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Abstract

We investigate some of the algebraic properties of the SAFER
block cipher when the message space is considered as a Z-module. In
particular we consider the invariant Z-submodules of the PHT layer
and show how these invariant Z-submodules give potential crypto-

graphic weaknesses.
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1 Introduction

SAFER K-64 is a block cipher that was introduced by Massey at the 1993
Cambridge Security Workshop on Fast Software Encryption [7]. It operates
on 64-bit blocks under the control of a 64-bit key. It is a “byte-oriented”
cipher in that all the basic encryption operations are on bytes or pairs of
bytes. At the 1994 Leuven Workshop on Cryptographic Algorithms, Massey
presented a paper [8] which surveyed the first year’s research on SAFER
K-64 and defined SAFER K-128, which is SAFER with a 128-bit key. In
this paper, we investigate certain algebraic properties of the SAFER block
cipher and show how these properties are a potential source of cryptographic
weaknesses.

Following the original submission of this paper and a related key attack
by Knudsen [6] in mid-1995, revised block ciphers SAFER SK-64 and SAFER
SK-128 were proposed [6]. These differ from the original SAFER K-64/128
block ciphers only by using the new key schedule proposed by Knudsen [6].
There is also an analysis of SAFER based on truncated differentials [1], and
an analysis that considers a revised SAFER encryption algorithm with a
different nonlinear layer [11].

Each round of SAFER contains only one operation that mixes message
bytes, the PHT layer (which exists to provide diffusion [7]). This PHT layer is
a Z-module homomorphism on the message space. Our analysis concentrates
on the Z-submodules of the message space that are preserved by the PHT
layer, that is the invariant Z-submodules. These invariant Z-submodules and
their cosets are not diffused by the PHT layer, and so provide a method for
the cryptanalyst to cope with the diffusion in SAFER in a variety of attacks,
whatever the key schedule. This is the main result of this paper. However,
the original key schedule of SAFER K-64/128 did not mix key bytes. This
allowed us to find a projection onto a particular 4-byte invariant Z-submodule
that does not depend on a quarter of the key (under standard cryptographic
assumptions).

We begin this paper by giving a description of SAFER and the original
key schedule of SAFER K-64/128. In Section 4 we give a description of the
invariant Z-submodules of the PHT layer, and in Section 5 we show how
these invariant Z-submodules can be used to construct a Markov chain on



cosets. In Section 6 we show how the original key schedule of SAFER K-
64/128 gave rise to the property described above, and in Section 7 we give
some other ways in which the invariant Z-submodules of the PHT could be
used for cryptanalysis. We finish with some conclusions.

2 Description of SAFER

SAFER is a block cipher that operates on 64-bit blocks considered as 8
bytes. It consists of a round transformation iterated r times followed by a
final output transformation. Recommended values of r are 6 for SAFER
K-64 and 10 for SAFER K-128. The key-scheduling, described below, gives
(2r + 1) 8-byte subkeys Ki,--- Ka.1. Subkeys Ky, _; and K»; are used in
round ¢, and the subkey Ky, ; is used in the output transformation. A
diagram of the round function is given in Figure 1. The i** round function
is built from four basic operations.

1. Mized XOR/Addition Layer: Bytes 1,4,5,8 of the round input are
XORed with bytes 1,4,5,8 of subkey Ks; 1. Bytes 2,3,6,7 of the
round input are added byte-wise (modulo 256) with bytes 2,3,6,7 of
subkey Ko;_1.

2. Nonlinear Layer: For a byte z, 45(%) is defined to be 45 modulo 257,
where z is regarded as a number 0 < z < 255, with the convention that
45(128) — (. As 257 is prime and 45 is a primitive element modulo 257,
this is an invertible function of a byte, and log,;(-) is defined to be its
inverse. The 450) transformation is applied to bytes 1,4,5,8 of the out-
put of the Mixed XOR/Addition layer and the log,(-) transformation
to bytes 2,3,6,7.

3. Mized Addition/XOR Layer: Bytes 1,4,5,8 of the output of the non-
linear layer are added byte-wise (modulo 256) with bytes 1,4,5,8 of

subkey Kj;. Bytes 2,3,6,7 of the output of the nonlinear layer are
XORed with bytes 2,3,6,7 of subkey K;.

4. Pseudo Hadamard Transform (PHT) Layer: The transforms 2-PHT in
Figure 1 map the byte pair (a1,a2) to the byte pair (2a; + a2, a1 + a2),
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Figure 1: Encryption Round Structure of SAFER



where addition is modulo 256. The effect of the three layers of 2-PHT
transforms on the output v of the Mixed Addition/XOR layer is to map
it to vM, where addition is modulo 256 and
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The output of the PHT layer is the output of the round function.

The final output transformation after r rounds is an application of the
Mixed XOR/Addition Layer with the output of the r** round and the subkey
K2r+1-

Decryption using SAFER is carried out by reversing these operations and
we do not describe it in detail.

3 Key Scheduling

The key scheduling for SAFER is again byte-oriented. For SAFER K-64 with
8-byte key K, let K7 denote the j** byte of K. The j* byte of subkey K,
K} (j=1,---,8), is defined by

K} = ROLg; 1) (K) + B} (i=1,---,2r +1),
where ROL,, denotes a left rotation of the byte by n positions, Bf are pre-

defined “key biases”, and addition is modulo 256. Note that B{ = 0, so
K, =K.

For SAFER K-128, the 16-byte key K is split into two 8-byte halves
K., K, so K = (K,, K3). The j** byte of a subkey is defined by

K31 = ROLG(i—l)(Kg) + By (=1, + 1),
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where the key biases Bij are the same as for SAFER K-64. Encryption under
key K = (K',K') for SAFER K-128 is identical to encryption under key K’
for SAFER K-64.

For SAFER K-64, all of the subkey bytes used in the j** byte position
depend solely on the j** byte of the key. For SAFER K-128, all of the even
(K3;) subkey bytes used in the j** byte position depend solely on the 5" byte
of the left half of the key, and all of the odd (K1) subkey bytes used in the
7" byte position depend solely on the j** byte of the right half of the key.
Thus for SAFER K-128, a byte of the 16-byte key gives subkey bytes that
are all used either in an XOR operation or an addition operation, but never
both. We term these two types of key bytes XOR and addition key bytes.

The new key schedules for SAFER SK-64 and SAFER SK-128 do mix
key bytes [6]. We do not describe them here.

4 Algebraic Structure of the PHT Layer

Our comments on and our analysis of SAFER relate primarily to the algebraic
properties of the PHT layer. An introduction to the algebra required is given
in [5]. The PHT layer is a collection of transformations based on Zys, the ring
of integers modulo 2% = 256. Consider the 8-byte message space V = Z3
of SAFER. We can think of V' as a module in three equivalent ways. We
can regard V firstly as a free Zjys-module of rank 8, or secondly as a torsion
Z-module that is annihilated by 287, or finally as the quotient Z-module
72/2878. In each case the PHT layer is an invertible module homomorphism
a:V — V, where o has matrix M with respect to the standard basis. Our
analysis of SAFER is based on the a-invariant submodules of V. Recall that
a Z-submodule U is an a-invariant Z-submodule of V if Ua < U. However in
this case a is invertible, so if U is an a-invariant submodule, then Ua = U.
The a-invariant Z-submodules can be thought of as those Z-submodules that
are “preserved” by the PHT layer. For example, the simplest a-invariant
submodules are V, = 28"V, the submodule obtained by considering the
least significant n bits of each byte. We therefore begin our analysis of
SAFER with a thorough investigation of a-invariant submodules.

Consider the 8-dimensional rational vector space Vy = Q® and the free



Z-module Vi, = Z8 Now a can be regarded as the linear transformation
on Vp and as the Z-module homomorphism on V7 given by the matrix M.
Considered as a set embedded in Vj, o as a linear transformation on Vj fixes
the subset V. The characteristic polynomial of a on Vg, f(z) = Det(a—zI)
is given by

f(X)=1-18X + X* — 18X> + 324X* — 18X° + X® — 18X + X8,
which factorises over the integers as
f(X)=(1-18X + X?)(1 —3X + X*)(1 + 3X +8X* +3X°% + X*).

Vi therefore has the following three minimal a-invariant subspaces: Py (of di-
mension 2), Qg (of dimension 2) and Ry (of dimension 4). These a-invariant
Vip-subspaces are defined by

Py = ker(I—18a+a2)
(e1—es+dy, er +eg+dy),
ker([ — 3a—|—a2)

<361 —dl —d2, dl —d2—368>,
Ry = ker(I+3a+ 8a? + 3a® + a4)

= <62—65,63—65,66—64,67—64>,

Qo

where e; denotes the 7** standard basis vector, and di = ey + e3 + e5 and

dy = eq4 + e¢ + e7. If we let Bp denote the basis for Vj given above in terms
of Py, Qg and Rg, then

B — e —eg+dy,er+eg+di,3e —d —d,
© di —dy —3eg, e3 —e5,e3— €5, €6 — €4, €7 — €4

and the change of basis transformation from the standard basis to By is given
by the matrix A (with determinant —225), where

11 3 0 0 0 0 O

o 1 -1 1 1 0 O O

o 1 -1 1 0 1 0 O

A 1 6 -1 -1 0 0 -1 -1
o 1 -1 1 -1 -1 O O

1 6 -1 -1 0 0 1 O

1 606 -1 -1 0 0 0 1

-1 1 0 -3 0 0 0 0




Vo has a direct sum decomposition as
Vo=Py® Qo ® Ro (where @ here denotes direct sum),

The Vy subspaces Py, Qg and Rg are in fact pairwise orthogonal with respect
to the standard inner product on Q. The matrix of a with respect to the

basis By of Vj is a block diagonal M’ defined by

Mp 0 0
M' = 0 Mg O , Where
0 0 Mpg
2 2 -1 1
5 8 2 1 2 0 0 1
MP:(s 13)’MQ:(1 1)andMR: 1 0 0 -1
1 -1 1 -1

We thus have the following three a-invariant Z-submodules of V7, as V3
is fixed by a as a subset of Vj.

P, = PynVy=ker(I —18a + a?)
(e1—es+dy, e1+eg+dy),

Qo N Vz = ker(I — 3a + a2)
<361—d1—d2,d1—d2—368>,

Ry, = RgNVy=ker(I +3a+8a%+ 3a® + a*)

= <62—65763—65,66—64,67—64>-

Qz

We can now define T < V; as the direct sum of these a-invariant Z-
submodules, so

T, =P, @ Q7 ® Ry (where @ here denotes direct sum).

We note that T% is a proper Z-submodule of V7, as, for example, d; ¢ T7.

We can use this a-invariant decomposition on 77 to give an a-invariant
decomposition on V by using the following lemma:

Lemma. ([5] Lemma 8.1) Let L be a module over a ring (with 1), and
suppose L is a direct sum L = L; @& --- @& L; of submodules L; < L. For



each i, let N; < L;, and let N = 3>¢_, N;. If v is the natural homomorphism
L — L/N, then

L Ly L,
N v Wb Ly N169 @Nt

Suppose we let v* denote the natural Z-module homomorphism

: Vz
v :VZ%W:V}

then v* gives the natural Z-module homomorphism

Ty
Ty — L~
S e Ty

where T' = Tyv* is a Z-submodule of V. We apply the above lemma to
the natural Z-homomorphism v and the decomposition Ty, = P;, ® Q7 & Ry.
Noting that

Tz N 2878 = (P, N 28Z8) + (Qz N 28Z%) + (Rz N 287Z8),

we obtain

Ty Py Qz Ry

T o~ _
T, N 2878 PN 2878 @ Qz N 2878 @ Ry N 2878

112

As 2878 and Ty are o-invariant Z-submodules, a can be well-defined as the
induced Z-module homomorphism on the quotient Z-module 7. Similarly
the three quotient Z-submodules in this decomposition are a-invariant

We thus have following three a-invariant Z-submodules of T

P = ker(I—18a+a2)
(e1 —eg+dy, e1+eg+dr),

Q = ker(I —3a+ a2)
= (3e; —dy —dy, dy — dy — 3es),
R = ker(I+3a+ 8a? + 3a® + a4)

= <62—65,63—65,66—64,67—64>,



and the following decomposition of T' as the direct sum of a-invariant Z-
submodules:

T=P®»QdR (where @ here denotes direct sum).

Both T and V can be regarded as free Zss-modules of rank 8 with 7' < V.
T is freely generated by the basis B, where

—dy —3eg, e2 — €5, €3 — €5, €6 — €4, €7 — €4

B—{ e1 —eg+dy,er +eg+di,3ey —d —dy, }
=1 4

and V is freely generated by the standard basis. The change of basis trans-
formation that maps the standard basis to B is given by the matrix A defined
above. A is invertible as its determinant (—225) is a unit in Zys, so B is a
basis for V as a free Zjys-module ([5] Lemmas 7.5, 7.6). Therefore as a free
Zys-module, and hence as a Z-module, T = V.

The decomposition of T' as the direct sum of a-invariant Z-submodules
is thus a decomposition for V, and so we have:

V=POQDR (where @ here denotes direct sum).

Clearly V, P, Q and R have sizes 2%4, 216, 216 and 232 respectively.

In order to find further a-invariant Z-submodules, we regard V as a (tor-
sion) Z[X]-module. In this module, scalar multiplication of a module element
v by an integer polynomial g(X) (an element of Z[X]) is defined by

v-g(X) = (v)(g9(a)),

that is the image of v under the module homomorphism g(a). The role of
this Z][X]-module in finding a-invariant submodules is given by the following
theorem.

Theorem. U is an a-invariant Z-submodule of V if and only if U is a

Z] X]-submodule of V.

Proof. If U is an a-invariant Z-submodule of V, then Ua < U. Thus for
any n and Ag, - A,,



so U - g(X) < U for any polynomial ¢g(X). Hence U is a Z[X]-submodule.

Conversely, if U is a Z[X]-submodule, then Ua < U, so U is an a-
invariant submodule. O

We thus need to find the Z[X]-submodules of the Z[X]-module V. For
any Z[X]-submodule U, let

ann(U) = {g(X) € ZIX]|U - g(X) = 0}

denote the annihilator of U in Z[X], an ideal in Z[X]. This function gives
an inclusion-reversing mapping from the Z[X]-submodules of V to the ideals
of Z|X]. We can also define an inclusion-reversing mapping from the set of
ideals of Z[X] to the Z][X]-submodules of V. Accordingly, for any ideal I of
Z[X], let

Ny(I)={veVjp-I=0} <V

denote the “null” Z[X]-submodule of V of the ideal I. Np, Ny and Ng
can be similarly defined as null submodules in P, ) and R. However, not
every Z[X]-submodule is the null Z[X]-submodule of some ideal, for exam-
ple Z[X]-submodule {0,27(es + e7)}, which is fixed by a, but is a proper
Z] X]-submodule of fixed point Z[X]-submodule ker(a — I). However any
Z]|X]-submodule U is a Z[X]-submodule of the null Z[X]-submodule of its
annihilator, so U < Ny(ann(U)). We term Ny (ann(U)) the minimal null
Z]| X]-submodule containing U. The following theorem shows that a null
Z[X]-submodule can be decomposed as a direct sum of null Z[X]-submodules

of P, () and R.

Theorem. For any ideal I of Z[X],
Ny(I) = Np(I) ® No(I) ® Nr(),

with Np(I) < P, No(I) < Q and Nx(I) < R.

Proof. Let n € Np(I)+ Ng(I)+ Ng(I), then n can be written as n =
p+ g+, where p- h(X) = ¢-h(X) =7 -h(X) =0 for all A(X) € I. Thus
n-h(X)=p-h(X)+q-h(X)+7r-h(X)=0"forall h(X) € I,son € Ny(I).
Therefore Np(I) 4+ Ng(I)+ Ng(I) < Ny(I)
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Conversely, suppose n € Ny(I). n can be written as n = p + ¢ + r for
some p € P, g€ @ and r € R. For any h(X) € I,

0 = n-h(X)=(p+q+r) h(X)=p-h(X)+q- h(X)+r- h(X)
— pl_l_q/_l_r/
for some p' € P, ¢ € @Q and v € R, as P, ) and R are Z[X]-submodules.
However P @ () ® R is a direct sum, hence
0=p'=q =1"=p-h(X) =g h(X)=r-hX),
and so p € Np(I), q € No(I) and r € Ng(I). Asn = p+ g+, we have that
n € Np(I) 4+ Ng(I) + Ng(I). Therefore Ny (I) < Np(I)+ Ng(I)+ Ng(I).

Therefore we have equality, and we clearly have a direct sum, so

Nv(I):NP(I)@NQ(I)@NR(I) a

This theorem enables us to find Z[ X]-submodules of V because any Z[X|-
submodule is contained in its minimal null Z[X]-submodule. This null Z[X]-
submodule can be decomposed into null Z[X]-submodules of P, @) and R. We
thus consider the Z[X]-submodules of V, P, @ and R. Any Z[X]|-submodule
U can be regarded in the natural way as a (Z[X]/ann(U))-module. We
therefore calculate the following annihilators:

Ay =ann(V), Ap =ann(P), Ag=ann(Q), Agr=ann(R).

We know that
(2%,p(X)) = (2°,1 - 18X + X?) C Ap

so any element of Ap can be reduced modulo (2%, p(X)) to a polynomial of
the form ag + a; X, where ag,a; € {0,---2% — 1}. By considering the effect
of module homomorphisms ag 4 a;a on the generators of P (as a Z-module),
we find the only other generator for Ap is 25 (X + 3). Similar calculations
give Ag and Ap, so we have

Ap = ann(P) = (25,25(X + 3),p(X))

= (28,25(X +3),(1 — 18X + X?))
g = ann(Q) = (2%9(X) = (2%, (1~ 3X + X?))
Agp = ann(R)= (28,25 X3 + 3),r(X))

(28,25(X3 4+ 3),(1 +3X +8X* +3X3 + X1)).

12



By considering the effect of elements of Ag, Ag on P etc., we find

Ay = ann(V) = (2°,2°(X + 3),2¢(X)r(X), (X + 1)g(X)r(X))
= (28,2%(X +3),2(1 —3X + X?)(1 +3X +8X% + 3X3% + X*),
(X +1)(1—-3X + X?)(1+3X +8X%+3X%+ X%)

If we define the following quotient rings
Zv = ZIX][Av, Zp=1LX]|/Ap Zq=1Z|X][Aq, Zr=ZL[X]/Ar,
then the elements in these rings can be written as

Zp = {ag+ a1 Xl|ag=0,---,2 —1;a; =0,---,25 - 1}

ZQ == {ao—l—a1X|a0,a1:0,---,28—1}

Zr = {ag+ a1 X + a2 X? + a3 X3|ag,a1,a3 = 0,---,28 — 1;
a3 =0,---,25 — 1}

Zy = {a0+"'+a6X6|a'07a'17a2:07"'728_1;
ag,aq,a5 = 0,-+-,25 — 1506 = 0,1}.

The rings Zp, Zg, Zr and Zy have sizes 2'3, 216 229 and 2% respectively.
Note that all four of these rings can be regarded as cyclic modules over
themselves.

We can thus regard V as a Zy-module, and P, ) and R as Zp-, Zp-
and Zg-modules respectively. By considering the effect of a on one of the
generators (as Z-modules) p, ¢ and r of P, @ and R respectively, we find that
P, @Q and R contain cyclic submodules (generated by one element) that are
isomorphic to Zp, Zg and Zg (as modules over themselves) respectively. We
denote these cyclic submodules (p),_, <q>ZQ and (r), respectively. These
cyclic submodules can also be regarded as Z-submodules, and as such we
have the following Z-module isomorphisms:

Pz, = (p)+ 23P (Z-Module Isomorphism),
@)z, = Q (Z-Module Isomorphism),
<T>ZR = (r)y+ 28R (Z-Module Isomorphism).

Thus Q is a cyclic Zg-module of size 2'®. The cyclic Zp- and Zg-submodules
of P and R, (p),, and (r), , are of size 213 and 2?° respectively. These
cyclic submodules intersect non-trivially with any other submodule of P and

13



R respectively. P and R contain many such cyclic submodules of these sizes.
They are each generated by a single generator of P and R (considered as
Z-modules). The submodules of the cyclic modules Zp, Zg and Zg (over
themselves) are given by the ideals of Zp, Zy and Zg respectively, or equiva-
lently by ideals in Z[X] containing Ap, Ag and Ag respectively ([5] Theorem
2.12). Further analysis of the ideals of the rings can be conducted by using
the theory of Grébner bases [3].

We have given a thorough analysis of the a-invariant Z-submodules of V'
by considering the equivalent Z[X]-submodules of V. We summarise here the
results of the Z[X]-module analysis in terms of a-invariant Z-submodules.
We have shown that V can be decomposed as V = P ® @ @ R, where P,
() and R are a-invariant Z-submodules, and that any other a-invariant Z-
modules is contained in a minimal “null” Z-submodule which decomposes as
a sum of a-invariant Z-submodules of P, () and R. The Z-submodules P
and R contain certain a-invariant Z-submodules that intersect non-trivially
with any other a-invariant Z-submodule of P and R respectfully. Further
a-invariant Z-submodules of these Z-submodules of P and R, and of the
Z-submodule @) can be calculated by considering the ideals of the various
polynomial quotient rings given above.

5 A Markov Chain on Quotient Modules

Let U be an a-invariant Z-submodule of V. We consider the effect of the
ith round function on the cosets of U in V, or equivalently on the quotient
Z-module V/U. Suppose now that an element z* € V is the round input,
y* € V is the input to the PHT layer and z* € V is the round output, and
zi, yi; and z}; are the corresponding cosets of U or elements of V/U. For a
given round subkey (Ks;_1, K»;), we can calculate the transition probability
P(K2i_1’K2i)(y}'J—|w@) between a coset of U before and a coset of U after the
combined mixed XOR/addition, nonlinear and mixed addition/XOR layers.
The effect of the PHT layer (or «) is to permute the cosets of U as U is a-
invariant. For this round subkey (Kj;_1, K5;), we can calculate the transition
probability P(K2i_1,K2i)(z}'J—|w@) between the a coset of U before and after the
round function of SAFER. For this round subkey (K1, K>;), the round

function of SAFER gives a key-dependent probability transition matrix on

14



the cosets of U. This transition matrix Q(x,,_, k,,) is defined by
Q(K2i—1,K2i) = (Pk(z;ﬂsz)) .

Consider now the SAFER encryption function with r rounds followed by
a final output transformation which we regard as the (r + l)th round. Let
z' € V be the input to the i** round (¢ = 1,---,(r + 1)), with z"*? as the
output. Let zi, (¢ = 1,---,(r + 2)) be the corresponding cosets of U or
elements of V/U. For a given key K, the sequence z};,---,z};* forms a key-
dependent random process with state space the cosets of U. The transition
matrix for this random process Qg is defined by

Qx = (Px(zf|zy)) -

The standard cryptographic assumption, implicitly used in both linear [9] and
differential cryptanalysis [2], is that for a given key, such a random process
defined on a state space of cosets forms a first order Markov chain [4]. In
linear cryptanalysis, these are usually cosets of a hyperplane of the message
space (considered as a binary vector space). In differential cryptanalysis
these are usually cosets of

{(m,m)m e M} <M x M (where M is the message space),

and these give the “characteristics”. This assumption can be tested empir-
ically. Under this assumption we can write the transition matrix Qx as a
product of transition matrices for each round. Thus if key K gives round
subkeys Ki,---, K311, the transition matrix Qg is given by

QK = Q(K1,K2)Q(K3,K4) v Q(K2r—1yK2r)QK2r+1 .

6 A Potential Cryptographic Weakness

We have seen that the Z-module V can be written as the direct sum of a-
invariant Z-submodules as V = P ® Q ® R. We can define a submodule S
by

S =P D Q == <61,d1,d2,68>.

15



S is an a-invariant submodule with V = R@® 5. We consider how the Markov
chain described in the Section 5 applies to cosets of the submodule S. We
can define ¢ to be the natural Z-module homomorphism
Vo
p:V — 5 = R.

We can regard the random process on the cosets of S as a random process
on elements of R. For an element v € V, we write vg for this coset of § or
equivalently element of R. The value of vg does not depend on the 1% and
8" bytes of v as e; and eg are absent from the basis for R. Consider the i**
round of a SAFER encryption under a given i** round subkey (Kai—1, K3).
Suppose now that an element z* € V is the round input, y* € V is the input
to the PHT layer and 2* € V is the round output, and z%, y% and z% are the
corresponding cosets of S or elements of R. For a given input z*, the central
six bytes of the output y* of the combined mixed XOR /addition, nonlinear
and mixed addition/XOR layers do not depend on the 1®* and 8" bytes of
the subkeys Ky; ;1 and Ky;. Thus the distribution of yfg conditional on wg is
constant whenever the central key bytes agree. 2% depends only on y% as S
is a-invariant. For the given subkey, the distribution of 2% conditional on =’
therefore does not depend on the 1°* and 8!* bytes of the subkeys K»;_; and
K,;. The key-dependent one-round transition matrix on the cosets of S is
identical for all subkeys (K3;_1, K»;) that agree on the central six bytes. If we
define @ to be the restriction to these central six bytes, then the one-round
transition matrix can be written as

Q(K2i—1,K2i)9 = (P(K2i—1,K2i)9(zg|wg)> .

Suppose now that we have an r-round plus final output transformation
SAFER encryption with message m = z! and ciphertext ¢ = z"*2. For
a given key K, under the standard cryptographic assumption that such a
process forms a first order Markov process, the transition matrix between
message cosets and ciphertext cosets of S is the product of the round tran-
sition matrices. Thus

QK = (PK(Z;J|581U)> = Q(K1,K2)9 v Q(K2r—1,K2r)9Q(K2r+1)9'

The transition matrix Qi therefore depends only on the central six bytes

of the subkeys Kj,---,Ks,41. For SAFER K-64/128, the key scheduling
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restricts bytes of K to the same bytes of any subkey, so we have Qx = Q) kg.
For SAFER K-64, this means that the distribution of cg conditional on mg
does not depend on the 1°* and 8" bytes of the key, whereas for SAFER K-64
the distribution of cg conditional on mg does not depend on the 1%, 8*, 9th
and 16" bytes of the key.

For either SAFER K-64 or SAFER K-128, we have found a half-rank al-
gebraic structure (R) of the message/ciphertext space on which the output
distributions do not depend on a quarter of the key bytes. In [7] it is stated
that “SAFER was designed in accordance with Shannon’s principles of con-
fusion and diffusion for obtaining security in secret-key ciphers”. Shannon’s
principle of confusion [10] is “to make the relation between simple statistics
of ciphertext and simple statistics of the key a very complex and involved
one”. As there are simple statistics of the output (that is its “projection” on
R) that do not depend on a quarter of the key bytes, it arguable that SAFER
does not satisfy the principle of confusion. Therefore if there are any col-
lections of functions of mg which have non-negligible correlations with any
collections of functions of cg, then we have a reduced key search.

For practical reasons, we may need to concentrate on the least significant
n bits of each byte, that is the module V,,. The above reasoning also applies
to this module, so just by considering the least significant n bits we may
still get a reduced key search. We note that when we consider a as module
homomorphism of V,, for small n, it has even more structure. For example,
as a module homomorphism of V3, every submodule of P is a-invariant and
R has a submodule of rank 2 in which every submodule is a-invariant.

There are many similar attacks on SAFER using the a-invariant Z-
submodule S with different time/space complexity trade-offs. We do not
investigate all these attacks to find the best one. The key schedule has al-
ready been revised in the light of this paper and [6]. The attack below is
given solely as an illustration of the type of attack it may be possible to
mount on SAFER using the a-invariant Z-submodule S.

We can attempt to exploit the lack of dependence on certain key bytes
by calculating empirical transition probabilities on cosets of S for plain-
text/ciphertext data. Given enough data we can see which key-dependent
sets of transition probabilities best agree with the empirical probabilities and
thus find key information.
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In order to calculate these transition matrices, we need to calculate tran-
sition matrices for one round. We now explain how the components of the
round function affect the transition matrix. We first note that we can write
R as the direct sum of two Z-submodules of rank 2, one involving linear com-
binations of bytes 2,3,5 and the other linear combinations of bytes 4,6,7.
Thus we have

R:<62—65,63—65>@<66—64,67—64>.

In the mixed XOR/addition, nonlinear and mixed addition/XOR phases,
SAFER acts independently on these two Z-submodules of R. We call the set
of cosets on either of these two submodules half-cosets.

Adding a subkey byte corresponds to permuting the cosets of S in V ac-
cording to the subkey byte. XORing a subkey byte corresponds to adding
one of a small set of other bytes according to a known distribution that de-
pends on the subkey byte. Combining these two operations into the mixed
XOR/addition or the mixed addition/XOR phase, we see that either of these
phases gives a transition matrix on the cosets that depends on the sub-
key. The 450), log,s(+) transforms give transition matrices on each of the
half-cosets. We give some examples below. Thus the combined effect of
the mixed XOR/addition, nonlinear and mixed addition/XOR layers is to
give key-dependent transition matrices on the half-cosets. These transition
matrices are effectively key-dependent weighted averages of the permuted
transition matrix on the half-cosets for the nonlinear layer. To obtain the
key-dependent transition matrix for all of the cosets, we combine the key-
dependent transition matrices for both of the component half-cosets using
an element-by-element product.

The effect of the PHT layer is to permute the cosets as S is an a-invariant
subspace. This permutation is given by Mg, where

2 2 -1 1
2 0 0 1
Mg = 1 0 0 —1
1 -1 1 -1

was given earlier as the block (corresponding to R) of the matrix M as a block
matrix. Thus we can find the key-dependent transition matrix for one round
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by permuting the columns of the key-dependent matrix for the combined
mixed XOR/addition, nonlinear and mixed addition/XOR layers. The key-
dependent transition matrix for a number of rounds is just the product of
the individual key-dependent one-round transition matrices.

Let Pgi(mg,cg) denote the probability of transition from message class
mg to ciphertext class cg under key class K', where K' = K6 denotes the
relevant 6 or 12 key bytes (SAFER K-64 or K-128). Pg:(mg,cg) is just the
relevant entry of the transition matrix corresponding to K’'. Suppose we have
a number of message/ciphertext pairs and let N(mg,cg) be the number of
times message class mg and cg occur. For a known plaintext attack we can
find the value of K’ that maximises the log-likelihood function.

Z N(mg,cg)log Pgi(mg,cs).

(ms.es)

This is a maximisation over at most 2%® or 2% elements. For 2-round SAFER,
an approximate probability argument using random functions shows that for
a given key class K', about 37% (e™!) of class pairs (mg,cs) do not occur,
that is Pgi(mg,cg) = 0 for 37% of class pairs (mg,cg). Thus for 2-round
SAFER, we have a trivial attack in which we can identify the true key class
with a handful of message/ciphertext pairs.

The above analysis for SAFER with a realistic number of rounds requires
the calculation of vast numbers of 232 x 232 transition matrices. In order to
make the calculations more tractable, we can consider the least significant n
bits of every byte, that is the module V,,. The general theory given above
applies to this module and its relevant submodules. Looking at the least
significant bit gives no information as the transition probabilities through the
nonlinear layer are uniform. Vaudenay [11] considered this situation in the
case when the 45() and log,(-) functions are replaced by functions that give
non-uniform transition probabilities. Thus we consider the least significant 2
bits of each byte. In this case XORing by 00 or 10 is equivalent to adding 00
or 10 respectively and XORing by 01 or 11 is equivalent to adding 01 with
probability one half or 11 with probability one half. The transition matrix
for a set of half-cosets of S is 27%J, 4+ 2720T,, where J, is the 16 x 16 matrix
with every entry 1 and T is given in Appendix 1. The matrix T, is calculated
by considering all 22 values of the three bytes involved in the half-coset (as

are J3 and Jy below).
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Whilst these transition probabilities are not uniform, they are not non-
uniform enough to launch an attack on SAFER with a realistic number of
rounds.

When we consider the least significant 3 bits of each byte, we obtain the
transition matrix on the half-cosets of 278J3 + 27 18T, where J3 is the 64 x 64
matrix with every entry 1. The first row of T3 is given in Appendix 2. It
can be seen that a typical entry of T3 has absolute size about 22, so a typical
entry of the transition matrix differs from the uniform value of 27 by about
2710 The least significant 4 bits in each byte give the transition matrix
on the half-cosets of 278J, 4+ 27167, where J, is the 256 x 256 matrix with
every entry 1. The first row of T}y is given in Appendix 3. A typical entry
of T, has size about 2%, so a typical entry of the transition matrix differs
from the uniform value of 278 by about 271°. We have shown parts of these
two matrices in the Appendix to show that even when considering the least
few significant bits of every byte, the transition probabilities of the “half-
cosets” are highly non-uniform. Even after allowing for the averaging effect
of XORing key bytes, the key-dependent transition matrices for the half-
cosets across the mixed XOR/addition, nonlinear and mixed addition/XOR
layers are still highly non-uniform. By taking the element-wise product of
transition matrices we obtain key-dependent transition matrices across the
cosets. The PHT layer permutes the columns of this matrix, so we can obtain
one-round key-dependent round transition matrices on the cosets which are
highly non-uniform. By taking an appropriate product of such matrices, we
can calculate key-dependent transition matrices from the message cosets to
the ciphertext cosets.

Given sufficient computational power, we can pre-compute all such key-
dependent transition matrices. For a set of message/ciphertext pairs, we
could use these matrices to calculate the likelihoods as given above. In prac-
tice, the keys may naturally occur in classes that give approximately equal
transition matrices, which would reduce the key search. In any case, the key
search for the attack described above is at worst 48 or 96 bits (SAFER K-64
or K-128).
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7 Other Potential Algebraic Weaknesses

The invariant Z-submodules of Section 4 essentially give the cryptanalyst a
method for controlling the diffusion of SAFER in the PHT layer. There are
several ways in which this may be potentially be exploited. We briefly list
some of them.

1. In the Z-submodule V, or Vg, there are many linear combinations of
bytes that are fixed by a. By analysing how the key and nonlinear
layers affect these linear combinations, either individually or jointly, it
may be possible to find information about the key.

2. o has many small cycles. In particular on V,, a has order 3, and
on Vg, o® fixes every Z-submodule of rank 1. We can analyse the
Z-submodules generated by such small cycles. Those Z-submodules
generated by cycles that involve elements of low (module) weight may
provide key information.

3. Constructing affine (Z-module) approximations to the 45(), log,(-) and
XOR functions and relating these to the invariant Z-submodules may
give key information.

4. Further investigation of a-invariant Z-submodules of V. In particular it
may be possible to relax the requirement of strict invariance and analyse
probabilistically invariant Z-submodules, for example the central six
bytes (es, es, €4, €5, €6, €7). There are many such Z-submodules which
could give key information.

5. Differential analysis based on the a-invariant Z-submodules.

6. In SAFER K-128, we saw above that the key bytes divide into two
types, the addition key bytes and the XOR key bytes. The effect of
adding two key bytes sequentially is the same as adding one key byte
equal to their sum. It is therefore possible that, because of the underly-
ing Z-module structure, the transition probabilities would depend only
on the value of the overall addition of certain addition key bytes. This
would give a greatly reduced key search.
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8 Conclusions

In this paper, we have given an analysis of the SAFER algorithm based on
the algebraic properties of the PHT layer, and in particular the invariant Z-
submodules. In particular, for a given key, we have found a “projection” (¢)
of the 8-byte message/ciphertext space onto a 4-byte Z-submodule so that
the probability of any message projection giving any ciphertext projection is
independent of one quarter of the key bytes. This gives the real possibility
of reducing a key search to 6 or 12 bytes (SAFER K-64 or K-128). We have
given an example of one way in which this may be exploitable given sufficient
computational resources.

The key scheduling for SAFER K-64 and SAFER K-128 has been changed
to give SAFER SK-64 and SK-128 since the original submission of this paper
and [6]. This (amongst other things) ensures that this projection depends
on all the key bytes. However the main contribution of this paper is the use
of the invariant Z-submodules of the PHT layer to allow the cryptanalyst to
control diffusion, and the algebraic analysis of these invariant Z-submodules.

Even with the new key schedule, there remains the possibility of using the
invariant Z-submodules of the PHT layer to analyse SAFER.
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Appendix 2: 1** Row of Matrix T3

1328
124
140

—100
96
164
20
276
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720
—116
—140
—188
—48
—188
92

140
—116
608
—340
—-172
—100
—224
—52

—100
—140
—340
416
—404
—196
—436
—-80

25

96
—188
—-172
—404

464
—196
—244
—124

164
—48
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—268
—-12
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—188
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Appendix 3: 1 Row of Matrix T,

321 -13 18 7 10 -35 1 =21
-8 66 10 -33 46 48 6 31
-13 201 -53 -16 -—45 -8 —43 -43
-25 -20 -31 -33 -49 -2 8 28
18 -53 181 -36 -33 -38 0 -78
—16 10 -44 -49 -32 -39 -23 -8
7 -—-16 -36 194 -72 -27 -19 -14
—-49 -17 -36 b6 -7 =25 -49 30
10 -—-45 -33 -72 144 -56 —-22 —65
-8 —43 -36 -—-52 52 -2 —46 -38
-35 -8 -—-38 -—-27 -56 184 —41 27
-30 8§ 56 -25 -—-13 -32 -19 -10
11 —43 0 -19 -—-22 -41 220 -68
29 8 -3 =59 -—-12 -10 -24 33
-21 —-43 -78 -—-14 —-65 -—27 —-68 124
-35 -5 —-24 -38 -56 -8 —-38 -20
-8 —25 -—16 —49 -8 =30 29 =35
237 7 1 -9 8 17 -7 66
66 —20 10 -17 -—-43 8 8 -5
7 326 -—-17 27 39 50 -39 33
10 -31 -44 -36 -36 -—55b -3 -24

1 17 177 -—46 10 2 2 22
-33 -33 -49 -56 —-b52 -—-25 59 -38
-9 27 —46 186 -6 20 -25 6
46 —-49 -32 -7 —-52 -—-13 -12 -56
8 39 10 -6 208 -—28 23 23
48 -2 =39 =25 -2 =32 -10 -8
17 50 2 20 -28 234 -31 32

-7 -39 2 =25 23 31 214 16

31 28 -8 30 -38 -10 33 20
66 33 =22 6 23 32 16 344
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