THE CRYPTANALYSIS OF FEAL-4 WITH TWENTY CHOSEN PLAINTEXTS

SEAN MURPHY*

Department of Mathematics, Royal Holloway and Bedford New College, University of London, Egham, Surrey TW20 0EX, England.

1. The FEAL-4 Ciphering Algorithm

The FEAL-N cryptosystem has been developed by N.T.T. as a highly programming efficient block cipher system, as it does not use look-up tables. It was first presented in [2]. It is essentially an N-round Feistel block cipher operating on 64 -bit blocks and determined by a 64 -bit key. FEAL-8 is the standard block cipher, but N.T.T. intend that FEAL- 4 can be used in cipher block chaining mode when plaintexts are not revealed, a cryptogram only environment, or for data integrity usage. The best published attack on FEAL-4 was given by Den Boer [1], who used 10,000 chosen plaintexts to recover the key. We shall give a method that uses at most twenty chosen plaintexts to recover the key. Whereas it may be possible to ensure the absence of 10,000 chosen plaintexts, ensuring the absence of twenty plaintexts may well be too restrictive for most uses.

The functions used to construct FEAL-N are, for $i=0,1, S_{i}: \mathbf{Z}_{2}^{8} \times \mathbf{Z}_{2}^{8} \rightarrow \mathbf{Z}_{2}^{8}$. These are defined for $\mathbf{x}, \mathbf{y} \in \mathbf{Z}_{2}^{8}$ by regarding \mathbf{x}, \mathbf{y} as binary numbers x, y in the range $0, \cdots, 255$, so

$$
\begin{equation*}
S_{i}(\mathbf{x}, \mathbf{y})=\operatorname{Rot}_{2}(x+y+i(\operatorname{Mod} 256)), \tag{1.1}
\end{equation*}
$$

where $R_{0} t_{2}$ is a 2 -bit rotation to the left. S_{0} and S_{1} are then used to define two functions, $f_{K}: \mathbf{Z}_{2}^{32} \times \mathbf{Z}_{2}^{32} \rightarrow \mathbf{Z}_{2}^{32}$, which is used to process the key, and $f: \mathbf{Z}_{2}^{32} \times \mathbf{Z}_{2}^{16} \rightarrow \mathbf{Z}_{2}^{32}$, which is used to encipher the plaintext.

Suppose $a_{i}, b_{i}, c_{i} \in \mathbf{Z}_{2}^{8}$ for $i=0,1,2,3$, and $\mathbf{a}=\left(a_{0}, a_{1}, a_{2}, a_{3}\right) \in \mathbf{Z}_{2}^{32}$ etc., then

$$
\begin{equation*}
\mathbf{c}=f_{K}(\mathbf{a}, \mathbf{b}) \tag{1.2}
\end{equation*}
$$

[^0]is defined in the following manner :
\[

$$
\begin{align*}
d_{1} & =a_{0} \oplus a_{1} \\
d_{2} & =a_{2} \oplus a_{3} \\
c_{1} & =S_{1}\left(d_{1}, d_{2} \oplus b_{0}\right) \\
c_{2} & =S_{0}\left(d_{2}, c_{1} \oplus b_{1}\right) \tag{1.3}\\
c_{0} & =S_{0}\left(a_{0}, c_{1} \oplus b_{2}\right) \\
c_{3} & =S_{1}\left(a_{3}, c_{2} \oplus b_{3}\right) .
\end{align*}
$$
\]

A schematic representation of f_{K} is given in Figure 1.

The key is processed by using f_{K} to obtain twelve 16 -bit sub-keys. This is done by splitting the 64 -bit key K into its left and right halves to give two 32 -bit strings K_{L} and K_{R}. We can define

$$
\begin{equation*}
B_{-2}=0, B_{-1}=K_{L}, B_{0}=K_{R} \tag{1.4}
\end{equation*}
$$

and for $i=1, \cdots, 6$

$$
\begin{equation*}
B_{i}=f_{K}\left(B_{i-2}, B_{i-1} \oplus B_{i-3}\right) \tag{1.5}
\end{equation*}
$$

The twelve 16 -bit sub-keys, $K_{i}, i=0, \cdots, 11$, used in the enciphering process are then just the left and right halves of $B_{i}, i=1, \cdots, 6$, so

$$
\begin{equation*}
K_{2(i-1)}=B_{i}^{L}, K_{2 i-1}=B_{i}^{R} \tag{1.6}
\end{equation*}
$$

Now suppose that $a_{i}, c_{i} \in \mathbf{Z}_{2}^{8}$ for $i=0,1,2,3$, and also that $b_{1}, b_{2} \in \mathbf{Z}_{2}^{8}$, with $\mathbf{b}=$ $\left(b_{1}, b_{2}\right) \in \mathbf{Z}_{2}^{16}$ and $\mathbf{a}=\left(a_{0}, a_{1}, a_{2}, a_{3}\right), \mathbf{c} \in \mathbf{Z}_{2}^{32}$ etc., then we can define

$$
\begin{equation*}
\mathbf{c}=f(\mathbf{a}, \mathbf{b}) \tag{1.7}
\end{equation*}
$$

as follows :

$$
\begin{align*}
d_{1} & =a_{0} \oplus a_{1} \oplus b_{1} \\
d_{2} & =a_{2} \oplus a_{3} \oplus b_{2} \\
c_{1} & =S_{1}\left(d_{1}, d_{2}\right) \\
c_{2} & =S_{0}\left(d_{2}, c_{1}\right) \tag{1.8}\\
c_{0} & =S_{0}\left(a_{0}, c_{1}\right) \\
c_{3} & =S_{1}\left(a_{3}, c_{2}\right) .
\end{align*}
$$

Figure 2 is a schematic diagram of f.

Suppose we wish to encode the 64 -bit plaintext P. Firstly, we split P into its left and right halves to give 32 -bit strings P_{L} and P_{R}. From these we can calculate the L_{0} and R_{0},

$$
\begin{align*}
& L_{0}=P_{L} \oplus\left(K_{4}, K_{5}\right) \\
& R_{0}=P_{L} \oplus P_{R} \oplus\left(K_{4}, K_{5}\right) \oplus\left(K_{6}, K_{7}\right) . \tag{1.9}
\end{align*}
$$

We then perform 4 rounds of Feistel cipher defined by f and the keys $K_{0}, K_{1}, K_{2}, K_{3}$. Thus, for $i=1,2,3,4$, we calculate

$$
\begin{align*}
L_{i} & =R_{i-1} \\
R_{i} & =L_{i-1} \oplus f\left(R_{i-1}, K_{i-1}\right) . \tag{1.10}
\end{align*}
$$

Finally the enciphered message is $C=\left(C_{L}, C_{R}\right)$, where

$$
\begin{align*}
& C_{L}=R_{4} \oplus\left(K_{8}, K_{9}\right) \\
& C_{R}=R_{4} \oplus L_{4} \oplus\left(K_{10}, K_{11}\right) . \tag{1.11}
\end{align*}
$$

Similarly, if we know the key, we can decode any cryptogram simply by following the above procedure in reverse.

2. Reformulation of FEAL-4 Algorithm

In order to attack the algorithm, we shall reformulate it by the method given by Den Boer [1]. Firstly, we shall define a function $G: \mathbf{Z}_{2}^{32} \rightarrow \mathbf{Z}_{2}^{32}$ that expresses the linear nature of f. Suppose $a_{i}, c_{i} \in \mathbf{Z}_{2}^{8}$ for $i=0,1,2,3$, and $\mathbf{a}=\left(a_{0}, a_{1}, a_{2}, a_{3}\right), \mathbf{c} \in \mathbf{Z}_{2}^{32}$ etc., then we can define

$$
\begin{equation*}
\mathbf{c}=G(\mathbf{a}) \tag{2.1}
\end{equation*}
$$

by

$$
\begin{align*}
d_{1} & =a_{0} \oplus a_{1} \\
d_{2} & =a_{2} \oplus a_{3} \\
c_{1} & =S_{1}\left(d_{1}, d_{2}\right) \\
c_{2} & =S_{0}\left(d_{2}, c_{1}\right) \tag{2.2}\\
c_{0} & =S_{0}\left(a_{0}, c_{1}\right) \\
c_{3} & =S_{1}\left(a_{3}, c_{2}\right),
\end{align*}
$$

so clearly

$$
\begin{equation*}
f(\mathbf{a}, \mathbf{b})=G\left(a_{0}, a_{1} \oplus b_{1}, a_{2} \oplus b_{2}, a_{3}\right) \tag{2.3}
\end{equation*}
$$

Therefore Figure 2 is a schematic diagram of G if we take $\beta_{0}=\beta_{1}=0$. The cryptanalysis of FEAL-4 will depend upon the fast solution of linear equations involving G. This is considered in the next section.

We finally need to define two further simple functions, $\theta_{L}, \theta_{R}: \mathbf{Z}_{2}^{32} \rightarrow \mathbf{Z}_{2}^{32}$, by

$$
\begin{align*}
& \theta_{L}\left(a_{0}, a_{1}, a_{2}, a_{3}\right)=\left(0, a_{0}, a_{1}, 0\right) \tag{2.4}\\
& \theta_{R}\left(a_{0}, a_{1}, a_{2}, a_{3}\right)=\left(0, a_{2}, a_{3}, 0\right)
\end{align*}
$$

where $a_{i} \in \mathbf{Z}_{2}^{8}$, so

$$
\begin{align*}
\theta_{L}\left(B_{i}\right) & =\left(0, K_{2(i-1)}, 0\right) \tag{2.5}\\
\theta_{R}\left(B_{i}\right) & =\left(0, K_{2 i-1}, 0\right)
\end{align*}
$$

These two functions can be used to define the following six 32 -bit key-dependent constants :

$$
\begin{align*}
M_{1} & =B_{3} \oplus \theta_{R}\left(B_{1}\right) \\
N_{1} & =B_{3} \oplus B_{4} \oplus \theta_{L}\left(B_{1}\right) \\
M_{2} & =\theta_{L}\left(B_{1}\right) \oplus \theta_{L}\left(B_{2}\right) \\
N_{2} & =\theta_{R}\left(B_{1}\right) \oplus \theta_{R}\left(B_{2}\right) \tag{2.6}\\
M_{3} & =B_{5} \oplus B_{6} \oplus \theta_{R}\left(B_{1}\right) \\
N_{3} & =B_{5} \oplus \theta_{L}\left(B_{1}\right) .
\end{align*}
$$

Note that the outer 16 bits in both M_{2} and N_{2} are zero.

We are now in a position to rewrite the FEAL-4 algorithm in the following manner :

$$
\begin{align*}
X_{0} & =P_{L} \oplus M_{1}=L_{0} \oplus \theta_{R}\left(B_{1}\right) \\
Y_{0} & =P_{L} \oplus P_{R} \oplus N_{1}=R_{0} \oplus \theta_{L}\left(B_{1}\right)=L_{1} \oplus \theta_{L}\left(B_{1}\right) \\
X_{1} & =X_{0} \oplus G\left(Y_{0}\right)=R_{1} \oplus \theta_{R}\left(B_{1}\right)=L_{2} \oplus \theta_{R}\left(B_{1}\right) \\
Y_{1} & =Y_{0} \oplus G\left(X_{1}\right)=R_{2} \oplus \theta_{L}\left(B_{1}\right)=L_{3} \oplus \theta_{L}\left(B_{1}\right) \\
X_{2} & =X_{1} \oplus G\left(Y_{1} \oplus M_{2}\right)=R_{3} \oplus \theta_{R}\left(B_{1}\right)=L_{4} \oplus \theta_{R}\left(B_{1}\right) \tag{2.7}\\
Y_{2} & =Y_{1} \oplus G\left(X_{2} \oplus N_{2}\right)=R_{4} \oplus \theta_{L}\left(B_{1}\right) \\
C_{L} & =Y_{2} \oplus N_{3} \\
C_{R} & =X_{2} \oplus M_{3} \oplus C_{L}
\end{align*}
$$

Again, we can decode a cryptogram by following the above procedure in reverse. Thus, if we can calculate the 160 unknown bits in the constants $M_{1}, M_{2}, M_{3}, N_{1}, N_{2}, N_{3}$, we can decipher any cryptogram, and also use the key processing equations to recover the key.

3. The Fast Solution of Linear Equations involving G

In order to find the constants $M_{1}, M_{2}, M_{3}, N_{1}, N_{2}, N_{3}$ we shall need to solve equations involving the function G. The simplest such problems involve solving

$$
\begin{equation*}
G(\mathbf{x} \oplus \mathbf{a})=\mathbf{b} \tag{3.1}
\end{equation*}
$$

for \mathbf{x}, where \mathbf{a} and \mathbf{b} are known. We can solve this directly, since S_{i} is an invertible function in the sense that we can solve $S_{i}(\mathbf{x}, \mathbf{a})=\mathbf{b}$ uniquely for \mathbf{x}. We can however give
a general method to solve (3.1), irrespective of whether S_{i} is an invertible function. There are two reasons for doing this, firstly to show that FEAL-4 is a weak cipher no matter how S_{i} is defined, and secondly to motivate the solution of linear equations involving G. Thus, suppose G were not invertible, then the most naive method to solve (3.1) would be to calculate $G(\mathbf{x} \oplus \mathbf{a})$ for every $\mathbf{x} \in \mathbf{Z}_{2}^{32}$. However this would require 2^{32} evaluations of G, that is $2^{34} S_{i}$ evaluations. However, suppose we check whether

$$
\begin{equation*}
S_{1}\left(z_{1} \oplus a_{0} \oplus a_{1}, z_{2} \oplus a_{2} \oplus a_{3}\right)=b_{1}, \tag{3.2}
\end{equation*}
$$

for each $z_{1}, z_{2} \in \mathbf{Z}_{2}^{8}$. This will require $2^{16} S_{1}$ evaluations. For most values of z_{1} and z_{2}, (3.2) will be false. For those values for which (3.2) is true, we can check whether

$$
\begin{align*}
S_{0}\left(b_{1}, z_{2} \oplus a_{2} \oplus a_{3}\right) & =b_{2} \\
S_{0}\left(b_{1}, x_{0} \oplus a_{0}\right) & =b_{0} \tag{3.3}\\
S_{1}\left(b_{2}, x_{3} \oplus a_{3}\right) & =b_{3},
\end{align*}
$$

for values of $x_{0}, x_{3} \in \mathbf{Z}_{2}^{8}$, stopping when one of the equalities is false. If all the equations in (3.2) and (3.3) are true, then we can recover x_{1} and x_{2} by

$$
\begin{equation*}
x_{1}=z_{1} \oplus x_{0}, x_{2}=z_{2} \oplus x_{3}, \tag{3.4}
\end{equation*}
$$

to obtain solutions for \mathbf{x}.

Another equation we shall need to solve is

$$
\begin{equation*}
G(\mathbf{x} \oplus \mathbf{a}) \oplus G(\mathbf{x} \oplus \mathbf{b})=\mathbf{d} \tag{3.5}
\end{equation*}
$$

where $\mathbf{a}, \mathbf{b}, \mathbf{d}$ are known constants. We can ammend (3.2) and (3.3) to give the following equations to be checked for $z_{1}, z_{2}, x_{0}, x_{3} \in \mathbf{Z}_{2}^{8}$:

$$
\begin{gather*}
S_{1}\left(z_{1} \oplus a_{0} \oplus a_{1}, z_{2} \oplus a_{2} \oplus a_{3}\right)=\alpha_{1}, S_{1}\left(z_{1} \oplus b_{0} \oplus b_{1}, z_{2} \oplus b_{2} \oplus b_{3}\right)=\beta_{1} \\
\alpha_{1} \oplus \beta_{1}=d_{1} \\
S_{0}\left(\alpha_{1}, z_{2} \oplus a_{2} \oplus a_{3}\right)=\alpha_{2}, S_{0}\left(\beta_{1}, z_{2} \oplus b_{2} \oplus b_{3}\right)=\beta_{2} \tag{3.6}\\
\alpha_{2} \oplus \beta_{2}=d_{2} \\
S_{0}\left(\alpha_{1}, x_{0} \oplus a_{0}\right) \oplus S_{0}\left(\beta_{1}, x_{0} \oplus b_{0}\right)=d_{0} \\
S_{1}\left(\alpha_{2}, x_{3} \oplus a_{3}\right) \oplus S_{1}\left(\beta_{2}, x_{3} \oplus b_{3}\right)=d_{3} .
\end{gather*}
$$

(3.4) then gives us solutions for \mathbf{x}. In this case, we will need 2^{17} evaluations of S_{1} to check the truth of $\alpha_{1} \oplus \beta_{1}=d_{1}$ for each $z_{1}, z_{2} \in \mathbf{Z}_{2}^{8}$.

Solving (3.5) will often give us too many solutions for \mathbf{x} than we can efficiently handle, so instead we shall often solve simultaneous equations of the form :

$$
\begin{align*}
G(\mathbf{x} \oplus \mathbf{a}) \oplus G(\mathbf{x} \oplus \mathbf{b}) & =\mathbf{d} \tag{3.7}\\
G(\mathbf{x} \oplus \mathbf{a}) \oplus G(\mathbf{x} \oplus \mathbf{c}) & =\mathbf{e}
\end{align*}
$$

We can do this efficiently by checking whether the analagous pairs of simultaneous equations to (3.6) holds at every stage. This will require only 2^{18} evaluations of S_{i} to check the first pair of simultaneous equations.

4. Choosing the Plaintexts

Let P^{i} denote the $i^{t h}$ plaintext, $i=0, \cdots, 19$, with P_{L}^{i} and P_{R}^{i} being the left and right halves of P^{i}. Similarly suppose C^{i} denotes the $i^{t h}$ coded plaintext having left and right halves C_{L}^{i} and C_{R}^{i} We can then define

$$
\begin{equation*}
Q^{i}=P_{L}^{i} \oplus P_{R}^{i} \tag{4.1}
\end{equation*}
$$

and

$$
\begin{equation*}
D^{i}=C_{L}^{i} \oplus C_{R}^{i} \tag{4.2}
\end{equation*}
$$

The twenty plaintexts are then chosen according to the following rules.
(1) Choose $P^{0}, P^{12}, P^{14}, P^{16}, P^{17}, P^{18}, P^{19}$ randomly.
(2) Choose $P_{L}^{5}, P_{L}^{6}, P_{L}^{7}, P_{L}^{8}, P_{L}^{9}, P_{L}^{10}, P_{L}^{11}, P_{L}^{13}, P_{L}^{15}$ randomly.
(3) Define

$$
\begin{align*}
P_{L}^{1} & =P_{L}^{0} \oplus 80800000 \\
P_{L}^{2} & =P_{L}^{0} \oplus 00008080 \\
P_{L}^{3} & =P_{L}^{0} \oplus 40400000 \tag{4.3}\\
P_{L}^{4} & =P_{L}^{0} \oplus 00004040 .
\end{align*}
$$

(4) Define

$$
\begin{align*}
P_{R}^{i} & =P_{L}^{i} \oplus Q^{0} \quad i=1, \cdots, 11 \\
P_{R}^{13} & =P_{L}^{13} \oplus Q^{12} \tag{4.4}\\
P_{R}^{15} & =P_{L}^{15} \oplus Q^{13}
\end{align*}
$$

Thus we have chosen seven plaintexts and nine half-plaintexts at random, that is 736 random bits out of a total of 1280 bits.

5. Cryptanalysis of FEAL-4

Referring to equation (2.7), we see that

$$
\begin{align*}
Y_{1} & =Y_{0} \oplus G\left(X_{1}\right)=Y_{0} \oplus G\left(X_{0} \oplus G\left(Y_{0}\right)\right)=Y_{0} \oplus G\left(P_{L} \oplus M_{1} \oplus G\left(Y_{0}\right)\right) \tag{5.1}\\
& =Y_{2} \oplus G\left(X_{2} \oplus N_{2}\right)=C_{L} \oplus N_{3} \oplus G\left(D \oplus M_{3} \oplus N_{2}\right)
\end{align*}
$$

and hence

$$
\begin{equation*}
C_{L} \oplus\left(Y_{0} \oplus N_{3}\right) \oplus G\left[P_{L} \oplus\left(M_{1} \oplus G\left(Y_{0}\right)\right)\right] \oplus G\left[D \oplus\left(M_{3} \oplus N_{2}\right)\right]=0 \tag{5.2}
\end{equation*}
$$

Thus, for a particular plaintext $P^{i}, i=0, \cdots, 19$, we can define

$$
\begin{align*}
& U^{i}=Y_{0}^{i} \oplus N_{3} \\
& V^{i}=M_{1} \oplus G\left(Y_{0}^{i}\right) \tag{5.3}\\
& W=M_{3} \oplus N_{2},
\end{align*}
$$

so (5.2) becomes

$$
\begin{equation*}
C_{L}^{i} \oplus U^{i} \oplus G\left(P_{L}^{i} \oplus V^{i}\right) \oplus G\left(D^{i} \oplus W\right)=0 \tag{5.4}
\end{equation*}
$$

However, for $i=0, \cdots, 11, Y_{0}=Q^{i} \oplus N_{1}$ and $G\left(Y_{0}\right)$ is constant, and hence $U^{i}=U^{0}$ and $V^{i}=V^{0}$, and so we can rewrite (5.4) as

$$
\begin{equation*}
C_{L}^{i} \oplus U^{0} \oplus G\left(P_{L}^{i} \oplus V^{0}\right) \oplus G\left(D^{i} \oplus W\right)=0 \quad i=0, \cdots, 11 \tag{5.5}
\end{equation*}
$$

In order to solve (5.5) for U^{0}, V^{0} and W, we can first eliminate U^{0} by adding two copies of (5.5) to obtain

$$
\begin{equation*}
C_{L}^{0} \oplus C_{L}^{i} \oplus G\left(P_{L}^{0} \oplus V^{0}\right) \oplus G\left(P_{L}^{i} \oplus V^{0}\right) \oplus G\left(D^{0} \oplus W\right) \oplus G\left(D^{i} \oplus W\right)=0 \tag{5.6}
\end{equation*}
$$

Thus, if we knew the value of $G\left(P_{L}^{0} \oplus V^{0}\right) \oplus G\left(P_{L}^{i} \oplus V^{0}\right)$, (5.6) would give us an equation for W alone. Consider $G(\mathbf{a})$ and $G(\mathbf{a} \oplus 80800000)$. It is easy to see that in both cases, d_{1} and d_{2} in (2.2) are the same, and hence only c_{0} differs. a_{0} and $a_{0} \oplus 80$ differ only in the first place, so c_{0} differs only in the seventh place. By a similar reasoning we can evaluate other sums, and so we have

$$
\begin{align*}
& G(\mathbf{a}) \oplus G(\mathbf{a} \oplus 80800000)=02000000 \\
& G(\mathbf{a}) \oplus G(\mathbf{a} \oplus 00008080)=00000002 \\
& G(\mathbf{a}) \oplus G(\mathbf{a} \oplus 40400000)=01000000,03000000 \tag{5.7}\\
& G(\mathbf{a}) \oplus G(\mathbf{a} \oplus 00004040)=00000001,00000003 .
\end{align*}
$$

Hence, from (4.3), we have

$$
\begin{align*}
& G\left(D^{0} \oplus W\right) \oplus G\left(D^{1} \oplus W\right)=C_{L}^{0} \oplus C_{L}^{1} \oplus 02000000 \\
& G\left(D^{0} \oplus W\right) \oplus G\left(D^{2} \oplus W\right)=C_{L}^{0} \oplus C_{L}^{2} \oplus 00000002 \tag{5.8}
\end{align*}
$$

This is an equation of the form of (3.7), so we can solve it efficiently and get solutions for W. We can eliminate many of these solutions by checking to see whether they satisfy

$$
\begin{align*}
& G\left(D^{0} \oplus W\right) \oplus G\left(D^{3} \oplus W\right) \oplus C_{L}^{0} \oplus C_{L}^{3}=01000000,03000000 \\
& G\left(D^{0} \oplus W\right) \oplus G\left(D^{4} \oplus W\right) \oplus C_{L}^{0} \oplus C_{L}^{4}=00000001,00000003 \tag{5.9}
\end{align*}
$$

This typically gives us up to ten different values for W. For each value of W, we can find values of V^{0} by solving

$$
\begin{align*}
& G\left(P_{L}^{0} \oplus V^{0}\right) \oplus G\left(P_{L}^{5} \oplus V^{0}\right)=C_{L}^{0} \oplus C_{L}^{5} \oplus G\left(D^{0} \oplus W\right) \oplus G\left(D^{5} \oplus W\right) \tag{5.10}\\
& G\left(P_{L}^{0} \oplus V^{0}\right) \oplus G\left(P_{L}^{6} \oplus V^{0}\right)=C_{L}^{0} \oplus C_{L}^{6} \oplus G\left(D^{0} \oplus W\right) \oplus G\left(D^{6} \oplus W\right)
\end{align*}
$$

which is again of the form of (3.7). (5.5) then gives us U^{0}. We can then check each triplet $\left(W, V^{0}, U^{0}\right)$ to see if it satifies (5.5) for the other plaintexts with $Q^{i}=Q^{0}$, that is to say $i=7,8,9,10,11$. This will usually give us less than twenty triplets $\left(W, V^{0}, U^{0}\right)$.

For each triplet, we can try and solve for the key constants $M_{1}, M_{2}, M_{3}, N_{1}, N_{2}, N_{3}$. Now,

$$
\begin{align*}
& U^{12}=U^{13}=U^{0} \oplus Q^{0} \oplus Q^{12} \\
& U^{14}=U^{15}=U^{0} \oplus Q^{0} \oplus Q^{14} \tag{5.11}
\end{align*}
$$

and so (5.4) gives us

$$
\begin{align*}
& G\left(P_{L}^{12} \oplus V^{12}\right)=G\left(D^{12} \oplus W\right) \oplus C_{L}^{12} \oplus U^{12} \\
& G\left(P_{L}^{14} \oplus V^{14}\right)=G\left(D^{14} \oplus W\right) \oplus C_{L}^{14} \oplus U^{14} \tag{5.12}
\end{align*}
$$

These are two equations of the form (3.1), so we can solve them for $V^{12}=V^{13}$ and $V^{14}=V^{15}$. These two values can then be checked with equation (5.4) for $i=13,15$.

If we obtain solutions for V^{12} and V^{14}, we can attempt to calculate the key constant N_{1}. Equation (5.3) gives us

$$
\begin{align*}
& G\left(Q^{0} \oplus N_{1}\right) \oplus G\left(Q^{12} \oplus N_{1}\right)=V^{0} \oplus V^{12} \\
& G\left(Q^{0} \oplus N_{1}\right) \oplus G\left(Q^{14} \oplus N_{1}\right)=V^{0} \oplus V^{14} \tag{5.13}
\end{align*}
$$

which is again of the form (3.7), so it can be efficiently solved for N_{1}. For each possibility for N_{1}, we can calculate V^{16}, and see if (5.4) is satisfied. Knowing possible solutions for N_{1} immediately gives us corresponding possible solutions for M_{1} and N_{3}.

We now proceed by finding M_{2}. We can do this by calculating the values of X_{1} and Y_{1} in (2.7) for plaintexts P^{0}, P^{17} and P^{18}, and noting that

$$
\begin{equation*}
G\left(Y_{1} \oplus M_{2}\right)=X_{1} \oplus X_{2}=X_{1} \oplus D \oplus M_{3} \tag{5.14}
\end{equation*}
$$

Hence,

$$
\begin{align*}
& G\left(Y_{1}^{0} \oplus M_{2}\right) \oplus G\left(Y_{1}^{17} \oplus M_{2}\right)=X_{1}^{0} \oplus X_{1}^{17} \oplus D^{0} \oplus D^{17} \tag{5.15}\\
& G\left(Y_{1}^{0} \oplus M_{2}\right) \oplus G\left(Y_{1}^{18} \oplus M_{2}\right)=X_{1}^{0} \oplus X_{1}^{18} \oplus D^{0} \oplus D^{18}
\end{align*}
$$

which is of the form of (3.7). However, the outer 16 bits of M_{2} are zero, so we have to solve (5.15) for M_{2} allowing for this. For each possible value of M_{2}, we can calculate X_{2}^{0}, X_{2}^{17} and X_{2}^{18}, and hence three values for M_{3}, which should of course agree. If not, we can reject M_{2}. Finally we can calculate N_{2}, checking that the outer 16 bits are zero.

Thus, we have calculated $M_{1}, M_{2}, M_{3}, N_{1}, N_{2}, N_{3}$, and we can do a last check by coding all twenty plaintexts with equations (2.7), including the previously unused P^{19}.

If we need to recover the key, we can use a method given by Den Boer [1]. The knowledge of $M_{1}, N_{1}, M_{3}, N_{3}$ and (2.6) gives us the outer 16 bits of $B_{3}, B_{4}, B_{5}, B_{6}$. If we know the outer 16 bits of both the output and the two inputs to f_{K}, we can determine all the input and output bits of f_{K}. We can thus solve the final iteration of the key scheduling,

$$
\begin{equation*}
B_{6}=f_{K}\left(B_{4}, B_{5} \oplus B_{3}\right) \tag{5.16}
\end{equation*}
$$

to find the values of B_{4}, B_{6} and $B_{3} \oplus B_{5}$. We can also now calculate $B_{2}^{0} \oplus B_{2}^{2}$ and $B_{2}^{1} \oplus B_{2}^{3}$. Therefore, if we knew B_{3}^{2}, we would know all the bits of B_{2}, and hence B_{1}, \cdots, B_{6}. We can thus simply try all 256 possibilities for B_{3}^{2} in

$$
\begin{equation*}
B_{5}=f_{K}\left(B_{3}, B_{4} \oplus B_{2}\right) \tag{5.17}
\end{equation*}
$$

Having solved (5.17), we thus have sufficient information to determine B_{1}, \cdots, B_{6}. We can now recover the key by first solving $B_{3}=f_{K}\left(B_{1}, B_{2} \oplus K_{R}\right)$ for K_{R}, and then solving $B_{2}=f_{K}\left(K_{R}, B_{1} \oplus K_{L}\right)$ for K_{L}. The key, K, is then given by $K=\left(K_{L}, K_{R}\right)$.

Of course, we do not need all twenty plaintexts to recover the key. We could dispense with some of the plaintexts that are only used to check possibilities for the various constants. This would of course mean that we would have to compute more possibilities
for the various constants until later in the algorithm, and consequently computing time would be increased. For example, we could cut the number of plaintexts to seven, using $P^{0}, P^{1}, P^{2}, P^{5}, P^{6}, P^{12}, P^{14}$, and taking $P^{17}=P^{12}$ and $P^{18}=P^{14}$. If we are prepared to handle equations of the form of (3.5) rather than (3.7), we could only use four plaintexts, $P^{0}, P^{1}, P^{5}, P^{12}$, with $P^{17}=P^{12}$.

It may be possible to extend this method of attack to a known plaintext attack. The idea is to take similar pairs of plaintext P^{i} and P^{j} and predict the value of some of the bits of $V^{i} \oplus V^{j}$ with high probability, and hence the value of certain bits of $G\left(P_{L}^{i} \oplus V^{i}\right) \oplus$ $G\left(P_{L}^{j} \oplus V^{j}\right)$ with high probability. We can thus write down an equation for certain bit positions of the form of (5.8), which we may be able to solve for some of the bits of W. We could solve many such equations and hence find W. We then proceed as before, solving equations in certain bit positions as best we can by using similar pairs of plaintext and predicting the evaluation of the function G in certain bit positions with high probability.

6. Conclusions

This method of attack, with twenty plaintexts takes up to ten hours' computing on a Sun 3/60 Workstation, not a particularly powerful computer. The length of time depends on the key, some keys having been found in less than an hour.

However the function G is defined, any four round cipher is vulnerable to the type of attack based on (5.4) that is outlined above. Obviously, the more easily equations involving G are solved, the quicker the attack. The problem is not so much the S_{i} transformation, since the methods of Section 3 would work for any function S_{i} with a 16 -bit input and 8 -bit output, as that the two inner 8 -bit blocks of the output of G, c_{1} and c_{2} in (2.2), both depend only on the same 16 bits, d_{1} and d_{2}. We are therefore easily able to find d_{1} and d_{2} by exhaustive search, and hence invert G. G would be much harder to invert if it was re-designed so that every output block of 8 bits depended on 16 different input bits and an exhaustive search became infeasible. A further improvement would be to re-design the function f so as to remove the linear connection between \mathbf{a} and \mathbf{b} in (1.7). This would make the definition of a function like G impossible and ensure that every output block of 8 bits of f depended on all 48 input bits.

Whilst FEAL-4 is not intended for use in a chosen plaintext environment, a cipher that falls so quickly to so few plaintexts must be too weak for most practical purposes. If the protocol for the use of a cipher system has to be such so as to preclude any possibility of less than twelve chosen plaintexts, then the advantages of using a fast ciphering algorithm like FEAL-4 are less important and it would be better to use a more secure cipher. Such
a protocol would seem to be too restrictive for most data integrity uses. Even if such a protocol could be guaranteed, data integrity usage would give rise to many pairs of similar plaintexts, so a known plaintext attack of the type outlined above might well succeed.

References

[1] B. Den Boer, " Cryptanalysis of FEAL ", Advances in Cryptology - Eurocrypt 88, Lecture Notes in Computer Science 330.
[2] A. Shimizu and S. Miyaguchi, " Fast Data Encipherment Algorithm FEAL ", Advances in Cryptology - Eurocrypt 87, Lecture Notes in Computer Science 304.

[^0]: * The author was supported by S.E.R.C. Research Grant GR/E 64640.

