
 

This is a postprint version of the following published document: 

García-Saavedra, Andrés, …et al. (2015). Adaptive Mechanism 
for Distributed Opportunistic Scheduling. IEEE Transactions 
on Wireless Communications, (2015), 14(6), pp.: 3494-3508. 

 

 

DOI: https://doi.org/10.1109/TWC.2015.2407367 

© 2015 IEEE. Personal use of this material is permitted. Permission from 
IEEE must be obtained for all other uses, in any current or future media, 
including reprinting/republishing this material for advertising or 
promotional purposes, creating new collective works, for resale or 
redistribution to servers or lists, or reuse of any copyrighted component 
of this work in other works. 
See https://www.ieee.org/publications/rights/index.html for more 
information. 

https://doi.org/10.1109/TWC.2015.2407367
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://www.ieee.org/publications/rights/index.html


IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, VOL. XX, NO. X, XXXXXXX XXXX 1

Adaptive Mechanism for
Distributed Opportunistic Scheduling

Andres Garcia-Saavedra, Albert Banchs, Pablo Serrano and Joerg Widmer

Abstract—Distributed Opportunistic Scheduling (DOS) tech-
niques have been recently proposed to improve the throughput
performance of wireless networks. With DOS, each station
contends for the channel with a certain access probability. If
a contention is successful, the station measures the channel
conditions and transmits in case the channel quality is above
a certain threshold. Otherwise, the station does not use the
transmission opportunity, allowing all stations to recontend. A
key challenge with DOS is to design a distributed algorithm that
optimally adjusts the access probability and the threshold of each
station. To address this challenge, in this paper we first compute
the configuration of these two parameters that jointly optimizes
throughput performance in terms of proportional fairness. Then,
we propose an adaptive algorithm based on control theory that
converges to the desired point of operation. Finally, we conduct a
control theoretic analysis of the algorithm to find a setting for its
parameters that provides a good tradeoff between stability and
speed of convergence. Simulation results validate the design of
our mechanism and confirm its advantages over previous works.

Index Terms—Contention-based channel access, distributed
opportunistic scheduling, control theory, wireless networks.

I. INTRODUCTION

COMMUNICATION over wireless channels faces two
main challenges inherent to the medium: interference

and fading. While the former has traditionally been tackled
at the MAC layer (for example through techniques such as
CSMA/CA and RTS/CTS), the latter has largely been con-
sidered as a physical layer problem (and is usually addressed
through proper selection of the transmission rate, i.e., channel
coding and modulation scheme). However, the physical layer
does not always hide fading effects from the MAC layer
[2], and using very conservative channel coding and modu-
lation schemes that may allow decoding during deep fades
wastes capacity. In contrast, opportunistic scheduling (e.g.,
[3], [4]) addresses the issue of channel quality variations by
preferentially scheduling transmissions of senders with good
instantaneous channel conditions. Exploiting knowledge of the
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channel conditions in this manner has been shown to lead
to substantial performance gains (e.g., Qualcomm’s IS-856).
While centralized opportunistic scheduling mechanisms rely
on a central entity with global knowledge of the radio condi-
tions of all stations, the more recent Distributed Opportunistic
Scheduling (DOS) techniques [5]–[9], also work in settings
where either such a central entity is not available (e.g., in
ad-hoc networks), or where the communication overhead to
provide timely updates of the channel conditions of all the
stations to the central entity is prohibitive (e.g., in case of
energy consumption constraints, limited bandwidth, or lack of
a control channel).

DOS lets stations contend for channel access and, upon
successful contention, a station uses its local information
about channel conditions to decide whether to transmit data
or give up the transmission opportunity. This decision is taken
based on a pure threshold policy, i.e., a station gives up its
transmission opportunity if the bit rate allowed by the channel
falls below a certain threshold. By giving up a transmission
opportunity and allowing recontention, it is likely that the
channel is taken by a station with better channel conditions,
resulting in a higher aggregate throughput. Furthermore, since
no coordination between stations is required, DOS protocols
are simpler to implement and have a lower control overhead
compared to centralized approaches.

The seminal work of [5] provides valuable insights and a
deeper understanding of DOS techniques and their perfor-
mance. Several works [6]–[9] extend the basic mechanism
of [5] to analyze the case of imperfect channel information
[7], improve channel estimation through two-level channel
probing [6], and incorporate delay constraints [8]. In turn, [9]
proposes the idea of effective observation points to avoid the
assumption of independent observations during the probing
phase used in [5]. A fundamental drawback of these works is
that they only aim to maximize total throughput, an objective
that may cause the starvation of those stations with poor
link conditions. Heterogeneous links are considered in [10]
and [11]. The authors of [10] study the asymptotic sum-
rate capacity of MIMO systems that exploit opportunism with
a threshold policy, including non-homogeneous users, which
requires some global information (like the number of links
contending in the network) and assume a Gaussian channel
model; in contrast, our approach relies on local information
only and does not take any assumption on the distribution
of the channel. The authors of [11] consider two types of
links which may have different QoS constraints but only
optimize the thresholds and do not consider non-saturated

0000–0000/00$00.00 c© 2015 IEEE



2 IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, VOL. XX, NO. X, XXXXXXX XXXX

stations, whereas we jointly optimize access probabilities and
thresholds and support different traffic loads.

The contributions of this paper are the following:
(i) While previous works only optimize the transmission

rate thresholds, we perform a joint optimization of both
the thresholds and the access probabilities. Our opti-
mization provides a proportionally fair allocation [12]
that achieves a good tradeoff between total throughput
and fairness in heterogeneous topologies. Although the
derivation of the optimal configuration follows similar
ideas as [13], here we use a different approximation
which helps us to remove dependencies on global infor-
mation without compromising performance.

(ii) The second contribution is the design of ADOS, a light
adaptive scheme based on control theory, that drives
the system to the optimal point of operation with the
following advantages:

– ADOS performs well in networks with non-saturated
stations.1 The analysis and design of previous ap-
proaches require the assumption that all stations are
always saturated, resulting in overly conservative
behavior under non-saturation conditions. In con-
trast, our approach adapts to the actual network
load instead of the number of stations, and hence
increases the network capacity when there are non-
saturated stations.

– ADOS adapts the configuration of the system to the
dynamics of the environment, such as mobility or
stations joining and leaving the network. In contrast,
all previous works (including [1]) assume static radio
conditions and therefore can only be applied in
scenarios with little or no mobility.

– ADOS only relies on information that can be ob-
served locally, in contrast to previous approaches
which need global information and hence require
substantial signaling.

(iii) The third contribution of the paper is the control theo-
retic analysis of the proposed mechanisms. This analysis
guarantees the convergence and stability of the mecha-
nism, and provides a configuration of its parameters that
achieves a good tradeoff between stability and speed of
convergence. Prior approaches [5]–[11] do not provide
these guarantees.

This paper extends very substantially the work we recently
presented in [1]. First, we design a new light algorithm to adapt
to changing radio conditions. Previous approaches, including
[1], require to re-compute the threshold with some periodicity
which can be computationally very costly (e.g., the iterative
algorithm proposed in [5], and used in [1], requires solving
definite integrals), which precludes a quick adaptation to
changes in the channel conditions. The proposed adaptive al-
gorithm is based on control theory, like the algorithm designed
in [1] to adjust the access probability. However, both the design
of the algorithm and its analysis are entirely novel, as the
conditions that determine the optimal point of operation (and

1A saturated station always has data ready for transmission while a non-
saturated station may at times have nothing to send.

hence the algorithm design to drive the system to this point)
as well as the system dynamics (and thus the control theoretic
analysis to guarantee an appropriate reaction to changing
conditions) are different from [1]. Second, we discuss the
implementability of ADOS using off-the-shelf devices in §VI.
Third, we significantly extend the performance evaluation of
the mechanism:
(i) In addition to comparing ADOS to the team-game ap-

proach (TDOS) proposed in [5], we also compare it
against the non-cooperative approach (NDOS) of [5] and
CSMA/CA, and show that it not only outperforms TDOS,
but it performs far better than NDOS and CSMA/CA.
This result is very relevant because ADOS, NDOS and
CSMA/CA use only local information whereas TDOS
requires global information (and thus involves substantial
signaling).

(ii) In addition to analyzing and validating the configuration
of the algorithm to adapt the thresholds to changing radio
conditions, we also compare its performance with the
algorithm we presented in [1] for a mobile scenario with
different speeds and number of stations.

(iii) We evaluate the proposed algorithm under different load
conditions and show that the gains obtained with the
proposed approach are even higher than those given in
[1] when the load of non-saturated stations is small.

(iv) We assess the performance of all the mechanisms in
the presence of channel estimation errors and show that
ADOS outperforms all other approaches in this case too.

The rest of the paper is organized as follows. §II presents the
analysis of our DOS system and optimizes its configuration in
terms of proportional fairness. §III proposes a novel adaptive
mechanism, Adaptive Distributed Opportunistic Scheduling
(ADOS), that drives the system to the configuration obtained
previously. ADOS is analyzed in §IV from a control theo-
retic standpoint to derive a configuration of the mechanism
that provides a good tradeoff between stability and reaction
to changes. Its performance is validated via simulations in
§V. §VI explains how to implement ADOS with commodity
devices. Finally, §VII concludes the paper.

II. DOS OPTIMAL CONFIGURATION

In the following, we compute the optimal configuration of
the access probabilities and transmission rate thresholds of a
DOS system for a proportionally fair throughput allocation,
which is a well known allocation criterion to provide a good
tradeoff between maximizing total throughput (which may be
unfairly distributed among stations) and a purely fair allocation
(that may waste capacity) [12]. While the analysis conducted
in this section assumes saturation conditions, the mechanism
that we devise in the next section also takes into account the
non-saturated case.

A. System Model

Similarly to [5]–[8], [13], we model our system as a single-
hop contention-based wireless network with N stations where
time is divided into mini slots of fixed duration τ . At the
beginning of each slot, station i contends for channel access
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Fig. 1. An example of the operation of the DOS protocol. The first
transmission opportunity is skipped due to a low available Ri(t) while the
second opportunity is used to transmit data due to good channel conditions.

with a given channel access probability, pi. A slot can be
empty if none of the stations attempt to access the channel.
If N > 1 stations access the channel in the same slot, a
collision occurs and the channel is freed for the next slot.
There is a successful contention if only one station accesses
the medium, which then probes the channel. After this channel
probing (which we assume takes one slot), the station has
perfect knowledge of the instantaneous link conditions which
can be mapped into a reliable transmission bit rate Ri(t) at
time t. If the available rate is below a given threshold R̄i,
station i gives up its transmission opportunity and frees up
the channel for re-contention. Otherwise, the station transmits
data for a fixed duration of time T . We illustrate the operation
of DOS in Fig. 1.

Our model, like that of [5]–[8], [13], assumes that Ri(t)
remains constant for the duration of a data transmission and
that different observations of Ri(t) are independent.2 From
[5], we have that the optimal transmission policy is a threshold
policy: given a threshold R̄i, station i only transmits after a
successful contention if Ri(t) ≥ R̄i.

With the above model, stations’ throughputs are a function
of the access probabilities, p = {p1, . . . , pN}, and the trans-
mission rate thresholds, R̄ = {R̄1, . . . , R̄N}. Given that a
proportionally-fair allocation maximizes

∑
i log ri [12], where

ri is the throughput of station i, we define our problem as the
following unconstrained optimization problem:

max
R̄,p

∑
i

log ri (1)

B. Optimal pi configuration

We start by computing the optimal configuration of the p
parameters. The analysis to compute these parameters follows
that of [13], but it relies on different approximations, which
are needed for the adaptive mechanism design that we present
in §III. To compute the optimal pi configuration, we start by
expressing the throughput ri as a function of p. Let li be
the average number of bits that station i transmits upon a
successful contention and Ti be the average time it holds the
channel. Then, the throughput of station i is

ri =
ps,ili∑

j ps,jTj + (1− ps)τ
(2)

where ps,i = pi
∏
j 6=i (1− pj) is the probability that a mini

slot contains a successful contention of station i and ps is the

2The assumption that Ri(t) remains constant during a transmission is a
standard assumption for the block-fading channel in wireless communications
[14], while the assumption of independent observations is justified in [5]
through numerical calculations.

probability that it contains any successful contention, ps =∑
i ps,i.
Both li and Ti depend on R̄i. Upon a successful contention,

a station holds the channel for a time T +τ in case it transmits
data and τ in case it gives up the transmission opportunity. In
case the station uses the transmission opportunity, it transmits
a number of bits given by Ri(t)T . Thus, Ti and li can be
computed as Ti = Prob(Ri(t) < R̄i)τ + Prob(Ri(t) ≥
R̄i)(T + τ) and li =

∫∞
R̄i
rT fRi(r)dr where fRi(r) is the

pdf of Ri(t). Similarly as in [13], let us define wi as

wi =
ps,i
ps,1

(3)

where we take station 1 as reference. From the above equation,
we have that ps,i = wips/

∑
j wj ; substituting this into (2)

yields

ri =
wipsli∑

j wjpsTj +
∑
j wj(1− ps)τ

In a slotted wireless system such as the one of this paper,
the optimal access probabilities satisfy

∑
i pi = 1 (see [15]),

which results in the following optimal success probability ps:

ps =
∑
i

pi
∏
j 6=i

1− pj ≈
∑
i

pie
−

∑
j pj = e−1 (4)

With the above, the problem of finding the p config-
uration that maximizes the proportionally fair rate alloca-
tion is thus equivalent to finding the wi values that max-
imize

∑
i log(ri), given that ps = 1/e. To obtain these

wi values, we impose ∂
∑

i log(ri)

∂wi
= 0 which yields 1

wi
−

N psTi+(1−ps)τ∑
i wipsTi+

∑
j wj(1−ps)τ = 0. Combining this expression for

wi and wj , we obtain

wi
wj

=
psTj + (1− ps)τ
psTi + (1− ps)τ

Under the assumption of small pi’s (the case of interest to
exploit multiuser diversity with an opportunistic scheduler),
1 − pi ≈ 1, and thus (1 − pi)/(1 − pj) ≈ 1, which leads to
wi/wj ≈ pi/pj . Moreover, given that ps = 1/e, the above
can be rewritten as

pi
pj

=
Tj + (e− 1)τ

Ti + (e− 1)τ
(5)

Furthermore, the probability that a given mini slot is empty
can be computed as follows,

pe =
∏
i

1− pi ≈ e−
∑

i pi = e−1 (6)

We use a different approximation than [13]’s in order to
remove any dependency on the number of stations, a result that
we will exploit to design an algorithm that works well under
non-saturation conditions too. Our simulation results show a
very small performance impact for using this approximation
instead, practically negligible for scenarios with N > 4
stations.

With the above, we solve the optimization problem by
finding the p values that solve the system of equations formed
by (5) and (6). The uniqueness of the solution of this system of
equations can be proved as follows. Without loss of generality,
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let us take the access probability of station 1, p1, as reference.
From (5) we have that pi for i 6= 1 can be expressed as a
continuous and monotone increasing function of p1. Applying
this to (6), we have that the term (

∏
i 1− pi) is a continuous

and monotone decreasing function of p1 that starts at 1 and
decreases to 0, while the right hand side is the constant value
1/e. From this, it follows that there is a unique value of
p1 that satisfies this equation. Taking the resulting p1 and
computing pi ∀i 6= 1 from (5), we have a solution to the
system. Uniqueness of the solution is given by the fact that
all relationships are bijective and any solution must satisfy (6),
which (as we have shown) has only one solution.

Hereafter, we denote the unique solution to the system
of equations by p∗ = {p∗1, . . . , p∗N}. Note that determining
p∗ requires computing Ti ∀i, which depend on the optimal
configuration of the thresholds R̄. In the following section we
address the computation of the optimal R̄, which we denote
by R̄∗ = {R̄∗1, . . . , R̄∗N}.

C. Optimal R̄i configuration

In order to obtain the optimal configuration of R̄, we need to
find the transmission rate threshold of each station that, given
the p∗ computed above, optimizes the overall performance in
terms of proportional fairness.

To this aim, we rely on Theorem 1 in [13] to find that the
optimal configuration of the transmission rate thresholds is
given by R̄∗k = R̄1

k, where R̄1
k is the transmission rate threshold

that optimizes the throughput of station k when it is alone in
the channel and contends with pk = 1/e (under the assumption
that different channel observations are independent). This is
done in [5], which uses optimal stopping theory and finds that
the optimal threshold can be obtained by solving the following
fixed point equation:

E
[
Ri(t)− R̄∗i

]+
=
R̄∗i τ

T /e
(7)

Note that the above allows computing the threshold R̄∗i of
a station based on local information only, as (7) does not
depend on the other stations in the network and their radio
conditions; in particular, the optimal threshold configuration
is independent of the access probabilities p. This is crucial
to decouple the algorithm that adjusts the configuration of
R̄ from the one that adjusts p, as it allows to design (i)
one algorithm to drive the threshold of each station R̄i to
its optimal value R̄∗i , which is independent of the access
probabilities, and (ii) another algorithm to drive the access
probabilities pi to their optimal values p∗i , which takes the R̄i
values computed by the first algorithm as constants. Thus, in
the following we present two independent adaptive algorithms
to bring the system to the optimal point of operation, one for
the access probabilities p and the other for the thresholds R̄.

III. ADOS MECHANISM

In this section, we present the ADOS mechanism, which
consists of two independent adaptive algorithms. The first
algorithm determines the access probability used by a station,
pi, adjusting the value when the number of active stations

in the network or their sending behavior change. The second
algorithm determines the transmission rate threshold of a
station, R̄i, adapting its value to the changing radio conditions
of the station. Both algorithms together aim to drive the system
to the optimal point of operation. One of the key features of
these algorithms is that they do not require to know the number
of stations in the network, and they do not need to keep track
of the behavior of the other stations or their channel conditions.

A. Non-saturation conditions

The optimal configuration {p∗, R̄∗} obtained in the pre-
vious section corresponds to the case where all stations are
saturated. We next discuss how to consider the case when
some of the stations are not saturated. As we explained above,
when all the stations are saturated, the optimal channel empty
probability pe takes a constant value equal to 1/e, independent
of the number of stations. The first key approximation is to
assume that this also holds when some of the stations are
not saturated. The rationale behind this assumption is that the
impact of the aggregated load of several non-saturated stations
is similar to the impact of a smaller number of saturated
stations. Given that, as we show in §II, the optimal pe does
not depend on the number of stations in saturated conditions,
we can assume that pe = 1/e when there are non-saturated
stations too.

We have also seen in the previous section that, under
saturation, the optimal transmission rate thresholds are con-
stant values that only depend on the local radio conditions.
The second key approximation is to assume that the optimal
transmission rate thresholds take the same constant values
under non-saturation. The rationale is as follows. Proposition
3.1 in [5] shows that, additionally to the local radio conditions,
the optimal threshold also depends on the number of slots K
prior to a successful channel access. As the mechanism we
describe below drives the system to a point of operation where
E[K] = 1/ps = e even if there are non-saturated stations, we
can assume that the optimal threshold in this case is the one
given by (7) for saturated stations.

We next present the design of the algorithms to adjust pi and
R̄i that consider both saturation and non-saturation conditions
following the two approximations exposed above.

B. Adaptive algorithm for pi
Following the first approximation above, with ADOS each

station implements an adaptive algorithm to configure the

Fp(z)
ÊpEp+

Rp

wireless
network

Fp(z)
ÊpEp+

Rp

Op

t1

+

Wp

+

+

+

+

-

-

...

1/x
p1

tN
1/x

pN

Cp,1(z)

Cp,N(z)

Fig. 2. Adaptive algorithm for pi.
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access probability pi, with the goal of driving the channel
empty probability to 1/e, as given by (4).

Driving the channel empty probability toward a constant
optimum value fits well with the framework of classic control
theory. With these techniques, we measure the output signal
of the system and, by judiciously adjusting the control signal,
we aim at driving it to the reference signal. A key advantage
of using such techniques is that they provide the means for
achieving a good tradeoff between the speed of reaction and
stability while guaranteeing convergence, which is a major
challenge when designing adaptive algorithms.

Fig. 2 depicts our algorithm to adjust p, where each station
computes the error signal Ep by subtracting the output signal
Op from the reference signal Rp (the functions in the figure
are given in the z domain). The output signal Op is combined
with a noise component Wp of zero mean, modeling the
randomness of the channel access algorithm. In order to
eliminate this noise, we follow the design guidelines from
[16] and introduce a low-pass filter Fp(z). The filtered error
signal Êp is then fed into the controller Cp,i(z) of each station,
which provides the control signal ti, defined as the average
time between two transmission of station i. Station i then
computes its access probability as pi = 1/ti. With the pi of
each station, the wireless network provides the output signal
Op, which closes the loop.

In the above system, we need to design the reference and
output signals Rp and Op, as well as the transfer functions of
the low-pass filter and the controller, Fp(z) and Cp,i(z). We
address next their design with the goal of ensuring that the
empty probability pe is driven to 1/e.

In our system, time is divided into intervals such that the end
of an interval corresponds to a transmission (either a success
or a collision). Given that the target empty probability is equal
to 1/e, the target average number of empty mini slots between
two transmissions (i.e., our reference signal) is equal to Rp =
1/(e−1). In this way, after the n-th transmission, each station
computes the output signal at interval n, denoted by Op(n),
as the number of empty mini slots between the (n−1)-th and
the n-th transmission. The error signal for the next interval is
computed as

Ep(n+ 1) = Rp −Op(n). (8)

With the above, if pe is too large then Op(n) will be larger
than Rp in average, yielding a negative error signal Ep(n+1)
that will decrease ti for the next interval, which will increase
the transmission probability pi and therefore reduce pe (and
vice-versa). This ensures that pe will be driven to the optimal
value.

For the low-pass filter Fp(z), we use a simple exponential
smoothing algorithm of parameter αp [17], given by the
following expression in the time domain, Êp(n) = αpEp(n)+
(1 − αp)Êp(n − 1), which corresponds to the following
transfer function in the z domain: Fp(z) =

αp

1−(1−αp)z−1 .
For the transfer function of the controllers Cp,i(z), we use
a simple controller from classical control theory, namely the
Proportional Controller [18], which has already been used
in a number of networking problems (e.g. [19], [20]), i.e.,
Cp,i(z) = Kp,i, where Kp,i is a per-station constant.

wireless
network

FR(z)
ÊRER+

OR
+

WR

+

+

-

+ RiCR(z) +
+
Ri

-
( )+

x

t/(t )/e

Fig. 3. Adaptive algorithm for R̄i.

In addition to driving the empty probability to 1/e, we also
impose that the access probabilities satisfy (5). Since we feed
the same error into all stations, and the proportional controller
simply multiplies this error by a constant to compute pi, the
following equation holds for all i, j:

pi
pj

=
Kp,j

Kp,i

Therefore, by simply setting Kp,i as

Kp,i = Kp (Ti + (e− 1)τ) ,

we ensure that (5) is satisfied.

C. Adaptive algorithm for R̄i
Following the second approximation of §III-A, the adaptive

algorithm of ADOS to adjust the threshold R̄i aims to drive
the threshold of all (saturated and non-saturated) stations to
the optimal value given by (7). Note that (7) is equivalent to
the following equation:

E

[
(Ri(t)− R̄∗i )+ − R̄∗i τ

T /e

]
= 0 (9)

In the following, we design an adaptive algorithm that drives
R̄i to the value given by the above equation. The algorithm
is depicted in Fig. 3. Similarly to the adaptive algorithm for
pi, we base the algorithm design on control theory. The key
difference between the two algorithms is that, since the optimal
value of the threshold of a station depends on local information
only and hence does not depend on the threshold value of
the other stations, we can consider each station separately (in
contrast to Fig. 2).

In order to ensure that the configuration of R̄i satisfies (9),
we design the output signal of the algorithm, OR, equal to the
term (Ri − R̄i)+, and the reference signal, RR, equal to the
term R̄iτ/(T /e). Thus, by driving the difference with these
two terms (i.e., the error signal) to zero, we ensure that (9) is
satisfied.

Following the above, upon its nth successful contention,
a station measures the channel transmission rate Ri(n) and
computes the output signal as

OR(n) =

{
Ri(n)− R̄i(n), if Ri(n) >= R̄i(n)

0, otherwise

From the above output signal, it then computes the error
signal as

ER(n+ 1) = OR(n)− R̄i(n)τ

T /e
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Due to the randomness of the radio signal, the output signal
carries some noise WR. In order to filter out this noise, we
apply (like in the previous case) a low pass-filter FR(z) on
the error signal, which yields ÊR(n) = αRE(n) + (1 −
αR)ÊR(n−1). Also like in the previous case, the error signal
is introduced into a proportional controller, CR(z) = KR,
where KR is the constant of the controller.

The controller gives the threshold configuration R̄i(n) as
output. As mentioned above, by driving the error signal ÊR(n)
to 0, the controller ensures the threshold value satisfies (9)
and thus achieves the objective of adjusting the treshold to
the optimal value R̄∗i obtained in §II.

IV. CONTROL THEORETIC ANALYSIS

With the above, we have all the components of the ADOS
mechanism fully designed. The remaining challenge is the
setting of its parameters, namely the parameters of the adaptive
algorithm for pi (Kp and αp) and the adaptive algorithm for R̄i
(KR and αR). In this section, we conduct a control theoretic
analysis of the algorithms to find a suitable parameter setting.

As discussed in §II, the setting of the optimal threshold
R̄∗i does not depend on the configuration of p. Based on
this, we analyze the closed-loop behavior of the two adaptive
algorithms independently. For the adaptive algorithm to adjust
R̄i, the behavior is independent of the p configuration. For
the algorithm to adjust pi, we consider that the values of R̄
are fixed, as their configuration depends only on the radio
conditions, and analyze the convergence of pi to the optimal
configuration corresponding to these R̄ values.

In the following, we first analyze the adaptive algorithm
to adjust pi and then we analyze the one to adjust R̄i;
these analyses provide good values for the parameters of the
respective algorithms.

A. Analysis of the algorithm for pi
We next conduct a control theoretic analysis of the closed-

loop system of the algorithm for pi to find good values for the
parameters Kp and αp. Fig. 4 depicts the closed-loop system
for this algorithm. Note that the term z−1 in the figure shows
that the error signal E at a given interval is computed with
the output signal O of the previous interval.

In order to analyze this system from a control theoretic
standpoint, we need to characterize the transfer function Hp,i,
which takes ti as input and gives Op as output. The follow-
ing equation gives a nonlinear relationship between Op and
{t1, . . . , tN}:

Op =
1

1− pe
− 1

where pe =
∏
j (1− 1/tj).

To express the above relationship as a transfer function, we
linearize it when the system suffers small perturbations around
its stable point of operation. Then, we study the linearized
model and force that it is stable. Note that the stability of the
linearized model guarantees that our system is locally stable.3

3We assess stability from a control theory standpoint (a similar approach
was used in [21] to analyze RED), in contrast to other analyses of schedulers
such as [22] which look at the stability of the system queues from a queuing
theory perspective.

Fp(z) Cp,i(z) Hp,i(z)

z-1

d
+

Ep dÊp d ti dOp

dWp

Fig. 4. Closed-loop system of the adaptive algorithm for pi.

We express the perturbations around the stable point of
operation as follows:

ti = t∗i + ∆ti

where t∗i = 1/p∗i is the stable point of operation of ti, and
∆ti are the perturbations around this point of operation.

With the above, the perturbations suffered by Op can be
approximated by ∆Op =

∑
j
∂Op

∂tj
∆tj where

∂Op
∂tj

=
∂Op
∂pj

∂pj
∂tj

=
pe p

2
j

(1− pj)(1− pe)2
.

Given that ti/tj = (Ti + (e − 1)τ)/(Tj + (e − 1)τ), the
above can be rewritten as

∆Op =

∑
j

(Tj + (e− 1)τ)pe p
2
j

(Ti + (e− 1)τ)(1− pj)(1− pe)2

∆ti

With the above, we have characterized Hp,i:

Hp,i =
∑
j

(Tj + (e− 1)τ)pe p
2
j

(Ti + (e− 1)τ)(1− pj)(1− pe)2

The closed-loop transfer function for station i is then given
by

Tp,i(z) =
−z−1Cp,i(z)Fp(z)Hp,i(z)

1 + z−1Cp,i(z)Fp(z)Hp,i(z)

Substituting the expressions for Fp(z), Cp,i(z) and Hp,i(z)
yields

Tp,i(z) =
−αpHp,iKp,i

z − (1− αp − αpKp,iHp,i)
(10)

To guarantee stability, we need to ensure that the zero of
the denominator of Tp,i(z) falls inside the unit circle |z| < 1
[23], which implies

Kp <
2− αp
αp

1∑
j

(Tj+(e−1)τ)pe p2j
(1−pj)(1−pe)2

The problem with the above upper bound is that it depends
on the number of stations and their channel conditions. In
order to assure stability, we need to obtain an upper bound that
guarantees stability independent of these parameters. To do
this, we observe that the right hand side of the above inequality
takes a minimum value when N = 1 and T1 = τ + T .
Therefore, by setting Kp as follows, we guarantee that the
above inequality will be met independent of the number of
stations and their channel conditions:

Kp < Kmax
p =

2− αp
αp (T + eτ)

In order to set Kp to a value that provides a good tradeoff
between the speed of reaction to changes and stability, we
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follow the Ziegler-Nichols rules [18], which are widely used
to configure proportional controllers. According to these rules,
this parameter cannot be larger than one half of the maximum
value that guarantees stability, which we denote by Kstability

p :

Kp ≤ Kstability
p =

Kmax
p

2
(11)

In addition to the above, Kp also needs to be set to
eliminate the noise from the system. Noise is generated by the
randomness of the output signal, which is given by the number
of empty mini slots between two transmissions and hence
follows a geometric random variable of factor 1−pe = 1−1/e.
Hence, the noise at the input of the low-pass filter has a zero
mean and a variance given by:

E[W 2
p ] =

pe
(1− pe)2

=
1/e

(1− 1/e)2

The noise at the output of the controller can be obtained
from the noise at the input of the low-pass filter with the
following transfer function:

TWp(z) =
−z−1Cp,i(z)Fp(z)

1 + z−1Cp,i(z)Fp(z)Hp,i(z)

Substituting Cp,i(z), Fp(z) and Hp,i(z) into the above
yields

TWp
(z) =

−z−1αpKp,i

1− z−1(1− αp(1 +Kp,iHp,i))

With the above transfer function, we can compute the
variance of the noise at the output of the controller, denoted
by Wp,c, as follows:

E[W 2
p,c] =

α2
pK

2
p,i

1− (1− αp(1 +Kp,iHp,i))2
E[W 2

p ]

From the above equation, and taking into account from (10)
and (11) that αp(1 +Kp,iHp,i) ≤ 1 +αp/2 we can obtain the
following upper bound for E[W 2

p,c]:

E[W 2
p,c] ≤

αpKp,i

(1− αp/2)Hp,i
E[W 2

p ]

To limit the impact of the noise, we impose a gain factor of
at least Gp of the signal level at the output of the controller,
E[S2

p ], over the noise level at the same point, E[W 2
p,c]:

E[S2
p ]

E[W 2
p,c]
≥ Gp

The signal at the output of the controller is equal to ti,
which yields E[S2

p ] = t2i . Combining this with the inequality
of (12), we have that the following condition is sufficient to
provide the desired gain:

t2i (1− αp/2)Hp,i

αpKp,iE[W 2
p ]
≥ Gp

Isolating Kp from the above yields

Kp ≤
t2i (1− αp/2)

GpαpE[W 2
p ]

∑
j

(Tj + (e− 1)τ)pe p
2
j

(Ti + (e− 1)τ)2(1− pj)(1− pe)2

FR(z) CR(z) HR(z)

z-1

d
+

ER dÊR dRi dOR

dWR

Fig. 5. Closed-loop system of the adaptive algorithm for R̄i.

which is satisfied as long as the following condition holds,

Kp ≤
1− αp/2
Gpαp

∑
j

Tj + (e− 1)τ

(Ti + (e− 1)τ)2

To find an upper bound that is independent of the number
of stations and their conditions, we observe that the right hand
side of the above inequality takes a minimum for N = 1 and
T1 = τ +T , which leads to the following upper bound, which
we denote by Knoise

p ,

Kp ≤ Knoise
p =

1− αp/2
Gpαp (T + eτ)

The analysis conducted in this section has given two upper
bounds, Kstability

p and Knoise
p , which guarantee that on the

one hand the system is stable and on the other hand the noise
level is not excessive. As these bounds depend on αp and
Gp, we also need to find a setting for these parameters. In
order to provide a good level of protection against noise,
Gp needs to be sufficiently large. Additionally, in order to
allow sufficiently large Kp,i values, which is needed to avoid
a large steady state error at the input of the controllers, Gp αp
needs to be sufficiently small. Following these considerations,
we set Gp = 102 and αp = 10−4. With αp = 10−4 we
aim to mitigate the effect of the noise sufficiently, without
compromising the speed of reaction to changes (i.e., in the
order of magnitude of 1000 samples). With Gp = 102 we set
an upper bound to the noise power, i.e., we enforce a gain of
the output signal of the controllers which is 100 times larger
than the noise. With these αp and Gp values, we then configure
Kp as follows:

Kp = min(Knoise
p ,Kstability

p )

which ensures that the two objectives concerning stability and
noise are met.

B. Analysis of the algorithm for R̄i
We next conduct a control theoretic analysis of the closed-

loop system of the algorithm for R̄i, depicted in Fig. 5. This
analysis follows the same steps as the one above.

The perturbations around the point of equilibrium can be
expressed as R̄i = R̄∗i + ∆R̄i and the perturbations suffered
by ER can be approximated by ∆ER = HR ·∆R̄i where

HR =
∂ER
∂R̄i

=
∂

∂R̄i

(
(Ri − R̄i)+ − R̄iτ

T /e

)
=
∂(Ri − R̄i)+

∂R̄i
− τ

T /e

To compute ∂(Ri − R̄i)+/∂R̄i, we note that (Ri − R̄i)+

expresses an average value, as the variations around this
average value are captured by another component, namely
the noise WR. For the calculation of the average, we take
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all possible Ri values weighted by Ri’s pdf, fRi
(r), which

yields

∂(Ri − R̄i)+

∂R̄i
=

∂

∂R̄i

∫ ∞
R̄i

(r − R̄i)fRi
(r)dr = −

∫ ∞
R̄i

fRi
(r)dr

With the above, HR can be expressed as HR = −HR,1 −
HR,2, where HR,1 = eτ/T and 0 ≤ HR,2 ≤ 1.

The closed-loop transfer function of the system is given by

TR(z) =
CR(z)FR(z)HR(z)

1− z−1CR(z)FR(z)HR(z)

where

FR(z) =
αR

1− (1− αR)z−1
, CR(z) = KR.

Substituting the expressions for FR(z), CR(z) and HR(z)
yields

TR(z) =
−αRKR(HR,1 +HR,2)

1− z−1(1− αR −KRαR(HR,1 +HR,2))

To guarantee stability, we need to ensure that the zero of
the denominator of TR(z) falls inside the unit circle |z| < 1,
which implies

KR <
2− αR

αR(HR,1 +HR,2)

In order to find a sufficient condition that holds for all cases,
we consider the worst case HR,2 = 1, which leads to

KR <
2− αR

αR(1 + eτ/T )

According to Ziegler-Nichols rules, to guarantee stability
we take a KR value equal to half of the above value,

Kstability
R =

2− αR
2αR(1 + eτ/T )

The noise introduced into the system, WR, is given by the
randomness in the transmission rate values Ri. If we assume
that the available transmission rate for a given SNR is given
by the Shannon channel capacity, then Ri = C log(1+ρ|h|2),
where C is a constant parameter, ρ|h|2 is the SNR and h is
the normalized random gain of the channel (E[h] = 1). Note
that the values of Ri below R̄i are eliminated from the system
by the module that performs the operation (Ri− R̄i)+, which
reduces the noise in the system. In what follows, we do not
consider this effect in order to obtain an upper bound on the
noise, which provides a worst case analysis.

If we represent the SNR as the sum of its average value (ρ)
plus some noise of zero mean (which we denote by Wh), then
we can express the transmission rates Ri as Ri = C log(1 +
ρ + Wh) which we can approximate at the stable point of
operation (Wh = 0) by

Ri ≈ C log(1 + ρ) +Wh
∂Ri
∂Wh

∣∣∣∣
Wh=0

Since the noise introduced into the system is given by the
variations of Ri around its average value, from the above we
have that we can approximate WR by

WR ≈Wh
∂Ri
∂Wh

∣∣∣∣
Wh=0

=
C

1 + ρ
Wh

With the above approximation, we can compute the variance
of WR as follows,

E[W 2
R] =

C2

(1 + ρ)2
E[W 2

h ]

If we assume that the channel follows a Rayleigh fading
model, then ρ|h|2 corresponds to an exponential random
variable of rate ρ−1. With this, we have that E[W 2

h ] = ρ2,
which yields E[W 2

R] = C2ρ2

(1+ρ)2 .
If we denote the noise at the output of the controller by

WR,c, we have

WR,c(z) =
FR(z)CR(z)

1− z−1FR(z)CR(z)HR(z)
WR(z)

from which

WRc(z) =
αRKR

1− z−1(1− αR −KRαR(HR,1 +HR,2))
WR(z)

From the above, the variance of the noise at the output of
the controller can be computed as

E[W 2
R,c] =

(αRKR)2

1− (1− αR(1 +KR(HR,1 +HR,2)))2
E[W 2

R]

Given that KR ≤ Kstability
R , we can obtain the following

upper bound on E[W 2
R,c]:

E[W 2
R,c] ≤

αRKR

(HR,1 +HR,2)(1− αR/2)
E[W 2

R] (12)

In order to guarantee a gain of GR of the signal over the
noise at the output of the controller, we impose

E[S2
R]

E[W 2
R,c]
≥ GR (13)

where the signal is the threshold R̄i, which we approximate by
the average transmission rate, C log(1 + ρ). With this and the
upper bound of (12) for E[W 2

R,c], we can obtain the following
sufficient condition to guarantee (13):(

log(1 + ρ)(1 + ρ)

ρ

)2
(HR,1 +HR,2)(1− αR/2)

αRKR
≥ GR

Isolating KR from the above yields

KR ≤
(

log(1 + ρ)(1 + ρ)

ρ

)2
(HR,1 +HR,2)(1− αR/2)

αRGR

In order to find a value of KR that ensures the desired gain
for all scenarios, we chose the ρ value that minimizes the right
hand side of the above equation and take the worst case value
for HR,1, which leads to the following upper bound on KR,
which we denote by Knoise

R ,

KR ≤ Knoise
R =

eτ(1− αR/2)

T αRGR
Following the rationale of §IV-A, we set GR = 102 and

αR = 10−4 and choose KR = min(Knoise
R ,Kstability

R ), which
ensures that the two goals in terms of noise and stability are
met.
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Fig. 6. Homogeneous scenario with N saturated stations.

V. PERFORMANCE EVALUATION

In this section, we present a performance evaluation of
ADOS by means of simulations. Unless otherwise stated, we
assume that different observations of the channel conditions
are independent and that the available transmission rate for
a given SNR is given by the Shannon channel capacity:
R(h) = B log2(1 + ρ|h|2) bits/s, where B is the channel
bandwidth in Hz, ρ is the normalized average SNR and h is
the random gain of Rayleigh fading. Unless otherwise stated,
we set T /τ = 10 and ρ = 1, i.e., the same values used in [5].
We also set B = 107 and run enough simulations to obtain
95% confidence intervals below 1%.

A. Homogeneous scenario

1) Saturated stations: We start by considering a homoge-
neous scenario where all stations are saturated and have the
same normalized average SNR (ρi = 1 ∀i). We compare the
performance of ADOS to the following approaches:
(i) The static optimal configuration obtained from perform-

ing an exhaustive search over the {pi, R̄i} space and
choosing the best configuration (‘static configuration’).

(ii) An approach that, although it probes the channel too
(to avoid long collisions), it never skips a transmission
opportunity regardless of the estimated link quality (‘non-
opportunistic’).

(iii) A CSMA/CA protocol which does not skip any trans-
mission opportunity but it does not probe the channel so
collisions last for the duration of a frame.

(iv) The team game approach proposed in [5] (TDOS). This
approach requires that each station knows the channel
state of all the stations in the network, and hence incurs
substantial signaling overhead. In the simulations we
assume that this overhead is non-existent.

(v) The non-cooperative approach of [5] (NDOS). This ap-
proach, like ours, only needs information that can be ob-
served locally, and hence does not involve any signaling.4

Fig. 6 shows the total throughput as a function of the number
of stations in the network. The figure confirms that ADOS
is effective in driving the system to the optimal point of
operation, providing the same throughput as the benchmark
given by the ‘static configuration’. The TDOS and NDOS

4Since [5] only optimizes the rate thresholds but not the access probabilities,
we take the pi’s used in the simulations of [5] for TDOS and NDOS. For ‘non-
opportunistic’, we choose the access probabilities that maximize performance.
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Fig. 7. Homogeneous scenario with N − 1 stations with medium load.
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Fig. 8. Homogeneous scenario with N − 1 stations with low load.

approaches provide lower throughput as they only optimize
the transmission rate thresholds; among them, NDOS performs
substantially worse as it has less information. Finally, the ‘non-
opportunistic’ and the CSMA/CA approaches provide the low-
est throughput due to the lack of opportunistic scheduling. In
conclusion, the proposed ADOS mechanism provides optimal
throughput performance, outperforming the other approaches.

2) Non-saturated stations: We now assess the performance
in the presence of non-saturation stations (that do not always
have data ready for transmission). We first consider a scenario
with homogeneous radio conditions (ρi = 1 ∀i) with one
saturated station and N−1 non-saturated stations. Figs. 7 and
8 illustrate the total throughput of the network as a function
of the number of stations, when the non-saturated stations
transmit at one half and one tenth of their saturation throughput
(i.e., the throughput they would obtain if they were saturated).
We observe that ADOS significantly outperforms all other
approaches and that this effect becomes more accentuated as
the throughput of the non-saturated stations decreases. The
reason is that the other approaches assume that all stations are
always saturated, and thus the access probabilities they use
become overly conservative for the non-saturated case.

B. Heterogeneous scenario

In the case of heterogeneous channel conditions, perfor-
mance does not only depend on the total throughput but also
on the way this throughput is shared among the stations. To
analyze performance in this scenario, we consider N = 20
saturated stations divided into four groups according to their
channel conditions. The normalized SNR of the stations from
group i is given by ρi = 1 + (i− 1)∆ρ, with i ∈ {1, 2, 3, 4}.
Fig. 9 shows

∑
i log(ri), the figure of merit for proportional
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Fig. 9. Heterogeneous scenario.
∑

i log(ri) as a function of ∆ρ.

fairness, as a function of ∆ρ. We observe that ADOS performs
at the same level as the benchmark given by the ‘static con-
figuration’, while the other approaches provide a substantially
lower performance. TDOS exhibits an increasing degree of
unfairness as ∆ρ grows that harms its performance in terms
of proportional fairness. NDOS, in contrast to TDOS, does
not show this behavior: with NDOS, each station sets its
threshold based on its local radio conditions and therefore
the fact that other stations have better radio conditions does
not impact fairness. The price that NDOS pays for this non-
cooperative behavior, however, is that the overall throughput
performance is substantially degraded for all ∆ρ values. The
‘non-opportunistic’ approach and CSMA/CA also provide
poor performance.

In order to gain additional insight into the throughput
distribution with heterogeneous radio conditions, Fig. 10 de-
picts the throughput obtained by a station of each group
with the different approaches, along with the Jain’s fairness
index (JFI) [24] of each distribution. The results confirm that
TDOS suffers from high unfairness with heterogeneous radio
conditions, since with this approach the stations with worst
radio conditions (r1) are almost starved while the stations
with best radio conditions (r4) obtain a very large throughput.
In contrast, the TDOS, ‘non-opportunistic’ and CSMA/CA
approaches do not suffer from unfairness but provide signif-
icantly smaller throughputs than ADOS. We conclude that
ADOS substantially outperforms all other approaches with
heterogeneous radio conditions.
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Fig. 10. Throughput of a station of each heterogeneous group for ∆ρ = 2.

C. Performance under realistic models

1) Impact of channel coherence time: Our channel model
is based on the assumption that different observations of the
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Fig. 11. Heterogeneous scenario with Jakes’ channel model.

channel conditions are independent. In order to understand
the impact of this assumption, we repeated the experiment of
Fig. 9 using Jakes’ channel model [25] to obtain observations
that are correlated over time. The results, for a Doppler
frequency of fD = 2π/100τ , are given in Fig. 11 where
ADOS outperforms all the others. We also observe that the
performance is slightly lower than that of Fig. 9. This is due
to the fact that when the link is bad, a station does not transmit
after a successful contention, and thus it takes a shorter time
until it successfully contends again. Thus, a station accesses
the channel more often when the link is bad than when it is
good, which introduces a bias that reduces throughput.

2) Discrete set of transmission rates: While all previous
experiments assumed continuous rates, the design of ADOS
do not rely on any assumption on the mapping of SNR
to transmission rates, and therefore any mapping function
(continuous or discrete) can be used. We consider the case
of a wireless system in which the only transmission rates
available are {1, 2, 5.5, 12, 24, 48, 54}Mbps. For a given SNR,
we choose the largest available transmission rate that is smaller
than the one given by Shannon channel capacity model. Fig. 12
shows the result of repeating the experiment of Fig. 9 with
this discrete set of transmission rates. The results confirm
that ADOS outperforms the other approaches with different
mapping functions.

 240

 245

 250

 255

 260

 265

 270

 0  0.5  1  1.5  2  2.5  3

Σ
(l
o

g
(r

i)
)

∆ρ

ADOS
static configuration

non-opportunistic
TDOS
NDOS

CSMA/CA

Fig. 12. Heterogeneous scenario with discrete rates.

3) Imperfect channel estimation: Our design assumes that
the channel state is perfectly known to the transmitter. How-
ever, real estimators often have to deal with noisy obser-
vations and produce inaccurate results, which may worsen
performance or even cause outage in the communication. Yet,
according to [7], the optimal threshold still has a threshold
structure under these conditions. To assess the performance



GARCIA-SAAVEDRA et al.: ADAPTIVE MECHANISM FOR DISTRIBUTED OPPORTUNISTIC SCHEDULING 11

 260

 262

 264

 266

 268

 270

 272

 274

 0  0.02  0.04  0.06  0.08  0.1

Σ
(l
o

g
(r

i)
)

ε–

ADOS
static configuration
non-opportunistic

TDOS
NDOS
CSMA/CA

Fig. 13. Heterogeneous scenario with imperfect channel quality estimation.

in the presence of estimation errors, we model the measured
SNR as ρmeas = ρ(1− ε), where ε is the random estimation
error with average ε̄, and, following the scheme proposed
in [7], we select a linear function to back off from the
estimated bit rate which is equal to ε̄. We evaluate the same
heterogeneous scenario as before for ∆ρ = 2, and plot in
Fig. 13 the performance as a function of ε̄ for all the schemes
under evaluation, revealing that ADOS also outperforms all
the others in this case.

D. Validation of the configuration proposed for ADOS

The analysis in §IV derives the guidelines to configure the
parameters of ADOS ({Kp, αp} and {KR, αR}) in order to
guarantee a good behavior over time (stability and convergence
speed). We next validate such guidelines in contrast to other
settings that deviate from them.

1) Static conditions: To verify stable behavior in a static
environment, we first observe the evolution over time of the
access probability pi of a station for the proposed {Kp, αp}
setting and for a configuration of these parameters 10 times
larger, in a homogeneous scenario with N = 5 saturated
stations and ρ = 4. Fig. 14 shows the evolution of pi for
both cases, sampled over 105τ intervals. We observe from the
figure that with the proposed setting (labeled “Kp, αp”), pi
shows minor deviations around its average value, while for a
larger setting (labeled “Kp ∗ 10, αp ∗ 10”), it shows unstable
behavior with drastic oscillations.
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Fig. 14. Validation of the proposed R∗
i configuration.

Similarly, we also observe the evolution over time of the
threshold R̄i of a station for the proposed {KR, αR} setting
and for a configuration of these parameters 10 times larger
in the same scenario. The results, depicted in Fig. 15 confirm
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Fig. 15. Validation of the proposed pi configuration.

that the proposed setting for these parameters is stable while
a larger setting is highly unstable. We conclude from these
results that the analysis conducted in §IV is effective in
guaranteeing stability.

2) Changing number of stations: We next investigate the
speed with which the system reacts to changes in the number
of stations of the network, which triggers the adjustment of
the access probabilities pi. To this aim, we consider a network
with initially 5 stations, where 5 additional stations join the
network after a time 5·106τ . Fig. 16 shows the evolution of
the access probability of one initial station sampled over 105τ
intervals. We observe that with our setting (labeled “Kp, αp”),
the system quickly adapts the pi of the station to the new value.
In contrast, for a setting of these parameters 10 times smaller
(labeled “Kp/10, αp/10”), the reaction is very slow and the
system only converges after 5·106τ .
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Fig. 16. Speed of reaction when a new station joins the network.

3) Changing radio conditions: To analyze the speed of
reaction to changing radio conditions, we consider the fol-
lowing two scenarios: (i) a drastic change of the normalized
SNR caused by e.g. a sudden change in weather conditions
[26], and (ii) a soft change of the normalized SNR caused
by e.g. the movement of the station. Both scenarios trigger
the adjustment of R̄i; in the sequel, we study the evolution of
R̄i in each case. For the first scenario, we consider that in a
network with N = 2 stations, both of them with a normalized
SNR ρ = 1, one changes its normalized SNR to ρ = 4 after
a time 105τ . Fig. 17 shows the evolution over time of the R̄i
of the station whose normalized SNR has changed, for the
proposed setting of the {KR, αR} parameters as well as for a
setting 10 smaller. As a benchmark, we also show the optimal
setting of the threshold as given by the analytical results. The
results show that: (i) with our configuration, the system reacts
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quickly and closely follows the benchmark, while the reaction
is much slower for a smaller setting; and (ii) the steady state
error with our setting is negligible, whereas with a smaller
setting it is much larger. The latter effect is caused by the fact
that the steady error with a proportional controller increases as
its proportional gain (KR) is reduced. Therefore, by choosing
a too small value for KR, we do not only worsen the speed
of reaction of the system but also its steady error.
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Fig. 17. Speed of reaction when there is a drastic change of ρ.

For the second scenario, we consider a station moving
towards the receiver at a constant speed: initially, the station
is located at a distance D (with an average normalized SNR
of ρ = 1) and it moves to a distance D/2 of the sending
station over a period of 105τ . We consider a path loss exponent
equal to 2. Fig. 18 shows the evolution of the R̄i of the
moving station over time. We observe that with our setting the
algorithm is able to cope with the movement of the station and
R̄i closely follows the optimal threshold. As in the previous
case, with a smaller setting of the parameters, the threshold
used is far from the optimal due to the slow reaction and the
steady error.
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Fig. 18. Speed of reaction for a single moving station.

These results illustrate that the configuration of the parame-
ters {Kp, αp} and {KR, αR} proposed in §IV provides a good
tradeoff between stability, speed of reaction and steady error.

E. Moving Stations

While the previous experiment involved only a single mo-
bile station, in many cases some or all of the terminals may be
moving. We next investigate a more complex scenario where
stations move in an area of size LxL following the random
waypoint model, and send data to a station located at position
(L,L). The transmission power is such that the normalized
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SNR for a station located at position (0,0) is ρ = 1.5 We
further consider a path loss exponent equal to 2. We compare
ADOS against the following approaches: (i) a benchmark that
uses, for the current normalized SNR, the optimal transmission
rate threshold obtained from the analytical results (‘optimal’),
(ii) the ‘non-opportunistic’ approach, (iii) CSMA/CA, (iv)
TDOS, (v) NDOS, and (vi) the approach we proposed in [1]
(‘static ADOS’).6 For the TDOS, NDOS and ‘static ADOS’
approaches, since they assume static radio conditions and
hence rely on long term measurements to set the transmission
rate threshold, we measure the average SNR over periods of
108τ and use the measurement obtained in a period to compute
the R̄i of the next period. This corresponds to a large window
of time, to model the static nature of those schemes.

We evaluate their performance as a function of the speed
(in units of L/τ ) in Fig. 19 and as a function of the number of
stations in Fig. 20, in terms of the

∑
i log(ri) averaged over

intervals of 104τ . By averaging the
∑
i log(ri) over different

time intervals, we not only capture the long-term fairness (i.e.,
fairness in total throughput) but also the short-term fairness
(i.e., fairness in the throughput obtained over a given time
interval).7 We observe from the results that the performance
of ADOS closely follows the ‘optimal’ benchmark and out-
performs all other approaches. As in previous experiments,
the ‘non-opportunistic’, CSMA/CA, TDOS and NDOS ap-
proaches perform substantially worse that ADOS. The ‘static
ADOS’ approach also performs substantially worse, as it does
not adjust to current radio conditions. While it does perform
well for very low speeds for which the measurement period
is sufficient, performance degrades sharply when the speed

5Note that we do not let ρ increase any further once a station is than a
distance of L/100 to the receiver.

6Note that the approach proposed in this paper differs from the previous
conference version [1] in that it adapts to changing radio conditions; therefore,
when radio conditions are static (as in experiments V-A to V-D) both behave
in the same way.

7Note that in the previous experiments where radio conditions were static,
short-term fairness was not an issue.
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increases and stations far from the destination with an outdated
threshold risk starvation. Performance improves slightly for
even higher speeds, as the probability that a station stays
far from the destination during the entire averaging period
decreases, i.e., the threshold is outdated but due to the high
speed the station is often near the destination. In contrast,
the relative gains of ADOS are practically independent of the
number of stations.

VI. IMPLEMENTATION ISSUES AND CHALLENGES

One of the main advantages of ADOS is that it only relies
on local information already available in commodity hardware.
This simplifies its implementation as stations are neither
required to exchange information nor to carry out complex
operations in contrast to other approaches, like that of [5] that
requires both a protocol to exchange network information and
to solve definite integrals. ADOS employs a contention-based
MAC protocol similar to the CSMA/CA protocol used in IEEE
802.11, which also divides time into slots and implements
a random channel access. When contending, IEEE 802.11
uses a binary exponential backoff algorithm [27] based on
a “contention window” number (cw) that is initialized to a
minimum cwmin every successful access and it is doubled
every failed attempt, until a cwmax is reached.

We are implementing ADOS through simple modifications
to the kernel module mac80211,8 which is common to all
802.11 platforms in the Linux wireless stack, and minor
modifications to the openFWWF firmware9 of IEEE 802.11
Broadcom cards for time-sensitive operations related to the
channel probing mechanism. We note that a proper experi-
mental evaluation requires controlled fading environments e.g.,
using a channel emulator, and thus we leave it as future work.
These modifications are summarized as follows.

1) Channel probing: A solution to deploy ADOS’ channel
probing over an 802.11 stack is to use the standard RTS/CTS
mechanism of IEEE 802.11, available in practically all plat-
forms. With this mechanism, a station willing to transmit sends
first an RTS message to the intended receiver which in turn
replies with a CTS response; only upon reception of this CTS,
the transmitter can send its data. In this way, all the neighbour-
ing stations are aware of the ongoing communication. From the
RTS/CTS it is possible to extract the RSSI (Received Signal
Strength Indicator)10, a measure of the link quality that we can
exploit to decide whether to skip a transmission opportunity
or not, and the rate to use in that case (as we describe next).

2) Rate adaptation and threshold: Upon the reception of an
RTS, the receiver uses this message’s channel information to
compute the optimal modulation and coding scheme (MCS)
for the transmitter; if the bit rate provided by such MCS
falls below the rate threshold R̄i, it does reply with a CTS
setting the duration field11 to 0 to announce the transmitter

8http://wireless.kernel.org/
9http://www.ing.unibs.it/˜openfwwf/
10We are also exploring other alternatives, such as exploiting the Channel

State Information (CSI), a standard feedback structure that provides a much
richer source of link quality information than RSSI [28].

11The duration field, in the MAC header of IEEE 802.11 frames, is used
by a virtual carrier-sensing mechanism to advertise the amount of time the
medium will be busy so others do not contend.

(and the other overhearing stations) that there shall be no
communication and all nodes can re-contend. If the estimated
bit rate is larger than the threshold, the station embeds such
MCS within the CTS message12 and sends it back to the
transmitter with the duration field set to the frame length
(so overhearing stations do not contend during this time). To
compute the optimal MCS, each station keeps track of the
link quality when receiving data from every other station, and
implements a rate adaptation algorithm to compute the best
MCS (there is a plethora of algorithms available that are easily
deployable over off-the-shelf devices, e.g., [28]–[30]).

3) Channel sensing, contention parameters and frame con-
struction: A preliminary modification to the RTS/CTS mecha-
nism is to set the duration field of the RTS message to only the
duration of the RTS/CTS exchange. This provides enough pro-
tection to our probe scheme (i.e., no contention occurs while a
station is probing the channel) and permits re-contention if the
threshold is not satisfied. In turn, ADOS’ access probability pi
can be set, regardless of the number of stations, by computing
cwi = 2

pi
− 1 and setting cwi,min = cwi,max = cwi [31].

Finally, the fixed frame duration of ADOS can be set in
mac80211 by implementing a leaky bucket controller that
limits the frame size to Li(t) ≈ (T − SIFS − TACK)Ri(t),
where SIFS is the interval of time between data transmission
and acknowledgment reception (ACK), TACK is the duration
of an ACK, and Ri(t) is the bit rate selected for this frame.

VII. CONCLUSIONS

Distributed Opportunistic Scheduling (DOS) techniques
provide throughput gains in wireless networks without re-
quiring a centralized scheduler. One of the challenges of
these techniques is the design of an adaptive algorithm that
adjusts the DOS parameters to their optimal value. In this
paper we propose a novel algorithm, named ADOS, with the
following advantages: (i) it jointly optimizes both the access
probabilities and the transmission thresholds; (ii) it provides a
good tradeoff between total throughput and fairness; and (iii)
it guarantees convergence and stability. A major finding when
computing the configuration of the optimal threshold is that it
is independent of the access probabilities, which allows us to
design two independent mechanisms to compute thresholds
and access probabilities, respectively. The performance of
ADOS has been extensively evaluated via simulations. Results
confirm that ADOS provides significantly better performance
than previous proposals; in particular, key results are that
ADOS outperforms other approaches substantially with non-
saturated stations as well as with changing radio conditions.

REFERENCES

[1] A. Garcia-Saavedra, A. Banchs, P. Serrano, and J. Widmer, “Distributed
opportunistic scheduling: A control theoretic approach,” in Proc. IEEE
INFOCOM, Orlando, FL, March 2012.

[2] M. Cao, V. Raghunathan, and P. Kumar, “Cross-layer exploitation of
MAC layer diversity in wireless networks,” in Proc. IEEE ICNP, Santa
Barbara, CA, November 2006.

[3] A. Asadi and V. Mancuso, “A survey on opportunistic scheduling in
wireless communications,” IEEE Commun. Surveys Tuts., vol. 15, no. 4,
pp. 1671–1688, 2013.

12 [28] follows a similar idea, embedding such info into ACKS.



14 IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, VOL. XX, NO. X, XXXXXXX XXXX

[4] C. Ghosh, S. Chen, D. P. Agrawal, and A. M. Wyglinski, “Priority-based
spectrum allocation for cognitive radio networks employing NC-OFDM
transmission,” in Military Communications Conference, 2009. MILCOM
2009. IEEE. IEEE, 2009, pp. 1–5.

[5] D. Zheng, W. Ge, and J. Zhang, “Distributed opportunistic scheduling
for ad hoc networks with random access: an optimal stopping approach,”
IEEE Trans. Inf. Theory, vol. 55, no. 1, January 2009.

[6] P. Thejaswi et al., “Distributed opportunistic scheduling with two-level
probing,” IEEE/ACM Trans. Netw., vol. 18, no. 5, October 2010.

[7] D. Zheng, et al., “Distributed opportunistic scheduling for ad hoc com-
munications with imperfect channel information,” IEEE Trans. Wireless
Commun., vol. 7, no. 12, December 2008.

[8] S. Tan, D. Z. J. Zhang, and J. R. Zeidler, “Distributed opportunistic
scheduling for ad-hoc communications under delay constraints,” in Proc.
IEEE INFOCOM, San Diego, CA, March 2010.

[9] H. Chen and J. Baras, “Distributed opportunistic scheduling for wireless
ad-hoc networks with block-fading model,” IEEE J. Sel. Areas Commun.,
November 2013.

[10] J. Kampeas, A. Cohen, and O. Gurewitz, “Capacity of distributed
opportunistic scheduling in non-homogeneous networks,” IEEE Trans.
Inf. Theory, vol. PP, no. 99, pp. 1–1, 2014.

[11] W. Mao, S. Wu, and X. Wang, “QoS-oriented distributed opportunistic
scheduling for wireless networks with hybrid links,” in Globecom
Workshops (GC Wkshps), 2013 IEEE, Dec 2013, pp. 4524–4529.

[12] F. Kelly, “Charging and rate control for elastic traffic,” Eur. Trans.
Telecommun., vol. 8, pp. 33–37, 1997.

[13] A. Banchs, A. Garcia-Saavedra, P. Serrano, and J. Widmer, “A game-
theoretic approach to distributed opportunistic scheduling,” IEEE/ACM
Trans. Netw., vol. 21, no. 5, pp. 1553–1566, Oct 2013.

[14] B. Sadhegi, V. Kanodia, A. Sabharwal, and E. Knightly, “Opportunistic
media access for multirate ad hoc networks,” in Proc. ACM MOBICOM,
Atlanta, GA, September 2002.

[15] P. Gupta, Y. Sankarasubramaniam, and A. Stolyar, “Random-access
scheduling with service differentiation in wireless networks,” in Proc.
IEEE INFOCOM, Miami, FL, March 2005.

[16] B. Kristiansson and B. Lennartson, “Robust tuning of PI and PID
controllers,” IEEE Control Syst. Mag., vol. 26, no. 1, pp. 55–69, February
2006.

[17] A. K. Palit and D. Popovic, Computational Intelligence in Time Series
Forecasting: Theory and Engineering Applications. Springer-Verlag
New York, Inc., 2005.

[18] G. F. Franklin, J. D. Powell, and M. L. Workman, Digital Control of
Dynamic Systems, 2nd ed. Addison-Wesley, 1990.

[19] G. Boggia, P. Camarda, L. A. Grieco, and S. Mascolo, “Feedback-
based control for providing real-time services with the 802.11e MAC,”
IEEE/ACM Trans. Netw., vol. 15, no. 2, April 2007.

[20] A. Banchs, P. Serrano, and L. Vollero, “Providing service guarantees
in 802.11e EDCA WLANs with legacy stations,” IEEE Trans. Mobile
Comput., vol. 9, no. 8, pp. 1057–1071, August 2010.

[21] C. V. Hollot, V. Misra, D. Towsley, and W. B. Gong, “A control theoretic
analysis of RED,” in Proc. IEEE INFOCOM, Anchorage, Alaska, April
2001.

[22] E. Leonardi, “Throughput optimal scheduling policies in networks of
constrained queues,” Queueing Systems, vol. 78, no. 3, pp. 197–223,
2014.

[23] K. Aström and B. Wittenmark, Computer-controlled systems, theory and
design, 2nd ed. Prentice Hall International Editions, 1990.

[24] R. Jain, D. M. Chiu, and W. Hawe, “A quantitative measure of fairness
and discrimination for resource allocation in shared computer systems,”
DEC, Tech. Rep. TR-301, 1984.

[25] W. C. Jakes, Microwave Mobile Communications. New York: John
Wiley & Sons Inc., 1975.

[26] R. Crane, “Prediction of attenuation by rain,” IEEE Trans. Commun.,
vol. 28, no. 9, pp. 1717–1733, Sep 1980.

[27] G. Bianchi, “Performance Analysis of the IEEE 802.11 Distributed
Coordination Function,” IEEE J. Sel. Areas Commun., vol. 18, no. 3,
pp. 535–547, March 2000.

[28] D. Halperin, W. Hu, A. Sheth, and D. Wetherall, “Predictable 802.11
packet delivery from wireless channel measurements,” Proc. ACM
SIGCOMM Computer Communication Review, vol. 41, no. 4, pp. 159–
170, 2011.

[29] J. Camp and E. Knightly, “Modulation rate adaptation in urban and
vehicular environments: cross-layer implementation and experimental
evaluation,” IEEE/ACM Trans. Netw., vol. 18, no. 6, pp. 1949–1962,
2010.

[30] J. Zhang, K. Tan, J. Zhao, H. Wu, and Y. Zhang, “A practical SNR-
guided rate adaptation,” in Proc. IEEE INFOCOM. IEEE, 2008.

[31] G. Bianchi, “Performance analysis of the IEEE 802.11 distributed
coordination function,” IEEE J. Sel. Areas Commun., vol. 18, no. 3,
pp. 535–547, 2000.

Andres Garcia-Saavedra received his M.Sc and
Ph.D. from University Carlos III of Madrid (UC3M)
in 2010 and 2013, respectively. He then joined the
Hamilton Institute, Ireland, as a Research Fellow
till the end of 2014 when he moved to Trinity
College Dublin (TCD). His research interests lie in
the application of fundamental mathematics to real-
life computer communications systems. In particular,
resource allocation problems, performance evalua-
tion and prototyping of wireless network systems
and protocols.

Albert Banchs (M’04–SM’12) received his M.Sc.
and Ph.D. degrees from the Polytechnic University
of Catalonia in 1997 and 2002, respectively. He was
at ICSI in 1997, at Telefonica I+D in 1998 and
at NEC Europe Ltd. from 1998 to 2003. He has
been with the University Carlos III of Madrid since
2003. Since 2009, he also has a double affiliation as
Deputy Director of the IMDEA Networks institute.
Albert Banchs is editor of IEEE Transactions on
Wireless Communications and has recently served
as general co-chair of ACM WiNTECH 2013 and

IEEE Online GreenComm 2013. He is currently coordinating the iJOIN
european project. His research interests include the performance evaluation
and algorithm design in wireless and wired networks.

Pablo Serrano (M’09) got his M.Sc and Ph.D
degrees from the Universidad Carlos III de Madrid
(UC3M) in 2002 and 2006, respectively. He has
been with the Telematics Department of UC3M
since 2002, where he currently holds the position
of Associate Professor. He was a visiting researcher
at the Computer Network Research Group at Univ.
of Massachusetts Amherst in 2007, and at Telefonica
Research Centerin Barcelona in 2013. He has over
60 scientific papers in peer-reviewed international
journal and conferences. He serves on the Editorial

Board of IEEE Communications Letters, is a guest editor for Computer Net-
works, and has served on the TPC of a number of conferences and workshops
including IEEE INFOCOM, IEEE WoWMoM and IEEE Globecom.

Joerg Widmer (M’06–SM’10) is Research Pro-
fessor at IMDEA Networks in Madrid, Spain. He
received his M.S. and PhD degrees in computer
science from the University of Mannheim, Germany
in 2000 and 2003, respectively. From 2005 to 2010,
he was manager of the Ubiquitous Networking Re-
search Group at DOCOMO Euro-Labs in Munich,
Germany, leading several projects in the area of
mobile and cellular networks. Before, he worked
as post-doctoral researcher at EPFL, Switzerland on
ultra-wide band communication and network coding.

Joerg Widmer authored more than 100 conference and journal papers and three
IETF RFCs, holds 13 patents, serves on the editorial board of IEEE Transac-
tions on Communications, and regularly participates in program committees
of several major conferences.


