uc3m <div class="inline-tabular"><table id="tabular" data-type="subtable">
<tbody>
<tr style="border-top: none !important; border-bottom: none !important;">
<td style="text-align: center; border-left: none !important; border-bottom: none !important; border-top: none !important; width: auto; vertical-align: middle; ">Universidad</td>
</tr>
<tr style="border-top: none !important; border-bottom: none !important;">
<td style="text-align: center; border-left: none !important; border-bottom: none !important; border-top: none !important; width: auto; vertical-align: middle; ">Carlos III</td>
</tr>
</tbody>
</table>
<table-markdown style="display: none">| Universidad |
| :---: | :---: |
| Carlos III |</table-markdown></div> ©-Archivo

This is a postprint version of the following published document:

Fernández-Morales, H.R... et al (2015). Generalized sampling: From shift-invariant to U-invariant spaces. Analysis and Applications, 13(3), pp. 303-329.

DOI: https://doi.org/10.1142/S0219530514500213
© World Scientific Publishing Company.

Generalized sampling: from shift-invariant to U-invariant spaces

H. R. Fernández-Morales* A. G. García ${ }^{\dagger}$ M. A. Hernández-Medina ${ }^{\ddagger}$ and M. J. Muñoz-Bouzo ${ }^{\text {§ }}$

* \dagger Departamento de Matemáticas, Universidad Carlos III de Madrid, Avda. de la Universidad 30, 28911 Leganés-Madrid, Spain.
\ddagger Departamento de Matemática Aplicada, E.T.S.I.T., U.P.M., Avda. Complutense 30, 28040 Madrid, Spain.
§ Departamento de Matemáticas Fundamentales, Facultad de Ciencias, U.N.E.D. Senda del Rey 9, 28040 Madrid, Spain.

Abstract

The aim of this article is to derive a sampling theory in U-invariant subspaces of a separable Hilbert space \mathcal{H} where U denotes a unitary operator defined on \mathcal{H}. To this end, we use some special dual frames for $L^{2}(0,1)$, and the fact that any U-invariant subspace with stable generator is the image of $L^{2}(0,1)$ by means of a bounded invertible operator. The used mathematical technique mimics some previous sampling work for shift-invariant subspaces of $L^{2}(\mathbb{R})$. Thus, sampling frame expansions in U-invariant spaces are obtained. In order to generalize convolution systems and deal with the time-jitter error in this new setting we consider a continuous group of unitary operators which includes the operator U.

Keywords: Stationary sequences; U-invariant subspaces; Frames; Dual frames; Timejitter error; Group of unitary operators; Pseudo-dual frames.
AMS: 42C15; 94A20.

1 By way of motivation

The aim in this paper is to derive a generalized sampling theory for U-invariant subspaces of a separable Hilbert space \mathcal{H}, where $U: \mathcal{H} \rightarrow \mathcal{H}$ denotes a unitary operator. The motivation for our work can be found in the generalized sampling problem in shift-invariant subspaces of $L^{2}(\mathbb{R})$; there $\mathcal{H}:=L^{2}(\mathbb{R})$ and U is the shift operator $T: f(u) \mapsto f(u-1)$ in $L^{2}(\mathbb{R})$. In that setting, the functions (signals) belong to some

[^0](principal) shift-invariant subspace $V_{\varphi}^{2}:=\overline{\operatorname{span}}_{L^{2}(\mathbb{R})}\{\varphi(u-n), n \in \mathbb{Z}\}$, where the generator function φ belongs to $L^{2}(\mathbb{R})$ and the sequence $\{\varphi(u-n)\}_{n \in \mathbb{Z}}$ is a Riesz sequence for $L^{2}(\mathbb{R})$. Thus, the shift-invariant space V_{φ}^{2} can be described as
$$
V_{\varphi}^{2}=\left\{\sum_{n \in \mathbb{Z}} \alpha_{n} \varphi(u-n):\left\{\alpha_{n}\right\}_{n \in \mathbb{Z}} \in \ell^{2}(\mathbb{Z})\right\}
$$

On the other hand, in many common situations the available data are samples of some filtered versions $f * h_{j}$ of the signal f itself, where the average function h_{j} reflects the characteristics of the adquisition device.
For s convolution systems (linear time-invariant systems or filters in engineering jargon) $\mathcal{L}_{j} f:=f * \mathrm{~h}_{j}, j=1,2, \ldots, s$, defined on V_{φ}^{2}, and assuming also that the sequence of samples

$$
\left\{\left(\mathcal{L}_{j} f\right)(r m)\right\}_{m \in \mathbb{Z} ; j=1,2, \ldots, s},
$$

where $r \in \mathbb{N}$, is available for any f in V_{φ}^{2}, the generalized sampling problem mathematically consists of the stable recovery of any $f \in V_{\varphi}^{2}$ from the above sequence of samples. In other words, it deals with the construction of sampling formulas in V_{φ}^{2} having the form

$$
f(u)=\sum_{j=1}^{s} \sum_{m \in \mathbb{Z}}\left(\mathcal{L}_{j} f\right)(r m) S_{j}(u-r m), \quad u \in \mathbb{R},
$$

where the sequence of reconstruction functions $\left\{S_{j}(\cdot-r m)\right\}_{m \in \mathbb{Z} ; j=1,2, \ldots, s}$ is a frame for the shift-invariant space V_{φ}^{2}.

Sampling in shift-invariant spaces of $L^{2}(\mathbb{R})$ (or $L^{2}\left(\mathbb{R}^{d}\right)$), with one or multiple generators, has been profusely treated in the mathematical literature. A few selected references are: $[4,5,9,10,11,12,13,15,18,23,27,28,29,30,31]$.

In the present work we provide a generalization of the above problem in the following sense. Let U be a unitary operator in a separable Hilbert space \mathcal{H}; for a fixed $a \in \mathcal{H}$, consider the closed subspace given by $\mathcal{A}_{a}:=\overline{\operatorname{span}}\left\{U^{n} a, n \in \mathbb{Z}\right\}$. In case that the sequence $\left\{U^{n} a\right\}_{n \in \mathbb{Z}}$ is a Riesz sequence in \mathcal{H} we have

$$
\mathcal{A}_{a}=\left\{\sum_{n \in \mathbb{Z}} \alpha_{n} U^{n} a:\left\{\alpha_{n}\right\}_{n \in \mathbb{Z}} \in \ell^{2}(\mathbb{Z})\right\} .
$$

In order to generalize convolution systems and mainly to obtain some perturbation results in this new setting, we assume that the operator U is included in a continuous group of unitary operators $\left\{U^{t}\right\}_{t \in \mathbb{R}}$ in \mathcal{H} as $U:=U^{1}$. Recall that $\left\{U^{t}\right\}_{t \in \mathbb{R}}$ is a family of unitary operators in \mathcal{H} satisfying (see Ref. [2, vol. 2; p. 29]):
(1) $U^{t} U^{t^{\prime}}=U^{t+t^{\prime}}$,
(2) $U^{0}=I_{\mathcal{H}}$,
(3) $\left\langle U^{t} x, y\right\rangle_{\mathcal{H}}$ is a continuous function of t for any $x, y \in \mathcal{H}$.

Note that $\left(U^{t}\right)^{-1}=U^{-t}$, and since $\left(U^{t}\right)^{*}=\left(U^{t}\right)^{-1}$, we have $\left(U^{t}\right)^{*}=U^{-t}$.

Thus, for $b \in \mathcal{H}$ we consider the linear operator $\mathcal{H} \ni x \longmapsto \mathcal{L}_{b} x \in C(\mathbb{R})$ such that $\left(\mathcal{L}_{b} x\right)(t):=\left\langle x, U^{t} b\right\rangle_{\mathcal{H}}$ for every $t \in \mathbb{R}$. These operators \mathcal{L}_{b}, which will be called U systems, can be seen as a generalization of the convolution systems in $L^{2}(\mathbb{R})$. Indeed, for the shift operator $U: f(u) \mapsto f(u-1)$ in $L^{2}(\mathbb{R})$ we have

$$
\left\langle f, U^{t} b\right\rangle_{L^{2}(\mathbb{R})}=\int_{-\infty}^{\infty} f(u) \overline{b(u-t)} d u=(f * h)(t), \quad t \in \mathbb{R}
$$

where $h(u):=\overline{b(-u)}$.
Given U-systems $\mathcal{L}_{j}, j=1,2, \ldots, s$, corresponding to s elements $b_{j} \in \mathcal{H}$, i.e., $\mathcal{L}_{j} \equiv \mathcal{L}_{b_{j}}$ for each $j=1,2, \ldots, s$, the generalized regular sampling problem in \mathcal{A}_{a} consists of the stable recovery of any $x \in \mathcal{A}_{a}$ from the sequence of the samples

$$
\left\{\mathcal{L}_{j} x(r m)\right\}_{m \in \mathbb{Z} ; j=1,2, \ldots, s} \text { where } \quad r \in \mathbb{N}, r \geq 1
$$

This U-sampling problem has been treated, for the first time, in some recent papers [22, 24]. Sampling in shift-invariant subspaces or in modulation-invariant subspaces of $L^{2}(\mathbb{R})$ becomes a particular case of U-sampling associated with the translation operator $T: f(u) \mapsto f(u-1)$ or with the modulation operator $M: f(u) \mapsto \mathrm{e}^{2 \pi \mathrm{i} u} f(u)$ in $L^{2}(\mathbb{R})$ respectively.

In this paper we propose a completely different approach which allows to analyze in depth the U-sampling problem. In Section 3 we prove the existence of frames in \mathcal{A}_{a}, having the form $\left\{U^{r m} c_{j}\right\}_{m \in \mathbb{Z} ; j=1,2, \ldots, s}$, where $c_{j} \in \mathcal{A}_{a}$ for $j=1,2, \ldots, s$, such that for each $x \in \mathcal{A}_{a}$ the sampling expansion

$$
\begin{equation*}
x=\sum_{j=1}^{s} \sum_{m \in \mathbb{Z}} \mathcal{L}_{j} x(r m) U^{r m} c_{j} \quad \text { in } \mathcal{H} \tag{1}
\end{equation*}
$$

holds. To this end, as in the shift-invariant case (see, for instance, Refs. [13, 15]), we use that the above sampling formula is intimately related with some special dual frames in $L^{2}(0,1)$ (see Section 2 below) via the isomorphism $\mathcal{T}_{U, a}: L^{2}(0,1) \longrightarrow \mathcal{A}_{a}$ which maps the orthonormal basis $\left\{e^{2 \pi i n w}\right\}_{n \in \mathbb{Z}}$ for $L^{2}(0,1)$ onto the Riesz basis $\left\{U^{n} a\right\}_{n \in \mathbb{Z}}$ for \mathcal{A}_{a}. In [24] regular sampling expansions like (1) are obtained by using a completely different technique; basically, they use the cross-covariance function $R_{a, b_{j}}(n):=\left\langle U^{n} a, b_{j}\right\rangle_{\mathcal{H}}$ between the sequences $\left\{U^{n} a\right\}_{n \in \mathbb{Z}}$ and $\left\{U^{n} b_{j}\right\}_{n \in \mathbb{Z}}, j=1,2, \ldots, s$.

Strictly speaking, we do not need the formalism of the continuous group of unitary operators to derive the sampling results in Section 3 since we only use the discrete group $\left\{U^{n}\right\}_{n \in \mathbb{Z}}$ completely determined by U. However, for the study, in Section 4, of the time-jitter error in sampling formulas as in (1), the continuous group of unitary operators $\left\{U^{t}\right\}_{t \in \mathbb{R}}$ becomes essential. In this case we dispose of a perturbed sequence of samples $\left\{\left(\mathcal{L}_{j} x\right)\left(r m+\epsilon_{m j}\right)\right\}_{m \in \mathbb{Z} ; j=1,2, \ldots, s}$, with errors $\epsilon_{m j} \in \mathbb{R}$, for the recovery of $x \in \mathcal{A}_{a}$. We prove that, for small enough errors $\epsilon_{m j}$, the stable recovery of any $x \in \mathcal{A}_{a}$ is still possible. Finally, in Section 5 we deal with the case of multiple stable generators. We only sketch the procedure since it is essentially identical to the one-generator case.

2 On sampling in U-invariant subspaces

For a fixed $a \in \mathcal{H}$, assume that the sequence $\left\{U^{n} a\right\}_{n \in \mathbb{Z}}$ is a Riesz sequence in \mathcal{H}. Recall that a Riesz basis in a separable Hilbert space is the image of an orthonormal
basis by means of a bounded invertible operator. Any Riesz basis $\left\{x_{n}\right\}_{n \in \mathbb{Z}}$ has a unique biorthogonal (dual) Riesz basis $\left\{y_{n}\right\}_{n \in \mathbb{Z}}$, i.e., $\left\langle x_{n}, y_{m}\right\rangle_{\mathcal{H}}=\delta_{n, m}$, such that the expansions

$$
x=\sum_{n \in \mathbb{Z}}\left\langle x, y_{n}\right\rangle_{\mathcal{H}} x_{n}=\sum_{n \in \mathbb{Z}}\left\langle x, x_{n}\right\rangle_{\mathcal{H}} y_{n},
$$

hold for every $x \in \mathcal{H}$. We state the definition by considering the integers set \mathbb{Z} as the index set since throughout the paper most of sequences are indexed in \mathbb{Z}. A Riesz sequence in \mathcal{H} is a Riesz basis for its closed span (see, for instance, [8]). Thus, the U-invariant subspace $\mathcal{A}_{a}:=\overline{\operatorname{span}}\left\{U^{n} a, n \in \mathbb{Z}\right\}$ can be expressed as

$$
\mathcal{A}_{a}=\left\{\sum_{n \in \mathbb{Z}} \alpha_{n} U^{n} a:\left\{\alpha_{n}\right\}_{n \in \mathbb{Z}} \in \ell^{2}(\mathbb{Z})\right\} .
$$

For simplicity and ease of notation we are considering the one-generator setting; as we have already said, the same sampling results for the general case can be obtained by analogy, and it will be drawn in Section 5. The sequence $\left\{U^{n} a\right\}_{n \in \mathbb{Z}}$ is an stationary sequence since the inner product $\left\langle U^{n} a, U^{m} a\right\rangle_{\mathcal{H}}$ depends only on the difference $n-m \in$ \mathbb{Z}. Moreover, the auto-covariance R_{a} of the sequence $\left\{U^{n} a\right\}_{n \in \mathbb{Z}}$ admits the integral representation

$$
R_{a}(k):=\left\langle U^{k} a, a\right\rangle_{\mathcal{H}}=\frac{1}{2 \pi} \int_{-\pi}^{\pi} \mathrm{e}^{\mathrm{i} k \theta} d \mu_{a}(\theta), \quad k \in \mathbb{Z}
$$

in terms of a positive Borel measure μ_{a} on $(-\pi, \pi)$ called the spectral measure of the sequence (see [19]). This is obtained from the integral representation of the unitary operator U on \mathcal{H} (see, for instance, $[2,33]$). The spectral measure μ_{a} can be decomposed into an absolute continuous and a singular part as $d \mu_{a}(\theta)=\phi_{a}(\theta) d \theta+d \mu_{a}^{s}(\theta)$. A necessary and sufficient condition in order for the sequence $\left\{U^{n} a\right\}_{n \in \mathbb{Z}}$ to be a Riesz sequence for \mathcal{H} is given in next theorem in terms of the decomposition of the spectral measure μ_{a} :
Theorem 1. Let $\left\{U^{n} a\right\}_{n \in \mathbb{Z}}$ be a sequence obtained from a unitary operator in a separable Hilbert space \mathcal{H} with spectral measure $d \mu_{a}(\theta)=\phi_{a}(\theta) d \theta+d \mu_{a}^{s}(\theta)$, and let \mathcal{A}_{a} be the closed subspace spanned by $\left\{U^{n} a\right\}_{n \in \mathbb{Z}}$. Then the sequence $\left\{U^{n} a\right\}_{n \in \mathbb{Z}}$ is a Riesz basis for \mathcal{A}_{a} if and only if the singular part $\mu_{a}^{s} \equiv 0$ and

$$
0<\underset{\theta \in(-\pi, \pi)}{\operatorname{ess} \inf } \phi_{a}(\theta) \leq \underset{\theta \in(-\pi, \pi)}{\operatorname{ess} \sup _{n}} \phi_{a}(\theta)<\infty .
$$

Theorem 1 is just the one-generator case ($L=1$) of Theorem 11 proved below. It is worth to mention that an straightforward computation shows that the dual Riesz basis of $\left\{U^{n} a\right\}_{n \in \mathbb{Z}}$ in \mathcal{A}_{a} is given by $\left\{U^{n} b\right\}_{n \in \mathbb{Z}}$ whith $b=\sum_{k \in \mathbb{Z}} b_{k} U^{k} a \in \mathcal{A}_{a}$, where the terms of the sequence $\left\{b_{k}\right\}_{k \in \mathbb{Z}} \in \ell^{2}(\mathbb{Z})$ are the Fourier coefficients of the function $1 / \phi_{a}(\theta) \in L^{2}(-\pi, \pi)$. Indeed, for $b=\sum_{k \in \mathbb{Z}} b_{k} U^{k} a$ in \mathcal{A}_{a}, the biorthogonality between the sequences $\left\{U^{n} a\right\}_{n \in \mathbb{Z}}$ and $\left\{U^{n} b\right\}_{n \in \mathbb{Z}}$ means

$$
\begin{aligned}
\delta_{m, 0} & =\left\langle U^{m} a, b\right\rangle_{\mathcal{H}}=\left\langle U^{m} a, \sum_{k \in \mathbb{Z}} b_{k} U^{k} a\right\rangle_{\mathcal{H}}=\sum_{k \in \mathbb{Z}} \bar{b}_{k} \frac{1}{2 \pi} \int_{-\pi}^{\pi} \mathrm{e}^{i(m-k) \theta} \phi_{a}(\theta) d \theta \\
& =\frac{1}{2 \pi} \int_{-\pi}^{\pi}\left(\sum_{k \in \mathbb{Z}} \bar{b}_{k} \mathrm{e}^{-i k \theta}\right) \phi_{a}(\theta) \mathrm{e}^{i m \theta} d \theta=\frac{1}{2 \pi} \int_{-\pi}^{\pi} B(\theta) \phi_{a}(\theta) \mathrm{e}^{-i m \theta} d \theta
\end{aligned}
$$

where $B(\theta):=\sum_{k \in \mathbb{Z}} b_{k} \mathrm{e}^{i k \theta}$; in other words, we have $B(\theta) \phi_{a}(\theta) \equiv 1$ in $L^{2}(-\pi, \pi)$. Moreover, it is easy to deduce that $\phi_{b}(\theta)=1 / \phi_{a}(\theta), \theta \in(-\pi, \pi)$; that is, for $k \in \mathbb{Z}$ we obtain $\left\langle U^{k} b, b\right\rangle_{\mathcal{H}}=\frac{1}{2 \pi} \int_{-\pi}^{\pi} \mathrm{e}^{\mathrm{i} k \theta} \frac{d \theta}{\phi_{a}(\theta)}$.

Finally, for the shift operator $T: f(u) \mapsto f(u-1)$ in $L^{2}(\mathbb{R})$, Theorem 1 allows to recover the classical necessary and sufficient condition for the sequence $\{\varphi(t-n)\}_{n \in \mathbb{Z}}$, where $\varphi \in L^{2}(\mathbb{R})$, to be a Riesz basis for the corresponding shift-invariant subspace \mathcal{A}_{φ} in $L^{2}(\mathbb{R})$. Indeed, consider the Fourier transform as $\widehat{\varphi}(\theta):=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} \varphi(t) \mathrm{e}^{-i t \theta} d \theta$ in $L^{1}(\mathbb{R}) \cap L^{2}(\mathbb{R})$; using the Parseval's equality one easily gets

$$
\begin{aligned}
\left\langle T^{k} \varphi, \varphi\right\rangle_{L^{2}(\mathbb{R})} & =\int_{-\infty}^{\infty} \varphi(u-k) \overline{\varphi(u)} d u=\int_{-\infty}^{\infty} \varphi \widehat{(u-k)}(\theta) \overline{\widehat{\varphi}(\theta)} d \theta=\int_{-\infty}^{\infty}|\widehat{\varphi}(\theta)|^{2} \mathrm{e}^{-i k \theta} d \theta \\
& =\int_{-\pi}^{\pi} \sum_{n \in \mathbb{Z}}|\widehat{\varphi}(\theta+2 \pi n)|^{2} \mathrm{e}^{-i k \theta} d \theta=\frac{1}{2 \pi} \int_{-\pi}^{\pi} \mathrm{e}^{-i k \theta} 2 \pi \sum_{n \in \mathbb{Z}}|\widehat{\varphi}(-\theta+2 \pi n)|^{2} d \theta,
\end{aligned}
$$

that is, $\phi_{\varphi}(\theta)=2 \pi \sum_{n \in \mathbb{Z}}|\widehat{\varphi}(-\theta+2 \pi n)|^{2}, \theta \in(-\pi, \pi)$. Thus, Theorem 1 yields the classical condition (see, for instance, [8]):

$$
0<\underset{\theta \in(-\pi, \pi)}{\operatorname{ess} \inf _{n \in \mathbb{Z}}} \sum_{n}|\widehat{\varphi}(\theta+2 \pi n)|^{2} \leq \underset{\theta \in(-\pi, \pi)}{\operatorname{ess} \sup _{n \in \mathbb{Z}}} \sum_{n}|\widehat{\varphi}(\theta+2 \pi n)|^{2}<\infty .
$$

The following isomorphism between $L^{2}(0,1)$ and \mathcal{A}_{a} will be crucial along this paper:

The isomorphism $\mathcal{T}_{U, a}$

We define the isomorphism $\mathcal{T}_{U, a}$ which maps the orthonormal basis $\left\{\mathrm{e}^{2 \pi \mathrm{inw}}\right\}_{n \in \mathbb{Z}}$ for $L^{2}(0,1)$ onto the Riesz basis $\left\{U^{n} a\right\}_{n \in \mathbb{Z}}$ for \mathcal{A}_{a}, that is,

$$
\begin{aligned}
& \mathcal{T}_{U, a}: \quad L^{2}(0,1) \quad \longrightarrow \mathcal{A}_{a} \\
& F=\sum_{n \in \mathbb{Z}} \alpha_{n} \mathrm{e}^{2 \pi \mathrm{in} w} \longmapsto x=\sum_{n \in \mathbb{Z}} \alpha_{n} U^{n} a .
\end{aligned}
$$

The following U-shift property holds: For any $F \in L^{2}(0,1)$ and $N \in \mathbb{Z}$, we have

$$
\begin{equation*}
\mathcal{T}_{U, a}\left(F \mathrm{e}^{2 \pi \mathrm{i} N w}\right)=U^{N}\left(\mathcal{T}_{U, a} F\right) \tag{2}
\end{equation*}
$$

The U-systems

For any fixed $b \in \mathcal{H}$ we define the U-system \mathcal{L}_{b} as the linear operator between \mathcal{H} and the set $C(\mathbb{R})$ of the continuous functions on \mathbb{R} given by

$$
\mathcal{H} \ni x \longmapsto \mathcal{L}_{b} x \in C(\mathbb{R}) \text { such that } \mathcal{L}_{b} x(t):=\left\langle x, U^{t} b\right\rangle_{\mathcal{H}}, \quad t \in \mathbb{R} .
$$

For any $x \in \mathcal{A}_{a}$ and $t \in \mathbb{R}$, by using the Plancherel equality for the orthonormal basis $\left\{\mathrm{e}^{2 \pi \mathrm{i} n w}\right\}_{n \in \mathbb{Z}}$ in $L^{2}(0,1)$, we have

$$
\begin{align*}
& \mathcal{L}_{b} x(t)=\left\langle x, U^{t} b\right\rangle_{\mathcal{H}}=\left\langle\sum_{n \in \mathbb{Z}} \alpha_{n} U^{n} a, U^{t} b\right\rangle_{\mathcal{H}}=\sum_{n \in \mathbb{Z}} \alpha_{n}{\overline{\left\langle U^{t} b, U^{n} a\right\rangle_{\mathcal{H}}}} \\
&=\left\langle F, \sum_{n \in \mathbb{Z}}\left\langle U^{t} b, U^{n} a\right\rangle_{\mathcal{H}} \mathrm{e}^{2 \pi \mathrm{i} n w}\right\rangle_{L^{2}(0,1)}=\left\langle F, K_{t}\right\rangle_{L^{2}(0,1)}, \tag{3}
\end{align*}
$$

where $\mathcal{T}_{U, a} F=x$, and the function

$$
K_{t}(w):=\sum_{n \in \mathbb{Z}}\left\langle U^{t} b, U^{n} a\right\rangle_{\mathcal{H}} \mathrm{e}^{2 \pi \mathrm{i} n w}=\sum_{n \in \mathbb{Z}} \overline{\mathcal{L}_{b} a(t-n)} \mathrm{e}^{2 \pi \mathrm{i} n w}
$$

belongs to $L^{2}(0,1)$ since the sequence $\left\{\left\langle U^{t} b, U^{n} a\right\rangle_{\mathcal{H}}\right\}_{n \in \mathbb{Z}}$ belongs to $\ell^{2}(\mathbb{Z})$ for each $t \in \mathbb{R}$.

An expression for the generalized samples

Suppose that s vectors $b_{j} \in \mathcal{H}, j=1,2, \ldots, s$, are given and consider their associated U-systems $\mathcal{L}_{j}:=\mathcal{L}_{b_{j}}, j=1,2, \ldots, s$. Our aim is the stable recovery of any $x \in \mathcal{A}_{a}$ from the sequence of samples $\left\{\mathcal{L}_{j} x(r m)\right\}_{m \in \mathbb{Z} ; j=1,2, \ldots, s}$ where $r \geq 1$. To this end, first we obtain a suitable expression for the samples. For $x \in \mathcal{A}_{a}$ let $F \in L^{2}(0,1)$ such that $\mathcal{T}_{U, a} F=x$; by using (3), for $j=1,2, \ldots, s$ and $m \in \mathbb{Z}$ we have

$$
\begin{aligned}
\mathcal{L}_{j} x(r m) & =\left\langle F, \sum_{n \in \mathbb{Z}}\left\langle U^{r m} b_{j}, U^{n} a\right\rangle_{\mathcal{H}} \mathrm{e}^{2 \pi \mathrm{i} n w}\right\rangle_{L^{2}(0,1)}=\left\langle F, \sum_{k \in \mathbb{Z}}\left\langle U^{k} b_{j}, a\right\rangle_{\mathcal{H}} \mathrm{e}^{2 \pi \mathrm{i}(r m-k) w}\right\rangle_{L^{2}(0,1)} \\
& =\left\langle F,\left[\sum_{k \in \mathbb{Z}} \overline{\left\langle a, U^{k} b_{j}\right\rangle_{\mathcal{H}}} \mathrm{e}^{-2 \pi \mathrm{i} k w}\right] \mathrm{e}^{2 \pi \mathrm{i} r m w}\right\rangle_{L^{2}(0,1)},
\end{aligned}
$$

where the change in the summation's index $k:=r m-n$ has been done. Hence,

$$
\begin{equation*}
\mathcal{L}_{j} x(r m)=\left\langle F, \overline{g_{j}(w)} \mathrm{e}^{2 \pi \mathrm{i} r m w}\right\rangle_{L^{2}(0,1)} \text { for } m \in \mathbb{Z} \text { and } j=1,2, \ldots, s, \tag{4}
\end{equation*}
$$

where the function

$$
\begin{equation*}
g_{j}(w):=\sum_{k \in \mathbb{Z}} \mathcal{L}_{j} a(k) \mathrm{e}^{2 \pi \mathrm{i} k w} \tag{5}
\end{equation*}
$$

belongs to $L^{2}(0,1)$ for each $j=1,2, \ldots, s$.
As a consequence of (4), the stable recovery of any $x \in \mathcal{A}_{a}$ depends on whether the sequence $\left\{\overline{g_{j}(w)} \mathrm{e}^{2 \pi i r m w}\right\}_{m \in \mathbb{Z} ; j=1,2, \ldots, s}$ forms a frame for $L^{2}(0,1)$. Recall that a sequence $\left\{x_{n}\right\}_{n \in \mathbb{Z}}$ is a frame for a separable Hilbert space \mathcal{H} if there exist two constants $A, B>0$ (frame bounds) such that

$$
A\|x\|^{2} \leq \sum_{n \in \mathbb{Z}}\left|\left\langle x, x_{n}\right\rangle\right|^{2} \leq B\|x\|^{2} \text { for all } x \in \mathcal{H}
$$

A sequence $\left\{x_{n}\right\}_{n \in \mathbb{Z}}$ in \mathcal{H} satisfying only the right hand inequality above is said to be a Bessel sequence for \mathcal{H}. Given a frame $\left\{x_{n}\right\}_{n \in \mathbb{Z}}$ for \mathcal{H} the representation property of any vector $x \in \mathcal{H}$ as a series $x=\sum_{n \in \mathbb{Z}} c_{n} x_{n}$ is retained, but, unlike the case of Riesz bases (exact frames), the uniqueness of this representation (for overcomplete frames) is sacrificed. Suitable frame coefficients c_{n} which depend continuously and linearly on x are obtained by using the dual frames $\left\{y_{n}\right\}_{n \in \mathbb{Z}}$ of $\left\{x_{n}\right\}_{n \in \mathbb{Z}}$, i.e., $\left\{y_{n}\right\}_{n \in \mathbb{Z}}$ is another frame for \mathcal{H} such that $x=\sum_{n \in \mathbb{Z}}\left\langle x, y_{n}\right\rangle x_{n}=\sum_{n \in \mathbb{Z}}\left\langle x, x_{n}\right\rangle y_{n}$ for each $x \in \mathcal{H}$. For more details on frame theory see Ref. [8].

A deep study of sequences having the form of $\left\{\overline{g_{j}(w)} \mathrm{e}^{2 \pi \mathrm{irmw}}\right\}_{m \in \mathbb{Z} ; j=1,2, \ldots, s}$ was done in Refs. [13, 15]. Namely, consider the $s \times r$ matrix of functions in $L^{2}(0,1)$

$$
\mathbb{G}(w):=\left[\begin{array}{cccc}
g_{1}(w) & g_{1}\left(w+\frac{1}{r}\right) & \cdots & g_{1}\left(w+\frac{r-1}{r}\right) \tag{6}\\
g_{2}(w) & g_{2}\left(w+\frac{1}{r}\right) & \cdots & g_{2}\left(w+\frac{r-1}{r}\right) \\
\vdots & \vdots & & \vdots \\
g_{s}(w) & g_{s}\left(w+\frac{1}{r}\right) & \cdots & g_{s}\left(w+\frac{r-1}{r}\right)
\end{array}\right]=\left[g_{j}\left(w+\frac{k-1}{r}\right)\right]_{\substack{j=1,2, \ldots, s \\
k=1,2, \ldots, r}}
$$

and its related constants

$$
\alpha_{\mathbb{G}}:=\underset{w \in(0,1 / r)}{\operatorname{ess} \inf } \lambda_{\min }\left[\mathbb{G}^{*}(w) \mathbb{G}(w)\right], \quad \beta_{\mathbb{G}}:=\underset{w \in(0,1 / r)}{\operatorname{ess} \sup } \lambda_{\max }\left[\mathbb{G}^{*}(w) \mathbb{G}(w)\right],
$$

where $\mathbb{G}^{*}(w)$ denotes the transpose conjugate of the matrix $\mathbb{G}(w)$, and $\lambda_{\text {min }}$ (respectively $\lambda_{\max }$) the smallest (respectively the largest) eigenvalue of the positive semidefinite matrix $\mathbb{G}^{*}(w) \mathbb{G}(w)$. Observe that $0 \leq \alpha_{\mathbb{G}} \leq \beta_{\mathbb{G}} \leq \infty$. Notice that in the definition of the matrix $\mathbb{G}(w)$ we are considering 1-periodic extensions of the involved functions g_{j}, $j=1,2, \ldots, s$.

A complete characterization of the sequence $\left\{\overline{g_{j}(w)} \mathrm{e}^{2 \pi \mathrm{i} r m w}\right\}_{m \in \mathbb{Z} ; j=1,2, \ldots, s}$ is given in the next lemma (see [13, Lemma 3] or [15, Lemma 2] for the proof):

Lemma 2. For the functions $g_{j} \in L^{2}(0,1), j=1,2, \ldots, s$, consider the associated matrix $\mathbb{G}(w)$ given in (6). Then, the following results hold:
(a) The sequence $\left\{\overline{g_{j}(w)} \mathrm{e}^{2 \pi \mathrm{irnw}}\right\}_{n \in \mathbb{Z} ; j=1,2, \ldots, s}$ is a complete system for $L^{2}(0,1)$ if and only if the rank of the matrix $\mathbb{G}(w)$ is r a.e. in $(0,1 / r)$.
(b) The sequence $\left\{\overline{g_{j}(w)} \mathrm{e}^{2 \pi \mathrm{irnw}}\right\}_{n \in \mathbb{Z} ; j=1,2, \ldots, s}$ is a Bessel sequence for $L^{2}(0,1)$ if and only if $g_{j} \in L^{\infty}(0,1)$ (or equivalently $\beta_{\mathbb{G}}<\infty$). In this case, the optimal Bessel bound is $\beta_{\mathbb{G}} / r$.
(c) The sequence $\left\{\overline{g_{j}(w)} \mathrm{e}^{2 \pi \mathrm{irnw}}\right\}_{n \in \mathbb{Z} ; j=1,2, \ldots, s}$ is a frame for $L^{2}(0,1)$ if and only if $0<$ $\alpha_{\mathbb{G}} \leq \beta_{\mathbb{G}}<\infty$. In this case, the optimal frame bounds are $\alpha_{\mathbb{G}} / r$ and $\beta_{\mathbb{G}} / r$.
(d) The sequence $\left\{\overline{g_{j}(w)} \mathrm{e}^{2 \pi \mathrm{i} r n w}\right\}_{n \in \mathbb{Z} ; j=1,2, \ldots, s}$ is a Riesz basis for $L^{2}(0,1)$ if and only if is a frame and $s=r$.

A comment about Lemma 2 in terms of the average sampling terminology introduced by Aldroubi et al. in [6] is in order. According to [6] we say that

1. The set $\left\{\mathcal{L}_{1}, \mathcal{L}_{2}, \ldots, \mathcal{L}_{s}\right\}$ is an r-determining U-sampler for \mathcal{A}_{a} if the only vector $x \in \mathcal{A}_{a}$, satisfying $\mathcal{L}_{j} x(r m)=0$ for all $j=1,2, \ldots, s$ and $m \in \mathbb{Z}$, is $x=0$.
2. The set $\left\{\mathcal{L}_{1}, \mathcal{L}_{2}, \ldots, \mathcal{L}_{s}\right\}$ is an r-stable U-sampler for \mathcal{A}_{a} if there exist positive constants A and B such that

$$
A\|x\|^{2} \leq \sum_{j=1}^{s} \sum_{m \in \mathbb{Z}}\left|\mathcal{L}_{j} x(r m)\right|^{2} \leq B\|x\|^{2} \quad \text { for all } x \in \mathcal{A}_{a} .
$$

Hence, parts (a) and (c) of Lemma 2 can be read, by using (4), as follows:
i. The set $\left\{\mathcal{L}_{1}, \mathcal{L}_{2}, \ldots, \mathcal{L}_{s}\right\}$ is an r-determining U-sampler for \mathcal{A}_{a} if and only if $\operatorname{rank} \mathbb{G}(w)=r$ a.e. in (0,1) (and hence, necessarily, $s \geq r$).
ii. The set $\left\{\mathcal{L}_{1}, \mathcal{L}_{2}, \ldots, \mathcal{L}_{s}\right\}$ is an r-stable U-sampler for \mathcal{A}_{a} if and only if $0<\alpha_{\mathbb{G}} \leq$ $\beta_{\mathbb{G}}<\infty$.

An r-determining U-sampler for \mathcal{A}_{a} can distinguish between two distinct elements in \mathcal{A}_{a}, but the recovery, if any, is not necessarily stable. If the system $\left\{\mathcal{L}_{1}, \mathcal{L}_{2}, \ldots, \mathcal{L}_{s}\right\}$ is an r-stable U-sampler for \mathcal{A}_{a}, then any $x \in \mathcal{A}_{a}$ can be recovered, in a stable way, from the sequence of generalized samples $\left\{\mathcal{L}_{j} x(r m)\right\}_{m \in \mathbb{Z} ; j=1,2, \ldots, s}$, where necessarily $s \geq r$. Roughly speaking, the operator which maps

$$
\mathcal{A}_{a} \ni x \longmapsto\left\{\mathcal{L}_{j} x(r m)\right\}_{m \in \mathbb{Z} ; j=1,2, \ldots, s} \in \ell_{s}^{2}(\mathbb{Z}):=\ell^{2}(\mathbb{Z}) \underset{(s \text { times })}{\times \cdots \times \ell^{2}(\mathbb{Z})}
$$

has a bounded inverse.
Having in mind (4), from the sequence of samples $\left\{\mathcal{L}_{j} x(r m)\right\}_{m \in \mathbb{Z} ; j=1,2, \ldots, s}$ we recover $F \in L^{2}(0,1)$, and by means of the isomorphism $\mathcal{T}_{U, a}$, the vector $x=\mathcal{T}_{U, a} F \in \mathcal{A}_{a}$. This will be the main goal in the next section:

3 Generalized regular sampling in \mathcal{A}_{a}

Along with the characterization of the sequence $\left\{\overline{g_{j}(w)} \mathrm{e}^{2 \pi \mathrm{ir} n w}\right\}_{n \in \mathbb{Z} ; j=1,2, \ldots, s}$ as a frame in $L^{2}(0,1)$, in [13] a family of dual frames are also given: Choose functions h_{j} in $L^{\infty}(0,1), j=1,2, \ldots, s$, such that

$$
\begin{equation*}
\left[h_{1}(w), h_{2}(w), \ldots, h_{s}(w)\right] \mathbb{G}(w)=[1,0, \ldots, 0] \quad \text { a.e. in }(0,1) . \tag{7}
\end{equation*}
$$

It was proven in [13] that the sequence $\left\{r h_{j}(w) \mathrm{e}^{2 \pi \mathrm{i} r n w}\right\}_{n \in \mathbb{Z} ; j=1,2, \ldots, s}$ is a dual frame of the sequence $\left\{\overline{g_{j}(w)} \mathrm{e}^{2 \pi \mathrm{irnw}}\right\}_{n \in \mathbb{Z} ; j=1,2, \ldots, s}$ in $L^{2}(0,1)$. In other words, taking into account (4), we have for any $F \in L^{2}(0,1)$ the expansion

$$
\begin{equation*}
F=\sum_{j=1}^{s} \sum_{m \in \mathbb{Z}} \mathcal{L}_{j} x(r m) r h_{j}(w) \mathrm{e}^{2 \pi \mathrm{i} r m w} \quad \text { in } L^{2}(0,1) \tag{8}
\end{equation*}
$$

Concerning to the existence of the functions $h_{j}, j=1,2, \ldots, s$, consider the first row of the $r \times s$ Moore-Penrose pseudo-inverse $\mathbb{G}^{\dagger}(w)$ of $\mathbb{G}(w)$ given by

$$
\mathbb{G}^{\dagger}(w):=\left[\mathbb{G}^{*}(w) \mathbb{G}(w)\right]^{-1} \mathbb{G}^{*}(w)
$$

Its entries are essentially bounded in $(0,1)$ since the functions $g_{j}, j=1,2, \ldots, s$, and $\operatorname{det}^{-1}\left[\mathbb{G}^{*}(w) \mathbb{G}(w)\right]$ are essentially bounded in $(0,1)$, and (7) trivially holds. All the possible solutions of (7) are given by the first row of the $r \times s$ matrices given by

$$
\begin{equation*}
\mathbb{H}_{\mathbb{U}}(w):=\mathbb{G}^{\dagger}(w)+\mathbb{U}(w)\left[\mathbb{I}_{s}-\mathbb{G}(w) \mathbb{G}^{\dagger}(w)\right], \tag{9}
\end{equation*}
$$

where $\mathbb{U}(w)$ denotes any $r \times s$ matrix with entries in $L^{\infty}(0,1)$, and \mathbb{I}_{s} is the identity matrix of order s.

Applying the isomorphism $\mathcal{T}_{U, a}$ in (8), for $x=\mathcal{T}_{U, a} F \in \mathcal{A}_{a}$ we obtain the sampling expansion:

$$
\begin{align*}
x & =\sum_{j=1}^{s} \sum_{m \in \mathbb{Z}} \mathcal{L}_{j} x(r m) \mathcal{T}_{U, a}\left[r h_{j}(\cdot) \mathrm{e}^{2 \pi \mathrm{i} r m \cdot}\right]=\sum_{j=1}^{s} \sum_{m \in \mathbb{Z}} \mathcal{L}_{j} x(r m) U^{r m}\left[\mathcal{T}_{U, a}\left(r h_{j}\right)\right] \tag{10}\\
& =\sum_{j=1}^{s} \sum_{m \in \mathbb{Z}} \mathcal{L}_{j} x(r m) U^{r m} c_{j, h} \quad \text { in } \mathcal{H}
\end{align*}
$$

where $c_{j, h}:=\mathcal{T}_{U, a}\left(r h_{j}\right) \in \mathcal{A}_{a}, j=1,2, \ldots, s$, and we have used the U-shift property (2). Besides, the sequence $\left\{U^{r m} c_{j, h}\right\}_{m \in \mathbb{Z} ; j=1,2, \ldots, s}$ is a frame for \mathcal{A}_{a}. In fact, the following result holds:

Theorem 3. Let $b_{j} \in \mathcal{H}$ and let \mathcal{L}_{j} be its associated U-system for $j=1,2, \ldots, s$. Assume that the function $g_{j}, j=1,2, \ldots, s$, given in (5) belongs to $L^{\infty}(0,1)$; or equivalently, that $\beta_{\mathbb{G}}<\infty$ for the associated $s \times r$ matrix $\mathbb{G}(w)$. The following statements are equivalent:
(a) $\alpha_{G}>0$.
(b) There exists a vector $\left[h_{1}(w), h_{2}(w), \ldots, h_{s}(w)\right]$ with entries in $L^{\infty}(0,1)$ satisfying

$$
\left[h_{1}(w), h_{2}(w), \ldots, h_{s}(w)\right] \mathbb{G}(w)=[1,0, \ldots, 0] \quad \text { a.e. in }(0,1) .
$$

(c) There exist $c_{j} \in \mathcal{A}_{a}, j=1,2, \ldots, s$, such that the sequence $\left\{U^{r k} c_{j}\right\}_{k \in \mathbb{Z} ; j=1,2, \ldots, s}$ is a frame for \mathcal{A}_{a}, and for any $x \in \mathcal{A}_{a}$ the expansion

$$
\begin{equation*}
x=\sum_{j=1}^{s} \sum_{k \in \mathbb{Z}} \mathcal{L}_{j} x(r k) U^{r k} c_{j} \quad \text { in } \mathcal{H} \tag{11}
\end{equation*}
$$

holds.
(d) There exists a frame $\left\{C_{j, k}\right\}_{k \in \mathbb{Z} ; j=1,2, \ldots, s}$ for \mathcal{A}_{a} such that, for each $x \in \mathcal{A}_{a}$ the expansion

$$
x=\sum_{j=1}^{s} \sum_{k \in \mathbb{Z}} \mathcal{L}_{j} x(r k) C_{j, k} \quad \text { in } \mathcal{H}
$$

holds.
Proof. We have already proved that (a) implies (b) and that (b) implies (c). Obviously, (c) implies (d). As a consequence, we only need to prove that (d) implies (a). Applying the isomorphism $\mathcal{T}_{U, a}^{-1}$ to the expansion in (d), and taking into account (4) we obtain

$$
\begin{aligned}
F & =\mathcal{T}_{U, a}^{-1} x=\sum_{j=1}^{s} \sum_{k \in \mathbb{Z}} \mathcal{L}_{j} x(r k) \mathcal{T}_{U, a}^{-1}\left(C_{j, k}\right) \\
& =\sum_{j=1}^{s} \sum_{k \in \mathbb{Z}}\left\langle F, \overline{g_{j}(w)} \mathrm{e}^{2 \pi \mathrm{i} r k w}\right\rangle_{L^{2}(0,1)} \mathcal{T}_{U, a}^{-1}\left(C_{j, k}\right) \quad \text { in } L^{2}(0,1),
\end{aligned}
$$

where the sequence $\left\{\mathcal{T}_{U, a}^{-1}\left(C_{j, k}\right)\right\}_{k \in \mathbb{Z} ; j=1,2, \ldots, s}$ is a frame for $L^{2}(0,1)$. The sequence $\left\{\overline{g_{j}(w)} \mathrm{e}^{2 \pi \mathrm{i} r m w}\right\}_{m \in \mathbb{Z} ; j=1,2, \ldots, s}$ is a Bessel sequence in $L^{2}(0,1)$ since $\beta_{\mathbb{G}}<\infty$, and satisfying the above expansion in $L^{2}(0,1)$. According to [8, Lemma 5.6.2] the sequences $\left\{\mathcal{T}_{U, a}^{-1}\left(C_{j, k}\right)\right\}_{k \in \mathbb{Z} ; j=1,2, \ldots, s}$ and $\left\{\overline{g_{j}(w)} \mathrm{e}^{2 \pi i r k w}\right\}_{k \in \mathbb{Z} ; j=1,2, \ldots, s}$ form a pair of dual frames in $L^{2}(0,1)$; in particular, by using Lemma 2 we obtain that $\alpha_{\mathbb{G}}>0$ which concludes the proof.

In case the functions $g_{j}, j=1,2, \ldots, s$ are continuous on \mathbb{R}, condition (a) in Theorem 3 can be expressed in terms of the rank of the matrix $\mathbb{G}(w)$; notice that this occurs, for example, whenever the sequences $\left\{\mathcal{L}_{j} a(k)\right\}_{k \in \mathbb{Z}}, j=1,2, \ldots, s$, belong to $\ell^{1}(\mathbb{Z})$.

Corollary 4. Assume that the 1-periodic extension of the functions $g_{j}, j=1,2, \ldots, s$, given in (5) are continuous on \mathbb{R}. Then, the following conditions are equivalent:
(i) $\operatorname{rank} \mathbb{G}(w)=r$ for all $w \in \mathbb{R}$.
(ii) There exist $c_{j} \in \mathcal{A}_{a}, j=1,2, \ldots, s$, such that the sequence $\left\{U^{r k} c_{j}\right\}_{k \in \mathbb{Z} ; j=1,2, \ldots, s}$ is a frame for \mathcal{A}_{a}, and the sampling formula (11) holds for each $x \in \mathcal{A}_{a}$.

Proof. Whenever the functions $g_{j}, j=1,2, \ldots, s$, are continuous on \mathbb{R}, the condition $\alpha_{\mathbb{G}}>0$ is equivalent to $\operatorname{det}\left[\mathbb{G}^{*}(w) \mathbb{G}(w)\right] \neq 0$ for all $w \in \mathbb{R}$. Indeed, if $\operatorname{det} \mathbb{G}^{*}(w) \mathbb{G}(w)>0$ then the first row of the matrix $\mathbb{G}^{\dagger}(w):=\left[\mathbb{G}^{*}(w) \mathbb{G}(w)\right]^{-1} \mathbb{G}^{*}(w)$, gives a vector $\left[h_{1}, h_{2}, \ldots, h_{s}\right]$ satisfying the statement (b) in Theorem 3 and, as a consequence, $\alpha_{\mathbb{G}}>0$. The converse follows from the fact that $\operatorname{det}\left[\mathbb{G}^{*}(w) \mathbb{G}(w)\right] \geq \alpha_{\mathbb{G}}^{r}$ for all $w \in \mathbb{R}$. Since, $\operatorname{det}\left[\mathbb{G}^{*}(w) \mathbb{G}(w)\right] \neq 0$ is equivalent to $\operatorname{rank} \mathbb{G}(w)=r$ for all $w \in \mathbb{R}$, the result is a consequence of Theorem 3

Whenever the sampling period r equals the number of U-systems s we are in the presence of Riesz bases, and there exists a unique sampling expansion in Theorem 3:

Corollary 5. Let $b_{j} \in \mathcal{H}$ for $j=1,2, \ldots, r$, i.e., $r=s$ in Theorem 3. Let \mathcal{L}_{j} be its associated U-system for $j=1,2, \ldots, r$. Assume that the function $g_{j}, j=1,2, \ldots, r$, given in (5) belongs to $L^{\infty}(0,1)$; or equivalently, $\beta_{\mathbb{G}}<\infty$ for the associated $r \times r$ matrix $\mathbb{G}(w)$. The following statements are equivalent:
(a) $\alpha_{\mathbb{G}}>0$.
(b) There exists a Riesz basis $\left\{C_{j, k}\right\}_{k \in \mathbb{Z} ; j=1,2, \ldots, r}$ such that for any $x \in \mathcal{A}_{a}$ the expansion

$$
\begin{equation*}
x=\sum_{j=1}^{r} \sum_{k \in \mathbb{Z}} \mathcal{L}_{j} x(r k) C_{j, k} \quad \text { in } \mathcal{H} \tag{12}
\end{equation*}
$$

holds.
In case the equivalent conditions are satisfied, necessarily there exist $c_{j} \in \mathcal{A}_{a}, j=$ $1,2, \ldots, r$, such that $C_{j, k}=U^{r k} c_{j}$ for $k \in \mathbb{Z}$ and $j=1,2, \ldots, r$. Moreover, the interpolation property $\mathcal{L}_{j^{\prime}} c_{j}(r k)=\delta_{j, j^{\prime}} \delta_{k, 0}$, where $k \in \mathbb{Z}$ and $j, j^{\prime}=1,2, \ldots, r$, holds.

Proof. Assume that $\alpha_{\mathbb{G}}>0$; since $\mathbb{G}(w)$ is a square matrix, this implies that

$$
\underset{w \in \mathbb{R}}{\operatorname{essinf}}|\operatorname{det} \mathbb{G}(w)|>0 .
$$

Therefore, the first row of $\mathbb{G}^{-1}(w)$ gives the unique solution $\left[h_{1}(w), h_{2}(w), \ldots, h_{r}(w)\right]$ of (7) with $h_{j} \in L^{\infty}(0,1)$ for $j=1,2, \ldots, r$.
According to Theorem 3, the sequence $\left\{C_{j, k}\right\}_{k \in \mathbb{Z} ; j=1,2, \ldots, r}:=\left\{U^{r k} c_{j}\right\}_{k \in \mathbb{Z} ; j=1,2, \ldots, r}$, where $c_{j}=\mathcal{T}_{U, a}\left(r h_{j}\right)$, satisfies the sampling formula (12). Moreover, the sequence $\left\{r h_{j}(w) \mathrm{e}^{2 \pi \mathrm{i} r k w}\right\}_{k \in \mathbb{Z} ; j=1,2, \ldots, r}=\left\{\mathcal{T}_{U, a}^{-1}\left(U^{r k} c_{j}\right)\right\}_{k \in \mathbb{Z} ; j=1,2, \ldots, r}$ is a frame for $L^{2}(0,1)$. Since $r=s$, according to Lemma 2, it is a Riesz basis. Hence, $\left\{U^{r k} c_{j}\right\}_{k \in \mathbb{Z} ; j=1,2, \ldots, r}$ is a Riesz basis for \mathcal{A}_{a} and (b) is proved.

Conversely, assume now that $\left\{C_{j, k}\right\}_{k \in \mathbb{Z} ; j=1,2, \ldots, r}$ is a Riesz basis for \mathcal{A}_{a} satisfying (12). From the uniqueness of the coefficients in a Riesz basis, we get that the interpolatory condition $\left(\mathcal{L}_{j^{\prime}} C_{j, k}\right)\left(r k^{\prime}\right)=\delta_{j, j^{\prime}} \delta_{k, k^{\prime}}$ holds for $j, j^{\prime}=1,2, \ldots, r$ and $k, k^{\prime} \in \mathbb{Z}$. Since $\mathcal{T}_{U, a}^{-1}$ is an isomorphism, the sequence $\left\{\mathcal{T}_{U, a}^{-1}\left(C_{j, k}\right)\right\}_{k \in \mathbb{Z} ; j=1,2, \ldots, r}$ is a Riesz basis for $L^{2}(0,1)$. Expanding the function $\overline{g_{j^{\prime}}(w)} \mathrm{e}^{-2 \pi i r k^{\prime} w}$ with respect to the dual basis of $\left\{\mathcal{T}_{U, a}^{-1}\left(C_{j, k}\right)\right\}_{k \in \mathbb{Z} ; j=1,2, \ldots, r}$, denoted by $\left\{D_{j, k}\right\}_{k \in \mathbb{Z} ; j=1,2, \ldots, r}$, and having in mind (4) we obtain

$$
\begin{aligned}
\overline{g_{j^{\prime}}(w)} \mathrm{e}^{2 \pi \mathrm{i} r k^{\prime} w} & =\sum_{j=1}^{r} \sum_{k \in \mathbb{Z}}\left\langle\overline{g_{j^{\prime}}(\cdot)} \mathrm{e}^{2 \pi \mathrm{i} r k^{\prime}}, \mathcal{T}_{U, a}^{-1}\left(C_{j, k}\right)\right\rangle_{L^{2}(0,1)} D_{j, k}(w) \\
& =\sum_{k \in \mathbb{Z}} \overline{\mathcal{L}_{j^{\prime}} C_{j, k}\left(r k^{\prime}\right)} D_{j, k}(w)=D_{j^{\prime}, k^{\prime}}(w) .
\end{aligned}
$$

Therefore, the sequence $\left\{\overline{g_{j}(w)} \mathrm{e}^{2 \pi i r k w}\right\}_{k \in \mathbb{Z} ; j=1,2, \ldots, r}$ is the dual basis of the Riesz basis $\left\{\mathcal{T}_{U, a}^{-1}\left(C_{j, k}\right)\right\}_{k \in \mathbb{Z} ; j=1,2, \ldots, r}$. In particular, it is a Riesz basis for $L^{2}(0,1)$, which implies, according to Lemma 2, that $\alpha_{\mathbb{G}}>0$, i.e., condition (a). Moreover, the sequence $\left\{\mathcal{T}_{U, a}^{-1}\left(C_{j, k}\right)\right\}_{k \in \mathbb{Z} ; j=1,2, \ldots, r}$ is necessarily the unique dual basis of the Riesz basis $\left\{\overline{g_{j}(w)} \mathrm{e}^{2 \pi i r k w}\right\}_{k \in \mathbb{Z} ; j=1,2, \ldots, r}$. Therefore, this proves the uniqueness of the Riesz basis $\left\{C_{j, k}\right\}_{k \in \mathbb{Z} ; j=1,2, \ldots, r}$ for \mathcal{A}_{a} satisfying (12).

Some comments on the sequence $\left\{U^{r k} b_{j}\right\}_{k \in \mathbb{Z} ; j=1,2, \ldots, s}$

Concerning Theorem 3, more can be said about the sequence $\left\{U^{r k} b_{j}\right\}_{k \in \mathbb{Z} ; j=1,2, \ldots, s}$, where the vectors $b_{j} \in \mathcal{H}$ define the U-systems $\mathcal{L}_{j} \equiv \mathcal{L}_{b_{j}}, j=1,2, \ldots, s$. Having in mind (4) and the isomorphism $\mathcal{T}_{U, a}$, we obtain that

$$
\begin{equation*}
\frac{\alpha_{\mathbb{G}}}{r}\left\|\mathcal{T}_{U, a}\right\|^{-2}\|x\|^{2} \leq \sum_{j=1}^{s} \sum_{k \in \mathbb{Z}}\left|\left\langle x, U^{r k} b_{j}\right\rangle\right|^{2} \leq \frac{\beta_{\mathbb{G}}}{r}\left\|\mathcal{T}_{U, a}^{-1}\right\|^{2}\|x\|^{2} \quad \text { for all } x \in \mathcal{A}_{a} \tag{13}
\end{equation*}
$$

- In case that $b_{j} \in \mathcal{A}_{a}$ for each $j=1,2, \ldots, s$, we derive that $\left\{U^{r k} b_{j}\right\}_{k \in \mathbb{Z} ; j=1,2, \ldots, s}$ is a frame for \mathcal{A}_{a}, and it is dual to the frame $\left\{U^{r k} c_{j}\right\}_{k \in \mathbb{Z} ; j=1,2, \ldots, s}$ in \mathcal{A}_{a}. Thus, the sampling expansion (11) is nothing but a frame expansion in \mathcal{A}_{a}.
- In case that some $b_{j} \notin \mathcal{A}_{a}$, the sequence $\left\{U^{r k} b_{j}\right\}_{k \in \mathbb{Z} ; j=1,2, \ldots, s}$ is not contained in \mathcal{A}_{a}. However, inequalities (13) hold. Therefore, the sequence $\left\{U^{r k} b_{j}\right\}_{k \in \mathbb{Z} ; j=1,2, \ldots, s}$
is a pseudo-dual frame for the frame $\left\{U^{r k} c_{j}\right\}_{k \in \mathbb{Z} ; j=1,2, \ldots, s}$ in \mathcal{A}_{a} (see $[20,21]$). Denoting by $P_{\mathcal{A}_{a}}$ the orthogonal projection onto \mathcal{A}_{a}, we derive from (13) that the sequence $\left\{P_{\mathcal{A}_{a}}\left(U^{r k} b_{j}\right)\right\}_{k \in \mathbb{Z} ; j=1,2, \ldots, s}$ is a dual frame of $\left\{U^{r k} c_{j}\right\}_{k \in \mathbb{Z} ; j=1,2, \ldots, s}$ in \mathcal{A}_{a}.
- Whenever $r=s$, according to the above cases, the sequence $\left\{U^{r k} b_{j}\right\}_{k \in \mathbb{Z} ; j=1,2, \ldots, s}$ is a Riesz basis or a pseudo-Riesz basis for \mathcal{A}_{a}.

Sampling formulas with prescribed properties

The sampling formula (11) can be thought as a filter-bank. Indeed, assume that for $j=1,2, \ldots, s$ we have

$$
c_{j, h}=\mathcal{T}_{U, a}\left(r h_{j}\right)=r \sum_{n \in \mathbb{Z}} \widehat{h}_{j}(n) U^{n} a \quad \text { where } \quad \widehat{h}_{j}(n)=\int_{0}^{1} h_{j}(w) e^{-2 \pi \mathrm{i} n w} d w, n \in \mathbb{Z}
$$

Substituting in (11), after the change of summation index $m:=r k+n$ we obtain

$$
x=\sum_{m \in \mathbb{Z}}\left\{\sum_{j=1}^{s} \sum_{k \in \mathbb{Z}} r \mathcal{L}_{j} x(r k) \widehat{h}_{j}(m-r k)\right\} U^{m} a,
$$

that is, the relevant data is the output of a filter-bank:

$$
\alpha_{m}:=\sum_{j=1}^{s} \sum_{k \in \mathbb{Z}} r \mathcal{L}_{j} x(r k) \widehat{h}_{j}(m-r k), \quad m \in \mathbb{Z}
$$

where the input is the given samples and the impulse responses depend on the sampling vectors $c_{j, h}, j=1,2, \ldots, s$. In the oversampling setting, i.e., $s>r$, according to (9) there exist infinitely many sampling vectors $c_{j, h}, j=1,2, \ldots, s$, for which the sampling formula (11) holds. A natural question is whether we can choose the sampling vectors $c_{j, h}, j=1,2, \ldots, s$, with prescribed properties.

For instance, a challenging problem is to ask under what conditions we are in the presence of a FIR (finite impulse response) filter-bank; i.e, $c_{j, h}=r \sum_{\text {finite }} \widehat{h}_{j}(n) U^{n} a$, $j=1,2, \ldots, s$, or equivalently, when the functions $h_{j}, j=1, \ldots, s$, are 2π-periodic trigonometric polynomials. Instead, we deal with Laurent polynomials by using the variable $z=\mathrm{e}^{2 \pi \mathrm{i} w}$, that is, $\mathrm{g}_{j}(z):=\sum_{k \in \mathbb{Z}} \mathcal{L}_{j} a(k) z^{k}, j=1,2, \ldots, s$. We introduce the $s \times r$ matrix

$$
\mathrm{G}(z):=\left[\begin{array}{cccc}
\mathrm{g}_{1}(z) & \mathrm{g}_{1}(z W) & \cdots & \mathrm{g}_{1}\left(z W^{r-1}\right) \\
\mathrm{g}_{2}(z) & \mathrm{g}_{2}(z W) & \cdots & \mathrm{g}_{2}\left(z W^{r-1}\right) \\
\vdots & \vdots & & \vdots \\
\mathrm{g}_{s}(z) & \mathrm{g}_{s}(z W) & \cdots & \mathrm{g}_{s}\left(z W^{r-1}\right)
\end{array}\right]=\left[\mathrm{g}_{j}\left(z W^{k}\right)\right]_{\substack{j=1,2, \ldots, s \\
k=0,1, \ldots, r-1}},
$$

where W : $\mathrm{e}^{2 \pi \mathrm{i} / r}$. In case the functions $\mathrm{g}_{j}(z), j=1,2, \ldots, s$, are Laurent polynomials, the matrix $\mathrm{G}(z)$ has Laurent polynomials entries. Besides, the relationship $\mathbb{G}(w)=$ $\mathrm{G}\left(\mathrm{e}^{2 \pi \mathrm{i} w}\right), w \in(0,1)$, holds.

So that, we are interested in finding Laurent polynomials $\mathrm{h}_{j}(z), j=1,2 \ldots, s$, satisfying

$$
\left[\mathrm{h}_{1}(z), \mathrm{h}_{2}(z), \ldots, \mathrm{h}_{s}(z)\right] \mathrm{G}(z)=[1,0, \ldots, 0] .
$$

Thus, the trigonometric polynomials $h_{j}(w):=\mathrm{h}_{j}\left(\mathrm{e}^{2 \pi \mathrm{i} w}\right), j=1,2, \ldots, s$, satisfy (7), and the corresponding reconstruction vectors $c_{j, h}=\mathcal{T}_{U, a}\left(r h_{j}\right), j=1,2, \ldots, s$, can be expanded in \mathcal{A}_{a} with just a finite number of terms. Namely,

$$
c_{j, h}=r \sum_{\text {finite }} \widehat{h}_{j}(n) U^{n} a, \quad \text { where } \quad h_{j}(z)=\sum_{\text {finite }} \widehat{h}_{j}(n) z^{n}, j=1,2, \ldots, s
$$

The following result holds:
Theorem 6. Assume that the sequences $\left\{\mathcal{L}_{j} a(k)\right\}_{k \in \mathbb{Z}}, j=1,2, \ldots, s$, contain only a f inite number of nonzero terms. Then, there exists a vector $\mathrm{h}(z):=\left[\mathrm{h}_{1}(z), \mathrm{h}_{2}(z), \ldots, \mathrm{h}_{s}(z)\right]$ whose entries are Laurent polynomials, and satisfying $\mathrm{h}(z) \mathrm{G}(z)=[1,0, \ldots, 0]$ if and only if

$$
\operatorname{rank} \mathrm{G}(z)=r \quad \text { for all } z \in \mathbb{C} \backslash\{0\}
$$

Proof. This result is a consequence of the next lemma which proof can be found in [34, Theorems 5.1 and 5.6]:

Lemma 7. Let $\mathrm{G}(z)$ be an $s \times r$ matrix whose entries are Laurent polynomials. Then, there exists an $r \times s$ matrix $\mathrm{H}(z)$ whose entries are also Laurent polynomials satisfying $\mathrm{H}(z) \mathrm{G}(z)=\mathbb{I}_{r}$ if and only if $\operatorname{rank} \mathrm{G}(z)=r$ for all $z \in \mathbb{C} \backslash\{0\}$.

Analogously we can consider the case where the coefficients of the reconstruction vectors $c_{j, h}=r \sum_{n \in \mathbb{Z}} \widehat{h}_{j}(n) U^{n} a, j=1,2, \ldots, s$, have exponential decay, i.e., there exist $C>0$ and $q \in(0,1)$ such that $\left|\widehat{h}_{j}(n)\right| \leq C q^{|n|}, n \in \mathbb{Z}, j=1,2, \ldots, s$. Assuming that the sequences $\left\{\mathcal{L}_{j} a(k)\right\}_{k \in \mathbb{Z}}, j=1,2, \ldots, s$, have exponential decay then, we can find reconstruction vectors $c_{j, h}$ such that the sequences $\left\{\widehat{h}_{j}(n)\right\}_{n \in \mathbb{Z}}, j=1,2, \ldots, s$, have exponential decay if and only if $\operatorname{rank} \mathrm{G}(z)=r$ for all $z \in \mathbb{C}$ such that $|z|=1$. For the details, see [16] and references therein.

4 Time-jitter error: irregular sampling in \mathcal{A}_{a}

A close look to Section 3 shows that all the regular sampling results have been proved without the formalism of a continuous group of unitary operators $\left\{U^{t}\right\}_{t \in \mathbb{R}}$ in \mathcal{H} : we have only used the integer powers $\left\{U^{n}\right\}_{n \in \mathbb{Z}}$ which are completely determined from the unitary operator U. However, if we are concerned with the jitter-error in a sampling formula as (11), the group of unitary operators becomes essential. Here, we dispose of a perturbed sequence of samples $\left\{\left(\mathcal{L}_{j} x\right)\left(r m+\epsilon_{m j}\right)\right\}_{m \in \mathbb{Z} ; j=1,2, \ldots, s}$, with errors $\epsilon_{m j} \in \mathbb{R}$, for the recovery of $x \in \mathcal{A}_{a}$. By using (4) and (3) we obtain:

$$
\mathcal{L}_{j} x(r m)=\left\langle F, \overline{g_{j}(w)} \mathrm{e}^{2 \pi \mathrm{i} r m w}\right\rangle_{L^{2}(0,1)} \text { and } \mathcal{L}_{j} x\left(r m+\epsilon_{m j}\right)=\left\langle F, \overline{g_{m, j}(w)} \mathrm{e}^{2 \pi \mathrm{i} r m w}\right\rangle_{L^{2}(0,1)},
$$

where the functions

$$
g_{j}(w):=\sum_{k \in \mathbb{Z}} \mathcal{L}_{j} a(k) \mathrm{e}^{2 \pi \mathrm{i} k w} \quad \text { and } \quad g_{m, j}(w):=\sum_{k \in \mathbb{Z}} \mathcal{L}_{j} a\left(k+\epsilon_{m j}\right) \mathrm{e}^{2 \pi \mathrm{i} k w},
$$

belong to $L^{2}(0,1)$. Let $\mathbb{G}(w)$ be the $s \times r$ matrix given in (6), associated with the functions $g_{j}, j=1,2, \ldots, s$. In the case that $0<\alpha_{\mathbb{G}} \leq \beta_{\mathbb{G}}<\infty$, the sequence $\left\{\overline{g_{j}(w)} \mathrm{e}^{2 \pi \mathrm{i} r m w}\right\}_{m \in \mathbb{Z} ; j=1,2, \ldots, s}$ is a frame for $L^{2}(0,1)$ with optimal frame bounds $\alpha_{\mathbb{G}} / r$ and $\beta_{\mathbb{G}} / r$. Thus, as in [14], we can see the sequence $\left\{\overline{g_{m, j}(w)} \mathrm{e}^{2 \pi \mathrm{i} r m w}\right\}_{m \in \mathbb{Z} ; j=1,2, \ldots, s}$ in $L^{2}(0,1)$ as a perturbation of the frame $\left\{\overline{g_{j}(w)} \mathrm{e}^{2 \pi i r m w}\right\}_{m \in \mathbb{Z} ; j=1,2, \ldots, s}$ in $L^{2}(0,1)$. The following result on frame perturbation, which proof can be found in [8, p.354] will be used later:

Lemma 8. Let $\left\{x_{n}\right\}_{n=1}^{\infty}$ be a frame for the Hilbert space \mathcal{H} with frame bounds A, B, and let $\left\{y_{n}\right\}_{n=1}^{\infty}$ be a sequence in \mathcal{H}. If there exists a constant $R<A$ such that

$$
\sum_{n=1}^{\infty}\left|\left\langle x_{n}-y_{n}, x\right\rangle\right|^{2} \leq R\|x\|^{2} \quad \text { for each } x \in \mathcal{H}
$$

then the sequence $\left\{y_{n}\right\}_{n=1}^{\infty}$ is also a frame for \mathcal{H} with bounds $A(1-\sqrt{R / A})^{2}$ and $B(1+\sqrt{R / B})^{2}$. If the sequence $\left\{x_{n}\right\}_{n=1}^{\infty}$ is a Riesz basis, then the sequence $\left\{y_{n}\right\}_{n=1}^{\infty}$ is also a Riesz basis.

The time-jitter error sampling expansion

Given an error sequence $\boldsymbol{\epsilon}:=\left\{\epsilon_{m j}\right\}_{m \in \mathbb{Z} ; j=1,2, \ldots, s}$, assume that the operator

$$
\begin{array}{ccc}
D_{\epsilon}: & \ell^{2}(\mathbb{Z}) & \longrightarrow \ell_{s}^{2}(\mathbb{Z}) \\
& c=\left\{c_{l}\right\}_{l \in \mathbb{Z}} & \longmapsto D_{\epsilon} c:=\left(D_{\epsilon, 1} c, \ldots, D_{\epsilon, s} c\right),
\end{array}
$$

is well-defined, where, for $j=1,2, \ldots, s$,

$$
\begin{equation*}
D_{\epsilon, j} c:=\left\{\sum_{k \in \mathbb{Z}}\left[\mathcal{L}_{j} a\left(r m-k+\epsilon_{m j}\right)-\mathcal{L}_{j} a(r m-k)\right] c_{k}\right\}_{m \in \mathbb{Z}} . \tag{14}
\end{equation*}
$$

The operator norm (it could be infinity) is defined as usual

$$
\left\|D_{\epsilon}\right\|:=\sup _{c \in \ell^{2}(\mathbb{Z}) \backslash\{0\}} \frac{\left\|D_{\epsilon} c\right\|_{\ell_{s}^{2}(\mathbb{Z})}}{\|c\|_{\ell^{2}(\mathbb{Z})}},
$$

where $\left\|D_{\epsilon} c\right\|_{\ell_{s}^{2}(\mathbb{Z})}^{2}:=\sum_{j=1}^{s}\left\|D_{\epsilon, j} c\right\|_{\ell^{2}(\mathbb{Z})}^{2}$ for each $c \in \ell^{2}(\mathbb{Z})$.
Theorem 9. Assume that for the functions $g_{j}, j=1,2, \ldots, s$, given in (5) we have $0<\alpha_{\mathbb{G}} \leq \beta_{\mathbb{G}}<\infty$. Let $\boldsymbol{\epsilon}:=\left\{\epsilon_{m j}\right\}_{m \in \mathbb{Z} ; j=1,2, \ldots, s}$ be an error sequence satisfying the inequality $\left\|D_{\epsilon}\right\|^{2}<\alpha_{\mathbb{G}} / r$. Then, there exists a frame $\left\{C_{j, m}^{\epsilon}\right\}_{m \in \mathbb{Z} ; j=1,2, \ldots, s}$ for \mathcal{A}_{a} such that, for any $x \in \mathcal{A}_{a}$, the sampling expansion

$$
\begin{equation*}
x=\sum_{j=1}^{s} \sum_{m \in \mathbb{Z}} \mathcal{L}_{j} x\left(r m+\epsilon_{m j}\right) C_{j, m}^{\epsilon} \quad \text { in } \mathcal{H} \tag{15}
\end{equation*}
$$

holds. Moreover, when $r=s$ the sequence $\left\{C_{j, m}^{\epsilon}\right\}_{m \in \mathbb{Z} ; j=1,2, \ldots, s}$ is a Riesz basis for \mathcal{A}_{a}, and the interpolation property $\left(\mathcal{L}_{l} C_{j, n}^{\epsilon}\right)\left(r m+\epsilon_{m j}\right)=\delta_{j, l} \delta_{n, m}$ holds.

Proof. The sequence $\left\{\overline{g_{j}(w)} \mathrm{e}^{2 \pi \mathrm{i} r m w}\right\}_{m \in \mathbb{Z} ; j=1,2, \ldots, s}$ is a frame (a Riesz basis if $r=s$) for $L^{2}(0,1)$ with optimal frame (Riesz) bounds $\alpha_{\mathbb{G}} / r$ and $\beta_{\mathbb{G}} / r$. For any $F(w)=\sum_{l \in \mathbb{Z}} a_{l} \mathrm{e}^{2 \pi \mathrm{i} w}$ in $L^{2}(0,1)$ we have

$$
\begin{align*}
& \sum_{m \in \mathbb{Z}} \sum_{j=1}^{s}\left|\left\langle\overline{g_{m, j}(\cdot)} \mathrm{e}^{2 \pi \mathrm{i} r m \cdot}-\overline{g_{j}(\cdot)} \mathrm{e}^{2 \pi \mathrm{i} r m}, F(\cdot)\right\rangle_{L^{2}(0,1)}\right|^{2} \\
& =\sum_{m \in \mathbb{Z}} \sum_{j=1}^{s}\left|\left\langle\sum_{k \in \mathbb{Z}}\left(\overline{\mathcal{L}_{j} a\left(k+\epsilon_{m j}\right)}-\overline{\mathcal{L}_{j} a(k)}\right) \mathrm{e}^{2 \pi \mathrm{i}(r m-k)}, F(\cdot)\right\rangle_{L^{2}(0,1)}\right|^{2} \\
& =\sum_{m \in \mathbb{Z}} \sum_{j=1}^{s}\left|\left\langle\sum_{k \in \mathbb{Z}}\left(\overline{\mathcal{L}_{j} a\left(r m-k+\epsilon_{m j}\right)}-\overline{\mathcal{L}_{j} a(r m-k)}\right) \mathrm{e}^{2 \pi \mathrm{i} k}, F(\cdot)\right\rangle_{L^{2}(0,1)}\right|^{2} \tag{16}\\
& =\sum_{m \in \mathbb{Z}} \sum_{j=1}^{s}\left|\sum_{k \in \mathbb{Z}}\left(\overline{\mathcal{L}_{j} a\left(r m-k+\epsilon_{m j}\right)}-\overline{\mathcal{L}_{j} a(r m-k)}\right) \bar{a}_{k}\right|^{2} \\
& =\sum_{j=1}^{s}\left\|D_{\epsilon, j}\left\{a_{l}\right\}_{l \in \mathbb{Z}}\right\|_{\ell^{2}(\mathbb{Z})}^{2} \leq\left\|D_{\epsilon}\right\|^{2}\left\|\left\{a_{l}\right\}_{l \in \mathbb{Z}}\right\|_{\ell^{2}(\mathbb{Z})}^{2}=\left\|D_{\epsilon}\right\|^{2}\|F\|_{L^{2}(0,1)}^{2} .
\end{align*}
$$

By using Lemma 8 we obtain that the sequence $\left\{\overline{g_{m, j}(w)} \mathrm{e}^{2 \pi i r m w}\right\}_{m \in \mathbb{Z} ; j=1,2, \ldots, s}$ is a frame for $L^{2}(0,1)$ (a Riesz basis if $r=s$). Let $\left\{h_{j, m}^{\epsilon}\right\}_{m \in \mathbb{Z} ; j=1,2, \ldots, s}$ be its canonical dual frame. Hence, for any $F \in L^{2}(0,1)$

$$
\begin{aligned}
F & =\sum_{m \in \mathbb{Z}} \sum_{j=1}^{s}\left\langle F(\cdot), \overline{g_{m, j}(\cdot)} \mathrm{e}^{2 \pi \mathrm{i} r m \cdot}\right\rangle_{L^{2}(0,1)} h_{j, m}^{\epsilon} \\
& =\sum_{m \in \mathbb{Z}} \sum_{j=1}^{s} \mathcal{L}_{j} x\left(r m+\epsilon_{m j}\right) h_{j, m}^{\epsilon} \quad \text { in } L^{2}(0,1) .
\end{aligned}
$$

Applying the isomorphism $\mathcal{T}_{U, a}$, one gets (15), where $C_{j, m}^{\epsilon}:=\mathcal{T}_{U, a}\left(h_{j, m}^{\epsilon}\right)$ for $m \in \mathbb{Z}$ and $j=1,2, \ldots, s$. Since $\mathcal{T}_{U, a}$ is an isomorphism between $L^{2}(0,1)$ and \mathcal{A}_{a}, the sequence $\left\{C_{j, m}^{\epsilon}\right\}_{m \in \mathbb{Z} ; j=1,2, \ldots, s}$ is a frame for \mathcal{A}_{a} (a Riesz basis if $r=s$). The interpolatory property in the case $r=s$ follows from the uniqueness of the coefficients with respect to a Riesz basis.

Sampling formula (15) is useless from a practical point of view: it is impossible to determine the involved frame $\left\{C_{j, m}^{\epsilon}\right\}_{m \in \mathbb{Z} ; j=1,2, \ldots, s}$. As a consequence, in order to recover $x \in \mathcal{A}_{a}$ from the sequence of samples $\left\{\left(\mathcal{L}_{j} x\right)\left(r m+\epsilon_{m j}\right)\right\}_{m \in \mathbb{Z} ; j=1,2, \ldots, s}$ we should implement a frame algorithm in $\ell^{2}(\mathbb{Z})$ (see Ref. [14]); another possibility is given in Ref. [1].

In order to prove the existence of sequences $\boldsymbol{\epsilon}:=\left\{\epsilon_{m j}\right\}_{m \in \mathbb{Z} ; j=1, \ldots, s}$ such that $\left\|D_{\epsilon}\right\|^{2}<\alpha_{\mathbb{G}} / r$ we need some results from the group of unitary operators theory:

A brief excursion on groups of unitary operators

Let $\left\{U^{t}\right\}_{t \in \mathbb{R}}$ denote a continuous group of unitary operators in \mathcal{H}. Classical Stone's theorem [26] assures us the existence of a self-adjoint operator T (maybe unbounded)
such that $U^{t} \equiv \mathrm{e}^{\mathrm{i} t T}$. This self-adjoint operator T, defined on the dense domain of \mathcal{H}

$$
D_{T}:=\left\{x \in \mathcal{H} \text { such that } \int_{-\infty}^{\infty} w^{2} d\left\|E_{w} x\right\|^{2}<\infty\right\}
$$

admits the spectral representation $T=\int_{-\infty}^{\infty} w d E_{w}$ which means:

$$
\langle T x, y\rangle=\int_{-\infty}^{\infty} w d\left\langle E_{w} x, y\right\rangle \quad \text { for any } x \in D_{T} \text { and } y \in \mathcal{H},
$$

where $\left\{E_{w}\right\}_{w \in \mathbb{R}}$ is the corresponding resolution of the identity, i.e., a one-parameter family of projection operators E_{w} in \mathcal{H} such that
(i) $E_{-\infty}:=\lim _{w \rightarrow-\infty} E_{w}=O_{\mathcal{H}}, \quad E_{\infty}:=\lim _{w \rightarrow \infty} E_{w}=I_{\mathcal{H}}$,
(ii) $E_{w^{-}}=E_{w}$ for any $-\infty<w<\infty$,
(iii) $E_{u} E_{v}=E_{w}$ where $w=\min \{u, v\}$.

Recall that $\left\|E_{w} x\right\|^{2}$ and $\left\langle E_{w} x, y\right\rangle$, as functions of w, have bounded variation and define, respectively, a positive and a complex Borel measure on \mathbb{R}.
Furthermore, for any $x \in D_{T}$ we have that $\lim _{t \rightarrow 0} \frac{U^{t} x-x}{t}=\mathrm{i} T x$ and the operator $\mathrm{i} T$ is said to be the infinitesimal generator of the group $\left\{U^{t}\right\}_{t \in \mathbb{R}}$. For each $x \in D_{T}, U^{t} x$ is a continuous differentiable function of t. Notice that, whenever the self-adjoint operator T is bounded, $D_{T}=\mathcal{H}$ and $\mathrm{e}^{\mathrm{i} t T}$ can be defined as the usual exponential series; in any case, $U^{t} \equiv \mathrm{e}^{\mathrm{i} t T}$ means that

$$
\left\langle U^{t} x, y\right\rangle=\int_{-\infty}^{\infty} \mathrm{e}^{\mathrm{i} w t} d\left\langle E_{w} x, y\right\rangle, \quad t \in \mathbb{R}
$$

where $x \in D_{T}$ and $y \in \mathcal{H}$.
Finally, a comment on the continuity of a group of unitary operators: The group is said to be strongly continuous if, for each $x \in \mathcal{H}$ and $t_{0} \in \mathbb{R}, U^{t} x \rightarrow U^{t_{0}} x$ as $t \rightarrow t_{0}$. If \mathcal{H} is a separable Hilbert space, strong continuity can be deduced from continuity and even from weak measurability, i.e., $\left\langle U^{t} x, y\right\rangle_{\mathcal{H}}$ is a Lebesgue measurable function of t for any $x, y \in \mathcal{H}$. See, for instance, Refs. [2, 7, 32, 33].

On the existence of sequences $\boldsymbol{\epsilon}$ such that $\left\|D_{\boldsymbol{\epsilon}}\right\|^{2}<\alpha_{\mathbb{G}} / r$
Assuming that $b_{j} \in D_{T}, j=1,2, \ldots, s$, the functions $\mathcal{L}_{j} a(t), j=1,2, \ldots, s$, are continuously differentiable on \mathbb{R}. If, for instance, we demand in addition that, for each $j=1,2, \ldots, s$, there exists $\eta_{j}>0$ such that

$$
\begin{equation*}
\left(\mathcal{L}_{j} a\right)^{\prime}(t)=O\left(|t|^{-\left(1+\eta_{j}\right)}\right) \quad \text { whenever }|t| \rightarrow \infty, \tag{17}
\end{equation*}
$$

then we can find out a finite bound for the norm $\left\|D_{\epsilon}\right\|^{2}$. Indeed, for $j=1,2, \ldots, s$ and $n, m \in \mathbb{Z}$ denote

$$
d_{m, k}^{(j)}:=\mathcal{L}_{j} a\left(r m-k+\epsilon_{m, j}\right)-\mathcal{L}_{j} a(r m-k) .
$$

Taking into account (14), for any sequence $c=\left\{c_{k}\right\}_{k \in \mathbb{Z}} \in \ell^{2}(\mathbb{Z})$ we have

$$
\begin{align*}
& \left\|D_{\epsilon} c\right\|_{\ell_{s}^{2}(\mathbb{Z})}^{2}=\sum_{j=1}^{s} \sum_{m \in \mathbb{Z}}\left|\sum_{k \in \mathbb{Z}} d_{m, k}^{(j)} c_{k}\right|^{2} \leq \sum_{j=1}^{s} \sum_{m \in \mathbb{Z}} \sum_{l, k \in \mathbb{Z}}\left|d_{m, l}^{(j)} c_{l} \bar{d}_{m, k}^{(j)} \bar{c}_{k}\right| \\
& =\sum_{j=1}^{s} \sum_{l, k \in \mathbb{Z}}\left|c_{l}\right|\left|c_{k}\right| \sum_{m \in \mathbb{Z}}\left|d_{m, l}^{(j)} d_{m, k}^{(j)}\right| \leq \sum_{j=1}^{s} \sum_{l, k \in \mathbb{Z}} \frac{\left|c_{l}\right|^{2}+\left|c_{k}\right|^{2}}{2} \sum_{m \in \mathbb{Z}}\left|d_{m, l}^{(j)} d_{m, k}^{(j)}\right| \tag{18}\\
& =\sum_{j=1}^{s} \sum_{l \in \mathbb{Z}}\left|c_{l}\right|^{2} \sum_{k, m \in \mathbb{Z}}\left|d_{m, l}^{(j)} d_{m, k}^{(j)}\right| .
\end{align*}
$$

Under the decay conditions (17), for $|\gamma| \leq 1 / 2$ we define the continuous functions,

$$
M_{\left(\mathcal{L}_{j} a\right)^{\prime}}(\gamma):=\sum_{k \in \mathbb{Z}} \max _{t \in[k-\gamma, k+\gamma]}\left|\left(\mathcal{L}_{j} a\right)^{\prime}(t)\right|,
$$

and

$$
N_{\left(\mathcal{L}_{j} a\right)^{\prime}}(\gamma):=\max _{k=0,1, \ldots, r-1} \sum_{m \in \mathbb{Z}} \max _{t \in[r m+k-\gamma, r m+k+\gamma]}\left|\left(\mathcal{L}_{j} a\right)^{\prime}(t)\right| .
$$

Notice that $N_{\left(\mathcal{L}_{j} a\right)^{\prime}}(\gamma) \leq M_{\left(\mathcal{L}_{j} a\right)^{\prime}}(\gamma)$ and for $r=1$ the equality holds.
Theorem 10. Given an error sequence $\boldsymbol{\epsilon}:=\left\{\epsilon_{m j}\right\}_{m \in \mathbb{Z} ; j=1, \ldots, s}$, define the constant $\gamma_{j}:=\sup _{m \in \mathbb{Z}}\left|\epsilon_{m j}\right|$ for each $j=1,2, \ldots, s$. Then, the inequality

$$
\left\|D_{\epsilon}\right\|^{2} \leq \sum_{j=1}^{s} \gamma_{j}^{2} N_{\left(\mathcal{L}_{j} a\right)^{\prime}}\left(\gamma_{j}\right) M_{\left(\mathcal{L}_{j} a\right)^{\prime}}\left(\gamma_{j}\right)
$$

holds and, as a consequence, condition

$$
\sum_{j=1}^{s} \gamma_{j}^{2} N_{\left(\mathcal{L}_{j} a\right)^{\prime}}\left(\gamma_{j}\right) M_{\left(\mathcal{L}_{j} a\right)^{\prime}}\left(\gamma_{j}\right)<\frac{\alpha_{\mathbf{G}}}{r}
$$

ensures the hypothesis $\left\|D_{\epsilon}\right\|^{2}<\alpha_{\mathbb{G}} / r$ in Theorem 9.
Proof. For each $j=1,2, \ldots, s$, the mean value theorem gives

$$
\begin{equation*}
\sup _{d \in\left[-\gamma_{j}, \gamma_{j}\right]} \sum_{n \in \mathbb{Z}}\left|\mathcal{L}_{j} a(n+d)-\mathcal{L}_{j} a(n)\right| \leq \gamma_{j} M_{\left(\mathcal{L}_{j} a\right)^{\prime}}\left(\gamma_{j}\right), \tag{19}
\end{equation*}
$$

and

$$
\begin{equation*}
\sup _{\substack{k=0,1, \ldots, r-1 \\\left\{d_{n}\right\} \subset\left[-\gamma_{j}, \gamma_{j}\right]}} \sum_{n \in \mathbb{Z}}\left|\mathcal{L}_{j} a\left(r n+k+d_{n}\right)-\mathcal{L}_{j} a(r n+k)\right| \leq \gamma_{j} N_{\left(\mathcal{L}_{j} a\right)^{\prime}}\left(\gamma_{j}\right) . \tag{20}
\end{equation*}
$$

Thus, using (19) and (20), inequality (18) becomes

$$
\begin{align*}
\left\|D_{\epsilon} c\right\|_{\ell_{s}^{2}(\mathbb{Z})}^{2} & \leq \sum_{j=1}^{s} \sum_{l \in \mathbb{Z}}\left|c_{l}\right|^{2} \sum_{k, m \in \mathbb{Z}}\left|d_{m, l}^{(j)} d_{m, k}^{(j)}\right| \leq \sum_{j=1}^{s} \sum_{l \in \mathbb{Z}}\left|c_{l}\right|^{2} \sum_{m \in \mathbb{Z}}\left|d_{m, l}^{(j)}\right| \gamma_{j} M_{\left(\mathcal{L}_{j} a\right)^{\prime}}\left(\gamma_{j}\right) \\
& \leq \sum_{j=1}^{s} \sum_{l \in \mathbb{Z}}\left|c_{l}\right|^{2}\left(\gamma_{j}\right)^{2} M_{\left(\mathcal{L}_{j} a\right)^{\prime}}\left(\gamma_{j}\right) N_{\left(\mathcal{L}_{j} a\right)^{\prime}}\left(\gamma_{j}\right) \tag{21}\\
& =\|c\|_{\ell^{2}(\mathbb{Z})}^{2} \sum_{j=1}^{s} \gamma_{j}^{2} N_{\left(\mathcal{L}_{j} a\right)^{\prime}}\left(\gamma_{j}\right) M_{\left(\mathcal{L}_{j} a\right)^{\prime}}\left(\gamma_{j}\right),
\end{align*}
$$

which concludes the proof.

5 The case of multiple generators

The case of L generators can be analogously derived. Indeed, consider the U-invariant subspace generated by $\mathbf{a}:=\left\{a_{1}, a_{2}, \ldots, a_{L}\right\} \subset \mathcal{H}$, i.e.,

$$
\mathcal{A}_{\mathbf{a}}:=\overline{\operatorname{span}}\left\{U^{n} a_{l}, n \in \mathbb{Z} ; l=1,2 \ldots, L\right\} .
$$

Assuming that the sequence $\left\{U^{n} a_{l}\right\}_{n \in \mathbb{Z} ; l=1,2, \ldots, L}$ is a Riesz sequence in \mathcal{H}, the U invariant subspace $\mathcal{A}_{\mathbf{a}}$ can be expressed as

$$
\mathcal{A}_{\mathbf{a}}=\left\{\sum_{l=1}^{L} \sum_{n \in \mathbb{Z}} \alpha_{n}^{l} U^{n} a:\left\{\alpha_{n}^{l}\right\}_{n \in \mathbb{Z}} \in \ell^{2}(\mathbb{Z}) ; l=1,2 \ldots, L\right\} .
$$

The sequence $\left\{U^{n} a_{l}\right\}_{n \in \mathbb{Z} ; l=1,2, \ldots, L}$ can be thought as an L-dimensional stationary sequence. Its covariance matrix $\mathbf{R}_{\mathbf{a}}(k)$ is the $L \times L$ matrix

$$
\mathbf{R}_{\mathbf{a}}(k):=\left[\left\langle U^{k} a_{m}, a_{n}\right\rangle_{\mathcal{H}}\right]_{m, n=1,2, \ldots, L}, \quad k \in \mathbb{Z}
$$

Its admits the spectral representation [19]:

$$
\mathbf{R}_{\mathbf{a}}(k)=\frac{1}{2 \pi} \int_{-\pi}^{\pi} \mathrm{e}^{\mathrm{i} k \theta} d \boldsymbol{\mu}_{\mathbf{a}}(\theta), \quad k \in \mathbb{Z}
$$

The spectral measure $\boldsymbol{\mu}_{\mathrm{a}}$ is an $L \times L$ matrix; its entries are the spectral measures associated with the cross-correlation functions $R_{m, n}(k):=\left\langle U^{k} a_{m}, a_{n}\right\rangle_{\mathcal{H}}$. It can be decomposed into an absolute continuous part and its singular part. Thus we can write

$$
d \boldsymbol{\mu}_{\mathbf{a}}(\theta)=\boldsymbol{\Phi}_{\mathbf{a}}(\theta) d \theta+d \boldsymbol{\mu}_{\mathbf{a}}^{s}(\theta) .
$$

In case that the singular part $\boldsymbol{\mu}_{\mathbf{a}}^{s} \equiv 0$, the hermitian $L \times L$ matrix $\boldsymbol{\Phi}_{\mathbf{a}}(\theta)$ is called the spectral density of the sequence $\left\{U^{n} a_{l}\right\}_{n \in \mathbb{Z} ; l=1,2, \ldots, L}$. The following theorem holds:

Theorem 11. Let $\left\{U^{n} a_{l}\right\}_{n \in \mathbb{Z} ; l=1,2, \ldots, L}$ be a sequence obtained from a unitary operator in a separable Hilbert space \mathcal{H} with spectral measure $d \boldsymbol{\mu}_{\mathbf{a}}(\theta)=\mathbf{\Phi}_{\mathbf{a}}(\theta) d \theta+d \boldsymbol{\mu}_{\mathbf{a}}^{s}(\theta)$, and let $\mathcal{A}_{\mathbf{a}}$ be the closed subspace spanned by $\left\{U^{n} a_{l}\right\}_{n \in \mathbb{Z} ; l=1,2, \ldots, L}$. Then the sequence $\left\{U^{n} a_{l}\right\}_{n \in \mathbb{Z} ; l=1,2, \ldots, L}$ is a Riesz basis for $\mathcal{A}_{\mathbf{a}}$ if and only if the singular part $\boldsymbol{\mu}_{\mathbf{a}}^{s} \equiv 0$ and

$$
\begin{equation*}
0<\underset{\theta \in(-\pi, \pi)}{\operatorname{essinf}} \lambda_{\min }\left[\mathbf{\Phi}_{\mathbf{a}}(\theta)\right] \leq \underset{\theta \in(-\pi, \pi)}{\operatorname{ess} \sup } \lambda_{\max }\left[\mathbf{\Phi}_{\mathbf{a}}(\theta)\right]<\infty . \tag{22}
\end{equation*}
$$

Proof. For a fixed ℓ_{L}^{2}-sequence $c:=\left\{c_{n}^{l}\right\}_{n \in \mathbb{Z} ; l=1,2, \ldots, L}$ we have

$$
\begin{align*}
\left\|\sum_{l=1}^{L} \sum_{k \in \mathbb{Z}} c_{k}^{l} U^{k} a_{l}\right\|^{2} & =\sum_{i, j=1}^{L} \sum_{m \in \mathbb{Z}} \sum_{n \in \mathbb{Z}} c_{m}^{i} \bar{c}_{m}^{j}\left\langle U^{m} a_{i}, U^{n} a_{j}\right\rangle \\
& =\sum_{i, j=1}^{L} \sum_{m \in \mathbb{Z}} \sum_{n \in \mathbb{Z}} c_{m}^{i} \bar{c}_{n}^{j} \frac{1}{2 \pi} \int_{-\pi}^{\pi} \mathrm{e}^{\mathrm{i} m \theta} \mathrm{e}^{-\mathrm{i} n \theta} d \mu_{a_{i}, a_{j}}(\theta) \tag{23}\\
& =\frac{1}{2 \pi} \int_{-\pi}^{\pi} \sum_{m \in \mathbb{Z}} \sum_{n \in \mathbb{Z}}\left(\mathbf{c}_{m} \mathrm{e}^{\mathrm{i} m \theta}\right)^{\top} d \boldsymbol{\mu}_{\mathbf{a}}(\theta) \overline{\mathbf{c}}_{n} \mathrm{e}^{-\mathrm{i} n \theta}
\end{align*}
$$

where $\mathbf{c}_{k}=\left(c_{k}^{1}, c_{k}^{2}, \ldots, c_{k}^{L}\right)^{\top}$ for every $k \in \mathbb{Z}$.
First we show that if the measure $\boldsymbol{\mu}_{\mathrm{a}}$ is not absolutely continuous with respect to Lebesgue measure λ then $\left\{U^{n} a_{l}\right\}_{n \in \mathbb{Z} ; l=1,2, \ldots, L}$ is not a Riesz basis for $\mathcal{A}_{\mathbf{a}}$. Indeed, if the spectral measure $\boldsymbol{\mu}_{\mathbf{a}}$ is not absolutely continuous with respect to Lebesgue measure then there exists $i \in\{1,2, \ldots, L\}$ such that the positive spectral measure $\mu_{a_{i}, a_{i}}$ is not absolutely continuous with respect to Lebesgue measure; this comes from the fact that, if any spectral measure in the diagonal $\mu_{a_{j}, a_{j}}$ is absolutely continuous with respect to Lebesgue measure, the same occurs for each measure $\mu_{a_{j}, a_{k}}$ with $k \neq j$ (see [7, p. 137]). Then, $\mu_{a_{i}, a_{i}}(B)>0$ for a (Lebesgue) measurable set $B \subset(-\pi, \pi)$ of Lebesgue measure zero. Bearing in mind that every measurable set is included in a Borel set, actually an intersection of a countable collection of open sets, having the same Lebesgue measure (see [25, p. 63]), we take B to be a Borel set. Moreover, since every finite Borel measure on $(-\pi, \pi)$ is inner regular (see [25, p. 340]) we may also assume that B is a compact set. For any $\varepsilon>0$ there exists a sequence of disjoint open intervals $I_{j} \subset(-\pi, \pi)$ such that

$$
B \subset \bigcup_{j=1}^{\infty} I_{j} \text { and } \sum_{j=1}^{\infty} \lambda\left(I_{j}\right) \leq \lambda(B)+\varepsilon=\varepsilon
$$

(see [25, pp. 58 and 42$]$). Since B is compact we may take the sequence to be finite. Hence, for every $N \in \mathbb{N}$ there exist open disjoint intervals $I_{1}^{N}, I_{2}^{N}, \ldots, I_{j_{N}}^{N}$ in $(-\pi, \pi)$ such that

$$
B \subset \bigcup_{j=1}^{j_{N}} I_{j}^{N} \quad \text { and } \quad \sum_{j=1}^{j_{N}} \lambda\left(I_{j}^{N}\right) \leq \frac{1}{3^{N}}
$$

Besides, $\sum_{j=1}^{j_{N}} \mu_{a_{i}, a_{i}}\left(I_{j}^{N}\right) \geq \mu_{a_{i}, a_{i}}(B)$. Consider the function $g_{N}:(-\pi, \pi) \rightarrow \mathbb{R}$, where $g_{N}=2^{N / 2} \chi_{\cup_{j=1}^{j_{N}} I_{j}^{N}}$, that satisfies

$$
\left\|g_{N}\right\|_{2}^{2}=2^{N} \sum_{j=1}^{j_{N}} \lambda\left(I_{j}^{N}\right) \leq \frac{2^{N}}{3^{N}}<1
$$

We modify and extend each g_{N} to obtain a 2π-periodic function $f_{N}: \mathbb{R} \longrightarrow \mathbb{R}$ such that f_{N} and its derivative are continuous on $\mathbb{R},\left\|f_{N}\right\|_{2}^{2} \leq 1$ and $f_{N}(\theta)=g_{N}(\theta)$ for every $\theta \in \bigcup_{j=1}^{j N} I_{j}^{N}$. Let $\sum_{k} c_{k}^{N} \mathrm{e}^{\mathrm{i} k \theta}$ be the Fourier series of f_{N}. First, by using Parseval's identity we have

$$
\left\|c_{k}^{N}\right\|_{2}^{2}=\frac{1}{2 \pi}\left\|f_{N}\right\|_{2}^{2} \leq \frac{1}{2 \pi} \text { for every } N \in \mathbb{N}
$$

so that $\left\{c^{N}\right\}_{N=1}^{\infty}$ is a bounded sequence in $\ell^{2}(\mathbb{Z})$. Besides, the regularity of each f_{N} ensures that each Fourier series converges uniformly to f_{N}. Therefore each series $\sum_{k} c_{k}^{N} \mathrm{e}^{\mathrm{i} k \theta}$ converges to f_{N} in $L_{\mu_{a_{i}, a_{i}}(-\pi, \pi)}^{2}$ and consequently,

$$
\begin{aligned}
\left\|\sum_{k} c_{k}^{N} \mathrm{e}^{\mathrm{i} k \theta}\right\|_{L_{\mu_{a_{i}, a_{i}}^{2}}^{2}(-\pi, \pi)}^{2} & =\int_{-\pi}^{\pi}\left|f_{N}\right|^{2} d \mu_{a_{i}, a_{i}} \geq \int_{-\pi}^{\pi}\left|g_{N}\right|^{2} d \mu_{a_{i}, a_{i}}=2^{N} \sum_{j=1}^{j_{N}} \mu_{a_{i}, a_{i}}\left(I_{j}^{N}\right) \\
& \geq 2^{N} \mu_{a_{i}, a_{i}}(B)
\end{aligned}
$$

For every $c^{N} \in \ell^{2}(\mathbb{Z})$ we consider the ℓ_{L}^{2}-sequence $\left\{c_{n}^{N l}\right\}_{n \in \mathbb{Z} ; l=1,2, \ldots, L}$ given by $c_{n}^{N i}=c_{n}^{N}$ and $c_{n}^{N l}=0$ if $l \neq i$. Substituting each $\left\{c_{n}^{N l}\right\}_{n \in \mathbb{Z} ; l=1,2, \ldots, L}$ in (23) we have that

$$
\left\|\sum_{l=1}^{L} \sum_{k \in \mathbb{Z}} c_{k}^{N l} U^{k} a_{l}\right\|^{2}=\frac{1}{2 \pi} \int_{-\pi}^{\pi}\left|\sum_{k \in \mathbb{Z}} c_{k}^{N} \mathrm{e}^{\mathrm{i} k \theta}\right|^{2} d \mu_{a_{i}, a_{i}}(\theta)
$$

tends to infinity with N, so $\left\{U^{n} a_{l}\right\}_{n \in \mathbb{Z} ; l=1,2, \ldots, L}$ cannot be a Bessel sequence, therefore, not a Riesz basis.

For the remainder of the proof we assume that the singular part $\boldsymbol{\mu}_{\mathbf{a}}^{s} \equiv 0$ and that $d \boldsymbol{\mu}_{\mathbf{a}}(\theta)=\boldsymbol{\Phi}_{\mathbf{a}}(\theta) d \theta$. Then (23) yields that

$$
\begin{equation*}
\left\|\sum_{l=1}^{L} \sum_{k \in \mathbb{Z}} c_{k}^{l} U^{k} a_{l}\right\|^{2}=\frac{1}{2 \pi} \int_{-\pi}^{\pi}\left(\sum_{m \in \mathbb{Z}} \mathbf{c}_{m} \mathrm{e}^{\mathrm{i} m \theta}\right)^{\top} \mathbf{\Phi}_{\mathbf{a}}(\theta) \overline{\sum_{n \in \mathbb{Z}} \mathbf{c}_{n} \mathrm{e}^{\mathrm{i} n \theta}} d \theta . \tag{24}
\end{equation*}
$$

We have to show that $\left\{U^{n} a_{l}\right\}_{n \in \mathbb{Z} ; l=1,2, \ldots, L}$ is a Riesz basis for $\mathcal{A}_{\mathbf{a}}$ if and only if (22) holds. Rayleigh-Ritz theorem (see [17, p. 176]) provides the inequalities
$\lambda_{\min }\left[\boldsymbol{\Phi}_{\mathbf{a}}(\theta)\right]\left|\sum_{k \in \mathbb{Z}} \mathbf{c}_{k} \mathrm{e}^{\mathrm{i} k \theta}\right|^{2} \leq\left(\sum_{m \in \mathbb{Z}} \mathbf{c}_{m} \mathrm{e}^{\mathrm{i} m \theta}\right)^{\top} \boldsymbol{\Phi}_{\mathbf{a}}(\theta) \overline{\sum_{n \in \mathbb{Z}} \mathbf{c}_{n} \mathrm{e}^{\mathrm{i} n \theta}} \leq \lambda_{\max }\left[\mathbf{\Phi}_{\mathbf{a}}(\theta)\right]\left|\sum_{k \in \mathbb{Z}} \mathbf{c}_{k} \mathrm{e}^{\mathrm{i} k \theta}\right|^{2}$
and taking into account (24) we have

$$
\begin{aligned}
\frac{1}{2 \pi} \int_{-\pi}^{\pi} \lambda_{\min }\left[\mathbf{\Phi}_{\mathbf{a}}(\theta)\right]\left|\sum_{k \in \mathbb{Z}} \mathbf{c}_{k} \mathrm{e}^{\mathrm{i} k \theta}\right|^{2} d \theta & \leq\left\|\sum_{l=1}^{L} \sum_{k \in \mathbb{Z}} c_{k}^{l} U^{k} a_{l}\right\|^{2} \\
& \leq \frac{1}{2 \pi} \int_{-\pi}^{\pi} \lambda_{\max }\left[\mathbf{\Phi}_{\mathbf{a}}(\theta)\right]\left|\sum_{k \in \mathbb{Z}} \mathbf{c}_{k} \mathrm{e}^{\mathrm{i} k \theta}\right|^{2} d \theta
\end{aligned}
$$

so that

$$
\begin{aligned}
\underset{\theta \in(-\pi, \pi)}{\operatorname{ess} \inf } \lambda_{\min }\left[\mathbf{\Phi}_{\mathbf{a}}(\theta)\right] \sum_{l=1}^{L} \sum_{k \in \mathbb{Z}}\left|c_{k}^{l}\right|^{2} & \leq\left\|\sum_{l=1}^{L} \sum_{k \in \mathbb{Z}} c_{k}^{l} U^{k} a_{l}\right\|^{2} \\
& \leq \underset{\theta \in(-\pi, \pi)}{\operatorname{ess} \sup } \lambda_{\max }\left[\mathbf{\Phi}_{\mathbf{a}}(\theta)\right] \sum_{l=1}^{L} \sum_{k \in \mathbb{Z}}\left|c_{k}^{l}\right|^{2} .
\end{aligned}
$$

Therefore (22) implies that $\left\{U^{n} a_{l}\right\}_{n \in \mathbb{Z} ; l=1,2, \ldots, L}$ is a Riesz basis for $\mathcal{A}_{\mathbf{a}}$.
Conversely, if $\left\{U^{n} a_{l}\right\}_{n \in \mathbb{Z} ; l=1,2, \ldots, L}$ is a Riesz basis for $\mathcal{A}_{\mathbf{a}}$ then there exist constants $0<A \leq B<\infty$ such that

$$
\begin{equation*}
A \sum_{l=1}^{L} \sum_{k \in \mathbb{Z}}\left|c_{k}^{l}\right|^{2} \leq\left\|\sum_{l=1}^{L} \sum_{k \in \mathbb{Z}} c_{k}^{l} U^{k} a_{l}\right\|^{2} \leq B \sum_{l=1}^{L} \sum_{k \in \mathbb{Z}}\left|c_{k}^{l}\right|^{2} \tag{25}
\end{equation*}
$$

for every ℓ_{L}^{2}-sequence $c:=\left\{c_{n}^{l}\right\}_{n \in \mathbb{Z} ; l=1,2, \ldots, L}$. Let us prove that

$$
\begin{equation*}
A \leq \operatorname{essinf}_{\theta \in(-\pi, \pi)}^{\operatorname{ess}} \lambda_{\min }\left[\mathbf{\Phi}_{\mathbf{a}}(\theta)\right] \leq \operatorname{esssup}_{\theta \in(-\pi, \pi)} \lambda_{\max }\left[\mathbf{\Phi}_{\mathbf{a}}(\theta)\right] \leq B . \tag{26}
\end{equation*}
$$

Proceeding by contradiction, if (26) would not hold, then

$$
A \leq \lambda_{\min }\left[\mathbf{\Phi}_{\mathbf{a}}(\theta)\right] \leq \lambda_{\max }\left[\mathbf{\Phi}_{\mathbf{a}}(\theta)\right] \leq B
$$

does not hold on a subset of $(-\pi, \pi)$ with positive Lebesgue measure. In case the set $\Gamma_{B}:=\left\{\theta \in(-\pi, \pi): \lambda_{\max }\left[\mathbf{\Phi}_{\mathbf{a}}(\theta)\right]>B\right\}$ has positive Lebesgue measure we introduce the Fourier expansion of the function $F \in L_{L}^{2}(-\pi, \pi)\left(L_{L}^{2}(-\pi, \pi)\right.$ denotes the usual product Hilbert space $L^{2}(-\pi, \pi) \times \cdots \times L^{2}(-\pi, \pi)(L$ times $\left.)\right)$ in (24), where $F(\theta)=$ $\mathbf{X}(\theta) \chi_{\Gamma_{B}}(\theta)$ and $\mathbf{X}(\theta)$ is an eigenvector of norm 1 associated with the biggest eigenvalue of $\boldsymbol{\Phi}_{\mathbf{a}}(\theta)$. We get

$$
\left\|\sum_{l=1}^{L} \sum_{k \in \mathbb{Z}} c_{k}^{l} U^{k} a_{l}\right\|^{2}=\frac{1}{2 \pi} \int_{\Gamma_{B}} \lambda_{\max }\left[\mathbf{\Phi}_{\mathbf{a}}(\theta)\right] d \theta>\frac{1}{2 \pi} \int_{\Gamma_{B}} B d \theta
$$

which contradicts the right inequality in (25) for such a Fourier expansion. Whenever Lebesgue measure of the set Γ_{B} is zero then we proceed in a similar way with the set of positive Lebesgue measure $\Gamma_{A}:=\left\{\theta \in(-\pi, \pi): \lambda_{\min }\left[\mathbf{\Phi}_{\mathbf{a}}(\theta)\right]<A\right\}$.

The above proof is similar to that of Lemma 2 in [24], except we do not exclude the case in which the singular measure is atomless. Another characterization for being $\left\{U^{n} a_{l}\right\}_{n \in \mathbb{Z} ; l=1,2, \ldots, L}$ a Riesz basis for $\mathcal{A}_{\mathbf{a}}$ can be found in [3].

The resulting regular sampling formulas

As in the one-generator case, the space $\mathcal{A}_{\mathbf{a}}$ is the image of the usual product Hilbert space $L_{L}^{2}(0,1)$ by means of the isomorphism $\mathcal{T}_{U, \mathbf{a}}: L_{L}^{2}(0,1) \longrightarrow \mathcal{A}_{\mathbf{a}}$, which maps the orthonormal basis $\left\{\mathrm{e}^{-2 \pi \mathrm{inw}} \mathbf{e}_{l}\right\}_{n \in \mathbb{Z} ; l=1,2, \ldots, L}$ for $L_{L}^{2}(0,1)$ (here, $\left\{\mathbf{e}_{l}\right\}_{l=1}^{L}$ denotes the canonical basis for \mathbb{C}^{L}) onto the Riesz basis $\left\{U^{n} a_{l}\right\}_{n \in \mathbb{Z} ; l=1,2, \ldots, L}$ for $\mathcal{A}_{\mathbf{a}}$, i.e.,

$$
\begin{equation*}
\mathcal{T}_{U, \mathbf{a}} \mathbf{F}:=\sum_{l=1}^{L} \sum_{n \in \mathbb{Z}}\left\langle F_{l}, \mathrm{e}^{2 \pi \mathrm{i} n \cdot}\right\rangle_{L^{2}(0,1)} U^{n} a_{l}=\sum_{l=1}^{L} \sum_{n \in \mathbb{Z}} \alpha_{n}^{l} U^{n} a_{l} \tag{27}
\end{equation*}
$$

where $\mathbf{F}=\left(F_{1}, F_{2}, \ldots, F_{L}\right)^{\top} \in L_{L}^{2}(0,1)$.
Here, for $\mathbf{F} \in L_{L}^{2}(0,1)$ and $N \in \mathbb{Z}$ the U-shift property reads:

$$
\begin{equation*}
\mathcal{T}_{U, \mathbf{a}}\left(\mathbf{F e}^{2 \pi \mathrm{i} N w}\right)=U^{N}\left(\mathcal{T}_{U, \mathbf{a}} \mathbf{F}\right) \tag{28}
\end{equation*}
$$

Concerning the representation of an U-system \mathcal{L}_{b}, for $x \in \mathcal{A}_{\mathbf{a}}$ we have

$$
\begin{aligned}
& \mathcal{L}_{b} x(t)=\left\langle x, U^{t} b\right\rangle_{\mathcal{H}}=\sum_{l=1}^{L} \sum_{n \in \mathbb{Z}} \alpha_{n}^{l}{\overline{\left\langle U^{t} b, U^{n} a_{l}\right\rangle_{\mathcal{H}}}} \\
&=\sum_{l=1}^{L}\left\langle F_{l}, \sum_{n \in \mathbb{Z}}\left\langle U^{t} b, U^{n} a_{l}\right\rangle_{\mathcal{H}} \mathrm{e}^{2 \pi \mathrm{i} n w}\right\rangle_{L^{2}(0,1)}=\left\langle\mathbf{F}, \mathbf{K}_{t}\right\rangle_{L_{L}^{2}(0,1)},
\end{aligned}
$$

where $\mathcal{T}_{U, a} \mathbf{F}=x, \mathbf{F}=\left(F_{1}, F_{2}, \ldots, F_{L}\right)^{\top} \in L_{L}^{2}(0,1)$, and the function
$\mathbf{K}_{t}(w):=\left(\sum_{n \in \mathbb{Z}} \overline{\mathcal{L}_{b} a_{1}(t-n)} \mathrm{e}^{2 \pi \mathrm{i} n w}, \sum_{n \in \mathbb{Z}} \overline{\mathcal{L}_{b} a_{2}(t-n)} \mathrm{e}^{2 \pi \mathrm{i} n w}, \ldots, \sum_{n \in \mathbb{Z}} \overline{\mathcal{L}_{b} a_{L}(t-n)} \mathrm{e}^{2 \pi \mathrm{i} n w}\right)^{\top}$
belongs to $L_{L}^{2}(0,1)$. In particular, given $s U$-systems $\mathcal{L}_{j}:=\mathcal{L}_{b_{j}}$ associated with $b_{j} \in \mathcal{H}$, $j=1,2, \ldots, s$, we get the expression for the samples $\left\{\mathcal{L}_{j} x(r m)\right\}_{m \in \mathbb{Z} ; j=1,2, \ldots, s}$:

$$
\begin{equation*}
\mathcal{L}_{j} x(r m)=\left\langle\mathbf{F}, \overline{\mathbf{g}_{j}(w)} \mathrm{e}^{2 \pi \mathrm{i} r m w}\right\rangle_{L_{L}^{2}(0,1)} \quad \text { for } m \in \mathbb{Z} \text { and } j=1,2, \ldots, s \tag{29}
\end{equation*}
$$

where $\mathcal{T}_{U, a} \mathbf{F}=x$ and

$$
\mathbf{g}_{j}(w):=\left(\sum_{k \in \mathbb{Z}} \mathcal{L}_{j} a_{1}(k) \mathrm{e}^{2 \pi \mathrm{i} k w}, \sum_{k \in \mathbb{Z}} \mathcal{L}_{j} a_{2}(k) \mathrm{e}^{2 \pi \mathrm{i} k w}, \ldots, \sum_{k \in \mathbb{Z}} \mathcal{L}_{j} a_{L}(k) \mathrm{e}^{2 \pi \mathrm{i} k w}\right)^{\top} \in L_{L}^{2}(0,1) .
$$

As in the one-generator case we must study the sequence $\left\{\overline{\mathbf{g}_{j}(w)} \mathrm{e}^{2 \pi \mathrm{i} r m w}\right\}_{m \in \mathbb{Z} ; j=1,2, \ldots, s}$ in $L_{L}^{2}(0,1)$. Consider the $s \times r L$ matrix of functions in $L^{2}(0,1)$

$$
\mathbb{G}(w):=\left[\begin{array}{cccc}
\mathbf{g}_{1}^{\top}(w) & \mathbf{g}_{1}^{\top}\left(w+\frac{1}{r}\right) & \cdots & \mathbf{g}_{1}^{\top}\left(w+\frac{r-1}{r}\right) \tag{30}\\
\mathbf{g}_{2}^{\top}(w) & \mathbf{g}_{2}^{\top}\left(w+\frac{1}{r}\right) & \cdots & \mathbf{g}_{2}^{\top}\left(w+\frac{r-1}{r}\right) \\
\vdots & \vdots & & \vdots \\
\mathbf{g}_{s}^{\top}(w) & \mathbf{g}_{s}^{\top}\left(w+\frac{1}{r}\right) & \cdots & \mathbf{g}_{s}^{\top}\left(w+\frac{r-1}{r}\right)
\end{array}\right]=\left[\mathbf{g}_{j}^{\top}\left(w+\frac{k-1}{r}\right)\right]_{\substack{j=1,2, \ldots, s \\
k=1,2, \ldots, r}}
$$

and its related constants

$$
\alpha_{\mathbb{G}}:=\underset{w \in(0,1 / r)}{\operatorname{ess} \inf } \lambda_{\min }\left[\mathbb{G}^{*}(w) \mathbb{G}(w)\right], \quad \beta_{\mathbb{G}}:=\underset{w \in(0,1 / r)}{\operatorname{ess} \sup } \lambda_{\max }\left[\mathbb{G}^{*}(w) \mathbb{G}(w)\right] .
$$

In [15, Lemma 2] one can find the proof of the following lemma:
Lemma 12. Let \mathbf{g}_{j} be in $L_{L}^{2}(0,1)$ for $j=1,2, \ldots, s$ and let $\mathbb{G}(w)$ be its associated matrix given in (30). Then, the following results hold:
(a) The sequence $\left\{\overline{\mathbf{g}_{j}(w)} \mathrm{e}^{2 \pi i r n w}\right\}_{n \in \mathbb{Z}, j=1,2, \ldots, s}$ is a complete system for $L_{L}^{2}(0,1)$ if and only if the rank of the matrix $\mathbb{G}(w)$ is $r L$ a.e. in $(0,1 / r)$.
(b) The sequence $\left\{\overline{\mathbf{g}_{j}(w)} \mathrm{e}^{2 \pi i r n w}\right\}_{n \in \mathbb{Z}, j=1,2, \ldots, s}$ is a Bessel sequence for $L_{L}^{2}(0,1)$ if and only if $\mathbf{g}_{j} \in L_{L}^{\infty}(0,1)$ (or equivalently $\left.\beta_{\mathbb{G}}<\infty\right)$. In this case, the optimal Bessel bound is $\beta_{\mathbb{G}} / r$.
(c) The sequence $\left\{\overline{\mathbf{g}_{j}(w)} \mathrm{e}^{2 \pi \mathrm{i} r n w}\right\}_{n \in \mathbb{Z}, j=1,2, \ldots, s}$ is a frame for $L_{L}^{2}(0,1)$ if and only if $0<\alpha_{\mathbb{G}} \leq \beta_{\mathbb{G}}<\infty$. In this case, the optimal frame bounds are $\alpha_{\mathbb{G}} / r$ and $\beta_{\mathbb{G}} / r$.
(d) The sequence $\left\{\overline{\mathbf{g}_{j}(w)} \mathrm{e}^{2 \pi \mathrm{i} r n w}\right\}_{n \in \mathbb{Z}, j=1,2, \ldots, s}$ is a Riesz basis for $L_{L}^{2}(0,1)$ if and only if is a frame and $s=r L$.

In case that the sequence $\left\{\overline{\mathbf{g}_{j}(w)} \mathrm{e}^{2 \pi \mathrm{i} r n w}\right\}_{n \in \mathbb{Z} ; j=1,2, \ldots, s}$ is a frame for $L_{L}^{2}(0,1)$ (here, necessarily $s \geq r L$), a dual frame is given by $\left\{r \mathbf{h}_{j}(w) \mathrm{e}^{2 \pi \mathrm{i} r n w}\right\}_{n \in \mathbb{Z} ; j=1,2, \ldots, s}$, where the functions $\mathbf{h}_{j}, j=1,2, \ldots, s$, form an $L \times s$ matrix $\mathbf{h}(w):=\left[\mathbf{h}_{1}(w), \mathbf{h}_{2}(w), \ldots, \mathbf{h}_{s}(w)\right]$ with entries in $L^{\infty}(0,1)$, and satisfying

$$
\left[\mathbf{h}_{1}(w), \mathbf{h}_{2}(w), \ldots, \mathbf{h}_{s}(w)\right] \mathbb{G}(w)=\left[\mathbb{I}_{L}, \mathbb{O}_{L \times(r-1) L}\right] \quad \text { a.e. in }(0,1)
$$

(see Ref. [15] for the details). That is, the matrix $\mathbf{h}(w)$ is formed with the first L rows of a left-inverse of the matrix $\mathbb{G}(w)$ having essentially bounded entries in $(0,1)$. In other words, all the dual frames of $\left\{\overline{\mathbf{g}_{j}\left(\mathrm{e}^{2 \pi \mathrm{i} r n w}\right)}\right\}_{n \in \mathbb{Z} ; j=1,2, \ldots, s}$ with the above property are obtained by taking the first L rows of the $r L \times s$ matrices given by

$$
\mathbb{H}_{\mathbb{U}}(w):=\mathbb{G}^{\dagger}(w)+\mathbb{U}(w)\left[\mathbb{I}_{s}-\mathbb{G}(w) \mathbb{G}^{\dagger}(w)\right]
$$

where $\mathbb{U}(w)$ denotes any $r L \times s$ matrix with entries in $L^{\infty}(0,1)$.
Thus, any $\mathbf{F} \in L_{L}^{2}(0,1)$ can be expanded as

$$
\mathbf{F}=\sum_{j=1}^{s} \sum_{n \in \mathbb{Z}}\left\langle\mathbf{F}, \overline{\mathbf{g}_{j}(w)} \mathrm{e}^{2 \pi \mathrm{i} r n w}\right\rangle_{L_{L}^{2}(0,1)} r \mathbf{h}_{j}(w) \mathrm{e}^{2 \pi \mathrm{i} r n w} \quad \text { in } L_{L}^{2}(0,1)
$$

Applying the isomorphism $\mathcal{T}_{U, a}$ and taken into account (29), for each $x=\mathcal{T}_{U, a} \mathbf{F} \in \mathcal{A}_{\mathbf{a}}$ we get the sampling expansion

$$
x=\sum_{j=1}^{s} \sum_{n \in \mathbb{Z}} \mathcal{L}_{j} x(r n) U^{r n}\left[\mathcal{T}_{U, a}\left(r \mathbf{h}_{j}\right)\right]=\sum_{j=1}^{s} \sum_{n \in \mathbb{Z}} \mathcal{L}_{j} x(r n) U^{r n} c_{j, \mathbf{h}} \quad \text { in } \mathcal{H}
$$

where $c_{j, \mathbf{h}}=\mathcal{T}_{U, a}\left(r \mathbf{h}_{j}\right) \in \mathcal{A}_{\mathbf{a}}, j=1,2, \ldots, s$, and the sequence $\left\{U^{r n} c_{j, \mathbf{h}}\right\}_{n \in \mathbb{Z} ; j=1,2, \ldots, s}$ is a frame for $\mathcal{A}_{\mathbf{a}}$. Proceeding as in Section 3, it is straighforward to state and prove the corresponding results.

The time-jitter error sampling formulas

Under appropriate slight changes, the time-jitter error results in Section 4 still remain valid for the case of multiple generators. Namely, given an error sequence $\epsilon:=\left\{\epsilon_{m j}\right\}_{m \in \mathbb{Z} ; j=1,2, \ldots, s,}$, assume that the operator

$$
\begin{aligned}
D_{\epsilon}: \ell_{L}^{2}(\mathbb{Z}) & \longrightarrow \ell_{s}^{2}(\mathbb{Z}) \\
\mathbf{c} & \longmapsto D_{\epsilon} \mathbf{c}:=\left(D_{\epsilon, 1} \mathbf{c}, \ldots, D_{\epsilon, s} \mathbf{c}\right),
\end{aligned}
$$

is well-defined, where $\mathbf{c}:=\left(\left\{c_{k}^{1}\right\}_{k \in \mathbb{Z}},\left\{c_{k}^{2}\right\}_{k \in \mathbb{Z}}, \ldots,\left\{c_{k}^{L}\right\}_{k \in \mathbb{Z}}\right) \in \ell_{L}^{2}(\mathbb{Z})$ and, for $j=$ $1,2, \ldots, s$,

$$
D_{\epsilon, j} \mathbf{c}:=\left\{\sum_{l=1}^{L} \sum_{k \in \mathbb{Z}}\left[\mathcal{L}_{j} a_{l}\left(r m-k+\epsilon_{m j}\right)-\mathcal{L}_{j} a_{l}(r m-k)\right] c_{k}^{l}\right\}_{m \in \mathbb{Z}} .
$$

The operator norm (it could be infinity) is defined as usual

$$
\left\|D_{\epsilon}\right\|:=\sup _{\mathbf{c} \in \ell_{L}^{2}(\mathbb{Z}) \backslash\{0\}} \frac{\left\|D_{\epsilon} \mathbf{c}\right\|_{\ell_{s}^{2}(\mathbb{Z})}}{\|\mathbf{c}\|_{\ell_{L}^{2}(\mathbb{Z})}}
$$

where $\left\|D_{\epsilon} \mathbf{c}\right\|_{\ell_{s}^{2}(\mathbb{Z})}^{2}:=\sum_{j=1}^{s}\left\|D_{\epsilon, j} \mathbf{c}\right\|_{\ell^{2}(\mathbb{Z})}^{2}$ and $\|\mathbf{c}\|_{\ell_{L}^{2}(\mathbb{Z})}^{2}=\sum_{l=1}^{L} \sum_{k \in \mathbb{Z}}\left|c_{k}^{l}\right|^{2}$ for each $\mathbf{c} \in$ $\ell_{L}^{2}(\mathbb{Z})$. Assume that the matrix \mathbb{G} in (30) satisfies $0<\alpha_{\mathbb{G}} \leq \beta_{\mathbb{G}}<\infty$, and let $\boldsymbol{\epsilon}:=$ $\left\{\epsilon_{m j}\right\}_{m \in \mathbb{Z} ; j=1,2, \ldots, s}$ be an error sequence satisfying the inequality $\left\|D_{\epsilon}\right\|^{2}<\alpha_{\mathbb{G}} / r$. Then, proceeding as in Section 4, there exists a frame $\left\{C_{j, m}^{\epsilon}\right\}_{m \in \mathbb{Z} ; j=1,2, \ldots, s}$ for $\mathcal{A}_{\mathbf{a}}$ such that, for any $x \in \mathcal{A}_{\mathbf{a}}$ a sampling formula as in (15) holds.

Now assume that $b_{j} \in D_{T}, j=1,2, \ldots, s$; thus the functions $\mathcal{L}_{b_{j}} a_{l}(t) \equiv \mathcal{L}_{j} a_{l}(t), j=$ $1,2, \ldots, s$ and $l=1,2, \ldots, L$, are continuously differentiable on \mathbb{R}. Again, as in Section 4 , under the decay condition (17) for each $\left(\mathcal{L}_{j} a_{l}\right)^{\prime}(t), j=1,2, \ldots, s$ and $l=1,2, \ldots, L$, one can easily prove that there exists $\delta>0$ such that $\gamma_{j}:=\sup _{m \in \mathbb{Z}}\left|\epsilon_{m j}\right|<\delta$ for each $j=$ $1,2, \ldots, s$, implies that $\left\|D_{\boldsymbol{\epsilon}}\right\|^{2}<\alpha_{\mathbb{G}} / r$ for the error sequence $\boldsymbol{\epsilon}:=\left\{\epsilon_{m j}\right\}_{m \in \mathbb{Z} ; j=1,2, \ldots, s}$.

Acknowledgments: The authors wish to thank the referees for their valuable and constructive comments. This work has been supported by the grant MTM2009-08345 from the Spanish Ministerio de Ciencia e Innovación (MICINN).

References

[1] B. Adcock and A. C. Hansen. Stable reconstructions in Hilbert spaces and the resolution of the Gibbs phenomenon. Appl. Comput. Harmon. Anal., 32:357-388, 2012.
[2] N. I. Akhiezer and I. M. Glazman. Theory of linear operators in Hilbert space. Dover Publications, New York, 1993.
[3] A. Aldroubi. Oblique projections in atomic spaces. Proc. Amer. Math. Soc., 124(7):2051-2060, 1996.
[4] A. Aldroubi. Non-uniform weighted average sampling and reconstruction in shiftinvariant and wavelet spaces. Appl. Comput. Harmon. Anal., 13:151-161, 2002.
[5] A. Aldroubi and K. Gröchenig. Non-uniform sampling and reconstruction in shiftinvariant spaces. SIAM Rev., 43:585-620, 2001.
[6] A. Aldroubi, Q. Sun and W. S. Tang. Convolution, average sampling, and a Calderon resolution of the identity for shift-invariant spaces. J. Fourier Anal. Appl., 11(2):215-244, 2005.
[7] M. S. Birman and M. Z. Solomjak. Spectral Theory of Self-Adjoint Operators in Hilbert Space. Springer, New York, 1987.
[8] O. Christensen. An Introduction to Frames and Riesz Bases. Birkhäuser, Boston, 2003.
[9] O. Christensen and Y. C. Eldar. Oblique dual frames and shift-invariant spaces. Appl. Comput. Harmon. Anal., 17(1):48-68, 2004.
[10] O. Christensen and Y. C. Eldar. Generalized shift-invariant systems and frames for subspaces. Appl. Comput. Harmon. Anal., 11(3):299-313, 2005.
[11] I. Djokovic and P. P. Vaidyanathan. Generalized sampling theorems in multiresolution subspaces. IEEE Trans. Signal Process., 45:583-599, 1997.
[12] H. R. Fernández-Morales, A. G. García and G. Pérez-Villalón. Generalized sampling in $L^{2}\left(\mathbb{R}^{d}\right)$ shift-invariant subspaces with multiple stable generators. In Multiscale Signal Analysis and Modeling, pp. 51-80, Lecture Notes in Electrical Engineering, Springer, New York, 2012.
[13] A. G. García and G. Pérez-Villalón. Dual frames in $L^{2}(0,1)$ connected with generalized sampling in shift-invariant spaces. Appl. Comput. Harmon. Anal., 20(3):422-433, 2006.
[14] A. G. García and G. Pérez-Villalón. Generalized irregular sampling in shiftinvariant spaces. Int. J. Wavelets Multiresolut. Inf. Process., 5(3):369-387, 2007.
[15] A. G. García, M. A. Hernández-Medina and G. Pérez-Villalón. Generalized sampling in shift-invariant spaces with multiple stable generators. J. Math. Anal. Appl., 337:69-84, 2008.
[16] A. G. García and G. Pérez-Villalón. Multivariate generalized sampling in shiftinvariant spaces and its approximation properties. J. Math. Anal. Appl., 355:397413, 2009.
[17] R. A. Horn and C. R. Johnson. Matrix Analysis. Cambridge University Press, 1999.
[18] S. Kang and K. H. Kwon. Generalized average sampling in shift-invariant spaces. J. Math. Anal. Appl., 377:70-78, 2011.
[19] A. N. Kolmogorov. Stationary sequences in Hilbert space. Boll. Moskow. Gos. Univ. Mat., 2:1-40, 1941.
[20] S. Li and H. Ogawa. Pseudo-Duals of frames with applications. Appl. Comput. Harmon. Anal., 11:289-304, 2001.
[21] S. Li and H. Ogawa. Pseudoframes for subspaces with applications. J. Fourier Anal. Appl., 10(4):409-431, 2004.
[22] T. Michaeli, V. Pohl and Y. C. Eldar. U-invariant sampling: extrapolation and causal interpolation from generalized samples. IEEE Trans. Signal Process., 59(5):2085-2100, 2011.
[23] A. Papoulis. Generalized sampling expansion. IEEE Trans. Circuits Syst., 24:652654, 1977.
[24] V. Pohl and H. Boche. U-invariant sampling and reconstruction in atomic spaces with multiple generators. IEEE Trans. Signal Process., 60(7):3506-3519, 2012.
[25] H. L. Royden. Real Analysis, 3rd ed. Macmillan Publishing Company, New York, 1988.
[26] M. H. Stone. On one-parameter unitary groups in Hilbert spaces. Ann. Math., 33(3):643-648, 1932.
[27] W. Sun and X. Zhou. Average sampling in shift-invariant subspaces with symmetric averaging functions. J. Math. Anal. Appl., 287:279-295, 2003.
[28] M. Unser and A. Aldroubi. A general sampling theory for non ideal acquisition devices. IEEE Trans. Signal Process., 42(11):2915-2925, 1994.
[29] M. Unser and J. Zerubia. A generalized sampling theory without band-limiting constraints. IEEE Trans. Circuits Syst. II, 45(8):959-969, 1998.
[30] R. Venkataramani and Y. Bresler. Sampling theorems for uniform and periodic nonuniform MIMO sampling of multiband signals. IEEE Trans. Signal Process., 51(12):3152-3163, 2003.
[31] G. G. Walter. A sampling theorem for wavelet subspaces. IEEE Trans. Inform. Theory, 38:881-884, 1992.
[32] J. Weidmann. Linear Operators in Hilbert Spaces Springer, New York, 1980.
[33] K. Yosida. Functional Analysis. Springer, New York, 1995.
[34] J. Zhou. Multidimensional Multirate Systems Characterization, Design, and Applications. PhD dissertation, University of Illinois, 2005.

[^0]: *E-mail:hfernand@math.uc3m.es
 ${ }^{\dagger}$ E-mail:agarcia@math.uc3m.es
 ${ }^{\ddagger}$ E-mail:miguelangel.hernandez.medina@upm.es
 ${ }^{\S}$ E-mail:mjmunoz@mat.uned.es

