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Abstract

We investigate some of the algebraic properties of the SAFER

block cipher when the message space is considered as aZ�module� In

particular we consider the invariant Z�submodules of the PHT layer

and show how these invariant Z�submodules give potential crypto�
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� Introduction

SAFER K��� is a block cipher that was introduced by Massey at the ����
Cambridge Security Workshop on Fast Software Encryption ��	
 It operates
on ���bit blocks under the control of a ���bit key
 It is a �byte�oriented�
cipher in that all the basic encryption operations are on bytes or pairs of
bytes
 At the ���� Leuven Workshop on Cryptographic Algorithms
 Massey
presented a paper ��	 which surveyed the �rst year�s research on SAFER
K��� and de�ned SAFER K����
 which is SAFER with a ����bit key
 In
this paper
 we investigate certain algebraic properties of the SAFER block
cipher and show how these properties are a potential source of cryptographic
weaknesses


Following the original submission of this paper and a related key attack
by Knudsen ��	 in mid�����
 revised block ciphers SAFER SK��� and SAFER
SK���� were proposed ��	
 These di�er from the original SAFER K�������
block ciphers only by using the new key schedule proposed by Knudsen ��	

There is also an analysis of SAFER based on truncated di�erentials ��	
 and
an analysis that considers a revised SAFER encryption algorithm with a
di�erent nonlinear layer ���	


Each round of SAFER contains only one operation that mixes message
bytes
 the PHT layer �which exists to provide di�usion ��	�
 This PHT layer is
aZ�module homomorphism on the message space
 Our analysis concentrates
on the Z�submodules of the message space that are preserved by the PHT
layer
 that is the invariantZ�submodules
 These invariantZ�submodules and
their cosets are not di�used by the PHT layer
 and so provide a method for
the cryptanalyst to cope with the di�usion in SAFER in a variety of attacks

whatever the key schedule
 This is the main result of this paper
 However

the original key schedule of SAFER K������� did not mix key bytes
 This
allowed us to �nd a projection onto a particular ��byte invariantZ�submodule
that does not depend on a quarter of the key �under standard cryptographic
assumptions�


We begin this paper by giving a description of SAFER and the original
key schedule of SAFER K�������
 In Section � we give a description of the
invariant Z�submodules of the PHT layer
 and in Section � we show how
these invariant Z�submodules can be used to construct a Markov chain on
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cosets
 In Section � we show how the original key schedule of SAFER K�
������ gave rise to the property described above
 and in Section � we give
some other ways in which the invariant Z�submodules of the PHT could be
used for cryptanalysis
 We �nish with some conclusions


� Description of SAFER

SAFER is a block cipher that operates on ���bit blocks considered as �
bytes
 It consists of a round transformation iterated r times followed by a
�nal output transformation
 Recommended values of r are � for SAFER
K��� and �� for SAFER K����
 The key�scheduling
 described below
 gives
��r � �� ��byte subkeys K�� � � �K�r��
 Subkeys K�i�� and K�i are used in
round i
 and the subkey K�r�� is used in the output transformation
 A
diagram of the round function is given in Figure �
 The ith round function
is built from four basic operations


�
 Mixed XOR�Addition Layer� Bytes �� �� �� � of the round input are
XORed with bytes �� �� �� � of subkey K�i��
 Bytes �� �� �� � of the
round input are added byte�wise �modulo ���� with bytes �� �� �� � of
subkey K�i��


�
 Nonlinear Layer� For a byte x
 ���x� is de�ned to be ��x modulo ���

where x is regarded as a number � � x � ���
 with the convention that
������� � �
 As ��� is prime and �� is a primitive element modulo ���

this is an invertible function of a byte
 and log����� is de�ned to be its
inverse
 The ����� transformation is applied to bytes �� �� �� � of the out�
put of the Mixed XOR�Addition layer and the log����� transformation
to bytes �� �� �� �


�
 Mixed Addition�XOR Layer� Bytes �� �� �� � of the output of the non�
linear layer are added byte�wise �modulo ���� with bytes �� �� �� � of
subkey K�i
 Bytes �� �� �� � of the output of the nonlinear layer are
XORed with bytes �� �� �� � of subkey K�i


�
 Pseudo Hadamard Transform �PHT� Layer� The transforms ��PHT in
Figure � map the byte pair �a�� a�� to the byte pair ��a� � a�� a� � a��
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Figure �� Encryption Round Structure of SAFER
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where addition is modulo ���
 The e�ect of the three layers of ��PHT
transforms on the output v of the Mixed Addition�XOR layer is to map
it to vM 
 where addition is modulo ��� and

M �

�
BBBBBBBBBBBBB�

� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �

�
CCCCCCCCCCCCCA
�

The output of the PHT layer is the output of the round function


The �nal output transformation after r rounds is an application of the
Mixed XOR�Addition Layer with the output of the rth round and the subkey
K�r��


Decryption using SAFER is carried out by reversing these operations and
we do not describe it in detail


� Key Scheduling

The key scheduling for SAFER is again byte�oriented
 For SAFER K��� with
��byte key K
 let Kj denote the jth byte of K
 The jth byte of subkey Ki

Kj

i �j � �� � � � � ��
 is de�ned by

Kj
i � ROL	�i����K

j� �Bj
i �i � �� � � � � �r � ���

where ROLn denotes a left rotation of the byte by n positions
 Bj
i are pre�

de�ned �key biases�
 and addition is modulo ���
 Note that Bj
� � �
 so

K� � K


For SAFER K����
 the ���byte key K is split into two ��byte halves
Ka�Kb
 so K � �Ka�Kb�
 The jth byte of a subkey is de�ned by

Kj
�i � ROL
�i����	�K

j
a� �Bj

�i �i � �� � � � � r� �

Kj
�i�� � ROL
�i����K

j
b � �Bj

�i�� �i � �� � � � � r � �� �
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where the key biases Bj
i are the same as for SAFER K���
 Encryption under

key K � �K ��K �� for SAFER K���� is identical to encryption under key K �

for SAFER K���


For SAFER K���
 all of the subkey bytes used in the jth byte position
depend solely on the jth byte of the key
 For SAFER K����
 all of the even
�K�i� subkey bytes used in the jth byte position depend solely on the jth byte
of the left half of the key
 and all of the odd �K�i��� subkey bytes used in the
jth byte position depend solely on the jth byte of the right half of the key

Thus for SAFER K����
 a byte of the ���byte key gives subkey bytes that
are all used either in an XOR operation or an addition operation
 but never
both
 We term these two types of key bytes XOR and addition key bytes


The new key schedules for SAFER SK��� and SAFER SK���� do mix
key bytes ��	
 We do not describe them here


� Algebraic Structure of the PHT Layer

Our comments on and our analysis of SAFER relate primarily to the algebraic
properties of the PHT layer
 An introduction to the algebra required is given
in ��	
 The PHT layer is a collection of transformations based onZ��
 the ring
of integers modulo �� � ���
 Consider the ��byte message space V � Z���
of SAFER
 We can think of V as a module in three equivalent ways
 We
can regard V �rstly as a free Z���module of rank �
 or secondly as a torsion
Z�module that is annihilated by ��Z
 or �nally as the quotient Z�module
Z
����Z�
 In each case the PHT layer is an invertible module homomorphism

� � V � V 
 where � has matrix M with respect to the standard basis
 Our
analysis of SAFER is based on the ��invariant submodules of V 
 Recall that
aZ�submodule U is an ��invariant Z�submodule of V if U� � U 
 However in
this case � is invertible
 so if U is an ��invariant submodule
 then U� � U 

The ��invariant Z�submodules can be thought of as thoseZ�submodules that
are �preserved� by the PHT layer
 For example
 the simplest ��invariant
submodules are Vn � ���nV 
 the submodule obtained by considering the
least signi�cant n bits of each byte
 We therefore begin our analysis of
SAFER with a thorough investigation of ��invariant submodules


Consider the ��dimensional rational vector space VQ � Q� and the free
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Z�module VZ� Z�
 Now � can be regarded as the linear transformation
on VQ and as the Z�module homomorphism on VZgiven by the matrix M 

Considered as a set embedded in VQ
 � as a linear transformation on VQ �xes
the subset VZ
 The characteristic polynomial of � on VQ
 f�x� � Det���xI�
is given by

f�X� � � � ��X �X� � ��X	 � ���X� � ��X� �X
 � ��X� �X��

which factorises over the integers as

f�X� � ��� ��X �X���� � �X �X���� � �X � �X� � �X	 �X���

VQ therefore has the following three minimal ��invariant subspaces� PQ �of di�
mension ��
 QQ �of dimension �� and RQ �of dimension ��
 These ��invariant
VQ�subspaces are de�ned by

PQ � ker�I � ��� � ���
� h e� � e� � d� � e� � e� � d� i�

QQ � ker�I � �� � ���
� h �e� � d� � d� � d� � d� � �e�i�

RQ � ker�I � �� � ��� � ��	 � ���
� h e� � e�� e	 � e�� e
 � e�� e� � e� i�

where ei denotes the ith standard basis vector
 and d� � e� � e	 � e� and
d� � e� � e
 � e�
 If we let BQ denote the basis for VQ given above in terms
of PQ
 QQ and RQ
 then

BQ�

�
e� � e� � d� � e� � e� � d� � �e� � d� � d� �

d� � d� � �e� � e� � e� � e	 � e� � e
 � e� � e� � e�

�
�

and the change of basis transformation from the standard basis to BQ is given
by the matrix A �with determinant �����
 where

A �

�
BBBBBBBBBBBBB�

� � � � � � � �
� � �� � � � � �
� � �� � � � � �
� � �� �� � � �� ��
� � �� � �� �� � �
� � �� �� � � � �
� � �� �� � � � �

�� � � �� � � � �

�
CCCCCCCCCCCCCA
�
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VQ has a direct sum decomposition as

VQ� PQ�QQ�RQ �where � here denotes direct sum��

The VQ subspaces PQ
 QQand RQ are in fact pairwise orthogonal with respect
to the standard inner product on Q
 The matrix of � with respect to the
basis BQ of VQ is a block diagonal M � de�ned by

M � �

�
B� MP � �

� MQ �
� � MR

�
CA � where

MP �

�
� �
� ��

�
�MQ �

�
� �
� �

�
and MR �

�
BBB�
�� � �� �
�� � � �
� � � ��
� �� � ��

�
CCCA �

We thus have the following three ��invariant Z�submodules of VZ
 as VZ
is �xed by � as a subset of VQ


PZ � PQ� VZ� ker�I � ��� � ���
� h e� � e� � d� � e� � e� � d� i�

QZ � QQ� VZ� ker�I � �� � ���
� h �e� � d� � d� � d� � d� � �e�i�

RZ � RQ� VZ� ker�I � �� � ��� � ��	 � ���
� h e� � e�� e	 � e�� e
 � e�� e� � e� i�

We can now de�ne TZ� VZas the direct sum of these ��invariant Z�
submodules
 so

TZ� PZ�QZ�RZ �where � here denotes direct sum��

We note that TZis a proper Z�submodule of VZ
 as
 for example
 d� �� TZ


We can use this ��invariant decomposition on TZto give an ��invariant
decomposition on V by using the following lemma�

Lemma� ���	 Lemma �
�� Let L be a module over a ring �with ��
 and
suppose L is a direct sum L � L� � � � � � Lt of submodules Li � L
 For

�



each i
 let Ni � Li
 and let N �
Pt

i��Ni
 If � is the natural homomorphism
L� L�N 
 then

L

N
� L� � L�� � � � � � Lt� ��

L�

N�
� � � � �

Lt

Nt

�

Suppose we let �� denote the natural Z�module homomorphism

�� � VZ�
VZ

��Z�
� V�

then �� gives the natural Z�module homomorphism

� � TZ�
TZ

TZ� ��Z�
�� T�

where T � TZ�
� is a Z�submodule of V 
 We apply the above lemma to

the natural Z�homomorphism � and the decomposition TZ� PZ�QZ�RZ

Noting that

TZ� ��Z� � �PZ� ��Z�� � �QZ� ��Z�� � �RZ� ��Z���

we obtain

T ��
TZ

TZ� ��Z�
��

PZ

PZ� ��Z�
�

QZ

QZ� ��Z�
�

RZ

RZ� ��Z�
�

As ��Z� and TZare ��invariant Z�submodules
 � can be well�de�ned as the
induced Z�module homomorphism on the quotient Z�module T 
 Similarly
the three quotient Z�submodules in this decomposition are ��invariant

We thus have following three ��invariant Z�submodules of T

P � ker�I � ��� � ���
� h e� � e� � d� � e� � e� � d� i�

Q � ker�I � �� � ���
� h �e� � d� � d� � d� � d� � �e�i�

R � ker�I � �� � ��� � ��	 � ���
� h e� � e�� e	 � e�� e
 � e�� e� � e� i�

�



and the following decomposition of T as the direct sum of ��invariant Z�
submodules�

T � P �Q�R �where � here denotes direct sum��

Both T and V can be regarded as free Z���modules of rank � with T � V 

T is freely generated by the basis B
 where

B �

�
e� � e� � d� � e� � e� � d� � �e� � d� � d� �

d� � d� � �e� � e� � e� � e	 � e� � e
 � e� � e� � e�

�
�

and V is freely generated by the standard basis
 The change of basis trans�
formation that maps the standard basis to B is given by the matrix A de�ned
above
 A is invertible as its determinant ������ is a unit in Z��
 so B is a
basis for V as a free Z���module ���	 Lemmas �
�
 �
��
 Therefore as a free
Z���module
 and hence as a Z�module
 T � V 


The decomposition of T as the direct sum of ��invariant Z�submodules
is thus a decomposition for V 
 and so we have�

V � P �Q�R �where � here denotes direct sum��

Clearly V 
 P 
 Q and R have sizes �
�
 ��

 ��

 and �	� respectively


In order to �nd further ��invariant Z�submodules
 we regard V as a �tor�
sion�Z�X	�module
 In this module
 scalar multiplication of a module element
v by an integer polynomial g�X� �an element of Z�X	� is de�ned by

v � g�X� � �v��g�����

that is the image of v under the module homomorphism g���
 The role of
this Z�X	�module in �nding ��invariant submodules is given by the following
theorem


Theorem� U is an ��invariant Z�submodule of V if and only if U is a
Z�X	�submodule of V 


Proof� If U is an ��invariant Z�submodule of V 
 then U� � U 
 Thus for
any n and �
� � � � �n


U
nX
i�


�i�
i �

nX
i�


�iU�
i � U�

��



so U � g�X� � U for any polynomial g�X�
 Hence U is a Z�X	�submodule


Conversely
 if U is a Z�X	�submodule
 then U� � U 
 so U is an ��
invariant submodule
 �

We thus need to �nd the Z�X	�submodules of the Z�X	�module V 
 For
any Z�X	�submodule U 
 let

ann�U� � fg�X� �Z�X	jU � g�X� � �g

denote the annihilator of U in Z�X	
 an ideal in Z�X	
 This function gives
an inclusion�reversing mapping from theZ�X	�submodules of V to the ideals
of Z�X	
 We can also de�ne an inclusion�reversing mapping from the set of
ideals of Z�X	 to the Z�X	�submodules of V 
 Accordingly
 for any ideal I of
Z�X	
 let

NV �I� � fv � V jv � I � �g � V

denote the �null� Z�X	�submodule of V of the ideal I
 NP 
 NQ and NR

can be similarly de�ned as null submodules in P 
 Q and R
 However
 not
every Z�X	�submodule is the null Z�X	�submodule of some ideal
 for exam�
ple Z�X	�submodule f�� ���e	 � e��g
 which is �xed by �
 but is a proper
Z�X	�submodule of �xed point Z�X	�submodule ker�� � I�
 However any
Z�X	�submodule U is a Z�X	�submodule of the null Z�X	�submodule of its
annihilator
 so U � NV �ann�U��
 We term NV �ann�U�� the minimal null
Z�X	�submodule containing U 
 The following theorem shows that a null
Z�X	�submodule can be decomposed as a direct sum of nullZ�X	�submodules
of P 
 Q and R


Theorem� For any ideal I of Z�X	


NV �I� � NP �I��NQ�I��NR�I��

with NP �I� � P 
 NQ�I� � Q and NR�I� � R


Proof� Let n � NP �I� � NQ�I� � NR�I�
 then n can be written as n �
p � q � r
 where p � h�X� � q � h�X� � r � h�X� � � for all h�X� � I
 Thus
n � h�X� � p � h�X� � q � h�X� � r � h�X� � � for all h�X� � I
 so n � NV �I�

Therefore NP �I� �NQ�I� �NR�I� � NV �I�

��



Conversely
 suppose n � NV �I�
 n can be written as n � p � q � r for
some p � P 
 q � Q and r � R
 For any h�X� � I


� � n � h�X� � �p� q � r� � h�X� � p � h�X� � q � h�X� � r � h�X�
� p� � q� � r�

for some p� � P 
 q� � Q and r� � R
 as P 
 Q and R are Z�X	�submodules

However P �Q�R is a direct sum
 hence

� � p� � q� � r� � p � h�X� � q � h�X� � r � h�X��

and so p � NP �I�
 q � NQ�I� and r � NR�I�
 As n � p� q� r
 we have that
n � NP �I� �NQ�I� �NR�I�
 Therefore NV �I� � NP �I� �NQ�I� �NR�I�


Therefore we have equality
 and we clearly have a direct sum
 so

NV �I� � NP �I��NQ�I��NR�I�� �

This theorem enables us to �ndZ�X	�submodules of V because anyZ�X	�
submodule is contained in its minimal null Z�X	�submodule
 This null Z�X	�
submodule can be decomposed into nullZ�X	�submodules of P 
 Q and R
 We
thus consider theZ�X	�submodules of V 
 P 
 Q and R
 AnyZ�X	�submodule
U can be regarded in the natural way as a �Z�X	�ann�U���module
 We
therefore calculate the following annihilators�

AV � ann�V �� AP � ann�P �� AQ � ann�Q�� AR � ann�R��

We know that

h��� p�X�i � h��� �� ��X �X�i 	 AP

so any element of AP can be reduced modulo h��� p�X�i to a polynomial of
the form a
 � a�X
 where a
� a� � f�� � � � �� � �g
 By considering the e�ect
of module homomorphisms a
� a�� on the generators of P �as a Z�module�

we �nd the only other generator for AP is ���X � ��
 Similar calculations
give AQ and AR
 so we have

AP � ann�P � � h��� ���X � ��� p�X�i
� h��� ���X � ��� �� � ��X �X��i

AQ � ann�Q� � h��� q�X�i � h��� ��� �X �X��i
AR � ann�R� � h��� ���X	 � ��� r�X�i

� h��� ���X	 � ��� �� � �X � �X� � �X	 �X��i�

��



By considering the e�ect of elements of AQ� AR on P etc

 we �nd

AV � ann�V � � h��� ���X � ��� �q�X�r�X�� �X � ��q�X�r�X�i
� h��� ���X � ��� ��� � �X �X���� � �X � �X� � �X	 �X���

�X � ���� � �X �X���� � �X � �X� � �X	 �X��i

If we de�ne the following quotient rings

ZV �Z�X	�AV � ZP �Z�X	�AP ZQ �Z�X	�AQ� ZR �Z�X	�AR�

then the elements in these rings can be written as

ZP � fa
 � a�Xja
 � �� � � � � �� � �� a� � �� � � � � �� � �g
ZQ � fa
 � a�Xja
� a� � �� � � � � �� � �g
ZR � fa
 � a�X � a�X

� � a	X
	ja
� a�� a� � �� � � � � �� � ��

a	 � �� � � � � �� � �g
ZV � fa
 � � � � � a
X


ja
� a�� a� � �� � � � � �� � ��
a	� a�� a� � �� � � � � �� � �� a
 � �� �g�

The rings ZP 
 ZQ
 ZR and ZV have sizes ��	
 ��

 ��� and ��
 respectively

Note that all four of these rings can be regarded as cyclic modules over
themselves


We can thus regard V as a ZV �module
 and P 
 Q and R as ZP �
 ZQ�
and ZR�modules respectively
 By considering the e�ect of � on one of the
generators �asZ�modules� p
 q and r of P 
 Q and R respectively
 we �nd that
P 
 Q and R contain cyclic submodules �generated by one element� that are
isomorphic to ZP 
 ZQ and ZR �as modules over themselves� respectively
 We
denote these cyclic submodules hpiZP 
 hqiZQ and hriZR respectively
 These
cyclic submodules can also be regarded as Z�submodules
 and as such we
have the following Z�module isomorphisms�

hpiZP
�� hpi � �	P �Z�Module Isomorphism�


hqiZQ
�� Q �Z�Module Isomorphism�


hriZR
�� hri � �	R �Z�Module Isomorphism�


Thus Q is a cyclic ZQ�module of size ��

 The cyclic ZP � and ZR�submodules
of P and R
 hpiZP and hriZR
 are of size ��	 and ��� respectively
 These
cyclic submodules intersect non�trivially with any other submodule of P and

��



R respectively
 P and R contain many such cyclic submodules of these sizes

They are each generated by a single generator of P and R �considered as
Z�modules�
 The submodules of the cyclic modules ZP 
 ZQ and ZR �over
themselves� are given by the ideals of ZP 
 ZQ and ZR respectively
 or equiva�
lently by ideals inZ�X	 containing AP 
 AQ and AR respectively ���	 Theorem
�
���
 Further analysis of the ideals of the rings can be conducted by using
the theory of Gr�obner bases ��	


We have given a thorough analysis of the ��invariant Z�submodules of V
by considering the equivalentZ�X	�submodules of V 
 We summarise here the
results of the Z�X	�module analysis in terms of ��invariant Z�submodules

We have shown that V can be decomposed as V � P � Q � R
 where P 

Q and R are ��invariant Z�submodules
 and that any other ��invariant Z�
modules is contained in a minimal �null� Z�submodule which decomposes as
a sum of ��invariant Z�submodules of P 
 Q and R
 The Z�submodules P
and R contain certain ��invariant Z�submodules that intersect non�trivially
with any other ��invariant Z�submodule of P and R respectfully
 Further
��invariant Z�submodules of these Z�submodules of P and R
 and of the
Z�submodule Q can be calculated by considering the ideals of the various
polynomial quotient rings given above


� A Markov Chain on Quotient Modules

Let U be an ��invariant Z�submodule of V 
 We consider the e�ect of the
ith round function on the cosets of U in V 
 or equivalently on the quotient
Z�module V�U 
 Suppose now that an element xi � V is the round input

yi � V is the input to the PHT layer and zi � V is the round output
 and
xiU 
 y

i
U and ziU are the corresponding cosets of U or elements of V�U 
 For a

given round subkey �K�i���K�i�
 we can calculate the transition probability
P�K�i���K�i��y

i
U jx

i
U � between a coset of U before and a coset of U after the

combined mixed XOR�addition
 nonlinear and mixed addition�XOR layers

The e�ect of the PHT layer �or �� is to permute the cosets of U as U is ��
invariant
 For this round subkey �K�i���K�i�
 we can calculate the transition
probability P�K�i���K�i��z

i
U jx

i
U� between the a coset of U before and after the

round function of SAFER
 For this round subkey �K�i���K�i�
 the round
function of SAFER gives a key�dependent probability transition matrix on

��



the cosets of U 
 This transition matrix Q�K�i���K�i� is de�ned by

Q�K�i���K�i� �
�
Pk�z

i
U jx

i
U�
	
�

Consider now the SAFER encryption function with r rounds followed by
a �nal output transformation which we regard as the �r � ��th round
 Let
xi � V be the input to the ith round �i � �� � � � � �r � ���
 with xr�� as the
output
 Let xiU �i � �� � � � � �r � ��� be the corresponding cosets of U or
elements of V�U 
 For a given key K
 the sequence x�U � � � � � x

r��
U forms a key�

dependent random process with state space the cosets of U 
 The transition
matrix for this random process QK is de�ned by

QK �
�
PK�x

r��
U jx�U�

	
�

The standard cryptographic assumption
 implicitly used in both linear ��	 and
di�erential cryptanalysis ��	
 is that for a given key
 such a random process
de�ned on a state space of cosets forms a �rst order Markov chain ��	
 In
linear cryptanalysis
 these are usually cosets of a hyperplane of the message
space �considered as a binary vector space�
 In di�erential cryptanalysis
these are usually cosets of

f�m�m�jm �Mg �M 
M �where M is the message space��

and these give the �characteristics�
 This assumption can be tested empir�
ically
 Under this assumption we can write the transition matrix QK as a
product of transition matrices for each round
 Thus if key K gives round
subkeys K�� � � � �K�r��
 the transition matrix QK is given by

QK � Q�K��K��Q�K��K�� � � �Q�K�r���K�r�QK�r��
�

� A Potential Cryptographic Weakness

We have seen that the Z�module V can be written as the direct sum of ��
invariant Z�submodules as V � P � Q� R
 We can de�ne a submodule S
by

S � P �Q � he�� d�� d�� e�i�

��



S is an ��invariant submodule with V � R�S
 We consider how the Markov
chain described in the Section � applies to cosets of the submodule S
 We
can de�ne � to be the natural Z�module homomorphism

� � V �
V

S
�� R�

We can regard the random process on the cosets of S as a random process
on elements of R
 For an element v � V 
 we write vS for this coset of S or
equivalently element of R
 The value of vS does not depend on the �st and
�th bytes of v as e� and e� are absent from the basis for R
 Consider the ith

round of a SAFER encryption under a given ith round subkey �K�i���K�i�

Suppose now that an element xi � V is the round input
 yi � V is the input
to the PHT layer and zi � V is the round output
 and xiS
 y

i
S and ziS are the

corresponding cosets of S or elements of R
 For a given input xi
 the central
six bytes of the output yi of the combined mixed XOR�addition
 nonlinear
and mixed addition�XOR layers do not depend on the �st and �th bytes of
the subkeys K�i�� and K�i
 Thus the distribution of yiS conditional on xiS is
constant whenever the central key bytes agree
 ziS depends only on yiS as S
is ��invariant
 For the given subkey
 the distribution of ziS conditional on xiS
therefore does not depend on the �st and �th bytes of the subkeys K�i�� and
K�i
 The key�dependent one�round transition matrix on the cosets of S is
identical for all subkeys �K�i���K�i� that agree on the central six bytes
 If we
de�ne 	 to be the restriction to these central six bytes
 then the one�round
transition matrix can be written as

Q�K�i���K�i�� �
�
P�K�i���K�i���z

i
Sjx

i
S�
	
�

Suppose now that we have an r�round plus �nal output transformation
SAFER encryption with message m � x� and ciphertext c � xr��
 For
a given key K
 under the standard cryptographic assumption that such a
process forms a �rst order Markov process
 the transition matrix between
message cosets and ciphertext cosets of S is the product of the round tran�
sition matrices
 Thus

QK �
�
PK�z

i
U jx

i
U�
	
� Q�K��K��� � � �Q�K�r���K�r��Q�K�r�����

The transition matrix QK therefore depends only on the central six bytes
of the subkeys K�� � � � �K�r��
 For SAFER K�������
 the key scheduling

��



restricts bytes of K to the same bytes of any subkey
 so we have QK � QK�

For SAFER K���
 this means that the distribution of cS conditional on mS

does not depend on the �st and �th bytes of the key
 whereas for SAFER K���
the distribution of cS conditional on mS does not depend on the �st
 �th
 �th

and ��th bytes of the key


For either SAFER K��� or SAFER K����
 we have found a half�rank al�
gebraic structure �R� of the message�ciphertext space on which the output
distributions do not depend on a quarter of the key bytes
 In ��	 it is stated
that �SAFER was designed in accordance with Shannon�s principles of con�
fusion and di�usion for obtaining security in secret�key ciphers�
 Shannon�s
principle of confusion ���	 is �to make the relation between simple statistics
of ciphertext and simple statistics of the key a very complex and involved
one�
 As there are simple statistics of the output �that is its �projection� on
R� that do not depend on a quarter of the key bytes
 it arguable that SAFER
does not satisfy the principle of confusion
 Therefore if there are any col�
lections of functions of mS which have non�negligible correlations with any
collections of functions of cS 
 then we have a reduced key search


For practical reasons
 we may need to concentrate on the least signi�cant
n bits of each byte
 that is the module Vn
 The above reasoning also applies
to this module
 so just by considering the least signi�cant n bits we may
still get a reduced key search
 We note that when we consider � as module
homomorphism of Vn for small n
 it has even more structure
 For example

as a module homomorphism of V	
 every submodule of P is ��invariant and
R has a submodule of rank � in which every submodule is ��invariant


There are many similar attacks on SAFER using the ��invariant Z�
submodule S with di�erent time�space complexity trade�o�s
 We do not
investigate all these attacks to �nd the best one
 The key schedule has al�
ready been revised in the light of this paper and ��	
 The attack below is
given solely as an illustration of the type of attack it may be possible to
mount on SAFER using the ��invariant Z�submodule S


We can attempt to exploit the lack of dependence on certain key bytes
by calculating empirical transition probabilities on cosets of S for plain�
text�ciphertext data
 Given enough data we can see which key�dependent
sets of transition probabilities best agree with the empirical probabilities and
thus �nd key information


��



In order to calculate these transition matrices
 we need to calculate tran�
sition matrices for one round
 We now explain how the components of the
round function a�ect the transition matrix
 We �rst note that we can write
R as the direct sum of twoZ�submodules of rank �
 one involving linear com�
binations of bytes �� �� � and the other linear combinations of bytes �� �� �

Thus we have

R � h e� � e�� e	 � e� i � h e
 � e�� e� � e� i�

In the mixed XOR�addition
 nonlinear and mixed addition�XOR phases

SAFER acts independently on these twoZ�submodules of R
 We call the set
of cosets on either of these two submodules half�cosets


Adding a subkey byte corresponds to permuting the cosets of S in V ac�
cording to the subkey byte
 XORing a subkey byte corresponds to adding
one of a small set of other bytes according to a known distribution that de�
pends on the subkey byte
 Combining these two operations into the mixed
XOR�addition or the mixed addition�XOR phase
 we see that either of these
phases gives a transition matrix on the cosets that depends on the sub�
key
 The �����
 log����� transforms give transition matrices on each of the
half�cosets
 We give some examples below
 Thus the combined e�ect of
the mixed XOR�addition
 nonlinear and mixed addition�XOR layers is to
give key�dependent transition matrices on the half�cosets
 These transition
matrices are e�ectively key�dependent weighted averages of the permuted
transition matrix on the half�cosets for the nonlinear layer
 To obtain the
key�dependent transition matrix for all of the cosets
 we combine the key�
dependent transition matrices for both of the component half�cosets using
an element�by�element product


The e�ect of the PHT layer is to permute the cosets as S is an ��invariant
subspace
 This permutation is given by MR
 where

MR �

�
BBB�
�� � �� �
�� � � �
� � � ��
� �� � ��

�
CCCA

was given earlier as the block �corresponding to R� of the matrixM as a block
matrix
 Thus we can �nd the key�dependent transition matrix for one round

��



by permuting the columns of the key�dependent matrix for the combined
mixed XOR�addition
 nonlinear and mixed addition�XOR layers
 The key�
dependent transition matrix for a number of rounds is just the product of
the individual key�dependent one�round transition matrices


Let PK��mS� cS� denote the probability of transition from message class
mS to ciphertext class cS under key class K �
 where K � � K	 denotes the
relevant � or �� key bytes �SAFER K��� or K�����
 PK��mS� cS� is just the
relevant entry of the transition matrix corresponding to K �
 Suppose we have
a number of message�ciphertext pairs and let N�mS� cS� be the number of
times message class mS and cS occur
 For a known plaintext attack we can
�nd the value of K � that maximises the log�likelihood function


X
�mS�cS�

N�mS � cS� log PK��mS� cS��

This is a maximisation over at most ��� or ��
 elements
 For ��round SAFER

an approximate probability argument using random functions shows that for
a given key class K �
 about ��� �e��� of class pairs �mS� cS� do not occur

that is PK��mS� cS� � � for ��� of class pairs �mS� cS�
 Thus for ��round
SAFER
 we have a trivial attack in which we can identify the true key class
with a handful of message�ciphertext pairs


The above analysis for SAFER with a realistic number of rounds requires
the calculation of vast numbers of �	� 
 �	� transition matrices
 In order to
make the calculations more tractable
 we can consider the least signi�cant n
bits of every byte
 that is the module Vn
 The general theory given above
applies to this module and its relevant submodules
 Looking at the least
signi�cant bit gives no information as the transition probabilities through the
nonlinear layer are uniform
 Vaudenay ���	 considered this situation in the
case when the ����� and log����� functions are replaced by functions that give
non�uniform transition probabilities
 Thus we consider the least signi�cant �
bits of each byte
 In this case XORing by �� or �� is equivalent to adding ��
or �� respectively and XORing by �� or �� is equivalent to adding �� with
probability one half or �� with probability one half
 The transition matrix
for a set of half�cosets of S is ���J� ����
T�
 where J� is the ��
 �� matrix
with every entry � and T� is given in Appendix �
 The matrix T� is calculated
by considering all ��� values of the three bytes involved in the half�coset �as
are J	 and J� below�


��



Whilst these transition probabilities are not uniform
 they are not non�
uniform enough to launch an attack on SAFER with a realistic number of
rounds


When we consider the least signi�cant � bits of each byte
 we obtain the
transition matrix on the half�cosets of ��
J	�����T	
 where J	 is the ��
��
matrix with every entry �
 The �rst row of T	 is given in Appendix �
 It
can be seen that a typical entry of T	 has absolute size about ��
 so a typical
entry of the transition matrix di�ers from the uniform value of ��
 by about
���

 The least signi�cant � bits in each byte give the transition matrix
on the half�cosets of ���J� � ���
T� where J� is the ��� 
 ��� matrix with
every entry �
 The �rst row of T� is given in Appendix �
 A typical entry
of T� has size about �

 so a typical entry of the transition matrix di�ers
from the uniform value of ��� by about ���

 We have shown parts of these
two matrices in the Appendix to show that even when considering the least
few signi�cant bits of every byte
 the transition probabilities of the �half�
cosets� are highly non�uniform
 Even after allowing for the averaging e�ect
of XORing key bytes
 the key�dependent transition matrices for the half�
cosets across the mixed XOR�addition
 nonlinear and mixed addition�XOR
layers are still highly non�uniform
 By taking the element�wise product of
transition matrices we obtain key�dependent transition matrices across the
cosets
 The PHT layer permutes the columns of this matrix
 so we can obtain
one�round key�dependent round transition matrices on the cosets which are
highly non�uniform
 By taking an appropriate product of such matrices
 we
can calculate key�dependent transition matrices from the message cosets to
the ciphertext cosets


Given su�cient computational power
 we can pre�compute all such key�
dependent transition matrices
 For a set of message�ciphertext pairs
 we
could use these matrices to calculate the likelihoods as given above
 In prac�
tice
 the keys may naturally occur in classes that give approximately equal
transition matrices
 which would reduce the key search
 In any case
 the key
search for the attack described above is at worst �� or �� bits �SAFER K���
or K�����
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� Other Potential Algebraic Weaknesses

The invariant Z�submodules of Section � essentially give the cryptanalyst a
method for controlling the di�usion of SAFER in the PHT layer
 There are
several ways in which this may be potentially be exploited
 We brie�y list
some of them


�
 In the Z�submodule V� or V�
 there are many linear combinations of
bytes that are �xed by �
 By analysing how the key and nonlinear
layers a�ect these linear combinations
 either individually or jointly
 it
may be possible to �nd information about the key


�
 � has many small cycles
 In particular on V�
 � has order �
 and
on V�
 �	 �xes every Z�submodule of rank �
 We can analyse the
Z�submodules generated by such small cycles
 Those Z�submodules
generated by cycles that involve elements of low �module� weight may
provide key information


�
 Constructing a�ne �Z�module� approximations to the �����
 log����� and
XOR functions and relating these to the invariant Z�submodules may
give key information


�
 Further investigation of ��invariantZ�submodules of V 
 In particular it
may be possible to relax the requirement of strict invariance and analyse
probabilistically invariant Z�submodules
 for example the central six
bytes he�� e	� e�� e�� e
� e�i
 There are many such Z�submodules which
could give key information


�
 Di�erential analysis based on the ��invariant Z�submodules


�
 In SAFER K����
 we saw above that the key bytes divide into two
types
 the addition key bytes and the XOR key bytes
 The e�ect of
adding two key bytes sequentially is the same as adding one key byte
equal to their sum
 It is therefore possible that
 because of the underly�
ing Z�module structure
 the transition probabilities would depend only
on the value of the overall addition of certain addition key bytes
 This
would give a greatly reduced key search


��



� Conclusions

In this paper
 we have given an analysis of the SAFER algorithm based on
the algebraic properties of the PHT layer
 and in particular the invariant Z�
submodules
 In particular
 for a given key
 we have found a �projection� ���
of the ��byte message�ciphertext space onto a ��byte Z�submodule so that
the probability of any message projection giving any ciphertext projection is
independent of one quarter of the key bytes
 This gives the real possibility
of reducing a key search to � or �� bytes �SAFER K��� or K�����
 We have
given an example of one way in which this may be exploitable given su�cient
computational resources


The key scheduling for SAFER K��� and SAFER K���� has been changed
to give SAFER SK��� and SK���� since the original submission of this paper
and ��	
 This �amongst other things� ensures that this projection depends
on all the key bytes
 However the main contribution of this paper is the use
of the invariant Z�submodules of the PHT layer to allow the cryptanalyst to
control di�usion
 and the algebraic analysis of these invariant Z�submodules

Even with the new key schedule
 there remains the possibility of using the
invariant Z�submodules of the PHT layer to analyse SAFER
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