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Abstract

Recently, a sampling theory for infinite dimensional U -invariant subspaces of
a separable Hilbert space H where U denotes a unitary operator on H has been
obtained. Thus, uniform average sampling for shift-invariant subspaces of L2(R)
becomes a particular example. As in the general case it is possible to have finite di-
mensional U -invariant subspaces, the main aim of this paper is to derive a sampling
theory for finite dimensional U -invariant subspaces of a separable Hilbert space H.
Since the used samples are frame coefficients in a suitable euclidean space CN , the
problem reduces to obtain dual frames with a U -invariance property.

Keywords: Stationary sequences; U -invariant subspaces; Finite frame; Dual frames;
Moore-Penrose pseudo-inverse.
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1 Statement of the problem

The frame concept was introduced by Duffin and Shaeffer in [7] while studying some
problems in nonharmonic Fourier series; some years later it was revived by Daubechies,
Grossman and Meyer in [6]. Nowadays, frames have become a tool in pure and applied
mathematics, computer science, physics and engineering used to derive redundant, yet
stable decompositions of a signal for analysis or transmission, while also promoting
sparse expansions. Recall that a sequence {xk} is a frame for a separable Hilbert space
H if there exist two constants A,B > 0 (frame bounds) such that

A‖x‖2 ≤
∑
k

|〈x, xk〉|2 ≤ B‖x‖2 for all x ∈ H .

Given a frame {xk} for H the representation property of any vector x ∈ H as a series
x =

∑
k ckxk is retained, but, unlike the case of Riesz bases, the uniqueness of this

∗E-mail:agarcia@math.uc3m.es
†E-mail:mjmunoz@mat.uned.es

1



representation (for overcomplete frames) is sacrificed. Suitable frame coefficients ck
which depend continuously and linearly on x are obtained by using the dual frames {yk}
of {xk}, i.e., {yk} is another frame for H such that x =

∑
k〈x, yk〉xk =

∑
k〈x, xk〉 yk

for each x ∈ H. For more details on the frame theory see, for instance, the monograph
[5] and references therein; see also Ref. [4] for finite frames.

Traditionally, frames were used in signal and image processing, nonharmonic anal-
ysis, data compression, and sampling theory, but nowadays frame theory plays also a
fundamental role in a wide variety of problems in both pure and applied mathematics,
computer science, physics and engineering. The redundancy of frames, which gives flex-
ibility and robustness, is the key to their significance for applications; see, for instance,
the nice introduction in Chapter1 of Ref. [4] and the references therein.

In particular, the use of frames in sampling theory has become very fruitful; see, for
instance, Refs. [1, 2, 3, 10, 16, 17]. Recently, in Refs. [8, 9, 15] a generalization of the
sampling theory for shift-invariant subspaces V 2

ϕ :=
{∑

n∈Z αn ϕ(t − n) : {αn}n∈Z ∈
`2(Z)

}
of L2(R) with generator ϕ has been obtained in the following sense: Let U : H →

H be a unitary operator in a separable Hilbert space H; for a fixed a ∈ H, consider the
closed subspace given by Aa := span

{
Una, n ∈ Z

}
. In case that the (infinite) sequence

{Una}n∈Z is a Riesz sequence in H we have

Aa =
{∑

n∈Z
αn U

na : {αn}n∈Z ∈ `2(Z)
}
.

Here, the sequence of generalized samples {(Ljx)(rm)}m∈Z; j=1,2,...,s of x ∈ Aa is ob-
tained from s elements bj ∈ H as

(Ljx)(rm) := 〈x, U rmbj〉H , m ∈ Z ; j = 1, 2, . . . , s . (1)

Thus, under appropriate hypotheses it was proved in [9, 15], by using different tech-
niques, the existence of frames in Aa, having the form

{
U rmcj

}
m∈Z; j=1,2,...,s

, where
cj ∈ Aa for j = 1, 2, . . . , s, such that for each x ∈ Aa we get the sampling expansion

x =
s∑

j=1

∑
m∈Z
Ljx(rm)U rmcj in H . (2)

The U -sampling problem was introduced, for the first time, in Refs. [13, 15]. A par-
ticular case is the shift-invariant subspace V 2

ϕ where U : f(t) 7→ f(t − 1) is the shift
operator in L2(R). For any f ∈ V 2

ϕ the samples are

(Ljf)(rm) = 〈x, U rmbj〉L2(R) =

∫ ∞
−∞

f(t) bj(t− rm) dt =
(
f ∗ hj

)
(rm) , m ∈ Z ,

where hj(t) := bj(−t) for each j = 1, 2, . . . , s. Besides, sampling formula (2) for f ∈ V 2
ϕ

reads as

f(t) =

s∑
j=1

∑
m∈Z

(
Ljf

)
(rm)Sj(t− rm) , t ∈ R ,

where the sequence of reconstruction functions {Sj(· − rm)}m∈Z; j=1,2,...,s is a frame for
V 2
ϕ (see, for instance, Ref. [10] for the details).
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In [9, 15] it was implicitely assumed that the stationary sequence {Una}n∈Z in H
has infinite different elements. It could happen that for some a ∈ H there exists N ∈ N
such that UNa = a, i.e., 1 is an eigenvalue of the unitary operator UN with eigenvector
a. In this case, Aa is just the finite dimensional subspace of H spanned by the set{
a, Ua, U2a, . . . , UN−1a

}
. The main aim in this work is to derive a sampling theory in

Aa involving dual finite frames.
In applications, frames in finite dimensional spaces are required. Since in finite

dimension, a frame is nothing but a spanning set of vectors, finite frames require con-
trol of certain condition numbers, and over the spectrum of certain matrices. Thus,
frame theory, firstly considered applied harmonic analysis, meets matrix analysis and
numerical linear algebra.

Concretely in this work, whenever dimAa = N , we consider a positive integer
r such that r|N and ` = N/r; the goal is to obtain finite frames in Aa having the
form

{
U rncj

}
j=1,2,...,s

n=0,1,...,`−1
, where cj ∈ Aa, j = 1, 2, . . . , s, such that any x ∈ Aa can be

recovered from the samples
{
Ljx(rn)

}
j=1,2,...,s

n=0,1,...,`−1
given in (1) by means of the expansion

x =

s∑
j=1

`−1∑
n=0

Ljx(rn)U rncj .

In so doing, we express the given samples as frame coefficients with respect to a frame in
CN . The challenge problem is to obtain its dual frames in CN yielding, via an isomor-
phism TN,a between CN and Aa (see (3) infra), the desired frames

{
U rncj

}
j=1,2,...,s

n=0,1,...,`−1
for Aa. All these steps will be carried out throughout the remaining sections.

2 The mathematical setting

For a fixed a ∈ H, assume that there exists a nonnegative integer N such that UNa = a;
let N be the smallest index with this property. Next, we consider the finite dimensional
subspace Aa := span

{
a, Ua, U2a, . . . , UN−1a

}
in H. The auto-covariance Ra of the

stationary sequence {Una}n∈Z defined in [12] as

Ra(k) := 〈Uka, a〉H , k ∈ Z ,

inherits its N -periodic character. The N ×N auto-covariance matrix is defined by

Ra :=


Ra(0) Ra(1) . . . Ra(N − 1)
Ra(1) Ra(2) . . . Ra(0)

...
...

. . .
...

Ra(N − 1) Ra(0) . . . Ra(N − 2)

 .

Proposition 1. The set of vectors
{
a, Ua, U2a, . . . , UN−1a

}
is linearly independent if

and only if detRa 6= 0.
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Proof. If detRa = 0 then there exists λ = (λ0, λ1, . . . , λN−1)
> ∈ CN such that λ 6= 0

and Raλ = 0. Thus
∑N−1

k=0 λk U
ka is orthogonal to a, Ua, U2a, . . . , UN−1a so that∑N−1

k=0 λk U
ka = 0. Conversely, if

∑N−1
k=0 λk U

ka = 0 for some λ 6= 0 then the inner
product in the above expression with each a, Ua, U2a, . . . , UN−1a yields Raλ = 0.

In the sequel we assume that detRa 6= 0; thus, dimAa = N and the set of vectors{
a, Ua, U2a, . . . , UN−1a

}
forms a basis for Aa.

The isomorphism TN,a

Next we consider the following isomorphism TN,a between CN and Aa:

TN,a : CN −→ Aa

α =
N−1∑
k=0

αk ek 7−→ x =
N−1∑
k=0

αk U
ka .

(3)

where
{
e1, e2, . . . , eN

}
denotes the canonical basis for CN . The isomorphism TN,a has

the following shifting property:

Proposition 2. Let {T (k)}k∈Z be an N -periodic sequence in C. For 1 ≤ m ≤ N − 1
consider the vectors in CN

T0 :=
(
T (0), T (1), . . . , T (N − 1)

)>
and

TN−m :=
(
T (N −m), T (N −m+ 1), . . . , T (N −m+N − 1)

)>
.

Then, the following shifting property holds

TN,a(TN−m) = Um
(
TN,a(T0)

)
for any 1 ≤ m ≤ N − 1 .

Proof. The change of index p = N−m+k and the N -periodic character of the sequences
{T (k)} and {Uka} give

TN,a(TN−m) =

N−1∑
k=0

T (n−m+ k)Uka =
2N−m−1∑
p=N−m

T (p)Up−N+ma =
2N−m−1∑
p=N−m

T (p)Up+ma

=

N−1∑
q=0

T (q)U q+ma = Um
(N−1∑

q=0

T (q)U qa
)

= Um
(
TN,a(T0)

)
.

Generalized samples: a suitable expression

Let r be a positive integer such that r|N , and consider ` = N/r. Fixed s ele-
ments bj ∈ H, j = 1, 2, . . . , s, for each x ∈ A we consider its generalized samples{
Ljx(rn)

}
j=1,2,...,s

n=0,1,...,`−1
with sampling period r defined by

Ljx(rn) := 〈x, U rnbj〉H , n = 0, 1, . . . , `− 1 and j = 1, 2, . . . , s .
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The goal in this paper is to recover any x ∈ Aa from its finite sequence of samples{
Ljx(rn)

}
j=1,2,...,s

n=0,1,...,`−1
by means of suitable frames in Aa. First, we obtain a more

convenient expression for Ljx(rn); namely

Ljx(rn) = 〈x, U rnbj〉H =
〈N−1∑

k=0

αk U
ka, U rnbj

〉
H =

N−1∑
k=0

αk 〈Uka, U rnbj〉H

=
〈N−1∑

k=0

αk ek,

N−1∑
k=0

〈Uka, U rnbj〉H ek

〉
CN

=
〈
α,Gj,n

〉
CN ,

(4)

where Gj,n =
∑N−1

k=0 〈Uka, U rnbj〉H ek. The cross-covariance between the sequences
{Una} and {Unbj}, i.e., the N -periodic sequence defined in [12] as

Ra,bj (m) := 〈Uma, bj〉H , m ∈ Z ,

allows to write

Gj,n =

N−1∑
k=0

〈Uk−rna, bj〉H ek =
N−1∑
k=0

〈UN+k−rna, bj〉H ek

=

N−1∑
k=0

Ra,bj (N + k − rn) ek .

(5)

Having in mind the expression (4) for the samples Ljx(rn), n = 0, 1, . . . , ` − 1 and
j = 1, 2, . . . , s, and the isomorphism TN,a given in (3), any x ∈ Aa can be recovered
from its samples if and only if the set of vectors

{
Gj,n

}
j=1,2,...,s

n=0,1,...,`−1
in CN forms a

spanning set for CN . In other words, it is a frame for CN (see, for instance, Refs.
[4, 5]). This is equivalent to the condition rankGa,b = N , where Ga,b denotes the
N × s` matrix

Ga,b :=


...

...
...

...
...

...
...

...
...

...
G1,0 . . . G1,`−1 G2,0 . . . G2,`−1 . . . Gs,0 . . . Gs,`−1

...
...

...
...

...
...

...
...

...
...

 .

Thus we have that N ≤ s`, that is, s ≥ r.
Having in mind (5) and the N -periodic character of the cross-covariance we obtain

that
Ga,b =

(
R∗a,b1

R∗a,b2
. . . R∗a,bs

)
,

where each `×N block Ra,bj
, j = 1, 2, . . . , s , is given by

Ra,bj
=


Ra,bj (0) Ra,bj (1) . . . Ra,bj (N − 1)

Ra,bj (N − r) Ra,bj (N − r + 1) . . . Ra,bj (2N − r − 1)
...

...
. . .

...
Ra,bj (N − r(`− 1)) Ra,bj (N − r(`− 1) + 1) . . . Ra,bj (2N − 1− r(`− 1))

 .
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Since N = r` we have

Ra,bj
=


Ra,bj (0) Ra,bj (1) . . . Ra,bj (N − 1)

Ra,bj (N − r) Ra,bj (N − r + 1) . . . Ra,bj (2N − r − 1)
...

...
. . .

...
Ra,bj (r) Ra,bj (r + 1) . . . Ra,bj (2r − 1)

 .

As usual, the symbol ∗ denotes the transpose conjugate matrix. Given the s` × N
matrix of cross-covariances

Ra,b :=


Ra,b1

Ra,b2

...
Ra,bs

 , (6)

where each ` × N block is given by Ra,bj
, j = 1, 2, . . . , s , we deduce that the matrix

Ra,b coincides with the matrix G∗a,b.

Lemma 1. Let x =
∑N−1

k=0 αk U
ka ∈ Aa. For each j = 1, 2, . . . , s we have the following

expression for the samples
{
Ljx(rn)

}`−1
n=0

Ljx(0)
Ljx(r)

...
Ljx(r(`− 1))

 = Ra,bj


α0

α1
...

αN−1

 .

In other words, denoting the vectors α :=
(
α0, α1, . . . , αN−1

)> ∈ CN and

Lsam :=
(
L1x(0),L1x(r), . . . ,L1x(r(`−1)), . . . ,Lsx(0), . . . ,Lsx(r(`−1))

)> ∈ Cs` , (7)

the matrix relationship
Lsam = Ra,bα

holds where Ra,b is the s`×N matrix of cross-covariances given in (6).

Proof. Given x =
∑N−1

k=0 αk U
ka ∈ Aa let consider α =

∑N−1
k=0 αk ek ∈ CN . By using

(4) and (5) we obtain

Ljx(rn) =
〈
α,Gj,n

〉
CN =

N−1∑
k=0

αk Ra,bj (N + k − rn) , for n = 0, 1, . . . , `− 1 .

As rankRa,b = rankGa,b = N , the Moore-Penrose pseudo-inverse of Ra,b is the

N × s` matrix R†a,b =
[
R∗a,bRa,b

]−1
R∗a,b.

Writing the columns of R†a,b as

R†a,b =


...

...
...

...
...

...
...

...
...

...

R†1,0 . . . R†1,`−1 R†2,0 . . . R†2,`−1 . . . R†s,0 . . . R†s,`−1
...

...
...

...
...

...
...

...
...

...

 ,
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given x =
∑N−1

k=0 αk U
ka ∈ Aa, for α =

∑N−1
k=0 αk ek ∈ CN , from the matrix relationship

Lsam = Ra,bα we obtain

α =
(
α0, α1, . . . , αN−1

)>
= R†a,bLsam =

s∑
j=1

`−1∑
n=0

Ljx(rn)R†j,n . (8)

In other words, the columns
{
R†j,n

}
j=1,2,...,s

n=0,1,...,`−1
of the Moore-Penrose pseudo-inverse

R†a,b are a dual frame of
{
Gj,n

}
j=1,2,...,s

n=0,1,...,`−1
in CN ; that is for each α ∈ CN

α =
s∑

j=1

`−1∑
n=0

〈
α,Gj,n

〉
CN R†j,n .

In particular, we derive that rankR†a,b = N . Any other dual frame of
{
Gj,n

}
j=1,2,...,s

n=0,1,...,`−1
in CN is given by the columns of any left-inverse H of the matrix Ra,b; i.e., HRa,b =
IN . All these matrices are expressed as (see [14]):

H = R†a,b + U
[
Is` −Ra,bR

†
a,b

]
, (9)

where U denotes any arbitrary N × s` matrix.
The pseudo-inverse R†a,b is computed by using the singular value decomposition of

Ra,b; the singular values are the square root of the eigenvalues of the N ×N invertible
and positive definite matrix R∗a,bRa,b (see, for instance, [5, 11]). Note that the singular
value decomposition of Ra,b is the most reliable method to reveal its rank in practice.

3 The result

Applying the isomorphism TN,a in (8), for any x =
∑N−1

k=0 αk U
ka ∈ Aa we obtain the

sampling formula:

x = TN,a

(
α
)

=

s∑
j=1

`−1∑
n=0

Ljx(rn) TN,a

(
R†j,n

)
.

The sampling functions TN,a

(
R†j,n

)
in the above formula do not have, in principle, any

special structure since R†a,b does not it. However, having in mind the structure of the
matrix Ra,b we construct left-inverses of Ra,b with the same structure.

Left-inverses of Ra,b with its same structure

We construct a specific left-inverse HS of Ra,b from R†a,b (or from another left-inverse
of Ra,b given in (9)) in the following way: We denote as S the first r rows of the matrix

R†a,b, i.e., SRa,b =
[
Ir,Or×(N−r)

]
, where Ir and Or×(N−r) denote, respectively, the

identity matrix of order r and the zero matrix of order r × (N − r). According to the
structure of the matrix Ra,b (see (6)), we write the r × s` matrix S as

S =
(
S1 S2 . . . Ss

)
,
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where each r × ` block Sj , j = 1, 2, . . . , s is denoted by

Sj :=


Sj(0) Sj(N − r) Sj(N − 2r) . . . Sj(N − r(`− 1))
Sj(1) Sj(N − r + 1) Sj(N − 2r + 1) . . . Sj(N − r(`− 1) + 1)

...
...

...
. . .

...
Sj(r − 1) Sj(N − 1) Sj(N − 2r + r − 1) . . . Sj(N − r(`− 1) + r − 1)


or, using that N = r`, as

Sj =


Sj(0) Sj(N − r) Sj(N − 2r) . . . Sj(r)
Sj(1) Sj(N − r + 1) Sj(N − 2r + 1) . . . Sj(r + 1)

...
...

...
. . .

...
Sj(r − 1) Sj(N − 1) Sj(N − r − 1) . . . Sj(2r − 1)

 .

Now, we form the N × s` matrix

HS :=
(
S̃1 S̃2 . . . S̃s

)
(10)

by using the columns of Sj , j = 1, 2, . . . , s in the following manner

S̃j :=



Sj(0) Sj(N − r) Sj(N − 2r) . . . Sj(r)
Sj(1) Sj(N − r + 1) Sj(N − 2r + 1) . . . Sj(r + 1)

...
...

...
. . .

...
Sj(r − 1) Sj(N − 1) Sj(N − r − 1) . . . Sj(2r − 1)
Sj(r) Sj(0) Sj(N − r) . . . Sj(2r)

Sj(r + 1) Sj(1) Sj(N − r + 1) . . . Sj(2r + 1)
...

...
...

. . .
...

Sj(N − 1) Sj(N − r − 1) Sj(N − 2r − 1) . . . Sj(r − 1)


.

In other words:
• The first column of S̃j is a concatenation of the columns 1, `, `− 1, . . . , and 2 of Sj ;

• The second column of S̃j is a concatenation of the columns 2, 1, `, . . . , and 3 of Sj ;

• The third column of S̃j is a concatenation of the columns 3, 2, 1, . . . , and 4 of Sj ;
Repeating the process, finally,
• The column ` of S̃j is a concatenation of the columns `, `− 1, `− 2, . . . , and 1 of Sj .
Thus, with this procedure we have obtained a left-inverse matrix HS for Ra,b:

Lemma 2. Let Ra,b and HS be the matrices defined in (6) and (10) respectively. Then
we have that HSRa,b = IN .

Proof. Having in mind the N -periodic character of the entries in matrices HS and Ra,b,
the product αm,k of row m+ 1 of HS, m = 0, 1, . . . , N − 1, with column k+ 1 of Ra,b,
k = 0, 1, . . . , N − 1, can be written as

αm,k =
s∑

j=1

`−1∑
i=0

Sj(N − ir +m)Ra,bj (N − ir + k) .
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Since SRa,b =
[
Ir,Or×(N−r)

]
, we have that αm,k = δm,k if m = 0, 1, . . . , r − 1 and

k = 0, 1, . . . , N−1. Whenever m ≥ r, we write m = m0+qr where m0 = 0, 1, . . . , r−1,
and q = 1, 2, . . . `− 1. Then

αm,k =
s∑

j=1

`−1∑
i=0

Sj(N − (i− q)r +m0)Ra,bj (N − (i− q)r + k − qr)

=

{
αm0,k−qr if k − qr ≥ 0

αm0,N+k−qr if k − qr < 0
.

Now, the result follows from the fact that m0 = k − qr if and only if m = k and the
failure of the equality m0 = N + k − qr.

Next we denote the columns of HS as

HS =


...

...
...

...
...

...
...

...
...

...
H1,0 . . . H1,`−1 H2,0 . . . H2,`−1 . . . Hs,0 . . . Hs,`−1

...
...

...
...

...
...

...
...

...
...

 . (11)

Since the matrix HS is a left-inverse matrix of Ra,b, using HS instead of R†a,b in (8)
we obtain

α =
(
α0, α1, . . . , αN−1

)>
= HSLsam =

s∑
j=1

`−1∑
n=0

Ljx(rn)Hj,n . (12)

Then, by using the isomorphism TN,a in (12) and Proposition 2 we obtain, for each
x ∈ Aa, the sampling formula:

x = TN,a

(
α
)

=

s∑
j=1

`−1∑
n=0

Ljx(rn) TN,a

(
Hj,n

)
=

s∑
j=1

`−1∑
n=0

Ljx(rn)U rn
(
TN,a

(
Hj,0

))
=

s∑
j=1

`−1∑
n=0

Ljx(rn)U rncj ,

(13)

where cj = TN,a

(
Hj,0

)
∈ Aa, j = 1, 2, . . . , s.

Collecting all the pieces that we have obtained until now we prove the following
result:

Theorem 3. Given the s` × N matrix of cross-covariances Ra,b defined in (6), the
following statements are equivalents:

(a) rank Ra,b = N

(b) There exists an r × s` matrix S such that

SRa,b =
[
Ir,Or×(N−r)

]
, (14)

where Ir and Or×(N−r) denote, respectively, the identity matrix of order r and the
zero matrix of order r × (N − r).
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(c) There exist cj ∈ Aa, j = 1, 2, . . . , s such that the sequence
{
U rncj

}
j=1,2,...,s

n=0,1,...,`−1
is a

frame for Aa, and for any x ∈ Aa the expansion

x =

s∑
j=1

`−1∑
n=0

Ljx(rn)U rncj (15)

holds.

(d) There exist a frame
{
Cj,n

}
j=1,2,...,s

n=0,1,...,`−1
for Aa such that, for each x ∈ Aa the expan-

sion

x =

s∑
j=1

`−1∑
n=0

Ljx(rn)Cj,n

holds.

Proof. Condition (a) implies condition (b); it is enough to take as the matrix S the

first r rows of the Moore-Penrose pseudo-inverse R†a,b. Condition (b) implies condition
(c); it is just the proof of the sampling formula (13). Condition (c) implies condition
(d); it is obvious, take Cj,n = U rncj , j = 1, 2, . . . , s and n = 0, 1, . . . , ` − 1. Finally,

we prove that condition (d) implies condition (a). Indeed, let x =
∑N−1

k=0 αk U
ka be

an arbitrary element in Aa, and let define Kj,n := T −1N,a

(
Cj,n

)
for j = 1, 2, . . . , s and

n = 0, 1, . . . , `− 1. Applying T −1N,a in x =
∑s

j=1

(∑`−1
n=0 Ljx(rn)Cj,n

)
we get

α =
(
α0, α1, . . . , αN−1

)>
=

s∑
j=1

`−1∑
n=0

Ljx(rn)Kj,n = KLsam ,

where Lsam is defined in (7) and K is the N × s` matrix having Kj,n as columns as in
(10). Now, by using Lemma 1 we have Lsam = Ra,bα; therefore, α = KRa,bα for
all α ∈ CN , i.e., KRa,b = IN . This implies that rank Ra,b = N which completes the
proof.

For the particular case where the number of systems Lj and the sampling period r
coincides, i.e., s = r we obtain:

Corollary 4. Assume that s = r and consider the N ×N matrix of cross-covariances
Ra,b defined in (6). The following statements are equivalents:

(i) The matrix Ra,b is invertible.

(ii) There exist r unique elements cj ∈ Aa, j = 1, 2, . . . , r, such that the sequence{
U rncj

}
j=1,2,...,r

n=0,1,...,`−1
is a basis for Aa, and the expansion of any x ∈ Aa with

respect to this basis is

x =
r∑

j=1

`−1∑
n=0

Ljx(rn)U rncj .

In case the equivalent conditions are satisfied, the interpolation property Ljcj′(rn) =
δj,j′ δn,0, whenever n = 0, 1, . . . , `− 1 and j, j′ = 1, 2, . . . , r, holds.
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Proof. Notice that the inverse matrix R−1a,b has necessarily the structure of the ma-
trix HS in (11). The uniqueness of the expansion with respect to a basis gives the
interpolation property.

A filter-bank interpretation

Assume that the rank of Ra,b is N , and let S be an r × s` matrix satisfying (14).
Proceeding as before we construct a left-inverse HS of Ra,b, with columns Hj,n, j =
1, 2, . . . , s and n = 0, 1, . . . , ` − 1 (see (11)). In the corresponding sampling formula
(15) we have cj = TN,a

(
Hj,0

)
, j = 1, 2, . . . , s; suppose that

Hj,0 =
(
βj(0), βj(1), . . . , βj(N − 1)

)>
, j = 1, 2, . . . , s .

Substituting in (15), for x ∈ Aa we get

x =

s∑
j=1

`−1∑
n=0

Ljx(rn)U rn
(N−1∑
m=0

βj(m)Uma
)

=

s∑
j=1

`−1∑
n=0

Ljx(rn)
(N−1∑
m=0

βj(m)U rn+ma
)
.

The change of index k := rn+m and the N -periodicity gives

x =

s∑
j=1

`−1∑
n=0

Ljx(rn)
( rn+N−1∑

k=rn

βj(k − rn)Uka
)

=

s∑
j=1

`−1∑
n=0

Ljx(rn)
(N−1∑

k=0

βj(k − rn)Uka
)

=

N−1∑
k=0

{ s∑
j=1

`−1∑
n=0

Ljx(rn)βj(k − rn)
}
Uka .

In other words, for x =
∑N−1

k=0 αk U
ka, the coefficients αk, k = 0, 1, . . . , N − 1, are the

output of a filter-bank

αk =

s∑
j=1

`−1∑
n=0

Ljx(rn)βj(k − rn) , k = 0, 1, . . . , N − 1 ,

involving the data
{
Ljx(rn)

}
j=1,2,...,s

n=0,1,...,`−1
and the columns Hj,0, j = 1, 2, . . . , s, of HS.

A toy model involving periodic sequences

Let `2N (Z) be the Hilbert space of N -periodic sequences of complex numbers

x =
(
. . . , x(N − 1), x(0), x(1), . . . , x(N − 1)︸ ︷︷ ︸

N

, x(0), . . .
)
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endowed with the inner product 〈x,y〉`2N =
∑N−1

m=0 x(m) y(m). We consider the cyclic

shift T : `2N (Z)→ `2N (Z) defined as

Tx = T
(
. . . , x(N − 1), x(0), x(1), . . . , x(N − 1)︸ ︷︷ ︸

N

, x(0), . . .
)

=
(
. . . , x(N − 2), x(N − 1), x(0), . . . , x(N − 2)︸ ︷︷ ︸

N

, x(N − 1), . . .
)
,

and the N -periodic sequence a := (. . . , 1, 0, . . . , 0︸ ︷︷ ︸
N

, . . . ); obviously, TNa = a and Aa =

`2N (Z).
Given bj ∈ `2N , j = 1, 2, . . . , s, each sample from x ∈ `2N in {Ljx(rn)} j=1,2,...,s

n=0,1,...,`−1
is

obtained from the N -periodic convolution

Ljx(rn) = 〈x, T rnbj〉`2N =

N−1∑
m=0

x(m)bj(m− rn) =
(
x ∗ hj

)
(rn) ,

where hj(m) = bj(−m), m = 0, 1, . . . , N − 1.

As the cross-covariance Ra,bj (m) = 〈Tma,bj〉`2N = bj(m), each block Ra,bj
, j =

1, 2, . . . , s, of Ra,b in (6) takes the form

Ra,bj
=


bj(0) bj(1) . . . bj(N − 1)

bj(N − r) bj(N − r + 1) . . . bj(2N − r − 1)
...

...
. . .

...

bj(N − r(`− 1)) bj(N − r(`− 1) + 1) . . . bj(2N − 1− r(`− 1))

 .

In case the rank of Ra,b is N , from Theorem 3 we obtain in `2N (Z) the sampling formula

x(m) =

s∑
j=1

`−1∑
n=0

Ljx(rn) cj(m− rn) , m = 0, 1, . . . , N − 1 ,

which coincides with the output of a filter-bank. The sampling sequences in `2N (Z) are
cj = TN,a

(
Hj,0

)
, j = 1, 2, . . . , s, where Hj,0 are columns (see (11)) of a left-inverse HS

of Ra,b constructed, from a matrix S satisfying (14), as in (10).
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[10] A. G. Garćıa and G. Pérez-Villalón. Dual frames in L2(0, 1) connected with
generalized sampling in shift-invariant spaces. Appl. Comput. Harmon. Anal.,
20(3):422–433, 2006.

[11] R. A. Horn and C. R. Johnson. Matrix Analysis. Cambridge University Press,
1999.

[12] A. N. Kolmogorov. Stationary sequences in Hilbert space. Boll. Moskow. Gos.
Univ. Mat., 2:1–40, 1941.

[13] T. Michaeli, V. Pohl and Y. C. Eldar. U -invariant sampling: extrapolation
and causal interpolation from generalized samples. IEEE Trans. Signal Process.,
59(5):2085–2100, 2011.

[14] R. Penrose. A generalized inverse for matrices. Math. Proc. Cambridge Philos.
Soc., 51:406–413, 1955.

[15] V. Pohl and H. Boche. U -invariant sampling and reconstruction in atomic spaces
with multiple generators. IEEE Trans. Signal Process., 60(7):3506–3519, 2012.

[16] W. Sun and X. Zhou. Average sampling in shift-invariant subspaces with symmet-
ric averaging functions. J. Math. Anal. Appl., 287:279–295, 2003.

[17] X. Zhou and W. Sun. On the Sampling Theorem for Wavelet Subspaces. J. Fourier
Anal. Appl., 5(4):347–354, 1999.

13




