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Abstract

The aim of this article is to derive a sampling theory in U -invariant subspaces
of a separable Hilbert space H where U denotes a unitary operator defined on
H. To this end, we use some special dual frames for L2(0, 1), and the fact that
any U -invariant subspace with stable generator is the image of L2(0, 1) by means
of a bounded invertible operator. The used mathematical technique mimics some
previous sampling work for shift-invariant subspaces of L2(R). Thus, sampling
frame expansions in U -invariant spaces are obtained. In order to generalize convo-
lution systems and deal with the time-jitter error in this new setting we consider
a continuous group of unitary operators which includes the operator U .

Keywords: Stationary sequences; U -invariant subspaces; Frames; Dual frames; Time-
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1 By way of motivation

The aim in this paper is to derive a generalized sampling theory for U -invariant sub-
spaces of a separable Hilbert space H, where U : H → H denotes a unitary opera-
tor. The motivation for our work can be found in the generalized sampling problem
in shift-invariant subspaces of L2(R); there H := L2(R) and U is the shift operator
T : f(u) 7→ f(u − 1) in L2(R). In that setting, the functions (signals) belong to some
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(principal) shift-invariant subspace V 2
ϕ := spanL2(R)

{
ϕ(u− n), n ∈ Z

}
, where the gen-

erator function ϕ belongs to L2(R) and the sequence {ϕ(u−n)}n∈Z is a Riesz sequence
for L2(R). Thus, the shift-invariant space V 2

ϕ can be described as

V 2
ϕ =

{∑
n∈Z

αn ϕ(u− n) : {αn}n∈Z ∈ `2(Z)
}

On the other hand, in many common situations the available data are samples of some
filtered versions f ∗ hj of the signal f itself, where the average function hj reflects the
characteristics of the adquisition device.
For s convolution systems (linear time-invariant systems or filters in engineering jargon)
Ljf := f ∗ hj , j = 1, 2, . . . , s, defined on V 2

ϕ , and assuming also that the sequence of
samples

{(Ljf)(rm)}m∈Z; j=1,2,...,s ,

where r ∈ N, is available for any f in V 2
ϕ , the generalized sampling problem mathemat-

ically consists of the stable recovery of any f ∈ V 2
ϕ from the above sequence of samples.

In other words, it deals with the construction of sampling formulas in V 2
ϕ having the

form

f(u) =

s∑
j=1

∑
m∈Z

(
Ljf

)
(rm)Sj(u− rm) , u ∈ R ,

where the sequence of reconstruction functions {Sj(· − rm)}m∈Z; j=1,2,...,s is a frame for
the shift-invariant space V 2

ϕ .

Sampling in shift-invariant spaces of L2(R) (or L2(Rd)), with one or multiple gen-
erators, has been profusely treated in the mathematical literature. A few selected
references are: [4, 5, 9, 10, 11, 12, 13, 15, 18, 23, 27, 28, 29, 30, 31].

In the present work we provide a generalization of the above problem in the following
sense. Let U be a unitary operator in a separable Hilbert space H; for a fixed a ∈ H,
consider the closed subspace given by Aa := span

{
Una, n ∈ Z

}
. In case that the

sequence {Una}n∈Z is a Riesz sequence in H we have

Aa =
{∑
n∈Z

αn U
na : {αn}n∈Z ∈ `2(Z)

}
.

In order to generalize convolution systems and mainly to obtain some perturbation
results in this new setting, we assume that the operator U is included in a continuous
group of unitary operators {U t}t∈R in H as U := U1. Recall that {U t}t∈R is a family
of unitary operators in H satisfying (see Ref. [2, vol. 2; p. 29]):

(1) U t U t
′

= U t+t
′
,

(2) U0 = IH ,

(3) 〈U tx, y〉H is a continuous function of t for any x, y ∈ H.

Note that (U t)−1 = U−t, and since (U t)∗ = (U t)−1, we have (U t)∗ = U−t.
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Thus, for b ∈ H we consider the linear operator H 3 x 7−→ Lbx ∈ C(R) such that(
Lbx

)
(t) := 〈x, U tb〉H for every t ∈ R. These operators Lb, which will be called U -

systems, can be seen as a generalization of the convolution systems in L2(R). Indeed,
for the shift operator U : f(u) 7→ f(u− 1) in L2(R) we have

〈f, U tb〉L2(R) =

∫ ∞
−∞

f(u)b(u− t)du = (f ∗ h)(t) , t ∈ R ,

where h(u) := b(−u).
Given U -systems Lj , j = 1, 2, . . . , s, corresponding to s elements bj ∈ H, i.e.,

Lj ≡ Lbj for each j = 1, 2, . . . , s, the generalized regular sampling problem in Aa
consists of the stable recovery of any x ∈ Aa from the sequence of the samples{

Ljx(rm)
}
m∈Z; j=1,2,...,s

where r ∈ N , r ≥ 1 .

This U -sampling problem has been treated, for the first time, in some recent papers
[22, 24]. Sampling in shift-invariant subspaces or in modulation-invariant subspaces of
L2(R) becomes a particular case of U -sampling associated with the translation operator
T : f(u) 7→ f(u − 1) or with the modulation operator M : f(u) 7→ e2πiuf(u) in L2(R)
respectively.

In this paper we propose a completely different approach which allows to analyze
in depth the U -sampling problem. In Section 3 we prove the existence of frames in Aa,
having the form

{
U rmcj

}
m∈Z; j=1,2,...,s

, where cj ∈ Aa for j = 1, 2, . . . , s, such that for
each x ∈ Aa the sampling expansion

x =
s∑
j=1

∑
m∈Z
Ljx(rm)U rmcj in H (1)

holds. To this end, as in the shift-invariant case (see, for instance, Refs. [13, 15]), we
use that the above sampling formula is intimately related with some special dual frames
in L2(0, 1) (see Section 2 below) via the isomorphism TU,a : L2(0, 1) −→ Aa which maps
the orthonormal basis {e2πinw}n∈Z for L2(0, 1) onto the Riesz basis {Una}n∈Z for Aa.
In [24] regular sampling expansions like (1) are obtained by using a completely differ-
ent technique; basically, they use the cross-covariance function Ra,bj (n) := 〈Una, bj〉H
between the sequences {Una}n∈Z and {Unbj}n∈Z, j = 1, 2, . . . , s.

Strictly speaking, we do not need the formalism of the continuous group of unitary
operators to derive the sampling results in Section 3 since we only use the discrete
group {Un}n∈Z completely determined by U . However, for the study, in Section 4, of
the time-jitter error in sampling formulas as in (1), the continuous group of unitary
operators {U t}t∈R becomes essential. In this case we dispose of a perturbed sequence
of samples {(Ljx)(rm + εmj)}m∈Z; j=1,2,...,s, with errors εmj ∈ R, for the recovery of
x ∈ Aa. We prove that, for small enough errors εmj , the stable recovery of any x ∈ Aa
is still possible. Finally, in Section 5 we deal with the case of multiple stable generators.
We only sketch the procedure since it is essentially identical to the one-generator case.

2 On sampling in U-invariant subspaces

For a fixed a ∈ H, assume that the sequence {Una}n∈Z is a Riesz sequence in H.
Recall that a Riesz basis in a separable Hilbert space is the image of an orthonormal
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basis by means of a bounded invertible operator. Any Riesz basis {xn}n∈Z has a
unique biorthogonal (dual) Riesz basis {yn}n∈Z, i.e., 〈xn, ym〉H = δn,m, such that the
expansions

x =
∑
n∈Z
〈x, yn〉H xn =

∑
n∈Z
〈x, xn〉H yn ,

hold for every x ∈ H. We state the definition by considering the integers set Z as
the index set since throughout the paper most of sequences are indexed in Z. A Riesz
sequence in H is a Riesz basis for its closed span (see, for instance, [8]). Thus, the
U -invariant subspace Aa := span

{
Una, n ∈ Z

}
can be expressed as

Aa =
{∑
n∈Z

αn U
na : {αn}n∈Z ∈ `2(Z)

}
.

For simplicity and ease of notation we are considering the one-generator setting; as we
have already said, the same sampling results for the general case can be obtained by
analogy, and it will be drawn in Section 5. The sequence {Una}n∈Z is an stationary
sequence since the inner product 〈Una, Uma〉H depends only on the difference n−m ∈
Z. Moreover, the auto-covariance Ra of the sequence {Una}n∈Z admits the integral
representation

Ra(k) := 〈Uka, a〉H =
1

2π

∫ π

−π
eikθdµa(θ) , k ∈ Z ,

in terms of a positive Borel measure µa on (−π, π) called the spectral measure of the
sequence (see [19]). This is obtained from the integral representation of the unitary
operator U onH (see, for instance, [2, 33]). The spectral measure µa can be decomposed
into an absolute continuous and a singular part as dµa(θ) = φa(θ)dθ + dµsa(θ). A
necessary and sufficient condition in order for the sequence {Una}n∈Z to be a Riesz
sequence for H is given in next theorem in terms of the decomposition of the spectral
measure µa:

Theorem 1. Let {Una}n∈Z be a sequence obtained from a unitary operator in a sep-
arable Hilbert space H with spectral measure dµa(θ) = φa(θ)dθ + dµsa(θ), and let Aa
be the closed subspace spanned by {Una}n∈Z. Then the sequence {Una}n∈Z is a Riesz
basis for Aa if and only if the singular part µsa ≡ 0 and

0 < ess inf
θ∈(−π,π)

φa(θ) ≤ ess sup
θ∈(−π,π)

φa(θ) <∞ .

Theorem 1 is just the one-generator case (L = 1) of Theorem 11 proved below. It
is worth to mention that an straightforward computation shows that the dual Riesz
basis of {Una}n∈Z in Aa is given by {Unb}n∈Z whith b =

∑
k∈Z bk U

ka ∈ Aa, where
the terms of the sequence {bk}k∈Z ∈ `2(Z) are the Fourier coefficients of the function
1/φa(θ) ∈ L2(−π, π). Indeed, for b =

∑
k∈Z bk U

ka in Aa, the biorthogonality between
the sequences {Una}n∈Z and {Unb}n∈Z means

δm,0 = 〈Uma, b〉H = 〈Uma,
∑
k∈Z

bk U
ka〉H =

∑
k∈Z

bk
1

2π

∫ π

−π
ei(m−k)θφa(θ)dθ

=
1

2π

∫ π

−π

(∑
k∈Z

bke
−ikθ)φa(θ)eimθ dθ =

1

2π

∫ π

−π
B(θ)φa(θ)e

−imθ dθ ,
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where B(θ) :=
∑

k∈Z bk eikθ; in other words, we have B(θ)φa(θ) ≡ 1 in L2(−π, π).
Moreover, it is easy to deduce that φb(θ) = 1/φa(θ), θ ∈ (−π, π); that is, for k ∈ Z we
obtain 〈Ukb, b〉H = 1

2π

∫ π
−π eikθ dθ

φa(θ) .

Finally, for the shift operator T : f(u) 7→ f(u − 1) in L2(R), Theorem 1 allows to
recover the classical necessary and sufficient condition for the sequence {ϕ(t− n)}n∈Z,
where ϕ ∈ L2(R), to be a Riesz basis for the corresponding shift-invariant subspace Aϕ
in L2(R). Indeed, consider the Fourier transform as ϕ̂(θ) := 1√

2π

∫∞
−∞ ϕ(t) e−itθ dθ in

L1(R) ∩ L2(R); using the Parseval’s equality one easily gets

〈T kϕ,ϕ〉L2(R) =

∫ ∞
−∞

ϕ(u− k)ϕ(u) du =

∫ ∞
−∞

̂ϕ(u− k)(θ)ϕ̂(θ) dθ =

∫ ∞
−∞
|ϕ̂(θ)|2 e−ikθ dθ

=

∫ π

−π

∑
n∈Z
|ϕ̂(θ + 2πn)|2 e−ikθ dθ =

1

2π

∫ π

−π
e−ikθ 2π

∑
n∈Z
|ϕ̂(−θ + 2πn)|2 dθ ,

that is, φϕ(θ) = 2π
∑

n∈Z |ϕ̂(−θ + 2πn)|2, θ ∈ (−π, π). Thus, Theorem 1 yields the
classical condition (see, for instance, [8]):

0 < ess inf
θ∈(−π,π)

∑
n∈Z
|ϕ̂(θ + 2πn)|2 ≤ ess sup

θ∈(−π,π)

∑
n∈Z
|ϕ̂(θ + 2πn)|2 <∞ .

The following isomorphism between L2(0, 1) and Aa will be crucial along this paper:

The isomorphism TU,a
We define the isomorphism TU,a which maps the orthonormal basis {e2πinw}n∈Z for
L2(0, 1) onto the Riesz basis {Una}n∈Z for Aa, that is,

TU,a : L2(0, 1) −→ Aa
F =

∑
n∈Z

αn e2πinw 7−→ x =
∑
n∈Z

αn U
na .

The following U -shift property holds: For any F ∈ L2(0, 1) and N ∈ Z, we have

TU,a
(
F e2πiNw

)
= UN

(
TU,aF

)
. (2)

The U-systems

For any fixed b ∈ H we define the U -system Lb as the linear operator between H and
the set C(R) of the continuous functions on R given by

H 3 x 7−→ Lbx ∈ C(R) such that Lbx(t) := 〈x, U tb〉H , t ∈ R .

For any x ∈ Aa and t ∈ R, by using the Plancherel equality for the orthonormal basis
{e2πinw}n∈Z in L2(0, 1), we have

Lbx(t) = 〈x, U tb〉H =
〈∑
n∈Z

αn U
na, U tb

〉
H =

∑
n∈Z

αn 〈U tb, Una〉H

=
〈
F,
∑
n∈Z
〈U tb, Una〉H e2πinw

〉
L2(0,1)

=
〈
F,Kt

〉
L2(0,1)

,
(3)
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where TU,aF = x, and the function

Kt(w) :=
∑
n∈Z
〈U tb, Una〉H e2πinw =

∑
n∈Z
Lba(t− n) e2πinw

belongs to L2(0, 1) since the sequence
{
〈U tb, Una〉H

}
n∈Z belongs to `2(Z) for each

t ∈ R.

An expression for the generalized samples

Suppose that s vectors bj ∈ H, j = 1, 2, . . . , s, are given and consider their associated
U -systems Lj := Lbj , j = 1, 2, . . . , s. Our aim is the stable recovery of any x ∈ Aa
from the sequence of samples

{
Ljx(rm)

}
m∈Z; j=1,2,...,s

where r ≥ 1. To this end, first

we obtain a suitable expression for the samples. For x ∈ Aa let F ∈ L2(0, 1) such that
TU,aF = x; by using (3), for j = 1, 2, . . . , s and m ∈ Z we have

Ljx(rm) =
〈
F,
∑
n∈Z
〈U rmbj , Una〉H e2πinw

〉
L2(0,1)

=
〈
F,
∑
k∈Z
〈Ukbj , a〉H e2πi(rm−k)w

〉
L2(0,1)

=
〈
F,
[∑
k∈Z
〈a, Ukbj〉H e−2πikw

]
e2πirmw

〉
L2(0,1)

,

where the change in the summation’s index k := rm− n has been done. Hence,

Ljx(rm) =
〈
F, gj(w) e2πirmw

〉
L2(0,1)

for m ∈ Z and j = 1, 2, . . . , s , (4)

where the function
gj(w) :=

∑
k∈Z
Lja(k) e2πikw (5)

belongs to L2(0, 1) for each j = 1, 2, . . . , s.
As a consequence of (4), the stable recovery of any x ∈ Aa depends on whether the

sequence
{
gj(w) e2πirmw

}
m∈Z; j=1,2,...,s

forms a frame for L2(0, 1). Recall that a sequence

{xn}n∈Z is a frame for a separable Hilbert space H if there exist two constants A,B > 0
(frame bounds) such that

A‖x‖2 ≤
∑
n∈Z
|〈x, xn〉|2 ≤ B‖x‖2 for all x ∈ H .

A sequence {xn}n∈Z in H satisfying only the right hand inequality above is said to be
a Bessel sequence for H. Given a frame {xn}n∈Z for H the representation property of
any vector x ∈ H as a series x =

∑
n∈Z cn xn is retained, but, unlike the case of Riesz

bases (exact frames), the uniqueness of this representation (for overcomplete frames)
is sacrificed. Suitable frame coefficients cn which depend continuously and linearly on
x are obtained by using the dual frames {yn}n∈Z of {xn}n∈Z, i.e., {yn}n∈Z is another
frame for H such that x =

∑
n∈Z〈x, yn〉xn =

∑
n∈Z〈x, xn〉yn for each x ∈ H. For more

details on frame theory see Ref. [8].
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A deep study of sequences having the form of
{
gj(w) e2πirmw

}
m∈Z; j=1,2,...,s

was done

in Refs. [13, 15]. Namely, consider the s× r matrix of functions in L2(0, 1)

G(w) :=


g1(w) g1(w + 1

r ) · · · g1(w + r−1
r )

g2(w) g2(w + 1
r ) · · · g2(w + r−1

r )
...

...
...

gs(w) gs(w + 1
r ) · · · gs(w + r−1

r )

 =

[
gj

(
w +

k − 1

r

)]
j=1,2,...,s
k=1,2,...,r

(6)

and its related constants

αG := ess inf
w∈(0,1/r)

λmin[G∗(w)G(w)], βG := ess sup
w∈(0,1/r)

λmax[G∗(w)G(w)] ,

where G∗(w) denotes the transpose conjugate of the matrix G(w), and λmin (respec-
tively λmax) the smallest (respectively the largest) eigenvalue of the positive semidefinite
matrix G∗(w)G(w). Observe that 0 ≤ αG ≤ βG ≤ ∞. Notice that in the definition of
the matrix G(w) we are considering 1-periodic extensions of the involved functions gj ,
j = 1, 2, . . . , s.

A complete characterization of the sequence
{
gj(w) e2πirmw

}
m∈Z; j=1,2,...,s

is given

in the next lemma (see [13, Lemma 3] or [15, Lemma 2] for the proof):

Lemma 2. For the functions gj ∈ L2(0, 1), j = 1, 2, . . . , s, consider the associated
matrix G(w) given in (6). Then, the following results hold:

(a) The sequence {gj(w) e2πirnw}n∈Z; j=1,2,...,s is a complete system for L2(0, 1) if and
only if the rank of the matrix G(w) is r a.e. in (0, 1/r).

(b) The sequence {gj(w) e2πirnw}n∈Z; j=1,2,...,s is a Bessel sequence for L2(0, 1) if and
only if gj ∈ L∞(0, 1) (or equivalently βG < ∞). In this case, the optimal Bessel
bound is βG/r.

(c) The sequence {gj(w) e2πirnw}n∈Z; j=1,2,...,s is a frame for L2(0, 1) if and only if 0 <
αG ≤ βG <∞. In this case, the optimal frame bounds are αG/r and βG/r.

(d) The sequence {gj(w) e2πirnw}n∈Z; j=1,2,...,s is a Riesz basis for L2(0, 1) if and only if
is a frame and s = r.

A comment about Lemma 2 in terms of the average sampling terminology intro-
duced by Aldroubi et al. in [6] is in order. According to [6] we say that

1. The set {L1,L2, . . . ,Ls} is an r-determining U -sampler for Aa if the only vector
x ∈ Aa, satisfying Ljx(rm) = 0 for all j = 1, 2, . . . , s and m ∈ Z, is x = 0.

2. The set {L1,L2, . . . ,Ls} is an r-stable U -sampler for Aa if there exist positive
constants A and B such that

A‖x‖2 ≤
s∑
j=1

∑
m∈Z
|Ljx(rm)|2 ≤ B‖x‖2 for all x ∈ Aa.

Hence, parts (a) and (c) of Lemma 2 can be read, by using (4), as follows:
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i. The set {L1,L2, . . . ,Ls} is an r-determining U -sampler for Aa if and only if
rankG(w) = r a.e. in (0, 1) (and hence, necessarily, s ≥ r).

ii. The set {L1,L2, . . . ,Ls} is an r-stable U -sampler for Aa if and only if 0 < αG ≤
βG <∞.

An r-determining U -sampler for Aa can distinguish between two distinct elements in
Aa, but the recovery, if any, is not necessarily stable. If the system {L1,L2, . . . ,Ls} is
an r-stable U -sampler for Aa, then any x ∈ Aa can be recovered, in a stable way, from
the sequence of generalized samples

{
Ljx(rm)

}
m∈Z; j=1,2,...,s

, where necessarily s ≥ r.
Roughly speaking, the operator which maps

Aa 3 x 7−→
{
Ljx(rm)

}
m∈Z; j=1,2,...,s

∈ `2s(Z) := `2(Z)× · · · × `2(Z)
(s times)

has a bounded inverse.
Having in mind (4), from the sequence of samples

{
Ljx(rm)

}
m∈Z; j=1,2,...,s

we recover

F ∈ L2(0, 1), and by means of the isomorphism TU,a, the vector x = TU,aF ∈ Aa. This
will be the main goal in the next section:

3 Generalized regular sampling in Aa
Along with the characterization of the sequence {gj(w) e2πirnw}n∈Z; j=1,2,...,s as a frame
in L2(0, 1), in [13] a family of dual frames are also given: Choose functions hj in
L∞(0, 1), j = 1, 2, . . . , s, such that[

h1(w), h2(w), . . . , hs(w)
]
G(w) = [1, 0, . . . , 0] a.e. in (0, 1) . (7)

It was proven in [13] that the sequence {rhj(w) e2πirnw}n∈Z; j=1,2,...,s is a dual frame

of the sequence {gj(w) e2πirnw}n∈Z; j=1,2,...,s in L2(0, 1). In other words, taking into
account (4), we have for any F ∈ L2(0, 1) the expansion

F =

s∑
j=1

∑
m∈Z
Ljx(rm) rhj(w) e2πirmw in L2(0, 1) . (8)

Concerning to the existence of the functions hj , j = 1, 2, . . . , s, consider the first row
of the r × s Moore-Penrose pseudo-inverse G†(w) of G(w) given by

G†(w) :=
[
G∗(w)G(w)

]−1 G∗(w) .

Its entries are essentially bounded in (0, 1) since the functions gj , j = 1, 2, . . . , s, and
det−1

[
G∗(w)G(w)

]
are essentially bounded in (0, 1), and (7) trivially holds. All the

possible solutions of (7) are given by the first row of the r × s matrices given by

HU(w) := G†(w) + U(w)
[
Is −G(w)G†(w)

]
, (9)

where U(w) denotes any r × s matrix with entries in L∞(0, 1), and Is is the identity
matrix of order s.
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Applying the isomorphism TU,a in (8), for x = TU,aF ∈ Aa we obtain the sampling
expansion:

x =

s∑
j=1

∑
m∈Z
Ljx(rm) TU,a

[
rhj(·) e2πirm ·] =

s∑
j=1

∑
m∈Z
Ljx(rm)U rm

[
TU,a(rhj)

]
=

s∑
j=1

∑
m∈Z
Ljx(rm)U rmcj,h in H ,

(10)

where cj,h := TU,a(rhj) ∈ Aa, j = 1, 2, . . . , s, and we have used the U -shift property (2).
Besides, the sequence

{
U rmcj,h

}
m∈Z; j=1,2,...,s

is a frame for Aa. In fact, the following
result holds:

Theorem 3. Let bj ∈ H and let Lj be its associated U -system for j = 1, 2, . . . , s.
Assume that the function gj, j = 1, 2, . . . , s, given in (5) belongs to L∞(0, 1); or equiv-
alently, that βG < ∞ for the associated s × r matrix G(w). The following statements
are equivalent:

(a) αG > 0.

(b) There exists a vector
[
h1(w), h2(w), . . . , hs(w)

]
with entries in L∞(0, 1) satisfying[

h1(w), h2(w), . . . , hs(w)
]
G(w) = [1, 0, . . . , 0] a.e. in (0, 1) .

(c) There exist cj ∈ Aa, j = 1, 2, . . . , s, such that the sequence
{
U rkcj

}
k∈Z; j=1,2,...,s

is
a frame for Aa, and for any x ∈ Aa the expansion

x =

s∑
j=1

∑
k∈Z
Ljx(rk)U rkcj in H , (11)

holds.

(d) There exists a frame
{
Cj,k

}
k∈Z; j=1,2,...,s

for Aa such that, for each x ∈ Aa the
expansion

x =

s∑
j=1

∑
k∈Z
Ljx(rk)Cj,k in H ,

holds.

Proof. We have already proved that (a) implies (b) and that (b) implies (c). Obviously,
(c) implies (d). As a consequence, we only need to prove that (d) implies (a). Applying
the isomorphism T −1

U,a to the expansion in (d), and taking into account (4) we obtain

F = T −1
U,ax =

s∑
j=1

∑
k∈Z
Ljx(rk) T −1

U,a

(
Cj,k

)
=

s∑
j=1

∑
k∈Z

〈
F, gj(w) e2πirkw

〉
L2(0,1)

T −1
U,a

(
Cj,k

)
in L2(0, 1) ,

9



where the sequence
{
T −1
U,a

(
Cj,k

)}
k∈Z; j=1,2,...,s

is a frame for L2(0, 1). The sequence{
gj(w) e2πirmw

}
m∈Z; j=1,2,...,s

is a Bessel sequence in L2(0, 1) since βG < ∞, and sat-

isfying the above expansion in L2(0, 1). According to [8, Lemma 5.6.2] the sequences{
T −1
U,a

(
Cj,k

)}
k∈Z; j=1,2,...,s

and
{
gj(w) e2πirkw

}
k∈Z; j=1,2,...,s

form a pair of dual frames in

L2(0, 1); in particular, by using Lemma 2 we obtain that αG > 0 which concludes the
proof.

In case the functions gj , j = 1, 2, . . . , s are continuous on R, condition (a) in Theo-
rem 3 can be expressed in terms of the rank of the matrix G(w); notice that this occurs,
for example, whenever the sequences {Lja(k)}k∈Z, j = 1, 2, . . . , s, belong to `1(Z).

Corollary 4. Assume that the 1-periodic extension of the functions gj, j = 1, 2, . . . , s,
given in (5) are continuous on R. Then, the following conditions are equivalent:

(i) rankG(w) = r for all w ∈ R.

(ii) There exist cj ∈ Aa, j = 1, 2, . . . , s, such that the sequence
{
U rkcj

}
k∈Z; j=1,2,...,s

is a frame for Aa, and the sampling formula (11) holds for each x ∈ Aa.

Proof. Whenever the functions gj , j = 1, 2, . . . , s, are continuous on R, the con-
dition αG > 0 is equivalent to det

[
G∗(w)G(w)

]
6= 0 for all w ∈ R. Indeed, if

detG∗(w)G(w) > 0 then the first row of the matrix G†(w) := [G∗(w)G(w)]−1G∗(w),
gives a vector [h1, h2, . . . , hs] satisfying the statement (b) in Theorem 3 and, as a con-
sequence, αG > 0. The converse follows from the fact that det

[
G∗(w)G(w)

]
≥ αrG for

all w ∈ R. Since, det
[
G∗(w)G(w)

]
6= 0 is equivalent to rank G(w) = r for all w ∈ R,

the result is a consequence of Theorem 3

Whenever the sampling period r equals the number of U -systems s we are in the
presence of Riesz bases, and there exists a unique sampling expansion in Theorem 3:

Corollary 5. Let bj ∈ H for j = 1, 2, . . . , r, i.e., r = s in Theorem 3. Let Lj be its
associated U -system for j = 1, 2, . . . , r. Assume that the function gj, j = 1, 2, . . . , r,
given in (5) belongs to L∞(0, 1); or equivalently, βG <∞ for the associated r×r matrix
G(w). The following statements are equivalent:

(a) αG > 0.

(b) There exists a Riesz basis {Cj,k}k∈Z; j=1,2,...,r such that for any x ∈ Aa the expansion

x =

r∑
j=1

∑
k∈Z
Ljx(rk)Cj,k in H (12)

holds.

In case the equivalent conditions are satisfied, necessarily there exist cj ∈ Aa, j =
1, 2, . . . , r, such that Cj,k = U rkcj for k ∈ Z and j = 1, 2, . . . , r. Moreover, the interpo-
lation property Lj′cj(rk) = δj,j′ δk,0, where k ∈ Z and j, j′ = 1, 2, . . . , r, holds.
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Proof. Assume that αG > 0; since G(w) is a square matrix, this implies that

ess inf
w∈R

|detG(w)| > 0 .

Therefore, the first row of G−1(w) gives the unique solution [h1(w), h2(w), . . . , hr(w)]
of (7) with hj ∈ L∞(0, 1) for j = 1, 2, . . . , r.
According to Theorem 3, the sequence {Cj,k}k∈Z; j=1,2,...,r := {U rkcj}k∈Z; j=1,2,...,r,
where cj = TU,a(rhj), satisfies the sampling formula (12). Moreover, the sequence
{rhj(w) e2πirkw}k∈Z; j=1,2,...,r = {T −1

U,a

(
U rkcj

)
}k∈Z; j=1,2,...,r is a frame for L2(0, 1). Since

r = s, according to Lemma 2, it is a Riesz basis. Hence, {U rkcj}k∈Z; j=1,2,...,r is a Riesz
basis for Aa and (b) is proved.

Conversely, assume now that {Cj,k}k∈Z; j=1,2,...,r is a Riesz basis for Aa satisfying
(12). From the uniqueness of the coefficients in a Riesz basis, we get that the inter-
polatory condition (Lj′Cj,k)(rk′) = δj,j′δk,k′ holds for j, j′ = 1, 2, . . . , r and k, k′ ∈ Z.
Since T −1

U,a is an isomorphism, the sequence {T −1
U,a

(
Cj,k

)
}k∈Z; j=1,2,...,r is a Riesz basis

for L2(0, 1). Expanding the function gj′(w) e−2πirk′w with respect to the dual basis of
{T −1

U,a

(
Cj,k

)
}k∈Z; j=1,2,...,r, denoted by {Dj,k}k∈Z; j=1,2,...,r, and having in mind (4) we

obtain

gj′(w) e2πirk′w =
r∑
j=1

∑
k∈Z

〈
gj′(·) e2πirk′·, T −1

U,a

(
Cj,k

)〉
L2(0,1)

Dj,k(w)

=
∑
k∈Z
Lj′ Cj,k(rk′)Dj,k(w) = Dj′,k′(w) .

Therefore, the sequence {gj(w) e2πirkw}k∈Z; j=1,2,...,r is the dual basis of the Riesz basis
{T −1

U,a

(
Cj,k

)
}k∈Z; j=1,2,...,r . In particular, it is a Riesz basis for L2(0, 1), which im-

plies, according to Lemma 2, that αG > 0, i.e., condition (a). Moreover, the se-
quence {T −1

U,a

(
Cj,k

)
}k∈Z; j=1,2,...,r is necessarily the unique dual basis of the Riesz basis

{gj(w) e2πirkw}k∈Z; j=1,2,...,r. Therefore, this proves the uniqueness of the Riesz basis
{Cj,k}k∈Z; j=1,2,...,r for Aa satisfying (12).

Some comments on the sequence
{
U rkbj

}
k∈Z; j=1,2,...,s

Concerning Theorem 3, more can be said about the sequence
{
U rkbj

}
k∈Z; j=1,2,...,s

,
where the vectors bj ∈ H define the U -systems Lj ≡ Lbj , j = 1, 2, . . . , s. Having in
mind (4) and the isomorphism TU,a, we obtain that

αG
r
‖TU,a‖−2‖x‖2 ≤

s∑
j=1

∑
k∈Z
|〈x, U rkbj〉|2 ≤

βG
r
‖T −1

U,a‖
2‖x‖2 for all x ∈ Aa . (13)

• In case that bj ∈ Aa for each j = 1, 2, . . . , s, we derive that
{
U rkbj

}
k∈Z; j=1,2,...,s

is a frame for Aa, and it is dual to the frame
{
U rkcj

}
k∈Z; j=1,2,...,s

in Aa. Thus,

the sampling expansion (11) is nothing but a frame expansion in Aa.

• In case that some bj /∈ Aa, the sequence
{
U rkbj

}
k∈Z; j=1,2,...,s

is not contained in

Aa. However, inequalities (13) hold. Therefore, the sequence
{
U rkbj

}
k∈Z; j=1,2,...,s

11



is a pseudo-dual frame for the frame
{
U rkcj

}
k∈Z; j=1,2,...,s

in Aa (see [20, 21]).

Denoting by PAa the orthogonal projection onto Aa, we derive from (13) that
the sequence

{
PAa

(
U rkbj

)}
k∈Z; j=1,2,...,s

is a dual frame of
{
U rkcj

}
k∈Z; j=1,2,...,s

in Aa.

• Whenever r = s, according to the above cases, the sequence
{
U rkbj

}
k∈Z; j=1,2,...,s

is a Riesz basis or a pseudo-Riesz basis for Aa.

Sampling formulas with prescribed properties

The sampling formula (11) can be thought as a filter-bank. Indeed, assume that for
j = 1, 2, . . . , s we have

cj,h = TU,a(rhj) = r
∑
n∈Z

ĥj(n)Una where ĥj(n) =

∫ 1

0
hj(w) e−2πinwdw , n ∈ Z .

Substituting in (11), after the change of summation index m := rk + n we obtain

x =
∑
m∈Z

{ s∑
j=1

∑
k∈Z

rLjx(rk) ĥj(m− rk)
}
Uma ,

that is, the relevant data is the output of a filter-bank:

αm :=
s∑
j=1

∑
k∈Z

rLjx(rk) ĥj(m− rk) , m ∈ Z .

where the input is the given samples and the impulse responses depend on the sampling
vectors cj,h, j = 1, 2, . . . , s. In the oversampling setting, i.e., s > r, according to (9)
there exist infinitely many sampling vectors cj,h, j = 1, 2, . . . , s, for which the sampling
formula (11) holds. A natural question is whether we can choose the sampling vectors
cj,h, j = 1, 2, . . . , s, with prescribed properties.

For instance, a challenging problem is to ask under what conditions we are in the
presence of a FIR (finite impulse response) filter-bank; i.e, cj,h = r

∑
finite ĥj(n)Una,

j = 1, 2, . . . , s, or equivalently, when the functions hj , j = 1, . . . , s, are 2π-periodic
trigonometric polynomials. Instead, we deal with Laurent polynomials by using the
variable z = e2πiw, that is, gj(z) :=

∑
k∈Z Lja(k) zk, j = 1, 2, . . . , s. We introduce the

s× r matrix

G(z) :=


g1(z) g1(zW ) · · · g1(zW r−1)
g2(z) g2(zW ) · · · g2(zW r−1)

...
...

...
gs(z) gs(zW ) · · · gs(zW

r−1)

 =
[
gj
(
zW k

)]
j=1,2,...,s
k=0,1,...,r−1

,

where W : e2πi/r . In case the functions gj(z), j = 1, 2, . . . , s, are Laurent polynomials,
the matrix G(z) has Laurent polynomials entries. Besides, the relationship G(w) =
G(e2πiw), w ∈ (0, 1), holds.
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So that, we are interested in finding Laurent polynomials hj(z), j = 1, 2 . . . , s,
satisfying [

h1(z), h2(z), . . . , hs(z)
]
G(z) = [1, 0, . . . , 0] .

Thus, the trigonometric polynomials hj(w) := hj(e
2πiw), j = 1, 2, . . . , s , satisfy (7),

and the corresponding reconstruction vectors cj,h = TU,a(rhj), j = 1, 2, . . . , s, can be
expanded in Aa with just a finite number of terms. Namely,

cj,h = r
∑
finite

ĥj(n)Una , where hj(z) =
∑
finite

ĥj(n) zn , j = 1, 2, . . . , s .

The following result holds:

Theorem 6. Assume that the sequences
{
Lja(k)

}
k∈Z, j = 1, 2, . . . , s, contain only a fi-

nite number of nonzero terms. Then, there exists a vector h(z) := [h1(z), h2(z), . . . , hs(z)]
whose entries are Laurent polynomials, and satisfying h(z)G(z) = [1, 0, . . . , 0] if and
only if

rankG(z) = r for all z ∈ C \ {0} .

Proof. This result is a consequence of the next lemma which proof can be found in [34,
Theorems 5.1 and 5.6]:

Lemma 7. Let G(z) be an s× r matrix whose entries are Laurent polynomials. Then,
there exists an r× s matrix H(z) whose entries are also Laurent polynomials satisfying
H(z)G(z) = Ir if and only if rankG(z) = r for all z ∈ C \ {0}.

Analogously we can consider the case where the coefficients of the reconstruction
vectors cj,h = r

∑
n∈Z ĥj(n)Una, j = 1, 2, . . . , s, have exponential decay, i.e., there exist

C > 0 and q ∈ (0, 1) such that |ĥj(n)| ≤ Cq|n|, n ∈ Z, j = 1, 2, . . . , s. Assuming that
the sequences

{
Lja(k)

}
k∈Z, j = 1, 2, . . . , s, have exponential decay then, we can find

reconstruction vectors cj,h such that the sequences {ĥj(n)}n∈Z, j = 1, 2, . . . , s, have
exponential decay if and only if rankG(z) = r for all z ∈ C such that |z| = 1. For the
details, see [16] and references therein.

4 Time-jitter error: irregular sampling in Aa
A close look to Section 3 shows that all the regular sampling results have been proved
without the formalism of a continuous group of unitary operators {U t}t∈R in H: we
have only used the integer powers {Un}n∈Z which are completely determined from the
unitary operator U . However, if we are concerned with the jitter-error in a sampling
formula as (11), the group of unitary operators becomes essential. Here, we dispose of
a perturbed sequence of samples {(Ljx)(rm+ εmj)}m∈Z; j=1,2,...,s, with errors εmj ∈ R,
for the recovery of x ∈ Aa. By using (4) and (3) we obtain:

Ljx(rm) =
〈
F, gj(w) e2πirmw

〉
L2(0,1)

and Ljx(rm+ εmj) =
〈
F, gm,j(w) e2πirmw

〉
L2(0,1)

,
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where the functions

gj(w) :=
∑
k∈Z
Lja(k) e2πikw and gm,j(w) :=

∑
k∈Z
Lja(k + εmj) e2πikw ,

belong to L2(0, 1). Let G(w) be the s × r matrix given in (6), associated with the
functions gj , j = 1, 2, . . . , s. In the case that 0 < αG ≤ βG < ∞, the sequence{
gj(w) e2πirmw

}
m∈Z; j=1,2,...,s

is a frame for L2(0, 1) with optimal frame bounds αG/r

and βG/r. Thus, as in [14], we can see the sequence
{
gm,j(w) e2πirmw

}
m∈Z; j=1,2,...,s

in

L2(0, 1) as a perturbation of the frame
{
gj(w) e2πirmw

}
m∈Z; j=1,2,...,s

in L2(0, 1). The

following result on frame perturbation, which proof can be found in [8, p. 354] will be
used later:

Lemma 8. Let {xn}∞n=1 be a frame for the Hilbert space H with frame bounds A, B,
and let {yn}∞n=1 be a sequence in H. If there exists a constant R < A such that

∞∑
n=1

∣∣〈xn − yn, x〉∣∣2 ≤ R‖x‖2 for each x ∈ H ,

then the sequence {yn}∞n=1 is also a frame for H with bounds A
(
1 −

√
R/A

)2
and

B
(
1 +

√
R/B

)2
. If the sequence {xn}∞n=1 is a Riesz basis, then the sequence {yn}∞n=1

is also a Riesz basis.

The time-jitter error sampling expansion

Given an error sequence ε := {εmj}m∈Z; j=1,2,...,s, assume that the operator

Dε : `2(Z) −→ `2s(Z)
c = {cl}l∈Z 7−→ Dε c :=

(
Dε,1 c, . . . ,Dε,s c

)
,

is well-defined, where, for j = 1, 2, . . . , s,

Dε,j c :=
{∑
k∈Z

[
Lja(rm− k + εmj)− Lja(rm− k)

]
ck

}
m∈Z

. (14)

The operator norm (it could be infinity) is defined as usual

‖Dε‖ := sup
c∈`2(Z)\{0}

‖Dε c ‖`2s(Z)

‖c ‖`2(Z)
,

where ‖Dε c ‖2`2s(Z) :=
∑s

j=1 ‖Dε,j c ‖2`2(Z) for each c ∈ `2(Z).

Theorem 9. Assume that for the functions gj, j = 1, 2, . . . , s, given in (5) we have
0 < αG ≤ βG < ∞. Let ε := {εmj}m∈Z; j=1,2,...,s be an error sequence satisfying the
inequality ‖Dε‖2 < αG/r. Then, there exists a frame {Cε

j,m}m∈Z; j=1,2,...,s for Aa such
that, for any x ∈ Aa, the sampling expansion

x =

s∑
j=1

∑
m∈Z
Ljx(rm+ εmj)C

ε
j,m in H , (15)

holds. Moreover, when r = s the sequence {Cε
j,m}m∈Z; j=1,2,...,s is a Riesz basis for Aa,

and the interpolation property (Ll Cε
j,n)(rm+ εmj) = δj,l δn,m holds.
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Proof. The sequence
{
gj(w) e2πirmw

}
m∈Z; j=1,2,...,s

is a frame (a Riesz basis if r = s) for

L2(0, 1) with optimal frame (Riesz) bounds αG/r and βG/r. For any F (w) =
∑
l∈Z

al e
2πilw

in L2(0, 1) we have∑
m∈Z

s∑
j=1

∣∣〈gm,j(·) e2πirm· − gj(·) e2πirm·, F (·)
〉
L2(0,1)

∣∣2
=
∑
m∈Z

s∑
j=1

∣∣〈∑
k∈Z

(
Lja(k + εmj)− Lja(k)

)
e2πi(rm−k)·, F (·)

〉
L2(0,1)

∣∣2
=
∑
m∈Z

s∑
j=1

∣∣〈∑
k∈Z

(
Lja(rm− k + εmj)− Lja(rm− k)

)
e2πik·, F (·)

〉
L2(0,1)

∣∣2
=
∑
m∈Z

s∑
j=1

∣∣∑
k∈Z

(
Lja(rm− k + εmj)− Lja(rm− k)

)
ak
∣∣2

=
s∑
j=1

‖Dε,j{al}l∈Z‖2`2(Z) ≤ ‖Dε‖2‖{al}l∈Z‖2`2(Z) = ‖Dε‖2‖F‖2L2(0,1) .

(16)

By using Lemma 8 we obtain that the sequence
{
gm,j(w) e2πirmw

}
m∈Z; j=1,2,...,s

is a

frame for L2(0, 1) (a Riesz basis if r = s). Let {hεj,m}m∈Z; j=1,2,...,s be its canonical dual

frame. Hence, for any F ∈ L2(0, 1)

F =
∑
m∈Z

s∑
j=1

〈
F (·), gm,j(·) e2πirm·〉

L2(0,1)
hεj,m

=
∑
m∈Z

s∑
j=1

Ljx(rm+ εmj)h
ε
j,m in L2(0, 1) .

Applying the isomorphism TU,a, one gets (15), where Cε
j,m := TU,a

(
hεj,m

)
for m ∈ Z and

j = 1, 2, . . . , s. Since TU,a is an isomorphism between L2(0, 1) and Aa, the sequence
{Cε

j,m}m∈Z; j=1,2,...,s is a frame for Aa (a Riesz basis if r = s). The interpolatory
property in the case r = s follows from the uniqueness of the coefficients with respect
to a Riesz basis.

Sampling formula (15) is useless from a practical point of view: it is impossible
to determine the involved frame {Cε

j,m}m∈Z; j=1,2,...,s. As a consequence, in order to

recover x ∈ Aa from the sequence of samples
{

(Ljx)(rm+εmj)
}
m∈Z; j=1,2,...,s

we should

implement a frame algorithm in `2(Z) (see Ref. [14]); another possibility is given in
Ref. [1].

In order to prove the existence of sequences ε := {εmj}m∈Z; j=1,...,s such that
‖Dε‖2 < αG/r we need some results from the group of unitary operators theory:

A brief excursion on groups of unitary operators

Let {U t}t∈R denote a continuous group of unitary operators in H. Classical Stone’s
theorem [26] assures us the existence of a self-adjoint operator T (maybe unbounded)
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such that U t ≡ eitT . This self-adjoint operator T , defined on the dense domain of H

DT :=
{
x ∈ H such that

∫ ∞
−∞

w2 d‖Ewx‖2 <∞
}
,

admits the spectral representation T =
∫∞
−∞w dEw which means:

〈Tx, y〉 =

∫ ∞
−∞

w d〈Ewx, y〉 for any x ∈ DT and y ∈ H ,

where {Ew}w∈R is the corresponding resolution of the identity, i.e., a one-parameter
family of projection operators Ew in H such that

(i) E−∞ := lim
w→−∞

Ew = OH, E∞ := lim
w→∞

Ew = IH,

(ii) Ew− = Ew for any −∞ < w <∞,

(iii) EuEv = Ew where w = min{u, v}.

Recall that ‖Ewx‖2 and 〈Ewx, y〉, as functions of w, have bounded variation and define,
respectively, a positive and a complex Borel measure on R.

Furthermore, for any x ∈ DT we have that lim
t→0

U tx− x
t

= iTx and the operator iT is

said to be the infinitesimal generator of the group {U t}t∈R. For each x ∈ DT , U tx is a
continuous differentiable function of t. Notice that, whenever the self-adjoint operator
T is bounded, DT = H and eitT can be defined as the usual exponential series; in any
case, U t ≡ eitT means that

〈U tx, y〉 =

∫ ∞
−∞

eiwtd〈Ewx, y〉 , t ∈ R ,

where x ∈ DT and y ∈ H.
Finally, a comment on the continuity of a group of unitary operators: The group is said
to be strongly continuous if, for each x ∈ H and t0 ∈ R, U tx→ U t0x as t→ t0. If H is
a separable Hilbert space, strong continuity can be deduced from continuity and even
from weak measurability, i.e., 〈U tx, y〉H is a Lebesgue measurable function of t for any
x, y ∈ H. See, for instance, Refs. [2, 7, 32, 33].

On the existence of sequences ε such that ‖Dε‖2 < αG/r

Assuming that bj ∈ DT , j = 1, 2, . . . , s, the functions Lja(t), j = 1, 2, . . . , s, are
continuously differentiable on R. If, for instance, we demand in addition that, for each
j = 1, 2, . . . , s , there exists ηj > 0 such that

(Lja)′(t) = O(|t|−(1+ηj)) whenever |t| → ∞ , (17)

then we can find out a finite bound for the norm ‖Dε‖2. Indeed, for j = 1, 2, . . . , s and
n,m ∈ Z denote

d
(j)
m,k := Lja(rm− k + εm,j)− Lja(rm− k) .
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Taking into account (14), for any sequence c = {ck}k∈Z ∈ `2(Z) we have

‖Dεc‖2`2s(Z) =
s∑
j=1

∑
m∈Z

∣∣∣∣∑
k∈Z

d
(j)
m,k ck

∣∣∣∣2 ≤ s∑
j=1

∑
m∈Z

∑
l,k∈Z

|d(j)
m,lcld

(j)
m,kck|

=

s∑
j=1

∑
l,k∈Z

|cl| |ck|
∑
m∈Z
|d(j)
m,ld

(j)
m,k| ≤

s∑
j=1

∑
l,k∈Z

|cl|2 + |ck|2

2

∑
m∈Z
|d(j)
m,ld

(j)
m,k|

=
s∑
j=1

∑
l∈Z
|cl|2

∑
k,m∈Z

|d(j)
m,ld

(j)
m,k| .

(18)

Under the decay conditions (17), for |γ| ≤ 1/2 we define the continuous functions,

M(Lja)′(γ) :=
∑
k∈Z

max
t∈[k−γ,k+γ]

|(Lja)′(t)| ,

and
N(Lja)′(γ) := max

k=0,1,...,r−1

∑
m∈Z

max
t∈[rm+k−γ,rm+k+γ]

|(Lja)′(t)| .

Notice that N(Lja)′(γ) ≤M(Lja)′(γ) and for r = 1 the equality holds.

Theorem 10. Given an error sequence ε := {εmj}m∈Z; j=1,...,s, define the constant
γj := supm∈Z |εmj | for each j = 1, 2, . . . , s. Then, the inequality

‖Dε‖2 ≤
s∑
j=1

γ2
j N(Lja)′(γj)M(Lja)′(γj)

holds and, as a consequence, condition

s∑
j=1

γ2
j N(Lja)′(γj)M(Lja)′(γj) <

αG

r

ensures the hypothesis ‖Dε‖2 < αG/r in Theorem 9.

Proof. For each j = 1, 2, . . . , s , the mean value theorem gives

sup
d∈[−γj ,γj ]

∑
n∈Z
|Lja(n+ d)− Lja(n)| ≤ γj M(Lja)′(γj) , (19)

and
sup

k=0,1,...,r−1
{dn}⊂[−γj ,γj ]

∑
n∈Z
|Lja(rn+ k + dn)− Lja(rn+ k)| ≤ γj N(Lja)′(γj) . (20)

Thus, using (19) and (20), inequality (18) becomes

‖Dεc‖2`2s(Z) ≤
s∑
j=1

∑
l∈Z
|cl|2

∑
k,m∈Z

|d(j)
m,ld

(j)
m,k| ≤

s∑
j=1

∑
l∈Z
|cl|2

∑
m∈Z
|d(j)
m,l| γjM(Lja)′(γj)

≤
s∑
j=1

∑
l∈Z
|cl|2 (γj)

2 M(Lja)′(γj)N(Lja)′(γj)

= ‖c‖2`2(Z)

s∑
j=1

γ2
j N(Lja)′(γj)M(Lja)′(γj) ,

(21)
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which concludes the proof.

5 The case of multiple generators

The case of L generators can be analogously derived. Indeed, consider the U -invariant
subspace generated by a := {a1, a2, . . . , aL} ⊂ H, i.e.,

Aa := span
{
Unal, n ∈ Z; l = 1, 2. . . . , L

}
.

Assuming that the sequence {Unal}n∈Z; l=1,2,...,L is a Riesz sequence in H, the U -
invariant subspace Aa can be expressed as

Aa =
{ L∑
l=1

∑
n∈Z

αln U
na : {αln}n∈Z ∈ `2(Z); l = 1, 2. . . . , L

}
.

The sequence {Unal}n∈Z; l=1,2,...,L can be thought as an L-dimensional stationary se-
quence. Its covariance matrix Ra(k) is the L× L matrix

Ra(k) :=
[
〈Ukam, an〉H

]
m,n=1,2,...,L

, k ∈ Z .

Its admits the spectral representation [19]:

Ra(k) =
1

2π

∫ π

−π
eikθdµa(θ) , k ∈ Z .

The spectral measure µa is an L × L matrix; its entries are the spectral measures
associated with the cross-correlation functions Rm,n(k) := 〈Ukam, an〉H. It can be
decomposed into an absolute continuous part and its singular part. Thus we can write

dµa(θ) = Φa(θ)dθ + dµsa(θ) .

In case that the singular part µsa ≡ 0, the hermitian L× L matrix Φa(θ) is called the
spectral density of the sequence {Unal}n∈Z; l=1,2,...,L. The following theorem holds:

Theorem 11. Let {Unal}n∈Z; l=1,2,...,L be a sequence obtained from a unitary opera-
tor in a separable Hilbert space H with spectral measure dµa(θ) = Φa(θ)dθ + dµsa(θ),
and let Aa be the closed subspace spanned by {Unal}n∈Z; l=1,2,...,L. Then the sequence
{Unal}n∈Z; l=1,2,...,L is a Riesz basis for Aa if and only if the singular part µsa ≡ 0 and

0 < ess inf
θ∈(−π,π)

λmin

[
Φa(θ)

]
≤ ess sup

θ∈(−π,π)
λmax

[
Φa(θ)

]
<∞ . (22)

Proof. For a fixed `2L-sequence c := {cln}n∈Z; l=1,2,...,L we have∥∥∥ L∑
l=1

∑
k∈Z

clkU
kal

∥∥∥2
=

L∑
i,j=1

∑
m∈Z

∑
n∈Z

cimc̄
j
m〈Umai, Unaj〉

=

L∑
i,j=1

∑
m∈Z

∑
n∈Z

cimc̄
j
n

1

2π

∫ π

−π
eimθe−inθdµai,aj (θ)

=
1

2π

∫ π

−π

∑
m∈Z

∑
n∈Z

(cm eimθ)>dµa(θ)c̄n e−inθ ,

(23)
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where ck = (c1
k, c

2
k, . . . , c

L
k )> for every k ∈ Z.

First we show that if the measure µa is not absolutely continuous with respect to
Lebesgue measure λ then {Unal}n∈Z; l=1,2,...,L is not a Riesz basis for Aa. Indeed, if
the spectral measure µa is not absolutely continuous with respect to Lebesgue measure
then there exists i ∈ {1, 2, . . . , L} such that the positive spectral measure µai,ai is not
absolutely continuous with respect to Lebesgue measure; this comes from the fact that,
if any spectral measure in the diagonal µaj ,aj is absolutely continuous with respect to
Lebesgue measure, the same occurs for each measure µaj ,ak with k 6= j (see [7, p. 137]).
Then, µai,ai(B) > 0 for a (Lebesgue) measurable set B ⊂ (−π, π) of Lebesgue measure
zero. Bearing in mind that every measurable set is included in a Borel set, actually an
intersection of a countable collection of open sets, having the same Lebesgue measure
(see [25, p. 63]), we take B to be a Borel set. Moreover, since every finite Borel measure
on (−π, π) is inner regular (see [25, p. 340]) we may also assume that B is a compact
set. For any ε > 0 there exists a sequence of disjoint open intervals Ij ⊂ (−π, π) such
that

B ⊂
∞⋃
j=1

Ij and
∞∑
j=1

λ(Ij) ≤ λ(B) + ε = ε ,

(see [25, pp. 58 and 42]). Since B is compact we may take the sequence to be finite.
Hence, for every N ∈ N there exist open disjoint intervals IN1 , I

N
2 , . . . , I

N
jN

in (−π, π)
such that

B ⊂
jN⋃
j=1

INj and

jN∑
j=1

λ(INj ) ≤ 1

3N
.

Besides,
∑jN

j=1 µai,ai(I
N
j ) ≥ µai,ai(B). Consider the function gN : (−π, π) → R, where

gN = 2N/2χ⋃jN
j=1 I

N
j

, that satisfies

‖gN‖22 = 2N
jN∑
j=1

λ(INj ) ≤ 2N

3N
< 1 .

We modify and extend each gN to obtain a 2π-periodic function fN : R −→ R such that
fN and its derivative are continuous on R, ‖fN‖22 ≤ 1 and fN (θ) = gN (θ) for every
θ ∈

⋃jN
j=1 I

N
j . Let

∑
k c

N
k eikθ be the Fourier series of fN . First, by using Parseval’s

identity we have

‖cNk ‖22 =
1

2π
‖fN‖22 ≤

1

2π
for every N ∈ N ,

so that {cN}∞N=1 is a bounded sequence in `2(Z). Besides, the regularity of each
fN ensures that each Fourier series converges uniformly to fN . Therefore each series∑

k c
N
k eikθ converges to fN in L2

µai,ai (−π,π) and consequently,

∥∥∥∑
k

cNk eikθ
∥∥∥2

L2
µai,ai

(−π,π)
=

∫ π

−π
|fN |2dµai,ai ≥

∫ π

−π
|gN |2dµai,ai = 2N

jN∑
j=1

µai,ai(I
N
j )

≥ 2Nµai,ai(B) .
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For every cN ∈ `2(Z) we consider the `2L-sequence {cNln }n∈Z; l=1,2,...,L given by cNin = cNn
and cNln = 0 if l 6= i. Substituting each {cNln }n∈Z; l=1,2,...,L in (23) we have that

∥∥∥ L∑
l=1

∑
k∈Z

cNlk Ukal

∥∥∥2
=

1

2π

∫ π

−π

∣∣∣∑
k∈Z

cNk eikθ
∣∣∣2dµai,ai(θ)

tends to infinity with N , so {Unal}n∈Z; l=1,2,...,L cannot be a Bessel sequence, therefore,
not a Riesz basis.

For the remainder of the proof we assume that the singular part µsa ≡ 0 and that
dµa(θ) = Φa(θ)dθ. Then (23) yields that

∥∥∥ L∑
l=1

∑
k∈Z

clkU
kal

∥∥∥2
=

1

2π

∫ π

−π

( ∑
m∈Z

cm eimθ
)>

Φa(θ)
∑
n∈Z

cn einθdθ . (24)

We have to show that {Unal}n∈Z; l=1,2,...,L is a Riesz basis for Aa if and only if (22)
holds. Rayleigh-Ritz theorem (see [17, p. 176]) provides the inequalities

λmin

[
Φa(θ)

]∣∣∑
k∈Z

ck eikθ
∣∣2 ≤ ( ∑

m∈Z
cm eimθ

)>
Φa(θ)

∑
n∈Z

cn einθ ≤ λmax

[
Φa(θ)

]∣∣∑
k∈Z

ck eikθ
∣∣2

and taking into account (24) we have

1

2π

∫ π

−π
λmin

[
Φa(θ)

]∣∣∑
k∈Z

ck eikθ
∣∣2dθ ≤ ∥∥∥ L∑

l=1

∑
k∈Z

clkU
kal

∥∥∥2

≤ 1

2π

∫ π

−π
λmax

[
Φa(θ)

]∣∣∑
k∈Z

ck eikθ
∣∣2dθ ,

so that

ess inf
θ∈(−π,π)

λmin

[
Φa(θ)

] L∑
l=1

∑
k∈Z
|clk|2 ≤

∥∥∥ L∑
l=1

∑
k∈Z

clkU
kal

∥∥∥2

≤ ess sup
θ∈(−π,π)

λmax

[
Φa(θ)

] L∑
l=1

∑
k∈Z
|clk|2 .

Therefore (22) implies that {Unal}n∈Z; l=1,2,...,L is a Riesz basis for Aa.
Conversely, if {Unal}n∈Z; l=1,2,...,L is a Riesz basis for Aa then there exist constants

0 < A ≤ B <∞ such that

A
L∑
l=1

∑
k∈Z
|clk|2 ≤

∥∥∥ L∑
l=1

∑
k∈Z

clkU
kal

∥∥∥2
≤ B

L∑
l=1

∑
k∈Z
|clk|2 (25)

for every `2L-sequence c := {cln}n∈Z; l=1,2,...,L. Let us prove that

A ≤ ess inf
θ∈(−π,π)

λmin

[
Φa(θ)

]
≤ ess sup

θ∈(−π,π)
λmax

[
Φa(θ)

]
≤ B . (26)
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Proceeding by contradiction, if (26) would not hold, then

A ≤ λmin

[
Φa(θ)

]
≤ λmax

[
Φa(θ)

]
≤ B

does not hold on a subset of (−π, π) with positive Lebesgue measure. In case the set
ΓB := {θ ∈ (−π, π) : λmax

[
Φa(θ)

]
> B} has positive Lebesgue measure we introduce

the Fourier expansion of the function F ∈ L2
L(−π, π) (L2

L(−π, π) denotes the usual
product Hilbert space L2(−π, π) × · · · × L2(−π, π) (L times)) in (24), where F (θ) =
X(θ)χΓB

(θ) and X(θ) is an eigenvector of norm 1 associated with the biggest eigenvalue
of Φa(θ). We get∥∥∥ L∑

l=1

∑
k∈Z

clkU
kal

∥∥∥2
=

1

2π

∫
ΓB

λmax

[
Φa(θ)

]
dθ >

1

2π

∫
ΓB

Bdθ

which contradicts the right inequality in (25) for such a Fourier expansion. Whenever
Lebesgue measure of the set ΓB is zero then we proceed in a similar way with the set
of positive Lebesgue measure ΓA := {θ ∈ (−π, π) : λmin

[
Φa(θ)

]
< A}.

The above proof is similar to that of Lemma 2 in [24], except we do not exclude
the case in which the singular measure is atomless. Another characterization for being
{Unal}n∈Z; l=1,2,...,L a Riesz basis for Aa can be found in [3].

The resulting regular sampling formulas

As in the one-generator case, the space Aa is the image of the usual product Hilbert
space L2

L(0, 1) by means of the isomorphism TU,a : L2
L(0, 1) −→ Aa, which maps the or-

thonormal basis {e−2πinwel}n∈Z; l=1,2,...,L for L2
L(0, 1) (here, {el}Ll=1 denotes the canon-

ical basis for CL) onto the Riesz basis {Unal}n∈Z; l=1,2,...,L for Aa, i.e.,

TU,aF :=
L∑
l=1

∑
n∈Z

〈
Fl, e

2πin·〉
L2(0,1)

Unal =
L∑
l=1

∑
n∈Z

αln U
nal , (27)

where F = (F1, F2, . . . , FL)> ∈ L2
L(0, 1).

Here, for F ∈ L2
L(0, 1) and N ∈ Z the U -shift property reads:

TU,a
(
Fe2πiNw

)
= UN

(
TU,aF

)
. (28)

Concerning the representation of an U -system Lb, for x ∈ Aa we have

Lbx(t) = 〈x, U tb〉H =

L∑
l=1

∑
n∈Z

αln 〈U tb, Unal〉H

=
L∑
l=1

〈
Fl,
∑
n∈Z
〈U tb, Unal〉H e2πinw

〉
L2(0,1)

=
〈
F,Kt

〉
L2
L(0,1)

,

where TU,aF = x, F =
(
F1, F2, . . . , FL

)> ∈ L2
L(0, 1), and the function

Kt(w) :=
(∑
n∈Z
Lba1(t− n) e2πinw,

∑
n∈Z
Lba2(t− n) e2πinw, . . . ,

∑
n∈Z
LbaL(t− n) e2πinw

)>
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belongs to L2
L(0, 1). In particular, given s U -systems Lj := Lbj associated with bj ∈ H,

j = 1, 2, . . . , s, we get the expression for the samples
{
Ljx(rm)

}
m∈Z; j=1,2,...,s

:

Ljx(rm) =
〈
F,gj(w) e2πirmw

〉
L2
L(0,1)

for m ∈ Z and j = 1, 2, . . . , s , (29)

where TU,aF = x and

gj(w) :=
(∑
k∈Z
Lja1(k) e2πikw,

∑
k∈Z
Lja2(k) e2πikw, . . . ,

∑
k∈Z
LjaL(k) e2πikw

)>
∈ L2

L(0, 1) .

As in the one-generator case we must study the sequence
{
gj(w) e2πirmw

}
m∈Z; j=1,2,...,s

in L2
L(0, 1). Consider the s× rL matrix of functions in L2(0, 1)

G(w) :=


g>1 (w) g>1 (w + 1

r ) · · · g>1 (w + r−1
r )

g>2 (w) g>2 (w + 1
r ) · · · g>2 (w + r−1

r )
...

...
...

g>s (w) g>s (w + 1
r ) · · · g>s (w + r−1

r )

 =

[
g>j

(
w+

k − 1

r

)]
j=1,2,...,s
k=1,2,...,r

(30)

and its related constants

αG := ess inf
w∈(0,1/r)

λmin[G∗(w)G(w)], βG := ess sup
w∈(0,1/r)

λmax[G∗(w)G(w)] .

In [15, Lemma 2] one can find the proof of the following lemma:

Lemma 12. Let gj be in L2
L(0, 1) for j = 1, 2, . . . , s and let G(w) be its associated

matrix given in (30). Then, the following results hold:

(a) The sequence
{
gj(w) e2πirnw

}
n∈Z,j=1,2,...,s

is a complete system for L2
L(0, 1) if and

only if the rank of the matrix G(w) is rL a.e. in (0, 1/r).

(b) The sequence
{
gj(w) e2πirnw

}
n∈Z,j=1,2,...,s

is a Bessel sequence for L2
L(0, 1) if and

only if gj ∈ L∞L (0, 1) (or equivalently βG < ∞). In this case, the optimal Bessel
bound is βG/r.

(c) The sequence
{
gj(w) e2πirnw

}
n∈Z,j=1,2,...,s

is a frame for L2
L(0, 1) if and only if

0 < αG ≤ βG <∞. In this case, the optimal frame bounds are αG/r and βG/r.

(d) The sequence
{
gj(w) e2πirnw

}
n∈Z,j=1,2,...,s

is a Riesz basis for L2
L(0, 1) if and only

if is a frame and s = rL.

In case that the sequence
{
gj(w) e2πirnw

}
n∈Z; j=1,2,...,s

is a frame for L2
L(0, 1) (here,

necessarily s ≥ rL), a dual frame is given by
{
rhj(w) e2πirnw

}
n∈Z; j=1,2,...,s

, where the

functions hj , j = 1, 2, . . . , s, form an L × s matrix h(w) :=
[
h1(w),h2(w), . . . ,hs(w)

]
with entries in L∞(0, 1), and satisfying[

h1(w),h2(w), . . . ,hs(w)
]
G(w) =

[
IL,OL×(r−1)L

]
a.e. in (0, 1)
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(see Ref. [15] for the details). That is, the matrix h(w) is formed with the first L rows
of a left-inverse of the matrix G(w) having essentially bounded entries in (0, 1). In
other words, all the dual frames of

{
gj(e2πirnw)

}
n∈Z; j=1,2,...,s

with the above property
are obtained by taking the first L rows of the rL× s matrices given by

HU(w) := G†(w) + U(w)
[
Is −G(w)G†(w)

]
,

where U(w) denotes any rL× s matrix with entries in L∞(0, 1).
Thus, any F ∈ L2

L(0, 1) can be expanded as

F =
s∑
j=1

∑
n∈Z

〈
F,gj(w) e2πirnw

〉
L2
L(0,1)

rhj(w) e2πirnw in L2
L(0, 1) .

Applying the isomorphism TU,a and taken into account (29), for each x = TU,aF ∈ Aa

we get the sampling expansion

x =
s∑
j=1

∑
n∈Z
Ljx(rn)U rn

[
TU,a(rhj)

]
=

s∑
j=1

∑
n∈Z
Ljx(rn)U rncj,h in H ,

where cj,h = TU,a(rhj) ∈ Aa, j = 1, 2, . . . , s, and the sequence {U rncj,h}n∈Z; j=1,2,...,s is
a frame for Aa. Proceeding as in Section 3, it is straighforward to state and prove the
corresponding results.

The time-jitter error sampling formulas

Under appropriate slight changes, the time-jitter error results in Section 4 still re-
main valid for the case of multiple generators. Namely, given an error sequence
ε := {εmj}m∈Z; j=1,2,...,s, assume that the operator

Dε : `2L(Z) −→ `2s(Z)
c 7−→ Dε c :=

(
Dε,1 c, . . . , Dε,s c

)
,

is well-defined, where c :=
(
{c1
k}k∈Z, {c2

k}k∈Z, . . . , {cLk }k∈Z
)
∈ `2L(Z) and, for j =

1, 2, . . . , s ,

Dε,j c :=
{ L∑
l=1

∑
k∈Z

[
Ljal(rm− k + εmj)− Ljal(rm− k)

]
clk

}
m∈Z

.

The operator norm (it could be infinity) is defined as usual

‖Dε‖ := sup
c∈`2L(Z)\{0}

‖Dε c ‖`2s(Z)

‖c ‖`2L(Z)

,

where ‖Dε c ‖2`2s(Z) :=
∑s

j=1 ‖Dε,j c ‖2`2(Z) and ‖c‖2
`2L(Z)

=
∑L

l=1

∑
k∈Z |clk|2 for each c ∈

`2L(Z). Assume that the matrix G in (30) satisfies 0 < αG ≤ βG < ∞, and let ε :=
{εmj}m∈Z; j=1,2,...,s be an error sequence satisfying the inequality ‖Dε‖2 < αG/r. Then,
proceeding as in Section 4, there exists a frame {Cε

j,m}m∈Z; j=1,2,...,s for Aa such that,
for any x ∈ Aa a sampling formula as in (15) holds.
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Now assume that bj ∈ DT , j = 1, 2, . . . , s; thus the functions Lbjal(t) ≡ Ljal(t), j =
1, 2, . . . , s and l = 1, 2, . . . , L , are continuously differentiable on R. Again, as in Section
4, under the decay condition (17) for each (Ljal)′(t), j = 1, 2, . . . , s and l = 1, 2, . . . , L ,
one can easily prove that there exists δ > 0 such that γj := supm∈Z |εmj | < δ for each j =
1, 2, . . . , s , implies that ‖Dε‖2 < αG/r for the error sequence ε := {εmj}m∈Z; j=1,2,...,s.
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[5] A. Aldroubi and K. Gröchenig. Non-uniform sampling and reconstruction in shift-
invariant spaces. SIAM Rev., 43:585–620, 2001.

[6] A. Aldroubi, Q. Sun and W. S. Tang. Convolution, average sampling, and a
Calderon resolution of the identity for shift-invariant spaces. J. Fourier Anal.
Appl., 11(2):215–244, 2005.

[7] M. S. Birman and M. Z. Solomjak. Spectral Theory of Self-Adjoint Operators in
Hilbert Space. Springer, New York, 1987.

[8] O. Christensen. An Introduction to Frames and Riesz Bases. Birkhäuser, Boston,
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