylation
factors are highly perturbed, at the genome and transcriptome levels, with a strong predominance of
copy number alterations. Moreover, glycosylation factor dysregulation was associated with distinct
cellular compositions of the tumor microenvironment, reinforcing the impact of glycosylation in
modulating the immune system. Overall, this work provides genome-wide evidence that the glycosy-
lation machinery is tightly regulated in healthy tissues and impaired in ageing and tumorigenesis,
unveiling novel potential roles as prognostic biomarkers or therapeutic targets.

Keywords: glycosylation machinery; genomics; transcriptomics; healthy tissues; cancer

1. Introduction

Glycosylation is a complex multi-enzymatic process that includes assembling monosac-
charides into glycans and transferring these onto proteins or lipids [1], with recent evidence
suggesting small RNAs can also be glycosylated [2]. Most human proteins are thought to
be glycosylated [3], influencing all aspects of cellular activity, including immunity [4,5],
cell signaling [6], and cell adhesion [7]. Glycosylation is a ubiquitous post-translational
modification present in all domains of life [3], enabling the generation of a large diversity
of molecular structures, not directly bound by genetic information, much like the widely
studied phosphorylation.
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The biosynthesis of distinct glycoconjugates can be classified in different glycosylation
pathways depending on the site of the glycosidic linkage and the glycan attached, namely:
N-linked glycosylation, O-linked glycosylation; Glycosaminoglycans (GAG); Glypiation
(GPI); and lipid glycosylation [9]. In humans, approximately hundreds of glycosylation
factors are responsible for this post-translational modification process, including spe-
cific transferases (acetylglucosaminyltransferase, sialyltransferase, mannosyltransferase,
N-acetylgalactosaminyltransferase, galactosyltransferase, fucosyltransferase, glucosyltrans-
ferase, xylosyltransferase), hydrolases (mannosidase, sialidase, glucosidase, fucosidase)
and enzymes involved in monosaccharide precursor synthesis and transport [1]. Each gly-
cosylation pathway is accomplished by a specific and distinct set of these enzymes, where
some participate in different glycosylation pathways. A precise and tightly regulated action
of the different enzymes and proteins are demanded to produce the glycoconjugate profiles
specific and distinctive of each cell type and tissue and each development/functional
stage [10,11].

Unsurprisingly, dysfunction of glycosylation factors leads to many pathologies [12],
including the rare set of congenital disorders of glycosylation (CDG), cancer, metabolic and
inflammatory diseases [12-14]. Notably, since aberrant glycosylation plays an important
role in the immunosuppression of tumors and in the setting up of inflammatory diseases,
they are used in the design of novel immunotherapies [15] or as biomarkers [16]. The
most common perturbations in cancer are increased sialylation or fucosylation, O-glycan
truncation, and N- and O-linked glycan branching [17]. Increased sialylation, in epithelial
cancers, promotes immune evasion [18] and contributes to tumor progression and poor
prognosis [19].

Our understanding the role of aberrant glycosylation in dysregulating organismal
and cellular homeostasis is significantly progressing. Still, many steps remain largely
uncharacterized, hindered by the inherent complexities of glycosylation. Large consortia
have been generating a wide diversity of molecular profiles, in both healthy (e.g., GTEX [20],
Protein Atlas [21]) and diseased tissues (e.g., TCGA [22]). However, these data have not yet
been comprehensively examined to elucidate the role of glycosylation factors. In this study;,
we aimed at exploring available human molecular profiles, integrating them to obtain novel
insights into the complex role of the glycosylation machinery. Our genome/transcriptome
integrative analysis of a catalogue of 242 human glycosylation factors revealed that this
ancient family of genes have expanded under some evolutionary constraints, capacitating
glycosylation factors in defining tissue identity through a tissue-specific glycosylation
code. Moreover, our work suggests that glycosylation-driven tumorigenesis is mediated
mostly by large genomic amplifications and corresponding transcriptome alterations in
glycosylation factors. Overall, our findings reveal novel unappreciated potential roles of
glycosylation in human health.

2. Materials and Methods
2.1. Selection of Glycosylation-Factors and Gene Expression-Related Genes

A list of 242 glycosylation factors (Supplementary Materials Table S1) was obtained by
collecting information from: GGDB glycosylation factor Database [23]; Reactome [24]
(N-linked glycosylation; O-linked glycosylation); KEGG [25] (N-Glycan biosynthesis;
Mucin and Mannose type O-glycan biosynthesis); and selecting human genes annotated in
ENSEMBL [26] release 104 (May 2021) with the Gene Ontology term “protein glycosylation”
(GO:0006486). The list was then manually curated to correct discontinued official gene
symbols and remove genes encoding proteins that may undergo glycosylation but with no
evidence for a direct role in the glycosylation process itself.

The genes encoding for regulators of gene expression were retrieved from different
sources. Briefly, a list of 287 epigenetics factors was extracted from Boukas et al. [27].
A list of 653 transcription factors was extracted from Jolma et al. [28], including only
those genes with a known motif, and excluding the ones only containing C2H2 zinc
fingers. Splicing (326 genes), translation (154 genes), phosphorylation (672 genes) and
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ubiquitination factors (619 genes) were selected based on the GO annotation in ENSEMBL
(GO:0008380, GO:0006417, GO:0006468 and GO:0016567, respectively).

2.2. Phylogenetic Information and Expression

Ortholog and paralog information was downloaded from ENSEMBL Biomart. Infor-
mation on the paralogous first duplication event was compressed to chordates (everything
before Vertebrata), vertebrates (everything before Mammalia), and mammals (everything
else except humans). To analyze phylogenetic conservation of tissue expression, multi-
species expression data were obtained from Brawand et al. [29], comparing six organs
across ten species. Namely, we used the normalized RPKM from constitutive exons of 1-to-
1 orthologs. For each gene, we scaled the expression and obtained the standard deviation
of the tissue with the minimum standard deviation between species.

2.3. Transcriptome Profiles of Healthy Tissues

The expression levels for healthy tissues were obtained from Protein Atlas and
Genotype-Tissue Expression (GTEx) Project Protein atlas gene expression data were down-
loaded from https:/ /www.proteinatlas.org/download /rna_tissue_hpa.tsv.zip (downloaded
28 October 2019), and the normalized NX values were used for analyses. The GTEX data
comprised transcriptome profiles of 28 healthy tissues and were obtained from the GTEx
Portal on 28 October 2019. Only public metadata on age and sex were used, where age was
classified in 10-year blocks. Moreover, transformed cells were excluded from the analysis.
The normalized TPM values of GTEX samples were used for downstream analyses. We
used the UMAP R package with GTEX expression data for UMAP analyses.

2.4. Tissue-Specificity and Classification Based on Transcriptome Profiles

To estimate the tissue predictive ability of glycosylation factors and remaining gene
sets we used random forest models as implemented in the randomForest R package [30].
Briefly, samples of each tissue were divided into 75% train and 25% test. Then, 100 random
forest models were used, each using the GTEX normalized expression data (TPMs) for
30 randomly selected genes (from the specific group of genes of interest). Finally, the
Matthews Correlation Coefficient (MCC) was calculated based on the results of the classifi-
cation of the test data.

To estimate tissue specificity, we used the TissueEnrich R package [31], with protein
atlas data and also with GTEX data (Supplementary Materials Table S1). In brief, a Tissue
Enriched gene has at least five-fold higher expression levels in a particular tissue compared
to all other tissues; a Group Enriched gene has at least five-fold higher expression levels in
a group of 2-7 tissues compared to all other tissues; a Tissue Enhanced gene does not fall
in the previous categories but has at least five-fold higher expression levels in a particular
tissue compared to the average expression of all other tissues.

To estimate age and sex-specific expression, for each tissue and gene, we fitted a linear
model of the GTEX normalized TPM gene expression of a given tissue depending on age
(in decades) and sex (except for tissues of the reproductive system with samples of only
one specific sex, where only age was used). The p-values derived from each gene’s linear
model were corrected for multiple testing using the Benjamini-Hochberg procedure. Genes
were age or sex-dependent if their coefficient in the linear model had an adjusted p-value
less than 0.05.

2.5. Molecular Profiles of Tumor Samples

We downloaded public TCGA data from the GDC portal for all the 33 cancer types:
ACC (adrenocortical carcinoma); BLCA (bladder urothelial carcinoma); BRCA (breast
invasive carcinoma); CESC (cervical squamous cell carcinoma and endocervical adenocarci-
nomay); CHOL (cholangiocarcinoma); COAD (colon adenocarcinoma); DLBC (Lymphoid
Neoplasm Diffuse Large B-cell Lymphoma); ESCA (Esophageal carcinoma); GBM (Glioblas-
toma multiforme); HNSC (head and neck squamous cell carcinoma); KICH (kidney Chro-
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mophobe); KIRC (kidney renal clear cell carcinoma), KIRP (kidney renal papillary cell
carcinoma); LAML (Acute Myeloid Leukemia); LGG (Brain Lower-Grade Glioma); LIHC
(liver hepatocellular carcinoma); LUAD (lung adenocarcinoma); LUSC (lung squamous
cell carcinoma), MESO (Mesothelioma); OV (Ovarian serous cystadenocarcinoma); PAAD
(pancreatic adenocarcinoma); PCPG (pheochromocytoma and Paraganglioma); PRAD
(prostate adenocarcinoma); READ (rectum adenocarcinoma); SARC (sarcoma); SKCM (Skin
Cutaneous Melanoma); STAD (Stomach adenocarcinoma); TGCT (Testicular Germ Cell
Tumors); THCA (thyroid carcinoma); THYM (Thymoma); UCEC (uterine Corpus Endome-
trial Carcinoma); UCS (Uterine Carcinosarcoma); and UVM (Uveal Melanoma). The data
included: clinical metadata, namely the patient and follow up tables; somatic mutations as
MuTect2 Variant Aggregation and Masking maf files; copy number as GISTIC copy number
focal scores text files; and RNA-Seq read counts as HTSeq count tables.

2.6. Impact of Genetic Alterations

To assess the genetic alterations associated with pathogenic phenotypes we used
the Clinvar variant summary data downloaded from https:/ /ftp.ncbi.nlm.nih.gov/pub/
clinvar/ (release of 2 December 2019). Information on disease description was used with
the wordcloud R package to produce a word cloud representing the relative frequency of
terms in the Clinvar entries associated with glycosylation factors. The intolerance to loss of
function mutations was obtained through the pLI score, that derives from the probability
that a loss of function mutation occurs in a large cohort of healthy persons. The pLI scores
were downloaded from Exact (ftp://ftp.broadinstitute.org/pub/ExAC_release/release(.3
/functional_gene_constraint/fordist_cleaned_exac_r03_march16_z_pli_rec_null_data.txt),
accessed on 4 April 2019. We also downloaded the list of cancer drivers from IntOgen
release 1 February 2020. To identify genes under selective pressure in cancer, we applied
the dNdScv method [32] using somatic mutation data from each of the TCGA cancer
types. Briefly, dNdScv compares, for each gene, the observed tumor-specific mutations
against a global background of mutations). A gene was considered under selection if it had
significant evidence with dNdScv in at least one cancer type.

Influence of genomic perturbations in cancer patient survival was analyzed by Kaplan-
Meier curve comparison using a log-rank test and a multivariate Cox proportional hazards
analysis, as implemented in the survival R package [33].

2.7. Transcriptome Alterations in Tumor Samples

We used the HTSeq count tables to obtain normalized CPM values through TMM
normalization in edgeR [34]. To infer gene expression perturbation in tumors, we used
expression data of TCGA tumor samples and their paired normal samples (in cancers where
both were available, namely BLCA, BRCA, CHOL, COAD, ESCA, HNSC, KICH, KIRC,
KIRP, LIHC, LUAD, LUSC, PRAD; READ, STAD, THCA and UCEC) to perform a per-cancer
differential expression analysis with the limma-voom R package [35] Genes with adjusted
p-value lower than 0.05 were considered differentially expressed. Gene set enrichment
analysis of gene expression pathways was performed using the fgsea package [36].

2.8. Association with Cellular Composition in Healthy and Diseased Tissues

To obtain estimates of the relationship between glycosylation and immune cell-
populations in TCGA tumor samples, we downloaded the pre-calculated frequencies
from TCIA (quantiseq frequencies) [37]. We evaluated the associations using Pearson’s
correlation and lasso regression. First, for each cancer, and glycosylation factor, we es-
timated the Pearson correlation between the normalized gene expression and immune
cell population frequencies. We then counted—for each gene—with how many tumor
types each immune cell type correlated significantly (p < 0.05). We also applied the same
method with normal GTEX tissues. For this, we inferred the frequencies of immune cell
populations of GTEX samples by applying quantiseq [38] to all GTEX samples using the
normalized TPM expression values. Lasso regression analysis was performed as described
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previously [39]. Briefly, the estimated frequency of M2 macrophages for each individual
cancer sample (grouped by cancer type) was modelled by Lasso regression as implemented
in the glmnet R package [40], with a 10-fold cross validation to choose the lambda pa-
rameter. Statistical significance of the explained variance by each model was assessed for
values greater than zero using a margin of more than one standard deviation. Finally, the
obtained models were evaluated by assessing the correlation (Pearson method) between
the observed and predicted M2 levels based on tumor mutation and expression profiles. A
similar approach based on Lasso Models was applied to detect alterations in glycosylation
factors associated with the number of tumor subclones, i.e., intra-tumor heterogeneity.
Intra-tumoral heterogeneity (ITH) of TCGA samples was defined as the number of clones
estimated using EXPANDS [41] on the tumor SNVs and CNAs.

2.9. Statistical Analysis

All statistical analysis and figures were generated using R. Besides the already men-
tioned R packages, we also used the graph package for the network plots; the Complex-
Heatmap package to produce the oncoprint; the corrplot package heatmap with correlations;
and the pheatmap package for the remaining heatmaps.

3. Results
3.1. Glycosylation Factors Are an Evolutionarily Conserved Family of Genes

We constructed a catalogue of 242 human genes directly involved in the process
of glycosylation (see details in methods), herein referred to as glycosylation factors
(Supplementary Materials Table S1). Of these, 70 genes (29%) are mainly involved in
N-linked glycosylation, 74 (31%) in O-linked glycosylation, 21 (9%) in glypiation (GPI),
30 (12 %) in lipid glycosylation, and 15 (6%) in glycosaminoglycan (GAG) glycosylation.
The remaining 32 (13%) genes are involved in at least two of the above-mentioned pathways
(Figure 1A). Regarding their functions, the vast majority (74%) of the glycosylation factors are
glycosyltransferases (Supplementary Materials Table S1), 10% are glycosyl hydrolases, with the
remaining genes playing other roles (Supplementary Materials Figure S1A and Table S1).

Our phylogenetic analysis revealed that glycosylation is ubiquitous in the tree of life,
with both N- and O-Glycosylation already appearing in archaeal and bacterial species [42,43].
In addition, most human glycosylation factors contain orthologs down to distant organisms
such as the nematode worm (Figure 1B and Supplementary Materials Table S1). In fact,
some glycosylation subclasses emerged earlier, with 70% of the human glypiation genes and
50% of the N-linked glycosylation factors presenting orthologs already in yeast. Despite
their early ancestry, glycosylation factors suffered several gene duplications increasing the
number of paralogs present in the human genome (Supplementary Materials Figure S1B).
However, glycosylation factors have less paralogs than transcription, phosphorylation,
and epigenetic factors (Figure 1C). In fact, 59% of N-linked glycosylation and 90% of
glypiation genes are single copy, suggesting a strong control of gene copy number since
their ancient origin (Figure 1D). Interestingly, O-linked and lipid glycosylation seem to be
an exception, with the average number of paralogs per gene higher than 10 in the human
genome (Figure 1D). A striking example is the GALNT gene family, required to initiate
O-glycosylation, enclosing 21 human paralogs (Supplementary Materials Table S1). Thus,
glycosylation is a conserved and essential cellular process where most direct regulators
have emerged early in evolution and were spared from large duplication events.
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Figure 1. Glycosylation Factors are an evolutionarily conserved family of genes. (A) Pie chart
with the frequencies of each glycosylation pathway among the 242 genes considered in this study:
N-linked; O-Linked; Lipid; Glypiation (GPI); Glycosaminoglycans (GAG); Genes involved in more
than one pathway (Multiple). (B) Barplot with the percentages of the organism representing the
last common ancestor to the human gene, for each glycosylation subclass. (C) Boxplot of the total
number of paralogous copies per gene, for each class of gene expression regulators: epigenetic (Epig);
transcription (TF); Splicing (SF); Translation (TLF); Phosphorylation (Phos); Ubiquitination (Ubiq);
Glycosylation (Glyco). An asterisk (*) represents that the number of paralogs per gene in the class is
significantly different from glycosylation (Wilcoxon Test p < 0.05). (D) Boxplot of the total number of
paralogous copies per gene for each glycosylation subclass.

3.2. Glycosylation Factors Show Tissue-Specific Expression Preserved across Mammals

Given the complexity of the glycosylation machinery and the existence of cell-specific
glycoconjugate profiles, we decided to explore how glycosylation factors expression
varied across healthy tissues from the GTEX project [20]. An unsupervised analysis
unveiled that human samples could be grouped according to tissue type based solely
on the expression levels of glycosylation factors (Figure 2A), reinforcing the fact that
each tissue may display different patterns of glycosylation. Hence, transcription pro-
files of glycosylation factors can distinguish the different tissues significantly better than
most regulators of gene expression, except transcription and phosphorylation factors
(Figure 2B). In fact, 25% of glycosylation factors present tissue-specificity, enclosing en-
riched or enhanced expression associated with a single tissue or a small group of tissues
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(Figure 2C and Supplementary Materials Table S1). Such specificity is only surpassed by
transcription and phosphorylation factor tissue-specific expression (Figure 2C). Interest-
ingly, specificity appears to be most relevant in O-linked and lipid glycosylation pathways,
where approximately 40% of the genes showed restricted expression to single or a small group
of tissues (Supplementary Materials Figure S2A). Concordantly, these gene subclasses also have
the highest ability to distinguish different tissues (Supplementary Materials Figure S2B). Thus,
such findings support the existence of a tissue-specific glycosylation code that is sustained
by activation of distinct glycosylation factors.
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Figure 2. Glycosylation Factors show tissue-specific expression. (A) Uniform Manifold Approxima-
tion and Projection (UMAP) representation, based on the gene expression profiles of glycosylation
factors of GTEX samples, colored according to their tissue of origin. (B) Boxplot representation of the
Matthews Correlation Coefficient (MCC) value for the classification of the tissue of each GTEX sample
(n = 100 random forest models using 30 randomly selected genes of each gene class). (C) Cumulative
bar plot representation of the frequency of genes belonging to each gene class that show tissue-specific
expression in protein atlas (colors represent degree of specificity as defined in TissueEnrich from the
most specific Tissue-Enriched to the least specific Tissue-Enhanced). (D) Heatmap representation of
the protein atlas gene expression of glycosylation factors displaying some degree of specificity (repre-
sented expression values are scaled z-scores). Only tissues with at least one gene with z-score > 2
are represented.
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Within the different human tissues, the brain and digestive system presented the
most distinct expression, with the highest number of tissue-specific glycosylation factors
(Figures 2D and S2C). Relevant examples include B4GAT1 and B4GALNT] transferases,
showing brain-specificity (Figures 2D and S2D,E), in agreement with the fact that its disrup-
tion is known to cause defects in the nervous system [44,45]. Interestingly, the expression of
paralogous glycosylation factors alternates and contributes to tissue-specific glycosylation.
While B4GALNT1 and B4GALNT4 are brain specific, BAGALNT2 and B4GALNTS3 are specif-
ically expressed in tissues of the digestive system (Figure 2D). Or the case of GALNT13
and GALNT14 specifically expressed in the brain and kidney, respectively. Moreover, our
analysis also identified signatures that may define distinct glycosylation patterns in tis-
sues, highlighting: the brain (GALNT9, GALNT13, ST85IA3, B3GAT1, B3GAT2, MGAT5B,
B4GAT1, B4GALNT1, COLGALT2, BAGALNT4 and GALNT17); stomach (GALNT6, FUT9,
A4GNT, BAGALNTS3); intestine (ABO, BAGALNT2, GALNTS, ST6GALNAC1); thyroid and
parathyroid glands (ST6GAL2, MGAT4C, GALNT18, ST6GALNAC3, GCNT1) (Figure 2D,
Supplementary Materials Figure S2F and Table S2).

To reinforce the existence of a tissue-specific code, we investigated how conserved
is the expression of glycosylation factors across mammals. Interestingly, glycosylation
factors unveiled a low within-tissue expression divergence of orthologs across differ-
ent mammalian species, only slightly above transcription or phosphorylation factors
(Supplementary Materials Figure S2G). Moreover, the glycosylation subclasses with the
highest tissue-specific expression, O-linked and lipid glycosylation, also revealed lower
within-tissue expression variation across species (Supplementary Materials Figure S2H).
Such evolutionarily conserved tissue-specific profiles clearly strengthen the importance
of glycosylation to maintain cell identity and tissue homeostasis in complex organisms.
Thus, our results indicate that glycosylation factor expression is tightly regulated and
preserved across tissues and mammalian species, supporting the existence of a conserved
glycosylation code.

3.3. Co-Expression Patterns Strengthen a Tissue-Specific Glycosylation Code

Since glycosylation patterns depend on the concerted activity of multiple glycosyla-
tion factors, one could expect some coordinated gene expression within tissues. Indeed,
correlation analysis of human transcriptome profiles identified 6491 pairs of glycosyla-
tion factors highly correlated (Pearson R > 0.8) covering almost all glycosylation factors
(Supplementary Materials Table S3). Moreover, we identified glycosylation factors consis-
tently co-expressed across several tissues (Figures 3A and S3A). The most common cluster
includes a core of N-linked glycosylation genes RPN1, RPN2, STT3A, GANAB and UGGT1,
which are strongly correlated to each other across over 10 tissues. Other cases include
FUT3 and FUT6 in 10 tissues, and OGT, OGA and ALG13 in nine tissues. Notably, only
few glycosylation factors showed strong anti-correlated expressions (Pearson R < —0.8),
such as ST3GAL3/GALNT3 and ST3GAL3/FUT3, both in the colon and the esophagus
(Supplementary Materials Figure S3B). The consistent co-expression of glycosylation fac-
tors suggests that these are responsible for the biosynthesis of prevalent glycoconjugates
common to several tissues.

Despite the conserved co-expression patterns, our analysis revealed an association
between certain glycosylation subclasses and tissues. Indeed, we could depict several
N-linked glycosylation genes highly correlated in muscle, and O-linked glycosylation genes
in digestive system tissues (Supplementary Materials Figure S3C). Such findings suggest
a differential prevalence of glycosylation pathways in distinct tissues. More importantly,
we identified two highly anti-correlated (R < —0.8) clusters of genes in the esophagus,
indicating two opposing glycosylation patterns occurring in that tissue (Figure 3B). These
opposing clusters included pairs of paralogous genes (e.g., LARGE1 and LARGE2, GALNT1
and GALNT2, B3GNTS and B3GNTY), indicating a concerted regulation of paralogous genes
in the glycosylation process. Therefore, our findings unveiled the existence of a concerted
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expression of the glycosylation factors within tissues, reinforcing the existence of a firmly
regulated glycosylation code.
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Figure 3. Glycosylation factors show co-expression clusters across healthy tissues. (A) Heatmap
representation of the number of tissues with high positive correlation between pairs of glycosylation
factors (based on the gene expression of GTEX samples, R > 0.8, p < 0.05). (B) Heatmap representation
of the correlation values of highly (anti)correlated pairs of glycosylation factors (based on the gene
expression of GTEX esophagus samples, |R| > 0.8. Node colors represent glycosylation subclass;
color intensity and line thickness represent the number of tissues where the gene pair displays a high
degree of correlation.

3.4. Maintenance of the Glycosylation Machinery Is Important for Human Health

Due to such highly conserved tissue-specificity, one could foresee that impairment of
glycosylation factors would have a significant impact on tissue homeostasis and human
health. In fact, according to ClinVar resource [46], over 40% of the glycosylation fac-
tors enclose genetic variants associated with clinically pathogenic phenotypes (Figure 4A
and Supplementary Materials Table S1), overtaking the other classes of gene expression
regulators. However, such proportion differs across the different glycosylation path-
ways, with pathogenic variants being described for 80% of the glypiation genes but
only affecting 23% of the O-linked glycosylation factors (Figure 4B). The pathogenic vari-
ants in glycosylation factors are mostly associated with muscle and intellectual disabil-
ity, usually included in the rare family of congenital disorders of glycosylation (CDGs)
(Supplementary Materials Figure S4A). The majority of CDGs are autosomal recessive dis-
orders that manifest from infancy, being homozygous mutations usually associated with
lethality to the embryo [47-50].

Due to the higher number of glycosylation factors associated with pathogenic vari-
ants, we decided to assess their intolerance to mutations in human samples using the
pLI score (probability of being Loss-of-function intolerant). The pLI measures the prob-
ability of intolerance of a given gene to the loss of function on the basis of the fre-
quency of protein-truncating variants [51]. Surprisingly, most of the glycosylation factors
showed low or intermediated pLI scores, contrasting with other gene regulator classes
(Supplementary Materials Figure S4B). This apparent tolerance to protein variation may
be due to compensatory co-expression of redundant paralogous glycosylation factors ob-
served in certain tissues. Nevertheless, some factors showed high intolerance to loss of
function mutations as it is the case of STT3A, STT3B and GANAB genes, belonging to
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the co-expressed cluster of N-glycosylation (Supplementary Materials Table S1). Such
findings disclose the genetic diversity, complexity and susceptibility underlying the glyco-

sylation machinery.

A g 003
Genes with Pathogenic Variants . 0.02
E B3GNTY ’
B3GAT2
40, MAN1C1 0.01
GALNT3
— GALNTS 0
| = |PGM3
- |DAD1
304 - |B3GLCT -0.01
@ | B3GALNT1
o) |oeT -0.02
S |OGA
c ] PPIGL =
g 204 5 POMT1 £ -0.03
o o it i
& = = PGAP3 -0.04
=] = MGAT5B
= GALNT10
104 - DPM2 pathway
= RFNG =L
GCNT2 N Ll.nked
- PIGO O-Linked
0- R — SLC35A3 Lipid
" i SLC35A1
Epig TFs SFs TLFs Phos Ubiq Glyco ] PIGX GPI
4&5 B GANTIM GAG
BAGALT2 ;
B - I sTecaLNACs | Multiple
,,,,, = DOLK
X . . = ALG1
Glycogenes with Pathogenic Variants L ALG11
= XYLT1
PIGP
80, " >oom 44T =TT = POGLUT2
[ ] EXT2
= =i FUT8
B PIGT
B GALNT2
i ST3GAL2
60 B B4GAT1
° B PIGC
o | | B3GALT4
] B sTesia4
c g f— B3GNT2
40 GALNT1
&) - H- DHDDS
[} = MPDU1
o B B GANTLe
| | ST8SIA3
----- MGAT3
20 4 = = MGAT5
B9OPOSEEETIERELRERCTTRT
3 E] S5=553
$55833628883885773325555
PR o DOTEZE  z0 0 Lot
<q49e 2 ! 11 435»4 P8I
365 § Qo2 35323 %883
[ 23 g %585 S23%pgs %2533
235 L 253 Bgi5zP2 gghg
. . . X 32 o 88 H 223
N-Linked O-Linked Lipid ~ GPI ~ GAG  Multiple 8°§ 83 35 I§ 2593
8 4 %3 g¢ R
£ 35 =% H
& & >
c g 2 = RN
3 g aQ @
8¢
2
5
k)

Figure 4. Glycosylation machinery is important in human health. (A) Bar plot of the percentage of
genes associated with pathogenic variants in Clinvar, according to their gene class. (B) Bar plot of
the percentage of glycosylation factors associated with pathogenic variants in Clinvar, according to
their glycosylation subclass. (C) Heatmap representation of glycosylation factors whose expression
changes in GTEX ageing tissues. Heatmap colors represent the coefficients from a linear model
associating age with gene expression, in a given tissue (*: p < 0.05; **: p < 0.01; **: p < 0.001). Red
indicates higher and blue lower expression with ageing.

Besides the impact of genetic alterations, glycosylation also changes during ageing,
representing both a predisposition to and a functional mechanism involved in disease
pathology [52]. In fact, GTEX expression profiles unveiled a significantly higher number of
glycosylation factors altered in ageing samples of adipose tissue, artery, brain, and whole
blood (Figures 4C and S4C, Table S1). Interestingly, the expression of glycosylation factors
seems to predominantly decrease with age in the brain, whole blood, and uterus, while it
predominantly increases in adipose tissue and arteries (with a predominance of O-linked
glycosylation) (Figure 4C). Apart from changing according to tissue-type and age, a smaller
set of glycosylation factors showed sex-specific expression profiles in muscle, skin, thyroid,
and adipose tissue (Supplementary Materials Figure S4D,E). Overall, these results suggest
that the glycosylation machinery may play a role not only in congenital anomalies but also
in ageing-related diseases.
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3.5. Genome and Transcriptome Alterations of Glycosylation Factors Are Pervasive in Cancer

One of the diseases with increasing prevalence with age is cancer, where aberrant glyco-
sylation plays an important role [17]. However, pathogenic variants in glycosylation factors
rarely appear as explicitly associated with cancer in relevant resources such as Clinvar
(Supplementary Materials Figure S4A) or IntOGen (Supplementary Materials Figure S5A),
and they do not seem to be under strong selective pressure in cancer (Supplementary Ma-
terials Figure S5B). Accordingly, the genomic profiles from The Cancer Genome Atlas
cohorts (TCGA) unveil that only a median of 0.34% of cancer patients have mutations in
glycosylation factors, versus 0.66% and 0.54% for epigenetic and phosphorylation factors,
respectively (Supplementary Materials Figure S5C). Within glycosylation factors, glypiation
genes emerge as the least mutation prone, with a median of only 0.2% of cancer patients har-
boring mutations in these genes (Supplementary Materials Figure S5D). However, around
5% of cancer patients have copy number alterations (CNA) in the glycosylation factors,
similarly to other gene classes (Supplementary Materials Figure S5E,F). Some glycosylation
factors showed genomic alterations (SNVs and CNVs) in 15% of tumor samples (namely
GPAA1, PIGZ and B3GNT5) with a predominance of amplifications (Figure 5A). Other genes
are mostly affected by deletions, such as B3GALT6. PIGV and MANICI. Interestingly, three
of the ten most altered glycosylation genes in cancer are glypiation-related genes (GPAAI,
PIGZ, PIGX), which are predominantly affected by amplifications (Figure 5A). GPAAI,
PIGZ and PIGX amplifications are associated with worse prognosis at a pan-cancer level
(Supplementary Materials Figure S5G-I). CNAs are the most prevalent type of mutation
even in the genes with most mutations, such as FUT9 and UGGT2. Importantly, 26% of
the glycosylation factors show a significant association between being affected by large
genomic alterations and overall patient survival (Supplementary Materials Table S1). Thus,
disruption of glycosylation factors by large genomic alterations is frequent across several
cancer types, where some can be potential prognostic biomarkers of tumor progression.

Besides genetic alterations, cancer progression is also associated with large transcrip-
tome changes. Hence, similarly to the other regulators of gene expression, glycosylation
factors are also shown to be perturbed at the transcriptional level, particularly in colon,
lung, kidney and breast cancers from TCGA (Supplementary Materials Figure S5]). Notably,
a gene set enrichment analysis shows that glycosylation factors are predominantly upreg-
ulated in liver, breast, and lung cancers (Supplementary Materials Figure S5K). Indeed,
several glycosylation factors, namely ALGS, ALG3, COLGATLT1, B4GALT3 and DPM2,
show increased expression levels in these and other cancers (Figure 5B). In contrast, a
limited number of genes are predominantly downregulated throughout all cancer types,
such as ST6GALNAC6, ST6GALNAC3, GALNT16 and MANICI. Interestingly, such tran-
scriptome disruption appears to be driven at least in part by increased gene copy numbers,
as there is a small but significant correlation (R = 0.3, p = 4.9 x 1071°) between CNA preva-
lence and expression alterations for the same gene (Supplementary Materials Figure S5L).
Indeed, the genomic amplification of ALG3, BAGNT5, GPAA1, ST6GALNAC2, EXT1 leads to
overexpression in tumors, whereas deletions of PIGV, B3SGNT7, B3GAT1, FUCA1, MAN1C1
genes drives to downregulation. Thus, our analysis unveils that glycosylation factors are
disrupted in cancer by large genomic and transcriptomic alterations that may drastically
affect glycan make-up in tumor cells.
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Figure 5. Glycosylation Factors are dysregulated in cancer. (A) Oncoprint view of the 50 glycosylation
factors with highest frequency of genetic alterations (over all TCGA samples). (B) Heatmap represen-
tation of the transcriptome alterations (log2-fold change) between tumor and normal TCGA samples,
of the 40 glycosylation factors most frequently deregulated in the different tumor types (*: p < 0.05;
**: p <0.01; **: p < 0.001). ACC (adrenocortical carcinoma); BLCA (bladder urothelial carcinoma);
BRCA (breast invasive carcinoma); CESC (cervical squamous cell carcinoma and endocervical ade-
nocarcinoma); CHOL (cholangiocarcinoma); COAD (colon adenocarcinoma); DLBC (Lymphoid
Neoplasm Diffuse Large B-cell Lymphoma); ESCA (Esophageal carcinoma); GBM (Glioblastoma
multiforme); HNSC (head and neck squamous cell carcinoma); KICH (kidney Chromophobe); KIRC
(kidney renal clear cell carcinoma), KIRP (kidney renal papillary cell carcinoma); LAML (Acute
Myeloid Leukemia); LGG (Brain Lower-Grade Glioma); LIHC (liver hepatocellular carcinoma);
LUAD (lung adenocarcinoma); LUSC (lung squamous cell carcinoma), MESO (Mesothelioma);
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OV (Ovarian serous cystadenocarcinoma); PAAD (pancreatic adenocarcinoma); PCPG (pheochromo-
cytoma and Paraganglioma); PRAD (prostate adenocarcinoma); READ (rectum adenocarcinoma);
SARC (Sarcoma); SKCM (Skin Cutaneous Melanoma); STAD (Stomach adenocarcinoma); TGCT
(Testicular Germ Cell Tumors); THCA (thyroid carcinoma); THYM (Thymoma); UCEC (uterine
Corpus Endometrial Carcinoma); UCS (Uterine Carcinosarcoma); and UVM (Uveal Melanoma).

3.6. Glycosylation Machinery Is Associated with Changes in the Cellular Composition of Healthy
Tissues and Tumor Microenvironment

Cancer-associated changes in glycosylation may have an impact in cell-to-cell com-
munication, namely between tumor cells and the immune system. For example, B3GNT3-
mediated glycosylation of the immune checkpoint PD-L1 decreases the capacity of the
immune system to suppress tumor progression [53]. Consistently, our analysis unveiled
that B3SGNT3 amplification in tumors was associated with the worst patient survival
(Supplementary Materials Figure S6A). Thus, to deeply characterize the immune-cell pop-
ulations associated with glycosylation factor disruption in cancer, we explored cellular
compositions inferred by RNA-based deconvolution methods [37]. Combining cellular
compositions and gene expression levels within TCGA tumor samples, we depicted gly-
cosylation factors consistently associated with an increase of specific immune-cell types
across several cancer types (Figure 6A). The data showed that the presence of dendritic
and natural killer cells was associated with the alterations mostly in O-linked glycosylation
genes (e.g., B4GAT1, POMT1, POMT2, RXYLT1, TMTC1, FUT9, GALNT11, GALNT13). In
opposition, the presence of macrophages, B and T-cells is favored by alterations in different
glycosylation gene subclasses (e.g., ST8SIA4, DSE, MFNG, FUT7, MANIC1 and ST8SIAT).
Interestingly, the expression of sialyltransferases, particularly of the ST8SIA family, is most
often associated with changes in the frequencies of tumor-associated immune cell popula-
tions (Figure 6A). For example, in colorectal cancer, an increase in the expression of ST8SIA4,
ST3GAL6, ST6 GALNACS is associated with an increase in regulatory T cells and pro-tumoral
M2 macrophages (Figure 6B). In addition, a lasso regression analysis revealed that the
expression of ST8SIA4 and other glycosylation factors is positively correlated with pro-
tumoral M2 macrophages in various tumor types (Supplementary Materials Figure S6B).
Thus, our pan-cancer analysis suggests that disruption of glycosylation factors may lead to
specific immune modulation responses in the tumor microenvironment.

Given that glycosylation patterns may also influence the immune cell composition in
healthy tissues, we also combined gene expression levels and cellular composition within
GTEX tissues. The correlation analysis revealed several significant positive associations
between glycosylation factors levels and immune cell populations in healthy tissues, par-
ticularly with pro-inflammatory M1 macrophages (Supplementary Materials Figure S6C).
Interestingly, we identified a positive association between the DSE expression and
the relative frequency of M1 macrophages, both in normal (16 distinct GTEX tissues,
Supplementary Materials Figure S6C) and tumor tissues (five different TCGA tumor types,
Figure 6A). In fact, the DSE gene codifies an glycosaminoglycan isomerase, acting as a tumor-
rejection antigen and with the potential to stimulate anti-tumoral immunoreactivity [54].

Besides immune-system crosstalk, glycan structures also mediate cell-to-cell commu-
nication in the tumor microenvironment influencing tumor progression, where different
cancer cell subclones evolve and co-exist (designated as intra-tumor heterogeneity). Thus,
we combined the TCGA genomic profiles to infer the number of genetically distinct sub-
clones within each sample (see Materials and Methods). Our lasso regression analysis
depicted genomic and transcriptome alterations of several glycosylation factors associated
with intra-tumor heterogeneity levels across several cancer types (Figure 6C). Interestingly,
some molecular alterations showed the same recurrent outcome in several cancer types.
Namely, increased B3GNT4 expression was associated with subclonal expansion in at least
seven tumor types, while GALNT16 and GALNT17 levels appeared mostly associated with a
decrease in intra-tumor heterogeneity across five cancers. In summary, our analysis revealed that
specific alterations in the glycosylation machinery are associated with the presence of distinct
immune-cell populations in tumor/normal tissues, and also with tumor subclone diversity.
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Figure 6. Glycosylation Factors have prognostic value in cancer. (A) Heatmap representation of the

number of TCGA cancer types where there is a significant correlation (FDR < 0.05) between gene
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expression and frequencies of immune cell populations (obtained from TCIA). (B) Heatmap represen-
tation of Pearson correlation values between gene expression values of glycosylation factors and esti-
mated frequency of immune cell populations (from TCIA), in TCGA COAD samples (only significant—
p < 0.05—correlation values are displayed, and only top 30 genes with highest (anti)correlation are
displayed). (C) Heatmap representation of the significant coefficients for gene perturbation events
in a lasso-regression model correlating events with the number of genetic clones (estimated using
EXPANDS [41]) in TCGA samples. Red color indicates positive coefficients and blue color, negative
coefficients. Color intensity indicates value of the coefficient, with darker tones indicating higher
values for the coefficient. Numbers indicate relative importance of the event in the regression model.
Only cancers with an overall R > 0.3 for the model are displayed.

4. Discussion

Here, we used computational approaches and genome/transcriptome profiling to
deeply characterize the evolution and relevance of the glycosylation machinery in hu-
man health. Our study unveiled that glycosylation factors are an ancient and conserved
family of genes, with an apparent evolutionary pressure to keep a low number of copies,
particularly in GPI and N-linked glycosylation, with most glypiation genes being single
copies. Despite the low copy number, glycosylation factors also showed high tolerance
of loss-of-function mutations, suggesting that a single functional allele suffices for their
function or there is a functional compensation from paralogous genes. This is consistent
with the etiology of the congenital disorders of glycosylation (CDG), where most tend to
be autosomal recessive and enclose less than 100 cases [55]. Accordingly, CDG animal
models tend to be embryonic lethal, with the rare instances of viability resulting from
hypomorphic variants [56,57] Noteworthy, most genes associated with known CDG are
ubiquitously expressed in healthy human tissues, in line with the observation that most
CDGs display complex pleiotropic clinical phenotypes [47]. O-linked and lipid glycosy-
lation are exceptions to this evolutionary path, with a few gene families enclosing large
numbers of copies. Perhaps unsurprisingly, these genes display the greatest degree of
tissue-specificity expression, likely contributing to the formation of distinct glycosylation
patterns in tissues.

Our results support the existence of a tissue-specific glycosylation code established by
the coordinated expression of distinct glycosylation factors. Indeed, the gene expression
pattern of glycosylation factors enables the correct classification of different tissues, almost
similar to that of transcription and phosphorylation factors; already known to be essential
for tissue identity [58]. Within glycosylation factors, O-linked and lipid glycosylation
showed the highest ability to distinguish different tissues, suggesting an important role
for such specific post-translational modifications in tissue definition. Moreover, we un-
veiled that such specific patterns are phylogenetically conserved across mammals’ tissues,
reinforcing the existence of tissue-specific glycosylation code. Nevertheless, we acknowl-
edge that the transcriptome may only partially correlate with the activity of glycosylation
factors and effective changes in glycan profiles [59]. Despite vast progress in the field
of glycoproteomics, these technologies still do not afford a very detailed topology of the
glycostructures [1], making the link with gene expression even more complicated. To
our knowledge, there is no map of glycostructures simultaneously generated for several
human tissues that would enable us to systematically compare with expression data from
protein atlas or GTEX at a larger scale, and even less quantitatively. A study in zebrafish
has shown that the presence of tissue-specific glycosylation patterns such as sialylation
could be associated with gene expression of enzymes associated with sialylation [60]. A
recent study in the mammalian brain also observes a correlation between abundances
of some glycostructures and gene expression [61]. Finally, recent studies have simulta-
neously assess the presence of glycan structures and transcripts at the single-cell level,
combining scRNA-Seq with one [62] or several [63] lectin-bound DNA-barcodes covering
different type of glycosylated proteins. These technologies enabled establishing correlation
between gene expression and glycan structures as it is case of ST6Gall which showed
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the highest correlation with «2-65ia-binding lectin rPSL1a [63]. Yet, the accessibility and
resolution of these methods is still quite low. Regarding the different tissues, brain showed
the highest number of specific glycosylation factors, in agreement with neuromuscular
manifestations being the most frequently described clinical phenotypes derived from gly-
cosylation defects [47]. Recent studies show a very distinctive restricted glycosylation
repertoire in the brain, suggesting tight regulation [61,64]. In our analysis, we observed
several brain-specific GALNTs (GALNT13/15/17), in agreement with the observation of
the predominance of O-GalNAc structures in the brain [61]. Furthermore, we depicted
tissue-specific clusters of strongly correlated O-linked and lipid glycosylation factors in
stomach, intestine, and colon, providing further evidence of the potential importance
of these pathways in the digestive system. Indeed, O-glycosylation of intestinal mucins
are among the most well studied examples of the biological relevance of glycosylation,
where mucins play a fundamental role in host-microbiota interactions [65,66]. Therefore,
we unveiled tissue-specific clusters of co-expressed glycosylation factors, suggesting a
synergistic and/or independent role of different glycosylation pathways in the various
tissues. More strikingly, we could also detect in the esophagus two strongly antagonistic
clusters of glycosylation factors (mostly associated with O-linked and lipid glycosylation),
both sharing a common, mostly independent, core of N-linked glycosylation. One of these
clusters contain the LARGE1/B4GAT1 unit responsible for the glycosylation of dystrogly-
can [44], and several elements of the canonical and non-canonical O-linked glycosylation
pathway, including COLGALT1, POMT2, POFUT2, and POGLUT?2 [67]. The other clus-
ter contains several elements of the Golgi-associated O-linked glycosylation of mucins,
including several B3GNTs, GALNTs, and CIGALT1.

The existence of a tissue-specific glycosylation code reinforces the importance of this
post-translational modification process in tissue homeostasis throughout all developmen-
tal stages, including in adulthood. Ageing is among the factors most associated with
increased cellular dysfunction and emergence of morbidities [68]. In fact, alterations in
immunoglobin G glycosylation have been associated with age-related diseases such as
diabetes and hypertension [52]. Interestingly, a commercial test (GlycoAgeTest©) uses the
logarithm of the ratio of two N-glycans (NGA2F and NAZ2F) to infer the glycosylation
age of a person [69,70], similarly to the methylation clock [71]. Our exploration of tran-
scriptome profiles of GTEX project unveiled a significant down-regulation of the sialic
acid transporter SLC35A1 in blood samples from older people, in agreement with the
reported decrease of sialylation with age [68]. This profile also showed down-regulation of
the galactosyltransferase BBGALT4 and the sialyltransferase ST3GAL?2, suggesting a de-
crease in galactosylation and sialylation in O-glycan and GSL with age, yet to be identified.
Therefore, our results suggest a downregulation of the glycan structures, derived from
B3GALT4, ST3GAL2 and/or SLC35A1 genes, with ageing, a feature so far only described
in neurodegenerative diseases [72]. Moreover, we detected a significant increase in the
expression of the mannosidase MANIC1I gene in the ageing-skin, an alteration that has
also been reported in a previous study [73]. Interestingly, we also observed an increased
expression of several O-linked glycosylation factors in the arteries and adipose tissue of
old people, suggesting a role of this pathway in ageing-related alterations in these tissues.
Previous works have also shown that ageing is associated with a decreased expression of
several glycosylation factors in the brain [74]. Since most studies assessing ageing-related
changes in glycosylation use blood derivatives (plasma, serum, immunoglobulin fractions),
their applicability may be limited and overlook tissue-specific effects. Thus far, our findings
further indicate that age-associated changes in glycosylation are tissue-specific.

Alterations in the glycosylation machinery have been previously detected in can-
cer [17]. Our pan-cancer analysis of TCGA cohorts supports the idea that short variants
directly affecting gene function are not likely to be a major mechanism underlying defects in
glycosylation leading to cancer [67,75]. Instead, they suggest that copy number alterations
of glycosylation factors are quite pervasive across all cancer types, with a predominance
of genomic amplifications. These findings are consistent with previous global analysis
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showing that large genomic alterations are more recurrent in cancer than small genetic
alterations [76]. In addition, our analysis unveiled that such genomic alterations are re-
flected at the transcriptome level and may affect the glycan make-up in tumor cells. More
importantly, we can depict several genomic alterations of specific glycosylation factors as-
sociated with changes in patient survival, which can be potential biomarkers for prognosis.
In agreement, glycosyltransferases have been shown to be useful in the classification and
prognosis of certain cancers [77], where differences in the expression of sialyltransferases
seem to be among the most relevant to distinguish different cancer types. An increase in
sialylation has been reported in some tumor types, such as colorectal cancer [17,74].

Alteration in the glycosylation patterns of tumor cells plays a very important in the
modulation of immune responses to cancer and have been shown to be major factors in the
design of novel immunotherapies [78]. When we combined cancer transcriptome profiles
and estimates of immune-cell abundance (through RNA-based deconvolution approaches),
we observed a recurrent association between the expression levels of specific glycosylation
subclasses and the presence of dendritic, natural killer cells, macrophages, B and T-cells.
In fact, we detected an increase in the expression of sialylation genes and the presence
of regulatory T-cells and pro-tumoral M2 macrophages, in agreement with recent reports
linking sialylation to poorer cancer outcomes [18,79,80]. We could also detect a recurrent
association between changes in the gene expression of some glycosylation factors and
intra-tumoral heterogeneity, the relevance of which is yet to be determined.

In conclusion, through exploration of molecular profiles from healthy, ageing and
diseased tissues, we showed the potential of glycosylation factors in defining tissue identity
through a tissue-specific glycosylation code, analogous to transcription and phosphory-
lation. Moreover, our work unveiled that significant alterations in the gene expression
patterns of the glycosylation machinery occur in ageing-tissues, suggesting that cell-specific
glycoconjugate profiles may change throughout adulthood during the aging process. Fi-
nally, large copy number amplifications and corresponding changes in the expression of
glycosylation factors emerged as the main associators to cancer-related alterations.

Overall, this work provides a rich set of information, derived from multiple and
integrative sources, that will be useful for the glycosciences community in expanding the
knowledge on the function of glycosylation in human health.
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